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Abstract: We applied a data-driven analysis based on self-organizing group independent component
analysis (sogICA) to fMRI data from a three-stimulus visual oddball task. SogICA is particularly suited
to the investigation of the underlying functional connectivity and does not rely on a predefined model
of the experiment, which overcomes some of the limitations of hypothesis-driven analysis. Unlike most
previous applications of ICA in functional imaging, our approach allows the analysis of the data at the
group level, which is of particular interest in high order cognitive studies. SogICA is based on the hier-
archical clustering of spatially similar independent components, derived from single subject decompo-
sitions. We identified four main clusters of components, centered on the posterior cingulate, bilateral
insula, bilateral prefrontal cortex, and right posterior parietal and prefrontal cortex, consistently across
all participants. Post hoc comparison of time courses revealed that insula, prefrontal cortex and right
fronto-parietal components showed higher activity for targets than for distractors. Activation for dis-
tractors was higher in the posterior cingulate cortex, where deactivation was observed for targets.
While our results conform to previous neuroimaging studies, they also complement conventional
results by showing functional connectivity networks with unique contributions to the task that were
consistent across subjects. SogICA can thus be used to probe functional networks of active cognitive
tasks at the group-level and can provide additional insights to generate new hypotheses for further
study. Hum Brain Mapp 29:1450–1461, 2008. VVC 2007 Wiley-Liss, Inc.
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INTRODUCTION

Functional brain imaging with functional magnetic reso-
nance imaging (fMRI) or positron emission tomography
(PET) provides the possibility to study neuronal brain
responses during cognitive processes. Hypothesis-driven
analyses like the general linear model (GLM) localize
changes in signal according to task or stimulus presenta-
tion to the subjects. However, this analysis does not incor-
porate possible associations between regional timecourses,
which may provide additional information about the func-
tional specialization and integration of key brain areas
[Friston, 1996]. Functional connectivity is operationally
defined as the correlation between the timecourses of two
spatially segregated areas [Friston, 1996], and is conceptu-
ally based on the notion that the brain comprises function-
ally specialized areas, which may interact with each other
during task performance. Functional connectivity can be
phrased as a multivariate problem, where the covariance
matrix of a large number of regional or voxel timecourses
is used as the starting point for the connectivity analysis.
For example, Friston et al. [1993] used principal compo-
nent analysis (PCA) to decompose the covariance matrix of
task-related regional timecourses to estimate a set of or-
thogonal eigenimages that capture the degree of connectiv-
ity across the implicated brain areas. The neurophysiologi-
cally interesting connectivity patterns are typically found
within the highest ranking principal components, accord-
ing to component eigenvalues, and are characterized by
spatial and temporal uncorrelatedness. An extension of
this approach is the estimation of functional connectivity
patterns using spatial independent component analysis
[sICA: McKeown et al., 1998b]. As for PCA, components
are decomposed without prior knowledge about the tem-
poral profile of brain activity and the output maps of neu-
rophysiologically interesting signals can be considered as
maps of functional connectivity, where the component val-
ues of each map reflect the degree of connectivity [van de
Ven et al., 2004; Yang and Rajapakse, 2004]. Differently
from PCA, sICA assumes that the components are spatially
independent, while the component timecourses are left
free to be correlated to one another. Because of its more
neurophysiologically plausible statistical model [Brown
et al., 2001], sICA has proved successful in characterizing
components of functional connectivity in a variety of situa-
tions [see McKeown et al., 2003, for a review], including
complex naturalistic settings [Bartels and Zeki, 2004; Cal-
houn et al., 2002], auditory responses in schizophrenia
[Calhoun et al., 2004; van de Ven et al., 2005] and during
rest [Greicius et al., 2003; van de Ven et al., 2004].

