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Abstract
We present a logspace algorithm that constructs a canonical intersection model for a given proper
circular-arc graph, where canonical means that isomorphic graphs receive identical models. This
implies that the recognition and the isomorphism problems for these graphs are solvable in
logspace. For the broader class of concave-round graphs, which still possess (not necessarily
proper) circular-arc models, we show that a canonical circular-arc model can also be constructed
in logspace. As a building block for these results, we design a logspace algorithm for computing
canonical circular-arc models of circular-arc hypergraphs; this important class of hypergraphs
corresponds to matrices with the circular ones property.

Furthermore, we consider the Star System Problem that consists in reconstructing a graph
from its closed neighborhood hypergraph. We show that this problem is solvable in logarithmic
space for the classes of proper circular-arc, concave-round, and co-convex graphs.
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1 Introduction

With a family of sets H we associate the intersection graph I(H) on vertex set H where two
sets A,B ∈ H are adjacent if and only if they have a non-empty intersection. We call H
an intersection model of a graph G if G is isomorphic to I(H). Any isomorphism from G

to I(H) is called a representation of G by an intersection model. If H consists of intervals
(resp. arcs of a circle), it is also referred to as an interval model (resp. an arc model). An
intersection model H is proper if the sets in H are pairwise incomparable by inclusion. G is
called a (proper) interval graph if it has a (proper) interval model. The classes of circular-arc
and proper circular-arc graphs are defined similarly. Throughout the paper we will use the
shorthands CA and PCA, respectively.

We design a logspace algorithm that for a given PCA graph computes a canonical
representation by a proper arc model, where canonical means that isomorphic graphs receive
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identical models. Note that this algorithm provides a simultaneous solution in logspace of
both the recognition and the isomorphism problems for the class of PCA graphs.

In [18], along with Bastian Laubner we gave a logspace solution for the canonical
representation problem of proper interval graphs. Though PCA graphs may at first glance
appear close relatives of proper interval graphs, the extension of the result of [18] achieved
here is far from being straightforward. Differences between the two classes of graphs are well
known and have led to different algorithmic approaches also in the past; e.g. [11, 17, 22].
One difference, very important in our context, lies in the relationship of these graph classes
to interval and circular-arc hypergraphs that we will explain shortly.

An interval hypergraph is a hypergraph isomorphic to a system of intervals of integers.
A circular-arc (CA) hypergraph is defined similarly if, instead of integer intervals, we
consider arcs in a discrete cycle. With any graph G, we associate its closed neighborhood
hypergraph N [G] = {N [v]}v∈V (G) on the vertex set of G, where for each vertex v we have the
hyperedge N [v] consisting of v and all vertices adjacent to v. Roberts [27] discovered that
G is a proper interval graph if and only if N [G] is an interval hypergraph. The circular-arc
world is more complex. While N [G] is a CA hypergraph whenever G is a PCA graph, the
converse is not always true. PCA graphs are properly contained in the class of those graphs
whose neighborhood hypergraphs are CA. Graphs with this property are called concave-round
by Bang-Jensen, Huang, and Yeo [3] and Tucker graphs by Chen [8]. The latter name is
justified by Tucker’s result [29] saying that all these graphs are CA (although not necessarily
proper CA). Hence, it is natural to consider the problem of constructing arc representations
for concave-round graphs. We solve this problem in logspace and also in a canonical way.

Our working tool is a logspace algorithm for computing a canonical representation of CA
hypergraphs. This algorithm can also be used to test in logspace whether a given Boolean
matrix has the circular ones property, that is, whether the columns can be permuted so
that the 1-entries in each row form a segment up to a cyclic shift. Note that a matrix has
this property if and only if it is the incidence matrix of a CA hypergraph. The recognition
problem of the circular ones property arises in computational biology, namely in analysis of
circular genomes [13, 25].

Our techniques are also applicable to the Star System Problem where, for a given
hypergraph H, we have to find a graph G such that H = N [G], if such a graph exists. In the
restriction of the problem to a class of graphs C, we seek for G only in C. We give logspace
algorithms solving the Star System Problem for PCA and for concave-round graphs.

Comparison with previous work. The recognition problem for PCA graphs, along with
model construction, was solved in linear time by Deng, Hell, and Huang [11] and by Kaplan
and Nussbaum [17]; and in AC2 by Chen [7]. Note that linear-time and logspace results are
in general incomparable, while the existence of a logspace algorithm for a problem implies
that it is solvable in AC1. The isomorphism problem for PCA graphs was solved in linear
time by Lin, Soulignac, and Szwarcfiter [22]. In a very recent paper [10], Curtis et al. extend
this result to concave-round graphs.

