
Computing and Counting the Longest Paths on
Circular-Arc Graphs in Polynomial Time

George B. Mertzios∗ Ivona Bezakova†

Abstract

The longest path problem asks for a path with the largest number of vertices in a
given graph. In contrast to the Hamiltonian path problem, until recently polynomial
algorithms for the longest path problem were known only for small graph classes, such
as trees. Recently, a polynomial algorithm for this problem on interval graphs has been
presented in [20] with running time O(n4) on a graph with n vertices, thus answering
the open question posed in [32]. Even though interval and circular-arc graphs look
superficially similar, they differ substantially, as circular-arc graphs are not perfect; for
instance, several problems – e.g. minimum coloring – are NP-hard on circular-arc graphs,
although they can be efficiently solved on interval graphs. In this paper, we prove that
for every path P of a circular-arc graph G, we can appropriately “cut” the circle, such
that the obtained (not induced) interval subgraph G′ of G admits a path P ′ on the same
vertices as P . This non-trivial result is of independent interest, as it suggests a generic
reduction of a number of path problems on circular-arc graphs to the case of interval
graphs with a multiplicative linear time overhead of O(n). As an application of this
reduction, we present the first polynomial algorithm for the longest path problem on
circular-arc graphs. In addition, by exploiting deeper the structure of circular-arc graphs,
we manage to get rid of the linear time overhead of the reduction, and thus this algorithm
turns out to have the same running time O(n4) as the one on interval graphs. Our
algorithm, which significantly simplifies the approach of [20], computes in the same time
an n-approximation of the (exponentially large in worst case) number of different vertex
sets that provide a longest path; in the case where G is an interval graph, we compute
the exact number. Moreover, in contrast to [20], this algorithm can be directly extended
with the same running time to the case where every vertex has an arbitrary positive weight.

Keywords: Circular-arc graphs, interval graphs, longest path problem, counting, approx-
imation algorithm, dynamic programming.

1 Introduction

The Hamiltonian path problem, i.e. the problem of deciding whether a given graph contains
a simple path that visits all its vertices, is one of the most well known and well studied
NP-complete problems [13], with numerous applications. The most natural optimization ver-
sion of this problem is the longest path problem, where the task is to find a path with the
largest number of vertices. This problem has been also extensively studied over the past
several decades and it plays an important role in a number of applications, for instance in
computational biology [7, 17].

In addition to both problems being NP-hard for general graphs, several prohibitive in-
approximability results for the longest path problem appeared in [23]. In particular, for
any ε ∈ (0, 1), it is NP-hard to compute a path of length n − nε in a graph with n ver-
tices, even if it is known that the graph admits a Hamiltonian path. Moreover, there is no

∗Department of Computer Science, Technion, Haifa, Israel. Email: mertzios@cs.technion.ac.il
†Department of Computer Science, Rochester Institute of Technology, Rochester, NY, USA. Email:

ib@cs.rit.edu

1

polynomial time constant-factor approximation algorithm for the longest path problem unless
P=NP [23]. To the best of our knowledge, the best known approximation algorithms achieve
approximation ratio O(n(log log n/ log n)2) for general graphs [3]. Furthermore, the Hamilto-
nian path (and thus also the longest path) problem is NP-hard on many restricted classes of
graphs, namely split graphs, chordal bipartite graphs, split strongly chordal graphs, directed
path graphs, circle graphs, planar graphs, and grid graphs, see e.g. [26] for a list of related
works.

On the positive side, polynomial time algorithms have been developed for the Hamiltonian
path (and the related Hamiltonian cycle) problem on several graph classes, notably proper
interval graphs [2], interval graphs [1, 24], circular-arc graphs [8, 19, 30], and cocomparability
graphs [9, 10]. Another natural generalization of the Hamiltonian path problem, namely the
minimum path cover problem, has also received considerable attention in the literature. The
objective is to find the smallest number of vertex disjoint simple paths that cover all the
vertices; polynomial time algorithms were given for this problem on interval graphs [1, 6],
cocomparability graphs [9], and lately also on circular-arc graphs [18,19].

In contrast to the Hamiltonian path problem, until recently only a few polynomial algo-
rithms were known for the longest path problem, and these were restricted to trees [5], weighted
trees and block graphs [32], bipartite permutation graphs [33], and ptolemaic graphs [31].
Very recently, prompted by an open problem statement in [32], a polynomial time algo-
rithm has been developed for interval graphs with running time O(n4) on a graph with n
vertices [20]. This algorithm has been followed by two independent polynomial algorithms
for the longest path problem on the much greater class of cocomparability graphs (one with
running time O(n4) [27] and one with running time O(n8) [21]).

Circular-arc graphs naturally extend interval graphs: interval graphs are the intersection
graphs of intervals on the real line, while circular-arc graphs are intersection graphs of arcs
on a circle. That is, a graph G is interval (resp. circular-arc) if its vertices can be put in an
one-to-one correspondence with a family of intervals (resp. arcs) on the real line (resp. on the
circle), such that two vertices are adjacent in G if and only if their corresponding intervals
(resp. arcs) intersect. Such an intersection model with intervals (resp. arcs) of an interval
(resp. circular-arc) graph G is also called an interval (resp. circular-arc) representation of G.
Several NP-complete problems have been studied on these graph classes, for example, a max-
imum independent set and a maximum clique be found in polynomial time [16], while, for
example, the achromatic number problem is NP-complete for both classes of graphs [4].

Although circular-arc graphs look superficially similar to interval graphs, several combina-
torial problems behave very differently on these classes of graphs. For example, the minimum
coloring problem is NP-complete for circular-arc graphs [14] while it can be solved greedily in
linear time on interval graphs. The main reason for that is that there are two ways to travel
from one point to another on a circle, as opposed to just one on the real line. Therefore,
circular-arc graphs can contain an induced circle C5 with five vertices, and thus they are
not perfect (i.e. their chromatic number does not always equal the clique number), in contrast
to interval graphs that are known to be perfect [15].

All optimization problems have a corresponding counting version. For the case of Hamil-
tonian paths, the counting version asks for the overall number of all Hamiltonian paths in
a given graph. Counting problems are related to sampling [22], where, for example, for the
case of Hamiltonian paths, the task is to sample one of the Hamiltonian paths uniformly
at random. Sampling plays an important role in machine learning and other applied areas,
and the problems of counting and sampling of paths in graphs have been studied extensively,
see e.g. [25]. The problem of counting all Hamiltonian paths is #P-complete for general
graphs [11], while approximation algorithms were given for several special classes of graphs,
including dense graphs for which there exists a fully polynomial randomized approximation
scheme (FPRAS) [11], and nearly regular graphs [12]. An importance sampling based frame-

2

work, combined with cross and minimum entropy methods, achieved fast empirical results,
closely approximating the optimum [29]. The problem of counting and sampling paths in
graphs, especially the scenario of self-avoiding walks in lattice graphs, has been researched
since the 1960s, see e.g. [25]. Most of the algorithms are heuristic without proofs of correctness;
notable exceptions include [28].

Our contribution. In this article we present the first polynomial algorithm for the longest
path problem on circular-arc graphs by showing that the problem reduces to the case of
interval graphs. The significance of our reduction comes from the fact that a path in a
circular-arc graph can have a spiral-like form and this makes it hard to “cut” the circle to
create an interval graph that maintains the length of a longest path. Note here that also
other problems on circular arc graphs have been reduced to the interval graph case. However,
for problems that search for a set (e.g. an independent set) the reduction is fairly natural,
since “cutting” the circle does not destroy the set. On the other hand, “cutting” a sequence
(such as a path) breaks the sequence into many parts. In this article we overcome this issue
by showing that for every path P of a circular-arc graph G, we can appropriately “cut” the
circle, such that the obtained (not necessarily induced) interval subgraph admits a path P ′

on the same vertices as P .
This result suggests a generic reduction of a number of path problems (such as the Hamil-

tonian and the longest path problems) on circular-arc graphs to the corresponding problem
on interval graphs with a multiplicative linear time overhead of O(n). However, by exploit-
ing deeper the structure of circular-arc graphs, we manage to get rid of this overhead for
the longest path problem. In particular, we introduce the crucial notion of normal paths
in circular-arc graphs, which can be thought of as “monotone representatives” of all paths.
Indeed, we prove that every path P of a circular-arc graph G can be restructured as a normal
path on the same vertices.

Our dynamic programming algorithm searches for a longest normal path in a circular-arc
graph and it runs in time O(n4) on a graph with n vertices. Our algorithm significantly
simplifies the approach of [20] that shows polynomial time solvability of this problem on
interval graphs. This simplification consists of the elimination of the introduced “dummy
vertices” that were essential in [20] (the algorithm of [20] has three phases, during which it
adds these dummy vertices to construct a second auxiliary graph).

By getting rid of these dummy vertices, our algorithm computes in the same time bound
also the total number of different longest normal paths in the given circular-arc representation.
This number constitutes an n-approximation of the (exponentially large in the worst case)
number of different vertex sets that provide a longest path of G. Moreover, in the case where G
is an interval graph, we are able to compute within the same time bound the exact number of
vertex sets of G that give a longest path. Moreover, in contrast to [20] where the introduced
“dummy vertices” played a crucial role in the algorithm, all the above results can be directly
extended (with the same running time as well) to the weighted case, i.e. to the case where a
positive weight is assigned to every vertex of the input graph. However, for simplicity of the
presentation, we present here only the unweighted case.

Organization of the paper. Formal definitions, notation, and other preliminaries are
introduced in Section 2. Section 3 describes the reduction from the problem on circular-arc
graphs to interval graphs. The final algorithm and its analysis are presented in Section 4.

2 Notation and preliminaries

In this article we follow standard notation and terminology, see for instance [15]. We consider
simple undirected graphs with no loops or multiple edges. In a graph G = (V,E), the edge

3

between vertices u and v is denoted by uv, and in this case u and v are said to be adjacent in G,
or equivalently, vertex u sees vertex v. Let S ⊆ V be a set of vertices of a graph G = (V,E).
Then, the cardinality of the set S is denoted by |S| and the subgraph of G induced by S is
denoted by G[S]. Furthermore, let S′ ⊆ S and σ be some ordering of the vertices of S. Then,
we denote by σ\S′ the ordering of the vertices of S \S′ that is obtained from σ after removing
all vertices of S′. The set N(v) = {u ∈ V | uv ∈ E} is called the neighborhood of the vertex
v ∈ V in G, sometimes denoted by NG(v) for clarity reasons.

A simple path P of a graph G is a sequence of distinct vertices v1, v2, . . . , vk such
that vivi+1 ∈ E, for each i ∈ {1, 2, . . . , k − 1}, and is denoted by P = (v1, v2, . . . , vk);
throughout the paper all paths considered are simple. Furthermore, v1 (resp. vk) is called
the first (resp. last) vertex of P . Given a path P = (v1, v2, . . . , vk) of a graph G, the re-
verse path of P is the path P = (vk, vk−1, . . . , v1) of G. If P has at least two vertices,
we consider the paths P and P as two different paths. We denote by V (P) the set of
vertices of the path P , and define the length |P | of P to be the number of vertices in P ,
i.e. |P | = |V (P)|. Additionally, if P = (v1, v2, . . . , vi−1, vi, . . . , vj , vj+1, . . . , vk) is a path of
a graph and P0 = (vi, . . . , vj) is a subpath of P , we sometimes equivalently use the nota-
tion P = (v1, v2, . . . , vi−1, P0, vj+1, . . . , vk).

Given a circular-arc (resp. interval) graph G = (V,E) along with a circular-arc (resp. in-
terval) representation R of G, we may not distinguish in the following between a vertex v
of G and the corresponding arc (resp. interval) Iv in R, whenever it is clear from the context.
Furthermore, by possibly performing a small shift of the endpoints of the arcs (resp. intervals),
we may assume without loss of generality that all endpoints of the arcs (resp. intervals) are
distinct [15]. For two arcs I and I ′ on the circle, we denote by I ∪ I ′ the union of the points
of the circle that belong to I and I ′; note that I ∪ I ′ may be an arc, two disjoint arcs, or the
whole circle.

We will denote the arc Iv of a vertex v with endpoints `v and rv by Iv = [`v, rv]. We always
consider the arcs in the counter-clockwise direction. That is, `v (resp. rv) is the first (resp. last)
point of [`v, rv] (also referred to as the left and right endpoint of [`v, rv], respectively) when
traveled in the counter-clockwise direction. The intuition for the terminology comes from
imagining standing on the arc and facing the center of the circle; then `v is on the left and rv
on the right endpoint of [`v, rv], respectively. Using this notation, the next two observations
follow easily.

Observation 1 For every two distinct points a and b on a circle, the arcs [a, b] and [b, a] of
the circle are different, while [a, b] ∪ [b, a] covers the whole circle.

Observation 2 Let G = (V,E) be a circular-arc graph, R be a circular-arc representation
of G, and u, v ∈ V such that uv ∈ E. Then ru ∈ Iv or rv ∈ Iu (or both).

Given an interval graph G = (V,E) along with an interval representation R of G, we can
define an ordering of the set V by sorting the intervals in R according to their right endpoints.
Such an ordering of the vertices of an interval graph G, which is called a right-end ordering
of G, has been proved useful for a number of problems on interval graphs (see e.g. [1,20]). In
a right-end ordering π of an interval graph G = (V,E), we can define a total order <π in V
as follows: u <π v for two vertices u, v ∈ V if u appears to the left of v in π.

