

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from orbit.dtu.dk on: Dec 17, 2017

Fault-Tolerant Vision for Vehicle Guidance in Agriculture

Blas, Morten Rufus; Blanke, Mogens; Madsen, Tommy Ertbølle

Publication date:
2010

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
Blas, M. R., Blanke, M., & Madsen, T. E. (2010). Fault-Tolerant Vision for Vehicle Guidance in Agriculture. Kgs.
Lyngby, Denmark: Technical University of Denmark (DTU).

http://orbit.dtu.dk/en/publications/faulttolerant-vision-for-vehicle-guidance-in-agriculture(7e6cbfb0-0a4e-4799-b71b-670eeb24a2e8).html

Morten Rufus Blas

Fault-Tolerant Vision for
Vehicle Guidance in
Agriculture

PhD thesis, April 2010

Fault-Tolerant Vision for Vehicle
Guidance in Agriculture

Morten Rufus Blas

Kongens Lyngby 2010

DTU Elektro-PHD

www.elektro.dtu.dk
Department of Electrical Engineering
Automation and Control
Technical University of Denmark
Ørsteds Plads
Building 348
DK-2800 Kgs. Lyngby
Denmark
Tel: (+45) 45253800
Fax: (+45) 45931634
Email: info@elektro.dtu.dk

ISBN 978-87-92465-22-1

Summary

The emergence of widely available vision technologies is enabling for a wide
range of automation tasks in industry and other areas. Agricultural vehicle
guidance systems have benefitted from advances in 3D vision based on stereo
camera technology. By automatically guiding vehicles along crops and other field
structures the operator’s stress levels can be reduced. High precision steering in
sensitive crops can also be maintained for longer periods of time as the driver
is less tired.

Safety and availability must be inherent in such systems in order to get widespread
market acceptance. To tolerate dropout of 3D vision, faults in classification, or
other defects, redundant information should be utilized. Such information can
be used to diagnose faulty behavior and to temporarily continue operation with
a reduced set of sensors when faults or artifacts occur.

Additional sensors include GPS receivers and inertial sensors. To fully utilize
the possibilities in 3D vision, the system must also be able to learn and adapt to
changing environments. By learning features of the environment new diagnos-
tic relations can be generated by creating redundant feed-forward information
about crop location. Also, by mapping the field that is seen by the stereo cam-
era, it is possible to support the guidance system by storing salient information
about the environment. By tracking the motion of the vehicle, vision output can
be fused over time to create more reliable and robust estimates of crop location.

This thesis approaches these challenges by considering systematic design meth-
ods using graph-based analysis. It is demonstrated how diagnostic relations can
be derived and remedial actions can be done to maintain safety and healthy

ii

functioning of vision systems. The combination of redundant information from
3D vision, mapping, and aiding sensors such as GPS provide means to detect
and isolate single faults in the system.

In addition, learning is employed to adapt the system to variational changes in
the natural environment. 3D vision is enhanced by learning texture and color
information. Intensity gradients on small neighborhoods of pixels are shown to
provide a superior approach to modeling texture information than other meth-
ods. Stochastic automatas using optimally quantized data is demonstrated as a
strong approach for offline learning.

It is considered how 3D vision provides labeling of training data that subse-
quently can be fed into a learning system. Statistical change detection theory is
shown to be a suitable approach to detecting artifacts in the learning process so
safe operation can be maintained. The system can be used to perform real-time
classification using a fast online approach that is superior to state-of-the-art.

Advances in tracking vehicle motion using 3D vision is demonstrated to allow
unprecedented high accuracy maps to be created of the local environment. Fea-
tures in the environment are extracted and tracked using novel feature detectors
relying on approximating the Laplacian operator with a bi-level octagonal ker-
nel. It is shown how these features display high levels of accuracy and stability
while being considerable faster than similar feature detectors. Artifacts in 3D
vision range measurements are demonstrated to be detectable by using the gen-
erated 3D maps and a probabilistic approach to fusing and comparing range
measurements.

Resumé

Udviklingen af bredt tilgængelige teknologier indenfor billedanalyse muliggør
en lang række af automatiseringsopgaver indenfor industrien og andre omr̊ader.
Styresystemer til landbrugsmaskiner drager nytte af fremskridt i 3D billedanal-
yse baseret p̊a stereokamerateknologi. Ved automatisk styring af køretøjer
langs afgrøder og andre markstrukturer kan førerens stressniveau reduceres.
Højpræcisionsstyring i skrøbelige afgrøder kan udføres over længere tidsperioder
eftersom føreren bliver mindre træt.

Sikkerhed og oppetid skal være en integreret del af s̊adanne systemer for at
kunne opn̊a bred accept p̊a markedet. For at kunne tolerere udfald i 3D syn,
klassifikationsfejl eller andre fejl skal redundant information være tilgængelig.
S̊adan information kan n̊ar fejl opst̊ar bruges til diagnostisering af problemet
samt midlertidig fortsættelse af kørslen med et reduceret antal sensorer.

Øvrige sensorer inkluderer GPS modtagere og inertisensorer. For fuld udnyt-
telse af mulighederne indenfor 3D billedanalyse skal systemet være i stand til
at tilpasse sig skiftende omgivelser og lære af disse. Ved at lære omgivelsers
karakteristika at kende kan redundant information skabes til brug ved diagnos-
ticering. Desuden kan kortlægning af marken med stereokamera muliggøre sup-
port til styringssystemet ved indsamling af vigtige informationer. Ved at følge
køretøjets bevægelser over tid kan de indsamlede informationer sammenholdes
og derved give et mere p̊alideligt estimat af afgrødernes placering.

I denne afhandling bliver disse udfordringer taget op med anvendelse af graf-
baseret analyse til systematisk design. Det bliver demonstreret hvordan diag-
nostiske relationer kan udledes og afhjælpende handlinger kan udføres for at
opretholde sikkerhed og funktion af visionssystemer. Kombinationen af redun-

iv

dant information fra 3D billedanalyse, kortlægning og ekstra sensorer som for
eksempel GPS gør det muligt at detektere og isolere individuelle fejl i systemet.

Læring benyttes for at tilpasse systemet til variationer i de naturlige omgivelser.
3D vision forstærkes ved læring af information om tekstur og farve. Det bliver
demonstreret at intensitetsgradienter i små omr̊ader af pixels er bedre til tek-
sturmodellering end andre kendte metoder. Stokastisk tilstandsmaskine med
kvantiseret data demonstreres som en effektiv tilgang til offline læring.

Det undersøges hvordan 3D vision kan bruges til klassificering af trænings-
data som efterfølgende kan indsættes i et læringssystem. Statistisk ændrings-
detektionsteori demonstreres som en passende tilgang til detektering af fejl i
læringssytemet, s̊aledes at sikker kørsel kan opretholdes. Systemet kan blive
brugt til real-time klassifikation ved brug af en hurtig online tilgang som overg̊ar
state-of-the-art.

3D vision-baseret sporing af et køretøjs bevægelser demonstreres at kunne tillade
dannelse af højpræcisionskort af lokale omgivelser. Karakteristika i omgivelserne
ekstraheres og følges med moderne detektorer, der afhænger af approksimering
af Laplaceoperatoren. Det vises hvordan dette kan udvise stor akuratesse og sta-
bilitet og samtidig være betydeligt hurtigere end lignende detektorer. Uventede
genstande i 3D vision range målinger vises at være detekterbare ved brug af de
skabte 3D kort og en statistisk tilgang til fusion og sammenligning af målinger.

Preface

This thesis was prepared at Department of Electrical Engineering, Automation
and Control Group, the Technical University of Denmark in partial fulfillment of
the requirements for acquiring the Ph.D. degree in engineering. The project was
funded by CLAAS Agrosystems, The Danish Agency for Science, Technology
and Innovation, and The Technical University of Denmark.

The thesis deals with different aspects of using stereo vision for controlling agri-
cultural vehicles. The main focus is on mapping, learning and fault-tolerance.

The project was supervised by Professor Mogens Blanke, DTU Elektro, and
Tommy Ertbølle Madsen from CLAAS Agrosystems. Part of the research was
also conducted at The Stanford Research Institute (SRI) with Dr. Robert C.
Bolles and Dr. Kurt Konolige acting as supervisors.

The thesis consists of a summary report and a collection of seven research papers
written during the period 2006–2010.

Kgs. Lyngby, April 2010

Morten Rufus Blas

vi

Dissemination of Results

The following papers have been published during the PhD period and are in-
cluded as part of this thesis.

[A] Morten Rufus Blas, Motilal Agrawal, Aravind Sundaresan
and Kurt Konolige. Fast Color/Texture Segmentation For Outdoor Robots.
IEEE Int. Conf. on Intelligent Robots and Systems, pages 4078-4085,
Nice, France, 2008. Published.

[B] Motilal Agrawal, Kurt Konolige and Morten Rufus Blas. CenSurE for
Realtime Feature Detection and Matching. Proc. of the European Conf.
on Computer Vision, pages 102-115, Marseille, France, 2008. Published.

[C] Kurt Konolige, Motilal Agrawal, Morten Rufus Blas,
Robert C. Bolles, Brian Gerkey, Joan Sola, Aravind Sundaresan. Map-
ping, Navigation, and Learning for Off-Road Traversal. J. of Field
Robotics, pages 88-113, 2009. Published.

[D] Morten Rufus Blas, Mogens Blanke, Radu Bogdan Rusu and Michael
Beetz. Fault-Tolerant 3D Mapping with Application to an Orchard Robot.
7th IFAC Symposium on Fault Detection, Supervision and Safety of Tech-
nical Processes, pages 893-898, Barcelona, Spain, 2009. Published.

[E] Morten Rufus Blas and Mogens Blanke. Natural Environment Modeling
& Fault-Diagnosis for Automated Agricultural Vehicle. Proc. 17th IFAC
World Congress, pages 1590-1595, Seoul, Korea, 2008. Published.

[F] Morten Rufus Blas and Mogens Blanke. Automatic Baling Using Stereo
Vision and Texture Learning. J. of Computers and Electronics in Agri-
culture, 2010. Submitted.

viii

[G] Fabio Caponetti, Morten Rufus Blas and Mogens Blanke. Stochastic
Automata with Optimal Signal Quantisation for Classification of Outdoor
Environments. Control Engineering Practice, 2009. Submitted.

The following papers have been published during the PhD period but have not
been included in the final thesis. They relate to other projects done during the
period.

• Tommy Ertbølle Madsen, Kristian Kirk and Morten Rufus Blas. 3D Cam-
era for Forager Automation. 67th Int. Conf. on Agricultural Engineering,
Hannover, Germany, 2009. Published.

• Mads Fogtmann Hansen, Morten Rufus Blas and Rasmus Larsen. Maha-
lanobis Distance Based Iterative Closest Point. Proc. of SPIE : Medical
Imaging : Image Processing, page 11, San Diego, USA, 2007. Published.

Acknowledgements

This thesis has been made possible by the amalgamation of the efforts and
ideas of a number of bright people who I can only thank for letting me work with
them: Mogens Blanke, Kurt Konolige, Motilal Agrawal, Robert C. Bolles, Brian
Gerkey, Joan Sola, Aravind Sundaresan, Radu Bogdan Rusu, Fabio Caponetti,
and Michael Beetz.

I would like to express my gratitude to SRI for letting me visit for half a year
as an international fellow. Working on the LAGR project was very exciting.
Likewise, I would like to thank Willow Garage for letting me visit for a short
three week period.

My company supervisor, Tommy Madsen deserves considerable thanks along
with Jesper Vilander for supporting and believing in the idea of doing this
industrial PhD project. I would also like to thank Mogens Blanke again for
providing valuable supervision at the university.

x

Contents

Summary i

Resumé iii

Preface v

Dissemination of Results vii

Acknowledgements ix

1 Introduction 1

1.1 Background . 1

1.2 Problem Formulation . 2

1.3 Stereo Vision Guidance . 3

1.4 Abbreviations . 7

2 Contributions 11

2.1 Learning . 12

2.2 Visual Odometry . 12

2.3 Mapping . 13

2.4 Fault-tolerance . 13

3 Learning 15

3.1 Related Work . 16

3.2 Learning Algorithms . 16

3.3 Learning Texture . 18

3.4 Learning Field Structures . 22

xii CONTENTS

4 Visual Odometry 27
4.1 Related Work . 28
4.2 Overview . 28
4.3 Feature Detection . 29
4.4 Feature Matching . 32
4.5 Motion Estimation . 34
4.6 Motion Refinement . 39

5 Mapping 43
5.1 Related Work . 44
5.2 Frames of Reference . 44
5.3 Mapping Using Grid Maps . 47
5.4 Mapping Using Clothoids . 49
5.5 Mapping 3D Point Clouds . 51

6 Fault-Tolerance 61
6.1 Related Work . 62
6.2 Behavioral Model . 62
6.3 Structural Analysis . 65
6.4 Design of Detectors . 67

7 Conclusion 71

A Fast Color/Texture Segmentation For Outdoor Robots 73
A.1 Introduction . 74
A.2 Algorithm Overview and Related Work 76
A.3 Segmentation Algorithm . 79
A.4 Segmentation Results . 82
A.5 Application: Path Recognition 85
A.6 Path Recognition Results . 91
A.7 Conclusions . 92

B CenSurE for Realtime Feature Detection and Matching 95
B.1 Introduction . 96
B.2 Center Surround Extrema (CenSurE) Features 99
B.3 Modified Upright SURF (MU-SURF) Descriptor 103
B.4 Experimental Results . 105
B.5 Conclusion . 110

C Mapping, Navigation, and Learning for Off-Road Traversal 113
C.1 Introduction . 114
C.2 Local map construction . 118
C.3 Constructing consistent global maps 125
C.4 Planning . 131
C.5 Control . 134

CONTENTS xiii

C.6 Performance . 137
C.7 Conclusion . 141

D Fault-Tolerant 3D Mapping with Application to an Orchard
Robot 155
D.1 Introduction . 156
D.2 Stereo Processing . 159
D.3 Visual Odometry . 161
D.4 3D Model . 162
D.5 Point Filtering . 165
D.6 Results . 167
D.7 Conclusions . 167

E Natural Environment Modeling & Fault-Diagnosis for Auto-
mated Agricultural Vehicle 171
E.1 Introduction . 172
E.2 Swath Model . 173
E.3 Behavior Models . 176
E.4 Structural Model . 179
E.5 Structural Analysis . 180
E.6 Field Tests . 181
E.7 Fault Handling . 186
E.8 Conclusion . 187

F Automatic Baling Using Stereo Vision and Texture Learning 189
F.1 Introduction . 190
F.2 Related Work . 191
F.3 System Overview . 192
F.4 3D Classification . 193
F.5 Texture Classification . 195
F.6 Mapping . 204
F.7 Supervision and fault-tolerance 207
F.8 Control . 208
F.9 Conclusion . 212

G Stochastic Automata with Optimal Signal Quantisation for Clas-
sification of Outdoor Environments 215
G.1 Introduction . 216
G.2 Background and Related Research 217
G.3 Case study . 225
G.4 Conclusion . 235
G.5 Acknowledgements . 236

Bibliography 239

xiv CONTENTS

Chapter 1

Introduction

1.1 Background

During the 20th century, food production has seen a number of advances. These
advances have allowed food production to keep pace with worldwide population
growth. Increased productivity has been achieved through industrialization.
Advances in genetics, chemicals, infrastructure, and mechanization have been
major contributing factors.

Even with these advances, agricultural work to this day is still thought of as
physically hard work and it is difficult to attract skilled labor. The work is
often seasonal with long irregular working hours. The working environments
are often harsh and dangerous due to weather, and proximity to chemicals and
heavy machinery. On top of this, farms are often situated in isolated areas.

At the start of the 21st century information technology is now revolutionizing
vehicles by making them more intelligent through automation. The positive
effects of automation have been in: reducing drudgery, reducing skill level, and
giving freedom for the masses.

Automation still has much potential, and might just be the next major step in
making agriculture more productive. Vehicle guidance systems are currently

2 Introduction

having a major impact. Historically, guidance systems have been largely me-
chanic with tactile sensors being actively used for automatic guidance along
rows of corn/maize for more than 30 years. During the last 10 years GPS has
seen a major breakthrough with more and more vehicles being equipped with
this type of system for automatic plowing, seeding, spraying, and harvesting.

This thesis looks at stereo vision sensors as it is enabling for a wide variety
of automation tasks. Stereo vision is gaining acceptance for guidance tasks
such as automatically steering agricultural vehicles and implements along field
structures. Unlike GPS it can actually see the field so can account for local
conditions. Compared to tactile sensors it can see large parts of the field while
avoiding physical contact with sensitive crops. In the future such systems will be
expected to be able to handle more and more situations. This will require being
able to extract and reason about additional information from the sensors. Stereo
vision has a large potential as considerable information about the environment
can be extracted from the images. Fault-tolerance and robustness will be critical
to maintain safe operation.

1.2 Problem Formulation

From a fault-tolerant perspective there is little redundancy in typical vision
guidance systems. Single faults in software, algorithms or in hardware will cause
the system to behave in an ill-defined manner which may jeopardize safety and
potentially cause injury or damage to both humans, crop, and machinery. This
thesis has investigated what can be done to alleviate some of these problems.

Systematic design methods exist and have been demonstrated for obtaining
fault-tolerance in complex sensor systems. Graph-based analysis has in the past
proven to be an efficient tool to obtain diagnostic relations to analyze remedial
actions for technical systems. They have however never considered the vision
dimension. A paradigm in this research is hence that graph-based modeling will
be feasible even for vision-based systems and that they can be used to generate
diagnostic relation.

Vision guidance systems generally work by tracking the 3D profile of field struc-
tures. In order to handle dropout of 3D tracking, faults in classification, or
other artifacts of the vision system, it is stipulated that redundant sensor infor-
mation should be used to diagnose faulty behavior. It should thus be possible
to temporarily allow guidance to continue using a reduced set of sensors when
faults or artifacts occur.

1.3 Stereo Vision Guidance 3

It is of interest to consider how 3D tracking can be enhanced by extracting
supplemental information from the stereo camera. A paradigm is that learning
and mapping can be used to provide additional feed-forward information about
field structures to create redundancy in the 3D tracking.

Sometimes field structures may become flat or their 3D structure may be ill-
defined. In such cases 3D tracking may fail. It is thus of interest to investigate
whether learning algorithms can be used to learn 2D features of the environment
to support 3D tracking.

Mapping is a step that provides an internal representation of the essentials of an
environment. With appropriate mapping information low confidence structures
may still be recognizable. This project has thus investigated the possibility
of representing semi-structured agricultural environments using state-of-the-art
mapping techniques. As mapping requires estimating the position of the vehicle
it has also been investigated how this can be extracted from the camera. A
method known as visual odometry (VO) has been explored for this task.

With data fusion combining immediate observations from different sources such
as mapping and learning there is an imminent risk that single faults in these
components may also cause system failure. An objective of the research pre-
sented here has hence been to also make the data fusion fault tolerant.

1.3 Stereo Vision Guidance

A typical design of a guidance system using stereo vision is exemplified in Figure
1.1. A stereo camera with onboard processing identifies field structures using a
3D tracking algorithm which is subsequently fed into a controller. The type of
field structure to recognize can be configured via the user interface. The field
structures may include but are not limited to: rows of plants, ridges, tramlines,
and swath.

The controller then uses the information provided by the stereo camera to steer
the wheels of the vehicle. This is then used to align the vehicle with the field
structure and allows guidance.

The user interacts with the system through a user interface as well as a safety
subsystem that checks whether the user is sitting in his seat and/or is using the
steering wheel. The user can engage/disengage automatic guidance. In case of
signal loss from the stereo camera an alarm is used to notify the user and the
wheels lock in their current position.

4 Introduction

Figure 1.1: Overview of vision guidance system.

1.3.1 Stereo Vision

Stereo vision perceives depth using triangulation. The distance to a point is
determined by the triangle between the point and where it appears in each of
two images. To do this the two images must be aligned. Given a calibrated
stereo camera the images can be aligned by warping them. This is known as
rectification. This gives two cameras with parallel optical axes and horizontal
epipolar lines. A dense estimation of ranges is then performed at each pixel by
matching along the epipolar lines [65]. This is done using a correlation window
with typical sizes of around 11x11 pixels. The correlation window matches
texture in the two images with each other. The output of the matching process
is a disparity image (Figure 1.3(b)). This gives the image difference between
the position of objects in the two cameras. The horizontal distance from the
image center to the object image is dl for the left image and dr for the right
image (Figure 1.2). Then the disparity value d is given by:

d = dl − dr (1.1)

The transformation between a 3D point M =(X,Y, Z) observed by the stereo
camera and its corresponding coordinate in disparity space ω = (x̄, ȳ, d) in the
left image is then given by:

1.3 Stereo Vision Guidance 5

x̄ = u− u0 = f
X

Z

ȳ = v − v0 = f
Y

Z

d = dl − dr =
f · b
Z

(1.2)

Where (u0, v0) is the optical center of the image in pixels. f is the focal length,
and b is the baseline between the two cameras.

Some filtering is then typically done after the matching on the disparity image
to remove regions of low confidence. These are regions that either could not be
matched between the two images or the match was not unique enough.

Figure 1.2: A simplified view of stereo geometry. Disparity is the offset of the
image location of an object: d = dl − dr. a is the range to an object. b is the
baseline between images. f is the focal length of the cameras.

1.3.2 3D tracking

Tracking of field structures using 3D is typically done by detecting the height
of features in the environment relative to the ground plane [62], [112]. This
can be done either using information about how the camera is mounted or by
estimating the ground plane from the 3D data (paper C).

6 Introduction

3D tracking is most easily performed by labeling pixels in either image based
on their calculated height (Figure 1.3(c)). Shape based template matching can
then be used to recognize the pose of the field structure in the 2D image using
known 3D constraints such as the width and height of the structure (Figure
1.3(d)).

This pose can then be calculated relative to the vehicle ground plane in 3D. A
parametrization of this pose into an angular and lateral deviation of the field
structure relative to the vehicle can be used as input to the controller. In case
of a poor match result then this is also typically signaled to the controller.

1.3.3 Experimental Platforms

The work in this thesis has been conducted on a number of different platforms.
Specifically, an outdoor robot and an autonomous tractor have been used to test
algorithms on before these were applied to a tractor with a guidance system.

The outdoor robot used was part of the Defense Advanced Research Project
Agency (DARPA) Learning Applied to Ground Robots (LAGR) program. The
project focused on applying learning to robots navigating in an outdoor environ-
ment with the ambitious goal of achieving vision-only autonomous traversal of
off-road terrain. This gave the possibility to test state-of-the-art algorithms for
mapping and learning on a working fully autonomous platform (Figure 1.4(a)).
The work was carried out at the Stanford Research Institute (SRI), USA.

Research was also conducted on an autonomous tractor provided by University
of Copenhagen, Faculty of Life Sciences (KU Life) (Figure 1.4(b)). A project
entitled ”Safe and Reliable” was carried out on the platform in parallel with the
thesis work which focused on safe navigation in an orchard environment. This
gave a unique opportunity to test and further develop algorithms previously
developed for LAGR, in an agricultural environment.

CLAAS Agrosystems provided a tractor with research primarily focused on the
agricultural application of baling (Figure 1.4(c)). This vehicle was used during
the summer months to test the applicability of the developed algorithms on a
commercial guidance system.

1.4 Abbreviations 7

1.4 Abbreviations

Abbreviation Explanation
AI Artificial Intelligence
CenSurE Center Surround Extrema
CIE Commission Internationale d’Eclairage
DOF Degrees Of Freedom
DARPA Defense Advanced Research Project Agency
ECEF Earth Centered Earth Fixed coordinate system
EM Expectation-Maximization
FAST Features from Accelerated Segment Test
GPS Global Positioning System
GMM Gaussian Mixture Model
GHMM Gaussian Mixture emitting Hidden Markov Models
IMU Inertial Measurement Unit
JM Jeffreys-Matusita
LAB L for Lightness and A,B for the color opponent channels
LAGR Learning Applied to Ground Robots
LBP Local Binary Patterns
LM Levenberg-Marquardt, or Leung-Malik
LRT Likelihood Ratio Test
MU-SURF Modified Upright Speeded Up Robust Features
NCC Normalized Cross Correlation
NED North East Down coordinate system
RANSAC RAndom SAmpling Consensus
RGB Red, Green, and Blue (image color channels)
SIFT Scale-Invariant Feature Transform
SLAM Simultaneous Localization And Mapping
SURF Speeded Up Robust Features
SAD Sum of Absolute Differences
SBA Sparse Bundle Adjustment
SVM Support Vector Machines
U-SURF Upright Speeded Up Robust Features
VO Visual Odometry
WGN White Gaussian Noise

8 Introduction

(a) (b)

(c) (d)

(e)

Figure 1.3: (a) Left image from stereo camera. (b) Disparity image with warmer
colors indicating shorter range. (c) Pixels in the left image labeled with height
above the ground plane. (d) 3D tracking showing borders of detected field
structure. (e) 3D points estimated by stereo.

1.4 Abbreviations 9

(a) (b)

(c)

Figure 1.4: (a) The LAGR robot used to test outdoor vision algorithms at
SRI. (b) The autonomous tractor provided by KU Life. Its purpose is to con-
duct research in autonomous spraying and mowing of orchards. (c) The semi-
autonomous CLAAS tractor. The stereo camera is configured to follow cut crop
in the form of swath. A baler attached to the back is then used to process the
swath into bales.

10 Introduction

Chapter 2

Contributions

This thesis has been organized as a collection of papers. These have been refor-
matted and form individual pieces of work at the back of the thesis. The four
following chapters summarize the findings in the included papers. This chapter
aims at pinpointing the novel elements presented in this thesis. For a review of
related work the reader is advised to consult the chapters relating to a particular
subject.

Novelty exists at different levels in this thesis. At the application level much of
what is presented here is novel since very little research has previously been done
in using online learning and mapping in agriculture. In robotics, learning and
mapping have been researched for decades. Only little efforts have however been
done in applying them to stereo vision (specifically in outdoor environments).
With this in mind, it has been investigated how to enhance 3D vision guidance
by adding:

• Learning for recognizing color and texture.

• Visual odometry for position estimation.

• Mapping for tracking field structures over time.

• Fault-tolerance for handling faults in vision guidance systems.

12 Contributions

A brief summary of the contributions will now be discussed for each of these
topics.

2.1 Learning

A compact color and texture descriptor has been developed to describe local
color and texture variations in an image. It was initially used to perform online
segmentation of natural images. The method has been compared to other
state-of-the-art descriptors and has shown to be both faster and more robust at
discriminating between textures than other methods. It uses a texton approach.
A novel method for learning the texture of field structures aided by 3D vision
is demonstrated.

