97,752 research outputs found

    The feedback correct-related positivity : sensitivity of the event-related brain potential to unexpected positive feedback

    No full text
    The N200 and the feedback error-related negativity (fERN) are two components of the event-related brain potential (ERP) that share similar scalp distributions, time courses, morphologies, and functional dependencies, which raises the question as to whether they are actually the same phenomenon. To investigate this issue, we recorded the ERP from participants engaged in two tasks that independently elicited the N200 and fERN. Our results indicate that they are, in fact, the same ERP component and further suggest that positive feedback elicits a positive-going deflection in the time range of the fERN. Taken together, these results indicate that negative feedback elicits a common N200 and that modulation of fERN amplitude results from the superposition on correct trials of a positive-going deflection that we term the feedback correct-related positivity

    Contactless Remote Induction of Shear Waves in Soft Tissues Using a Transcranial Magnetic Stimulation Device

    Full text link
    This study presents the first observation of shear wave induced remotely within soft tissues. It was performed through the combination of a transcranial magnetic stimulation device and a permanent magnet. A physical model based on Maxwell and Navier equations was developed. Experiments were performed on a cryogel phantom and a chicken breast sample. Using an ultrafast ultrasound scanner, shear waves of respective amplitude of 5 and 0.5 micrometers were observed. Experimental and numerical results were in good agreement. This study constitutes the framework of an alternative shear wave elastography method

    Periodicity in wide-band time series

    Get PDF
    Summary: To test the hypotheses that (i) electroencephalograms (EEGs) are largely made up of oscillations at many frequencies and (ii) that the peaks in the power spectra represent oscillations, we applied a new method, called the Period Specific Average (PSA) to a wide sample of EEGs. Both hypotheses can be rejected

    Predictive information and error processing : the role of medial-frontal cortex during motor control

    No full text
    We have recently provided evidence that an error-related negativity (ERN), an ERP component generated within medial-frontal cortex, is elicited by errors made during the performance of a continuous tracking task (O.E. Krigolson & C.B. Holroyd, 2006). In the present study we conducted two experiments to investigate the ability of the medial-frontal error system to evaluate predictive error information. In two experiments participants used a joystick to perform a computer-based continuous tracking task in which some tracking errors were inevitable. In both experiments, half of these errors were preceded by a predictive cue. The results of both experiments indicated that an ERN-like waveform was elicited by tracking errors. Furthermore, in both experiments the predicted error waveforms had an earlier peak latency than the unpredicted error waveforms. These results demonstrate that the medial-frontal error system can evaluate predictive error information

    Independent component analysis of interictal fMRI in focal epilepsy: comparison with general linear model-based EEG-correlated fMRI

    Get PDF
    The general linear model (GLM) has been used to analyze simultaneous EEGā€“fMRI to reveal BOLD changes linked to interictal epileptic discharges (IED) identified on scalp EEG. This approach is ineffective when IED are not evident in the EEG. Data-driven fMRI analysis techniques that do not require an EEG derived model may offer a solution in these circumstances. We compared the findings of independent components analysis (ICA) and EEG-based GLM analyses of fMRI data from eight patients with focal epilepsy. Spatial ICA was used to extract independent components (IC) which were automatically classified as either BOLD-related, motion artefacts, EPI-susceptibility artefacts, large blood vessels, noise at high spatial or temporal frequency. The classifier reduced the number of candidate IC by 78%, with an average of 16 BOLD-related IC. Concordance between the ICA and GLM-derived results was assessed based on spatio-temporal criteria. In each patient, one of the IC satisfied the criteria to correspond to IED-based GLM result. The remaining IC were consistent with BOLD patterns of spontaneous brain activity and may include epileptic activity that was not evident on the scalp EEG. In conclusion, ICA of fMRI is capable of revealing areas of epileptic activity in patients with focal epilepsy and may be useful for the analysis of EEGā€“fMRI data in which abnormalities are not apparent on scalp EEG

    Review of analytical instruments for EEG analysis

    Full text link
    Since it was first used in 1926, EEG has been one of the most useful instruments of neuroscience. In order to start using EEG data we need not only EEG apparatus, but also some analytical tools and skills to understand what our data mean. This article describes several classical analytical tools and also new one which appeared only several years ago. We hope it will be useful for those researchers who have only started working in the field of cognitive EEG

    Selective Attention and Audiovisual Integration: Is Attending to Both Modalities a Prerequisite for Early Integration?

    Get PDF
    Interactions between multisensory integration and attention were studied using a combined audiovisual streaming design and a rapid serial visual presentation paradigm. Event-related potentials (ERPs) following audiovisual objects (AV) were compared with the sum of the ERPs following auditory (A) and visual objects (V). Integration processes were expressed as the difference between these AV and (A + V) responses and were studied while attention was directed to one or both modalities or directed elsewhere. Results show that multisensory integration effects depend on the multisensory objects being fully attendedā€”that is, when both the visual and auditory senses were attended. In this condition, a superadditive audiovisual integration effect was observed on the P50 component. When unattended, this effect was reversed; the P50 components of multisensory ERPs were smaller than the unisensory sum. Additionally, we found an enhanced late frontal negativity when subjects attended the visual component of a multisensory object. This effect, bearing a strong resemblance to the auditory processing negativity, appeared to reflect late attention-related processing that had spread to encompass the auditory component of the multisensory object. In conclusion, our results shed new light on how the brain processes multisensory auditory and visual information, including how attention modulates multisensory integration processes

    Meta-Potentiation: Neuro-Astroglial Interactions Supporting Perceptual Consciousness

    Get PDF
    Conscious perceptual processing involves the sequential activation of cortical networks at several brain locations, and the onset of oscillatory synchrony affecting the same neuronal population. How do the earlier activated circuits sustain their excitation to synchronize with the later ones? We call such a sustaining process "meta-potentiation", and propose that it depends on neuro-astroglial interactions. In our proposed model, attentional cholinergic and stimulus-related glutamatergic inputs to astroglia elicit the release of astroglial glutamate to bind with neuronal NMDA receptors containing the NR2B subunit. Once calcium channels are open, slow inward currents activate the CaM/CaMKII complex to phosphorylate AMPA receptors in a population of neurons connected with the astrocyte, thus amplifying the local excitatory pattern to participate in a larger synchronized assembly that supports consciousness
    • ā€¦
    corecore