In a similar fashion, we consider in the following the right-end circular ordering π =
(u0, u1, . . . , un−1) of the set V of vertices of a circular-arc graph G = (V,E), which results
after sorting the arcs of a circular-arc representation R of G according to their right endpoints.
It is easy to see by definition that the notion of a right-end circular ordering in a circular-
arc graph extends in a natural way the notion of a right-end ordering in an interval graph.
However, in contrast to interval graphs, we can not define a total order <π on the vertices of
V , since there are two ways to travel from one point to another on a circle.

4

For any i ∈ Z, we may refer in the following to the vertex u(i mod n) (resp. to the
points `u(i mod n)

and ru(i mod n)
of the circle) as ui (resp. as `ui and rui) for simplicity. In

the next definition we introduce the notion of a path-arc representation of a given path P in
a circular-arc graph G. In this representation, every edge of P is represented by one path-arc.
The path-arc representation of P depends on a particular circular-arc representation of G;
in particular, it takes into account the relative positions of the arcs of any two consecutive
vertices in P .

Definition 1 Let G = (V,E) be a circular-arc graph and R be a circular-arc representation
of G. Let P = (v1, v2, . . . , vk) be a path of G. For an arbitrary i ∈ {1, 2, . . . , k − 1},
• if rvi+1 /∈ Ivi in R (in this case rvi ∈ Ivi+1), then the path-arc of P between vi and vi+1

is P (vi, vi+1) = [rvi , rvi+1]; such a path-arc is called right-going,

• if rvi /∈ Ivi+1 in R (in this case rvi+1 ∈ Ivi), then the path-arc of P between vi and vi+1

is P (vi, vi+1) = [rvi+1 , rvi]; such a path-arc is called left-going,

• if rvi ∈ Ivi+1 and rvi+1 ∈ Ivi in R, then the path-arc of P between vi and vi+1 is either
P (vi, vi+1) = [rvi , rvi+1] or P (vi, vi+1) = [rvi+1 , rvi]; such a path-arc is called right-going
or left-going, respectively.

The set of all path-arcs P (vi, vi+1) for every i ∈ {1, 2, . . . , k − 1} is the path-arc representa-
tion Parc of P .

u2

u1

u3

u4
u5

u6

u7

(a)

u1

u5

u6

u7

u2

u3

u4

(b)

u1

u5

u6

u7

u2

u3

u4

(c)

Figure 1: (a) A circular-arc representation of a circular-arc graph G with the right-end cir-
cular ordering π = (u1, u2, u3, u4, u5, u6, u7), (b) a path-arc representation Parc of the path
P = (u1, u6, u2, u4, u3, u7, u5) of G, which covers all the circle, and (c) another path-arc rep-
resentation of P , which does not cover all the circle.

Note that, given a circular-arc representation R of a circular-arc graph G, a path-arc
representation Parc uniquely determines a path P of G. However, a path P of G may have
by Definition 1 more than one path-arc representation Parc, since some edges of P may be
represented by a right-going or by a left-going path-arc in Parc. As an example, a circular-arc
graph G is depicted in Figure 1(a). For the path P = (u1, u6, u2, u4, u3, u7, u5) of G, two
different path-arc representations of P are illustrated in Figures 1(b) and 1(c), respectively;
note that the path-arc representation of Figure 1(b) covers the whole circle, while that of
Figure 1(c) does not. The next two observations follow by Definition 1.

Observation 3 Let G = (V,E) be a circular-arc graph, R be a circular-arc representation
of G, and P = (v1, v2, . . . , vk) be a path of G. Then the union of all path-arcs of Parc either
cover the arc [rv1 , rvk] or the arc [rvk , rv1] (or both).

5

Observation 4 Let G = (V,E) be a circular-arc graph and R be a circular-arc representation
of G. Let P = (v1, v2, . . . , vk) be a path of G, Parc be the path-arc representation of P , and
i ∈ {1, 2, . . . , k − 1}. If P (vi, vi+1) = [rvi , rvi+1], then P (vi, vi+1) ⊆ Ivi+1. Furthermore, if
P (vi, vi+1) = [rvi+1 , rvi], then P (vi, vi+1) ⊆ Ivi.

Definition 2 Let G = (V,E) be a circular-arc graph and R be a circular-arc representation
of G. Let P = (v1, v2, . . . , vk) be a path of G and Parc be a path-arc representation of P . For
every vertex vj of P , where j ∈ {1, 2, . . . , k},
• rightCutParc

(vj) is the number of path-arcs P (vi, vi+1) in Parc, where j /∈ {i, i+1}, such
that rvj ∈ P (vi, vi+1) and P (vi, vi+1) = [rvi , rvi+1] (i.e. P (vi, vi+1) is right-going),

• leftCutParc(vj) is the number of path-arcs P (vi, vi+1) of Parc, where j /∈ {i, i+ 1}, such
that rvj ∈ P (vi, vi+1) and P (vi, vi+1) = [rvi+1 , rvi] (i.e. P (vi, vi+1) is left-going),

• cutParc(vj) is the number of path-arcs P (vi, vi+1) of Parc, where j /∈ {i, i+ 1}, such that
rvj ∈ P (vi, vi+1), i.e. cutParc(vj) = rightCutParc

(vj) + leftCutParc(vj).

Furthermore, we define sumCutParc =
∑k

j=1 cutParc(vj).

Finally, we want to define an interval graph obtained from a circular-arc graph G by “cutting”
the circle and the arcs of a circular-arc representation R of G appropriately. Intuitively, given
a vertex ui of G, we define in the following definition the interval graphs Gui and G′ui , which we
obtain by “cutting” R immediately to the left and immediately to the right of rui , respectively,
where rui is the right endpoint of the arc Iui = [lui , rui] of R that corresponds to ui. In the

following definition, we denote for simplicity of the presentation by [a,b]
2 the mid-point of the

arc [a, b], for any two points a, b on the circle.

Definition 3 Let G = (V,E) be a circular-arc graph and R be a circular-arc representation
of G. Let π = (u0, u1, . . . , un−1) be the right-end circular ordering of G (in R) and i ∈
{0, 1, . . . , n − 1}. The circular-arc representation Rui (resp. R′ui) is obtained by replacing in

R every arc [luj , ruj] such that
[rui−1+rui]

2 ∈ [luj , ruj] (resp.
[rui+rui+1]

2 ∈ [luj , ruj]) by the arc

[
[rui−1+rui]

2 , ruj] (resp. [
[rui+rui+1]

2 , ruj]). Then, Gui (resp. G′ui) is the graph induced by the
representation Rui (resp. R′ui).

Note by Definition 3 that the graphs Gui and G′ui are (not necessarily induced) subgraphs
of G. As an example, the subgraph Gu3 of the circular-arc graph G of Figure 1(a) is illustrated
in Figure 2(a); in this figure, the arcs present in Gu3 are drawn black, while all the others
are drawn gray, for better visibility. The next observation follows now easily by Definition 3,
as well as by the definitions of a right-end circular ordering (resp. a right-end ordering) in a
circular-arc (resp. interval) graph.

Observation 5 Let G = (V,E) be a circular-arc graph and R be a circular-arc representation
of G. Let π = (u0, u1, . . . , un−1) be the right-end circular ordering of G (in R) and i ∈
{0, 1, . . . , n− 1}. Then,

• Rui and R′ui can be rewritten as interval representations, while both Gui and G′ui are
interval graphs; furthermore, R′ui = Rui+1 and G′ui = Gui+1,

• the right-end circular ordering π of V = V (G) defines in a natural way a right-end
ordering πi = (ui, ui+1, . . . , un, u1, u2, . . . , ui−1) of the interval graph Gui.

6

3 Reduction of the problem to the case of interval graphs

In this section we show that the longest path problem for circular-arc graphs can be reduced
to the longest path problem for interval graphs. In particular, given a circular-arc graph G
and a circular-arc representation R of G, we prove that for every path P of G there exists a
path P ′ on the same vertices, which has a path-arc representation P ′arc that does not cover
the whole circle in R (cf. Theorem 1), or equivalently, P ′ is a path of the interval graph Gui ,
as defined in Definition 3, where ui is a vertex of G.

Lemma 1 Let G = (V,E) be a circular-arc graph and R be a circular-arc representation of G.
Let P = (v1, v2, . . . , vk) be a path in G such that cutParc(v1) = 0. Then P is also a path of
Gv1 or G′v1 (or of both).

Proof. If k = 1, the lemma holds trivially. Let in the following k ≥ 2. Consider the path-arc
representation Parc of P and the path-arc P (v1, v2) of P between v1 and v2, and recall by
Definition 1 that either P (v1, v2) = [rv1 , rv2] or P (v1, v2) = [rv2 , rv1].

Suppose first that P (v1, v2) = [rv1 , rv2]; then note that P (v1, v2) is a path-arc of Rv1 .
We will prove that in this case P is a path of Gv1 , or equivalently that Parc is also a path-
arc representation in Rv1 . Suppose otherwise that Parc is not a path-arc representation in
Rv1 . Then, since Parc is a path-arc representation in R, there exists at least one index
i ∈ {2, . . . , k − 1} such that rv1 ∈ P (vi, vi+1). However, this implies by Definition 2 that
cutParc(v1) ≥ 1, which is a contradiction to the assumption that cutParc(v1) = 0. Therefore
rv1 /∈ P (vi, vi+1) for every index i ∈ {2, . . . , k − 1}, i.e. P (vi, vi+1) is a path-arc of Rv1 for
every index i ∈ {2, . . . , k − 1}. Thus, since also P (v1, v2) is a path-arc of Rv1 , it follows that
Parc is a path-arc representation in Rv1 , i.e. P is a path of Gv1 .

Suppose now that P (v1, v2) = [rv2 , rv1]; then note that P (v1, v2) is a path-arc of R′v1 . We
will prove that in this case P is a path of G′v1 , or equivalently that Parc is also a path-arc
representation in R′v1 . Suppose otherwise that Parc is not a path-arc representation in Rv1 .
Then, similarly to the previous paragraph, there exists at least one index i ∈ {2, . . . , k − 1}
such that rv1 ∈ P (vi, vi+1), which implies by Definition 2 that cutParc(v1) ≥ 1. This is a
contradiction to the assumption that cutParc(v1) = 0. Therefore rv1 /∈ P (vi, vi+1) for every
index i ∈ {2, . . . , k− 1}, i.e. P (vi, vi+1) is a path-arc of R′v1 for every index i ∈ {2, . . . , k− 1}.
Thus, since also P (v1, v2) is a path-arc of R′v1 , it follows that Parc is a path-arc representation
in R′v1 , i.e. P is a path of G′v1 . This completes the proof of the lemma.

The next corollary follows easily by considering in Lemma 1 the reverse path P =
(vk, vk−1, . . . , v1) of the path P = (v1, v2, . . . , vk).

Corollary 1 Let G = (V,E) be a circular-arc graph and R be a circular-arc representation
of G. Let P = (v1, v2, . . . , vk) be a path in G such that cutParc(vk) = 0. Then P is a also path
of Gvk or G′vk (or of both).

Lemma 2 Let G = (V,E) be a circular-arc graph and R be a circular-arc representation of G.
Let P = (v1, v2, . . . , vk) be a path of G that has the smallest possible value sumCutParc among
all paths of G on the vertices {v1, v2, . . . , vk}. Then rightCutParc

(v1) = 0.

Proof. Suppose otherwise that rightCutParc
(v1) ≥ 1. Then, there exists by Defini-

tion 2 at least one index i ∈ {2, . . . , k − 1} such that rv1 ∈ P (vi, vi+1) and P (vi, vi+1) =
[rvi , rvi+1]. Then, since P (vi, vi+1) = [rvi , rvi+1], Observation 4 implies that P (vi, vi+1) ⊆
Ivi+1 . That is, rv1 ∈ P (vi, vi+1) ⊆ Ivi+1 , and thus v1vi+1 ∈ E. Therefore P ′ =
(vi, vi−1, vi−2, . . . , v1, vi+1, vi+2, . . . , vk) is a path of G, where V (P ′) = V (P) = {v1, v2, . . . , vk}.
Note that the path-arc P (vi, vi+1) in Parc can been replaced by the path-arc P ′(v1, vi+1) in

7

P ′arc, while all other path-arcs in P ′arc are also path-arcs in Parc. Therefore, it follows by Def-
inition 2 that rightCutP ′arc(v1) = rightCutParc

(v1) − 1 and leftCutP ′arc(v1) = leftCutParc(v1),
and thus cutP ′arc(v1) = cutParc(v1)−1. Furthermore, since rv1 ∈ Ivi+1 , Definition 1 implies that
the path-arc of P ′ between v1 and vi+1 can be P ′(v1, vi+1) = [rv1 , rvi+1]. Thus P ′(v1, vi+1) ⊆
P (vi, vi+1), since rv1 ∈ P (vi, vi+1) = [rvi , rvi+1]. Therefore, since P ′(v1, vi+1) ⊆ P (vi, vi+1)
and since all other path-arcs in P ′arc are also path-arcs in Parc, it follows that cutP ′arc(vj) ≤
cutParc(vj) for every j ∈ {2, . . . , k}. Thus, since also cutP ′arc(v1) = cutParc(v1) − 1, it follows
by Definition 2 that sumCutP ′arc ≤ sumCutParc − 1. This is a contradiction to the assumption
that sumCutParc is the smallest possible. Therefore rightCutParc

(v1) = 0.

Corollary 2 Let G = (V,E) be a circular-arc graph and R be a circular-arc representation
of G. Let P = (v1, v2, . . . , vk) be a path of G that has the smallest possible value sumCutParc

among all paths of G on the vertices {v1, v2, . . . , vk}. Then leftCutParc(vk) = 0.