A stochastic automata is also introduced for classification of outdoor environ-
ments. A new signal quantisation approach is used to learn optimal thresholds
for classifying environments. The automata is compared to other state-of-the-
art approaches in terms of training and classification times, as well scalability.
It is found to be competitive with the other approaches while allowing easy
inclusion of vehicle motion and spatial connectiveness of environments.

Learning is presented in Chapter 3.

Dissemination has been done in papers A, C, F and G.

2.2 Visual Odometry

Visual Odometry (VO) is a method for vision based positioning based on track-
ing features in an image. This provides additional position information and
is enabling for mapping. The developed algorithm has shown to be more pre-
cise than existing algorithms while still being computable at frame rates. This
precision has come by introducing:

• a novel scale-invariant feature called CenSurE.

• a novel method for matching features called MU-SURF.

Using CenSurE and MU-SURF it is demonstrated that features can be tracked
for longer with fewer failed image matches, and better motion estimates. This

2.3 Mapping 13

was done by comparing different types of state-of-the-art features for outdoor
VO. Such an analysis has previously not been done.

The use of 6 degrees of freedom (DOF) VO in agriculture has not previously
been demonstrated.

Lastly, an optimization for quick motion hypothesis rejection in the VO algo-
rithm is introduced by enforcing a geometric consistency check.

Visual Odometry is presented in Chapter 4.

Dissemination has been done in papers B,C and F.

2.3 Mapping

It is demonstrated how maps can be created in agriculture using VO and a
dynamic tree-based decomposition of space known as octrees. This goes far
beyond the state-of-the-art in agriculture in terms of precision, scalability, and
size.

Modeling of field structures using splines and clothoids are demonstrated for
vision guidance.

Diagnosing artifacts in stereo algorithms is also shown using a novel method re-
lying on comparing redundant range measurements taken from different camera
positions.

Mapping is presented in Chapter 5.

Dissemination has been done in papers D, E and F.

2.4 Fault-tolerance

It is demonstrated how systematic methods in fault-tolerant design can readily
be applied to a vision system to obtain fault-tolerance. It is shown how a
behavioral model can be setup to describe a fault-free system including stereo
vision, GPS, and inertial sensors. Such an analysis has not previously been done
and can be considered novel by including the stereo vision sensor.

14 Contributions

Using statistical change detection algorithms for diagnosing faults in a vision
guidance system has previously not been demonstrated in literature.

It is also shown how learnt texture information can be used to provide redun-
dancy when 3D recognition fails. While the 3D recognition is working new
texture models are learnt and evaluated. This provides a novel method for self-
supervised learning which has not previously been demonstrated in agriculture.

Fault-tolerance is presented in Chapter 6.

Dissemination has been done in papers D, E and F.

Chapter 3

Learning

Learning can be seen as an automatic method for building statistical models of
data which would otherwise have been difficult or impossible to do by hand.

Learning is important for automation in agriculture. Experienced drivers have
plethora of knowledge on which to draw upon. Such knowledge cannot be man-
ually coded and will require learning from large amounts of training data. Field
situations vary from day to day. For example crop appearance change daily and
are also different for different parts of a field. These situations cannot be known
beforehand so will require in-field learning.

This thesis has looked at learning for recognition and has concentrated on meth-
ods to learn texture models of field structures. An underlying assumption has
been that this information could not be learnt offline and instead tracking al-
gorithms must be adapted online to the in-field situations at hand. By learning
such texture models it is possible to reinforce 3D vision and thereby provide
redundancy in the system.

16 Learning

3.1 Related Work

For outdoor texture recognition it has been demonstrated that texture could
be used to identify different types of terrain [5]. In this paper a stereo camera
was used to extract patches of terrain which were subsequently compared to a
learnt texton texture database containing different types of terrain (sand, soil,
grass, gravel, asphalt, and wood-chip). In [42] a similar approach was used to
extend navigable terrain beyond stereo range by learning nearby textures. In
both cases offline learning was used to create filter banks that could be used to
discriminate between different textures. These methods are slow whereby they
are currently unsuitable for real-time navigation. In [130] texture was modeled
using Gabor filters which were used to discriminate between different kinds of
weeds in an agricultural environment.

[5] and [42] used color in conjunction with texture and 3D information. In [105]
spatial and temporal context is also integrated which should allow better class
discrimination (in this case between ground, buildings, and different objects).

Pure color based recognition has had considerable use in agriculture for seg-
menting plants such as in [100] and [131].

Most of the methods in literature focus on offline learning. Two notable excep-
tions are [42] and [132] who both use 3D to train a color/texture classifier online
and then use it to classify outside of 3D range. One of the reasons for this is
that it is difficult to come up with an offline derived model that can handle all
expected variation.

3.2 Learning Algorithms

Creating accurate mathematical models of nature has proven difficult for re-
searchers. After decades of research, Artificial Intelligence (AI) research has
failed to come up with such models. What AI in turn has given us are sta-
tistical approaches for modeling variation in natural systems. These statistical
approaches are commonly referred to as learning. Learning algorithms excel at
data-mining large amounts of data for establishing patterns which can subse-
quently be used for classification.

For image-based recognition the first step in learning usually involves manually
specifying basic image statistics that may be useful for classification. This dras-
tically reduces the dimensionality of the problem but leaves the question open

3.2 Learning Algorithms 17

about what basic statistics to use. Some basic statistics could be mean, vari-
ance, and/or first and second derivatives computed from pixel data over small
neighborhoods.

There are many forms of learning but the work here will split algorithms into
two general categories: unsupervised and supervised.

A typical use of unsupervised learning is for clustering. K-means is an unsuper-
vised clustering method that partitions observations into K-clusters in which
each observation belongs to the cluster with the nearest mean [50]. Another
unsupervised clustering method is the use of Gaussian Mixture Model’s (GMM)
which use an Expectation-Maximization (EM) algorithm to estimate the distri-
bution of data as being composed of a number of Gaussians. The approaches
are unsupervised because labels of which observations belong to what clusters
is not needed.

State-of-the-art for supervised learning include Support Vector Machines (SVM),
Adaboost, and Gaussian mixture emitting Hidden Markov Models (GHMM).
SVM uses hyperplanes to separate classes and for subsequent classification
[19],[25]. Adaboost is a boosting technique which linearly combines simple
weak classifiers on the basis of classification performances on a training set [35].
GHMM’s consist of a discrete time and space Markov process that contains
hidden parameters and emits observable outputs [106].

The main problem with SVM’s and GHMM’s is that they are quite slow when
working with high dimensional data. Adaboost is fast but does not provide
information about the confidence of the classification. This makes the method
unsuitable for supervision and diagnosis tasks where low confidence estimates
should not trigger false alarms.

In paper G a new supervised learning method is introduced for training a clas-
sifier to discriminate between different types of agricultural environments. The
method relies on using a probabilistic model on quantized data. The core of the
probabilistic model is built around a stochastic automata. A formal analysis
of using quantized data has not previously been done. The method is com-
pared to SVM’s, GHMM’s, and Adaboost. It is shown how data from both
vision and laser can be classified over time to discriminate between different
orchard environments. The stochastic automata shows similar performances to
the other state-of-the-art methods. Compared to general learning algorithms
this method has some clear advantages. It allows for straightforward inclusion
of how dynamical systems evolve over time (vehicle motion, and connections
between environments) which is important for robotics.

18 Learning

(a) (b)

(c) (d)

Figure 3.1: (a) A training image. (b) The 64 textons extracted from the training
image. (c) Training image labeled with the textons. (d) Another image labeled
using the same textons.

3.3 Learning Texture

Modeling natural textures is a difficult problem because they are very varied.
The concept behind the approach presented here is that the texture patterns in
a given environment can be learnt online. This should theoretically allow faster
and better discrimination between textures in an environment since classification
can be optimized for these specific patterns.

3.3.1 Textons

The approach adopted relies on intensity gradients computed over small neigh-
borhoods (E.g. 3×3 pixels). Such gradients have been shown to be quite robust
to lighting changes and are also used by other descriptors such as SIFT [78]. In
paper A it is proposed to combine intensity gradients with a texton approach
that also allows inclusion of color information. It is demonstrated to be supe-
rior to other state-of-the-art methods: Local Binary Patterns (LBP) [81], RGB
Textons [5], and the Leung-Malik (LM) Filter Bank [74].

3.3 Learning Texture 19

The image is first transformed to the CIE*LAB colorspace using an efficient
lookup table to do the RGB to LAB conversion. Colors in LAB are more per-
ceptually linear than in the RGB space, thereby resulting in better clusters.
This gives the brightness information L and the color channels a, b. The tex-
ture information is taken as the surrounding pixel intensities minus the center
intensity. Each pixel location pi in the image can then be represented using the
descriptor:

pi =

W1 ∗ Lc

W2 ∗ ac

W2 ∗ bc
W3 ∗ (L1 − Lc)

...
W3 ∗ (L8 − Lc)

(3.1)

Here (Lc, ac, bc) is the color of the center pixel, and L1, L2, ..., L8 are the in-
tensities of the surrounding pixels in a 3 × 3 neighborhood. The set of weights
{W1 = 0.5,W2 = 1,W3 = 0.5} is used to balance how much to rely on color, tex-
ture, and brightness for the clustering. These were set as to weigh chrominance
higher than luminance. Also, since texture takes up many of the descriptor rows
it must be down-weighted so the color still has an impact on the clustering. The
assumption here is that in a local neighborhood the color does not vary much, so
including the color channels for all 3×3 pixels does not provide much additional
information.

Textons are a set of mean textures (represented by a vector of the intensity
gradients and color) extracted by a K-means algorithm on a large set of these
descriptors (acquired from one or more training images). The K-means algo-
rithm then finds the set of textons µj that partitions the descriptors into k sets
S = S0, S1, ..., Sk by trying to minimize:

S∗ = argminS

k∑

j=1

∑

pi∈Sj

‖pi − µj‖2 (3.2)

where pi are the descriptors in the training image(s) and Sj is the set of de-
scriptors belonging to cluster j out of k clusters.

An illustration of extracted textons is given in Figure 3.1. Each pixel neighbor-
hood in an image can then be labeled as belonging to a texton by comparing its

20 Learning

descriptor to the set of textons and finding the nearest one (Euclidean distance).
For the experiments shown in Figure 3.1 a total of k = 64 textons were used.

Let p(x, y) be the texton descriptor at row x and column y in an image. Then
the texton labeled image L(x, y) assigns a label to a pixel depending on which
set its texton descriptor belongs to:

L(x, y) = j, p(x, y) ∈ Sj (3.3)

The idea is that the textons that best describe an image area create a unique
signature that can subsequently be used for recognition. The labeling of image
pixels reduces the input dimensionality of the image (E.g. 24bit, 3 color channels
ranging from 0-255) to a lower dimensional space consisting of a single channel
with values 1 − k. This first step causes some generalization of the texture
patterns. K-means was chosen because it was very fast.

3.3.2 Texton Histograms

Histograms of the occurrence of textons in different regions of the image is
used as the basis for comparing similarity between textures. By constructing
histograms geometrical constraints can be relaxed so that textons do not have
to follow some specific pattern but just need to occur equally as much for two
textures to be the same. Histograms can be made quite robust to noise by using
enough samples.

3.3.2.1 Histogram Computation

In this work histograms of texton occurrence have been computed over (2n+1)×
(2n + 1) pixel neighborhoods (n = 16) which corresponds roughly to 1% − 2%
percent of the image size. Since this is usually done in a dense manner across
an image it was important that this could be done efficiently. The method
makes use of integral images to efficiently compute histograms in constant time,
independent of window size [140, 76].

Integral images Ij(x, y) are constructed for each texton (j = 1, ..., k).

Ij(x, y) =

x∑

x′=0

y
∑

y′=0

{
1, L(x′, y′) = j
0, L(x′, y′) 6= j

(3.4)

3.3 Learning Texture 21

The integral image is computed recursively, requiring only one scan over the
image. Once the integral image is computed, it takes only two additions and two
subtractions to calculate the occurrence of a texton over any upright, rectangular
area, independent of its size. Let oj(x, y) be the texton occurrence at pixel x, y
for texton j then:

oj(x, y) = Ij(x − n− 1, y − n− 1) − Ij(x− n− 1, y + n) (3.5)

−Ij(x + n, y − n− 1) + Ij(x+ n, y + n)

Negative indexes are treated by padding the image with zeros. The histogram
of texton occurences h at pixel x, y is then:

h(j) = oj(x, y), j = 1, ..., k (3.6)

3.3.2.2 Histogram Comparison

To compare the similarity between two textures involves comparing how similar
their histograms are. This has been explored in papers A and F. A normalized
histogram represents a probability distribution so similarity measures typically
used to compare probability distributions can be used: Kullback Leibler di-
vergence [69], chi-square divergence [38], earth-movers distance [114], and Bat-
tacharrya distance [54]. These methods are however non-trivial to use for high
dimensional distributions. Simple distance measures (such as SAD and Eu-
clidean distance) seemed to offer the best ratio of complexity versus performance
over the other methods. In the work presented here the SAD distance was used.

Given two histograms h1 and h2 the distance between them is (defined by the
⊕ operator):

h1 ⊕ h2 =
k∑

j=1

|h1(j) − h2(j)| (3.7)

22 Learning

3.4 Learning Field Structures

Learning a texton model for a specific environment is performed unsupervised.
To recognize field structures some information must be supplied so a classifier
can know what to look for. A self-supervised method was proposed in paper A
for recognizing outdoor structures. It relies on clustering to find areas of the
image with a similar texture. Recognition of field structures is then done by
identifying a set of areas that have a geometric shape similar to the structure.
This method relies on tight geometric constraints for reducing false positives.
Some field structures vary considerably in shape, which reduces the usefulness
of this method.

Instead in paper F it is proposed to relax some of these geometric constraints
and instead use 3D vision to label data that can be used for training a texture
classifier. This follows the trail of thought given in [42] and [132] for augmenting
3D information with image-based perception.

The algorithm runs through the following steps:

1. Learn textons from training image.

2. Construct texton histograms for each pixel location.

3. Label histograms using 3D vision.

4. Learn a texture model based on the labeled histograms.

Given a texton histogram h extracted at a given pixel. The classification task
then becomes in determining which of two hypotheses the histogram belongs to:
Hs for ”field structure” and Hn for ”not field structure”.

The likelihood ratio is then a method to decide between the two hypotheses [56]:

L (h) =
p (h;Hs)

p (h;Hn)
(3.8)

To estimate the likelihood of either hypothesis the probability density function
(PDF) must be modeled. The histogram distributions for textons follow com-
plicated distributions. In Figure 3.3 it is clear that different parts of the ground
may have very different texton histograms even within the same image.

3.4 Learning Field Structures 23

In [132] it was demonstrated that GMM’s could be used to model the distribu-
tion of colors of a dirt road. Each Gaussian could be made to recognize different
sets of colors and allow modeling of multi-modal color distributions by mixing
the Gaussians. RGB color data is 3 dimensional which is much smaller than
a texton histogram with 64 dimensions. Modeling texture even with just one
Gaussian was found too slow on current hardware and a number of Gaussians
seem needed to represent the distributions well.

A compromise was achieved by modeling the texture histograms as a number
of K-means clusters. A major penalty in doing this is that the density of the
distributions is not modeled. Likelihood is then just approximated by the dis-
tance from a histogram to either of the cluster centers. Although this is a crude
approximation it does allow for very fast learning and classification.

The output of the 3D vision tracking algorithm allows the histograms at each
pixel in an image to be labeled as belonging to either Hs or Hn. Then these
histograms are clustered separately for each hypothesis using K-means with
m = 3 clusters.

Then Hs is Hs = {hs,1,...,hs,m} and Hn = {hn,1,...,hn,m} for Hn. A graphical
illustration of this training process is given in Figure 3.2.

The classifier is then formulated as a distance ratio to the nearest cluster under
each hypothesis:

d =
min(h ⊕ hn,1,...,h ⊕ hn,m)

min(h ⊕ hs,1,...,h ⊕ hs,m)
(3.9)

The distance is computed for each pixel in the image. A geometrical analysis is
then used to detect if a field structure is present in the image. An example of
classifying an image is given in Figure 3.3.

24 Learning

Figure 3.2: Let x be training samples for Hs and o for Hn (as given by 3D
vision). Then this can be represented by a set of histogram clusters with Hs =
{hs,1,...,hs,m} and Hn = {hn,1,...,hn,m} respectively. This is here illustrated
for the two dimensional case with k = 2 textons and m = 3 histogram centers.
Using a Voronoi tessellation a border (illustrated in red) shows points that are
equidistant to the two hypotheses. In higher dimensions this border forms a
series of hyperplanes.

3.4 Learning Field Structures 25

(a) (b)

(c) (d)

(e)

Figure 3.3: (a) An image from the stereo camera. (b) Texton classification.
Each pixel color represents a different texton. (c) The stereo camera image with
a transparency mask based on the swath classification. (d) Swath classification
based on texture with intensity representing the strength of classification. (e)
The texture classification integrated into the 3D mapping.

26 Learning

Chapter 4

Visual Odometry

Obtaining reliable pose estimates for agricultural vehicles can be difficult. How-
ever such information is essential for mapping.

Current systems for positioning in agriculture typically use GPS with more ex-
pensive systems integrating inertial sensors for estimating the pose of a vehicle.
Such systems are however highly dependent upon having a good GPS signal.
GPS signals may dropout due to satellite occlusion or exhibit artifacts due to at-
mospheric conditions or multi-path errors where signals are bounced off nearby
objects.

A cheap redundant source of position information in agricultural vehicles is
wheel odometry where encoders measure the wheel revolutions to estimate the
vehicle pose. Such systems are generally robust but suffer if the vehicle slips or
tire pressures change.

A method for estimating the vehicle pose using stereo vision is commonly re-
ferred to as Visual Odometry (VO). This chapter summarizes the research con-
ducted in conjunction with developing high accuracy VO for outdoor use.

28 Visual Odometry

4.1 Related Work

VO systems use structure-from-motion methods to estimate the relative position
of two or more camera frames, based on matching features between those frames.
There have been a number of recent approaches to VO [97, 82, 53], including
motion estimation on the Mars vehicles [86]. The system presented here is most
similar to the recent work of Mouragnon et al. [93] and Sunderhauf et al. [128],
which exploit bundle adjustment techniques to obtain increased precision.

VO accumulates error over distance whereby GPS is needed to correct the error
as seen in [1] and for an agricultural application in [4].

4.2 Overview

The used VO system works by matching sparse features between frames (Figure
4.1). The algorithm follows a series of steps as previously proposed in literature
[67, 1, 2]:

1. Distinctive features are extracted from each new frame in the left image.
Standard stereo methods are used to find the corresponding point in the
right image.

2. Left-image features are matched to the features extracted in the previous
frame.

3. From these uncertain matches, a consensus motion estimate is recovered
using a RANdom SAmpling Consensus (RANSAC) method [32]. Sev-
eral hundred relative motion hypotheses are generated by randomly se-
lecting three matched non-collinear features, and then scored using pixel
re-projection errors.

4. If the motion estimate is small and the percentage of inliers is large then
the image is discarded to avoid integrating errors caused by composing
such small motions.

5. The motion estimate is refined further using non-linear minimization on
the re-projection errors.

The research conducted in the various steps of the algorithm will now be dis-
cussed.

4.3 Feature Detection 29

(a) (b)

(c) (d)

Figure 4.1: (a) Sparse features are detected in an image. (b) Features are then
matched to a previous image by comparing image patches in local neighbor-
hoods. (c) RANSAC is used to identify false matches using a consensus motion
estimate. (d) The motion estimate is then refined using the correct matches.

4.3 Feature Detection

When a new pair of images are acquired by the stereo camera the first step
is to detect features in these images that can be used for tracking the camera
movement.

In paper B experiments were done in comparing different state-of-the-art feature
detectors for outdoor VO. Two important criteria have been established for
comparing feature performance:

• Stability: the persistence of features across viewpoint change

• Accuracy: the consistent localization of a feature across viewpoint change

The performance of commonly used features (FAST [110], SIFT [78], SURF [46],
and Harris [45, 120]) have been compared to a new feature type called CenSurE

30 Visual Odometry

(a) (b)

Figure 4.2: The Laplacian of Gaussian can be efficiently approximated using a
bi-level octagonal kernel. (a) Laplacian of Gaussian. (b) CenSurE feature.

(Center Surround Extrema). CenSurE uses scale-space extremas of a center-
surround response as features. This is done by approximating the Laplacian
of Gaussian operator with a bi-level octagonal kernel that can efficiently be
computed at all scales (Figure 4.2).

Scale invariant features in general work by using down-sampled images to com-
pute features at larger scales. An important finding of the research is that this
directly affects the accuracy (localization) of features at larger scales. The Cen-
SurE feature provides a solution for this by finding features at all scales in the
original image.

The CenSurE feature is also shown to be much faster to compute than other
scale-space approaches. For visual odometry, CenSurE features result in longer
track lengths, fewer frames where images fail to match, and better motion esti-
mates compared to the other methods.

4.3.1 CenSurE Computation

The octagon shape used to approximate the bi-level Laplacian of Gaussian op-
erator is actually one in a series of approximations of using a circle as shown
in Figure 4.3. The box filter (Figure 4.3(d)) has previously been shown to be
computed efficiently using integral images [140, 76]. This has been extended to
cover more complicated shapes. By using an octagon the feature becomes more
invariant towards rotations in the image plane compared to the box filter.

An integral image I(x, y) is an intermediate representation for the image and
contains the sum of gray scale pixel values of image N with height y and width

4.3 Feature Detection 31

(a) (b) (c) (d)

Figure 4.3: Progression of Center-Surround bi-level filters. Successive filters
(octagon, hexagon, box) have less symmetry.

x:

I(x, y) =
x∑

x′=0

y
∑

y′=0

N(x′, y′) (4.1)

The integral image is computed recursively, requiring only one scan over the
image. Once the integral image is computed, it it takes only two additions
and two subtractions to calculate the sum of the intensities over any upright,
rectangular area, independent of its size (Eq. 3.5).

Modified versions of integral images can be exploited to compute the other
polygonal filters. The idea here is that any trapezoidal area can be computed
in constant time using a combination of two different slanted integral images,
where the sum at a pixel represents an angled area sum. The degree of slant is
controlled by a parameter α:

Iα(x, y) =

y
∑

y′=0

x+α(y−y′)
∑

x′=0

N(x′, y′) (4.2)

When α = 0, this is just the standard rectangular integral image (Eq. 4.1). For
α < 0, the summed area slants to the left; for α > 0, it slants to the right.
Slanted integral images can be computed in the same time as rectangular ones,
using incremental techniques.

Adding two areas together with the same slant determines one end of a trapezoid
with parallel horizontal sides; the other end is done similarly, using a different
slant. Each trapezoid requires three additions, just as in the rectangular case.
Finally, the polygonal filters can be decomposed into 3 trapezoids for an octagon.

32 Visual Odometry

4.3.2 Non-maximal Suppression

The response of the CenSurE feature is calculated at seven different scales as
detailed in paper B for every pixel in the left image. Different weights are like-
wise assigned to the sums of the inner and outer regions of the filter depending
on the feature scale. A non-maximal suppression is then done by comparing
responses in small 3× 3 pixel neighborhoods and across scale. The response for
a given scale is suppressed (response set equal to zero) if there exists a response
within this neighborhood for one of the seven scales that has a higher value.
This is because partial responses will be exhibited near maxima responses.

A strong response indicates a feature that is likely repeatable and thus more
likely to be tracked. Therefore a threshold is used to remove weak responses.
The strong responses that are left are then used as features.

4.4 Feature Matching

Feature matching involves matching features between two images. This is sub-
sequently used for estimating the camera pose between the images. Match-
ing occurs by comparing the texture of features in a local neighborhood and
finding the best match. Similar to feature detectors the goal is to have the
matching process be invariant towards different influences: affine transforma-
tions, lighting, and localization. To maximize the number of correct matches
the matching scheme must generate a unique signature for each feature. Two
simple approaches to matching is to use Sum of Absolute Differences (SAD)
or Normalized Cross Correlation (NCC). These approaches are simple in that
they work with the image pixels directly. More advanced approaches such as
the DAISY descriptor [134], SURF [46], and SIFT [78] construct a vector based
descriptor using image gradients computed from the image patches which are
then subsequently used to match features.

SAD and NCC are relatively sensitive to in-plane rotations (roll), larger changes
in perspective, and inaccuracies in feature localization. The problems related to
roll and perspective changes become more significant as the region size increases.
For scale-invariant features it is desirable to be able to match features across
scale changes.

However, the other methods in literature are too slow for real-time implemen-
tation. In paper B a modification to U-SURF [46] called MU-SURF is proposed
(Modified Upright SURF). MU-SURF is demonstrated to be faster and also bet-

4.4 Feature Matching 33

ter than U-SURF for matching features by accounting for boundary conditions
in the descriptor. This has allowed it to be used for real-time applications.

The SURF descriptor builds on from the SIFT descriptor by encoding local gra-
dient information. It uses integral images to compute Haar wavelet responses,
which are then summed in different ways in 4 × 4 subregions of the region to
create a descriptor vector of length 64.

4.4.1 MU-SURF

Given a CenSurE feature calculated at scale s the feature descriptor used for
matching is calculated by first extracting an image patch centered around the
feature of 24s by 24s pixels. The Haar wavelet responses in the horizontal (dx)
and vertical (dy) directions are then computed for each 24 × 24 point in the
region with filter size 2s by first creating a summed image, where each pixel is
the sum of a region of size s (Figure 4.4(a)).

The Haar wavelet output results in four fixed-size dx,dy, |dx| and |dy | images
that have the dimensions 24×24 pixels irrespective of the scale (Figure 4.4(b)).

Each dx,dy, |dx| and |dy| image is then split into 4× 4 square overlapping subre-
gions of size 9× 9 pixels with an overlap of 2 pixels with each of the neighbors.
For each subregion the values are then weighted with a Gaussian (σ1 = 2.5) cen-
tered on the subregion center and summed into the descriptor vector for each
subregion: v = (

∑
dx,
∑
dy,
∑ |dx| ,

∑ |dy|). This is an extension compared
to the standard SURF descriptor. This makes the matching performance more
robust when pixels shift from one subregion to another due to affine transfor-
mations on the feature texture. This extension is known in the literature from
the SIFT descriptor.

Each subregion vector is then weighted using another Gaussian (σ2 = 1.5)
defined on a mask of size 4×4 and centered on the feature point (Figure 4.4(c)).

Each subregion value is then stored in the form of a normalized vector.

Features can then be matched by finding the nearest vector using Euclidean dis-
tance. A threshold on the distance is used to remove features that are matched
with insufficient confidence.