While many sICA applications were inherently based on
single-subject analyses, which may limit its use in studies
of higher cognitive functions, there has been a recent
increase in the development of multi-subject applications.
Most of these developments focused on some combination
of (preprocessed) functional data prior to ICA decomposi-
tion. Amongst the proposed approaches the concatenation
of the data across subjects [Calhoun et al., 2001] rather
than on time-points [Svensén et al., 2002] seems to provide
the most reliable results, even when a component is not
present in all subjects [Schmithorst and Holland, 2004]. A
tensorial way of combining data-sets along a subject-spe-
cific new dimension of the analysis was also proposed
[Beckmann and Smith, 2005]. However, an alternative
approach combines components from single-subject
decompositions a posteriori, but in a way that reduces in-
vestigator subjectivity in selecting and grouping the com-
ponents. We propose that a cluster analysis that searches
for similarity of components in the subject space might
serve this purpose. Clustering of independent components
can be achieved using component-descriptive parameters
[van de Ven et al., 2002], such as spatial structure or distri-
butions [Formisano et al., 2002], or task frequency [Moritz
et al., 2003]. Esposito et al. [2005] suggested a different
approach, where independent components of single-subject
decompositions are grouped according to spatial, tempo-
ral, or combined spatio-temporal information using a self-
organizing grouping procedure that is based on hierarchi-
cal cluster analysis [Himberg et al., 2004]. When perform-
ing ICA on a combined dataset, some preprocessing is
applied to both the individual and the aggregate dataset
[Calhoun et al., 2001]. This is not the same as grouping
results after individual ICA decompositions. SogICA
retains the individual ICA decompositions and uses a
quantitative, similarity-based clustering procedure to
group components across datasets. Furthermore, sogICA
provides means for inspecting the intra-cluster degree of
homogeneity between the components, which can be used
to identify potential outliers and select strategies for subse-
quent improvement of the analyses.
The oddball paradigm and its variants are among the

cognitive tasks that have been studied most extensively
with fMRI and electrophysiology techniques. In this para-
digm the subject is required to actively detect a target
stimulus, which is infrequently and randomly presented
within a train of frequent standard stimuli. FMRI studies
demonstrated that target processing is associated with a
cortical activity pattern comprising areas around the Syl-
vian fissure, including the supramarginal gyrus, inferior
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and middle frontal gyrus and the insula, and midline
areas, including the anterior and posterior cingulate and
the supplementary motor area [see Linden, 2005, for a
review]. The detection of rare, meaningful target events
relies on the orchestration of several cognitive processes,
including visual attention, working memory and stimulus
categorization. This might be the reason why the described
cortical activation pattern overlaps with those found in
many other attention-demanding cognitive tasks, such as
working memory or visual search [e.g., Corbetta and Shul-
man, 2002]. However, less is known about functional con-
nectivity of these areas.
In this study, we applied sogICA [Esposito et al., 2005]

to fMRI data obtained from a three-stimulus oddball para-
digm that had already been studied with a GLM-based
approach [Bledowski et al., 2004a]. The primary aim of
this analysis was to determine functional connectivity pat-
terns during the oddball task in an exploratory way. We
furthermore expected that the time course analysis of the
identified components would allow for a differentiation of
target and distractor responses.

METHODS

Subjects

Functional imaging datasets of nine subjects were se-
lected from an earlier study [Bledowski et al., 2004a]. The
computational load forced a restriction upon the number
of subjects that can be analyzed using sogICA. Therefore,
we selected the nine best performing subjects from the
original subject sample. They had correctly identified
85.9% of the targets (S.D. 5 9.6%). The performances of all
13 subjects in the original sample were 82.6% 6 9.6% [Ble-
dowski et al., 2004a]. The nine selected subjects comprised
6 males, and had a mean age (S.D.) of 29.4 (5.7) years. All
were right-handed. None of the subjects had a history of
neurological or psychiatric disorders. After the study was
explained all subjects gave written informed consent to
participate in the study. The study was approved by the
local ethics committee.

Design

A three-stimulus visual oddball paradigm was used,
where the stimulus categories comprised standard, target
and distractor stimuli. The standard stimulus (blue circle,
1.538) had a probability of occurrence of 0.9, while the target
stimulus (blue circle, 1.388), as well as the distractor stimulus
(blue square, 1.368), each had a probability of 0.05 to occur.
The stimuli were presented to the subject in a random order,
once every 2 s for 75 ms. The subject was required to respond
via button press to the target stimulus only. Within each
functional run 350 stimuli were presented.

Imaging Parameters

All functional and anatomical images were acquired
using a 1.5 T Siemens Vision MR Tomograph (Siemens,

Erlangen, Germany). The blood-oxygen-level dependent
(BOLD) signal was measured using a gradient-echo echo-
planar-imaging (EPI) sequence. For the functional images,
16 axial slices were obtained for each volume (repetition
time [TR]/echo time [TE] 5 2000/60 ms; voxel size 5 3.6
3 3.6 3 5.0 mm3; flip angle 5 908; field of view [FoV] 5

230 3 230 mm2), and each functional run contained 360
volumes. During the first 10 volumes no stimulus was pre-
sented, the onset of each proceeding volume triggered the
onset of a stimulus. A 3D anatomical image was acquired
in the same session for each subject (matrix size 5 256 3

256; voxel size 5 2.0 3 1.0 3 1.0 mm3), which lasted about
5 min.

