60 research outputs found

    Incrementally Closing Octagons

    Get PDF
    The octagon abstract domain is a widely used numeric abstract domain expressing relational information between variables whilst being both computationally efficient and simple to implement. Each element of the domain is a system of constraints where each constraint takes the restricted form ±xi±xj≤c. A key family of operations for the octagon domain are closure algorithms, which check satisfiability and provide a normal form for octagonal constraint systems. We present new quadratic incremental algorithms for closure, strong closure and integer closure and proofs of their correctness. We highlight the benefits and measure the performance of these new algorithms

    Transfer Function Synthesis without Quantifier Elimination

    Get PDF
    Traditionally, transfer functions have been designed manually for each operation in a program, instruction by instruction. In such a setting, a transfer function describes the semantics of a single instruction, detailing how a given abstract input state is mapped to an abstract output state. The net effect of a sequence of instructions, a basic block, can then be calculated by composing the transfer functions of the constituent instructions. However, precision can be improved by applying a single transfer function that captures the semantics of the block as a whole. Since blocks are program-dependent, this approach necessitates automation. There has thus been growing interest in computing transfer functions automatically, most notably using techniques based on quantifier elimination. Although conceptually elegant, quantifier elimination inevitably induces a computational bottleneck, which limits the applicability of these methods to small blocks. This paper contributes a method for calculating transfer functions that finesses quantifier elimination altogether, and can thus be seen as a response to this problem. The practicality of the method is demonstrated by generating transfer functions for input and output states that are described by linear template constraints, which include intervals and octagons.Comment: 37 pages, extended version of ESOP 2011 pape

    Closing the Performance Gap between Doubles and Rationals for Octagons

    Get PDF
    Octagons have enduring appeal because their domain opera- tions are simple, readily mapping to for-loops which apply max, min and sum to the entries of a Difference Bound Matrix (DBM). In the quest for efficiency, arithmetic is often realised with double-precision floating- point, albeit at the cost of the certainty provided by arbitrary-precision rationals. In this paper we show how Compact DBMs (CoDBMs), which have recently been proposed as a memory refinement for DBMs, enable arithmetic calculation to be short-circuited in various domain operations. We also show how comparisons can be avoided by changing the tables which underpin CoDBMs. From the perspective of implementation, the optimisations are attractive because they too are conceptually simple, following the ethos of Octagons. Yet they can halve the running time on rationals, putting CoDBMs on rationals on a par with DBMs on doubles

    Fabrication of dissimilar metal electrodes with nanometer interelectrode distance suitable for the electrical characterization of molecular-scale electronic devices

    Get PDF
    As complementary metal-oxide-semiconductor (CMOS) based integrated circuits (IC\u27s) approach the physical and economic limit of performance enhancement through device scaling the need for a new paradigm to realize nanoscale electronic devices is ever increasing. One proposed architecture for realizing the next generation of IC\u27s involves the use of molecular monolayers and single molecules as active electronic components commonly referred to as molecular-scale electronics. Several such devices have been demonstrated using a host of novel electrical characterization structures and techniques. In this thesis a controllable and reproducible process for fabricating electrode pairs suitable for probing the electrical properties of potential molecular-scale electronic devices is presented. This process is capable of fabricating dissimilar metal electrodes with a minimum interelectrode distance of less than 6 nm using electron beam lithography and liftoff pattern transfer. Electrode structures employing pairs of Au or AuPd electrodes and a dissimilar metal electrode were fabricated in three different patterns. 300 µm long parallel electrode structures with interelectrode distances as low as 10 nm, 75 nm wide electrode pairs with interelectrode distances lower than 6nm, and a multi-terminal electrode structure with reproducible interelectrode distances of 8nm were realized using this technique. The processing issues associated with the fabrication of these structures are discussed along with the intended application of these devices