34 Visual Odometry

Summed blocks

Original

(a)

dy

|dx| |dy|

dx

(b)

∑
dx

∑
dy

∑ |dx| ∑ |dy|

(c)

Figure 4.4: Modified U-SURF descriptor (MU-SURF). (a) Scaling is removed by
creating a summed image where each pixel is the sum of a region of size s. (b)
The Haar wavelet output results in four fixed-size dx,dy, |dx| and |dy | images.(c)
Each image is then split into 4×4 square overlapping subregions. Two Gaussian
weights are then applied, one with center around each subregion, and one with
center in the image. The output is finally summed for each subregion to create
an 8 × 8 dimensional descriptor.

4.5 Motion Estimation

Using a RANSAC method a consensus motion estimate is recovered using the
matched features [32]. RANSAC allows such a motion estimate to be robustly
recovered even if a large percentage of the features have been wrongly matched.

The RANSAC algorithm works by iterating over the following steps (Algorithm
4.1):

1. Select 3 matched non-collinear features at random.

2. Check geometrical consistency of matches.

3. Generate motion hypothesis for the features.

4. Score hypothesis using re-projection errors.

The hypothesis with the largest score forms a consensus estimate of the most
valid camera motion by checking how many feature matches agree with the
motion.

The geometrical consistency check is novel and has previously not been pub-
lished.

4.5 Motion Estimation 35

4.5.1 Hypothesis Generation

Let M and M ′ be a 3D point before and after a rigid transformation. Then
this transformation in 3D space can be defined by a rotation R and translation
t:

[
M ′

1

]

=

[
R t
0 1

] [
M
1

]

(4.3)

Three features can then be used to estimate R and t by calculating the least
squares solution. This can be done efficiently using Singular Value Decomposi-
tion (svd()) as shown by [137]. With n = 3 matched non-collinear features the
mean of the 3D points are given by:

µM =
1

n

n∑

i=1

Mi

µM ′ =
1

n

n∑

i=1

M ′
i (4.4)

The covariance matrix of the 3D points is then:

∑

M ′M
=

1

n

n∑

i=1

(

M
′

i − µM
′

)

(Mi − µM)
T

(4.5)

Let UDV T = svd(
∑

M ′M) then:

R = USV T

t = µM ′ − RµM (4.6)

36 Visual Odometry

Where S is given by:

S =

I, rank(
∑

M ′M) = n− 1 ∧ det(U) det(V) = 1
diag(1, 1, ..., 1,−1), rank(

∑

M ′M) = n− 1 ∧ det(U) det(V) = −1
I, rank(

∑

M ′M) > n− 1 ∧ det(
∑

M ′M) ≥ 0
diag(1, 1, ..., 1,−1), rank(

∑

M ′M) > n− 1 ∧ det(
∑

M ′M) < 0
(4.7)

4.5.2 Geometric Consistency Check

A large part of the time in RANSAC is spent generating motion hypotheses. To
speed it up one must realize that for a change in pose to be valid there must not
be a scale change (only rotation and translation). This corresponds to check-
ing that the distance between two points in the hypothesis generation does not
change. Given three 3D points: {M0,M1,M2} that have been matched corre-
spondingly to three points in another image: {M ′

0,M
′
1,M

′
2} then the Euclidean

distance between the features is checked for scale change. If the change in scale
is more than 10% of the distance the motion hypothesis is rejected.

Formally, this can be expressed by a function G that evaluates a logical expres-
sion:

G(M0,M
′
0,M1,M

′
1,M2,M

′
2) = Di < 1.1 ∧Di > 0.9, i = {0, 1, 2} (4.8)

Where Di is given by:

D0 =
‖M0 −M1‖
‖M ′

0 −M ′
1‖
, D1 =

‖M0 −M2‖
‖M ′

0 −M ′
2‖
, D2 =

‖M1 −M2‖
‖M ′

1 −M ′
2‖

(4.9)

This check has previously not been discussed in the literature.

4.5.3 Hypothesis Evaluation

Voting is used in the RANSAC algorithm to decide which hypothesis is the best.
For each of several hundred hypotheses the number of inlier features is counted

4.5 Motion Estimation 37

by re-projecting features from one image into the other. The best hypothesis is
the one with the most inliers. This is done in disparity space as this space has
isotropic noise independent of feature distance and location in the 2D image.

The 3D transformation in disparity space can be described by:

[
ω
1

]

=

x̄
ȳ
d
1

= Γ

X
Y
Z
1

= Γ

[
M
1

]

(4.10)

where the transformation Γ is:

Γ =

f 0 0 0
0 f 0 0
0 0 0 f · b
0 0 1 0

(4.11)

Let w and w′ be the corresponding transformation in disparity space. Then by
substitution [27]:

Γ−1

[
w′

1

]

≃
[

R t
0 1

]

Γ−1

[
w
1

]

[
w′

1

]

≃ Γ

[
R t
0 1

]

Γ−1

[
w
1

]

[
w′

1

]

≃ H (R, t)

[
w
1

]

(4.12)

The symbol ≃ denotes the equality up to a scale factor.

A feature is then counted as an inlier if:

‖w′ − w′′‖ < t (4.13)

where t = 2 is a threshold in pixels defining the maximum allowable error in
the re-projection. w′′ is the re-projected point of w under a motion hypothesis
setup using H (R, t).

38 Visual Odometry

Algorithm 4.1 RANSAC Motion Estimation

k := 0
scoremax := 0
while (k < kmax) do
k := k + 1;
score := 0
pick at random 3 matched features: (Mi,M

′
i), i = 0, 1, 2

if G(M0,M
′
0,M1,M

′
1,M2,M

′
2) then

Solve

[
M ′

0 M ′
1 M ′

2

1 1 1

]

=

[
R t
0 1

] [
M0 M1 M2

1 1 1

]

for j = 0 to N − 1 do
[
w′′

j

1

]

≃ H (R, t)

[
wj

1

]

score := score+ (
∥
∥w′

j − w′′
j

∥
∥ < t)

end for
end if
if score > scoremax then
scoremax = score
Rbest = R
tbest = t

end if
end while

4.6 Motion Refinement 39

4.6 Motion Refinement

The RANSAC motion estimate can be refined further by minimizing the re-
projection error. This is a non-linear least squares problem due to the use of
Euler angles and can be solved using non-linear minimization algorithms.

A popular algorithm for motion refinement is the Levenberg-Marquardt (LM)
algorithm [80]. LM provides a numerical solution to minimizing a function over
a space of input parameters. It works by interpolating between a Gauss-Newton
algorithm and the method of gradient descent.

Given a vector function f that is wanted minimized then the general non-linear
least squares problem can be formulated as:

x∗ = argminx {F (x)} (4.14)

where:

F (x) =
1

2

m∑

i=1

(fi (x))
2

=
1

2
‖f (x)‖2

=
1

2
f (x)

⊤
f (x) (4.15)

To minimize the re-projection error between two frames then f is the vector
function that calculates the re-projection error for each feature:

f (x) =

f0 (x)
f1 (x)

...
fN−1 (x)

(4.16)

where:

fi (x) = w′
i − w′′

i (4.17)

N is the number of inliers after RANSAC and w′′
i is wi re-projected after un-

dergoing a transformation defined by x.

40 Visual Odometry

x is R and t parameterized by Euler angles {roll ϕ pitch θ, yaw ψ}, and three
translational components {tx,ty,tz} respectively:

x = [ϕ, θ, ψ, tx, ty, tz] (4.18)

Then the LM algorithm refines x. As initial estimates for x the output of the
RANSAC algorithm is used.

4.6.1 Sparse Bundle Adjustment

Given that many features can be tracked over multiple images it makes sense to
extend the motion refinement to handle this (Figure 4.5). A method in literature
to do this for VO is to use a technique called Sparse Bundle Adjustment (SBA)
[29, 135]. By tracking features over multiple images fewer errors in pose are
integrated. SBA takes this a step further by also estimating the position of
features. This allows errors in the 3D coordinates of features to be corrected
and should also produce a more accurate motion estimate. Given n 3D features
observed in m images then this gives 3n + 6m free parameters that must be
estimated. As features generally are only observed over four or five images a
sliding window SBA is used. The number of features tracked is generally a few
hundred which means the number of free parameters to be estimated are also
in the order of hundreds.

The parameters to be estimated are x = x0, ..,xm,M0, ..,Mn for the camera
positions xj and 3D coordinates of the features Mi respectively. f(x) stays the
same except that instead of re-projecting wi the 3D coordinate of the feature
Mi is transformed into disparity space and used to calculate the error for each
image in which it occurs.

The equation (A+µI)hlm = −g is then solved by exploiting the sparse structure
of J(x) as done in [129]. This allows the problem to be solved in real-time. J(x)
is sparse because the re-projection error for a given image only depends upon
the features present in that image. Also the re-projection error for a feature
does not depend on the 3D coordinates of other features.

4.6 Motion Refinement 41

Figure 4.5: In Sparse Bundle Adjustment camera poses and 3D coordinates of
features are estimated using non-linear minimization. This image shows some of
the extracted features and their tracks. Red are features tracked over 1 frame.
Green are features tracked over 2 frames. Blue are features tracked over 3 or
more frames.

42 Visual Odometry

Chapter 5

Mapping

Mapping provides an internal representation of the essentials of an environment.
A map can be created by storing processed sensor data in a common reference
frame. Reliable positioning is critical in maintaining the transformation from
sensor data to this reference frame.

There have generally been very few attempts at using mapping in agriculture
in conjunction with vision. Some work has been done in the area of satellite
imagery but such maps have low spatial resolution and are unsuitable for navi-
gation. Mapping using vision has a huge potential as it enables very high spatial
resolution maps to be created. Such maps can allow novel methods of steering
agricultural vehicles.

A use of mapping is to compensate for the limited field of view of vision sensors.
Using a memory of past observations it is possible to construct a more complete
view of the local environment by fusing multiple observations. This can facilitate
recognition and allow more intelligent control decisions to be made. Mapping
provides a method to do sensor fusion between data acquired from different
sensors as well as over time. This creates redundancy in the recognition systems
by allowing observations stored in a map to be compared to new observations.

44 Mapping

5.1 Related Work

In [61] it was demonstrated that a few meters of crop could be mapped by
stitching together stereo images but the method was found too slow for real-time
application. In [24] a wheel odometry system was used to stitch multiple laser
measurements together which allowed the heading of a swath to be calculated
from a local map.

In robotics, mapping has been very heavily researched for indoor environments
with much of it focusing on Simultaneous Localization And Mapping (SLAM)
[41, 73]. Much of the recent research on outdoor navigation has been driven
by DARPA projects on mobile vehicles [12]. The sensor of choice is a laser
rangefinder, augmented with monocular or stereo vision. In much of this work,
high-accuracy GPS is used to register sensor scans; exceptions are [40, 91]. In
contrast, the work here forgoes laser rangefinders, and explicitly use image-based
registration to build accurate maps. Other approaches to mapping with vision
are [108, 124], although they are not oriented towards realtime implementations.

Current technology permits city-scale reconstruction of 3D triangular meshes
of environments [104] using vision and GPS. These systems still have limited
handling of dynamic environments and are very dependent on good GPS signals.
Outdoor SLAM methods such as [64] can potentially make GPS redundant by
allowing VO systems to correct their own drift by re-localizing themselves in
a map. Some issues make it difficult to use SLAM in agriculture. It relies on
matching old features to new images when the vehicle revisits an area. Current
research in wide-baseline matching [133] is limited which means it is hard to
match features across large distances or angles. Also, agricultural environments
change rapidly so old features are difficult to match.

5.2 Frames of Reference

A short overview of the reference frames used for mapping is now presented.
Since work has been done in combining maps produced by both GPS and vision
the next sections demonstrate how observations from these two can be brought
into a common reference frame.

5.2 Frames of Reference 45

5.2.1 Global Frame

Typically GPS data uses the world geodetic system 1984 (WGS84) to determine
the location of a point near the surface of the Earth and is expressed in terms
of latitude (Φ) and longitude (λ) in degrees and a height h above the Earths
surface.

5.2.2 Navigation Frame

The navigation frame used is the North, East, Down (NED) coordinate system
(Figure 5.1). It is a local tangent plane to the Earths surface with local reference
point (origin) specified at (Φ0, λ0) [30].

In order to convert global coordinates to the navigation frame the following
conversion is used to first get the coordinates in Earth Centered Earth Fixed
coordinates (ECEF):

XECEF =

(
a

χ
+ h

)

cosΦ cosλ (5.1)

YECEF =

(
a

χ
+ h

)

cosΦ sinλ (5.2)

ZECEF =

(
a(1 − e2)

χ
+ h

)

sin Φ (5.3)

The height above the surface of the ellipsoid is given by h. The constants χ,
a (semi-major axis) and e2 (square of the first numerical eccentricity of the
ellipsoid) are:

χ =
√

1 − e2 sin2 Φ (5.4)

a = 6378137.0m (5.5)

e2 = 6.69437999014x10− 3 (5.6)

(5.7)

This models the Earth as an ellipsoid.

The ECEF coordinates are then converted to the NED coordinates using the

46 Mapping

Figure 5.1: ECEF versus NED coordinate system.

following matrix:

pn
gps =

− sin Φ0 cosλ0 − sinΦ0 sinλ0 cosΦ0

− sinλ0 cosλ0 0
− cosΦ0 cosλ0 − cosΦ0 sinλ0 − sinΦ0

XECEF

YECEF

ZECEF

 (5.8)

5.2.3 Body Frame

The origin of the body frame is centered around the middle of the tractors rear
axle on the ground plane with the x-axis along the length of the tractor and the
y-axis along the width of the tractor. The z-axis increases downwards. This is
illustrated in Figure 5.2(a).

Conversion of a 3D point between body frame and navigation frame can be
made as follows:

Xn

Y n

Zn

 = Rb
n(Θ)

Xb

Y b

Zb

+ pn (5.9)

pn is the coordinate vector of the middle of the rear axle in the navigation
frame. Rb

n(Θ) is the rotation matrix from body to navigation frame which is a
function of the attitude of the vehicle in the navigation frame parameterized by
the Euler angles Θ = {ϕ, θ, ψ}.

5.3 Mapping Using Grid Maps 47

pn can be calculated from the GPS receiver as:

pn = pn
gps − Rb

n(Θ)pb
gps (5.10)

Where pb
gps is the location of the GPS receiver in the body frame.

5.2.4 Camera Frame

The camera frame is defined with origin in the sensor, the x-axis right, y-axis
down, and the z-axis along the direction the sensor is pointing. Furthermore
the vision sensor is at an angle relative to the ground plane along the x-axis in
the body frame. This is illustrated in Figure 5.2(b).

Conversion of a 3D point between camera frame and body frame can be made
as follows:

Xb

Y b

Zb

 = Rc
b

Xc

Y c

Zc

+ pb
c (5.11)

Rc
b is the rotation matrix from camera to body frame. pb

c is the location of
the vision sensor in the body frame. Similar transformations can be applied to
other sensors such as IMU1 (Inertial Measurement Unit) and wheel odometry.

5.3 Mapping Using Grid Maps

In the LAGR project 2D grid maps were used to store map information. 2D grid
maps work by storing information in a quantized grid (usually from a top-down
view). Grids are usually represented as images with each pixel representing a
part of the environment. They are by far the most common way of representing
maps in robotics literature. One of the reasons for this is that it is easy to
add information to the map as it becomes a simple task of labeling pixels. For
example all pixels with a value of 1 could be obstacles. Projecting 3D points
observed from a stereo camera into a grid map reduces to a simple coordinate

1IMU’s consist of 3 accelerometers and 3 gyroscopes which measure accelerations and
angular velocities, respectively.

48 Mapping

(a)

(b)

Figure 5.2: (a) Body frame. (b) Camera frame.

transformation. Stereo data is however sparse for points far from a camera which
can lead to holes between samples in the grid map. This can make interpretation
more difficult.

In paper A it is demonstrated how a robot can follow a path represented in a
grid map (see Figure 5.3). The system maps obstacles, navigable terrain, paths,
and GPS waypoints. It relies on an efficient global planner based on gradient
techniques [63] which allows the robot to plan a route along the center of a
path if it can see one. Without a path it switches to GPS waypoint navigation.
The planner makes intelligent decisions so it can leave a path if an obstacle
is encountered. This method could directly be applied to let an autonomous
agricultural vehicle follow a rough GPS trajectory and switch to following field
structures when it sees them.

For high accuracy agricultural applications the size of pixels need to be very
small. This gives problems in terms of sparse data and high memory consump-
tion. Centimeter accuracy maps of entire fields are likely intractable to work
with. If the goal is to follow a field structure represented in the map then some

5.4 Mapping Using Clothoids 49

Figure 5.3: Path following using 2D grid maps. Blue is unknown terrain. Ob-
stacles are shown in red. Ground plane is shown in various shades of green
(with brighter colors indicating lower cost). The yellow region is the detected
path. The robot position is marked with a red line. The cyan line indicates the
planned trajectory. The green line indicates where the robot has driven. The
super-imposed grid squares have a length of 1 m.

kind of interpretation must be done to transform the data to control parame-
ters. Planning algorithms are well researched and allow optimal planning of the
trajectory but require a certain amount of computation.

To give some perspectives on 2D grid maps in agriculture, some experiments
have been made in using 2D grid maps to create high precision maps of crops.
By creating local maps of crops it is easier to discern the rows of crops when
there are high levels of weed penetration. Such maps can also be useful for
precision farming and control (See Figure 5.4).

5.4 Mapping Using Clothoids

Mapping for guidance has been approached by considering a vector represen-
tation of field structures. Mapping using vectorized data has a number of ad-
vantages. It is usually compact as the input data is parameterized into 2D/3D
polygons, lines, and points. Vectorized data can typically be stored in high
spatial resolution which is good for high accuracy scenarios.

It was initially investigated how splines could be used for representing field
structures in paper E. Later it was decided to switch to a clothoid representation

50 Mapping

in paper F.

Clothoids are often used for modeling vehicle trajectories in robotics. Given
that a:

• Vehicle’s steering assembly can be represented by a bicycle model.

• Vehicle’s steering rate is constant.

• Vehicle is traveling at a constant velocity.

Then the trajectory exhibited by the vehicle should follow that of a clothoid
[121]. Kinematic models of Ackermann steered vehicles are typically modeled
using a ”bicycle model” where the front pair of wheels and the rear pair of
wheels are modeled as each pair being a single wheel [59]. Such models produce
a linear change in turning radius for a constant rate input.

Field structures in agriculture are generally made by Ackermann steered ve-
hicles. Most field operations are done at relatively constant velocities and as-
suming the steering rates to be locally quite constant then the field structures
should also follow a clothoid shape.

The Taylor series expansion of a clothoid can be represented as [123]:

y(x) = y0 + tan(φ)x + C0
x2

2
+ C1

x3

6
(5.12)

Where y0 is the lateral offset between the vehicle and the field structure center,
φ is the angle of the structure relative to the vehicle. C0 is the curvature of
the structure. C1 is the rate of curvature. This parametrization also has the
advantage that it it is easy to incorporate into a vehicle controller.

The approach used in paper F involves first detecting the location of the field
structure in the left image and then fitting a point to the center of mass of the
detected structure in each image row. The points are then projected to 3D and
transformed to the body frame. The points are then stored as a list. When the
vehicle moves the list is updated to keep them in the body frame. The clothoid
is then fitted to the list of points that lie along the current trajectory within
±10 meters of the vehicle. This is done using least-squares.

For storing maps for later use it makes sense to transform them to the navigation
frame which was done in paper E for storing an a priori map of field structures.

5.5 Mapping 3D Point Clouds 51

This necessitates GPS information. An example of fitting a clothoid is shown
in Figure 5.5.

5.5 Mapping 3D Point Clouds

It has been investigated how accurate 3D maps can be constructed from stereo
data (See Figure 5.6). The point based measurements are stored in the nav-
igation frame to form a ”cloud”. By keeping data in full 3D more complete
interpretation can be done of 3D objects than what is possible with grid maps.
This makes it a superior approach to recognizing objects in 3D.

A typical stereo camera operating at 10Hz delivers around 1 million range
measurements a second. Storing this information for even small trajectories
is clearly impractical. Also, indexing information stored in the 3D point clouds
can become difficult. Two solutions are discussed in paper D to deal with these
problems. The first is to match measurements in overlapping images so that
redundant information is fused. This is further discussed in section 5.5.1. The
second solution is to store the information in a dynamic octree which was pre-
viously demonstrated in [116]. Octrees provide a hierarchical decomposition of
3D space (Figure 5.7(c)). This is done by recursively partitioning 3D space into
eight octants. Searches in 3D space can then efficiently be done by traversing
the octree.

5.5.1 Artifact Detection in Stereo Images

Stereo processing is the first step in 3D recognition where the 3D information is
reconstructed from two stereo images. It is thus also a critical step as artifacts
in the reconstruction process will make 3D recognition more difficult. Flying
debris and occlusions in dense vegetation are some factors that can make recon-
struction difficult in agricultural environments. Such situations will cause the
stereo algorithms to match up wrong features in the image pairs. This in turn
produces artifacts in the resulting disparity images which are subsequently used
for 3D recognition.

In paper D a probabilistic method is introduced for detecting artifacts in the
stereo range measurements. It approaches the problem by looking at the raw 3D
range measurements. The method assumes that the image scene is static. This
is acceptable for a large range of tasks, for example most guidance algorithms
such as swath guidance focus on recognizing static structures.

52 Mapping

The concept behind the method is to compare the range measurements in a
series of stereo images. This provides redundant information which can be used
for fault diagnosis. Using VO the range measurements in pairs of images are
registered relative to each other in the navigation frame. This is done by storing
range measurements as a 3D point cloud in a dynamic octree.

This allows residuals to be constructed by comparing range measurements of
the same objects. The actual matching of range measurements is done using a
ray-tracing approach to estimate which range measurements belong to the same
object. An efficient approach to ray-tracing is identified by considering this in
disparity space and using the octree for fast indexing. Measurements far away
from the camera have a higher covariance associated to them. This is modeled by
considering the uncertainty in the disparity images (using a Gaussian). Stereo
artifacts can then be removed by identifying conflicting range measurements.
Measurements that agree are subsequently fused by updating their mean and
covariances.

The results is a more accurate 3D map of the local environment where most of
the artifacts have been filtered away (Figure 5.8).

5.5.2 Measurement Model

The uncertainty in the measured ranges is affected by a number of things such as
image noise, matching inaccuracies, and low-pass effects from using a correlation
window in the stereo algorithm. Additionally, the actual range accuracy is
governed by camera calibration errors, lens distortion and camera alignment
errors.

Using the same assumption as in [119] then the image error in the stereo
matching algorithm is governed by:

(
σ2

v , σ
2
u, σ

2
d

)
= (0.5, 0.5, 1.0) (5.13)

These are the assumed variances for a point in the disparity image of being in
a specific row (σ2

v) and column (σ2
u), as well as having a specific disparity (σ2

d).

The diagonals of the covariance estimate for the 3D projection of a point in the

5.5 Mapping 3D Point Clouds 53

image is then:

σ2
x =

b2σ2
u

d2
+
b2 (u− u0)σ

2
d

d4

σ2
y =

b2σ2
v

d2
+
b2 (v0 − v)σ2

d

d4

σ2
z =

f2b2σ2
d

d4
(5.14)

The covariance Qc in camera 3D coordinates is then:

Qc =

σ2
x 0 0
0 σ2

y 0
0 0 σ2

z

 . (5.15)

This is rotated from the camera to the navigation frame as:

Qn =
(
Rb

nR
c
b

)⊤
Qc
(
Rb

nRc
b

)
(5.16)

where Qn is thus the covariance in navigation frame.

The estimated location of the point in 3D is transformed to the navigation frame
by:

x̄g = Rb
n

(
Rc

bx̄
c + pb

c

)
+ pn (5.17)

5.5.3 Artifact detection

Let each measurement (xi) be associated with a covariance Qi according to
5.15. The divergence (distance between stochastic distributions) between mea-
surements [xi,Qi] and [xj ,Qj] then needs to be expressed.

A general measure of distance between distributions fi and fj [87], is the
Jeffreys-Matusita (JM) divergence defined as

Jij =

(
∫

Ω

(
√

fi(r) −
√

fj(r)

)2

dr

) 1

2

(5.18)

The JM distance has the salient feature to be easily applicable on arbitrary dis-
tributions. The JM distance Jij = 0 when the distributions fi(r) and fj(r) are

54 Mapping

equal and overlapping. The JM distance takes the value Jij =
√

2 when the two
distributions are totally separated. Bhattacharyya introduced the parameter

ρij =

∫

Ω

√

fi(r)
√

fj(r)dr, (5.19)

and the negative logarithm, αij , of this quantity,

αij = − lnρij , (5.20)

to obtain

J2
ij = 2(1 − ρij) = 2(1 − exp(−αij)) (5.21)

[54] showed that when the two distributions are normal multivariate of degree
n: fi(r) = N(xi,Qi) and fj(r) = N(xj ,Qj) then

αij =
1

8
(xi − xj)

TQ−1
ij (xi − xj) (5.22)

+
1

2
ln

det(Qij)
√

detQi detQj

, (5.23)

where Qij =
Qi + Qj

2
.

Further, the probability of misclassification Pe is bounded:

1

16
(2 − J2

ij)
2 ≤ Pe ≤ 1 − 1

2
(1 +

1

2
J2

ij), (5.24)

which is equivalent to

(0.5 exp(−αij))
2 ≤ Pe ≤ 0.5 exp(−αij). (5.25)

In this context αij is calculated from Eq. 5.23 and the upper bound in 5.25 is
used to estimate misclassification. When a new point is outside this bound, the
point is considered an artifact of the 3D stereo processing and discarded.

5.5.4 Startup and algorithm procedure

A mapping can be initialized by a prior map or it can be initialized by a first
stereo image of the map. Hence there exist octrees occupied by sets [xi,Qi]
and subsequent stereo images provide [xj ,Qj], j = i + 1, i + 2, ..i + N . If the
first two points are outside the accepted divergence, a third is processed, until
at least two points agree within the chosen value of αij . If the point lies within
the interval then it is assumed that both measurements pertain to the same

5.5 Mapping 3D Point Clouds 55

object and the map is updated by merging the two distance estimates into a
new estimate given by:

Q−1
m = Q−1

i + Q−1
j ,

x̄m = Qm

(
Q−1

i x̄i + Q−1
j x̄j

)
. (5.26)

Subsequent measures are compared with [xm,Qm], which replaces [xi,Qi] in
the calculations. The two measurement i and j are deleted from the octree and
replaced by the merged estimate m.