The isomorphism problem for concave-round graphs was solved in AC2 by Chen [8].
Circular-arc models for concave-round graphs were known to be constructible also in AC2

(Chen [6]).
Extending these complexity upper bounds to the class of all CA graphs remains a challeng-

ing problem. While this class can be recognized in linear time by McConnell’s algorithm [24]
(along with constructing an intersection model), no polynomial-time isomorphism test for
CA graphs is currently known (see the discussion in [10], where a counterexample to the
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correctness of Hsu’s algorithm [14] is given). This provides further evidence that CA graphs
are algorithmically harder than interval graphs. For the latter class we have linear-time
algorithms for both recognition and isomorphism due to the seminal work by Booth and
Lueker [4, 23], and a canonical representation algorithm taking logarithmic space is designed
in [18].

The aforementioned circular ones property and the related consecutive ones property were
studied in [4, 15, 16], where linear-time algorithms are given; parallel AC2 algorithms were
suggested in [9, 2].

The decision version of the Star System Problem is in general NP-complete (Lalonde [21]).
It stays NP-complete if restricted to non-co-bipartite graphs (Aigner and Triesch [1]) or to
H-free graphs for H being a cycle or a path on at least 5 vertices (Fomin et al. [12]). The
restriction to co-bipartite graphs has the same complexity as the general graph isomorphism
problem [1]. Polynomial-time algorithms are known for H-free graphs for H being a cycle or
a path on at most 4 vertices [12] and for bipartite graphs (Boros et al. [5]). An analysis of the
algorithms in [12] for C3- and C4-free graphs shows that the Star System Problem for these
classes is solvable even in logspace, and the same holds true for the class of bipartite graphs;
see [20]. Moreover, the problem is solvable in logspace for any logspace-recognizable class of
C4-free graphs, in particular, for chordal, interval, and proper interval graphs; see [20].

Due to space limitations some proofs are only sketched; full details can be found in an
e-print [19].

2 Basic definitions

The vertex set of a graph G is denoted by V (G). The complement of a graph G is the
graph G with V (G) = V (G) such that two vertices are adjacent in G if and only if they
are not adjacent in G. The set of all vertices at distance at most (resp. exactly) 1 from a
vertex v ∈ V (G) is called the closed (resp. open) neighborhood of v and denoted by N [v]
(resp. N(v)). Note that N [v] = N(v) ∪ {v}. We call vertices u and v twins if N [u] = N [v]
and fraternal vertices if N(u) = N(v). A vertex u is universal if N [u] = V (G).

The canonical labeling problem for a class of graphs C is, given a graph G ∈ C with
n vertices, to compute a map λG : V (G)→ {1, . . . , n} so that the graph λG(G), the image
of G under λG on the vertex set {1, . . . , n}, is the same for isomorphic input graphs. We say
that λG is a canonical labeling and that λG(G) is a canonical form of G.

Recall that a hypergraph is a pair (X,H), where X is a set of vertices and H is a family
of subsets of X, called hyperedges. We will use the same notation H to denote a hypergraph
and its hyperedge set and, similarly to graphs, we will write V (H) referring to the vertex
set X of the hypergraph H. We will allow multiple hyperedges; in this case an isomorphism
has to respect multiplicities.

The complement of a hypergraph H is the hypergraph H = {H}H∈H on the same vertex
set, where H = V (H) \ H. Each hyperedge H of H inherits the multiplicity of H in H.
We associate with a graph G two hypergraphs defined on the vertex set V (G). The closed
(resp. open) neighborhood hypergraph of G is defined by N [G] = {N [v]}v∈V (G) (resp. by
N (G) = {N(v)}v∈V (G)). Twins in a hypergraph are two vertices such that every hyperedge
contains either both or none of them. Note that two vertices are twins in N [G] if and only if
they are twins in G.

By Cn we denote the directed cycle on the vertex set {1, . . . , n} with arrows from i to i+ 1
and from n to 1. An arc A is either empty (A = ∅), complete (A = {1, . . . , n}), or a segment
A = [a−, a+] with extreme points a− and a+ that consists of the points appearing in the
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directed path from a− to a+ in the cycle Cn. An arc system A is a hypergraph whose vertex
set is {1, . . . , n} and whose hyperedges are arcs of Cn. A is tight if any two arcs A = [a−, a+]
and B = [b−, b+] in A have the following property: if ∅ 6= A ⊆ B 6= Cn, then a− = b− or
a+ = b+.