    Solvers for Type Recovery and Decompilation of Binaries

    Get PDF
    Reconstructing the meaning of a program from its binary is known as reverse engineering. Since reverse engineering is ultimately a search for meaning, there is growing interest in inferring a type (a meaning) for the elements of a binary in a consistent way. Currently there is no consensus on how best to achieve this, with the few existing approaches utilising ad-hoc techniques which lack any formal basis. Moreover, previous work does not answer (or even ask) the fundamental question of what it means for recovered types to be correct. This thesis demonstrates how solvers for Satisfiability Modulo Theories (SMT) and Constraint Handling Rules (CHR) can be leveraged to solve the type reconstruction problem. In particular, an approach based on a new SMT theory of rational tree constraints is developed and evaluated. The resulting solver, based on the reification mechanisms of Prolog, is shown to scale well, and leads to a reification driven SMT framework that supports rapid implementation of SMT solvers for different theories in just a few hundred lines of code. The question of how to guarantee semantic relevance for reconstructed types is answered with a new and semantically-founded approach that provides strong guarantees for the reconstructed types. Key to this approach is the derivation of a witness program in a type safe high-level language alongside the reconstructed types. This witness has the same semantics as the binary, is type correct by construction, and it induces a (justifiable) type assignment on the binary. Moreover, the approach, implemented using CHR, yields a type-directed decompiler. Finally, to evaluate the flexibility of reificiation-based SMT solving, the SMT framework is instantiated with theories of general linear inequalities, integer difference problems and octagons. The integer difference solver is shown to perform competitively with state-of-the-art SMT solvers. Two new algorithms for incremental closure of the octagonal domain are presented and proven correct. These are shown to be both conceptually simple, and offer improved performance over existing algorithms. Although not directly related to reverse engineering, these results follow from the work on SMT solver construction

    Inferring Geodesic Cerebrovascular Graphs: Image Processing, Topological Alignment and Biomarkers Extraction

    Get PDF
    A vectorial representation of the vascular network that embodies quantitative features - location, direction, scale, and bifurcations - has many potential neuro-vascular applications. Patient-specific models support computer-assisted surgical procedures in neurovascular interventions, while analyses on multiple subjects are essential for group-level studies on which clinical prediction and therapeutic inference ultimately depend. This first motivated the development of a variety of methods to segment the cerebrovascular system. Nonetheless, a number of limitations, ranging from data-driven inhomogeneities, the anatomical intra- and inter-subject variability, the lack of exhaustive ground-truth, the need for operator-dependent processing pipelines, and the highly non-linear vascular domain, still make the automatic inference of the cerebrovascular topology an open problem. In this thesis, brain vessels’ topology is inferred by focusing on their connectedness. With a novel framework, the brain vasculature is recovered from 3D angiographies by solving a connectivity-optimised anisotropic level-set over a voxel-wise tensor field representing the orientation of the underlying vasculature. Assuming vessels joining by minimal paths, a connectivity paradigm is formulated to automatically determine the vascular topology as an over-connected geodesic graph. Ultimately, deep-brain vascular structures are extracted with geodesic minimum spanning trees. The inferred topologies are then aligned with similar ones for labelling and propagating information over a non-linear vectorial domain, where the branching pattern of a set of vessels transcends a subject-specific quantized grid. Using a multi-source embedding of a vascular graph, the pairwise registration of topologies is performed with the state-of-the-art graph matching techniques employed in computer vision. Functional biomarkers are determined over the neurovascular graphs with two complementary approaches. Efficient approximations of blood flow and pressure drop account for autoregulation and compensation mechanisms in the whole network in presence of perturbations, using lumped-parameters analog-equivalents from clinical angiographies. Also, a localised NURBS-based parametrisation of bifurcations is introduced to model fluid-solid interactions by means of hemodynamic simulations using an isogeometric analysis framework, where both geometry and solution profile at the interface share the same homogeneous domain. Experimental results on synthetic and clinical angiographies validated the proposed formulations. Perspectives and future works are discussed for the group-wise alignment of cerebrovascular topologies over a population, towards defining cerebrovascular atlases, and for further topological optimisation strategies and risk prediction models for therapeutic inference. Most of the algorithms presented in this work are available as part of the open-source package VTrails

    Fault-Tolerant Vision for Vehicle Guidance in Agriculture

    Get PDF
    • …
    corecore