56 Mapping

(a) (b)

(c)

Figure 5.4: (a) 2D grid map of tiled color images. (b) 2D grid map of color
segmentation of crop using an approach similar to [100]. (c) 3D point cloud of
corresponding map.

5.5 Mapping 3D Point Clouds 57

(a)

(b)

Figure 5.5: Estimating Curvature by fitting a clothoid to a list of points ex-
tracted by the recognition algorithms. The blue lines represent the bounds of
the field structure.

58 Mapping

(a)

(b)

Figure 5.6: (a) left image from the stereo camera with bounding box for the
stereo.. (b) Mapping using 3D point clouds. The red line shows where the
camera has been.

5.5 Mapping 3D Point Clouds 59

(a)

(b) (c)

Figure 5.7: (a) A left image from the stereo camera. (b) Octree decomposition
for the corresponding 3D data. Green cubes illustrate the bounds of the bottom-
most nodes in the octree hierarchy. (c) In octree decomposition each cube of
space can recursively be split into 8 sub-cubes called nodes. At the bottom of
the hierarchy (node leaves) the 3D points themselves are stored. Here illustrated
with points x1,x3 at the end of one leaf, and x2 at the end of another.

60 Mapping

(a)

(b)

(c)

Figure 5.8: (a) New measurements from stereo camera (sideways view with
camera position to the left). (b) The identified artifacts highlighted in red. (c)
Filtered measurements.

Chapter 6

Fault-Tolerance

Fault-tolerance can enhance the safety and availability of a system by making it
less susceptible to faults. In [15] it was proposed that faults can be modeled as
deviations from a nominal system behavior. Given that a fault can be detected
then remedial action to compensate the fault can be done by reconfiguring the
system architecture.

Fault-tolerance is achieved by exploiting system redundancy. Redundancy pro-
vides both a method to diagnose faults and also a method to reconfigure. Re-
dundancy exists both as physical redundancy (in the form of redundant hard-
ware) but also as analytical redundancy. In analytical redundancy an explicit
mathematical model is used to describe relations between signals. This creates
redundancy by allowing certain system states to be estimated through the use
of different subsets of signals. Automatic treatment of such models to identify
redundant components can be done using structural analysis techniques [15].

GPS and IMU are becoming common sensor modalities on agricultural vehicles.
Clearly, such sensors can be used along with vision and wheel odometry for
increased hardware redundancy. Another source of redundancy comes from the
many vision algorithms that have been described in this thesis. This chapter
explores how fault-tolerance can be achieved by exploiting redundancy in sensors
and algorithms.

62 Fault-Tolerance

6.1 Related Work

Literature exists to treat fault detection systematically [14], [15]. In [13] these
methods were used to detect faults in positioning on a ship but the methods
have never been applied to systems incorporating vision sensors. Systematic
methods for applying fault-tolerant design to learning and mapping have re-
ceived minor attention. The concept behind the methods investigated here is
to use a behavior-based model. The purpose of the model is to arrive at a set
of constraints that can be used for analysis of system structure and subsequent
generation of residuals for fault diagnosis. This idea was brought into the field
of fault diagnosis by [126] and later expanded, see [125] and [15]. The advan-
tage of this approach over classical methods, [136], include the ability to use a
formulation of behaviors at a high level of abstraction.

There does not exist much literature on detecting faults in vision systems in
agriculture. In [113] a fuzzy logic approach with selective fusion was used to
choose between vision and GPS guidance based on how much they agree and
their signal qualities. The approach presented here is more systematic and
exploits additional redundancy so that fault-detection becomes less dependent
upon the measured signal qualities which may themselves be faulty.

6.2 Behavioral Model

Investigating the fault-tolerant properties of a system with many sensors and
algorithms requires a systematic approach. Behavioral models of a system can
be used to formulate models of a system at high levels of abstraction. This can
be used to decrease complexity for an otherwise complicated problem.

A behavioral model uses mathematical constraints (equations) to describe the
relationships between system variables over time. According to fault-tolerant
theory it is only necessary to model the nominal situation without faults. If a
constraint is no longer satisfied then this is a fault in the system.

In paper E it was discussed how such a model can be created for a vision
guidance system. Such an analysis has previously not been done for a vision
system. The following sections expand upon this research by considering also
texture learning, wheel odometry, and IMU.

6.2 Behavioral Model 63

6.2.1 Position Constraints

For positioning sensors such as GPS, IMU, and VO the approach used in [13]
was adapted for the vision guidance system:

c1 : ṗb = Rn
b (Θ)

d

dt
pn

c2 : p̈b = Rn
b (Θ)

d2

dt2
pn

c3 : ωb = J(Θ)
d

dt
Θ

m1 : pn
gps = pn + Rn

b (Θ)pb
gps

m2 : vb
vo = ṗb

m3 : vb
wo = ṗb

m4 : ab
imu = p̈b

m5 : ωb
vo = ωb

m6 : ωb
imu = ωb

m7 : ωb
wo = ωb

(6.1)

The position of the vehicle in navigation frame is given by pn. This position
is measured by the GPS, pn

gps. VO measures the vehicle velocity vector in

body coordinates vb
vo which is also measured by the wheel odometry vb

wo. The
rotation from navigation to body frame is given by Rn

b . Likewise, the IMU
accelerometers measure the vehicle accelerations ab

imu. The angular velocity of
the vehicle in body frame (ωb) is measured by VO (ωb

vo), wheel odometry (ωb
wo)

and the IMU gyroscopes (ωb
imu). ωb is related to the Euler rate vector d

dt
Θ using

a function J(Θ).

Note that IMU and VO provide 6 DOF estimates where the wheel odometry is
3 DOF as it assumes motion on a plane. This means when residuals are created
using constraints incorporating wheel odometry, the IMU and VO information
must also be reduced to 3 DOF.

Θ is not directly measured by any sensor and can be estimated using GPS
combined with IMU and/or VO, or using a multi-antenna GPS. In the analysis
done in this thesis it has been approximated using the course over ground given
by the GPS (Θgps):

64 Fault-Tolerance

m8 : Θgps = Θ

(6.2)

6.2.2 Map Constraints

It has been investigated how map information from a number of different sources
can be used to provide redundancy for 3D vision.

First, for many farming applications it is plausible to have some kind of a priori
knowledge of the field. This could be provided by recording a previous traversal
of the field where the location of relevant field structures are then stored. To use
such a map it must be defined in the navigation frame so that the field structure
can be localized relative to the vehicle using GPS.

Another source of information is from the learning system described in Chapter
3 where texture information is used to supplement 3D vision.

Let the position of a field structure in navigation frame be formulated by variable
sn, and sb in body frame. Then the measurements from the various components
can be seen as a measurement of this variable:

c4 : sb = Sn
b (Θ,pn, sn)

c5 : Mb(ω
b, ṗb) = sb

c6 : Mn(Θ,pn) = sn

m9 : sb
l = sb

m10 : sb
c = sb

(6.3)

Sn
b defines a transformation of the field structure from navigation to body frame.

It depends on the vehicle attitude Θ and position pn in navigation frame. Mb is
an incrementally built map from the mapping system in the body frame. Given
ωb and ṗb the location of the field structure from previous measurements can
be transformed to the current vehicle position. This transformation is updated
at each time step. Mn is the a priori map in navigation frame. Given Θ and
pn the position of the field structure in navigation frame can be looked up in
the map. The measured position of the field structure in body frame from the
3D vision is given by sb

c and sb
l for the texture learning.

6.3 Structural Analysis 65

6.3 Structural Analysis

Analytical derivation of the parity relations can be done using structural analysis
[15]. This can be done automatically using the software SaTool [16]. A graphical
representation of the result of the SaTool analysis is given in Figure 6.3. From
the parity relations, residuals can be formulated which in turn can be used for
detecting and isolating faults. The analytical result for examining the described
system gives rise to the following residuals:

r1 : ωb
imu − ωb

vo = 0

r2 : ωb
wo − ωb

vo = 0

r3 : vb
wo − vb

vo = 0

r4 : sb
l − sb

c = 0

r5 : sb
c − Sn

b (Θgps,p
n
gps,Mn(Θgps,p

n
gps)) = 0

r6 : ab
imu − Rn

b (Θgps)
d2

dt2
pn

gps = 0

r7 : vb
vo − Rn

b (Θgps)
d

dt
pn

gps = 0

r8 : sb
c −Mb(ω

b
vo,v

b
vo) = 0

r7 : ωb
vo = J(Θgps)

d

dt
Θgps = 0

Based on these residuals all single faults should be structurally isolable as shown
in Table 6.3 and outputted from the SaTool report generator. Note how con-
straints c1,c2,c3,c4 can’t fail since they do not rely on measured properties.

Constraint c 1 c 2 c 3 c 4 c 5 c 6 m
1

m
2

m
3

m
4

m
5

m
6

m
7

Status - - - - i i i i i i i i i

Constraint m
8

m
9

m
1
0

Status i i i

Table 6.1: Summary of the complete d/i properties of the investigated system.
(- : can’t fail, 0 : undetectable, i : isolable, d : detectable)

66 Fault-Tolerance

Θgps sb
c sb

l Mn Mb pn
gps vb

vo vb
wo ab

imu ωb
vo ωb

imu ωb
wo

Θ ωb ṗb p̈b pn
sn

sb

c1

c2

c3

c4

c5

c6

m1

m2

m3

m4

m5

m6

m7

m8

m9

m10

Figure 6.1: Bipartite graph from SaTool. Legend: Red - Unknown variable,
Green - Known variables, Black - Isolable, Purple - Detectable, Blue - Unde-
tectable and White - Can not fail.

6.3.1 Discussion of Structure Analysis

The results demonstrate that GPS and IMU provides useful redundant informa-
tion to the vision system. Specifically, the ability to incorporate a priori map
information using GPS is extremely useful if the vision component fails. On the
other hand it is interesting to note that the different vision algorithms can also
be used for self-supervision. For example residual r8 provides a means to detect
a fault in VO by using the fact that the position of field structures extracted
by 3D vision should change in accordance with the VO motion. Also, residual
r4 can be used to detect inconsistencies between 3D vision and the output of
tracking based on texture. In effect these redundancies are brought about by
having vision algorithms that are tracking independent observations.

In paper E it was demonstrated how a fault in the GPS could be diagnosed
using the vision system. An observation was that detecting a GPS fault is only
weakly detectable in residual r7 since VO can only monitor the derivative of
the GPS position for faults. However, using mapping information a GPS fault

6.4 Design of Detectors 67

can become strongly detectable through residual r5 since the information in the
map should in the no-fault case coincide with the measured position of the field
structure from vision.

In paper F it was investigated how faults could be detected in the learning
algorithms by validating the tracking performance from texture learning with
the output from 3D tracking. This allowed novel self-supervision of the learning
process.

6.4 Design of Detectors

Given H0 is the non-faulty hypothesis and H1 is the hypothesis in the faulty
scenario, then a likelihood ratio test (LRT) can be used to detect a fault [56]:

L (x) =
p (x;H1)

p (x;H0)
> γ (6.4)

where the probability densities from the observed distributions should be used,
p (x;H1) for the case of a fault, p (x;H0) for the normal case, respectively. x is
a signal sample. γ then becomes a decision threshold to decide between the two
hypotheses.

In paper E the distributions of the residuals were analyzed for the case with
and without a GPS fault. A similar analysis was also done in paper F for the
case with a fault in texture learning. The distributions were found close enough
to Gaussian in both cases to warrant modeling faults as a DC level in White
Gaussian Noise (WGN):

H0 : x[n] = w[n] n = 0, 1, ..., N − 1

H1 : x[n] = A+ w[n] n = 0, 1, ..., N − 1 (6.5)

x[n] is the signal under both hypotheses and w[n] is WGN with variance σ2. A
represents the magnitude of the fault and N is the sample window.

68 Fault-Tolerance

A Neyman-Pearson detector can then be formulated to detect a fault [56]:

1

(2πσ2)
N
2

exp

[

− 1
2σ2

N−1∑

n=0
(x [n] −A)

2

]

1

(2πσ2)
N
2

exp

[

− 1
2σ2

N−1∑

n=0
(x2 [n])

2

] > γ (6.6)

Which yields the test function:

1

N

N−1∑

n=0

x [n] >
σ2

NA
ln γ +

A

2
> γ′ (6.7)

Taking the mean of the signal over N samples corresponds to decreasing the

variance of the resulting signal to σ2

N
. Thus from [56] it can be calculated what

the probability of a false alarm PFA and the probability of detection PD then
are:

PFA = Q(
γ′

√

σ2/N
) (6.8)

PD = Q(
γ′ −A
√

σ2/N
) (6.9)

Where Q is the right-tail probability. A suitable value of N and γ′ then need to
be configured in order to the detection performance PD while assuring a low rate
of false alarms PFA. As faults can be both positive and negative in magnitude,
the test is setup for both positive and negative values of A.

6.4.1 Discussion of Detectors

The Neyman-Pearson detector was used in papers E and F where it was suc-
cessfully demonstrated that it could be used to detect faults. In paper F it was
shown how field structures could be parameterized for easy integration into the
detector. It has been shown that suitable values for PFA and PD can be found
that allow fast detection while at the same time assuring low false alarm rates
for the cases analyzed.

6.4 Design of Detectors 69

For different field structures the residual variance may be different in the nom-
inal case. It has only been analyzed for swath. A solution may require online
estimation of this parameter which could potentially be incorporated into the
mapping system. Also, the faults exhibited by for example GPS may potentially
leave different traces in the output residuals based on the type of fault. This
must be investigated further to see if further extensions are needed in formu-
lating the residual generators. Lastly, it could also be investigated whether a
vector-based approach could be used for combining one or more residuals. This
could potentially allow better detection properties.

Using statistical change detection theory is clearly a valid approach for detecting
faults in a vision guidance system. The computational requirements are also very
low compared to the vision algorithms so there is little overhead in including
such detectors in future guidance systems.

70 Fault-Tolerance

Chapter 7

Conclusion

Systematic design methods for obtaining fault-tolerance in a vision system have
been demonstrated. Graph-based modeling can be used to generate diagnostic
relation. It is shown how single faults in sensors and/or algorithms can be
detected and diagnosed using statistical change detection theory.

Dropouts of 3D vision and faults in classification can be handled using redundant
hardware as well as using mapping and learning methods. It is shown how GPS
enhanced with a priori map information complements 3D vision. Positioning can
be made fault-tolerant by combining visual odometry, GPS, inertial sensors,
and/or wheel odometry. Mapping is shown to provide valuable information
about past observations which can be used to detect artifacts in the vision
system as well as enhancing recognition.

Research in mapping has been taken beyond state-of-the-art by enhancing the
accuracy of existing visual odometry systems and by using diagnostic residuals
to detect faults in the mapped information. Visual odometry has been enhanced
by investigating new and improved methods for feature detection and tracking.

Learning is shown to provide valuable information about field structures by
learning texture information from 3D vision tracking results. It is demonstrated
how texture and 3D vision can be fused in a mapping system to facilitate guid-
ance. It was found necessary to also make the learning process fault-tolerant

72 Conclusion

by constructing diagnostic residuals to evaluate the performance of the learned
models.

Care has been taken to consider the computational burden of algorithms so that
the systems could be tested online. This has allowed experimental validation to
be done which confirms the validity of the results.

The advances in outdoor vision-based positioning presented in this thesis has
allowed more accurate and reliable maps to be made of local environments.
This has the potential for a broad range of agricultural applications including
cultivating, spraying, and harvesting. As farm vehicles start incorporating more
sensory information, mapping will likely become an important component of
such systems.

Putting the project into perspective there are a number of topics for future re-
search. Within the vision domain it could be attractive to be able to extend VO
to also allow SLAM. Also, coming up with a system for doing long-term learning
would be attractive so textures do not need to be learnt each time. Recognizing
objects in the far field outside of stereo range could also be an interesting topic.
From a control perspective the current system can allow novel steering methods
by using VO for example to detect and model wheel slippage. Likewise, variable
velocity control based on estimating properties of the environment using texture
and 3D could help farmers optimize field operations.

A push towards complete automation in agriculture will require a holistic ap-
proach. This will require integrating perception, planning, and control. It will
require using many sensors and not just vision. This thesis has taken some
first steps in showing how a fault-tolerant system can be designed at a guidance
level. With dynamic route planning and telematics also being integrated the
fault-tolerant concepts will also have to be extended to cover these areas.

P a p e r A

Fast Color/Texture
Segmentation For Outdoor

Robots

Morten Rufus Blas, Motilal Agrawal, Aravind Sundaresan
and Kurt Konolige. Fast Color/Texture Segmentation For Outdoor Robots.
IEEE Int. Conf. on Intelligent Robots and Systems, pages 4078-4085, Nice,
France, 2008. Published.1

1This material is based upon work supported by the United States Air Force under Contract
No. FA8650-04-C-7136. Any opinions, findings and conclusions or recommendations expressed
in this material are those of the author(s) and do not necessarily reflect the views of the United
States Air Force.

74 P a p e r A

Abstract:
We present a fast integrated approach for online segmentation of images for
outdoor robots. A compact color and texture descriptor has been developed to
describe local color and texture variations in an image. This descriptor is then
used in a two-stage fast clustering framework using K-means to perform online
segmentation of natural images. We present results of applying our descriptor
for segmenting a synthetic image and compare it against other state-of-the-art
descriptors. We also apply our segmentation algorithm to the task of detecting
natural paths in outdoor images. The whole system has been demonstrated to
work online alongside localization, 3D obstacle detection, and planning.

A.1 Introduction

Autonomous navigation for outdoor, unstructured environments is an impor-
tant research problem in robotics with numerous applications. The ability to
recognize navigable terrain and avoid obstacles is a critical component for au-
tonomous navigation. Current state-of-the-art systems employ a range sensor
such as stereo cameras or LADAR to reason about the geometry of the world
and identify geometrical obstacles. However, geometrical reasoning alone is un-
likely to result in intelligent behavior of the robot. For example, it is hard to
distinguish between tall grass and a short wall based on geometry alone. In
addition, learning is a very important component of an intelligent system. If
the robot has traversed over tall grass earlier, it can learn that as traversable
terrain and mark it as such if it sees it again. It is clear that appearance-based
terrain recognition plays an important role in such intelligent behaviors and
segmentation is the first step toward recognition.

Appearance-based segmentation is a classical problem in computer vision. For
robotics, the specific challenge is to be able to do reliable segmentation of out-
door scenes in an efficient manner so that it can be used online. In our expe-
rience, color alone is not a reliable feature. For example, in Figure A.1(a) it is
hard to distinguish between the bushes and the darker grass on the ground based
on color. However, the texture of the grass and the bushes is very different.

In this paper, we present an online segmentation algorithm that combines color
with texture information to group similar regions. Our algorithm has several
novel features.

• Compact texture/color descriptors. It is important to have compact rep-

A.1 Introduction 75

(a) (b)

(c) (d)

Figure A.1: Various steps of our segmentation algorithm on a typical outdoor
image. (a) The image from one of the stereo cameras. (b) Each pixel assigned
to a texton. (c) Each histogram of textons gets assigned to a histogram profile.
(d) A path is recognized (in yellow).

76 P a p e r A

resentations of the information necessary to distinguish textures. Here we
carefully choose a small local neighborhood vector that incorporates the
important aspects of texture and color.

• A two-stage unsupervised online learning process. For each image, we
cluster neighborhood vectors to find a small set of basis vectors (textons
[74]) that characterize scene textures (Figure A.1(b)). Then, we cluster
histograms of textons over larger areas to find more coherent regions with
the same mixture of textons (Figure A.1(c)).

Note that the problem we are interested in here is online, unsupervised segmen-
tation, not classification based on a library. One application is finding paths
in off-road terrain, where the path appearance may be unlike anything seen
previously (Figure A.1(d)). We have successfully demonstrated online path
detection in a complete outdoor navigational system that uses stereo-vision as
its primary sensor.

A.2 Algorithm Overview and Related Work

A.2.1 Texture Representation

Approaches to texture representation include co-occurrence probabilities [44],
Markov modeling [58, 11, 83], multichannel filtering [51, 138, 20, 84], Local
Binary Patterns (LBP) [81], and texton-based approaches [84, 5, 74]. The
more recent approaches use either a filter bank or a small neighborhood as a
feature descriptor for each pixel – for example, LBP’s are formed by subtracting
the intensity of the center in a small local neighborhood and then binarizing the
intensity variation in the neighborhood.

In a seminal paper, Leung and Malik [74] showed that many textures could
be represented and re-created using a small number of basis vectors extracted
from the local descriptors; they called the basis vectors textons. While Leung
and Malik used a filter bank, later Varma and Zisserman [139] showed that
small local texture neighborhoods may be better than using large filter banks.
In addition, a small local neighborhood vector can be much faster to compute
than multichannel filtering such as Gabor filters over large neighborhoods.

Many schemes exist for combining local texture with color information [84, 5, 75].
The sheer number of variations makes it hard to decide what is a good repre-
sentation of both color and texture for segmentation. In this paper, we describe

A.2 Algorithm Overview and Related Work 77

a segmentation algorithm that uses a compact descriptor for representing color
and texture. Our descriptor fits into the class of local texture neighborhoods
and in that sense is similar to LBP’s. For each local neighborhood (a 3x3 or 5x5
region centered at a pixel), the descriptor is composed of the color information
of the center and the relative change in intensity in the neighborhood. This is
computed by subtracting out the intensity of the center from the intensities in
the neighborhood. Unlike LBP, we do not binarize the center subtracted inten-
sity values, thereby retaining the actual gradient values. In contrast with other
local neighborhood descriptors, ours is more compact since we do not store the
color variation in the neighborhood. For a typical 3x3 window size, for example,
our descriptor is an 11-dimensional vector, whereas storing the raw RGB values
will result in a 27-dimensional vector. A compact descriptor becomes crucial for
the clustering step to be fast and real time.

A.2.2 Segmentation

The raw descriptors must be grouped to segment the image; a number of clus-
tering algorithms exist for this task. The K-means algorithm and its many vari-
ations is a standard way of doing this [50, 28]. Graph-cut-based approaches [84]
generally result in better and sharper boundaries but are computationally more
demanding. Self-Organizing Maps [85] yield clusters such that neighborhood
relations between the clusters are preserved, allowing one to better visualize the
input space. Another approach are level-sets [75] which handles boundaries by
first finding homogeneous areas in the image and then propagates these areas
to unlabelled parts of the image.

In our algorithm we use two-stage, unsupervised clustering to find smooth sim-
ilar regions based on the descriptors. The choice of clustering framework was
largely dictated by the need for it to be fast and efficient. In our method, we use
the K-means algorithm to perform clustering – K-means has the best trade-off
between good results and speed.

For the first clustering step, our descriptors are computed at each pixel and are
then clustered using K-means to find the basis vectors or textons. Each pixel
then gets assigned to the closest texton. This is shown in Figure A.1(b). As can
be seen, a segmentation based on simple pixel classification is very noisy. To
capture statistics of larger areas, we compute a histogram of these textons over a
window, and cluster the histograms again using K-means to find similar regions
in the image. Histograms of textons are computed efficiently using integral
images [140]. Regions that are close together are then merged to give the final
segmentation. Figure A.1(c) shows the final segmentation results.

78 P a p e r A

Not only is our descriptor compact and faster to compute but it captures all the
local texture variations, resulting in better segmentations. We present exper-
imental results of comparing these texture descriptors to segment a synthetic
image. While there has been previous work [139] on comparing the different
types of texture descriptors for the task of texture classification, to our knowl-
edge no comparisons have been done earlier for the task of texture segmentation.

A.2.3 Path Finding

Finally, for an application, we use the segmentation algorithm to recognize nat-
ural paths in outdoor images. The image is segmented, and then we look for
regions that share the geometric attributes of a path. Because there are only a
small number of regions, various combinations of regions that could possibly be a
path can all be checked. This path detection algorithm runs online on the robot
in real time and we present results of our path detection algorithm on several
types of outdoor paths. Other work has previously been done in road detection
where we mention the work by Fernandez and Price [31] who used region grow-
ing in HSI color values to find the road borders. Others include Dahlkamp et
al. [26], who used self-supervised learning on color images to extend roads found
by LADAR. In the area of stereo-vision Soquet et al.[122] used a stereo-based
color segmentation algorithm to determine road segments. Texture has also
been used as seen in Zhang and Nagel [144], who explore anisotropic texture
features of roads for segmentation.

While all the individual components of our segmentation algorithm are known,
we have judiciously selected each step of the processing pipeline so that we are
able to run our algorithm online on the robot in real time. It is the integration
of these fast techniques, coupled with our compact texture descriptor and a
two-stage online learning process, that characterizes our work.

The rest of the paper is organized as follows. Section A.3 describes our segmen-
tation algorithm in detail, and the results of our segmentation algorithm for a
synthetic image are presented and compared with other texture descriptors in
Section A.4. Our path recognition algorithm is discussed in Section A.5 and
results of this algorithm are discussed in Section A.6. Section A.7 concludes the
paper and discusses ongoing and future work.

A.3 Segmentation Algorithm 79

A.3 Segmentation Algorithm

The first step of our segmentation algorithm is to learn a set of textons (basis
descriptor vectors) for the image. A local descriptor (3x3 or 5x5 window) is
computed at each pixel location, and the ensemble of descriptors is clustered
to find a small set of textons. Each pixel location then gets assigned to one of
these textons by comparing its descriptor using Euclidean distance.

A.3.1 Textons

Our descriptor is composed of color and texture information for a 3x3 or 5x5
pixel neighborhood. The image is first transformed to the CIE*LAB colorspace
using an efficient lookup table to do the RGB to LAB conversion. Colors in
LAB are more perceptually linear than in the RGB space, thereby resulting in
better clusters. This gives the brightness information L and the color channels
a, b. The texture information is taken as the surrounding pixel intensities minus
the center intensity. Each pixel location pi in the image can then be represented
using the descriptor:

pi =

W1 ∗ Lc

W2 ∗ ac

W2 ∗ bc
W3 ∗ (L1 − Lc)

...
W3 ∗ (L8 − Lc)

(A.1)

Here (Lc, ac, bc) is the color of the center pixel, and L1, L2, ..., L8 are the intensi-
ties of the surrounding pixels. The set of weights {W1 = 0.5,W2 = 1,W3 = 0.5}
is used to balance how much to rely on color, texture, and brightness for the clus-
tering. These were set as to weigh chrominance higher than luminance. Also,
since texture takes up many of the descriptor rows it must be downweighted so
the color still has an impact on the clustering. The assumption here is that in a
local neighborhood the color does not vary much, so including the color channels
for all 3x3 pixels does not provide additional information. The Lc, ac, bc com-
ponents could also be computed as an average of the 3x3 neighborhood but this
was not done to speed up computation. See top of Figure A.2 for an overview.
The 5x5 version of the descriptor is similar but uses a larger neighborhood size
resulting in a 27-dimensional descriptor.