An arc representation of a hypergraph H is an isomorphism ρ from H to an arc system A.
The arc system A is referred to as an arc model ofH. The notions of an interval representation
and an interval model of a hypergraph are introduced similarly, where interval means an
interval of integers. Hypergraphs having arc representations are called circular-arc (CA)
hypergraphs, and those having interval representations are called interval hypergraphs.

We call a CA hypergraph tight, if it admits a tight arc model. Recognition of tight CA
hypergraphs reduces to recognition of CA hypergraphs. To see this, given a hypergraph H,
define its tightened hypergraph Hb by Hb = H ∪ {A \B : A,B ∈ H} . Then H is a tight
CA hypergraph if and only if Hb is a CA hypergraph (for if A,B ∈ H and ∅ 6= B ( A, then
B cannot be an inner part of A in any arc model of Hb).

A circular order on a finite set S = {s1, . . . , sn} is described by a circular successor
relation ≺ on S (meaning that the digraph (S,≺) is a cycle). Each arc representation ρ

of a CA hypergraph H induces a circular order ≺ on V (H) such that the hyperedges in H
are arcs w.r.t. ≺; a circular order on V (H) with this property is called a CA order of H.
Conversely, each CA order of H specifies an arc representation of H up to rotation. Where
rotations are not important, we will describe arc representations by CA orders. We call a
CA order of H tight, if it makes H a tight arc system. Similarly, we will use the notion of
(tight) interval orders in the case of interval hypergraphs.

Given a CA order ≺ of a hypergraph H, consider the set of all arcs A ⊂ V (H) w.r.t. ≺
excepting the empty arc ∅ and the complete arc V (H). The CA order ≺ induces a (lexico-
graphic) circular order ≺∗ on this set, where A ≺∗ B if a− = b− and a+ ≺ b+ or if a− ≺ b−,
|A| = n− 1, and |B| = 1. By “restricting” ≺∗ to the set H (assuming that ∅, V (H) /∈ H) we
obtain a circular order ≺H on H: For A,B ∈ H we define A ≺H B if either A ≺∗ B or there
exist arcs X1, . . . , Xk /∈ H such that A ≺∗ X1 ≺∗ . . . ≺∗ Xk ≺∗ B. We say that the circular
order ≺H on H is lifted from the CA order ≺ on V (H).

An arc representation of a graph G is an isomorphism α : V (G) → A from G to the
intersection graph I(A) of an arbitrary arc system A. If ∅, V (A) /∈ A (this always holds
when G has neither an isolated nor a universal vertex), we use the lifted circular order ≺A
on A to define a circular order ≺α on V (G), where u ≺α v if and only if α(v) ≺A α(u). We
call ≺α the geometric order on V (G) associated with α.

Roadmap. In Section 3 we desribe a logspace algorithm for computing a canonical arc
representation of a given CA hypergraph. In Section 4 we show that for non-co-bipartite PCA
graphs G, the neighborhood hypergraph N [G] admits a unique CA order, which coincides
with the geometric order ≺α for any proper arc representation α of G. In Section 5, we
employ these facts to compute canonical representations of non-co-bipartite PCA graphs in
logspace. To achieve the same for co-bipartite PCA graphs G (and all concave-round graphs),
we use the fact that N (G) is in this case an interval hypergraph and show how to convert
an interval representation of N (G) into an arc representation of G. Finally, in Section 6 we
apply the techniques of Sections 3 and 4 to the Star System Problem.
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3 Canonical arc representations of hypergraphs

I Theorem 1. The canonical representation problem for CA hypergraphs is solvable in
logspace.

Proof sketch. We prove this result by a logspace reduction to the canonical representation
problem for edge-colored interval hypergraphs, which is already known to be in logspace [18].
Let H be an input CA hypergraph with n vertices. For each vertex x ∈ V (H) we construct
the hypergraph Hx = {Hx}H∈H on the same vertex set, where Hx = H if x /∈ H and
Hx = H otherwise. Observe that every Hx is an interval hypergraph; cf. [29, Theorem 1].
Canonizing each Hx using the algorithm from [18], we obtain n interval representations
ρx : V (H)→ {1, . . . , n}; recall that V (Hx) = V (H). Each ρx gives us an arc model ρx(H)
of H, which is obtained from the corresponding canonical interval model ρx(Hx) of Hx
by complementing the intervals corresponding to complemented hyperedges. Among these
n candidates, we choose the lexicographically least arc model as canonical and output the
corresponding arc representation ρx.

