2,424 research outputs found

    Investigating human audio-visual object perception with a combination of hypothesis-generating and hypothesis-testing fMRI analysis tools

    Get PDF
    Primate multisensory object perception involves distributed brain regions. To investigate the network character of these regions of the human brain, we applied data-driven group spatial independent component analysis (ICA) to a functional magnetic resonance imaging (fMRI) data set acquired during a passive audio-visual (AV) experiment with common object stimuli. We labeled three group-level independent component (IC) maps as auditory (A), visual (V), and AV, based on their spatial layouts and activation time courses. The overlap between these IC maps served as definition of a distributed network of multisensory candidate regions including superior temporal, ventral occipito-temporal, posterior parietal and prefrontal regions. During an independent second fMRI experiment, we explicitly tested their involvement in AV integration. Activations in nine out of these twelve regions met the max-criterion (A < AV > V) for multisensory integration. Comparison of this approach with a general linear model-based region-of-interest definition revealed its complementary value for multisensory neuroimaging. In conclusion, we estimated functional networks of uni- and multisensory functional connectivity from one dataset and validated their functional roles in an independent dataset. These findings demonstrate the particular value of ICA for multisensory neuroimaging research and using independent datasets to test hypotheses generated from a data-driven analysis

    Visual Target Modulation of Functional Connectivity Networks Revealed by Self-Organizing Group ICA

    Get PDF
    We applied a data-driven analysis based on self-organizing group independent component analysis (sogICA) to fMRI data from a three-stimulus visual oddball task. SogICA is particularly suited to the investigation of the underlying functional connectivity and does not rely on a predefined model of the experiment, which overcomes some of the limitations of hypothesis-driven analysis. Unlike most previous applications of ICA in functional imaging, our approach allows the analysis of the data at the group level, which is of particular interest in high order cognitive studies. SogICA is based on the hierarchical clustering of spatially similar independent components, derived from single subject decompositions. We identified four main clusters of components, centered on the posterior cingulate, bilateral insula, bilateral prefrontal cortex, and right posterior parietal and prefrontal cortex, consistently across all participants. Post hoc comparison of time courses revealed that insula, prefrontal cortex and right fronto-parietal components showed higher activity for targets than for distractors. Activation for distractors was higher in the posterior cingulate cortex, where deactivation was observed for targets. While our results conform to previous neuroimaging studies, they also complement conventional results by showing functional connectivity networks with unique contributions to the task that were consistent across subjects. SogICA can thus be used to probe functional networks of active cognitive tasks at the group-level and can provide additional insights to generate new hypotheses for further study

    Group Analysis of Self-organizing Maps based on Functional MRI using Restricted Frechet Means

    Full text link
    Studies of functional MRI data are increasingly concerned with the estimation of differences in spatio-temporal networks across groups of subjects or experimental conditions. Unsupervised clustering and independent component analysis (ICA) have been used to identify such spatio-temporal networks. While these approaches have been useful for estimating these networks at the subject-level, comparisons over groups or experimental conditions require further methodological development. In this paper, we tackle this problem by showing how self-organizing maps (SOMs) can be compared within a Frechean inferential framework. Here, we summarize the mean SOM in each group as a Frechet mean with respect to a metric on the space of SOMs. We consider the use of different metrics, and introduce two extensions of the classical sum of minimum distance (SMD) between two SOMs, which take into account the spatio-temporal pattern of the fMRI data. The validity of these methods is illustrated on synthetic data. Through these simulations, we show that the three metrics of interest behave as expected, in the sense that the ones capturing temporal, spatial and spatio-temporal aspects of the SOMs are more likely to reach significance under simulated scenarios characterized by temporal, spatial and spatio-temporal differences, respectively. In addition, a re-analysis of a classical experiment on visually-triggered emotions demonstrates the usefulness of this methodology. In this study, the multivariate functional patterns typical of the subjects exposed to pleasant and unpleasant stimuli are found to be more similar than the ones of the subjects exposed to emotionally neutral stimuli. Taken together, these results indicate that our proposed methods can cast new light on existing data by adopting a global analytical perspective on functional MRI paradigms.Comment: 23 pages, 5 figures, 4 tables. Submitted to Neuroimag

    Diffusion map for clustering fMRI spatial maps extracted by independent component analysis