80 P a p e r A

A.3.2 Clustering to Textons

The K-means algorithm seeks to minimize

J =

n∑

i=1

min
j

|pi − cj |2 , (A.2)

where pi is each descriptor in the image and cj are the textons; basically, it finds
a set of basis descriptors such that the Euclidean distance between them and
all descriptors is minimized. j = 1, .., k is the number of textons we desire to
learn. For our outdoor robotic sequences k = 16 gave a good trade-off between
accuracy and efficiency. In the K-means iterations, reclassification attempts are
not made for points that lie less than half the mean absolute distance away from
their currently classified center (similar to [55]). This considerably speeds up
the implementation without a significant loss in precision.

A.3.3 Histogram Clustering

Once the 16 textons for a given image have been established, each pixel is clas-
sified as belonging to one of these using Euclidean distance. A simple threshold
identifies outliers. Integral images [140] are then constructed for each of the
16 textons. An entry in the integral image at location x is simply the sum of
the count of each of the 16 textons in the rectangle formed by the point x and
the origin. With the integral image calculated, it takes only four additions to
calculate the total number of each texton over any upright, rectangular area,
independent of its size. This is then used to extract a histogram profile for a
window neighborhood across the image. Experimentally, a 32x32 window gives
the best results for our image size. This is similar to what was observed in [75]
where the window was chosen to 1-2% of the total image size.

K-means is then run on the histograms to extract a set of histogram profiles,
using Euclidean distance as the norm. Boundary conditions between areas of
different texture are not explicitly treated and thus may receive their own cluster
representing ”mixed terrain”. The choice of histogram clusters (k = 8) was set
so as to slightly over-segment the image. Texton outliers are not included in the
histogram clustering. See bottom of Figure A.2 for an overview.

Finally, the Earth Movers Distance [114] was used to merge similar clusters if the
threshold was below 100. EMD is a good distance measure for histograms, but
too computationally expensive to be used directly in the K-means clustering.
The EMD ground distance matrix for the histograms was set to the Euclidean

A.3 Segmentation Algorithm 81

Histogram window

3D Texture path

L3

L4

L5

c1c2 c5 c3 c1

c4c1ck c4

c3 c1 c2 c4

c1c2ck

c1 c4c2c2

c1c2

L1

L8

L7

L2

Lc

L6

pi =

W1 ∗ Lc

W2 ∗ ac

W2 ∗ bc

W3 ∗ (L1 − Lc)
W3 ∗ (L2 − Lc)

...
W3 ∗ (L8 − Lc)

J =
∑n

i=1 minj |pi − cj|2

Pi =

c1 c2 c3 . . . ck

Figure A.2: The segmentation algorithm works in two steps. First textons are
learned from the image. Then histograms are constructed from textons and
clustered. The missing values in the histogram window represent outliers.

distance between each basis texton. Given two textons ct,i and ct,j the Euclidean
distance between them can be written as dt,ij :

dt,ij = ‖ct,i − ct,j‖2
(A.3)

Given that we have 16 basis textons this gives a 16x16 distance matrix D for
comparing two histograms (generalized for an m-by-n matrix):

D =

0 dt,01 dt,02 · · · dt,0n

dt,10 0 dt,12 · · · dt,1n

dt,20 dt,21 0 · · · dt,2n

...
...

...
. . .

...
dt,m0 dt,m1 dt,m2 · · · 0

(A.4)

The EMD then attempts to solve the transportation problem of

WORK(P,Q,F) =

m∑

i=1

n∑

j=1

dt,ijfij (A.5)

82 P a p e r A

Figure A.3: Synthetic texture mosaic used (provided by USC via its website).
The left image is the texture mosaic. The right image shows which texture
regions belong to which texture.

subject to a number of constraints on fij as described in [114]. P and Q are the
two compared histograms and F is the flow that minimizes the above cost. If the
flow is very small the clusters are similar and are merged based on a threshold.

Last, the image is reclassified using the computed histogram profiles. His-
tograms that are not close to the computed histogram profiles are thresholded
as outliers.

A.4 Segmentation Results

It is important that the textons contain the information necessary to accurately
discriminate between different textures. We compare our texture descriptor
to various other state-of-the-art descriptors by applying them to the task of
segmenting a synthetic image into different textures.

The University of Southern California (USC) hosts the Brodatz texture database
and also provides texture mosaics that are a number of Brodatz textures stitched
together in a jigsaw-type pattern. texmos3 was selected as the texture mosaic
for benchmarking our texton descriptors. Figure A.3 shows this mosaic along
with the ground truth segmentation. This mosaic has eight textures and does
not contain color, which tests the descriptors’ ability to discriminate textures.
Four basic descriptors are tested: a 48-dimensional descriptor composed of the
responses from the Leung-Malik filter bank (LM,32); a 75-dimensional descriptor
of 5x5 raw RGB (RGB,5x5,32) values as used in [5] (which in effect is 25-
dimensional on grayscale images); the LBP in a 3x3 neighborhood (LBP,3x3,32);
and two versions of our descriptor – the 3x3 neighborhood (11-dimensional with

A.4 Segmentation Results 83

(a) (b) (c)

(d) (e)

Figure A.4: Results for the synthetic texture segmentation. Each color repre-
sents a different histogram cluster. An overlay shows which regions should have
homogeneous colors. (a) LM Filter, 32, (b) RGB 5x5, 32, (c) LBP 3x3,32, (d)
SRI 3x3,32, (e) SRI 5x5,64.

the L,a,b color components set to zero), (SRI,3x3,32) and a 5x5 neighborhood
(SRI,5x5,64) with the descriptor components still being the intensities minus
the center intensity. For the test, the LM filter bank is the only one where
the descriptors are not learned on the image itself. For all other descriptors,
32 textons are learned from the image itself. Our 5x5 version used 64 textons
illustrating our best possible result. The lack of color information meant that
more textons were needed to discriminate the textures. The second stage of
clustering is then applied to give the segmentation results. It is important to
note that the underlying segmentation algorithm is the same (as described in
section A.3) for each of these descriptors.

Each descriptor is then scored using two scores – the detection rate and the
confusion rate. The detection rate gives a measure of how much of a given
texture it managed to classify correctly. The confusion rate gives a measure of
how many correct versus false detections to expect. A good segmentation will
have a high detection rate and a low confusion rate. For the detection rate we
look only at texture regions that are entirely inside our 32x32 histogram window
(so only one texture is present inside the window). This is done by eroding the
borders of each texture region with a flat 16 pixel radius circle structuring

84 P a p e r A

element. This gives us a maximum on the number of possible correct inliers
Dmax,t for a given texture. The cluster that takes up the most area of a given
texture is chosen as the cluster that belongs to that texture. For a specific
texture t, the number of correct detections is called Dc,t, and the number of
false detections is Df,t. The two scores for a specific texture are then calculated
as

Confusion Rate = 100 × Df,t

Dc,t +Df,t

(A.6)

Detection Rate = 100 × Dc,t

Dmax,t

(A.7)

The total confusion and detection rates are simply the sums over all the eight
textures.

Total Confusion Rate = 100 ×

8∑

t=1
Df,t

8∑

t=1
(Dc,t +Df,t)

(A.8)

Total Detection Rate = 100 ×

8∑

t=1
Dc,t

8∑

t=1
Dmax,t

(A.9)

The actual segmentations obtained for each descriptor can be seen in Figure A.4.
Figures A.5 and A.6 show the two scores for each of the eight textures present in
the mosiac. The total confusion and detection rates are shown in Table I. The
LM filter bank performs the worst, as it has higher confusion and lower detection
rates than all the other descriptors. This fits with the observations in [139].
The raw intensity value descriptor also performs poorly. LBP has problems
discriminating between textures 2 and 8 but is otherwise clearly better than
the raw intensities and LM filter bank. Our descriptors do a much better job
at discriminating between textures 2 and 8, which indicates that the intensity
gradients are necessary to do this and that it is not enough to rely just on
the gradient direction. All the methods find it hard to discriminate between
textures 3 and 4 except the LBP, which aids it greatly in the total scores. The
results for our descriptor are on average better than the other methods on this
dataset. Interestingly, for our descriptors the 3x3 version actually gets a better

A.5 Application: Path Recognition 85

% LM,32 RGB LBP SRI,3x3 SRI,5x5
Total Conf. 50 56 46 38 34
Total Det. 40 53 68 79 68

Table A.1: Total Rates

1 2 3 4 5 6 7 8
0

10

20

30

40

50

60

70

80

90

100

Texture #

D
et

ec
tio

n
(%

)

Detection Rate

LM,32
RGB,5x5,32
LBP,3x3,32
SRI,3x3,32
SRI,5x5,64

Figure A.5: Detection rate of the individual textures for the five tested feature
descriptors on the artificial dataset.

total detection rate than the 5x5 version at the cost of a higher total confusion
score.

The results presented here are typical for other mosaics in the synthetic dataset
and have been omitted beacuse of space constraints.

A.5 Application: Path Recognition

This work has been carried out in conjunction with a larger research project
entitled Learning Applied to Ground Robotics (LAGR). The project deals with
outdoor navigation in unstructured environments using stereo vision. The goal is
to navigate a robot autonomously to a GPS waypoint through unknown terrain
at a speed of roughly 1m/s. Many of the environments tested include small
paths in the form of dirt/asphalt roads as well as more natural paths such

86 P a p e r A

1 2 3 4 5 6 7 8
0

10

20

30

40

50

60

70

80

90

100

Texture #

C
on

fu
si

on
 (

%
)

Confusion Rate

LM,32
RGB,5x5,32
LBP,3x3,32
SRI,3x3,32
SRI,5x5,64

Figure A.6: Confusion rate of the individual textures for the five tested feature
descriptors on the artificial dataset.

as beaten-down tracks through vegetation. Many of the paths do not have a
clear signature in the 3D output of the stereo-vision sensor. We have used our
segmentation algorithm to recognize these paths, using geometrical constraints
from the stereo sensors (flatness, width) to find segmented regions that could
be paths.

Figure A.7 illustrates a sample image (a), the texture-based segmentation (b),
the disparity map computed from stereo (c), and the ground plane inliers (d).
The ground plane is computed from stereo information. The objective is to
determine if any of the segments in the image (b) constitute a path. We project
the segmented image onto a 2D grid on the ground plane (Figure A.8 (a)) to
obtain the segmentation map (Figure A.8 (b)), which is a bird’s-eye view of the
textures placed on the ground plane. In order to determine if a set of segments
constitutes a path, we first obtain the corresponding path map (Figure A.8 (c))
and compute path statistics on the path map as described in Section A.5.2. The
statistics such as the width profile help us determine if the selected segments
actually constitute a path. In Section A.5.1, we describe how different segments
or textures are combined to detect paths.

A.5 Application: Path Recognition 87

50 100 150 200 250 300 350 400 450 500

50

100

150

200

250

300

350

(a)

50 100 150 200 250 300 350 400 450 500

50

100

150

200

250

300

350

0

1

2

3

4

5

6

7

8

(b)

50 100 150 200 250 300 350 400 450 500

50

100

150

200

250

300

350

50

100

150

200

250

(c)
50 100 150 200 250 300 350 400 450 500

50

100

150

200

250

300

350

(d)

Figure A.7: Images illustrating the information used in path detection. (a) The
image from one of the stereo cameras. (b) Assigned texture labels. (c) Disparity
values of the pixels; red is closer, blue is farther away. (d) The inliers in the
ground plane in green overlay, computed from (c).

88 P a p e r A

50 100 150 200 250 300 350 400 450 500

50

100

150

200

250

300

350

0

1

2

3

4

5

6

7

8

(a)

10 20 30 40 50 60

5

10

15

20

25

30

35

40 0

1

2

3

4

5

6

7

8

(b)

10 20 30 40 50 60

5

10

15

20

25

30

35

40 −1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

(c)

10 20 30 40 50 60

5

10

15

20

25

30

35

40 0

2

4

6

8

10

(d)

Figure A.8: Computing the path map and path statistics. (a) Ground plane
uniform grid projected onto the image. (b) The texture values at the grid points
(segmentation map), showing an overhead geometrical view of the textures on
the ground plane. Note the main path texture (red) is now clearly a path. (c) A
path map obtained by combining the red and yellow textures. The hypothesized
path is in white, textures that are “not path” are in black, and unknown areas
are in gray. (d) The width of the hypothesized path at each pixel. The center
of the path is marked by a white dot.

A.5 Application: Path Recognition 89

A.5.1 Path Detection Using a Segmented Image

We sample the segmented image on a 2D grid on the ground plane to obtain the
“segmentation map”. The grid points are illustrated in Figure A.8(a) and the
corresponding Ni×Nj “segmentation map”, Ti,j , is illustrated in Figure A.8(b).
We note that the path can be composed of a single segment or a combination
of segments. For a given combination of segments, S, the width profile can be
computed directly from the segmentation map as

wS
i =

Nj∑

j=1

∑

k∈S

δ(Ti,j − k). (A.10)

The mean and deviation (A.15)-(A.16) serve as a simple means to identify seg-
ments or combinations of segments that could constitute a path. A set of seg-
ments is detected as a path if its mean width, deviation, and length lie within
certain predetermined thresholds. In the LAGR experiments, for example, we
considered paths whose width was in the range 0.5 m to 2 m, with deviation
less than 0.15 m and length greater than 4 m and the thresholds were set ac-
cordingly. The simple width profile can be computed quickly and is also linear
in the number of segments, i.e.,

wS
i (S1 + S2) = wS

i (S1) + wS
i (S2). (A.11)

We see from (A.11) that it is easy to compute the width profile of a path com-
prising multiple segments using the width profile of the component segments.
The width profile computed in this manner can be used to identify single and
compound segments that constitute a path for different combinations of seg-
ments. Once we obtain a list of candidate segments we can check for both
row-wise and column-wise spatial coherence (next subsection). For a compound
segment path consisting of the set of segments, S, the path map is assigned as

pi,j =

0 Ti,j = 0

1, Ti,j ∈ S
−1, otherwise.

(A.12)

Figure A.8(c) illustrates the path map obtained by combining segments labeled
red and yellow. Figure A.8(d) illustrates the width at each pixel (Wi,j) as well
as the path center that was computed by fitting a quadratic curve.

90 P a p e r A

A.5.2 Computing the Path Profile

We describe how we compute the width profile and other statistics of a Ni ×Nj

2D path map such as the one in Figure A.8 (c). The path map is a 2D grid
on the ground plane whose grid points are labeled as “path”, “not path”, or
“unknown” with values as follows.

Pixel pi,j is labeled as

path, if pi,j = 1

not path, if pi,j = −1

unknown, if pi,j = 0

(A.13)

The basic idea is to determine the existence of a consistent path by computing
its width profile, i.e, its width in each row. We first determine the simple width
profile (wS), and then consider the spatial coherency in each row (wR), and
finally across the columns (wC). We compute the simple width profile, wS

i ,
which is the width of the path in the ith row, as the number of pixels that are
labeled as path in each row.

wS
i =

Nj∑

j=1

δ(pi,j − 1) (A.14)

The mean width and the deviation can be computed for a width profile as

µ =
1

Nj

∑

i

wi (A.15)

d =
1

Nj

∑

i

|wi − µ| (A.16)

While wS is a simple means of testing if the width is consistent, it fails to take
into account if the path pixels are spatially adjacent. We therefore compute a
“running average” of the path width centered at each pixel using a window of
length 2L+ 1, which is computed as

Wi,j = +

j
∑

k=j−L

pi,k + −
j+1
∑

k=j+L

pi,k (A.17)

where

+

j
∑

k=0

xk = max

(

0,+
j−1
∑

k=0

xk + xj

)

, and (A.18)

−
j
∑

k=L

xk = max

(

0,−
j+1
∑

k=L

xk + xj

)

. (A.19)

A.6 Path Recognition Results 91

The two terms in (A.17) describe the widths on the left and right of the pixel
(i, j). These can be computed recursively (A.18-A.19) and are constrained to
be nonnegative. The new width profile, wR

i , of row i is computed as

wR
i = max

j
Wi,j (A.20)

and takes into account spatial coherency in each row. Thus, if a row has a certain
number of path pixels, its width is highest when all of them are adjacent.

We next check the spatial consistency of the path across rows. We note that
Wi,j in each row obtains the maximum value at the center of the path and
we obtain the column corresponding to the maxima of Wi,j for each row i
: jmax

i = argj maxWi,j . We then fit a quadratic curve to the set of points
(i, jmax

i) using RANSAC to obtain the path center in each row. The column-
wise spatially coherent width profile, wC

i is computed as the path width at the
fitted path center

wC
i = Wi,ji

, (A.21)

where ji is the fitted path center at row i.

A.6 Path Recognition Results

As part of the LAGR program, an independent testing group ran monthly blind
tests of the perception and control software. The nine competing teams in the
LAGR program were compared to a baseline system; each team was scored
based on the time taken by its robot to reach the goal. Figure A.7(a) is one of
the tests. Here, a path can be identified as a dirt section among the grass.

In real time tests, we run the segmentation algorithm at slightly slower than a 1
Hz rate. The perception system passes information about paths to the planner,
along with other information about obstacles and freespace. Figure A.9 shows
the trail amongst the bushes detected as a path. This information is then passed
onto the planner. Figure A.10 shows the planner operating on the information
returned by the perception algorithms. The path segmentation contributes the
yellow center section, which is preferred by the planner. Using the path helps
the robot to stay away from the bushes surrounding the path (where the robot
wheels might get stuck). Also, since path costs are lower, the robot avoided
squeezing through the open space between the bushes. This behavior is similar
to that of a person, who would prefer the easy path rather than more dense
terrain among the bushes.

Because of the strong geometric tests, no false positives of recognized paths have
been experienced in any of the LAGR tests.

92 P a p e r A

LM,32 RGB LBP SRI,3x3 SRI,5x5
Time (s) N/A 5.14 2.59 1.11 3.01

Table A.2: Segmentation Times

Figure A.9: Example of path classification. The costmap in Fig. A.10 was
created by driving along this path. The yellow color indicates the detected
path. Green is ground plane and blue are obstacles. The two horizontal lines
are estimates for the location of the horizon.

Timings for our segmentation algorithm on a 512 by 384 color image are shown
in Table A.2. The computational platform is a 2 GHz Pentium-M machine. For
our K-means algorithm, the maximum number of iterations was fixed at 100.
In practice, K-means converges much before that and is stopped when it has
converged. It takes about 1 s to perform the two-stage online learning process,
and about 150 ms to classify a 512 by 384 image using our 3x3 descriptor. The
LM filters have not been implemented to work with color and so are excluded
from the timings.

A.7 Conclusions

We have presented a segmentation algorithm suitable for robotic applications in
outdoor environments. Our segmentation algorithm uses a compact feature de-
scriptor in a two-stage K-means-based clustering algorithm. We have shown that
our descriptor does a better job at texture segmentation than other commonly
used texture descriptors. We have also applied our segmentation algorithm for
recognizing natural paths in outdoor environments in real time. The approach
has been demonstrated online for following natural paths on an outdoor robot.
Although false positives have not been experienced in the LAGR tests, they
could potentially occur if the segments happen to resemble a path geometri-
cally. Another failure mode could occur if the path is segmented into too many

A.7 Conclusions 93

Figure A.10: Example of a costmap built by the LAGR robot and subsequently
used by the planner. Blue is unknown terrain. Obstacles are shown in red.
Ground plane is shown in various shades of green (with brighter colors indicating
lower cost). The yellow region is the detected path. The robot position is marked
with a red line. The cyan line indicates the planned trajectory. The green line
indicates where the robot has driven. The super-imposed grid squares have a
length of 1 m.

regions. We also need to look into the maximum angle and distance relative to
the robot at which the path can be detected.

The segmentation algorithm forms a basis for performing appearance-based ter-
rain classification. We are currently looking into building a database of com-
monly seen terrain types such as tall grass, sandy soil, gravel, and mulch; tex-
tons can be learned offline for each class, and then online each segment can be
classified into one of these terrain types. Such terrain classification can also
be performed entirely online, wherein the robot learns from its own experi-
ence. For each terrain type that the robot has been on, the robot can learn its
color, texture, and navigability characteristics. Subsequently, it can predict the
navigability characteristics of an unknown terrain by recognizing its color and
texture. Indeed, such behaviors can make the robot appear ‘intelligent’.

94 P a p e r A

P a p e r B

CenSurE for Realtime Feature
Detection and Matching

Motilal Agrawal, Kurt Konolige and Morten Rufus Blas. CenSurE for Realtime
Feature Detection and Matching. Proc. of the European Conf. on Computer
Vision, pages 102-115, Marseille, France, 2008. Published.1

1This material is based upon work supported by the United States Air Force under Contract
No. FA8650-04-C-7136. Any opinions, findings and conclusions or recommendations expressed
in this material are those of the author(s) and do not necessarily reflect the views of the United
States Air Force.

96 P a p e r B

Abstract:
We explore the suitability of different feature detectors for the task of image
registration, and in particular for visual odometry, using two criteria: stabil-
ity (persistence across viewpoint change) and accuracy (consistent localization
across viewpoint change). In addition to the now-standard SIFT, SURF, FAST,
and Harris detectors, we introduce a suite of scale-invariant center-surround de-
tectors (CenSurE) that outperform the other detectors, yet have better com-
putational characteristics than other scale-space detectors, and are capable of
real-time implementation.

B.1 Introduction

Image matching is the task of establishing correspondences between two images
of the same scene. This is an important problem in Computer Vision with
applications in object recognition, image indexing, structure from motion and
visual localization – to name a few. Many of these applications have real-time
constraints and would benefit immensely from being able to match images in
real time.

While the problem of image matching has been studied extensively for various
applications, our interest in it has been to be able to reliably match two im-
ages in real time for camera motion estimation, especially in difficult off-road
environments where there is large image motion between frames [67, 1]. Vehicle
dynamics and outdoor scenery can make the problem of matching images very
challenging. The choice of a feature detector can have a large impact in the
performance of such systems.

We have identified two criteria that affect performance.

• Stability: the persistence of features across viewpoint change

• Accuracy: the consistent localization of a feature across viewpoint change

Stability is obviously useful in tracking features across frames. Accuracy of
feature localization is crucial for visual odometry tasks, but keypoint operators
such as SIFT typically subsample the image at higher scales, losing pixel-level
precision.

B.1 Introduction 97

Broadly speaking, we can divide feature classes into two types. Corner detectors
such as Harris (based on the eigenvalues of the second moment matrix [45, 120])
and FAST [110] (analysis of circular arcs [109]) find image points that are well lo-
calized, because the corners are relatively invariant to change of view. Both these
detectors can be implemented very efficiently and have been used in structure-
from-motion systems [1, 93, 96] because of their accuracy. However, they are
not invariant to scale and therefore not very stable across scale changes, which
happen constantly with a moving camera. The Harris-Laplace and the Hessian-
Laplace features [89] combine scale-space techniques with the Harris approach.
They use a scale-adapted Harris measure [77] or the determinant of the Hes-
sian to select the features and the Laplacian to select the scale. Supposedly,
visual odometry can benefit from scale-space features, since they can be tracked
for longer periods of time, and should lead to improved motion estimates from
incremental bundle adjustment of multiple frames.

While we expect scale-space features to be more stable than simple corner fea-
tures, are they as accurate? The answer, at least for visual odometry, is “no”.
The reason is that, as typically implemented in an image pyramid, scale-space
features are not well localized at higher levels in the pyramid. Obviously, fea-
tures at high levels have less accuracy relative to the original image. The culprit
in loss of accuracy is the image pyramid. If the larger features were computed
at each pixel, instead of reducing the size of the image, accuracy could be main-
tained. However, computing features at all scales is computationally expensive,
which is why SIFT features [78], one of the first scale-space proposals, uses the
pyramid – each level incurs only 1/4 the cost of the previous one. SIFT attempts
to recover some of the lost accuracy through subpixel interpolation.

Our proposal is to maintain accuracy by computing features at all scales at every
pixel in the original image. The extrema of the Laplacian across scale have been
shown to be very stable [90], so we consider this operator, or more generally,
extrema of a center-surround response (CenSurE, or Center Surround Extrema).
We explore a class of simple center-surround filters that can be computed in time
independent of their size, and show that, even when finding extrema across all
scales, they are suitable for real-time tasks such as visual odometry. CenSurE
filters outperform the best scale-space or corner features at this task in terms
of track length and accuracy, while being much faster to compute; and they are
also competitive in standard tests of repeatability for large-viewpoint changes.

While the main focus of this paper is on a novel feature detector, visual odom-
etry (and other motion estimation tasks) can benefit from matching using a
descriptor that is robust to viewpoint changes. In this paper, we develop a
fast variant of the upright SURF descriptor, and show that it can be used in
real-time tasks.

98 P a p e r B

B.1.1 Related Work

The two scale-space detectors that are closest to our work, in technique and
practicality, are SIFT [78] and SURF [46]. The main differences between ap-
proaches is summarized in the table below.

CenSurE SIFT SURF

Spatial resolution at scale full subsampled subsampled

Scale-space operator Laplace Laplace Hessian
Approximation (Center-surround) (DOG) (DOB)

Edge filter Harris Hessian Hessian

Rotational invariance approximate yes no

The key difference is the full spatial resolution achieved by CenSurE at every
scale. Neither SIFT nor SURF computes responses at all pixels for larger scales,
and consquently do not detect extrema across all scales. Instead, they consider
each scale octave independently. Within an octave, they subsamples the re-
sponses, and find extrema only at the subsampled pixels. At each successive
octave, the subsampling is increased, so that almost all computation is spent
on the first octave. Consequently, the accuracy of features at larger scales is
sacrificed, in the same way that it is for pyramid systems. While it would be
possible for SIFT and SURF to forego subsampling, it would then be inefficient,
with compute times growing much larger.

CenSurE also benefits from using an approximation to the Laplacian, which has
been shown to be better for scale selection [90]. The center-surround approxi-
mation is fast to compute, while being insensitive to rotation (unlike the DOB
Hessian approximation). Also, CenSurE uses a Harris edge filter, which gives
better edge rejection than the Hessian.

Several simple center-surround filters exist in the literature. The bi-level Lapla-
cian of Gaussian (BLoG) approximates the LoG filter using two levels. [102]
describes circular BLoG filters and optimizes for the inner and outer radius to
best approximate the LoG filter. The drawback is that the cost of BLoG depends
on the size of the filter. Closer to our approach is that of Grabner et al. [37],
who describe a difference-of-boxes (DOB) filter that approximates the SIFT
detector, and is readily computed at all scales with integral images [140, 76].
Contrary to the results presented in [37], we demonstrate that our DOB filters
outperform SIFT in repeatability. This can be attributed to careful selection
of filter sizes and using the second moment matrix instead of the Hessian to
filter out responses along a line. In addition, the DOB filter is not invariant to
rotation, and in this paper we propose filters that have better properties.