There is a subtle point in this procedure: We need to distinguish between complemented
and non-complemented hyperedges when canonizing Hx; otherwise reversing the comple-
mentation could lead to non-equal models for isomorphic CA hypergraphs. For this reason
we endow each interval hypergraph Hx with the edge-coloring cx : Hx →

{
0, 1
}
, where

cx(Hx) = 1 if x ∈ H and cx(Hx) = 0 otherwise. If both H and H are present in H, this
results in “multi-hyperedges” that have different colors. J

The canonical labeling problem for a class of hypergraphs C is defined exactly as for graphs.
The canonical representation algorithm given by Theorem 1 also solves the canonical labeling
problem for CA hypergraphs in logarithmic space. We conclude this section with noting that
it can also be used to compute a canonical labeling for the duals of CA hypergraphs; this
will be needed in Section 6.

Given a hypergraph H and a vertex v ∈ V (H), let v∗ = {H ∈ H : v ∈ H}. The hyper-
graph H∗ = {v∗ : v ∈ V (H)} on the vertex set V (H∗) = H is called the dual hypergraph
of H (multiple hyperedges in H become twin vertices in H∗). The map ϕ : v 7→ v∗ is an
isomorphism from H to (H∗)∗. If H∗ is a CA hypergraph, this map can be combined with a
canonical labeling λ of H∗ in order to obtain a canonical labeling λ̂ of H. More precisely, λ̂ is
obtained from the map λ′(v) = {λ(H) : v ∈ H} by sorting and renaming the values of λ′.

I Corollary 2. The canonical labeling problem for hypergraphs whose duals are CA can be
solved in logspace.

4 Linking PCA graphs and tight CA hypergraphs

In this section, we establish the connections between some classes of CA graphs and CA
hypergraphs that will be used in the design of our algorithms.

Bang-Jensen et al. [3] call a graph G concave-round (resp. convex-round) if N [G]
(resp. N (G)) is a CA hypergraph. Since N [G] = N (G), concave-round and convex-round
graphs are co-classes. Using this terminology, a result of Tucker [29] says that PCA graphs
are concave-round, and concave-round graphs are CA.

To connect the canonical representation problem for PCA and concave-round graphs
to that of CA hypergraphs, we use the fact that the graph classes under consideration can
be characterized in terms of neighborhood hypergraphs. For concave-round graphs, this
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directly follows from their definition, and we can find accompanying hypergraphs also for
PCA graphs.

I Theorem 3. A graph G is PCA if and only if N [G] is a tight CA hypergraph.

The forward direction of Theorem 3 follows from Lemma 4 below. To prove the other
direction, we distinguish two cases. If G is bipartite, then any tight arc model for N [G] can
be transformed into a proper arc model for G, as described in Section 5. If G is not bipartite,
then a result of Tucker [29] says that G is a PCA graph whenever N [G] is a CA hypergraph.

I Lemma 4. The geometric order ≺α on V (G) associated with a proper arc representation α
of a PCA graph G is a tight CA order for the hypergraph N [G].

Proof. Let G be a PCA graph and let α : V (G)→ A be a proper arc representation of G. We
first show that the neighborhood N [u] of any vertex u ∈ V (G) is an arc w.r.t. to the order ≺α.
If u is universal, the claim is trivial. Otherwise, let α(u) = [a−, a+]. We split N(u) in
two parts, namely N−(u) = {v ∈ N(u) : a− ∈ α(v)} and N+(u) = {v ∈ N(u) : a+ ∈ α(v)}.
Indeed, no vertex v is contained in both N−(u) and N+(u). Otherwise, since A is proper,
the arcs α(v) and α(u) would cover the whole cycle, both intersecting any other arc α(w),
contradicting the assumption that u is non-universal.

Now let v ∈ N+(u) and assume that u ≺α v1 ≺α . . . ≺α vk ≺α v. We claim that
every vertex vi is in N+(u). Indeed, by the definition of ≺α, we have α(u) ≺A α(v1) ≺A
. . . ≺A α(vk) ≺A α(v). If α(v) = [c−, c+] and α(vi) = [b−, b+], we see that b− ∈ (a−, c−),
b+ ∈ (a+, c+) and, hence, a+ ∈ [b−, b+]. It follows that N+(u) ∪ {u} is an arc starting at u.
By a symmetric argument, N−(u) ∪ {u} is an arc ending at u. Hence, also N [u] is an arc,
implying that ≺α is a CA order for N [G].

It remains to show that the CA order ≺α is tight. Suppose that N [u] = [u−, u+] ⊆
N [v] = [v−, v+] and v is non-universal with α(v) = [c−, c+]. Let’s first assume that
u ∈ N+(v) = (v, v+]. Since u, v+ ∈ N+(v), it follows that c+ ∈ α(u) ∩ α(v+). Hence,
u and v+ are adjacent or equal, which implies that u+ = v+. If u ∈ [v−, v), a symmetric
argument shows that u− = v−. J

Theorem 3 suggests that, given a tight CA order of N [G], we can use it to construct a
proper arc model for G. For this we need the converse of Lemma 4. In the case that G is not
bipartite, the following lemma implies that indeed each CA order of N [G] is the geometric
order of some proper arc representation of G.