Preprocessing and Analysis

The first four volumes of each functional dataset were
discarded because of saturation effects. The functional
datasets were then corrected for inter-slice timing differen-
ces and scaled and resampled to Talairach space [Talairach
and Tournoux, 1988] with a voxel size of 3 3 3 3 3 mm3

using the BrainVoyager 4.8 analysis software (Brain Inno-
vation, Maastricht, The Netherlands). The rescaled func-
tional datasets were spatially smoothed using a Gaussian
kernel of full-width-at-half-maximum [FWHM] of 6 mm,
and temporally filtered using linear trend removal and
high-pass filtering of 5 cycles/session (�0.007 Hz). The an-
atomical images of all nine subjects were averaged, and a
volume mask was created from this average image, which
excluded voxels associated with matter outside of the
brain and ventricle fluid. The remaining voxels were used
for further analysis. This procedure was done to attenuate
computational load, while keeping the subspaces of
selected voxels for the analysis constant across subjects.
The preprocessed functional datasets were imported and

analyzed in Matlab 6 (MathWorks, Mass), using the self-
organizing grouping ICA (sogICA) software described
elsewhere [see Supplementary information; Himberg et al.,
2004; Esposito et al., 2005]. Briefly, the sogICA framework
analyses individually decomposed datasets on a group
level by clustering independent components in the subject
space, using spatial correlation as similarity measure. This
approach preserves subject specific information, and pro-
vides the investigator with a measure of spatial similarity
of components of interest. Regardless of the cluster size,
all subjects are considered for clustering and each subject
contributes maximally one component to a cluster. Info-
max, an ICA algorithm that is based on a gradient-descent
learning algorithm [Bell and Sejnowski, 1995], was used to
decompose each functional dataset into a set of 60 inde-
pendent components. PCA was used to reduce the initial
dimensions [equal to the number of timepoints; McKeown
et al., 1998a] of the functional dataset to 60. The initial
learning rate was set to 0.0001 and the batch size to 10. Af-
ter decomposition, the map values of each component
map were Z-scored [McKeown et al., 1998b].
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Figure 1.

(legend on page 1454)
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For this study, the size of each cluster was set to nine
components, where sogICA closed a cluster when it
reached this size. Cluster ‘‘group’’ components were calcu-
lated as random effects maps using the cluster component
members as input. The random effects statistic for each
voxel was calculated as the mean ICA Z-value of that
voxel across the individual maps divided by its standard
error, resulting in a one-sample t-statistic. Statistical maps
were then further corrected for multiple comparisons
using cluster-size thresholding [Forman et al., 1995; Goebel
et al., 2006]. In this method, for each statistical map the ini-
tial (uncorrected) voxel-level threshold was set at P 5

0.001. Then, a whole-brain correction criterion based on
the estimate of the map’s spatial smoothness and on an
iterative procedure (Monte Carlo simulation) for estimat-
ing cluster-level false-positive rates was applied. After
1,000 iterations the minimum cluster-size that yielded a
cluster-level false-positive rate of 5% or less was used to
threshold the statistical map, which was then superim-
posed on an anatomical brain template (Montreal Neuro-
logical Institute [MNI]). After sogICA was performed, we
chose clusters of interest according to (1) the 10 clusters
with the lowest mean intra-cluster distances, and (2) spa-
tial templates of areas of interest, which included bilateral
insula, inferior parietal cortex, dorsolateral prefrontal cor-
tex, middle/inferior temporal cortex, posterior cingulate
cortex, left sensorimotor cortex, and primary visual cortex
(PVC) [Bledowski et al., 2004a; see Supplementary Infor-
mation]. The search strategies were used independently in
order to complement each other.
Group event-related averages for the clusters were calcu-

lated from the event-related averages of the individual
components within each cluster. For each component map
the voxel timecourses were extracted from voxels with
positive suprathreshold Z-values. Voxel timecourses of the
individual components for the target and distractor stimu-
lus were transformed to percent BOLD signal change and
averaged according to event type and presentation. For the
target stimulus only correctly identified trials were used
for event-related averaging. For each cluster, group event-
related averages (and standard errors of the mean) were

generated from the event-related averages of the individ-
ual components. For visualization the group event-related
averages were interpolated to a resolution of 1 s.