Proof. Consider the reverse path P = (vk, vk−1, . . . , v1) of P . Note that both
paths P and P can be represented by the same path-arc representation P arc = Parc,
i.e. P (vi+1, vi) = P (vi, vi+1) for every i ∈ {1, 2, . . . , k − 1}. Furthermore, since P vis-
its the vertices {v1, v2, . . . , vk} in the reverse order than P , observe by Definition 2 that
rightCutParc

(vi) = leftCutParc(vi) and that leftCutParc
(vi) = rightCutParc

(vi), for every
i ∈ {1, 2, . . . , k}. Therefore cutParc

(vi) = cutParc(vi), for every i ∈ {1, 2, . . . , k}, and thus

also sumCutParc
= sumCutParc . Therefore P has also the smallest possible value sumCutParc

among all paths of G on the vertices {v1, v2, . . . , vk}. Thus Lemma 2 can be applied to
the path P = (vk, vk−1, . . . , v1), from which it follows that rightCutParc

(vk) = 0, and thus
leftCutParc(vk) = 0.

Lemma 3 Let G = (V,E) be a circular-arc graph and R be a circular-arc representation of G.
Let P = (v1, v2, . . . , vk) be a path of G that has the smallest possible value sumCutParc among
all paths of G on the vertices {v1, v2, . . . , vk}. Then cutParc(v1) = 0 or cutParc(vk) = 0.

Proof. Suppose otherwise that cutParc(v1) ≥ 1 and cutParc(vk) ≥ 1. Recall by
Lemma 2 and Corollary 2 that rightCutParc

(v1) = 0 and leftCutParc(vk) = 0, respec-
tively. Therefore cutParc(v1) = leftCutParc(v1) ≥ 1 and cutParc(vk) = rightCutParc

(vk) ≥ 1.
Let i ∈ {1, 2, . . . , k − 1} be an index such that rv1 ∈ P (vi, vi+1) and j ∈ {1, 2, . . . , k − 1}
be an index such that rvk ∈ P (vj , vj+1). Then, since cutParc(v1) = leftCutParc(v1)
and cutParc(vk) = rightCutParc

(vk), it follows that P (vi, vi+1) = [rvi+1 , rvi]
and P (vj , vj+1) = [rvj , rvj+1]. That is, P (vi, vi+1) is a left-going and P (vj , vj+1) is a
right-going path-arc. Therefore, in particular i 6= j.

Suppose that rvk ∈ [rvi+1 , rvi], i.e. rvk ∈ P (rvi , rvi+1). Then leftCutParc(vk) ≥ 1, since
P (vi, vi+1) is a left-going path-arc, which is a contradiction by Corollary 2. Therefore rvk /∈
[rvi+1 , rvi]. Similarly rv1 /∈ [rvj , rvj+1], since otherwise rightCutParc

(v1) ≥ 1, which is again a
contradiction by Lemma 2. Recall now that for every two distinct points a and b on the circle,
[a, b] ∪ [b, a] covers the whole circle by Observation 1. Therefore, since rvk /∈ [rvi+1 , rvi] and
rv1 /∈ [rvj , rvj+1], it follows that rvk ∈ [rvi , rvi+1] and rv1 ∈ [rvj+1 , rvj], respectively.

Suppose that j = i + 1, i.e. P (vj , vj+1) = [rvi+1 , rvi+2]. Note that either
[rvi+1 , rvi+2] ⊆ [rvi+1 , rvi] or [rvi+1 , rvi] ⊆ [rvi+1 , rvi+2]. Furthermore, recall that vk ∈
P (vj , vj+1) = [rvi+1 , rvi+2]. If [rvi+1 , rvi+2] ⊆ [rvi+1 , rvi], then vk ∈ [rvi+1 , rvi], which is
a contradiction by the previous paragraph. Therefore [rvi+1 , rvi] ⊆ [rvi+1 , rvi+2], and thus
rv1 ∈ [rvi+1 , rvi+2] = P (vi+1, vi+2). Therefore rightCutParc

(v
1
) ≥ 1, since P (vi+1, vi+2) is a

right-going path-arc, which is a contradiction by Lemma 2. Thus j 6= i + 1. We distinguish
in the following the cases where i < j and i > j, respectively.

Case 1. i < j. Then P = (v1, P1, vi, vi+1, P2, vj , vj+1, P3, vk) for some (possibly empty)
subpaths P1, P2, P3 of P . We will prove that rv1 ∈ [rvi+1 , rvj] and rvk ∈ [rvj , rvi+1]. To

8

the sake of contradiction, suppose first that rv1 /∈ [rvi+1 , rvj], i.e. rv1 ∈ [rvj , rvi+1]. Then
rvj ∈ [rvi+1 , rv1].

Suppose that rvj+1 ∈ [rvj , rv1]. Then [rvj , rvj+1] ⊆ [rvi+1 , rv1] ⊆ [rvi+1 , rvi]. Therefore,
since rvk ∈ [rvj , rvj+1], it follows that rvk ∈ [rvi+1 , rvi], which is a contradiction, as we proved
above. Therefore rvj+1 /∈ [rvj , rv1], i.e. rvj+1 ∈ [rv1 , rvj]. Then rv1 ∈ [rvj , rvj+1], which is again
a contradiction, as we proved above. Therefore rv1 ∈ [rvi+1 , rvj].

Suppose now that rvk /∈ [rvj , rvi+1], i.e. rvk ∈ [rvi+1 , rvj]. Then rvi+1 ∈ [rvj , rvk]. Suppose
that rvi ∈ [rvi+1 , rvk]. Then [rvi+1 , rvi] ⊆ [rvj , rvk] ⊆ [rvj , rvj+1]. Therefore, since rv1 ∈
[rvi+1 , rvi], it follows that rv1 ∈ [rvj , rvj+1], which is a contradiction, as we proved above.
Therefore rvi /∈ [rvi+1 , rvk], i.e. rvi ∈ [rvk , rvi+1]. Then rvk ∈ [rvi+1 , rvi], which is again a
contradiction, as we proved above. Therefore rvk ∈ [rvj , rvi+1].

Consider the subpath P̂ = (vi+1, P2, vj) of P . Then, Observation 3 implies that all path-

arcs of P̂arc either cover the arc [rvi+1 , rvj] or the arc [rvj , rvi+1] (or both). Suppose first

that the path-arcs of P̂arc cover the arc [rvi+1 , rvj]. Then, since rv1 ∈ [rvi+1 , rvj], there must

exist at least one index ` ∈ {i + 1, i + 2, . . . , j − 1}, such that for the path-arc P̂ (v`, v`+1)

of P̂arc it holds rv1 ∈ P̂ (v`, v`+1) = [rv` , rv`+1
]. This implies that rightCut

P̂arc
(v1) ≥ 1,

and thus also rightCutParc
(v1) ≥ 1, since P̂ (v`, v`+1) = P (v`, v`+1) is a right-going path-

arc. This is a contradiction, since rightCutParc
(v1) = 0. Suppose now that the path-arcs

of P̂arc cover the arc [rvj , rvi+1]. Then, since rvk ∈ [rvj , rvi+1], there must exist similarly at

least one index ` ∈ {i + 1, i + 2, . . . , j − 1}, such that for the path-arc P̂ (v`, v`+1) of P̂arc it

holds rvk ∈ P̂ (v`, v`+1) = [rv`+1
, rv`]. This implies that leftCut

P̂arc
(vk) ≥ 1, and thus also

leftCutParc(vk) ≥ 1, since P̂ (v`, v`+1) = P (v`, v`+1) is a left-going path-arc. This is again a
contradiction, since leftCutParc(vk) = 0. Therefore cutP ′arc(v1) = 0 or cutP ′arc(vk) = 0 for the
case where i < j.

Case 2. i > j. Then P = (v1, P1, vj , vj+1, P2, vi, vi+1, P3, vk) for some (possibly empty)
subpaths P1, P2, P3 of P . Recall that rv1 ∈ [rvi+1 , rvj] and rvk ∈ [rvj , rvi+1], as we proved
above. Similarly to Case 1, we will prove that rv1 ∈ [rvj+1 , rvi] and rvk ∈ [rvi , rvj+1]. To
the sake of contradiction, suppose first that rv1 /∈ [rvj+1 , rvi], i.e. rv1 ∈ [rvi , rvj+1]. Then
rvj+1 ∈ [rv1 , rvi]. Suppose that rvj ∈ [rv1 , rvj+1]. Then [rvj , rvj+1] ⊆ [rv1 , rvi] ⊆ [rvi+1 , rvi].
Therefore, since rvk ∈ [rvj , rvj+1], it follows that rvk ∈ [rvi+1 , rvi], which is a contradiction.
Therefore rvj /∈ [rv1 , rvj+1], i.e. rvj ∈ [rvj+1 , rv1]. Then rv1 ∈ [rvj , rvj+1], which is again a
contradiction. Therefore rv1 ∈ [rvj+1 , rvi].

Suppose now that rvk /∈ [rvi , rvj+1], i.e. rvk ∈ [rvj+1 , rvi]. Then rvi ∈ [rvk , rvj+1]. Suppose
that rvi+1 ∈ [rvk , rvi]. Then [rvi+1 , rvi] ⊆ [rvk , rvj+1] ⊆ [rvj , rvj+1]. Therefore, since rv1 ∈
[rvi+1 , rvi], it follows that rv1 ∈ [rvj , rvj+1], which is a contradiction. Therefore rvi+1 /∈ [rvk , rvi],
i.e. rvi+1 ∈ [rvi , rvk]. Then rvk ∈ [rvi+1 , rvi], which is again a contradiction. Therefore rvk ∈
[rvi , rvj+1].

Consider the subpath P̂ = (vj+1, P2, vi) of P . Then, Observation 3 implies that all path-

arcs of P̂arc either cover the arc [rvj+1 , rvi] or the arc [rvi , rvj+1] (or both). Suppose first

that the path-arcs of P̂arc cover the arc [rvj+1 , rvi]. Then, since rv1 ∈ [rvj+1 , rvi], there must

exist at least one index ` ∈ {i + 1, i + 2, . . . , j − 1}, such that for the path-arc P̂ (v`, v`+1)

of P̂arc it holds rv1 ∈ P̂ (v`, v`+1) = [rv` , rv`+1
]. This implies that rightCut

P̂arc
(v1) ≥ 1,

and thus also rightCutParc
(v1) ≥ 1, since P̂ (v`, v`+1) = P (v`, v`+1) is a right-going path-

arc. This is a contradiction, since rightCutParc
(v1) = 0. Suppose now that the path-arcs

of P̂arc cover the arc [rvi , rvj+1]. Then, since rvk ∈ [rvi , rvj+1], there must exist similarly at

least one index ` ∈ {i + 1, i + 2, . . . , j − 1}, such that for the path-arc P̂ (v`, v`+1) of P̂arc it

holds rvk ∈ P̂ (v`, v`+1) = [rv`+1
, rv`]. This implies that leftCut

P̂arc
(vk) ≥ 1, and thus also

leftCutParc(vk) ≥ 1, since P̂ (v`, v`+1) = P (v`, v`+1) is a left-going path-arc. This is again a

9

contradiction, since leftCutParc(vk) = 0. Therefore cutP ′arc(v1) = 0 or cutP ′arc(vk) = 0 for the
case where i > j. This completes the proof of the lemma.

We are now ready to present the main theorem of this section.

Theorem 1 Let G = (V,E) be a circular-arc graph, R be a circular-arc representation of G,
and P be any path of G. Then there exists a vertex v ∈ V and a path P ′ with V (P ′) = V (P),
such that P ′ is also a path of the interval graph Gv.

Proof. Let π = (u0, u1, . . . , un−1) be the right-end circular ordering of G and let V (P) =
{v1, v2, . . . , vk}. Among all paths of G on the vertices {v1, v2, . . . , vk}, let P ′ = (v1, v2, . . . , vk)
have the smallest possible value sumCutP ′arc . Then, Lemma 3 implies that cutP ′arc(v1) = 0
or cutP ′arc(vk) = 0. If cutP ′arc(v1) = 0 (resp. cutP ′arc(vk) = 0), then it follows by Lemma 1
(resp. by Corollary 1) that P ′ is also a path of Gv1 or G′v1 (resp. of Gvk or G′vk). If P ′ is a path
of Gv1 (resp. of Gvk), then clearly the vertex v = v1 (resp. v = vk) satisfies the conditions of
the theorem. Let P ′ be a path of G′v1 (resp. of G′vk). Furthermore, let v1 = ui (resp. vk = ui)
for some i ∈ {0, 1, . . . , n − 1}. Then G′v1 = Gui+1 (resp. G′vk = Gui+1) by Observation 5,
i.e. the vertex v = ui+1 satisfies the conditions of the theorem. This completes the proof of
the theorem.

This structural theorem suggests a generic reduction of a number of path problems on
circular-arc graphs to the corresponding problem on interval graphs. For instance, in order
to decide the Hamiltonian path problem on a circular-arc graph G = (V,E), we can use one
of the known algorithms for the Hamiltonian path problem on interval graphs (e.g. [1]) and
apply it to the interval graph Gv, for every vertex v ∈ V . Then, Theorem 1 implies that G
has a Hamiltonian path if and only if Gv has a Hamiltonian path for at least one v ∈ V . Since
the algorithm of [1] has running time O(n + m) for an interval graph with n vertices and m
edges, such a reduction provides an O(n(n + m)) time algorithm for the Hamiltonian path
problem on a circular-arc graph. This problem can be also solved by any of the other known
Hamiltonian path or cycle algorithms on circular-arc graphs (for instance see [8, 18, 19, 30]);
some of these known algorithms have running time faster than O(n(n + m)) as they exploit
directly the structure of circular-arc graphs, rather than reducing the problem to the case of
interval graphs.

