201,658 research outputs found

    Learning Robust and Discriminative Manifold Representations for Pattern Recognition

    Get PDF
    Face and object recognition find applications in domains such as biometrics, surveillance and human computer interaction. An important component in any recognition pipeline is to learn pertinent image representations that will help the system to discriminate one image class from another. These representations enable the system to learn a discriminative function that can classify a wide range of images. In practical situations, the images acquired are often corrupted with occlusions and noise. Thus, a robust and discriminative learning is necessary for good classification performance. This thesis explores two scenarios where robust and discriminative manifold representations help recognize face and object images. On one hand learning robust manifold projections enables the system to adapt to images across different domains including cases with noise and occlusions. And on the other hand learning discriminative manifold representations aid in image set comparison. The first contribution of this thesis is a robust approach to visual domain adaptation by learning a subspace with L1 principal component analysis (PCA) and L1 Grassmannian with applications to object and face recognition. Mapping data from different domains on a low dimensional subspace through PCA is a common step in subspace based unsupervised domain adaptation. Subspaces extracted by PCA are prone to be affected by outliers that lead to noisy projections. A robust subspace learning through L1-PCA helps in improving performance. The proposed approach was tested on the office, Caltech - 256, Yale-A and AT&T datasets. Results indicate the improvement of classification accuracy for face and object recognition task. The second contribution of this thesis is a biologically motivated manifold learning framework for image set classification by independent component analysis (ICA) for Grassmann manifolds. It has been discovered that the simple cells in the visual cortex learn spatially localized image representations. Similar representations can be learnt using ICA. Motivated by the manifold hypothesis, a Grassmann manifold is learnt using the independent components which enables compact representation through linear subspaces. The efficacy of the proposed approach is demonstrated for image set classification on face and object recognition datasets such as AT&T, extended Yale, labelled faces in the wild and ETH - 80

    Combining ICA Representations for Recognizing Faces

    Get PDF
    Independent Component Analysis (ICA) is a generalization of Principal Component Analysis (PCA), and it looks for components that are both statistically independent and non-Gaussian. ICA is sensitive to high-order statistic and it expected to outperform PCA in finding better basis images. Moreover, with face recognition, high-order relationships among pixels may have more important information than those of pairwise relationships on which base images found by PCA depend. Two different representations can be applied by ICA; ICA architecture I and ICA architecture II. A new classifier that combines the two ICA architectures is proposed for face recognition. By the new classifier, the similarity measure vector was employed in which the similarity measure vectors for both ICA representations were resorted in descending order and then integrated by merging the corresponding values of each vector. The new classifier was performed on face images in the AR Face Database. Cumulative Match Characteristic was taken as a measure for evaluating the performance of the new classifier with illumination variation, expression, and Occlusion. The proposed classifier outperforms both ICA architectures in all cases especially in later ranks

    Subspace Representations for Robust Face and Facial Expression Recognition

    Get PDF
    Analyzing human faces and modeling their variations have always been of interest to the computer vision community. Face analysis based on 2D intensity images is a challenging problem, complicated by variations in pose, lighting, blur, and non-rigid facial deformations due to facial expressions. Among the different sources of variation, facial expressions are of interest as important channels of non-verbal communication. Facial expression analysis is also affected by changes in view-point and inter-subject variations in performing different expressions. This dissertation makes an attempt to address some of the challenges involved in developing robust algorithms for face and facial expression recognition by exploiting the idea of proper subspace representations for data. Variations in the visual appearance of an object mostly arise due to changes in illumination and pose. So we first present a video-based sequential algorithm for estimating the face albedo as an illumination-insensitive signature for face recognition. We show that by knowing/estimating the pose of the face at each frame of a sequence, the albedo can be efficiently estimated using a Kalman filter. Then we extend this to the case of unknown pose by simultaneously tracking the pose as well as updating the albedo through an efficient Bayesian inference method performed using a Rao-Blackwellized particle filter. Since understanding the effects of blur, especially motion blur, is an important problem in unconstrained visual analysis, we then propose a blur-robust recognition algorithm for faces with spatially varying blur. We model a blurred face as a weighted average of geometrically transformed instances of its clean face. We then build a matrix, for each gallery face, whose column space spans the space of all the motion blurred images obtained from the clean face. This matrix representation is then used to define a proper objective function and perform blur-robust face recognition. To develop robust and generalizable models for expression analysis one needs to break the dependence of the models on the choice of the coordinate frame of the camera. To this end, we build models for expressions on the affine shape-space (Grassmann manifold), as an approximation to the projective shape-space, by using a Riemannian interpretation of deformations that facial expressions cause on different parts of the face. This representation enables us to perform various expression analysis and recognition algorithms without the need for pose normalization as a preprocessing step. There is a large degree of inter-subject variations in performing various expressions. This poses an important challenge on developing robust facial expression recognition algorithms. To address this challenge, we propose a dictionary-based approach for facial expression analysis by decomposing expressions in terms of action units (AUs). First, we construct an AU-dictionary using domain experts' knowledge of AUs. To incorporate the high-level knowledge regarding expression decomposition and AUs, we then perform structure-preserving sparse coding by imposing two layers of grouping over AU-dictionary atoms as well as over the test image matrix columns. We use the computed sparse code matrix for each expressive face to perform expression decomposition and recognition. Most of the existing methods for the recognition of faces and expressions consider either the expression-invariant face recognition problem or the identity-independent facial expression recognition problem. We propose joint face and facial expression recognition using a dictionary-based component separation algorithm (DCS). In this approach, the given expressive face is viewed as a superposition of a neutral face component with a facial expression component, which is sparse with respect to the whole image. This assumption leads to a dictionary-based component separation algorithm, which benefits from the idea of sparsity and morphological diversity. The DCS algorithm uses the data-driven dictionaries to decompose an expressive test face into its constituent components. The sparse codes we obtain as a result of this decomposition are then used for joint face and expression recognition