RESULTS

The analysis of fMRI data with sogICA revealed four
clusters of components that comprised suprathreshold
voxel-clusters in cortical areas of interest. Figure 1
shows the clustering and group map results of these four
clusters (voxel-level t(8) 5 4.5, P � 0.001, corrected at the
cluster-level 0.05). Table I lists the corresponding mean
and range of the intra-cluster distances and the peak t-val-
ues of the group maps. The clusters of components are
presented in the order of ascending mean intra-cluster dis-
tance, and the abbreviations refer to those in the figures
and tables.
The first cluster of components comprised the posterior

cingulate cortex (pCC), and anterior cingulate and bilateral
inferior parietal cortex. These areas were found in all nine
cluster members. The multi-dimensional scaling plot (Fig.
1A) indicated a potential outlier within the pCC cluster,
that is, one cluster member (S7) is spatially displaced with
respect to the other cluster members. Close inspection of
this particular member’s spatial layout revealed that, in
addition to posterior cingulate and bilateral inferior parie-
tal cortex, a large area of suprathreshold Z-values was
located near the anterior cingulate cortex.
The second cluster (right posterior parietal and prefron-

tal cluster: rPPC-PFC) comprised suprathreshold voxels in
right posterior parietal cortex and dorsolateral prefrontal
cortex. All nine individual components showed a right lat-
eralization of voxels with high Z-values.
The third cluster (bilateral insula: bilINS) comprised vox-

els in bilateral insular areas, frontal operculum, and inferior
frontal gyri. Inspection of individual maps revealed addi-
tional areas of suprathreshold Z-values in inferior frontal
and frontal medial areas in some, but not all, maps. Compo-
nent maps of subjects S1 and S9, which had the largest
intra-cluster distances (see Fig. 1A), contained similar areas
but showed opposite lateralization of insula activity.

Figure 1.

Four clusters of interest selected from the sogICA results. (A)

Multi-dimensional scaling plot (left) and range of the intra-cluster

distribution of cluster members (right; minimum, mean and max-

imum). (B) Group spatial maps of the four clusters are superim-

posed on 16 transverse slices and flatmaps of the MNI brain (t

(8) 5 4.5; P � 0.001, corrected at the cluster-level of 0.05 with

cluster-size thresholds of 306, 309, 292, and 292 mm3, respec-

tively). Colors of the spatial maps correspond to colors of the

multi-dimensional scaling plot. (C) Hypothesis-driven random

effects analysis of target and distractor processing (t (8) 5 4.5;

P � 0.001, corrected at the cluster-level 0.05; 405 mm3). Only

the results of target processing are shown, distractor processing

did not reveal significant activity after cluster-level correction.

Most cortical areas are found back in the selected clusters of

components, while at the same time the components revealed

additional spatiotemporal information about the activity and con-

nectivity of cortical responses. (D) Group event-related averages

of the target and distractor stimulus of the independent compo-

nents. Left column: event-related averages obtained from each

individual ICA map’s suprathreshold voxels (units percent signal

change). Right column: event-related averages obtained from the

ICA-generated component timecourses (arbitrary units). pCC 5

posterior cingulate cluster; rPPC-PFC 5 right posterior parietal

and prefrontal cluster; bilINS 5 bilateral insular cluster; bilPFC

5 bilateral prefrontal cluster.
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The fourth cluster (bilateral prefrontal cluster: bilPFC)
comprised voxels in bilateral middle frontal gyrus, but
also in parietal areas. Inspection of the individual maps
indicated some variation in spatial location of suprathres-
hold voxel values. Two spatial components contained
suprathreshold voxels in right posterior and dorsal frontal
cortical areas. In the other components areas of suprathres-
hold voxels were found in both the left and right hemi-
sphere. For one component, connectivity clusters were
found in bilateral dorsal frontal areas, including frontal
eye fields, but not in parietal areas.
Random effects group results using the GLM are shown

in Figure 1C. Results were thresholded in a similar way as
the ICA group maps (t(8) 5 4.5; P � 0.001, corrected at the
cluster-level 0.05). Most areas that showed increased activ-
ity for the target stimulus were also amongst the areas of
the four selected sogICA clusters. In contrast to sogICA,
the random effects analysis did not show significant activ-
ity changes for either stimulus in the posterior cingulate
cortex. However, fixed effects analysis of the same data
showed significantly decreased activity for the target, but
not the distractor stimulus in this area (not shown). This
discrepancy may be the result of low statistical power of
the random effects analysis brought about by the small
sample size (nine subjects), and shows that SogICA may
complement conventional analysis approaches in the case
of low statistical power.
Figure 1D depicts the group event-related averages and