B.2 Center Surround Extrema (CenSurE) Features 99

The rest of the paper is organized as follows. We describe our CenSurE features
in detail in Section B.2. We then discuss our modified upright SURF (MU-
SURF) in Section B.3. We compare the performance of CenSurE against several
other feature detectors. Results of this comparison for image matching are
presented in Section B.4.1 followed by results for visual odometry in Section
B.4.2. Finally, Section B.5 concludes this paper.

B.2 Center Surround Extrema (CenSurE) Fea-

tures

Our approach to determining accurate large-scale features demands that we
compute all features at all scales, and select the extrema across scale and lo-
cation. Obviously, this strategy demands very fast computation, and we use
simplified bi-level kernels as center-surround filters. The main concern is find-
ing kernels that are rotationally invariant, yet easy to compute.

B.2.1 Finding Extrema

In developing affine-invariant features, Mikolajczyk and Schmid [88] report on
two detectors that seem better than others in repeatability – the Harris-Laplace
and Hessian-Laplace. Mikoljczyk and Schmid note that the Harris and Hessian
detectors (essentially corner detectors) are good at selecting a location within
a scale, but are not robust across scale. Instead, they show that the maximum
of Laplacian operator across scales gives a robust characteristic scale - hence
the hybrid operator, which they define as follows: first a peak in the Harris or
Hessian operator is used to select a location, and then the Laplacian selects the
scale at that location.

This strategy requires computing the Hessian/Harris measure at all locations
and all scales, and additionally calculating the Laplacian at all scales where
there are peaks in the corner detector. In our view, the Laplacian is easier
to compute and to approximate than the Hessian, as was discovered by Lowe
for SIFT features. So in our approach, we compute a simplified center-surround
filter at all locations and all scales, and find the extrema in a local neighborhood.
In a final step, these extrema are filtered by computing the Harris measure and
eliminating those with a weak corner response.

100 P a p e r B

B.2.2 Bi-level Filters

While Lowe approximated the Laplacian with the difference of Gaussians, we
seek even simpler approximations, using center-surround filters that are bi-level,
that is, they multiply the image value by either 1 or −1. Figure B.1 shows a pro-
gression of bi-level filters with varying degrees of symmetry. The circular filter
is the most faithful to the Laplacian, but hardest to compute. The other filters
can be computed rapidly with integral images (Section B.2.7), with decreasing
cost from octagon to hexagon to box filter. We investigate the two endpoints:
octagons for good performance, and boxes for good computation.

Figure B.1: Progression of Center-Surround bi-level filters. (a) circular symmetric
BLoG (Bilevel LoG) filter. Successive filters (octagon, hexagon, box) have less sym-
metry.

B.2.3 CenSurE Using Difference of Boxes

We replace the two circles in the circular BLoG with squares to form our
CenSurE-DOB. This results in a basic center-surround Haar wavelet. Figure
B.1(d) shows our generic center-surround wavelet of block size n. The inner box
is of size (2n + 1) × (2n + 1) and the outer box is of size (4n + 1) × (4n + 1).
Convolution is done by multiplication and summing. If In is the inner weight
and On is the weight in the outer box, then in order for the DC response of this
filter to be zero, we must have

On(4n+ 1)2 = In(2n+ 1)2 (B.1)

We must also normalize for the difference in area of each wavelet across scale.

In (2n+ 1)2 = In+1 (2 (n+ 1) + 1)2 (B.2)

We use a set of seven scales for the center-surround Haar wavelet, with block
size n = [1, 2, 3, 4, 5, 6, 7]. Since the block sizes 1 and 7 are the boundary, the

B.2 Center Surround Extrema (CenSurE) Features 101

scale n = 1 n = 2 n = 3 n = 4 n = 5 n = 6 n = 7
inner (m,n) (3, 0) (3, 1) (3, 2) (5, 2) (5, 3) (5, 4) (5, 5)
outer (m,n) (5, 2) (5, 3) (7, 3) (9, 4) (9, 7) (13, 7) (15, 10)

Table B.1: CenSurE-OCT: inner and outer octagon sizes for various scales

lowest scale at which a feature is detected corresponds to a block size of 2. This
roughly corresponds to a LoG with a sigma of 1.885. These five scales cover 2 1

2
octaves, although the scales are linear. It is easy to add more filters with block
sizes 8,9, and so on.

B.2.4 CenSurE Using Octagons

Difference of Boxes are obviously not rotationally invariant kernels. In partic-
ular, DOBs will perform poorly for 45 degrees in-plane rotation. Octagons, on
the other hand are closer to circles and approximate LoG better than DOB.

In using octagons, the basic ideas of performing convolutions by inner and outer
weighted additions remain the same. As in DOB, one has to find weights In and
On such that the DC response is zero and all filters are normalized according
to the area of the octagons.

An octagon can be represented by the height of the vertical side (m) and height
of the slanted side (n) (Figure B.1(b)). Table B.1 shows the different octagon
sizes corresponding to the seven scales. These octagons scale linearly and were
experimentally chosen to correspond to the seven DOBs described in the previ-
ous section.

B.2.5 Non-Maximal Suppression

We compute the seven filter responses at each pixel in the image. We then
perform a non-maximal suppression over the scale space. Briefly, a response is
suppressed if there is a response greater (maxima case) or a response less than
(minima case) its neighbors in a local neighborhood over the location and scales.
Pixels that are either maxima or minima in this neighborhood are the feature
point locations. We use a 3x3x3 neighborhood for our non-maximal suppression.

The magnitude of the filter response gives an indication of the strength of the
feature. The greater the strength, the more likely it is to be repeatable. Weak

102 P a p e r B

responses are likely to be unstable. Therefore, we can apply a threshold to filter
out the weak responses.

Since all our responses are computed on the original image without subsampling,
all our feature locations are localized well and we do not need to perform subpixel
interpolation.

B.2.6 Line Suppression

Features that lie along an edge or line are poorly localized along it and there-
fore are not very stable. Such poorly defined peaks will have large principal
curvatures along the line but a small one in the perpendicular direction and
therefore can be filtered out using the ratio of principal curvatures. We use the
second moment matrix of the response function at the particular scale to filter
out these responses.

H =

[∑
L2

x

∑
LxLy∑

LxLy

∑
L2

y

]

(B.3)

Lx and Ly are the derivatives of the response function L along x and y. The
summation is over a window that is linearly dependent on the scale of the
particular feature point: the higher the scale, the larger the window size. Note
that this is the scale-adapted Harris measure [88, 77] and is different from the
Hessian matrix used by SIFT [78, 37] to filter out line responses. Once the
Harris measure is computed, its trace and determinant can be used to compute
the ratio of principal curvatures. We use a threshold of 10 for this ratio and a
9 × 9 window at the smallest scale of block size 2.

The Harris measure is more expensive to compute than the Hessian matrix
used by SIFT. However, this measure needs to be computed for only a small
number of feature points that are scale-space maxima and whose response is
above a threshold and hence does not present a computational bottleneck. In
our experience it does a better job than Hessian at suppressing line responses.

B.2.7 Filter Computation

The key to CenSurE is to be able to compute the bi-level filters efficiently at all
sizes. The box filter can be done using integral images [140, 76]. An integral
image I is an intermediate representation for the image and contains the sum

B.3 Modified Upright SURF (MU-SURF) Descriptor 103

of gray scale pixel values of image N with height y and width x, i.e.,

I(x, y) =

x∑

x′=0

y
∑

y′=0

N(x′, y′) (B.4)

The integral image is computed recursively, requiring only one scan over the
image. Once the integral image is computed, it it takes only four additions to
calculate the sum of the intensities over any upright, rectangular area, indepen-
dent of its size.

Modified versions of integral images can be exploited to compute the other
polygonal filters. The idea here is that any trapezoidal area can be computed
in constant time using a combination of two different slanted integral images,
where the sum at a pixel represents an angled area sum. The degree of slant is
controlled by a parameter α:

Iα(x, y) =

y
∑

y′=0

x+α(y−y′)
∑

x′=0

N(x′, y′). (B.5)

When α = 0, this is just the standard rectangular integral image. For α < 0,
the summed area slants to the left; for α > 0, it slants to the right (Figure B.2,
left). Slanted integral images can be computed in the same time as rectangular
ones, using incremental techniques.

Adding two areas together with the same slant determines one end of a trapezoid
with parallel horizontal sides (Figure B.2, right); the other end is done similarly,
using a different slant. Each trapezoid requires three additions, just as in the
rectangular case. Finally, the polygonal filters can be decomposed into 1 (box),
2 (hexagon), and 3 (octagon) trapezoids, which is the relative cost of computing
these filters.

B.3 Modified Upright SURF (MU-SURF) De-

scriptor

Previously, we have demonstrated accurate visual odometry using ZNCC for
feature matching [67] (using a 11×11 region). However, it is relatively sensitive
to in-plane rotations (roll), larger changes in perspective, and inaccuracies in
keypoint localization. The problems related to rolls and perspective changes
become more significant as the region size increases. We have therefore decided
to switch to an upright SURF type descriptor [46].

104 P a p e r B

+

x,y x,y

x’,y’
+

Figure B.2: Using slanted integral images to
construct trapezoidal areas. Left is a slanted
integral image, where the pixel x, y is the sum
of the shaded areas; α is 1. Right is a half-
trapezoid, from subtracting two slanted inte-
gral image pixels.

Figure B.3: Regions and subregions
for MU-SURF descriptor. Each sub-
region (in blue) is 9x9 with an over-
lap of 2 pixels at each boundary. All
sizes are relative to the scale of the
feature s.

The SURF descriptor builds on from the SIFT descriptor by encoding local gra-
dient information. It uses integral images to compute Haar wavelet responses,
which are then summed in different ways in 4 × 4 subregions of the region to
create a descriptor vector of length 64.

As pointed out by David Lowe [78], “it is important to avoid all boundary effects
in which the descriptor abruptly changes as a sample shifts smoothly from being
within one histogram to another or from one orientation to another”. The SURF
descriptor [46] weighs the Haar wavelet responses using a Gaussian centered at
the interest point. This single weighting scheme gave poor results and we were
unable to recreate the SURF descriptor results without accounting for these
boundary effects.

To account for these boundary conditions, each boundary in our descriptor has
a padding of 2s, thereby increasing our region size from 20s to 24s, s being
the scale of the feature. The Haar wavelet responses in the horizontal (dx)
and vertical (dy) directions are computed for each 24 × 24 point in the region
with filter size 2s by first creating a summed image, where each pixel is the
sum of a region of size s. The Haar wavelet output results in four fixed-size
dx,dy, |dx|,|dy| images that have the dimensions 24×24 pixels irrespective of the
scale.

Each dx,dy, |dx|,|dy| image is then split into 4× 4 square overlapping subregions
of size 9 × 9 pixels with an overlap of 2 pixels with each of the neighbors.
Figure fig:descriptor shows these regions and subregions. For each subregion
the values are then weighted with a precomputed Gaussian (σ1 = 2.5) centered
on the subregion center and summed into the usual SURF descriptor vector
for each subregion: v = (

∑
dx,
∑
dy,
∑ |dx| ,

∑ |dy|). Each subregion vector
is then weighted using another Gaussian (σ2 = 1.5) defined on a mask of size

B.4 Experimental Results 105

4× 4 and centered on the feature point. Like the original SURF descriptor, this
vector is then normalized.

The overlap allows each subregion to work on a larger area so samples that get
shifted around are more likely to still leave a signature in the correct subregion
vectors. Likewise, the subregion Gaussian weighting means that samples near
borders that get shifted out of a subregion have less impact on the subregion
descriptor vector.

From an implementation point of view the dynamic range of the vector was
small enough that the end results could be scaled into C++ shorts. This allows
for very fast matching using compiler vectorization.

CenSurE features themselves are signed based on their being dark or bright
blobs. This is similar to SURF and can also be used to speed up the matching
by only matching bright features to bright features and so forth.

We have compared the performance of MU-SURF with U-SURF for matching
and found them to be similar. As will be pointed out in Section B.4.3, our
implementation of MU-SURF is significantly faster than U-SURF. It is unclear
to us as to why MU-SURF is so much faster. We are currently looking into this.

B.4 Experimental Results

We compare CenSurE-DOB and CenSurE-OCT to Harris, FAST, SIFT, and
SURF feature detectors for both image matching and visual odometry. Results
for image matching are presented in Section B.4.1 and VO in Section B.4.2.

B.4.1 Image Matching

For image matching, we have used the framework of [90] to evaluate repeatability
scores for each detector on the graffiti and boat sequences.2 We have used the
default parameters for each of these detectors. In addition, since each of these
detectors has a single value that represents the strength of the feature, we have
chosen a strength threshold such that each of these detectors results in the same
number of features in the common overlapping regions. Figure B.4 (a) & (b)
shows a plot of the detector repeatability and number of correspondences for
each detector using 800 features and an overlap threshold of 40% for the graffiti

2available from http://www.robots.ox.ac.uk/~vgg/research/affine/

http://www.robots.ox.ac.uk/~vgg/research/affine/

106 P a p e r B

sequence. For Harris and FAST, the scale of all detected points was assumed to
be the same and set at 2.0.

10 20 30 40 50 60 70
0

10

20

30

40

50

60

70

80

90

100

re
pe

at
ib

ili
ty

 %

viewpoint angle

Harris
FAST
SIFT
CenSurE−DOB
SURF
CenSurE−OCT

(a)

20 25 30 35 40 45 50 55 60
0

100

200

300

400

500

600

700

nb
 o

f c
or

re
sp

on
de

nc
es

viewpoint angle

Harris
FAST
SIFT
CenSurE−DOB
SURF
CenSurE−OCT

(b)

1 2 3 4 5 6 7
0

10

20

30

40

50

60

70

80

90

100

re
pe

at
ib

ili
ty

 %

image number

Harris
FAST
SIFT
CenSurE−DOB
SURF
CenSurE−OCT

(c)

2 2.5 3 3.5 4 4.5 5 5.5 6
0

100

200

300

400

500

600

nb
 o

f c
or

re
sp

on
de

nc
es

image number

Harris
FAST
SIFT
CenSurE−DOB
SURF
CenSurE−OCT

(d)

Figure B.4: Repeatability and number of correspondences for different detectors for
the graffiti and boat sequences. The number of features is the same for each detector.
(a) & (b) graffiti sequence. (c) & (d) boat sequence.

Both versions of CenSurE are better than SIFT or SURF, although for large
viewpoint changes, the differences become only marginal. As can be expected,
CenSurE-OCT does better than CenSurE-DOB.

The boat sequence is more challenging because of large changes in rotation and
zoom. Figure B.4 (c) & (d) shows the detector performance for this sequence
for 800 features. On this challenging sequence, CenSurE performs slightly worse
than either SIFT or SURF, especially for the larger zooms. This can be at-
tributed to CenSurE’s non-logarithmic scale sampling. Furthermore, CenSurE
filters cover only 2 1

2 octaves and therefore has less degree of scale-invariance for
large scale changes.

B.4 Experimental Results 107

To evaluate the matching performance, we used our MU-SURF descriptor for
each of those detectors and matched each detected point in one image to the one
with the lowest error using Euclidean distance. A correspondence was deemed
as matched if the true match was within a search radius r of its estimated
correspondence. Note that this is a different criterion than considering overlap
error and we have chosen this because this same criterion is used in visual
odometry to perform image registration. Figure B.5 shows the percentage of
correct matches as a function of search radius when the number of features is
fixed to 800.

1 2 3 4 5
10

20

30

40

50

60

70

Search radius

P
er

ce
nt

ag
e

in
lie

rs

Percentage of correct matches as a function of search radius. Number of features is fixed to 800

Harris
FAST
SIFT
CenSurE−DOB
SURF
CenSurE−OCT

Figure B.5: Percentage of correct
matches as a function of search radius

S
ca

le
 r

el
at

iv
e

to
 b

es
t

Relative performance of features

percent inliers mean track length
0

0.2

0.4

0.6

0.8

1

FAST
Harris
SIFT
SURF
SURF+
DOB
OCT

Figure B.6: Basic performance of opera-
tors in the VO dataset.

B.4.2 Visual Odometry

We evaluate the performance of CenSurE for performing visual odometry in
challenging off-road environments. Because there can be large image motion
between frames, including in-plane rotations, the tracking task is difficult: es-
sentially, features must be re-detected at each frame. As usual, we compare our
method against Harris, FAST, SIFT, and SURF features. Note that this is a
test of the detectors; the same MU-SURF descriptor was used for each feature.

The Visual Odometry (VO) system derives from recent research by the authors
and others on high-precision VO [67, 1] using a pair of stereo cameras. For each
new frame, we perform the following process.

1. Distinctive features are extracted from each new frame in the left image.
Standard stereo methods are used to find the corresponding point in the
right image.

2. Left-image features are matched to the features extracted in the previous
frame using our descriptor. We use a large area, usually around 1/5 of the

108 P a p e r B

image, to search for matching features.

3. From these uncertain matches, we recover a consensus pose estimate using
a RANSAC method [32]. Several thousand relative pose hypotheses are
generated by randomly selecting three matched non-collinear features, and
then scored using pixel reprojection errors.

4. If the motion estimate is small and the percentage of inliers is large enough,
we discard the frame, since composing such small motions increases error.
A kept frame is called a key frame. The larger the distance between key
frames, the better the estimate will be.

5. The pose estimate is refined further in a sparse bundle adjustment (SBA)
framework [29, 135].

The dataset for this experiment consists of 19K frames taken over the course of a
3 km autonomous, rough-terrain run. The images have resolution 512x384, and
were taken at a 10 Hz rate; the mean motion between frames was about 0.1m.
The dataset also contains RTK GPS readings synchronized with the frames, so
ground truth to within about 10 cm is available for gauging accuracy.

We ran each of the operators under the same conditions and parameters for
visual odometry, and compared the results. Since the performance of an operator
is strongly dependent on the number of features found, we set a threshold of
400 features per image, and considered the highest-ranking 400 features for each
operator. We also tried hard to choose the best parameters for each operator.
For example, for SURF we used doubled images and a subsampling factor of 1,
since this gave the best performance (labeled “SURF+” in the figures).

The first set of statistics shows the raw performance of the detector on two of
the most important performance measures for VO: the average percentage of
inliers to the motion estimate, and the mean track length for a feature (Figure
B.6). In general, the scale-space operators performed much better than the
simple corner detectors. CenSurE-OCT did the best, beating out SURF by a
small margin. CenSurE-DOB is also a good performer, but suffers from lack of
radial symmetry. Surprisingly, SIFT did not do very well, barely beating Harris
corners.

Note that the performance of the scale-space operators is sensitive to the sam-
pling density. For standard SURF settings (no doubled image, subsampling of
2) the performance is worse than the corner operators. Only when sampling
densely for 2 octaves, by using doubled images and setting subsampling to 1,
does performance approach that of CenSurE-OCT. Of course, this mode is much
more expensive to compute for SURF (see Section B.4.3).

B.4 Experimental Results 109

10 20 30 40 50 60 70 80 90 100
0

50

100

150

200

250

300

Inliers

N
um

be
r

of
 fr

am
es

Frames with fewer than N inliers

FAST
Harris
SIFT
SURF
SURF+
DOB
OCT

0 100 200 300 400 500
0

2

4

6

8

10

12

14

Interval distance, meters

S
T

D
, m

et
er

s

STD from ground truth

FAST
Harris
SIFT
SURF+
DOB
OCT

Figure B.7: Accuracy statistics. Left: number of frames with inliers less than a
certain amount, out of 19K frames. For example, FAST and Harris both have around
50 frames with fewer than 30 inliers. Right: standard deviation from ground truth,
over trajectories of varying length.

The question to ask is: do these performance results translate into actual gains
in accuracy of the VO trajectory? We look at two measures of accuracy, the
number of frames with low inlier counts, and the deviation of the VO trajectory
from ground truth (Figure B.7). The graph at the left of the figure can be used
to show how many frames are not matched, given a threshold for inliers. For
example, we typically use 30 inliers as a cutoff: any frames with fewer matches
are considered to have bad motion estimates. With this cutoff, SIFT, SURF+,
OCT, and DOB all have less than 10 missed frames, while Harris and FAST
have around 50. To show the influence of low-resolution localization, standard
SURF does very poorly here, as we expect from the previous performance graph.

Finally, we looked at the deviation of the VO estimates from ground truth, for
different trajectory lengths. At every 10 key frames along the VO trajectory,
we compared a trajectory of length N against the corresponding ground truth,
to give a dense sampling (about 1000 for each trajectory length). The standard
deviation is a measure of the goodness of the VO trajectory. Here, OCT, DOB
and Harris were all about equivalent, and gave the best estimates. Although
Harris does not do well in getting large numbers of inliers for difficult motions,
it is very well localized, and so gives good motion estimates. SIFT and SURF+
give equivalent results, and are penalized by their localization error.

Overall, CenSurE-OCT gives the best results in terms of accurate motion esti-
mates, and misses very few frames. Harris does very well in accuracy of motion,
but misses a large number of frames. SURF+ is a reasonable performer in terms
of missed frames, but is not as accurate as the CenSurE or Harris features.

110 P a p e r B

detector
SURF+ SURF-1 SIFT SURF OCT DOB Harris

3408 292 304 75 23 17 10

descriptor
U-SURF MU-SURF

308 16

Table B.2: Time in milliseconds for different feature detectors and descriptors

B.4.3 Timing Results

Timing results for our CenSurE and MU-SURF implementations on an Intel
Pentium-M 2 GHz machine for a 512× 384 image are presented in Table 2. For
comparison, SURF timings based on the original author’s implementations3 (on
the same computational platform and on the same images) are also included.

SURF has default parameters (no doubled image, subsampling of 2), whereas
SURF-1 has subsampling set to 1, and SURF+ is SURF-1 with a doubled image.
For the descriptor, both U-SURF and MU-SURF are given the same features
(about 1000 in number).

For VO the best performance is with SURF+. In this case, CenSurE-OCT
yields more than a hundred-fold improvement in timing. Our MU-SURF is also
more than twenty times faster than U-SURF. It is clear that feature detection
using CenSurE features and matching using MU-SURF descriptors can be easily
accomplished in real time.

B.5 Conclusion

We have presented two variants of center-surround feature detectors (CenSurE)
that outperform other state-of-the-art feature detectors for image registration in
general and visual odometry in particular. CenSurE features are computed at
the extrema of the center-surround filters over multiple scales, using the original
image resolution for each scale. They are an approximation to the scale-space
Laplacian of Gaussian and can be computed in real time using integral images.
Not only are CenSurE features efficient, but they are distinctive, stable and
repeatable in changes of viewpoint. For visual odometry, CenSurE features
result in longer track lengths, fewer frames where images fail to match, and
better motion estimates.

3available from http://www.vision.ee.ethz.ch/~surf/download.html

http://www.vision.ee.ethz.ch/~surf/download.html

B.5 Conclusion 111

We have also presented a modified version of the upright SURF descriptor (MU-
SURF). Although the basic idea is same as the original SURF descriptor, we
have modified it so as to handle the boundaries better, and it is also faster. It
has been our experience that MU-SURF is well suited for visual odometry and
performs much better than normalized cross-correlation without much compu-
tational overhead.

CenSurE is in constant use on our outdoor robots for localization; our goal is
to ultimately be able to do visual SLAM in real time. Toward this end, we
are exploiting CenSurE features to recognize landmarks and previously visited
places in order to perform loop closure.

112 P a p e r B

P a p e r C

Mapping, Navigation, and
Learning for Off-Road

Traversal

Kurt Konolige, Motilal Agrawal, Morten Rufus Blas,
Robert C. Bolles, Brian Gerkey, Joan Sola, Aravind Sundaresan. Mapping,
Navigation, and Learning for Off-Road Traversal. J. of Field Robotics, pages
88-113, 2009. Published.1

1This material is based upon work supported by the United States Air Force under Contract
No. FA8650-04-C-7136. Any opinions, findings and conclusions or recommendations expressed
in this material are those of the author(s) and do not necessarily reflect the views of the United
States Air Force.

114 P a p e r C

Abstract:
The challenge in the DARPA Learning Applied to Ground Robots (LAGR)
project is to autonomously navigate a small robot using stereo vision as the
main sensor. During this project, we demonstrated a complete autonomous
system for off-road navigation in unstructured environments, using stereo vision
as the main sensor. The system is very robust – we can typically give it a goal
position several hundred meters away, and expect it to get there. In this paper
we describe the main components that comprise the system, including stereo
processing, obstacle and freespace interpretation, long-range perception, online
terrain traversability learning, visual odometry, map registration, planning, and
control. At the end of three years, the system we developed outperformed all 9
other teams in final blind tests over previously-unseen terrain.

C.1 Introduction

The DARPA LAGR project began in Spring 2005 with the ambitious goal of
achieving vision-only autonomous traversal of off-road terrain. Further, the
participating teams were to be tested “blind” – sending in code to be run on a
robot at a remote, unseen site. The hope was that by using learning algorithms
developed by the teams, significant progress could be made in robust naviga-
tion in difficult off-road environments, where tall grass, shadows, deadfall, and
other obstacles predominate. The ultimate goal was to achieve better than 2x
performance over a Baseline system already developed at the National Robotics
Engineering Center (NREC) in Pittsburgh. All participant teams used the same
robotic hardware provided by NREC (Figure C.1(a)); testing was performed by
an independent team on a monthly basis, at sites in Florida, New Hampshire,
Maryland, and Texas.

Although work in outdoor navigation has preferentially used laser rangefinders
[91, 12, 40], LAGR uses stereo vision as the main sensor. One characteristic of
the vision hardware is that depth perception is good only at fairly short range
– its precision deteriorates rapidly after 7m or so. Even where good stereo
information is available, it is often impossible to judge traversability on the
basis of 3D form. For example, tall grass that is compressible can be traversed,
but small bushes cannot, and they might have similar 3D signatures. The robots
would often slip on sand or leaves, and be unable to climb even small grades
if they were slippery. These conditions could not be determined even at close
range with stereo vision.

C.1 Introduction 115

Another area that the testing team was keen on developing was the ability of
the robots to make decisions at a distance. Many of the tests had extensive
cul-de-sacs, dead ends, or paths that initially led towards the goal but then
turned away. Here, the robot could not rely on local information to find a good
way out. The expectation was that the teams would cope with such situations
using long-range vision sensing, that is, be able to tell from the appearance of
the terrain whether it was traversable or not.