Moreover, Theorem 1 can be used to provide the first polynomial algorithm for the longest
path problem on circular-arc graphs, which works as follows. For every vertex v ∈ V of the
given circular-arc graph G = (V,E), compute a longest path Pv in the interval graph Gv by
the algorithm in [20]. Then, the longest path Pv among all v ∈ V is also a longest path of G.
Since the complexity of the algorithm in [20] is O(n4) when applied to a graph with n vertices,
the complexity of the above algorithm for circular-arc graphs becomes O(n5). However, in
order to reduce the complexity of this algorithm, we will exploit in the sequel the structure
of circular-arc graphs rather than reducing the longest path problem to the case of interval
graphs. Moreover, our algorithm also counts all different longest paths of a specific “normal”
type in the input circular-arc graph G.

4 Computation and counting of longest paths in circular-arc
graphs

In this section we present the first polynomial algorithm (cf. Algorithm 1) that computes
a longest path of a circular-arc graph G = (V,E). In order to present our algorithm, we
introduce the notion of a normal path of a circular-arc graph (cf. Definition 6). Using our
structural Theorem 1 of the previous section, we are able to prove the basic property that for
every path P of a circular-arc graph G, there exists another path P ′ on the same vertices,

10

which is normal in G. Therefore, normal paths can be thought as “representatives” of several
non-normal paths. Furthermore, using this notion, our Algorithm 1 computes also the number
N of all different normal paths in the given circular-arc representation of G. This number
N constitutes an n-approximation of the number of different vertex sets S ⊆ V such that
V (P) = S for a longest path P of G; note here that the number of such sets S is exponential
in the worst case. Moreover, with a slight modification of the algorithm, we manage to
compute the exact number of such sets S that provide a longest path of G, in the case where
G is an interval graph. First, we recall the notion of a normal path in an interval graph G,
given a right-end ordering π of G [20].

Definition 4 ([20]) Let G = (V,E) be an interval graph and π be a right-end ordering of G.
A path P = (v1, v2, . . . , vk) of G is normal if v1 is the leftmost vertex of V (P) in π and vi is
the leftmost vertex of N(vi−1) ∩ {vi, vi+1, . . . , vk} in π, for every i = 2, . . . , k.

A similar notion of a normal path in interval graphs has appeared in [24] (referred to as a
straight path), as well as in [8].

Lemma 4 (see [20,24]) Let G = (V,E) be an interval graph, π be a right-end ordering of
G, and P be a path of G. Then, there exists a normal path P ′ of G such that V (P ′) = V (P).

We define in the following the (not necessarily induced) subgraphs Gi(j) and G(i, j) of a
circular-arc graph G = (V,E), where i, j ∈ {0, 1, . . . , |V | − 1}. These subgraphs of G will be
used in the sequel for the analysis of our algorithm for the longest path problem on circular-arc
graphs.

Definition 5 Let G = (V,E) be a circular-arc graph, R be a circular-arc representation of G,
and π = (u0, u1, . . . , un−1) be the right-end circular ordering of G (in R). For every pair of
indices and i, j ∈ {0, 1, . . . , n− 1},
• Gi(j) = Gui [{ui, ui+1, . . . , uj}] , and

• if j 6= i− 1 mod n, then G(i, j) is the subgraph G[S] of G induced by the vertex set
S = {ui, ui+1, . . . , uj} \ {uk ∈ V | rui−1 ∈ Iuk}.

Observation 6 Let i, j ∈ {0, 1, . . . , n − 1} be a pair of indices, where i 6= j. Then Gui =
Gi(i− 1) and G(i, j − 1) = G(i, j) \ {uj}.

It is easy to see by Definition 5 that both Gi(j) and G(i, j) are induced subgraphs of
the interval graph Gui , while they are (not necessarily induced) subgraphs of the circular-arc
graph G. Furthermore, G(i, j) is an induced subgraph of Gi(j), for every pair i, j of indices
such that j 6= i− 1 mod n. Note that always ui−1 /∈ V (G(i, j)), since the graph G(i, j) is
defined in Definition 5 only for pairs of indices i, j such that j 6= i − 1 mod n. Moreover,
note that the vertices ui and uj may or may not belong to G(i, j), since they may or may
not belong to the set {uk ∈ V | rui−1 ∈ Iuk}. In the following, for an arbitrary i ∈ Z, we
may refer for simplicity to the interval graphs G(i mod n)(j mod n) and G(i mod n, j mod n)
as Gi(j) and G(i, j), respectively. As an example, the subgraphs G1(6) and G(1, 6) of the
circular-arc graph G of Figure 1(a) are illustrated in Figures 2(b) and 2(c), respectively. In
these figures, the arcs present in the graphs G1(6) and G(1, 6) are drawn black, while all the
others are drawn gray, for better visibility. That is, V (G1(6)) = {u1, u2, u3, u4, u5, u6} and
V (G(1, 6)) = {u1, u3, u4, u5}.

Notation 1 A right-end circular ordering π = (u0, u1, . . . , un−1) of a circular-arc graph
G = (V,E) determines in a natural way a right-end ordering σ of the interval graph Gi(j)

11

u1

u3

u4
u5

u6

u7

u2

(a)

u1

u3

u4
u5

u6

u7

u2

(b)

u1

u3

u4
u5

u6

u7

u2

(c)

Figure 2: The circular-arc representations of three (not necessarily induced) subgraphs of the
circular-arc graph G of Figure 1(a): (a) the interval graph Gu3 = G3(2), (b) the interval graph
G1(6), and (c) the interval graph G(1, 6).

(resp. G(i, j)), for every possible pair of indices i, j. More specifically, this right-end order-
ing σ of the vertices of Gi(j) is σ = (ui, ui+1, . . . , uj). Furthermore, in the case of G(i, j),
σ = (ui, ui+1, . . . , uj) \ {uk ∈ V | rui−1 ∈ Iuk}. In the following, given a right-end circular
ordering π of G, we will refer to such an ordering σ of the vertices of Gi(j) (resp. of G(i, j))
as the “right-end ordering σ of Gi(j) (resp. of G(i, j)) induced by π”. Furthermore, for two
vertices u`, ut of Gi(j) (resp. of G(i, j)), we will write u` <σ ut if u` appears before ut in the
ordering σ.

Now, using Notation 1, we can extend in a natural way the notion of normal paths (cf. Def-
inition 4) to the case of circular-arc graphs.

Definition 6 Let G = (V,E) be a circular-arc graph and π be a circular right-end ordering
of G. A path P of G is normal if P is a normal path in the interval graph Gu for some vertex
u ∈ V (with respect to the right-end ordering σ of Gu induced by π).

For example, the path P = (u3, u4, u6, u5, u7, u2, u1) is a normal path of the circular-
arc graph G of Figure 1(a), since P is a normal path of the interval subgraph Gu3 of G,
cf. Figure 2(a). Normal paths in circular-arc graphs, as defined in Definition 6, behave similarly
to normal paths in interval graphs. Indeed, the next theorem (which is the extension of
Lemma 4 to the case of circular-arc graphs) follows directly by Lemma 4 and by the structural
Theorem 1.

Theorem 2 Let G = (V,E) be a circular-arc graph, π be a circular right-end ordering of G,
and P be a path of G. Then there exists a normal path P ′ of G with V (P ′) = V (P).

In the following, given a path P of a circular-arc graph G, we may assume without loss of
generality by Theorem 2 that P is a normal path of G. The next observations can be obtained
using Notation 1 and Definition 5.

Observation 7 Let G = (V,E) be a circular-arc graph, R be a circular-arc representation
of G, and π = (u0, u1, . . . , un−1) be a right-end circular ordering of G (in R). Let i 6= j be two
indices and σ be the right-end ordering of Gi(j) (resp. of G(i, j)) induced by π. Let u` and ut
be two vertices of Gi(j) (resp. of G(i, j)), such that u` <σ ut. If u` ∈ NGi(j)(ut) (resp. u` ∈
NG(i,j)(ut)), then ru` ∈ Iut in R, and thus also uk ∈ NGi(j)(ut) (resp. uk ∈ NG(i,j)(ut)) for
every vertex uk of Gi(j) (resp. of G(i, j)) with u` <σ uk <σ ut.

12

Observation 8 Let P1 = (P0, ux) be a normal path of Gi(j − 1) (resp. of G(i, j − 1)), for
some pair of indices, where i 6= j, and let rux ∈ Iuj in the circular-arc representation of G.
Then P = (P1, uj) is a normal path of Gi(j) (resp. if uj ∈ V (G(i, j)), then P = (P1, uj) is a
normal path of G(i, j)).

Observation 9 Let P = (P1, uj) be a normal path of Gi(j) (resp. of G(i, j)), for some pair
of indices i, j, where i 6= j. Then P1 is a normal path of both Gi(j − 1) and Gi(j) (resp. of
both G(i, j − 1) and G(i, j)).

Now we provide two auxiliary lemmas that will be used in the sequel of this section.

Lemma 5 Let G = (V,E) be a circular-arc graph, R be a circular-arc representation of G,
and π be the right-end circular ordering of G (in R). Let σ be the right-end ordering of Gi(j)
(resp. of G(i, j)) induced by π, where i 6= j . Let P = (v1, v2, . . . , vk) be a path of G, and let
v` /∈ V (P) be a vertex of Gi(j) (resp. of G(i, j)) such that v1 <σ v` <σ vk and rv` /∈ Ivk in R.
Then, there exist two consecutive vertices vi and vi+1 in P , 1 ≤ i ≤ k − 1, such that rv` ∈ Ivi
in R and v` <σ vi+1.

Proof. Since v1 <σ v` <σ vk and P is a path from v1 to vk, there must exist two consecutive
vertices vt−1, vt, where 2 ≤ t ≤ k, such that vt−1 <σ v` <σ vt. Note that vt−1 ∈ NGi(j)(vt)
(resp. vt−1 ∈ NG(i,j)(vt)), since vt−1 and vt are consecutive in P . Therefore rvt−1 ∈ Ivt in R
by Observation 7, and thus also rv` ∈ Ivt in R, since vt−1 <σ v` <σ vt. Let now vi be the last
vertex in P , such that rv` ∈ Ivi in R. Note that vi 6= vk, since rv` /∈ Ivk in R by assumption,
and thus the vertex vi+1 exists in P . If vi+1 <σ v`, i.e. vi+1 <σ v` <σ vk, then there exists
similarly to the above a vertex vt′ in P , where t′ > i + 1, such that rv` ∈ Ivt′ in R. This is
a contradiction to the assumption that vi is the last vertex in P , such that rv` ∈ Ivi in R.
Therefore v` <σ vi+1. This completes the proof of the lemma.

Lemma 6 Let G = (V,E) be a circular-arc graph and π be a right-end circular order-
ing of G. Let σ be the right-end ordering of Gi(j) (resp. of G(i, j)) induced by π,
where i 6= j . If ux ∈ V (Gi(j − 1)) (resp. ux ∈ V (G(i, j − 1))), such that x 6= j − 1, then
V (G(x+ 1, j − 1)) ⊆ V (Gi(j)) (resp. V (G(x+ 1, j − 1)) ⊆ V (G(i, j))).

Proof. Denote π = (u0, u1, . . . , un−1). Consider first the case where σ is a right-end or-
dering of Gi(j). Let ux ∈ V (Gi(j − 1)) = {ui, ui+1, . . . , uj−1}, where x 6= j − 1. Recall by
Definition 5 that V (G(x+ 1, j − 1)) ⊆ {ux+1, ux+2, . . . , uj−1}. Therefore, since x 6= j − 1,
it follows that V (G(x+ 1, j − 1)) ⊆ {ui, ui+1, . . . , uj−1}, and thus also V (G(x+ 1, j − 1)) ⊆
{ui, ui+1, . . . , uj} = V (Gi(j)) by Definition 5.

Consider now the case where σ is a right-end ordering of G(i, j). Let ux ∈ V (G(i, j − 1)) ⊆
{ui, ui+1, . . . , uj−1}, where x 6= j − 1. Consider a vertex uy ∈ V (G(x + 1, j − 1)). Then
also uy ∈ {ui, ui+1, . . . , uj−1} by the previous paragraph. Furthermore, due to Definition 5,
rux /∈ Iuy in the circular-arc representation R of G, and thus also rui−1 /∈ Iuy in R. Therefore
uy ∈ V (G(i, j − 1)) by Definition 5, and thus V (G(x+ 1, j − 1)) ⊆ V (G(i, j)).

In the following we state four lemmas (cf. Lemmas 7, 8, 9, and 10) that are crucial for the
proof of the main Theorem 3 of this section.

Lemma 7 Let G = (V,E) be a circular-arc graph and π = (u0, u1, . . . , un−1) be a right-
end circular ordering of G. Let i 6= j be two indices and σ be the right-end ordering of
G(i, j) induced by π, where j 6= i − 1 mod n. Let uj ∈ V (G(i, j)), ux ∈ V (G(i, j − 1)),
uy ∈ V (G(x+ 1, j − 1)), and ux ∈ NG(i,j)(uj). Furthermore, let P1 be a normal path
of G(i, j−1) with ux as its last vertex, where x 6= j−1, and P2 be a normal path of G(x+1, j−1)
with uy as its last vertex. Then P = (P1, uj , P2) is a normal path of G(i, j) with uy as its last
vertex.

13

Proof. For simplicity reasons, whenever we refer to N(u) in the sequel of the proof, we
will mean NG(i,j)(u), i.e. the neighborhood set of vertex u in G(i, j). We will first prove that
V (P1) ⊆ V (G(i, j−1))\V (G(x+1, j−1)). Suppose otherwise that V (P1)∩V (G(x+1, j−1)) 6=
∅, and let uk be the first vertex of V (G(x+1, j−1)) in P1. If ux ∈ N(uk), then Observation 7
implies that rux ∈ Iuk in the circular-arc representation R of G. This is a contradiction, since
we assumed that uk ∈ V (G(x+ 1, j − 1)). Therefore ux /∈ N(uk).