standard error of the mean for the target and distractor
stimuli for the four clusters of components. The bilINS and

bilPFC clusters showed event-related BOLD signal in-
creases for the target stimulus, but not for the distractor
stimulus. Right PPC–PFC showed a large increase of BOLD
signal for the target stimulus and a small initial increase
for the distractor stimulus. The pCC cluster showed
a decrease of the BOLD signal for the target stimulus,
and an increase of the BOLD signal for the distractor sti-
mulus.
To verify that the selective averaging of the voxel time-

courses yielded reliable results with respect to the ICA
estimates, the component timecourses were averaged for
each stimulus type (Fig. 1D). The event-related averages
from voxel and component timecourses do not differ quali-
tatively. In all cases the target stimulus elicited the strong-
est response in comparison to the distractor stimulus; the
pCC showed a large decrease of activity for the target
stimulus while the other three clusters showed large
increases of activity (Table II).

Different Contributions to Prefrontal Cortex

Three clusters of components showed a contribution of
voxels in dorsolateral and ventrolateral prefrontal cortex.
Examination of the voxels within these areas revealed dif-
ferent temporal profiles for processing of the target and
distractor stimulus (Fig. 2; spatial coordinates of the areas
are reported in Table I). Ventrolateral prefrontal areas,
including left and right inferior frontal gyrus, showed a
strong preference for the target stimulus, but not for the
distractor stimulus. Dorsolateral prefrontal areas, including

TABLE I. Intra-cluster distances and talairach coordinates (x, y, z) of peak t-values

(random effects) of cortical areas of the four clusters comprising

nine components

COI

Intra-cluster distances

Area Side

Coordinates (mm)

tmax SizeMean Min Max x y z

pCC 0.62 0.51 0.79
pCC L 210 256 24 24.5 19,964
IPL L 246 268 24 14.0 2,608
MTG R 59 28 212 10.6 328

rPPC-PFC 0.72 0.61 0.86
IPS R 41 253 33 8.9 4,734

R 53 10 39 6.7 855
SFG R 26 7 57 11.0 942

R 26 49 21 6.6 320
bilINS 0.73 0.61 0.85

IFG/FO/INS R 38 10 9 10.1 6,779
IFG L 234 19 15 8.5 5,288
SFG R 5 19 66 7.0 355
pINS L 234 217 23 6.8 305

bilPFC 0.77 0.63 0.96
SFG/MFG L 237 31 30 8.0 4,299
MFG R 53 10 33 6.5 1,731

Size of voxel clusters is reported in number of anatomical voxels (1 3 1 3 1 mm3). COI, cluster of inter-
est; pCC, posterior cingulate cortex; SFG, superior frontal gyrus; MFG, middle frontal gyrus; IFG, inferior
frontal gyrus; IPL, inferior parietal lobule; IPS, intra–parietal sulcus; MTG, middle temporal gyrus; INS,
insula; FO, frontal operculum.

r Group-Level Functional Components of Target Detection r

r 1455 r



right superior and bilateral middle frontal gyrus, showed
slightly increased activity for the distractor, as well as the
target stimulus. These findings indicate that ICA is able to
represent the heterogeneity of prefrontal activity.

Additional Clusters

We also searched for clusters of sensorimotor (SMC) and
PVC. Components for these areas did not cluster well.
Components of SMC were clustered into four different
clusters, together with spatial maps that contained high Z-
values in dorsal areas, but which were not likely related to
the button press response. We therefore performed two
additional clustering runs with cluster sizes of eight and
seven subjects per cluster. Note that in these two addi-
tional runs the complete datasets were still used (i.e., 60
components 3 9 subjects), and that each subject contrib-
uted maximally one component to each cluster, but clus-
ters including less subjects (i.e., 8 and 7) were allowed.
With this reduced cluster size, clustering for these areas
improved with decreasing cluster size (i.e., relatively small
minimum, mean, and maximum intra-cluster distances, see
Fig. 3A and Table III). Figure 3B and C show the spatial
maps and event-related averages of SMC and PVC (cluster
size 5 7), and Table III lists the spatial coordinates of
suprathreshold voxel clusters. Left SMC revealed increased
activity for the target stimulus, reflecting the button
presses associated with target detection. PVC showed no
change from baseline for either of the stimulus categories
(see Table II). Figure S2 of the supplementary information
provides a schematic overview of the results of decreased
cluster sizes for the SMC and PVC clusters.