I Lemma 5. If G is a connected twin-free PCA graph and G is not bipartite, then N [G]
has a unique CA order up to reversing.

The proof of Lemma 5 is based on a result of Deng, Hell, and Huang [11, Corollary 2.9].
We need some special properties of CA orders ≺ of N [G] when G is a PCA graph with
non-bipartite complement. We keep using the notation N [u] = [u−, u+] w.r.t. ≺. Parts 3
and 4 of the next proposition will be needed for proving Lemma 11.

I Proposition 6. Let ≺ be any CA order of N [G], where G is a PCA graph with non-bipartite
complement, and let u, v ∈ V (G).
1. N [u] 6= V (G) and u divides N [u] = [u−, u+] into two cliques [u−, u] and [u, u+] of G.
2. v ∈ [u, u+] if and only if u ∈ [v−, v].
3. If v ∈ [u, u+], then v− ∈ [u−, u] and u+ ∈ [v, v+].
4. If v ∈ [u, u+] and u ≺ v, then u−, v−, u, v, u+, and v+ occur under the order ≺ exactly

in this circular sequence, where some of the neighboring vertices except u− and v+ may
coincide.
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Proof of Lemma 5. Call an orientation of a graph G round if there is a CA order ≺ of N [G],
such that each vertex v separates the arc N [v] = [v−, v+] of (V (G),≺) into two arcs [v−, v)
and (v, v+] such that the former consists of the in-neighbors of v and the latter consists of
the out-neighbors of v. We also call such an orientation compatible with ≺.

As stated in [11, Corollary 2.9], any twin-free connected PCA graph with non-bipartite
complement has a unique round orientation (up to reversal). Therefore, in order to prove
that N [G] has a unique CA order (up to reversal), it suffices to show that any CA order
≺ of N [G] determines a compatible round orientations of G and that this correspondence
is injective. Indeed, orienting an edge {u, v} of G as (u, v) if u ∈ [v−, v) and as (v, u) if
u ∈ (v, v+] is well-defined, since by Proposition 6, G has no universal vertex and v ∈ [u, u+]
if and only if u ∈ [v−, v]. Further, it is not hard to see that different CA orders produce
different orientations. J

We close this section by giving a characterization of concave-round graphs G with
bipartite complement using properties of N (G). Given a bipartite graph H and a bipartition
V (H) = U ∪W of its vertices into two independent sets, by NU (H) we denote the hypergraph{
N(w)

}
w∈W on the vertex set U . Note that (NU (H))∗ ∼= NW (H). A bipartite graph H is

called convex if its vertex set admits splitting into two independent sets U and W , such that
NU (H) is an interval hypergraph. If both NU (H) and NW (H) are interval hypergraphs, H is
called biconvex ; see, e.g., [28]. As G is co-bipartite concave-round if and only if its complement
H = G is bipartite convex-round, the following fact gives the desired characterization.

I Proposition 7 (implicitly in Lemma 3 of [29]). A graph H is bipartite convex-round if and
only if it is biconvex and if and only if N (H) is an interval hypergraph.

CA
concave-round

PCA

non-co-bipartite PCA
=non-co-bipartite concave-round

co-bipartite concave-round

co-bipartite PCA concave-round \ PCA

co-convex

co-biconvex=

Figure 1 Inclusion structure of the classes of graphs under consideration.

5 Canonical arc representations of concave-round and PCA graphs

We are now ready to present our canonical representation algorithm for concave-round and
PCA graphs.

I Theorem 8. There is a logspace algorithm that solves the canonical arc representation
problem for the class of concave-round graphs. Moreover, this algorithm outputs a proper arc
representation whenever the input graph is PCA.

For any class of intersection graphs, a canonical representation algorithm readily implies
a canonical labeling algorithm of the same complexity. Vice versa, a canonical representation
algorithm readily follows from a canonical labeling algorithm and a representation algorithm
(not necessarily a canonical one). Proving Theorem 8 according to this scheme, we split our
task in two parts: We first compute a canonical labeling λ of the input graph G and then we
compute an arc representation α of the canonical form λ(G). Then the composition α ◦ λ
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is a canonical arc representation of G. As twins can be easily re-inserted in a (proper) arc
representation, it suffices to compute α for the twin-free version of λ(G), where in each
twin-class we only keep one vertex.