    View-tolerant face recognition and Hebbian learning imply mirror-symmetric neural tuning to head orientation

    Get PDF
    The primate brain contains a hierarchy of visual areas, dubbed the ventral stream, which rapidly computes object representations that are both specific for object identity and relatively robust against identity-preserving transformations like depth-rotations. Current computational models of object recognition, including recent deep learning networks, generate these properties through a hierarchy of alternating selectivity-increasing filtering and tolerance-increasing pooling operations, similar to simple-complex cells operations. While simulations of these models recapitulate the ventral stream's progression from early view-specific to late view-tolerant representations, they fail to generate the most salient property of the intermediate representation for faces found in the brain: mirror-symmetric tuning of the neural population to head orientation. Here we prove that a class of hierarchical architectures and a broad set of biologically plausible learning rules can provide approximate invariance at the top level of the network. While most of the learning rules do not yield mirror-symmetry in the mid-level representations, we characterize a specific biologically-plausible Hebb-type learning rule that is guaranteed to generate mirror-symmetric tuning to faces tuning at intermediate levels of the architecture

    Learning image components for object recognition

    Get PDF
    In order to perform object recognition it is necessary to learn representations of the underlying components of images. Such components correspond to objects, object-parts, or features. Non-negative matrix factorisation is a generative model that has been specifically proposed for finding such meaningful representations of image data, through the use of non-negativity constraints on the factors. This article reports on an empirical investigation of the performance of non-negative matrix factorisation algorithms. It is found that such algorithms need to impose additional constraints on the sparseness of the factors in order to successfully deal with occlusion. However, these constraints can themselves result in these algorithms failing to identify image components under certain conditions. In contrast, a recognition model (a competitive learning neural network algorithm) reliably and accurately learns representations of elementary image features without such constraints

    Sparse Subspace Clustering: Algorithm, Theory, and Applications

    Full text link
    In many real-world problems, we are dealing with collections of high-dimensional data, such as images, videos, text and web documents, DNA microarray data, and more. Often, high-dimensional data lie close to low-dimensional structures corresponding to several classes or categories the data belongs to. In this paper, we propose and study an algorithm, called Sparse Subspace Clustering (SSC), to cluster data points that lie in a union of low-dimensional subspaces. The key idea is that, among infinitely many possible representations of a data point in terms of other points, a sparse representation corresponds to selecting a few points from the same subspace. This motivates solving a sparse optimization program whose solution is used in a spectral clustering framework to infer the clustering of data into subspaces. Since solving the sparse optimization program is in general NP-hard, we consider a convex relaxation and show that, under appropriate conditions on the arrangement of subspaces and the distribution of data, the proposed minimization program succeeds in recovering the desired sparse representations. The proposed algorithm can be solved efficiently and can handle data points near the intersections of subspaces. Another key advantage of the proposed algorithm with respect to the state of the art is that it can deal with data nuisances, such as noise, sparse outlying entries, and missing entries, directly by incorporating the model of the data into the sparse optimization program. We demonstrate the effectiveness of the proposed algorithm through experiments on synthetic data as well as the two real-world problems of motion segmentation and face clustering

    Non-Redundant Spectral Dimensionality Reduction

    Full text link
    Spectral dimensionality reduction algorithms are widely used in numerous domains, including for recognition, segmentation, tracking and visualization. However, despite their popularity, these algorithms suffer from a major limitation known as the "repeated Eigen-directions" phenomenon. That is, many of the embedding coordinates they produce typically capture the same direction along the data manifold. This leads to redundant and inefficient representations that do not reveal the true intrinsic dimensionality of the data. In this paper, we propose a general method for avoiding redundancy in spectral algorithms. Our approach relies on replacing the orthogonality constraints underlying those methods by unpredictability constraints. Specifically, we require that each embedding coordinate be unpredictable (in the statistical sense) from all previous ones. We prove that these constraints necessarily prevent redundancy, and provide a simple technique to incorporate them into existing methods. As we illustrate on challenging high-dimensional scenarios, our approach produces significantly more informative and compact representations, which improve visualization and classification tasks
    corecore