30,443 research outputs found

    Computing and counting longest paths on circular-arc graphs in polynomial time.

    Get PDF
    The longest path problem asks for a path with the largest number of vertices in a given graph. The first polynomial time algorithm (with running time O(n4)) has been recently developed for interval graphs. Even though interval and circular-arc graphs look superficially similar, they differ substantially, as circular-arc graphs are not perfect. In this paper, we prove that for every path P of a circular-arc graph G, we can appropriately “cut” the circle, such that the obtained (not induced) interval subgraph G′ of G admits a path P′ on the same vertices as P. This non-trivial result is of independent interest, as it suggests a generic reduction of a number of path problems on circular-arc graphs to the case of interval graphs with a multiplicative linear time overhead of O(n). As an application of this reduction, we present the first polynomial algorithm for the longest path problem on circular-arc graphs, which turns out to have the same running time O(n4) with the one on interval graphs, as we manage to get rid of the linear overhead of the reduction. This algorithm computes in the same time an n-approximation of the number of different vertex sets that provide a longest path; in the case where G is an interval graph, we compute the exact number. Moreover, our algorithm can be directly extended with the same running time to the case where every vertex has an arbitrary positive weight

    Computing and Counting Longest Paths on Circular-Arc Graphs in Polynomial Time

    Get PDF
    The longest path problem asks for a path with the largest number of vertices in a given graph. The first polynomial time algorithm (with running time O(n4)) has been recently developed for interval graphs. Even though interval and circular-arc graphs look superficially similar, they differ substantially, as circular-arc graphs are not perfect. In this paper, we prove that for every path P of a circular-arc graph G, we can appropriately “cut” the circle, such that the obtained (not induced) interval subgraph G′ of G admits a path P′ on the same vertices as P. This non-trivial result is of independent interest, as it suggests a generic reduction of a number of path problems on circular-arc graphs to the case of interval graphs with a multiplicative linear time overhead of O(n). As an application of this reduction, we present the first polynomial algorithm for the longest path problem on circular-arc graphs, which turns out to have the same running time O(n4) with the one on interval graphs, as we manage to get rid of the linear overhead of the reduction. This algorithm computes in the same time an n-approximation of the number of different vertex sets that provide a longest path; in the case where G is an interval graph, we compute the exact number. Moreover, our algorithm can be directly extended with the same running time to the case where every vertex has an arbitrary positive weight

    Efficient algorithms for tuple domination on co-biconvex graphs and web graphs

    Full text link
    A vertex in a graph dominates itself and each of its adjacent vertices. The kk-tuple domination problem, for a fixed positive integer kk, is to find a minimum sized vertex subset in a given graph such that every vertex is dominated by at least k vertices of this set. From the computational point of view, this problem is NP-hard. For a general circular-arc graph and k=1k=1, efficient algorithms are known to solve it (Hsu et al., 1991 & Chang, 1998) but its complexity remains open for k≥2k\geq 2. A 0,10,1-matrix has the consecutive 0's (circular 1's) property for columns if there is a permutation of its rows that places the 0's (1's) consecutively (circularly) in every column. Co-biconvex (concave-round) graphs are exactly those graphs whose augmented adjacency matrix has the consecutive 0's (circular 1's) property for columns. Due to A. Tucker (1971), concave-round graphs are circular-arc. In this work, we develop a study of the kk-tuple domination problem on co-biconvex graphs and on web graphs which are not comparable and, in particular, all of them concave-round graphs. On the one side, we present an O(n2)O(n^2)-time algorithm for solving it for each 2≤k≤∣U∣+32\leq k\leq |U|+3, where UU is the set of universal vertices and nn the total number of vertices of the input co-biconvex graph. On the other side, the study of this problem on web graphs was already started by Argiroffo et al. (2010) and solved from a polyhedral point of view only for the cases k=2k=2 and k=d(G)k=d(G), where d(G)d(G) equals the degree of each vertex of the input web graph GG. We complete this study for web graphs from an algorithmic point of view, by designing a linear time algorithm based on the modular arithmetic for integer numbers. The algorithms presented in this work are independent but both exploit the circular properties of the augmented adjacency matrices of each studied graph class.Comment: 21 pages, 7 figures. Keywords: kk-tuple dominating sets, augmented adjacency matrices, stable sets, modular arithmeti