DISCUSSION

We performed a data-driven analysis of the functional
imaging data of a three-stimulus oddball task for nine sub-

jects using the sogICA framework to interpret the results
at group level. The sogICA results provided functional
connectivity components of functional networks involved
in an attention-demanding cognitive task. More precisely,
sogICA grouped the decompositions of individual datasets
into clusters, where each subject contributed maximally
one component to each cluster. Four clusters of interest of
spatial component maps were found (pCC, rPPC-PFC,
biINS, and bilPFC). When clustering the components using
a smaller cluster size two additional clusters were obtained
(PVC and SMC).

Posterior Cingulate Cluster

The posterior cingulate cluster (pCC) cluster, which con-
tained anterior and posterior cingulate and bilateral infe-
rior parietal cortex, corresponds well to the ‘‘default mode
network’’ (DMN) [Greicius et al., 2003; Raichle et al., 2001].
DMN areas have been found during rest [Fox et al., 2005;
van de Ven et al., 2004], and their activity is inversely cor-
related with that in frontal and parietal cortex during
active cognitive tasks [Shulman et al., 1997]. The event-
related time courses in the present study showed increased
activity for the distractor, and decreased activity for the
target stimulus. The frequent standard stimuli, which were
very similar to the targets, required an ongoing goal-
directed behavior. The task-relevant target stimulus
demanded additional processing resources, which was
reflected in suppression of the DMN, whereas the task-
irrelevant distractor stimuli, although drawing attentional
resources, did not demand goal-directed processes.

Right Posterior Parietal and Prefrontal Cluster

In all subjects the decompositions resulted in a compo-
nent of right PPC and right middle and superior frontal
gyrus. A dissociation of right and left fronto-parietal areas

TABLE II. Random-effects results of the time courses of the six selected clusters of components

Nclu COI

Predictors

ContrastTarget Distractor

�b T P �b t P T P

9 VTC pCC 20.05 21.6 0.161 0.02 0.9 0.399 24.8 0.001
rPPC 0.14 3.0 0.017 0.05 1.6 0.151 2.1 0.069
bilINS 0.26 7.3 <0.001 0.03 1.3 0.223 6.1 <0.001
lPFC 0.15 5.6 0.001 0.07 2.4 0.041 2.7 0.026

ICtc pCC 20.15 23.4 0.010 20.01 20.2 0.820 20.2 0.012
rPPC 0.17 5.9 <0.001 0.04 1.7 0.131 4.6 0.002
bilINS 0.25 5.0 0.001 0.05 3.1 0.014 4.5 0.002
lPFC 0.16 3.3 0.011 0.01 0.3 0.777 2.7 0.029

7 VTC PVC 0.04 1.6 0.168 0.04 1.7 0.138 20.1 0.934
SMC 0.16 7.1 <0.001 0.02 0.8 0.462 5.2 0.002

ICtc PVC 20.02 20.9 0.410 0.03 1.3 0.235 21.8 0.123
SMC 0.11 3.0 0.024 20.03 21.4 0.225 4.6 0.004

Tests are significant at P � 0.05. Individual component time courses were standardized using Z-scoring. �b, mean beta value; VTC, voxel
time courses; ICtc, independent component time courses; Nclu, number of components per cluster.
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was also observed in an fMRI study of functional connec-
tivity during rest [van de Ven et al., 2004]. The prominence
of the rPPC-PFC cluster in the present decomposition may
indicate a differential contribution of the right hemisphere
to visual attention [Coull et al., 1998; Lawrence et al. 2003;
Muggleton et al., 2003; O’Shea et al., 2004] and conforms
to the postulated ventral right fronto-parietal attention net-
work [Corbetta and Shulman, 2002]. It has been suggested
that this network is recruited for the detection of behavior-
ally relevant and unexpected stimuli. During the oddball
task rare stimuli (target and distractor) occur randomly in
a sequence of standard stimuli. The saliency of the rare
events is reflected in an initial increase of activity in the re-
spective parietal and frontal areas. Further processing,
however, may then only be allocated to those stimuli iden-
tified as targets, resulting in a further increase of activity.
This interpretation is supported by the initial increase of

Figure 2.

Contribution of different com-

ponent clusters to prefrontal

cortex. Parts of left and right pre-

frontal cortex within the MNI

flatmaps are enlarged. Group

event-related averages of the

voxel timecourses are shown

next to the corresponding voxel

cluster. The figure shows that

prefrontal cortex comprises spa-

tial contributions from different

independent components with

different temporal profiles for the

target and distractor stimulus.