Furthermore, since we assumed that uk ∈ V (G(x+1, j−1)), it follows by Definition 5 that
ux <σ uk, and thus uk is not the leftmost vertex of P1 in σ. Therefore, since P1 is a normal
path by assumption, uk is not the first vertex of P1, and thus there exists a previous vertex
u` of uk in P1. Therefore in particular u` ∈ N(uk); note also that u` 6= ux, since ux is the last
vertex of P1. Suppose first that u` <σ ux, i.e. u` <σ ux <σ uk. Then, since u` ∈ N(uk), it
follows by Observation 7 that also ux ∈ N(uk), which is a contradiction, as we proved above.
Suppose now that ux <σ u`. Let ux ∈ N(u`). Then, since ux <σ uk and ux is unvisited by
P1 when u` is visited, it follows that uk is not the leftmost unvisited vertex of N(u`)∩ V (P1)
in σ, when P1 visits u`. This is a contradiction by Definition 4, since uk is the next vertex
of u` in P1 and P1 is a normal path by assumption. Let ux /∈ N(u`), and thus also rux /∈ Iu`
in the circular-arc representation R of G. Therefore u` ∈ V (G(x+ 1, j − 1)) by Definition 5.
This is a contradiction to the assumption that uk is the first vertex of V (G(x + 1, j − 1)) in
P1. Therefore V (P1)∩V (G(x+ 1, j− 1)) = ∅, i.e. V (P1) ⊆ V (G(i, j− 1)) \V (G(x+ 1, j− 1)).

Since V (P1) ⊆ V (G(i, j − 1)) \ V (G(x+ 1, j − 1)) by the previous paragraph and
V (P2) ⊆ V (G(x+ 1, j − 1)) by assumption, it follows that V (P1) ∩ V (P2) = ∅. Fur-
thermore, since ux ∈ N(uj) by assumption, and since ux <σ us <σ uj for every
us ∈ V (P2) ⊆ V (G(x+ 1, j − 1)), it follows by Observation 7 that us ∈ N(uj) for every
us ∈ V (P2). Moreover, recall that V (P1) ⊆ V (G(i, j − 1)) ⊆ V (G(i, j)) by Observation 6 and
that V (P2) ⊆ V (G(x+ 1, j − 1)) ⊆ V (G(i, j)) by Lemma 6 (since x 6= j−1). Therefore, since
uj ∈ V (G(i, j)) and ux ∈ N(uj) by assumption, it follows that P = (P1, uj , P2) is a path of
G(i, j). Moreover uy is the last vertex of P , since uy is the last vertex of P2 by assumption.

In the following we prove that P is normal. Let u` be the first vertex of P1. Note u` is
also the first vertex of P , since P = (P1, uj , P2). Moreover, u` is the leftmost vertex of P1 in
σ by Definition 4, since P1 is normal by assumption. Furthermore, note that u` ≤σ ux <σ us
for every us ∈ V (P2) ∪ {uj}, since V (P2) ⊆ V (G(x+ 1, j − 1)). Therefore, u` is also the
leftmost vertex of P in σ. Let ut and ut′ be two consecutive vertices of P1, i.e. ut′ is the
leftmost unvisited vertex of N(ut) ∩ V (P1) in σ, when P1 visits ut. We will prove that
ut′ is also the leftmost unvisited vertex of N(ut) ∩ V (P) in σ, when P visits ut. Suppose
otherwise that us 6= ut′ is the leftmost unvisited vertex of N(ut) ∩ V (P) in σ, when P visits
ut. Then in particular us <σ ut′ and ut ∈ N(us). If us ∈ V (P1), then us would be also the
leftmost unvisited vertex of N(ut) ∩ V (P1) in σ, when P1 visits ut, which is a contradiction.
Furthermore, if us = uj then ut′ <σ us, which is a contradiction. Therefore us /∈ V (P1) and
us 6= uj , and thus us ∈ V (P2).

Since us ∈ V (P2) ⊆ V (G(x + 1, j − 1)), it follows in particular by Definition 5 that
ux <σ us and that rux /∈ Ius in the circular-arc representation R of G. Therefore also
ux /∈ N(us). Suppose that ut ∈ N(ux). Then, since ux <σ us and ux is unvisited when P
visits ut, it follows that us is not the leftmost unvisited vertex of N(ut) ∩ V (P) in σ when
P visits ut, which is a contradiction to the assumption on us. Thus ut /∈ N(ux). Suppose
that ut <σ ux, i.e. ut <σ ux <σ us. Then, since ut ∈ N(us), it follows by Observation 7
that also ux ∈ N(us), which is a contradiction as we proved above. Therefore ux <σ ut.
Furthermore, since ut /∈ N(ux), it follows that rux /∈ Iut in the circular-arc representation
R of G. Therefore ut ∈ V (G(x + 1, j − 1)) by Definition 5. This is a contradiction, since
ut ∈ V (P1) ⊆ V (G(i, j − 1)) \ V (G(x+ 1, j − 1)). Therefore, for any two consecutive vertices
ut, ut′ of P1, ut′ is the leftmost unvisited vertex of N(ut) ∩ V (P) in σ, when P visits ut.

14

Recall that V (P2) ⊆ V (G(x + 1, j − 1)) by assumption, and thus us /∈ N(ux) for every
vertex us ∈ V (P2). Therefore, uj is the leftmost unvisited vertex of N(ux) ∩ V (P) in σ,
when P visits ux (i.e. the last vertex of P1). Note that exactly the vertices of V (P2) are the
unvisited vertices of V (P), when P visits uj . Furthermore recall that, since ux ∈ N(uj) by
assumption and ux <σ us <σ uj for every us ∈ V (P2) ⊆ V (G(x+ 1, j − 1)), it follows by
Observation 7 that us ∈ N(uj) for every us ∈ N(P2). Moreover, recall that P2 is a normal
path by assumption. Therefore, the first vertex of P2 is also the leftmost unvisited vertex of
N(uj) ∩ V (P) in σ, when P visits uj . Consider now any pair of consecutive vertices ut, ut′ of
P2. Then, ut′ is the leftmost unvisited vertex of N(ut)∩V (P2) in σ (resp. of N(ut)∩V (P) in
σ), when P2 (resp. P) visits ut. Therefore, P is a normal path. This completes the proof of
the lemma.

Recall now that always uj ∈ V (Gi(j)) by Definition 5 for every pair i, j of indices. Fur-
thermore, recall that G(i, j) is an induced subgraph of Gi(j), for every pair i, j of indices,
where i 6= j and j 6= i − 1 mod n. Now, following exactly the same proof as in Lemma 7,
where we replace G(i, j) by Gi(j), we obtain the next lemma.

Lemma 8 Let G = (V,E) be a circular-arc graph and π = (u0, u1, . . . , un−1) be a right-end
circular ordering of G. Let i 6= j be two indices and σ be the right-end ordering of Gi(j) induced
by π. Let ux ∈ V (Gi(j − 1)), uy ∈ V (G(x+ 1, j − 1)), and ux ∈ NGi(j)(uj). Furthermore,
let P1 be a normal path of Gi(j − 1) with ux as its last vertex and P2 be a normal path
of G(x+ 1, j − 1) with uy as its last vertex. Then P = (P1, uj , P2) is a normal path of Gi(j)
with uy as its last vertex.

Notation 2 Let G = (V,E) be a circular-arc graph and π = (u0, u1, . . . , un−1) be a right-end
circular ordering of G. Let uk ∈ V (G(i, j)) (resp. uk ∈ V (Gi(j))), and let P be a normal path
of G(i, j) (resp. of Gi(j)), for some pair i, j of indices. For simplicity of presentation, we will
say in the following that “P is a longest normal path of G(i, j) (resp. of Gi(j)) with uk as
its last vertex” if P has the greatest number of vertices among those normal paths of G(i, j)
(resp. of Gi(j)) that have uk as their last vertex.

Lemma 9 Let G = (V,E) be a circular-arc graph and π = (u0, u1, . . . , un−1) be a right-end
circular ordering of G. Let i 6= j be two indices and σ be the right-end ordering of G(i, j)
induced by π, where j 6= i− 1 mod n. Let P be a longest normal path of G(i, j) with uy 6= uj
as its last vertex and let P = (P1, uj , P2). Let ux be the last vertex of P1. Then P1 is a
longest normal path of G(i, j − 1) with ux as its last vertex and P2 is a longest normal path
of G(x+ 1, j − 1) with uy as its last vertex.

Proof. For simplicity reasons, whenever we refer to N(u) in the sequel of the proof, we will
mean NG(i,j)(u), i.e. the neighborhood set of vertex u in G(i, j). Note that P has at least
two vertices, since uy, uj ∈ V (P). Therefore, since uk <σ uj for every uk ∈ V (P) \ {uj},
it follows that uj is not the leftmost vertex of V (P) in σ. Therefore, since P is normal by
assumption, uj is not the first vertex of P , and thus P1 6= ∅. Note that V (P1) ⊆ V (G(i, j−1)),
i.e. V (P1) ⊆ V (G(i, j)) \ {uj} by Observation 6, since uj /∈ V (P1). Furthermore, since P is a
normal path by assumption and P1 is a subpath of P , it follows that P1 is a normal path of
G(i, j − 1) with ux as its last vertex.

Note that P2 has at least one vertex, since uy ∈ V (P2) and uy 6= uj by assumption. We
will now prove that x 6= j − 1 and V (P2) ⊆ V (G(x+ 1, j − 1)). Consider an arbitrary vertex
uk ∈ V (P2) and note that uk <σ uj . Furthermore, note that both uj and uk are unvisited by
P when ux is visited. Suppose that ux ∈ N(uk). Then, since uk <σ uj , it follows that uj is
not the leftmost unvisited vertex of N(ux) ∩ V (P) in σ, when P visits ux. Thus, since P is
normal by assumption, it follows by Definition 4 that uj is not the next vertex of ux in P ,
which is a contradiction. Therefore ux /∈ N(uk) for every uk ∈ V (P2).

15

Suppose first that uk <σ ux. Let u` be the first vertex of P . Then u` is the leftmost vertex
of V (P) in σ, since P is a normal path by assumption. Therefore, since uk /∈ V (P1), it follows
that u` 6= uk, and thus u` <σ uk <σ ux. Thus, since u` and ux are the first and the last
vertices of P1, respectively, and since uk /∈ V (P1), there exist by Lemma 5 two consecutive
vertices up and uq in P1, such that ruk ∈ Iup in R and uk <σ uq. Note that both uk and uq
are unvisited when P visits up. Thus, uq is not the leftmost unvisited vertex of N(up)∩V (P)
in σ, when P visits up. This is a contradiction, since P is a normal path by assumption.
Therefore ux <σ uk, i.e. ux <σ uk <σ uj , for every uk ∈ V (P2), and thus in particular
x 6= j − 1. Therefore, since also ux /∈ N(uk) for every uk ∈ V (P2) by the previous paragraph,
it follows that rux /∈ Iuk in the circular-arc representation R of G. That is, x 6= j − 1 and
V (P2) ⊆ V (G(x+ 1, j − 1)) by Definition 5.

Recall that ux <σ uj and ux ∈ N(uj). Therefore, Observation 7 implies that uk ∈ N(uj)
for every vertex uk such that ux <σ uk <σ uj . Thus, in particular uk ∈ N(uj) for every
uk ∈ V (P2), since V (P2) ⊆ V (G(x+ 1, j − 1)) by the previous paragraph. Therefore, since
P = (P1, uj , P2) is a normal path by assumption, the first vertex of P2 is the leftmost vertex
of V (P2) in σ. Consider now any two consecutive vertices ut, ut′ of P2. Then, since P =
(P1, uj , P2) is a normal path, it follows that ut′ is the leftmost unvisited vertex of N(ut)∩V (P)
(resp. of N(ur)∩ V (P2)) in σ, when P (resp. P2) visits ur. Therefore, since also uy is the last
vertex of P by assumption, P2 is a normal path of V (G(x+1, j−1)) with uy as its last vertex.

Recall that uj ∈ V (G(i, j)), since P= (P1, uj , P2) is a path of G(i, j) by assumption.
Suppose now that there exists a normal path P ′1 (resp. P ′2) of G(i, j−1) (resp. of G(x+1, j−1))
with ux (resp. with uy) as its last vertex, such that x 6= j−1 and |P ′1| > |P1| (resp. |P ′2| > |P2|).
Then, Lemma 7 implies that P ′ = (P ′1, uj , P2) (resp. P ′ = (P1, uj , P

′
2)) is a normal path of

G(i, j) with uy as its last vertex, such that |P ′| > |P |. This is a contradiction to the assumption
that P is a longest normal path of G(i, j) with uy as its last vertex. Therefore, there exists
no such path P ′1 (resp. P ′2), and thus P1 (resp. P2) is a longest normal path of G(i, j − 1)
(resp. of G(x+ 1, j − 1)) with ux (resp. with uy) as its last vertex. This completes the proof
of the lemma.

Now, following exactly the same proof as in Lemma 9, where we replace G(i, j) by Gi(j),
we obtain the next lemma.

Lemma 10 Let G = (V,E) be a circular-arc graph and π = (u0, u1, . . . , un−1) be a right-end
circular ordering of G. Let i 6= j be two indices and σ be the right-end ordering of Gi(j)
induced by π. Let P be a longest normal path of Gi(j) with uy 6= uj as its last vertex and let
P = (P1, uj , P2). Let ux be the last vertex of P1. Then P1 is a longest normal path of Gi(j−1)
with ux as its last vertex and P2 is a longest normal path of G(x+ 1, j − 1) with uy as its last
vertex.