    Deciding Circular-Arc Graph Isomorphism in Parameterized Logspace

    Get PDF
    We compute a canonical circular-arc representation for a given circular-arc (CA) graph which implies solving the isomorphism and recognition problem for this class. To accomplish this we split the class of CA graphs into uniform and non-uniform ones and employ a generalized version of the argument given by K\"obler et al (2013) that has been used to show that the subclass of Helly CA graphs can be canonized in logspace. For uniform CA graphs our approach works in logspace and in addition to that Helly CA graphs are a strict subset of uniform CA graphs. Thus our result is a generalization of the canonization result for Helly CA graphs. In the non-uniform case a specific set of ambiguous vertices arises. By choosing the parameter to be the cardinality of this set the obstacle can be solved by brute force. This leads to an O(k + log n) space algorithm to compute a canonical representation for non-uniform and therefore all CA graphs.Comment: 14 pages, 3 figure

    Solving the Canonical Representation and Star System Problems for Proper Circular-Arc Graphs in Log-Space

    Get PDF
    We present a logspace algorithm that constructs a canonical intersection model for a given proper circular-arc graph, where `canonical' means that models of isomorphic graphs are equal. This implies that the recognition and the isomorphism problems for this class of graphs are solvable in logspace. For a broader class of concave-round graphs, that still possess (not necessarily proper) circular-arc models, we show that those can also be constructed canonically in logspace. As a building block for these results, we show how to compute canonical models of circular-arc hypergraphs in logspace, which are also known as matrices with the circular-ones property. Finally, we consider the search version of the Star System Problem that consists in reconstructing a graph from its closed neighborhood hypergraph. We solve it in logspace for the classes of proper circular-arc, concave-round, and co-convex graphs.Comment: 19 pages, 3 figures, major revisio

    Efficient and Perfect domination on circular-arc graphs

    Get PDF
    Given a graph G=(V,E)G = (V,E), a \emph{perfect dominating set} is a subset of vertices V′⊆V(G)V' \subseteq V(G) such that each vertex v∈V(G)∖V′v \in V(G)\setminus V' is dominated by exactly one vertex v′∈V′v' \in V'. An \emph{efficient dominating set} is a perfect dominating set V′V' where V′V' is also an independent set. These problems are usually posed in terms of edges instead of vertices. Both problems, either for the vertex or edge variant, remains NP-Hard, even when restricted to certain graphs families. We study both variants of the problems for the circular-arc graphs, and show efficient algorithms for all of them

    Uniquely D-colourable digraphs with large girth

    Full text link
    Let C and D be digraphs. A mapping f:V(D)→V(C)f:V(D)\to V(C) is a C-colouring if for every arc uvuv of D, either f(u)f(v)f(u)f(v) is an arc of C or f(u)=f(v)f(u)=f(v), and the preimage of every vertex of C induces an acyclic subdigraph in D. We say that D is C-colourable if it admits a C-colouring and that D is uniquely C-colourable if it is surjectively C-colourable and any two C-colourings of D differ by an automorphism of C. We prove that if a digraph D is not C-colourable, then there exist digraphs of arbitrarily large girth that are D-colourable but not C-colourable. Moreover, for every digraph D that is uniquely D-colourable, there exists a uniquely D-colourable digraph of arbitrarily large girth. In particular, this implies that for every rational number r≥1r\geq 1, there are uniquely circularly r-colourable digraphs with arbitrarily large girth.Comment: 21 pages, 0 figures To be published in Canadian Journal of Mathematic
    • …
    corecore