    Full text link
    Functional magnetic resonance imaging (fMRI) produces data about activity inside the brain, from which spatial maps can be extracted by independent component analysis (ICA). In datasets, there are n spatial maps that contain p voxels. The number of voxels is very high compared to the number of analyzed spatial maps. Clustering of the spatial maps is usually based on correlation matrices. This usually works well, although such a similarity matrix inherently can explain only a certain amount of the total variance contained in the high-dimensional data where n is relatively small but p is large. For high-dimensional space, it is reasonable to perform dimensionality reduction before clustering. In this research, we used the recently developed diffusion map for dimensionality reduction in conjunction with spectral clustering. This research revealed that the diffusion map based clustering worked as well as the more traditional methods, and produced more compact clusters when needed.Comment: 6 pages. 8 figures. Copyright (c) 2013 IEEE. Published at 2013 IEEE International Workshop on Machine Learning for Signal Processin

    A simple and objective method for reproducible resting state network (RSN) detection in fMRI

    Get PDF
    Spatial Independent Component Analysis (ICA) decomposes the time by space functional MRI (fMRI) matrix into a set of 1-D basis time courses and their associated 3-D spatial maps that are optimized for mutual independence. When applied to resting state fMRI (rsfMRI), ICA produces several spatial independent components (ICs) that seem to have biological relevance - the so-called resting state networks (RSNs). The ICA problem is well posed when the true data generating process follows a linear mixture of ICs model in terms of the identifiability of the mixing matrix. However, the contrast function used for promoting mutual independence in ICA is dependent on the finite amount of observed data and is potentially non-convex with multiple local minima. Hence, each run of ICA could produce potentially different IC estimates even for the same data. One technique to deal with this run-to-run variability of ICA was proposed by Yang et al. (2008) in their algorithm RAICAR which allows for the selection of only those ICs that have a high run-to-run reproducibility. We propose an enhancement to the original RAICAR algorithm that enables us to assign reproducibility p-values to each IC and allows for an objective assessment of both within subject and across subjects reproducibility. We call the resulting algorithm RAICAR-N (N stands for null hypothesis test), and we have applied it to publicly available human rsfMRI data (http://www.nitrc.org). Our reproducibility analyses indicated that many of the published RSNs in rsfMRI literature are highly reproducible. However, we found several other RSNs that are highly reproducible but not frequently listed in the literature.Comment: 54 pages, 13 figure

    A group model for stable multi-subject ICA on fMRI datasets

    Get PDF
    Spatial Independent Component Analysis (ICA) is an increasingly used data-driven method to analyze functional Magnetic Resonance Imaging (fMRI) data. To date, it has been used to extract sets of mutually correlated brain regions without prior information on the time course of these regions. Some of these sets of regions, interpreted as functional networks, have recently been used to provide markers of brain diseases and open the road to paradigm-free population comparisons. Such group studies raise the question of modeling subject variability within ICA: how can the patterns representative of a group be modeled and estimated via ICA for reliable inter-group comparisons? In this paper, we propose a hierarchical model for patterns in multi-subject fMRI datasets, akin to mixed-effect group models used in linear-model-based analysis. We introduce an estimation procedure, CanICA (Canonical ICA), based on i) probabilistic dimension reduction of the individual data, ii) canonical correlation analysis to identify a data subspace common to the group iii) ICA-based pattern extraction. In addition, we introduce a procedure based on cross-validation to quantify the stability of ICA patterns at the level of the group. We compare our method with state-of-the-art multi-subject fMRI ICA methods and show that the features extracted using our procedure are more reproducible at the group level on two datasets of 12 healthy controls: a resting-state and a functional localizer study

    Contribution of Exploratory Methods to the Investigation of Extended Large-Scale Brain Networks in Functional MRI: Methodologies, Results, and Challenges

    Get PDF
    A large-scale brain network can be defined as a set of segregated and integrated regions, that is, distant regions that share strong anatomical connections and functional interactions. Data-driven investigation of such networks has recently received a great deal of attention in blood-oxygen-level-dependent (BOLD) functional magnetic resonance imaging (fMRI). We here review the rationale for such an investigation, the methods used, the results obtained, and also discuss some issues that have to be faced for an efficient exploration

    Contributions in computational intelligence with results in functional neuroimaging

    Get PDF
    This thesis applies computational intelligence methodologies to study functional brain images. It is a state-of-the-art application relative to unsupervised learning domain to functional neuroimaging. There are also contributions related to computational intelligence on topics relative to clustering validation and spatio-temporal clustering analysis. Speci_cally, there are the presentation of a new separation measure based on fuzzy sets theory to establish the validity of the fuzzy clustering outcomes and the presentation of a framework to approach the parcellation of functional neuroimages taking in account both spatial and temporal patterns. These contributions have been applied to neuroimages obtained with functional Magnetic Resonance Imaging, using both active and passive paradigm and using both in-house data and fMRI repository. The results obtained shown, globally, an improvement on the quality of the neuroimaging analysis using the methodological contributions proposed
    corecore