4.1 The algorithm

In the following we present our Algorithm 1 that computes a longest path of a given circular-
arc graph G = (V,E). The same algorithm also computes the number N of all different normal
paths of G. This number N constitutes an n-approximation of the number of different vertex
sets S ⊆ V such that V (P) = S for a longest path P of G, while the number of such sets S
is exponential in the worst case. In the case where the input graph G is an interval graph, a
slight modification of the algorithm allows us to compute the exact number of different vertex
sets S of longest path of G. For simplicity of the presentation of this algorithm, we make the
following two conventions.

Notation 3 Let G = (V,E) be a circular-arc graph, π = (u0, u1, . . . , un−1) be a right-end
circular ordering of G, and i, j ∈ {0, 1, . . . , n − 1} be two indices. Then, for every ver-
tex uk ∈ V (Gi(j)), we denote by Pi(uk; j) a longest normal path of Gi(j) with uk as its last

16

Algorithm 1 Computing and counting longest (normal) paths of a circular-arc graph

Input: A circular-arc graph G = (V,E) with |V | = n, a circular-arc representation R of G,
and a right-end circular ordering π = (u0, u1, . . . , un−1) of G (in R)

Output: A longest path P of G and the number N of different longest normal paths of G
in R

1: for t = 0 to n− 1 do
2: for i = 0 to n− 1 do
3: j ← i+ t mod n

4: Execute Procedure 1 {initialization}
5: if j 6= i then
6: Execute Procedure 2 {update phase for the graph Gi(j)}
7: if j 6= i− 1 mod n then
8: Execute Procedure 3 {update phase for the graph G(i, j)}
9: Compute a path P = Pi(uk; i−1) with |P | = max{`i(uy; i−1) | uy ∈ V, i ∈ {0, 1, . . . , n−1}}

10: N ← 0
11: for i = 0 to n− 1 do
12: for every uk ∈ V do
13: if `i(uk; i− 1) = |P | then
14: N ← N +N ′′i (uk; i− 1)

15: return the path P and the number N

vertex and by `i(uk; j) the length |Pi(uk; j)| of Pi(uk; j), i.e. the number of vertices of Pi(uk; j).
Similarly, if j 6= i− 1 mod n, then for every vertex uk ∈ V (G(i, j)), we denote by P (uk; i, j)
a longest normal path of G(i, j) with uk as its last vertex and by `(uk; i, j) the length |P (uk; i, j)|
of P (uk; i, j).

Notation 4 Let G = (V,E) be a circular-arc graph, π = (u0, u1, . . . , un−1) be a right-end
circular ordering of G, and i, j ∈ {0, 1, . . . , n − 1} be two indices. Then, for every
vertex uk ∈ V (Gi(j)), we denote by N ′i(uk; j) (resp. by N ′′i (uk; j)) the number of normal
paths P of Gi(j) with uk as the last vertex, such that |P | = `i(uk; j) and P does not
include (resp. includes) vertex uj. Similarly, if j 6= i − 1 mod n, then for every ver-
tex uk ∈ V (G(i, j)), we denote by N ′(uk; i, j) (resp. by N ′′(uk; i, j)) the number of normal
paths P of G(i, j) with uk as the last vertex, such that |P | = `(uk; i, j) and P does not in-
clude (resp. includes) vertex uj. Furthermore, we denote Ni(uk; j) = N ′i(uk; j) + N ′′i (uk; j)
(resp. N(uk; i, j) = N ′(uk; i, j)+N ′′(uk; i, j)), i.e. Ni(uk; j) (resp. N(uk; i, j)) is the number of
normal paths P of Gi(j) (resp. of G(i, j)) with uk as the last vertex, such that |P | = `i(uk; j)
(resp. |P | = `(uk; i, j)).

The next two main theorems of this section prove that, given a circular-arc representa-
tion R of a circular-arc graph G = (V,E) with n vertices, Algorithm 1 computes in O(n4)
time a longest path P of G, as well as the number N of different longest normal paths of G
in R. Moreover, this number N is an n-approximation of the number of different sets S ⊆ V ,
such that V (P) = S for some longest path P of G, cf. Theorem 3.

Theorem 3 Let G = (V,E) be a circular-arc graph with n vertices and π be a right-end
circular ordering of G. Algorithm 1 computes a longest path P of G and the number N of
different longest normal paths of G in O(n4) time.

Proof. Let R be a circular-arc representation of G and π = (u0, u1, . . . , un−1) be the right-end
circular ordering of G (in the representation R). Let now P be a longest path of G. Recall by

17

Procedure 1 Initialization phase for Algorithm 1

1: Pi(uj ; j)← (uj); `i(uj ; j)← 1

2: N ′i(uj ; j)← 0; N ′′i (uj ; j)← 1
3: Ni(uj ; j)← 1

4: if uj ∈ V (G(i, j)) then
5: P (uj ; i, j)← (uj); `(uj ; i, j)← 1

6: N ′(uj ; i, j)← 0; N ′′(uj ; i, j)← 1
7: N(uj ; i, j)← 1

8: if j 6= i then
9: for every uy ∈ V (Gi(j − 1)) do

10: Pi(uy; j)← Pi(uy; j − 1); `i(uy; j)← `i(uy; j − 1)

11: N ′i(uy; j)← Ni(uy; j − 1); N ′′i (uy; j)← 0
12: Ni(uy; j)← Ni(uy; j − 1)

13: if j 6= i− 1 mod n then
14: for every uy ∈ V (G(i, j − 1)) do
15: P (uy; i, j)← P (uy; i, j − 1); `(uy; i, j)← `(uy; i, j − 1)

16: N ′(uy; i, j)← N(uy; i, j − 1); N ′′(uy; i, j)← 0
17: N(uy; i, j)← N(uy; i, j − 1)

Theorem 2 that there exists a normal path P ′ of G on the same vertices as P . That is, there
exists by Definition 6 a vertex ui ∈ V , such that P ′ is a normal path of the interval graph Gui ,
where Gui = Gi(i− 1) by Observation 6. Therefore, in order to compute a longest path of G,
it suffices to compute for every i = 0, 1, . . . , n − 1 a longest normal path of Gi(i − 1) (with
respect to the ordering σ of Gi(i − 1) induced by π), i.e. a longest path among the normal
ones in Gi(i− 1).

In lines 1-8, Algorithm 1 iterates for every pair of indices i, t ∈ {0, 1, . . . , n− 1}. During
these iterations, it computes a path Pi(uk; i + t) and four values `i(uk; i + t), N ′i(uk; i + t),
N ′′i (uk; i+ t), and Ni(uk; i+ t) for every vertex uk ∈ V (Gi(i+ t)). Furthermore, if t 6= n− 1
(i.e. if i+ t 6= i−1 mod n), it computes also a path P (uk; i, i+ t) and four values `(uk; i, i+ t),
N ′(uk; i, i + t), N ′′(uk; i, i + t), and N(uk; i, i + t) for every vertex uk ∈ V (G(i, i+ t)). Note
that at every iteration, i.e. for all pairs i, k of indices, we denote for simplicity reasons in
line 3 of Algorithm 1 the index i + t by j in the corresponding iteration. At every iteration,
the algorithm calls the Procedures 1, 2, and 3. During the call of Procedure 1, the algorithm
initializes the values Pi(uk; i+ t), `i(uk; i+ t), N ′i(uk; i + t), N ′′i (uk; i + t), and Ni(uk; i + t)
(resp. P (uk; i, i+ t), `(uk; i, i+ t), N ′(uk; i, i+ t), N ′′(uk; i, i+ t), and N(uk; i, i+ t)), for every
possible vertex uk ∈ V (Gi(i+ t)) (resp. uk ∈ V (G(i, i+ t))). Furthermore, during the call of
Procedures 2 and 3, the algorithm updates these values for every possible vertex uk.

We will prove by induction on t that Pi(uk; i+ t) (resp. P (uk; i, i+ t)) is indeed a
longest normal path of Gi(i+ t) (resp. of G(i, i+ t)) with uk as its last vertex and that
`i(uk; i+ t) = |Pi(uk, i+ t)| (resp. `(uk; i, i+ t) = |P (uk; i, i+ t)|). Furthermore, we will also
prove by the same induction on t that the values N ′i(uk; i+ t), N ′′i (uk; i+ t), and Ni(uk; i+ t)
(resp. N ′(uk; i, i + t), N ′′(uk; i, i + t), and N(uk; i, i + t)) are the correct values according to
Notation 4.

Induction basis. Let t = 0. In this case j = i (cf. line 3 of Algorithm 1), and thus only
lines 1-7 of Procedure 1 are executed, while Procedures 2 and 3 are not executed at all (cf. line 5
of Algorithm 1). In line 1 of Procedure 1, the algorithm computes the path Pj(uj ; j) = (uj),
which is clearly the only (and thus also the longest) normal path of Gj(j) with uj as its
last vertex. Similarly, in the case where uj ∈ V (G(j, j)), i.e. in the case where ruj−1 /∈ Iuj

18

Procedure 2 Update phase for the values of the graph Gi(j)

1: for every ux ∈ V (Gi(j − 1)) do

2: if rux ∈ Iuj in R then

3: if `i(uj ; j) < `i(ux; j − 1) + 1 then
4: Pi(uj ; j)← (Pi(ux; j − 1), uj)
5: `i(uj ; j)← `i(ux; j − 1) + 1

6: N ′′i (uj ; j)← Ni(ux; j − 1)

7: if `i(uj ; j) = `i(ux; j − 1) + 1 then
8: N ′′i (uj ; j)← N ′′i (uj ; j) +Ni(ux; j − 1)

9: Ni(uj ; j)← N ′′i (uj ; j)

10: for every uy ∈ V (G(x+ 1, j − 1)) do
11: if `i(uy; j) < `i(ux; j − 1) + `(uy;x+ 1, j − 1) + 1 then
12: Pi(uy; j)← (Pi(ux; j − 1), uj , P (uy;x+ 1, j − 1))
13: `i(uy; j)← `i(ux; j − 1) + `(uy;x+ 1, j − 1) + 1

14: N ′i(uy; j)← 0; N ′′i (uy; j)← Ni(ux; j − 1) ·N(uy;x+ 1, j − 1)

15: if `i(uy; j) = `i(ux; j − 1) + `(uy;x+ 1, j − 1) + 1 then
16: N ′′i (uy; j)← N ′′i (uy; j) +Ni(ux; j − 1) ·N(uy;x+ 1, j − 1)

17: Ni(uy; j)← N ′i(uy; j) +N ′′i (uy; j)

in the circular-arc representation R of G (cf. Definition 5), the algorithm computes in line 5
of Procedure 1 the path P (uj ; j, j) = (uj), which is the only (and thus also the longest)
normal path of G(j, j) with uj as its last vertex. Therefore, in this case the algorithm also
correctly computes in lines 2-3 (resp. in lines 6-7) of Procedure 1 the values N ′j(uj ; j) = 0
and Nj(uj ; j) = N ′′j (uj ; j) = 1 (resp. N ′(uj ; j, j) = 0 and N(uj ; j, j) = N ′′(uj ; j, j) = 1). This
proves the induction basis.

Induction hypothesis. Let t ≥ 1. In this case j 6= i. For every ver-
tex uy ∈ V (Gi(j − 1)) (resp. uy ∈ V (G(i, j − 1))), the induction hypothesis implies
that Pi(uy; j − 1) (resp. P (uy; i, j − 1)) is a longest normal path of Gi(j − 1)
(resp. of G(i, j − 1)) with uy as its last vertex and that `i(uy; j − 1) = |Pi(uy; j − 1)|
(resp. `(uy; i, j − 1) = |P (uy; i, j − 1)|). Furthermore, for every vertex uy ∈ V (Gi(j − 1)), the
value N ′i(uy; j − 1) (resp. N ′′i (uy; j − 1)) equals the number of normal paths P of Gi(j − 1)
with uy as the last vertex, such that |P | = `i(uy; j − 1) and P does not include (resp. in-
cludes) vertex uj . Similarly, for every vertex uy ∈ V (G(i, j − 1)), the value N ′(uy; i, j − 1)
(resp. N ′′(uy; i, j − 1)) equals the number of normal paths P of G(i, j − 1) with uy as the last
vertex, such that |P | = `(uy; i, j − 1) and P does not include (resp. includes) vertex uj .

Induction step. Let t ≥ 1. In this case j 6= i. Consider the iteration of the algorithm for
any i ∈ {0, 1, . . . , n− 1}. First, the algorithm initializes in Procedure 1 the values Pi(uk; j)
and `i(uk; j) (resp. P (uk; i, j) and `(uk; i, j)), as well as the values N ′i(uk; j), N

′′
i (uk; j),

and Ni(uk; j) (resp. N ′(uk; i, j), N ′′(uk; i, j), and N(uk; i, j)), for every uk ∈ V (Gi(j))
(resp. uk ∈ V (G(i, j))). Then, the algorithm updates these values if necessary in Procedure 2
(resp. Procedure 3). In order to prove the induction step, we distinguish in the following the
cases where the last vertex of the computed path is uj , or some vertex uy ∈ V (Gi(j − 1))
(resp. uy ∈ V (G(i, j − 1))).