Flatmap colors correspond to

cluster colors of Figure 1. IFG 5

inferior frontal gyrus; MFG 5

middle frontal gyrus; SFG5 supe-

rior frontal gyrus; INS5 insula.

Figure 3.

Primary visual (PVC) and sensorimotor clusters (SMC). (A)

Multi-dimensional scaling plot (left) and range of the intra-cluster

distribution of cluster members (minimum, mean and maximum).

(B and C) Spatial group map and group event-related averages

of the primary visual (B) and sensorimotor cortex cluster (C).

Maps were thresholded at t(6) 5 5.2 (P � 0.001, corrected at

the cluster-level 0.05; 238 and 194 mm3, respectively).
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activity of the event-related time-courses of both types of
rare stimuli, followed by a further increase for the target
stimulus.

Bilateral Insular Cluster and Bilateral

Prefrontal Clusters

The prefrontal cortex has been traditionally assumed to
play a cue role in higher cognitive processes like working
memory, selective attention, and target detection [Corbetta
and Shulman, 2002; Curtis and D’Esposito, 2003; Linden,
2005]. However, several studies indicated the need for a
functional separation within this network. For example,
the dorsolateral prefrontal cortex has been associated with
monitoring processes or rule representations [Passingham
and Sakai, 2004; Ranganath and D’Esposito, 2005], whereas
the more ventral part of the prefrontal cortex areas might
represent memory retrieval processes [Bledowski et al.,
2006; Petrides, 2002]. In our data set, the sogICA decom-
posed the prefrontal areas into two independent compo-
nents of bilateral clusters bilPFC (including MFG, IFG, and
also IPS) and bilINS (including IFG and anterior insula),
which supports distinct functional systems within the pre-
frontal cortex. The analysis of event-related BOLD-signal
changes indicated that both frontal components were
involved in the processing of the target stimulus. A suc-
cessful detection of targets required an orchestration of
processes like monitoring, comparison of the memory tem-
plate with incoming stimulus representation and response
decision, which would explain the need for both DLPFC
and VLPFC involvement.

Primary Visual Cluster and Sensorimotor Cluster

The remaining two clusters (SMC and PVC) showed a
higher degree of spatial variability across the cluster mem-
bers in comparison to the ‘‘cognitive’’ components, as
reflected by the relatively high intra-cluster distances.
When the clustering of components was performed with
smaller cluster sizes, the clustering for SMC and PVC
improved markedly. The initial failure of the sogICA

framework to cluster the SMC components may have been
due to either an overall higher inter-subject variability of
the spatial patterns or the presence of ‘‘interfering’’ compo-
nents with high Z-values in similar dorsal areas. We were
notified of the presence of interfering components by the
same cluster plot provided by the sogICA framework and
observed how these components, which were extracted
only from a small subset of the subjects, expressed differ-
ent and possibly competitive neurophysiological processes.
A deeper investigation into the individual pattern revealed
functional networks with a different global architecture,
although they were locally overlapping with the cluster
representative components.
The cluster comprising PVC did not show increased ac-

tivity for either stimulus types. This can be explained by
the fact that a visual stimulus was presented during each
measured functional volume. At the same time, the lack of
differential activity shows that the PVC does not represent
the behavioral relevance of the stimulus.

Cognitive Functional Networks

The visual oddball task has been used to investigate
brain activity related to attention, memory, and categori-
zation processes, and conventional hypothesis-driven ap-
proaches have shown a widespread cortical activity includ-
ing frontal, parietal, and temporal areas as a function of
the detection of odd, meaningful target events [Corbetta
and Shulman, 2002; Linden, 2005]. However, less is known
about the brain dynamics of ongoing activity during the
oddball task and the modulation of these brain dynamics
by the processing of a target event. Using a correlation
analysis of ongoing spontaneous activity Fox et al. [2006]
showed brain dynamics in the absence of a cognitive task,
which could be parcellated into a ventral and a dorsal
functional subsystem, and which overlapped with brain
areas of attentional processes [Corbetta and Shulman,
2002].
Our study provides an alternative approach to analysing

and interpreting the brain dynamics during this complex

TABLE III. Intra-cluster distances and talairach coordinates (x, y, z) of peak t-values