Throughout the project life, we evaluated the potential of learning methods and
appearance-based recognition. The emphasis was always on general methods
that would work well in all situations, not just artificial ones designed to test
a particular ability, like bright orange fencing that could easily be recognized
by its distinctive color. In the end, the most useful and novel technique we
developed was an online method for path-finding based on color and texture.
While we also developed algorithms for classifying obstacles at a distance, they
did not work reliably enough to be included in a final system.

In addition to appearance-based learning, we had to build improved algorithms
for many different aspects of vision-based offroad navigation. The paragraphs
below summarize the methods that distinguished the SRI system, and which
contributed to its overall performance.

Online Color and Texture Segmentation
It became clear from the early stages of the project that color-only meth-
ods for recognizing vegetation or terrain were not sufficient. We concen-
trated on developing fast combined color/texture methods that could be
used online to learn segmentations of the image. These methods advance
state-of-the-art in appearance-based segmentation, and are the key to our
online path-finding method. They reliably finds paths such as the one in
Figure C.1(b), even when the particular appearance of the path is new.

(a) LAGR Robot (b) View from the robot cameras

Figure C.1: (a) LAGR robot with two stereo sensors. (b) Typical outdoor scene
as a montage from the left cameras of the two stereo devices.

116 P a p e r C

Precisely Registered Maps
If the robot’s reconstruction of the global environment is faulty, it cannot
make good plans to get to its goal. After noticing navigation failures
from the very noisy registration provided by GPS, we decided to give high
priority to precise registration of local map information into a global map.
Here, we developed realtime visual odometry (VO) methods that are more
precise than existing ones, while still being computable at frame rates. To
our knowledge, this is the first use of VO as the main registration method
in an autonomous navigation system. VO enabled us to learn precise
maps during a run, and so escape efficiently from cul-de-sacs. In the last
stage of the project, we also discovered that the precision of VO made
it possible to reuse maps from a previous run, thereby avoiding problem
areas completely. This run-to-run learning, or map re-use, was unique
among the teams, and on average halved the time it took to complete a
course.

Efficient Planner and Controller
The LAGR robot was provided with a “baseline” system that used im-
plementations of D* [127] for global planning and Dynamic Window Ap-
proach (DWA) [34] for local control. These proved inadequate for realtime
control – for example, the planner could take several seconds to compute a
path. We developed an efficient global planner based on previous gradient
techniques [63], as well as a novel local controller that takes into account
robot dynamics, and searches a large space of robot motions. These tech-
nqiues enabled the robot to compute optimal global paths at frame rates,
and to average 85% of its top speed over most courses.

It is hard to over-emphasize the contribution of consistent map construction
and map re-use. Without well-registered maps, the robot would often spend
large amounts of time getting cornered as badly-remembered obstacles filled in
open spaces, or it would re-enter dead-end areas that had shifted in the map.
Because the testing team emphasized cul-de-sacs and garden path scenarios, it
was critical to have accurate representations of areas that were no longer within
the short stereo range. As it turned out, an accurate map was a more robust
way to deal with these scenarios than unreliable long-range sensing. Further,
once the map was constructed, map re-use led to very efficient runs: if you
memorize the route, there’s no need to repeat your mistakes. While the idea is
simple, the execution was difficult, requiring very precise localization based on
visual odometry.

At the end of the project, the teams were tested in a series of courses (Tests 25–
27) with a variety of challenges (see Section C.6.2). We choose these last tests
because our system was complete, having just added the map re-use feature.

C.1 Introduction 117

Over these tests, we averaged about 4x the score of Baseline, the best of any
team. In each of these tests, our score beat or tied the best other team; and in
the aggregate, we scored 60% higher than the best other team. These results
validate the applicability of our techniques to autonomous navigation.

In this paper we show how we built a system for autonomous off-road navigation
that embodies the methods described above, and in particular performs online
path learning and run-to-run map learning to increase its performance. In the
following sections, we first discuss local map creation from visual input, with
a separate section on learning color models for paths and traversable regions.
Then we examine visual odometry and registration in detail, and show how
consistent global maps are created and reused. The next section discusses the
global planner and local controller. Finally, we present performance results for
the last series of tests at the end of the project.

C.1.1 Related work

There has been an explosion of work in mapping and localization (SLAM), most
of it concentrating on indoor environments [41, 73]. Much of the recent research
on outdoor navigation has been driven by DARPA projects on mobile vehicles
[12]. The sensor of choice is a laser rangefinder, augmented with monocular or
stereo vision. In much of this work, high-accuracy GPS is used to register sensor
scans; exceptions are [40, 91]. In contrast, we forego laser rangefinders, and ex-
plicitly use image-based registration to build accurate maps. Other approaches
to mapping with vision are [108, 124], although they are not oriented towards re-
altime implementations. Obstacle detection using stereo has also received some
attention [108].

Visual odometry systems use structure-from-motion methods to estimate the
relative position of two or more camera frames, based on matching features be-
tween those frames. There have been a number of recent approaches to visual
odometry [97, 82, 53], including motion estimation on the Mars vehicles [86].
Other teams in LAGR also developed visual odometry systems to aid in naviga-
tion [47]. Our system [67, 1, 2] is most similar to the recent work of Mouragnon
et al. [93] and Sunderhauf et al. [128], which exploit bundle adjustment tech-
niques to obtain increased precision. One difference is the introduction of a
new, more stable keypoint detector, and the integration of an IMU to maintain
global pose consistency. Our system is also distinguished by realtime imple-
mentation and high accuracy using a small baseline in realistic terrain. It has
been in regular use in demonstrations for over two years as the primary mode
of localization and map registration. In addition, the system has been tested
over trajectories of up to 9km with a ground truth RTK-GPS dataset, and has

118 P a p e r C

achieved accuracies of under 1% error (see Section C.3.4).

Our segmentation algorithm uses a compact descriptor to represent color and
texture. In a seminal paper, Leung and Malik [74] showed that many textures
could be represented and re-created using a small number of basis vectors ex-
tracted from the local descriptors; they called the basis vectors textons. While
Leung and Malik used a filter bank, later Varma and Zisserman [139] showed
that small local texture neighborhoods may be better than using large filter
banks. In addition, a small local neighborhood vector can be much faster to
compute than multichannel filtering such as Gabor filters over large neighbor-
hoods.

Our planning approach is an enhanced reimplementation of the gradient tech-
nique [63], which computes a global navigation function over the cost map. A
similar approach is used in wavefront planning [71], although wavefront plan-
ners usually minimize Manhattan or diagonal distance, whereas we minimize
Euclidean distance. Level sets [60] offer an equivalent method for computing
paths that minimize Euclidean distance. The underlying computation for all
such planners is a variation on dynamic programming [10]. For reasons of effi-
ciency, our planner treats the robot as a holonomic cylinder with no kinodynamic
constraints. These constraints could be incorporated into the planner by use of
sampling-based algorithms such as rapidly-exploring random trees (RRTs) [72].

We enforce kinodynamic constraints in our local controller. Control algorithms
such as DWA [34] compute local controls by first determining a target trajectory
in position or velocity space (usually a circular arc or other simple curve), then
inverting the robot’s dynamics to find the desired velocity commands that will
produce that trajectory. We instead explore the control space directly, and
simulate and evaluate the resulting trajectories, in a manner reminiscent of the
controller used in the RANGER system [57], with the key differences being the
definition of the state space and the trajectory evaluation function. The Stanley
controller [132] also rolls out and evaluates possible trajectories, but divides
them into two categories (“nudges” and “swerves”), based on their expected
lateral acceleration. Howard et al. [48] present a more general approach to
constraining the search for controls by first sampling directly in the vehicle’s
state space.

C.2 Local map construction

The object of the local map algorithms is to determine, from the visual informa-
tion, which areas are freespace and which are obstacles for the robot: the local

C.2 Local map construction 119

map. Note that this is not simply a matter of geometric analysis – for example,
a log and a row of grass may have similar geometric shapes, but the robot can
traverse the grass but not the log.

Figure C.2(a) is an outline of visual processing, from image to local map. There
are four basic trajectories. From the stereo disparity, we compute a nominal
ground plane, which yields free space near the robot. We also analyze height
differences from the ground to find obstacles. Via the technique of sight lines we
can infer freespace to more distant points. Finally, from color, texture and path
analysis, coupled with the ground plane, we determine paths and traversability
of the terrain.

All of the processing of local cost maps, with the exception of the color/texture
learning, takes place very efficiently. We can run the full algorithm, including
stereo computation and obstacle detection, in under 70 ms (15 Hz), enabling
very quick response to new features in the environment.

120 P a p e r C

C.2.1 Stereo analysis and ground plane extraction

We use a fast stereo algorithm [65] to compute a disparity image at 512x384
resolution in less than 40 ms2 (Figure C.3(a)). In typical outdoor scenes, it
is possible to achieve very dense stereo results, The high resolution gives very
detailed 3D information for finding the ground plane and obstacles. Each dis-
parity image point [u, v, d]⊤ corresponds to a 3D point in the robot’s frame
([x, y, z, w]⊤ = R[u, v, d, 1]⊤ in homogenous coordinates, where R is the repro-
jection matrix [68]. The matrix multiplication is done for each disparity point
as part of stereo processing.

Output from the stereo process is used in a number of ways – the diagram in
Figure C.2(b) summarizes them. Most of our analysis is biased towards finding
freespace, especially in areas that are further from the robot. This strategy
stems from the high cost of seeing false obstacles, closing off promising paths
for the robot.

The most important geometric analysis is finding the ground plane. Although
it is possible to detect obstacles using local variation in height [43], using a
ground plane simplifies processing and yields more stable results. To extract a
ground plane, we use a RANSAC technique [32], choosing sets of 3 noncollinear
points. Hypothesized planes are ranked by the number of points that are close
to the plane. Figure C.3 shows an example, with a green overlay indicating
the inliers. Points that lie too high above the ground plane, but lower than
the robot’s height, are labeled as obstacles. This method is extremely simple,
but has proven to work well in practice, even when the ground has modest
dips and rises; one reason is that it only looks out to 6m around the robot. A
more sophisticated analysis would break the ground plane into several segments
or model more complex shapes. To compute the ground plane efficiently, we
subsample the image to 10K points, and apply the RANSAC algorithm above.
Hypothesizing a plane and finding inliers are simple matrix operations, and
typical running time is 5ms.

To find obstacles, a typical algorithm would cluster the 3D points into grid cells
on the ground plane. Then, by analyzing the points in each cell, it would be
declared ground, obstacle, or unknown. The problem is that there is a geometric
mismatch between the 3D cells and the image point density: as the points
projected on further cells become sparse, it is difficult to determine obstacle
boundaries. Instead, we find obstacles using algorithms in the disparity plane.
The ground plane is projected back onto the disparity points, which are shown
in green in Figure C.3(b). The disparity image is divided into thin columns,
and each column is traversed from the bottom of the image (red line in the

2All processing times referenced in this paper are on a 2 GHz Intel CPU.

C.2 Local map construction 121

image). When the ground plane ends and enough disparity points are found,
there must be an obstacle at that endpoint in the ground plane. In practice
this technique is much faster and more reliable than to ground plane projection,
typically consuming only 5ms.

C.2.2 Sight lines

Although we cannot precisely locate obstacles past 6-8m, we can determine
if there is freespace, using the following observation. Consider the interpreted
image of Figure C.3(c). There is a path that goes around the bushes and extends
out a good distance. The ground plane extends over most of this area, and then
ends in a distant line of trees. The trees are too far to place with any precision,
but we can say that there is no obstacle along the line of sight to the trees.
Given a conservative estimate for the distance of the trees, we can add freespace
up to this estimate; typically we would add freespace to at most 25m. The
computation of sight lines is most efficiently accomplished in disparity space, by
finding columns of ground plane pixels that lead up to a distant obstacle (red
line in Figure C.3(b)). Note that the example sight line follows the obvious path
out of the bushes.

C.2.3 Learning color and texture models

Our learning algorithm uses an online unsupervised segmentation algorithm that
uses color and texture to group and cluster similar regions. This segmented
image is then used to learn a color and texture model for path-like regions in
outdoor images. Our segmentation algorithm is based on textons [74] and is
accomplished in two stages. The main design issues have been speed (for real-
time segmentation) and robustness (to minimize false-positives).

In the first stage, we cluster color and texture vectors over small local neigh-
borhoods to find a small set of basis vectors (also known as textons) that char-
acterize different scene textures. For reasons of speed, this vector should be as
compact as possible without losing appearance characteristics of the region. [7]
use the three color components over a 5× 5 region centered on each pixel. This
results in a large 75 dimensional feature vector for each pixel. For speed, we
use a 3× 3 neighborhood and use the pixel intensity gradients between the sur-
rounding pixels relative to the center pixel to represent texture compactly. We
also augment this eight dimensional feature vector with the three dimensional
color vector of the center pixel in the CIELAB color space. CIELAB has the
property that colors are perceptually uniform. The resulting 11 dimensional

122 P a p e r C

color/texture feature vector is very compact and we have found that it still re-
tains the crucial appearance properties to discriminate and segment regions. A
detailed comparison with other representations can be found in [17].

In the second stage, we cluster histograms of these textons over larger 32 × 32
regions (which is dependent on the scale of the image) to find more coherent
regions with the same mixture of textons using k-means as our clustering algo-
rithm. These histograms can be constructed efficiently (irrespective of window
size) using integral images [140]. The algorithm is generally set to over-segment
the image slightly as in our case over-segmentation can be dealt with by a sub-
sequent geometrical analysis of the image. Under-segmentation is harder to deal
with as considerable information is lost. The number of clusters was set to 8
in the second stage. There are other ways of doing the second stage which pro-
vides better results by specifically dealing with boundary conditions but they
are much slower and are thus currently ill-suited for our real-time needs (See
graph-cut [84] and level-sets [75]).

C.2.3.1 Segmentation results

The University of Southern California (USC) hosts the Brodatz texture database
and also provides texture mosaics that are a number of Brodatz textures stitched
together in a jigsaw-type pattern. texmos3 was selected as the texture mosaic
for benchmarking our texton descriptors. Figure C.4 shows this mosaic along
with the ground truth segmentation. This mosaic has eight textures and does
not contain color, which tests the descriptors’ ability to discriminate textures.
Four basic descriptors are tested: a 48-dimensional descriptor composed of the
responses from the Leung-Malik [74] filter bank (LM,32); a 75-dimensional
descriptor of 5×5 raw RGB (RGB,5×5,32) values as used in [7] (which in effect
is 25-dimensional on gray-scale images); the local binary pattern [81] (LBP)
in a 3×3 neighborhood (LBP,3×3,32); and two versions of our descriptor –
the 3×3 neighborhood (11-dimensional with the L,a,b color components set to
zero), (SRI,3×3,32) and a 5×5 neighborhood (SRI,5×5,64) with the descriptor
components still being the intensities minus the center intensity. For the test, the
LM filter bank is the only one where the descriptors are not learned on the image
itself. For all other descriptors, 32 textons are learned from the image itself.
Our 5×5 version used 64 textons illustrating our best possible result. The lack
of color information meant that more textons were needed to discriminate the
textures. The second stage of clustering is then applied to give the segmentation
results. It is important to note that the underlying segmentation algorithm is
the same for each of these descriptors.

The actual segmentations obtained for each descriptor can be seen in Figure

C.2 Local map construction 123

% LM,32 RGB LBP SRI,3×3 SRI,5×5
Total confusion rate 50 56 46 38 34
Total detection rate 40 53 68 79 68

Table C.1: Total confusion and detection rates for different types of descriptors.

C.5. Each descriptor is then scored using two scores – the detection rate and
the confusion rate. The detection rate gives a measure of how much of a given
texture it managed to classify correctly. The confusion rate gives a measure of
how many correct versus false detections to expect. A good segmentation will
have a high detection rate and a low confusion rate.

The total confusion and detection rates are shown in Table C.1. The LM filter
bank performs the worst, as it has higher confusion and lower detection rates
than all the other descriptors. The raw intensity value descriptor also performs
poorly. LBP has problems discriminating between textures 2 and 8 but is other-
wise clearly better than the raw intensities and LM filter bank. Our descriptors
do a much better job at discriminating between textures 2 and 8, which indi-
cates that the intensity gradients are necessary to do this and that it is not
enough to rely just on the gradient direction. All the methods find it hard to
discriminate between textures 3 and 4 except the LBP, which aids it greatly in
the total scores. The results for our descriptor are on average better than the
other methods on this dataset. Interestingly, for our descriptors the 3×3 version
actually gets a better total detection rate than the 5×5 version at the cost of a
higher total confusion score.

C.2.3.2 Learning paths

We use our segmentation algorithm to learn and subsequently recognize both
natural and man-made paths in outdoor images. Paths are characterized by
their color, texture and geometrical properties. Training samples for a path can
come from tele-operation or from a priori knowledge that the robot is starting
on a path. The robot can also search for paths by trying to identify image
clusters that have the geometry of a path. We deal with over-segmentation of
the path (wherein a path is split into multiple segments due to possibly differing
textures) by grouping multiple segments based on their overall geometry. We
compute geometrical properties of the path that could be composed of a single
or multiple segments. The properties include width, length and spatial conti-
nuity of the path in order to verify if it geometrically resembles a path. These
geometrical properties are computed in 3D using the ground plane information
available from the stereo-cameras and are hence not affected by the perspec-

124 P a p e r C

tive projection. We assume a fixed path width (but allow a certain deviation
from this assumption). Once a path is identified, the robot learns the texton
histograms of the component segments as a model for the path. This model
can be used to identify even paths that are partially outside the field of view by
allowing the path to end prematurely at the image boundary.

For classification, each pixel is first labeled using shortest Euclidean distance
on the color/texture vector at this pixel to the clustered textons. Likewise
histograms of textons at each pixel are classified using Euclidean distance to the
clustered histograms. The texton histograms from our training provide positive
examples (the histograms that belong to a path) as well as negative examples
(the histograms that don’t belong to a path). This helps prevent false-positives.
A final geometrical analysis of the labeled histograms makes sure that potential
path regions have the right geometry.

The learning process runs at 1Hz for training on a single image and is typically
performed at the beginning of a run (although it could be performed at regular
intervals to update the path model). Classification based on the learned model
runs at around 5Hz. Figure C.6 shows the various steps of our algorithm on one
of our test runs. The path between bushes is identified in yellow in Figure C.6(d).
Details on this algorithm can be found in [17].

C.2.4 Results of local map construction

The combined visual processing results in local maps that represent traversabil-
ity with a high degree of fidelity. Figure C.7 shows the results of an autonomous
run of about 130m, over a span of 150 seconds. We used offline learning of mulch
paths on a test site, then used the learned models on the autonomous run. The
first part of the run was along a mulch path under heavy tree cover, with mixed
sunlight and deep shadows. Cells categorized as path are shown in yellow; black
is freespace. Obstacles are indicated by purple (for absolute certainty), and
white-to-gray for decreasing certainty. We did not use sight lines for this run.

The path did not lead directly to the goal, and there were many opportunities
for the robot to head cross-country. About two-thirds of the way through the
run, no more paths were available, and the robot went through heavy grass and
brush to the goal. The robot’s pose, as estimated from filtered visual odometry
(see Section C.3.2), is in green; the filtered GPS path is in yellow. Because of
the tree cover, GPS suffered from high variance at times.

A benefit of using visual odometry is that wheel slips and stalls are easily de-
tected, with no false positives (Section C.5.4). For example, at the end of the

C.3 Constructing consistent global maps 125

run, the robot was caught on a tree branch, spinning its wheels. The filtered
GPS, using wheel odometry, moved far off the global pose, while the filtered
visual odometry pose stayed put.

C.3 Constructing consistent global maps

In this section we provide solutions to two problems: representing and fusing
the information provided by visual analysis, and registering local maps into a
consistent global map.

C.3.1 Map representation

For indoor work, a standard map representation is a 2D occupancy grid [92],
which gives the probability of each cell in the map being occupied by an obstacle.
Alternatives for outdoor environments include 2.5D elevation maps and full 3D
voxel maps [49]. These representations can be used to determine allowable
kinematic and dynamic paths for an outdoor robot in rough terrain. We choose
to keep the simpler 2D occupancy grid, foregoing any complex calculation of
the robot’s interaction with the terrain. Instead, we abstract the geometrical
characteristics of terrain into a set of categories, and fuse information from these
categories to create a cost of movement.

We use a grid of 20cm×20cm cells to represent the global map. Each cell
has a probability of belonging to each of the four categories derived from visual
analysis (Section C.2): obstacle, ground plane freespace, sight line freespace, and
path freespace. Note that these categories are not mutually exclusive, since, for
example, a cell under an overhanging branch could have both path and obstacle
properties. We are interested in converting these probabilities into a cost of
traversing the cell. If the probabilities were mutually exclusive, we would simply
form the cost function as a weighted sum. With non-exclusive categories, we
chose a simple prioritization schedule to determine the cost. Obstacles have the
highest priority, followed by ground plane, sight lines, and paths. Each category
has its own threshold for significance: for example, if the probability of an
obstacle is low enough, it will be ignored in favor of one of the other categories.
The combination of priorities and thresholds yields a very flexible method for
determining costs. Figure C.7 shows a color-coded version of computed costs.

126 P a p e r C

C.3.2 Registration and visual odometry

The LAGR robot is equipped with a GPS that is accurate to within 3 to 10
meters in good situations. GPS information is filtered by the IMU and wheel
encoders to produce a more stable position estimate. However, because GPS
drifts and jumps over time, it is impossible to differentiate GPS errors from
other errors such as wheel slippage, and the result is that local maps cannot be
reconstructed accurately. Consider the situation of Figure C.8. Here the robot
goes through two loops of 10m diameter. There is a long linear feature (a low
wall) that is seen as an obstacle at the beginning and end of the loops. Using
the filtered GPS pose, the position of the wall shifts almost 2m during the run,
and obstacles cover the robot’s previous tracks.

Our solution to the registration problem is to use visual odometry (VO) to
ensure local consistency in map registration. Over larger regions, filtering VO
with GPS information provides the necessary corrections to keep errors from
growing without bounds. We describe these techniques in the next two sections.

The LAGR robot presents a challenging situation for visual odometry: wide
FOV and short baseline make distance errors large, and a small offset from the
ground plane makes it difficult to track points over longer distances. We have
developed a robust visual odometry solution that functions well under these
conditions. We briefly describe it here; for more details consult [1, 67].

For each new frame, we perform the following process.

1. Distinctive features are extracted from each new frame in the left image.
Standard stereo methods are used to find the corresponding point in the
right image.

2. Left-image features are matched to the features extracted in the previous
frame using our descriptor. We use a large area, usually around 1/5 of the
image, to search for matching features.

3. From these uncertain matches, we recover a consensus pose estimate using
a RANSAC method [32]. Several thousand relative pose hypotheses are
generated by randomly selecting three matched non-collinear features, and
then scored using pixel reprojection errors.

4. If the motion estimate is small and the percentage of inliers is large enough,
we discard the frame, since composing such small motions increases error.
A kept frame is called a key frame. The larger the distance between key
frames, the better the estimate will be.

C.3 Constructing consistent global maps 127

5. The pose estimate is refined further in a sparse bundle adjustment (SBA)
framework [29, 135]. SBA is a nonlinear batch optimization over camera
poses and tracked features. An incremental form of SBA can reduce the
error in VO by a large factor at very litle computational overhead. A
feature that is long lived, that is, can be tracked over more frames, will
give better results.

Precise VO depends on features that can be tracked over longer sequences.
Hence, the choice of a feature detector can have a large impact in the perfor-
mance of such a VO system. Harris corner features are widely used for VO. We
have found that although Harris corners give good results and are very efficient
to compute, they fail in a lot of situations in outdoor environments. In addition,
these features are not very stable resulting in very short track lengths. Other
widely used feature detectors such as SIFT [78] and SURF [46] work well but are
not suitable for a real time system. We have developed a novel feature (named
CenSurE) [3] that has improved stability and is inexpensive to compute. While
the basic idea of CenSurE features is similar to that of SIFT, the implementa-
tion is extremely efficient, comparable to Harris. Just as SIFT approximates the
Laplacian of Gaussian with difference of gaussians, CenSurE features approx-
imates the LOG with bi-level center surround filters. The extreme simplicity
of these filters makes them extremely fast to compute, but without sacrificing
performance. Figure C.10 shows a progression of bi-level filters with varying
degrees of symmetry. The circular filter is the most faithful to the Laplacian,
but hardest to compute. The other filters can be computed rapidly with inte-
gral images with decreasing cost from octagon to hexagon to box filter. Further
Details of our CenSurE feature detector are described in [3]. Figure C.11 shows
the CenSurE features tracked over several frames.

The IMU and the wheel encoders are used to fill in the relative poses when
visual odometry fails. This happens due to sudden lighting changes, fast turns
of the robot or lack of good features in the scene (e.g. blank wall).

C.3.3 Global consistency

Bundle adjusted incremental motions between consecutive frames are chained
together to obtain the absolute pose at each frame. Obviously, this is bound
to result in accumulation of errors and drifting. We use GPS and the IMU to
correct the pose of the vehicle. We perform two types of filtering.

1. Gravity Normal – the IMU’s accelerometers measure the gravity normal
in vehicle frame together with vehicle accelerations. Vehicle accelerations

128 P a p e r C

have zero mean in the long run and can therefore be considered as white
perturbations of the gravity measurements. We apply regular EKF cor-
rections to the tilt and roll angles. By assigning very large noise values to
the perturbing accelerations (we used 10g standard deviation), the effect
is imperceptible in the short term but sufficient to cancel the long term
angular drifts, otherwise unbounded.

2. GPS Yaw – the IMU yaw data is very bad, and cannot be used for filtering
(for example, over the 150 m run, it can be off by 60 degrees). Instead, we
used the yaw estimate available from the LAGR GPS. These yaw estimates
are comparable to a good-quality IMU. Over a very long run, the GPS yaw
does not have an unbounded error, as would an IMU, since it is globally
corrected.

To maintain globally consistent maps, we have turned off any position filtering
based on GPS. We completely ignore position estimates from the GPS in cal-
culating our pose. In addition, to limit the effect of velocity noise from GPS on
the heading estimate, GPS yaw is used only when the GPS receiver has at least
a 3D position fix and the vehicle is travelling 0.5 m/s or faster. Our filter is a
simple linear filter that nudges the tilt/roll (for gravity normal) and yaw (for
GPS yaw) towards global consistency, while maintaining local consistency.