We distinguish two cases depending on whether G is bipartite; see Fig. 1 for an overview
of the involved graph classes.

Non-co-bipartite concave-round graphs. As mentioned above, any concave-round graph G
whose complement is not bipartite is actually a PCA graph [29]. Hence, we have to compute
a proper arc representation in this case.
Canonical labeling. We first transform G into its twin-free version G′, where we only keep
one vertex in each twin-class. Let n be the number of vertices in G′. We use the algorithm
given by Theorem 1 to compute an arc representation ρ′ of N [G′]. By Lemma 5, N [G′]
has a CA order which is unique up to reversing. Hence, in order to determine a canonical
labeling of G, it suffices to consider the 2n arc representations ρ1, . . . , ρ2n of N [G] that
can be obtained from ρ′ by cyclic shifts and reversing and by re-inserting all the removed
twins. As a canonical labeling ρi of G, we appoint one of these 2n variants that gives the
lexicographically least canonical form ρi(G) of G.
Proper arc representation. As mentioned above, it suffices to find such a representation for
the twin-free graph G′. The arc representation ρ′ of N [G′] that we have already computed
provides us with a CA order ≺ for N [G′]. By Lemmas 4 and 5, there is a proper arc
representation α : V (G′) → A of G′ such that ≺ coincides with the associated geometric
order ≺α. In order to construct α from ≺, we can assume that no two arcs α(v) = [a−v , a+

v ]
and α(u) = [a−u , a+

u ] in A share an extreme point and that V (A) consists of exactly 2n points.
To determine a suitable circular order on V (A), order the start points a−v according to ≺.
Then there is a unique way to place the end points a+

v to make α a proper arc representation
of G′. A careful implementation shows that this computation can be done in logspace.

Co-bipartite concave-round graphs. By Proposition 7, co-bipartite concave-round graphs
are precisely the co-biconvex graphs. In fact, all co-convex graphs are circular-arc (this is
implicit in [29]) and we can actually compute a canonical arc representation for these graphs
in logspace.
Canonical labeling. A canonical labeling algorithm for convex graphs, and hence also for
co-convex graphs, is designed in [18].
(Proper) arc representation. We first recall Tucker’s argument [29] showing that, if the
complement of G is a convex graph, then G is CA. We can assume that G has no fraternal
vertices as those would correspond to twins in G.

Let V (G) = U ∪W be a partition of G into independent sets such that NU (G) is an
interval hypergraph. Let u1, . . . , uk be an interval order on U for NU (G). We construct
an arc representation α for G on the cycle Z2k+2 by setting α(ui) = [i, i + k] for each
ui ∈ U and α(w) = [j + k + 1, i − 1] for each w ∈ W , where NG(w) = [ui, uj ] and the
subscript G means that the vertex neighborhood is considered in the complement of G. Note
that α(w) = Z2k+2 \

⋃
u∈N

G
(w) α(u). In the case that NG(w) = ∅, we set α(w) = [0, k].

By construction, all arcs α(u) for u ∈ U share a point (even two, k and k + 1), the same
holds true for all α(w) for w ∈W (they share the point 0), and any pair α(u) and α(w) is
intersecting if and only if u and w are adjacent in G. Thus, α is indeed an arc representation
for G.

In order to compute α in logspace, it suffices to compute a suitable bipartition {U,W}
of G and an interval order of the hypergraph NU (G) in logspace. Finding a bipartition
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{U,W} such that NU (G) is an interval hypergraph can be done by splitting G into connected
components H1, . . . ,Hk (using Reingold’s algorithm [26]) and finding such a bipartition
{Ui,Wi} for each component Hi. By using the logspace algorithm of [18] we can actually
compute interval orders of the hypergraphs NUi(Hi) which can be easily pasted together to
give an interval order of NU (G). Together with the canonical labeling algorithm this implies
that the canonical arc representation problem for co-convex graphs and, in particular, for
co-bipartite concave-round graphs is solvable in logspace.

It remains to show that for co-bipartite PCA graphs we can actually compute a proper
arc representation in logspace. As above, we assume that G is twin-free. By Lemma 4, the
hypergraph N [G] has a tight CA order ≺. We can compute ≺ in logspace by running the
algorithm given by Theorem 1 on the tightened hypergraph (N [G])b. Any tight CA order
of N [G] is also a tight CA order of N (G). Let V (G) = U ∪W be a bipartition of G into
two independent sets. Note that the restriction of a tight CA order of N (G) to NU (G) is a
tight interval order of the interval hypergraph NU (G). Retracing Tucker’s construction of an
arc representation α for a co-convex graph G in the case that the interval order of NU (G) is
tight, we see that α now gives us a tight arc model for G. Thus, we only have to convert
α into a proper arc representation α′. Tucker [29] described such a transformation, and
Chen [7] showed that it can be implemented in AC1. It is not hard to see that it can even be
done in logspace. This completes the proof of Theorem 8 and we have additionally proved
the following corollary.