Case 1. The last vertex of the computed path is uj. The algorithm initializes in line 1 of
Procedure 1 the values Pi(uj ; j) = (uj) and `i(uj ; j) = 1. Regarding the number of longest
paths, it initializes in lines 2-3 of Procedure 1 the values N ′i(uj ; j) = 0 and Ni(uj ; j) =
N ′′i (uj ; j) = 1. Moreover, in the case where uj ∈ V (G(i, j)), the algorithm initializes in
line 5 of Procedure 1 the values P (uj ; i, j) = (uj) and `(uj ; i, j) = 1. Regarding the number

19

of longest paths, it initializes in lines 6-7 of Procedure 1 the values N ′(uj ; i, j) = 0 and
N(uj ; i, j) = N ′′(uj ; i, j) = 1. Otherwise, in the case where ui /∈ V (G(i, j)), the algorithm
does not execute lines 5-7 of Procedure 1, since in this case neither the values P (uj ; i, j) and
`(uj ; i, j), nor the values N ′(uj ; i, j), N

′′(uj ; i, j), and N(uj ; i, j) can be defined (cf. Notations 3
and 4).

Recall by Observation 8 that for any normal path P1 of Gi(j−1) with a vertex ux as its last
vertex, such that rux ∈ Iuj in R, the path (P1, uj) is a normal path of Gi(j). Conversely, recall
by Observation 9 that the path Pi(uj ; j) \ {uj} (if not empty) is a normal path of Gi(j − 1).
Therefore, in order to update the value of Pi(uj ; j), the algorithm correctly computes in
lines 3-9 of Procedure 2 the paths (Pi(ux; j − 1), uj) for every ux ∈ V (Gi(i, j − 1)), such that
rux ∈ Iuj in R, and keeps the longest of them.

Suppose now that uj ∈ V (G(i, j)); then the path P (uj ; i, j) is well defined (cf. Notation 3).
Then, it follows similarly by Observations 8 and 9 that, in order to update the value of
P (uj ; i, j), the algorithm correctly computes in lines 3-9 of Procedure 3 the paths (P (ux; i, j−
1), uj) for every ux ∈ V (G(i, j − 1)), such that rux ∈ Iuj in R, and keeps the longest of them.

Regarding the number of longest paths, consider the execution of lines 3-9 of Proce-
dure 2 (resp. of lines 3-9 of Procedure 3) for a vertex ux. Suppose that the algorithm com-
putes at this iteration the path (Pi(ux; j − 1), uj) (resp. (P (ux; i, j − 1), uj)) that has greater
length than the actual value of Pi(uj ; j) (resp. of P (uj ; i, j)), cf. line 3 of Procedure 2 (resp.
line 3 of Procedure 3). Recall by the induction hypothesis there exist exactly Ni(ux; j − 1)
(resp. N(ux; i, j − 1)) normal paths P of Gi(j) (resp. G(i, j)) with uj as the last vertex, such
that |P | = |Pi(ux; j − 1)| (resp. |P | = |P (ux; i, j − 1)|). Then, the algorithm correctly sets
N ′′i (uj ; j) (resp. N ′′(uj ; i, j)) to be equal to Ni(ux; j − 1) (resp. N(ux; i, j − 1)), cf. line 6 of
Procedure 2 (resp. line 6 of Procedure 3).

Suppose now that the algorithm computes the path (Pi(ux; j − 1), uj)
(resp. (P (ux; i, j − 1), uj)) that has the same length as the actual value of Pi(uj ; j)
(resp. of P (uj ; i, j)), cf. line 7 of Procedure 2 (resp. line 7 of Procedure 3). Then, since
no longer path has been found, the algorithm correctly increases the value of N ′′i (uj ; j)
by Ni(ux; j − 1) (resp. increases the value of N ′′(uj ; i, j) by N(ux; i, j − 1)), cf. line 8 of Pro-
cedure 2 (resp. line 8 of Procedure 3). Note that always N ′i(uj ; j) = 0 (resp. N ′(uj ; i, j) = 0)
by Notation 4. Therefore, the algorithm correctly updates Ni(uj ; j) (resp. N(uj ; i, j)) to be
equal to N ′′i (uj ; j) (resp. N ′′(uj ; i, j)) in line 9 of Procedure 2 (resp. in line 9 of Procedure 3).

Case 2. The last vertex of the computed path is some vertex uy ∈ V (Gi(j − 1))
(resp. uy ∈ V (G(i, j − 1))). The algorithm initializes in line 10 (resp. line 15) of Procedure 1
for every uy ∈ V (Gi(j − 1)) (resp. every uy ∈ V (G(i, j − 1)), where j 6= i − 1 mod n) the
values Pi(uy; j) and `i(uy; j) (resp. P (uy; i, j) and `(uy; i, j)) as Pi(uy; j − 1) and `i(uy; j − 1)
(resp. as P (uy; i, j − 1) and `(uy; i, j − 1)). Regarding the number of longest paths, it ini-
tializes in lines 11-12 (resp. in lines 16-17) of Procedure 1 the values Ni(uy; j) = N ′i(uy; j) =
Ni(uy; j − 1) and N ′′i (uy; j) = 0 (resp. the values N(uy; i, j) = N ′(uy; i, j) = N(uy; i, j − 1)
and N ′′(uy; i, j) = 0). Note now by Definition 5 that Gi(j − 1) = Gi(j) \ {uj}. Furthermore,
recall by Observation 6 that G(i, j − 1) = G(i, j) \ {uj}. Therefore, due to the induction
hypothesis, for every uy ∈ V (Gi(j − 1)) (resp. uy ∈ V (G(i, j − 1))) the value `i(uy; j − 1)
(resp. `(uy; i, j − 1)) is the greatest length among the normal paths P of Gi(j) (resp. of
G(i, j)) with uy as the last vertex, such that P does not include uj .

The algorithm executes lines 11-17 of Procedure 2 for every ux ∈ V (Gi(j − 1)), where
rux ∈ Iuj in R, and for every uy ∈ V (G(x + 1, j − 1)), cf. lines 1, 2, and 10 of Procedure 2.
Moreover, the algorithm executes lines 11-17 of Procedure 3 for every ux ∈ V (G(i, j − 1)),
where rux ∈ Iuj in R and uj ∈ V (G(i, j)), and for every uy ∈ V (G(x+ 1, j− 1)), cf. lines 1, 2,
and 10 of Procedure 3. For such a pair of vertices ux, uy, recall by Lemma 8 (resp. by Lemma 7)
that (Pi(ux; j − 1), uj , P (uy;x + 1, j − 1)) (resp. (P (ux; i, j − 1), uj , P (uy;x + 1; j − 1))) is a
normal path of Gi(j) (resp. of G(i, j)) with uy as its last vertex. Conversely, let P be a normal

20

Procedure 3 Update phase for the graph G(i, j)

1: for every ux ∈ V (G(i, j − 1)) do

2: if uj ∈ V (G(i, j)) and rux ∈ Iuj in R then

3: if `(uj ; i, j) < `(ux; i, j − 1) + 1 then
4: P (uj ; i, j)← (P (ux; i, j − 1), uj)
5: `(uj ; i, j)← `(ux; i, j − 1) + 1

6: N ′′(uj ; i, j)← N(ux; i, j − 1)

7: if `(uj ; i, j) = `(ux; i, j − 1) + 1 then
8: N ′′(uj ; i, j)← N ′′(uj ; i, j) +N(ux; i, j − 1)

9: N(uj ; i, j)← N ′′(uj ; i, j)

10: for every uy ∈ V (G(x+ 1, j − 1)) do
11: if `(uy; i, j) < `(ux; i, j − 1) + `(uy;x+ 1, j − 1) + 1 then
12: P (uy; i, j)← (P (ux; i, j − 1), uj , P (uy;x+ 1, j − 1))
13: `(uy; i, j)← `(ux; i, j − 1) + `(uy;x+ 1, j − 1) + 1

14: N ′(uy; i, j)← 0; N ′′(uy; i, j)← N(ux; i, j − 1) ·N(uy;x+ 1, j − 1)

15: if `(uy; i, j) = `(ux; i, j − 1) + `(uy;x+ 1, j − 1) + 1 then
16: N ′′(uy; i, j)← N ′′(uy; i, j) +N(ux; i, j − 1) ·N(uy;x+ 1, j − 1)

17: N(uy; i, j)← N ′(uy; i, j) +N ′′(uy; i, j)

path of Gi(j) (resp. of G(i, j)) with uy 6= uj as its last vertex, let P = (P1, uj , P2), and let
ux be the last vertex of P1. Then Lemma 10 (resp. Lemma 9) implies that P1 = Pi(ux; j − 1)
(resp. P1 = P (ux; i, j − 1)) and P2 = P (uy;x + 1, j − 1). Therefore, the algorithm correctly
computes during the multiple executions of lines 11-17 of Procedure 2 (resp. of lines 11-17 of
Procedure 3) the greatest length ` of a normal path P of Gi(j) (resp. of G(i, j)) with uy as its
last vertex, such that P includes uj . If at least one of these paths has greater length than the
initial value `i(uy; j) (resp. `(uy; i, j)) that has been computed in line 10 (resp. in line 15) of
Procedure 1, the algorithm correctly keeps in Pi(uy; j) (resp. in P (uy; i, j)) the longest among
these paths.

Regarding the number of longest paths, consider the execution of lines 11-17 of Pro-
cedure 2 (resp. of lines 11-17 of Procedure 3) for a pair of vertices ux, uy. Suppose
that the algorithm computes at this iteration the path (Pi(ux; j − 1), uj , P (uy;x+ 1, j − 1))
(resp. (P (ux; i, j − 1), uj , P (uy;x+ 1; j − 1))) that has greater length than the actual value
of Pi(uy; j) (resp. of P (uy; i, j)), cf. line 11 of Procedure 2 (resp. line 11 of Procedure 3). Re-
call by the induction hypothesis there exist exactly Ni(ux; j−1) (resp. N(ux; i, j−1)) normal
paths P of Gi(j) (resp. of G(i, j)) with ux as its last vertex, such that |P | = `i(ux; j − 1)
(resp. |P | = `(ux; i, j − 1)). Furthermore, there exist by the induction hyposthesis ex-
actly N(uy;x + 1, j − 1) normal paths P of G(i, j) with uy as its last vertex, such
that |P | = `(uy;x+ 1, j − 1). Then the algorithm correctly sets N ′′i (uy; j) (resp. N ′′(uy; i, j))
to be equal to Ni(ux; j − 1) · N(uy;x + 1, j − 1) (resp. N(ux; i, j − 1) · N(uy;x + 1, j − 1)),
cf. line 6 of Procedure 2 (resp. lines 6 of Procedure 3). Furthermore, since in this case a longer
path has been found, the algorithm correctly sets N ′i(uy; j) (resp. N ′(uy; i, j)) to be zero in
line 14 of Procedure 2 (resp. in line 14 of Procedure 3).

Suppose now that the algorithm computes the path (Pi(ux; j − 1), uj , P (uy;x+ 1, j − 1))
(resp. (P (ux; i, j − 1), uj , P (uy;x+ 1; j − 1))) that has the same length as the actual value
of Pi(uy; j) (resp. of P (uy; i, j)), cf. line 15 of Procedure 2 (resp. line 15 of Procedure 3). Then,
since no longer path has been found, the algorithm correctly increases the value of N ′′i (uy; j)
(resp. N ′′(uy; i, j)) by Ni(ux; j−1)·N(uy;x+1, j−1) (resp. by N(ux; i, j−1)·N(uy;x+1, j−1)),
cf. line 14 of Procedure 2 (resp. line 14 of Procedure 3). Furthermore, in this case the algorithm

21

correctly does not update N ′i(uy; j) (resp. N ′(uy; i, j)), since no longer path has been found.
Finally, the algorithm correctly updates Ni(uj ; j) (resp. N(uj ; i, j)) as the sum of N ′i(uj ; j)
and N ′′i (uj ; j) (resp. of N ′(uj ; i, j) and N ′′(uj ; i, j)) in line 17 of Procedure 2 (resp. in line 17
of Procedure 3). This completes the induction step.

Therefore, for every pair of indices i, k ∈ {0, 1, . . . , n − 1} – such that Gi(j) 6= ∅
(resp. G(i, j) 6= ∅) – and every uk ∈ V (Gi(j)) (resp. uk ∈ V (G(i, j))), the algorithm correctly
computes after the execution of lines 1-8 of Algorithm 1 a longest normal path Pi(uk; i+ t)
(resp. P (uk; i, i+ t)) of Gi(i+ t) (resp. of G(i, i+ t)) with uk as its last vertex and its length
`i(uk; i+ t) = |Pi(uk, i+ t)| (resp. `(uk; i, i+ t) = |P (uk; i, i+ t)|). Moreover, for every index
i ∈ {0, 1, . . . , n− 1} and every vertex uk ∈ V (Gi(i− 1)) = V , Algorithm 1 correctly computes
the number Ni(uk; i− 1) of normal paths P of Gi(i− 1) with uk as the last vertex, such that
|P | = `i(uk; i − 1). As we mentioned in the beginning of the proof, in order to compute a
longest path of G, it suffices to compute for every index i ∈ {0, 1, . . . , n− 1} a longest normal
path of Gi(i−1), i.e. a longest path among the normal ones in Gi(i−1). In line 9, Algorithm 1
computes the longest path P among the paths Pi(uk; i− 1) for every i ∈ {0, 1, . . . , n− 1} and
every uk ∈ V (Gi(i− 1)) = V . Then, P is clearly a longest path of G.

Finally, Algorithm 1 computes in lines 10-14 the sum N of those numbers N ′′i (uk; i−1), for
which `i(uk; i− 1) = |P |, where P is the longest path of G computed in line 9 of Algorithm 1.
Recall by Notation 4 that for every index i ∈ {0, 1, . . . , n−1} and every vertex uk ∈ V (Gi(i−
1)) = V , the value of N ′′i (uk; i− 1) equals the number of normal paths Q of Gi(i− 1) with uk
as the last vertex, such that |Q| = `(uk; i, i− 1) and Q includes vertex uj .