(random effects) of cortical areas of SMC and PVC clusters

COI

Intra-cluster distances

Area Side

Coordinates (mm)

tmax SizeMean Min Max x y z

PVC 0.69 0.58 0.78
LG L 215 273 1 10.9 6,516

216 265 215 6.8 305
Cu/CalcF R 5 277 18 13.6 441

SMC 0.72 0.66 0.80
PostCG L 255 223 48 18.5 233

R 56 223 48 9.9 23
Cerebellum R 23 241 221 9.8 16

Mean and range (minimum–maximum) intra-cluster distances are reported for each cluster. Cluster size,
7 components; LG, lingual gyrus; Cu/CalcF, Cuneus/Calcarine fissure; PostCG, postcentral gyrus.
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cognitive task. While sogICA replicated to a large extent
the findings of the hypothesis-driven analysis [Bledowski
et al., 2004a], it also provided a separation of several func-
tional connectivity networks that contributed uniquely, but
consistently across subjects to the cognitive task. Moreover,
we observed that the presentation of a target event elicited
an activity increase in the three frontal and fronto-parietal
networks (rPPC-PFC, bilINS, and bilPFC), and a decrease
of the pCC network. We suggest that the rPPC-PFC net-
work corresponds to the proposed stimulus-driven atten-
tional system [Corbetta and Shulman, 2002; Fox et al.
2006], responsible for the detection and reorientation of the
attentional resources toward the potentially relevant event,
whereas the activity in the bilINS network reflects the cog-
nitive capacity invested in memory retrieval in order to
decide if the detected events match the internal representa-
tion of the target category [Bledowski et al., 2006]. In con-
trast, the bilPFC network, although modulated by the tar-
get event, can be associated with ongoing monitoring proc-
esses as recently proposed by Fox et al. [2006]. This view
is supported by the small contribution of the PFC electric
source activities to the target-related ERP signal [Ble-
dowski et al., 2004b, 2006].

Methodological Considerations

The presented spatial independent components can be
interpreted as maps of functional connectivity [van de Ven
et al., 2004; Yang and Rajapakse, 2004], because the maps
indicate a high amount of shared information on a time-
point-by-timepoint basis. These connectivity maps may
provide more information about the degree of functional
coupling with respect to connectivity maps derived from
PCA, where the spatial components are constrained by
orthogonality of the timecourses. Spatial independence is a
much stronger statistical criterion [McKeown et al.,
1998a,b] and ICA maps can be considered as higher-order
connectivity maps [Yang and Rajapakse, 2004]. Data-driven
component-based techniques such as PCA and ICA com-
plement interregional correlation analysis to investigate
whole-brain functional connectivity because they do not
require the specification of location and extension of
regions of interest (the ‘‘seed voxels’’ of correlation analy-
sis) in advance [Greicius et al., 2004; Ma et al., 2007]. How-
ever, the interpretation of the presentation of different
brain areas into different ICA components in terms of the
underlying neural mechanisms remains difficult, which is
in part owed to the indirect measurement of neuronal
activity in fMRI.
Components may be further analyzed for patterns of

effective connectivity [Friston, 1996] by considering the
temporal relations within and between components.
Indeed, a growing list of effective connectivity analyses
may be combined with ICA in future studies [c.f., Formi-
sano and Goebel, 2003; Londei et al., 2006; Shimizu et al.,
2006].

It is imperative that spatial ICA results can be inter-
preted on a group level, which allows inference and gener-
alization to the population of interesting spatial modes.
Multi-subject spatial ICA has received increased interest in
the literature, where different strategies for grouping and
analysis have been suggested [Beckmann and Smith, 2005;
Calhoun et al., 2001; Esposito et al., 2005; Svensén et al.,
2002]. SogICA performs temporal dimension reduction and
ICA decomposition of each subject’s time-series and se-
quentially clusters spatially consistent components across
subjects. Although computationally more demanding than
other aggregrate approaches, the sogICA solution keeps to
a minimum possible between-subject variance effects in
the data reduction and component extraction stages. The
consequent limitation in the number of subjects will be
addressed in future works by replicating the subject-level
clustering procedure in a hierarchical fashion and by com-
bining sogICA with other aggregate techniques.

CONCLUSIONS

In conclusion, sogICA revealed a small number of spe-
cific functional networks, with unique temporal profiles
for target or distractor stimulus processing, which showed
a high consistency across subjects. While the pCC cluster,
which included other areas of the DMN as well, showed a
deactivation for targets but not for distractors, higher
responses for targets were observed in the three frontal
and fronto-parietal networks. These findings suggest that
the cognitive task of target detection recruits a set of spe-
cific functional networks that involve frontal and parietal
brain areas.
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