I Corollary 9. The canonical arc representation problem for co-convex graphs is solvable in
logspace.

6 Solving the Star System Problem

In this section, we present logspace algorithms for the Star System Problem: Given a
hypergraph H, find a graph G in a specified class of graphs C such that N [G] = H (if such
a graph exists). The term star refers to the closed neighborhood of a vertex in G. In this
terminology, the problem is to identify the center of each star H in the star system H. To
denote this problem, we use the abbreviation SSP. Note that a logspace algorithm A solving
the SSP for a class C cannot be directly used for solving the SSP for a subclass C′ of C. For
example, if A on input H outputs a solution G in C \C′, then we don’t know whether there is
another solution G′ in C′. However, if the SSP for C has unique solutions and if membership
in C′ is decidable in logspace, then it is easy to convert A into a logspace algorithm A′
solving the SSP for C′.

I Theorem 10.
1. The SSP for PCA and for co-convex graphs is solvable in logspace.
2. If G is a co-convex graph, then N [G] ∼= N [H] implies G ∼= H.

The implication stated in Theorem 10.2 is known to be true also for concave-round graphs
(Chen [8]). As a consequence, since concave-round graphs form a logspace decidable subclass
of the union of PCA and co-convex graphs, we can also solve the SSP for concave-round
graphs in logspace.

The proof of Theorem 10 is outlined in the rest of this section. We design logspace
algorithms A1 and A2 solving the SSP for non-co-bipartite PCA graphs and for co-convex
graphs, respectively. Since by Theorem 10.2, the output of A2 is unique up to isomorphism,
we can easily combine the two algorithms to obtain a logspace algorithm A3 solving the SSP
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for all PCA graphs: On input H run A1 and A2 and check if one of the resulting graphs is
PCA (recall that co-bipartite PCA graphs are co-convex; see Fig. 1).

Clearly, it suffices to consider the case that the input hypergraph H is connected.

Non-co-bipartite PCA graphs. Let H be the given input hypergraph and assume that
H = N [G] for a PCA graph G. By Theorem 3, H has to be a tight CA hypergraph, a
condition that can be checked by testing if the tightened hypergraph Hb is CA. Since G is
concave-round, Proposition 7 implies that G is co-bipartite if and only if N (G) = H is an
interval hypergraph. It follows that the SSP on H can only have a non-co-bipartite PCA
graph as solution if Hb is CA and H is not interval. Both conditions can be checked in
logspace using the algorithms given by Theorem 1 and [18]. Further, it follows by Theorem 3
and Proposition 7 that in this case any SSP solution for H is a non-co-bipartite PCA graph
(which is also connected because H is assumed to be connected).

By considering the quotient hypergraph with respect to twin-classes, we can additionally
assume that H is twin-free.

In order to reconstruct G from H, we have to choose the center in each star H ∈ H. The
following lemma considerably restricts this choice.

I Lemma 11. Let G be a connected, non-co-bipartite and twin-free PCA graph and let ≺
be a circular order on V (G) that is a CA order of N [G]. Then u ≺ v holds exactly when
N [u] ≺N [G] N [v], where ≺N [G] is the circular order on N [G] lifted from ≺.

Proof. It suffices to show that u ≺ v implies N [u] = [u−, u+] ≺N [G] N [v] = [v−, v+]. To this
end we show that there is no third vertex w such that the arcs N [u], N [w], and N [v] appear
in this sequence under the circular order ≺N [G].

Suppose first that u and v are adjacent. Then it follows from Proposition 6.4, that the
vertices u−, v−, u, v, u+, and, v+ appear in this circular sequence; see Fig. 2(a). We split
our analysis into three cases, depending on the position of w on the cycle (V (G),≺). If
w ∈ (v, v+], then Proposition 6.3 implies that w− ∈ [v−, v] and v+ ∈ [w,w+]. If w− 6= v−,
then N [u], N [v], and N [w] appear in this sequence under ≺N [G]. The same holds true if
w− = v− because then the arc [w−, w+] has to be longer than the arc [v−, v+] (note that, if
also u− = v−, then [u−, u+] is shorter than [v−, v+]). The case that w ∈ [u−, u) is similar.
If w ∈ (v+, u−), then w− ∈ (v, u−), and again N [w] cannot be intermediate.