We will now prove that N is exactly the number of different longest normal paths of G
(with respect to the circular right-end ordering π of G). To this end, it suffices to consider
only the non-trivial case, where the longest path P of G has at least two vertices. Suppose
otherwise that there exists a longest normal path P of G that corresponds to the numbers
N ′′i (uk; i − 1) and N ′′j (up; j − 1), for some i, j ∈ {0, 1, . . . , n − 1} and uk, up ∈ V , such that
i 6= j or k 6= p. Let σ1 (resp. σ2) be the right-end ordering of Gi(i − 1) (resp. of Gj(j − 1))
induced by π. Note by definition of N ′′i (uk; i − 1) and N ′′j (up; j − 1) that ui−1, uj−1 ∈ V (P).

Then, since the reverse path P of P is considered to be different from P itself, it follows that
uk = up (i.e. uk = up is the last vertex of P). Therefore i 6= j, since we assumed that i 6= j
or k 6= p. Let uq be the first vertex of P . Then, since P is a normal path, uq is the leftmost
vertex of V (P) in both σ1 and σ2. Furthermore, since ui−1 ∈ V (P) (resp. uj−1 ∈ V (P)), it
follows that ui−1 (resp. uj−1) is the rightmost vertex of V (P) in σ1 (resp. σ2). Therefore,
ui−1 (resp. uj−1) is the first vertex of V (P) after uq on the circle in the clockwise direction.
Therefore ui−1 = uj−1, i.e. i = j, which is a contradiction. Thus, if a longest normal path
P of G corresponds to the numbers N ′′i (uk; i − 1) and N ′′j (up; j − 1), then i = j and k = p.
Therefore, N is exactly the number of different longest normal paths of G.

Running time. Regarding the running time of Algorithm 1, let us first discuss some
implementation details. To avoid the search of the table indicated in line 9, the length and
location of the current longest path would be maintained throughout the algorithm. Further-
more, following standard dynamic programming techniques, we do not need to store the path
itself, but rather, an indication of how the path is built. In particular, each of lines 1, 5, 10,
and 15 of Procedure 1, lines 4 and 12 of Procedure 2, and lines 4 and 12 of Procedure 3, gives
“instructions” on how to build the current longest path using information that has already
been computed. At the end of the algorithm a simple recursive unwinding of these “instruc-
tions” yields a longest path in the given graph. Now, Procedures 1, 2, and 3 are executed at
most O(n2) times each. In Procedure 1, each line lies at most in one loop of O(n) iterations
each. Furthermore, in Procedures 2 and 3, each line lies at most in two loops of O(n) itera-
tions each. Finally, line 14 of Algorithm 1 lies in two loops of O(n) iterations each. Therefore,
following the implementation details described above, the total running time of Algorithm 1

22

is O(n4). This completes the proof of the theorem.

Theorem 4 Let G = (V,E) be a circular-arc graph with n vertices and π be a right-end
circular ordering of G. Then, the number N computed by Algorithm 1 is an n-approximation
of the number of different sets S ⊆ V , such that V (P) = S for some longest path P of G.
Furthermore, if G is an interval graph, then the exact number of such different sets S ⊆ V
can be computed in O(n4) time.

Proof. Denote by π = (u0, u1, . . . , un−1) the right-end circular ordering of G. Let P be a
longest path of G. Then, we may assume without loss of generality by Theorem 2 that P
is a normal path of the circular-arc graph G. That is, there exists by Definition 6 an index
i ∈ {0, 1, . . . , n − 1}, such that P is a normal path of the interval graph Gi(i − 1). Let
V (P) = S and σi be the right-end ordering of Gi(i− 1) induced by π. It is now easy to see by
Definition 4 that the vertex set S determines exactly one normal path P in σi. Therefore, a
specific set S ⊆ V may determine at most n different longest normal paths of G, one for every
index i ∈ {0, 1, . . . , n− 1}. Thus, the computed number N computed by Algorithm 1 equals
at most n times the number of different sets S ⊆ V , such that V (P) = S for some longest
path P of G.

Suppose now that the input graph G is an interval graph. Then, the right-end circular
ordering π = (u0, u1, . . . , un−1) of G is actually a right-end ordering, since G interval graph.
We compute a longest path P of G by executing lines 1-9 of Algorithm 1 (since every interval
graph is also a circular-arc graph). Then, instead of executing lines 10-14 of Algorithm 1, we
compute the number N by summing up the values N0(uk;n− 1), where 0 ≤ k ≤ n− 1, such
that `0(uk;n − 1) = |P |, where P is a longest path of G. That is, N equals the number of
different longest normal paths of G0(n − 1) = G. Let Q be such a longest normal path of G
and let V (Q) = S. Then, it follows similarly to the previous paragraph that the vertex set S
determines exactly one normal path Q in π. Thus, if G is an interval graph, N is the exact
number of different sets S ⊆ V , such that V (P) = S for some longest path P of G. This
completes the proof of the theorem.

The bound of n of Theorem 4 for the approximation ratio of Algorithm 1 is tight. For
instance, let the circular-arc graph G = (V,E) be an induced circle with n vertices. The
algorithm will return N = n, one for each Hamiltonian path of G, while S = V is the only set
of vertices that provides a longest path of G. Moreover, as the following lemma states, there
can be exponentially many such different sets S ⊆ V in the worst case, as it is illustrated in
the example of Figure 3.

a0

a1

ak−1

ai

b0

bi

bk−1

c0

ci

ai+1
ck−1

· · ·

G :

· · ·

Figure 3: A circular-arc graph G with 3k vertices and 2O(k) different vertex sets that provide
a longest path of G.

Lemma 11 There exists a circular-arc graph G = (V,E) with n vertices, such that there
exist 2O(n) sets S ⊆ V , such that V (P) = S for a longest path P of G.

23

Proof. Consider the circular-arc graph G = (V,E) of the example of Figure 3 with n = 3k
vertices V = {a0, a1, . . . , ak−1, b0, b1, . . . , bk−1, c0, c1, . . . , ck−1}. Any longest path of G has 2k
vertices: it includes all vertices {a0, a1, . . . , ak−1} and exactly one vertex of each pair {ai, bi}.
Since there are k = O(n) such sets {ai, bi}, it follows that there exist 2k = 2O(n) different sets
S ⊆ V , such that V (P) = S for a longest path P of G. Finally, it can be easily seen that G
is a circular-arc graph: a circular-arc representation of G has 2k “short” arcs and k “long”
arcs, where the long arcs correspond to {a0, a1, . . . , ak−1} and the short ones correspond to
{b0, b1, . . . , bk−1} ∪ {c0, c1, . . . , ck−1}. The long arc of ai intersects with the next and the
previous long arc of ai−1 and ai+1 on the circle, respectively. Furthermore, no two short
arcs intersect to each other, while the pair of short arcs of bi and ci are intersecting with ai
and ai+1. Note that all indices of the vertices are computed mod n.

5 Concluding remarks

We presented an O(n4) time dynamic programming algorithm for the longest path problem
on circular-arc graphs, thus providing the first polynomial time algorithm for this problem on
a class of graphs that is non-perfect. Our technique relies on computing certain representative
paths that we call normal paths. Our algorithm also counts within the same time bound all
longest normal paths of a given circular-arc graph G. This number is an n-approximation
of the number of different vertex sets of G that provide a longest path (for interval graphs,
we compute the exact number). The same results can be easily extended also to the case of
weighted longest paths. An interesting problem for further research is to exactly compute the
number of all different vertex sets of a circular-arc graph that provide a longest path, as well
as the number of all different paths (as opposed to their “representatives”, i.e. normal paths).

References

[1] S. R. Arikati and C. P. Rangan. Linear algorithm for optimal path cover problem on interval
graphs. Information Processing Letters, 35(3):149–153, 1990.

[2] A. A. Bertossi. Finding Hamiltonian circuits in proper interval graphs. Information Processing
Letters, 17(2):97–101, 1983.

[3] A. Björklund and T. Husfeldt. Finding a path of superlogarithmic length. SIAM Journal on
Computing, 32(6):1395–1402, 2003.

[4] H. L. Bodlaender. Achromatic number is NP-complete for cographs and interval graphs. Infor-
mation Processing Letters, 31:135–138, 1989.

[5] R. W. Bulterman, F. W. van der Sommen, G. Zwaan, T. Verhoeff, A. J. M. van Gasteren, and
W. H. J. Feijen. On computing a longest path in a tree. Information Processing Letters, 81(2):93–
96, 2002.

[6] M. S. Chang, S. L. Peng, and J. L. Liaw. Deferred-query - an efficient approach for problems on
interval and circular-arc graphs (extended abstract). In WADS, pages 222–233, 1993.

[7] J. Colinge and K. Bennett. Introduction to computational proteomics. PLoS Computational
Biology, 3(7), 2007.

[8] P. Damaschke. Paths in interval graphs and circular arc graphs. Discrete Mathematics, 112(1-
3):49–64, 1993.

[9] P. Damaschke, J. S. Deogun, D. Kratsch, and G. Steiner. Finding Hamiltonian paths in cocom-
parability graphs using the bump number algorithm. Order, 8:383–391, 1992.

[10] J. S. Deogun and G. Steiner. Polynomial algorithms for Hamiltonian cycle in cocomparability
graphs. SIAM Journal on Computing, 23(3):520–552, 1994.

24

[11] M. Dyer, A. Frieze, and M. Jerrum. Approximately counting Hamilton cycles in dense graphs.
In Proceedings of the 5th annual ACM-SIAM symposium on discrete algorithms (SODA), pages
336–343, 1994.

[12] A. M. Frieze. On the number of perfect matchings and Hamilton cycles in epsilon-regular non-
bipartite graphs. Electronic Journal of Combinatorics, 7, 2000.

[13] M. R. Garey and D. S. Johnson. Computers and intractability: A guide to the theory of NP-
completeness. W. H. Freeman & Co., New York, NY, USA, 1979.

[14] M. R. Garey, D. S. Johnson, G. L. Miller, and C. H. Papadimitriou. The complexity of coloring
circular arcs and chords. 1:216–27, 1980.

[15] M. C. Golumbic. Algorithmic graph theory and perfect graphs (Annals of Discrete Mathematics,
Vol. 57). North-Holland Publishing Co., 2 edition, 2004.

[16] U. Gupta, D. Lee, and J.-T. Leung. Efficient algorithms for interval graphs and circular-arc
graphs. Networks, pages 459–467, 1982.

[17] I. S. Hermann Cuntz, Alexander Borst. Optimization principles of dendritic structure. Theoretical
Biology and Medical Modelling, 4(08):21, 2007.

[18] R. W. Hung and M. S. Chang. Solving the path cover problem on circular-arc graphs by using an
approximation algorithm. Discrete Applied Mathematics, 154(1):76–105, 2006.

[19] R.-W. Hung, M.-S. Chang, and C.-H. Laio. The Hamiltonian cycle problem on circular-arc
graphs. In Proceedings of the International MultiConference of Engineers and Computer Sci-
entists (IMECS), pages 630–637, 2009.

[20] K. Ioannidou, G. B. Mertzios, and S. D. Nikolopoulos. The longest path problem has a polynomial
solution on interval graphs. Algorithmica. To appear.

[21] K. Ioannidou and S. D. Nikolopoulos. The longest path problem is polynomial on cocomparabil-
ity graphs. In Proceedings of the 36th International Workshop on Graph-Theoretic Concepts in
Computer Science (WG), 2010. To appear.

[22] M. Jerrum, L. Valiant, and V. Vazirani. Random generation of combinatorial structures from a
uniform distribution. Theoretical Computer Science, 43(2-3):169–188, 1986.

[23] D. R. Karger, R. Motwani, and G. D. S. Ramkumar. On approximating the longest path in a
graph. Algorithmica, 18:82–98, 1997.

[24] J. M. Keil. Finding Hamiltonian circuits in interval graphs. Information Processing Letters,
20:201–206, 1985.

[25] N. Madras and G. Slade. The self-avoiding walk. Birkhäuser, 1996.

[26] G. B. Mertzios. Combinatorial Optimization and Recognition of Graph Classes with Applications
to Related Models. PhD thesis, Department of Computer Science, RWTH Aachen University,
November 2009.

[27] G. B. Mertzios and D. G. Corneil. A simple polynomial algorithm for the longest path problem
on cocomparability graphs. Technical report available at http://arxiv.org/abs/1004.4560.

[28] D. Randall and A. J. Sinclair. Self-testing algorithms for self-avoiding walks. Journal of Mathe-
matical Physics, 41:1570–1584, 2000.

[29] R. Rubinstein. How many needles are in a hay stack, or how to solve fast #P-complete counting
problems. Methodology and Computing in Applied Probability, 11:5–49, 2007.

[30] W.-K. Shih, T. C. Chern, and W.-L. Hsu. An O(n2 log n) algorithm for the Hamiltonian cycle
problem on circular-arc graphs. SIAM Journal on Computing, 21(6):1026–1046, 1992.

[31] Y. Takahara, S. Teramoto, and R. Uehara. Longest path problems on ptolemaic graphs. IEICE
- IEICE - Transactions on Information and Systems, E91-D(2):170–177, 2008.

[32] R. Uehara and Y. Uno. Efficient algorithms for the longest path problem. In 15th Annual
International Symposium on Algorithms and Computation (ISAAC), pages 871–883, 2004.

[33] R. Uehara and G. Valiente. Linear structure of bipartite permutation graphs and the longest path
problem. Information Processing Letters, 103(2):71–77, 2007.

25