(a)

u− u+

u

v−

v+

v
(b)

u−

u

v+

v

Figure 2 The two cases in the proof of Lemma 11.

Suppose now that u and v are not adjacent. It follows that N [u] = [u−, u] and N [v] =
[v, v+]; see Fig. 2(b). By Proposition 6.1, both N [u] and N [v] are cliques. Again we have
to show that for no third vertex w, the arcs N [u], N [w], and N [v] appear in this sequence
under ≺N [G]. This is clear if w− ∈ (v, u−). This is also so if w− = v, because then the arc
[v, v+], being a clique in G, must be shorter than the arc [w−, w+]. Finally we show that
the remaining case w− ∈ [u−, v) is not possible. Indeed, in this case v /∈ N [w], for else the
non-adjacent vertices u and v would belong to the clique [w,w+]. Hence, it would follow
that N [w] = [w−, w+] ( [u−, u+] = N [u], contradicting the fact that N [u] is a clique. J
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Lemma 11 states that the mapping v 7→ N [v] is an isomorphism between the two directed
cycles (V (G),≺) and (N [G],≺N [G]). Since there are exactly n such isomorphisms, we get
exactly n candidates f1, . . . , fn for the mapping v 7→ N [v]. Hence, all we have to do is to
use the algorithm given by Theorem 1 to compute a CA order ≺ of H and the corresponding
lifted order ≺H in logspace. Now for each isomorphism f between (V (G),≺) and (H,≺H)
we have to check if selecting v as the center of the star f(v) results in a graph G, that is, if
for all v, u ∈ V (G) it holds that v ∈ f(v) and v ∈ f(u)⇔ u ∈ f(v).

Co-convex graphs. Let H be the given hypergraph and assume that H = N [G] for a co-
convex graph G. To facilitate the exposition, we also assume that the bipartite complement G
is connected, with vertex partition U,W . Then H = N (G) = NU (G) ∪NW (G), where the
vertex-disjoint hypergraphs U = NU (G) and W = NW (G) are dual (i.e., U∗ ∼= W), both
connected, and at least one of them is interval, say, U . We need a simple auxiliary fact.

I Proposition 12. Let H be a graph without isolated vertices and let L be a connected
component of N (H). Denote U = V (L). Then either U is an independent set in H or U
spans a connected component of H. Moreover, if U is independent, then there is a connected
component of H that is a bipartite graph with U being one of its vertex classes.

Denote K = H and assume that K = N (H) for some graph H. Note that H cannot
have an isolated vertex. Proposition 12 implies that either H is a connected bipartite graph
with partition U,W or H has two connected components H1 and H2 with V (H1) = U and
V (H2) = W . However, the second possibility leads to a contradiction. Indeed, since the
hypergraph N (H1) = U is interval, Proposition 7 implies that H1 is bipartite, contradicting
the connectedness of U . Therefore, H must be connected and bipartite with vertex partition
U,W .

Recall that the incidence graph of a hypergraph X is the bipartite graph with vertex
classes V (X ) and X where x ∈ V (X ) andX ∈ X are adjacent if x ∈ X (ifX has multiplicity k
in X , it contributes k fraternal vertices in the incidence graph). Since H is isomorphic to the
incidence graph of the hypergraph U (as well as W), H is logspace reconstructible from K
up to isomorphism and, in particular, H ∼= G. Thus, the solution to the SSP on H is unique
up to isomorphism.

After these considerations we are ready to describe our logspace algorithm for solving the
SSP for the class of co-convex co-connected graphs. Given a hypergraph H, we first check
if H has exactly two connected components, say U and W. This can be done by running
Reingold’s algorithm for the connectivity problem [26] on the intersection graph I(H). If
this is not the case, there is no solution in the desired class. Otherwise, we construct the
incidence graph H of the hypergraph U (or of W, which should give the same result up to
isomorphism) and take its complement H. Note that this works well even if H has twins: the
twins in V (U) are explicitly present, while the twins in V (W) are represented by multiple
hyperedges in U .

As argued above, if the SSP on H has a co-convex co-connected solution, then the closed
neighborhood hypergraph H′ = N [H] of H is isomorphic to H. However, it may not be equal
to H. In this case we compute an isomorphism ϕ from H′ to H or, the same task, from H′
to H. This can be done by the algorithms of [18] and Corollary 2, because at least one of
the connected components of H′ ∼= H is an interval hypergraph and the other component
is isomorphic to the dual of an interval hypergraph. Now, the isomorphic image G = ϕ(H)
of H is the desired solution to the SSP on H as N [ϕ(H)] = ϕ(N [H]) = H.
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