The quality of the registration from filtered VO, shown in Figure C.9, can be
compared to the filtered GPS of Figure C.8. The low wall, which moved almost
2m over the short loops when using GPS, is much more consistent when VO is
employed. And in cases where GPS is blocked or degraded, such as under heavy
tree cover in Figure C.7, VO still produces maps that are locally consistent. It
also allows us to determine wheel slips and stalls with almost no false positives
– note the end of the run in Figure C.7, where the robot was hung up and the
wheels were slipping, and wheel odometry produced a large error.

C.3.4 Results of visual odometry

In Test 17, the testing team surveyed a course using an accurate RTK GPS
receiver. The ‘Canopy Course’ was under tree cover, but the RTK GPS and
the LAGR robot GPS functioned well. Sixteen waypoints were surveyed, all of
which were within 10 cm error according to the RTK readout (one waypoint was
deemed inaccurate and not included). The total length of the course was about
150 meters. Subsequently, the LAGR robot was joysticked over the course,
stopping at the surveyed points. The robot was run forward over the course,
and then turned around and sent backwards to the original starting position.

C.3 Constructing consistent global maps 129

The course itself was flat, with many small bushes, cacti, downed tree branches,
and other small obstacles. Notable for VO was the sun angle, which was low and
somewhat direct into the cameras on several portions of the course. Figure C.12
shows two images acquired by the robot. The left image shows a good scene in
the shadow of the trees, and the right image shows a poor image where the sun
washes out a large percentage of the scene. (The lines in the images are horizon
lines taken from VO and from ground plane analysis). The uneven image quality
makes it a good test of the ability of VO under realistic conditions.

Since the initial heading of the robot is unknown, we used an alignment strategy
that assumes there is an initial alignment error, and corrects it by rotating
the forward VO path rigidly to align the endpoint as best as possible. This
strategy minimizes VO errors on the forward path, and may underestimate
them. However, for the return path, the errors will be caused only by VO, and
can be taken as a more accurate estimate of the error.

For this test, our CenSurE features were not ready and we were able to match
frames along the whole route using Harris corners. Figure C.13 (a) shows the
RMS error between VO (with different filters) and the RTK waypoints, on the
return path. As noted above, the forward VO path of the robot has been
aligned with the RTK path. As can be seen, the best results are obtained using
bundle-adjusted VO with gravity normal and GPS yaw filtering. In this case,
the errors between waypoints is very small, amounting to < 1% of distance
traveled. Without filtering, the results are worse (Figure C.13(b)), amounting
to about 3% of distance traveled. At some points in the middle of the return
trip, the VO angle starts to drift, and at the end of the backward trip there is
about a 10m gap. Note that this effect is almost entirely caused by the error
in the yaw angle, which is corrected by GPS yaw. It is also worth mentioning
that the use of CenSurE features substantially improves the performance of VO
although we do not have results of using CenSurE on this dataset.

We present results of VO with CenSurE features on two other large outdoor
datasets. These datasets were collected using a larger tank-like vehicle called
Crusher (also developed by NREC, Pittsburg under DARPA’s UPI program).
They have frame-registered ground truth from RTK GPS, which is accurate to
several cm in XY and 10 cm in Z. For these datasets, the camera FOV is 35
deg, the baseline is 50 cm, and the frame rate is 10 Hz (512x384), so there is
often large image motion. We took datasets from Little Bit (9 km trajectory,
47K frames) in Pennsylvania, and Ft Carson (4 km, 20K frames) in Colorado,
to get variety in imagery. The Ft Carson dataset is more difficult for matching,
with larger motions and less textured images. In the experiments, we use only
CenSurE features, which failed the fewest times (0.17% for Little Bit, 4.0% for
Ft Carson).

130 P a p e r C

Table C.2: Trajectory error statistics, in meters and percent of trajectory
RMS error in XYZ Max error in XYZ

Little Bit VO No SBA 97.41 (1.0%) 295.77 (3.2%)
(9 Km) VO SBA 45.74 (0.49%) 137.76 (1.5%)

VO No SBA + IMU 7.83 (0.08%) 13.89 (0.15%)
VO SBA + IMU 4.09 (0.04%) 7.06 (0.08%)

Ft Carson VO No SBA 263.70 (6.9%) 526.34 (13.8%)
(4 Km) VO SBA 101.43 (2.7%) 176.99 (4.6%)

VO No SBA + IMU 19.38 (0.50%) 28.72 (0.75%)
VO SBA + IMU 13.90 (0.36%) 20.48 (0.54%)

The VO angular errors contribute nonlinearly to trajectory error. On the two
datasets, we compared RMS and max XYZ trajectory errors. In the case of
matching failure, we substituted IMU data for the angles, and set the distance
to the previous value. In Table C.2, the effects of bundle adjustment and IMU
filtering are compared.

In both datasets, IMU filtering plays the largest role in bringing down error rates.
This isn’t surprising, since angular drift leads to large errors over distance. Even
with a noisy IMU, global gravity normal will keep Z errors low. The extent of
XY errors depends on how much the IMU yaw angle drifts over the trajectory
- in our case, a navigation-grade IMU has 1 deg/hr of drift. Noisier IMU yaw
data would lead to higher XY errors.

The secondary effect is from SBA. With or without IMU filtering, SBA can
lower error rates by half or more, especially in the Ft. Carson dataset, where
the matching is less certain.

C.3.5 Map Reuse

VO and IMU/GPS filtering enable us to construct consistent maps on a sin-
gle run. These maps are useful for getting out of traps and cul-de-sacs in the
environment, which occurred quite frequently. In fact, the testing team was in-
terested in long-range sensing capabilities, and would use natural or constructed
traps as a way of rewarding robots that could detect them from a distance. Un-
fortunately, the vision sensors on the robots were not very capable at a distance
(see Section C.6 and Figure C.18(a)). So, our strategy was to use map infor-
mation learned in the first run to compute an optimal path for the second and
subsequent runs. This type of learning, run-to-run learning, turned out to be
the most powerful form of learning for the tests, and the key to performing
better than any other LAGR team.

C.4 Planning 131

Our first successful test of map learning and reuse was in Test 25 at the end
of the project (Figure C.14 and Figure C.18(a)). The direct line to the goal
was through a small copse of trees, where there were barriers of deadfall and
tall grass. In the first run, the robot wandered through this area, eventually
finding a way out to the goal. In the second run, the robot started with the map
constructed on the first run, and headed around the problem area. Note that
the robot actually started into the cul-de-sac, then decided to go around. The
planner had a finite horizon of about 40m, and only recognized the blockage at
that point. In subsequent tests we extended the horizon of the planner to the
goal.

Our map-reuse technique is simple: at the start of a run, match the robot’s view
to the start of the previous run, using the same method as for matching frames
in VO. If a good match is found, the map from the previous run is brought
in and adjusted to the robot’s current position. From this point the robot’s
position on the old map is “open loop,” that is, there is no re-registration or
localization of the robot within the map. Since VO performance is generally
within 1% over 100m, this strategy was overwhelmingly successful during the
tests. Still, a true visual SLAM algorithm would work better in more difficult
conditions, and we have made significant progress here, closing loops over 5 km
datasets [64]; but unfortunately this research was done too late to incorporate
into the LAGR system.

C.4 Planning

The LAGR robot was provided with a “baseline” system that used imple-
mentations of D* [127] for global planning and Dynamic Window Approach
(DWA) [34] for local control. Using this system, we (as well as other teams) had
frequent crashes and undesirable motion. The main causes were the slowness of
the planner and the failure of the controller to sufficiently account for the robot’s
dynamics. The D* planner is optimized for very large-scale environments. It
uses dynamic programming to compute the minimum-cost potential to the goal
at each cell; it needs significant resources to maintain the indices necessary to
unravel the minimum-cost computations incrementally. In our environments
(100m×200m, 20 cm2 cells) it would take many seconds to compute a plan,
even when only a small portion of the map was filled. For large-scale maps this
may be acceptable, but we need much faster response to tactical maneuvers over
smaller scales (e.g., cul-de-sacs).

Instead, we re-implemented a gradient planner [63, 103] that computes optimal
paths from the goal to the robot, given a cost map. The gradient planner is a

132 P a p e r C

wavefront planner that computes the cost of getting to a goal or goals at every
cell in the workspace. It works by using a local neighborhood to update the cost
of a cell. If the cell’s cost is higher than the cost of a neighbor cell plus the local
transit cost, then it is updated with the new cost. The overall algorithm starts
by initializing the goal with a zero cost, and everything else with a very large
cost. All goal cells are put onto an “open” list. The algorithm runs by popping
a cell of the open list, and updating each of the cell’s neighbors. Any neighbor
that has a lowered cost is put back onto the open list. The algorithm finishes
when the open list is empty.

There are many variations on this algorithm that lead to different performance
efficiences. Our algorithm has several unique modifications.

• Unlike other implementations, it uses a true Euclidean metric, rather than
a Manhattan or diagonal metric, in performing the update step [60]. The
update can be performed on the four nearest neighbors of a cell. Generally
speaking, the two lowest-cost neighbors can be used to determine the
direction of propagation of the cost potential, and the cell updated with
an appropriate distance based on this direction.

• The algorithm computes the configuration space for a circular robot, and
includes safety distances to obstacles. This is one of the interesting parts
of the gradient method. Since there is already a method for computing
the distance transform from a set of points, the configuration space can be
computed efficiently. The obstacle points are entered as goal points, and
the update algorithm is run over each of these points, generating a new
open list. Each open list is processed fully, leading to a sequence of open
lists. At the end of n cycles, the distance to obstacles has been determined
up to n ∗ c, where c is the cell size. Usually this is done to a distance of
3 or 4 times the robot radius, enough to establish a safety cushion to the
obstacle. Finally, a cost is associated with the distance: an infinite cost
within the robot radius to an obstacle, and a decreasing cost moving away
from this.

• The queue handling is extremely efficient, using threshold-based queues,
rather than a best-first update, which has high overhead for sorting. In-
stead, we use a 2-priority-queue method. A threshold shuttles new cells to
one queue or the other, depending on whether their cost is greater or less
than the threshold. The low-cost queue is always processed first. When
no more cells remain in it, the threshold is increased, the second queue
becomes the low-cost queue, and a new high-cost queue is initialized. This
queue strategy is the key to the good performance of the algorithm: each
update step happens very rapidly. Although the complexity of the algo-
rithm is the order of the area to be covered, and there is no “best first”

C.4 Planning 133

search from the goal to the robot position, still the extreme rapidity of
each step makes it possible to cover reasonable areas (e.g., 80m×80m) in
several tens of milliseconds.

• Rapid switching of global paths is avoided by including hysteresis - low-
ering the cost along the path. There is a tradeoff between sticking to the
current path, and exploring some new path if current readings indicate it
might be better. We lower the cost enough so that it takes a significant
amount of new information to turn the path aside.

Typically we run the global planner within a subregion of the whole map, since
the robot is continuously moving towards the goal and encountering new areas.
On longer runs, up to 200m, we use an 80m x 80m area; the global planner runs
in about 30 ms in this region. Unless there is a large cul-de-sac, longer than
80m, this area is sufficient to maneuver the robot tactically around obstacles.
For more global planning, which occurs when starting a run with a previously-
made map, we run the planner over the whole area, which can take up to 100
ms for a large 100m×200m map.

The global planner is optimistic in assuming the robot to be circular, with a
diameter equal to the width of the robot. Also, it does not take into account
the nonholonomic nature of the robot’s motion. Instead, we rely on a local
controller to produce feasible driving motions (Section C.5).

C.4.1 Line goals

One of the problems encountered in directing the robot towards a point goal is
that the plans tend to constantly urge the robot towards the center of the map.
This is not necessarily an efficient strategy, because, for example, the robot will
prefer to run near vegetation on the side of a path that does not point directly
towards the goal. Instead, when the robot is far from the goal, we posit a
relaxed virtual goal line that allows the robot to pursue more indirect paths to
the goal (Figure C.15). In a line goal, any point on the line is considered to be
a goal, and the robot navigates to the nearest (lowest-cost path) position on the
line. For example, in Figure C.15 the robot is shown with the direction of travel
straight ahead to its line goal, while with the goal point at the end it would
want to move diagonally.

The line goal is easily implemented in the gradient planner, by simply adding
all points on the line as goal points. The navigation function then computes
the lowest-cost path to any point on the line. The line goal is always place
about 60m ahead of the robot, and its extent grows in the middle of the run,

134 P a p e r C

and contracts as it gets nearer to the goal. In experiments, the robot is able to
navigate more than 50m off the center line to the goal, and consequently find
easily traversed paths that would have been difficult to find if it had headed
directly to the goal (Figure C.7).

C.5 Control

Given the global cost information produced by the gradient planner, we must
decide what local controls to apply to the robot to drive it toward the goal.

C.5.1 Trajectory generation

We take an approach that is opposite to techniques such as DWA. Instead
of searching the space of feasible trajectories, we search the space of feasible
controls. As is the case with most differentially-driven platforms, the LAGR
robot is commanded by a pair (ẋ, θ̇) of desired translational and rotational
velocities.3 Thus we have a 2D space of possible commands to consider.

This space is bounded in each dimension by velocity limits that reflect the vehi-
cle’s capabilities. Because we are seeking good, as opposed to optimal, control,
we sample, rather than exhaustively search, this rectangular region of allowed
velocities. We take a regular sampling (∼25 in each dimension, ∼625 total), and
for each sample simulate the effect of applying those controls to the robot over a
short time horizon (∼2s). The simulation predicts the robot’s trajectory as a se-
quence of 5-dimensional (x, y, θ, ẋ, θ̇) states with a discrete-time approximation
of the vehicle’s dynamics.

Of significant importance in this simulation are the vehicle’s acceleration limits.
While the LAGR robot can achieve a speed of 1.3 m/s, its low-level motor con-
troller (which we cannot modify) follows a trapezoidal velocity profile that lim-
its the translational acceleration to approximately 0.5 m/s2 (we determined this
value empirically). Thus more than 2 seconds may elapse between commanding
and achieving a desired velocity. We found that the ability to accurately pre-
dict the LAGR robot’s future state depends vitally on appropriate integration
of these acceleration limits. We expect this to be the case for any vehicle with
a similarly large ratio of maximum velocity to maximum acceleration.

3We could instead work in terms of left and right wheel velocities; the two velocity spaces
are equivalent, being related by a simple geometric transformation.

C.5 Control 135

The generated trajectories, projected into the (x, y) plane, are smooth, contin-
uous 2-dimensional curves that, depending on the acceleration limits, may not
be easily parameterizable. For the LAGR robot, the trajectories are generally
not circular arcs (Figure C.16).

C.5.2 Trajectory evaluation

Each simulated trajectory t is evaluated by the following weighted cost:

C(t) = αObs + βGdist + γPdist + δ
1

ẋ2
(C.1)

where Obs is the sum of grid cell costs through which the trajectory passes
(taking account of the robot’s actual footprint in the grid); Gdist and Pdist
are the estimated shortest distances from the endpoint of the trajectory to the
goal and the optimal path, respectively; and ẋ is the translational component of
the velocity command that produces the trajectory. We choose the trajectory
for which the cost in Equation C.1 is minimized, which leads our controller to
prefer trajectories that: (a) remain far from obstacles, (b) go toward the goal,
(c) remain near the optimal path, and (d) drive fast. Trajectories that bring
any part of the robot into collision with a lethal obstacle are discarded as illegal.

Note that we can compute C(t) with minimal overhead: Obs is a simple summa-
tion over grid cell costs, Gdist and Pdist were already computed by the planner
for all map cells, and ẋ is a known constant for each trajectory.

C.5.3 Supervisory control

We could generate, evaluate, and compare all potential trajectories. However,
given the kinematic design (driven wheels in front, passive casters behind) and
sensor configuration (forward-facing cameras and forward-mounted bumper) of
the LAGR robot, we found it useful to add supervisory logic to direct the order
in which candidate velocities are simulated and evaluated.

All forward velocities (ẋ > 0) are tried first; if any legal forward trajectory is
found, the best one is selected. If there are no legal forward velocities, then
the controller tries in-place rotations (ẋ = 0), and then backward velocities
(ẋ < 0). This preference ordering encourages the robot to make forward progress
whenever possible, and discourages driving backward (during which the robot
is essentially blind). If no legal trajectory is found, the default behavior of the
robot is to move slowly backward.

136 P a p e r C

C.5.4 Slip handling

Because the robot may have to traverse rough, steep terrain, it is necessary
to detect and react to conditions in which the wheels slip or become stuck.
We employ two mechanisms to handle these situations. In both cases, we are
comparing the motion reported by the wheels to the motion estimated by visual
odometry (VO), which is sufficiently accurate to be treated as ground truth
(Section C.3.2).

First, the controller continuously compensates for the slip in each wheel by
reducing its maximum speed. Our approach is similar to automotive traction
control. For each wheel, we monitor the slip ratio s, defined as [6]:

s =
ωr − v

ωr
∈ [0, 1] (C.2)

where ω is the measured angular velocity of the wheel, r is the wheel radius, and
v is the actual linear velocity of the wheel. We obtain ω directly from the wheel
encoders. To compute v, we difference sequential VO poses to produce transla-
tional and rotational velocities for the vehicle, then use the vehicle geometry to
distribute these velocities between the two wheels. When the slip ratio s for a
wheel exceeds a minimum threshold (∼0.25), we compensate by proportionally
reducing the maximum allowable speed for that wheel, which produces better
traction on most terrain. Importantly, the controller takes account of the cur-
rent speed limits, ensuring that predicted trajectories will be achievable under
these limits. The slip ratios and speed limits are recomputed at the frequency
of VO pose estimation (∼15Hz).

While continuous slip compensation improves performance, there are situations
in which the robot can become truly stuck, and require explicit escape mecha-
nisms. The robot usually becomes stuck because of extremely slippery soil (e.g.,
sand), or ground clutter (e.g., fallen branches). We detect these conditions by
looking for significant, time-extended disparities among the velocities that are:
commanded by the controller, reported by wheel odometry, and estimated by
VO (we maintain a running window of each velocity). If a slip or stall is de-
tected, or if the front bumper is triggered, the robot enters a stochastic finite
state machine of preprogrammed escape maneuvers (e.g., drive forward, turn in
place, drive backward). These maneuvers are executed blindly, on the assump-
tion that the vision system failed to identify the terrain as dangerous and so is
unlikely to yield good advice on how to escape it.

One indication of how well slip detection performed was on Test 18, about 2 years
into the program. This was a difficult test around small sand dunes, and the
robots would spin easily on the sand on small inclines. The slip detection code

C.6 Performance 137

and escape maneuvers, coupled with visual odometry for localization, allowed
us to finish this challenging course, the only team to do so.

C.6 Performance

For the LAGR program, the government testing group (LGT) ran monthly
blind demos of the perception and control software developed by the teams, and
compared their performance to a baseline system. Teams were encouraged but
not required to send code for each test; they could also send the same code on
successive tests. In general the tests would change each month, to expose the
teams to different environmental conditions.

There were two major checkpoints for all the teams, the first at the end of Phase
I of the program after 1.5 years (Tests 12 and 13), and the second at the end
of the program (3 years, Test 27). The goal was to beat the baseline system
at the end of Phase I, and to do better by a factor of 2 for the second. In this
section we show results from all of these tests, and additionally the penultimate
tests 25 and 26. At this point, our system was essentially complete, and Tests
25 and 26 presented interesting terrain challenges, while Test 27 was somewhat
artificial and designed to isolate specific learning capabilities.

On each test, the robot was given 4 runs, and the best 3 were taken to give a
combined score. The highest achievable score is 1.0, calculated by measuring
the shortest possible path to the goal, and measuring the time it took a skilled
operator to manually drive the robot. There were also penalties for not getting
to the goal within a cutoff time.

C.6.1 Phase I Tests

The tests at the end of Phase I were designed to test the overall ability of the
system to handle typical outdoor terrain (make a consistent map, recover from
slips, etc.), while focusing on perceptual skills and learning. For these tests,
we had completed a basic VO system, the global planner, and the controller.
All of the main stereo interpretation algorithms were also in place, including
sightlines. However, our appearance-based learning was only a simple supervised
color classifier, and there was no map reuse, because the VO system was not
precise enough.

In Test 12 (Figure C.17(a)), there was a dark mulch path that formed the easiest

138 P a p e r C

way to the goal, and teams were invited to submit automatic supervised learning
code that would be trained on a similar path from log files. The minimum times
for a skilled operator were 69 seconds along the path (103m), and 77 seconds
through the maze (distance not measured).

Several teams managed to follow the path after training, and generally had good
times. We did not; the dark color of the path confused our color-based learner,
and led us to develop the combined color/texture model described in Section
C.2.3. We completed the maze course 3 times, with times of 106, 110, and
112 seconds. Our best time equaled that of the best team following the mulch
path, and our average score of 0.73 was the highest of any team, 3 times the
baseline score (which was also through the maze). Although the LGT expected
the maze to be a significant problem for the teams (as it was for the baseline),
our combination of consistent map-making, fast global planning, and rollout
controller combined to make the robot zip through the maze with no hesitation.

In Test 13, the objective was to stay along an old dirt and asphalt road for
much of the course, until there was an opening in brush to the left of the road
towards the goal (see Figure C.17(b)). The easiest way (most open route) to the
goal was along the third route from the left, which required the robot to stray
far from the direct route to goal, following the open road. The second route
was actually the shortest, requiring a skilled operator just 90 seconds, while the
third route took 95 seconds.

In all three scoring runs, we followed the third route, utilyzing sight lines (Sec-
tion C.2.2) to find open space along the road, and then the open space along
the third route. The times for three runs were 132, 132, and 148 seconds. All
of our times were faster than the best time of any other team, and our overall
score, 0.86, was just under 3x the score of the baseline. We expect that the
better online color/texture path learning of Section C.2.3 would have found the
second route, and a shorter time, but we did not develop this technique until
the end of the project.

C.6.2 End-of-project Tests

The end-of-project tests were through different types of terrain, and with differ-
ent degrees of difficulty. For these test, our full system was operational, including
online color/texture learning of paths, and map reuse. Here is a summary of
the courses (Figure C.18).

Test 25 83m straight-line distance to the goal, through a copse of trees with a cul-

C.6 Performance 139

de-sac and tall grass (Figure C.18(a)). Ideal behavior was to go around
the copse, following a mulch path as in Test 12.

Test 26a (93m) Narrow paths through tall bushes, with several false turns that
might lead more directly to the goal. Desired behavior was to avoid the
false turns.

Test 26b (106m) A challenging course with man-made and natural obstacles, in-
cluding a cul-de-sac of parked cars; stacked pipes; hay bales; and rock
piles (Figure C.18(b)). The course to the goal was indirect and involved
narrow passageways, and finding it was a challenge.

Test 27a (34m) A simple course on a grassy field with jersey barriers stretched
directly across the route (Figure C.18(c)). Ideal behavior would be to
avoid the barrier without getting close.

Test 27b (34m) Similar to 27a, but using low hay bales for obstacles, with two gaps
in the barrier containing tall grass. The object was to identify the tall
grass and push through it directly to the goal.

The first four tests were designed to reward behavior that could avoid routes
that were temptingly direct, but ultimately dead-ends. There were two methods
of doing this – long-range perception (>10m), and map memorization and reuse.
For Test 26a, the narrow routes through the bushes were easily detected by our
online learning algorithms, and the path planner moved the robot quickly along
the center of the path. On the first run, the robot turned twice to look briefly
at side paths that could have been more direct, but then turned back to the
main route. Figure C.19 shows the scores for this run. The Baseline score is
0.23, and SRI’s score is 0.83, which is better by a factor of 3.6. In this test,
since the long-range perception of paths worked well, the first run was very good
(2.9x Baseline), and subsequent map reuse only contributed a modest amount,
by not turning to examine the dead-end paths. In fact, our score could have
been higher, but the fourth run failed because of a map registration error in the
middle of the run, closing off the narrow path.

In the other three tests (25, 26b, 27a), map reuse is the primary enabler of
good performance – it improved by almost a factor of 2 from the first run. For
example, in Test 25, after wandering through the copse and encountering the
cul-de-sac and tall grass obstacles, the robot made its way to the goal. On the
second run, the robot avoided the copse entirely, choosing a path around it as
less costly.

Test 27b was a learning-by-example test. The robots were shown samples of the
hay bales and tall grass. Operators would drive the robots into the hay bales
and over the grass, to give the robot an idea of the traversability of each. Our

140 P a p e r C

online learning algorithms correctly picked out the grass as driveable, based on
primarily on its texture, since the color was similar to the hay bales. We also
learned that hay bales were obstacles; however, we had set the suppression of
obstacles by driveable objects a little too high, and the robot bumped the hay
bales next to the grass area. After a few bumps, it drove through the grass and
onto the goal. In subsequent runs, of course, map reuse allowed an optimal plan
directly through the grass.

C.6.3 Analysis

There is no doubt that our system achieves both robustness and good perfor-
mance, on a wide variety of outdoor, unstructured terrain. Map building relies
on VO to provide good localization, efficient realtime stereo and robust ground-
plane analysis for obstacle detection, and sight lines to identify distant regions
that are likely to be navigable. Online path learning helps in the very common
situation of tracks through vegetation, or man-made dirt and asphalt roads.
Together these techniques allow us to construct well-registered, precise maps
that serve well during the first run to get the robot reliably to the goal. Even
more importantly, on subsequent runs, the path planner is able to construct an
optimal path to the goal from the start of the run.

Moving quickly is very important to achieving good performance, especially
since many small obstacles such as branches could be traversed at speed, but
might hang up the robot if it was moving slower. As described in Section C.5,
the path planner and local controller combined to give the robot a very agile
feeling. Our average speed was over 1.1 m/s, even while exploring unknown
terrain (top speed of the robot is 1.3 m/s).

The government team was very interested in creating scenarios to test the long-
range perception of the robot. Unfortunately, the robot’s vision sensors had very
little resolution at distance. Depth information from stereo was very uncertain
after about 7m. Even using monocular information, there were very few pixels
available for long-range sensing. In Figure C.18(a), a high-resolution camera
with a longer focal length clearly shows routes around the barrier. But with
a similar distance to the tree on the right image, looking through the robot
cameras, there is very little to show that the copse of trees could be avoided to
the left – perhaps there are a few more vertical pixels of brown-colored grass
on that side. But this information is insufficient to reliably navigate from the
robot’s perspective, and teams that tried to do this would as often pick a bad
way as a good one.

What we could reliably learn is the map structure from the first run. With this

C.7 Conclusion 141

in hand, subsequent runs could be much more efficient. We had this technique
working reliably only in the last tests (25–27), and it was difficult for the gov-
ernment team to react and set up tests that would allow long-range perception
to do as well as map learning and reuse. It was also difficult for other teams
to adopt our technique, because it required very good map registration, and a
badly-registered map is worse than no map at all. In Test 26a, the narrow paths
(≈2m wide) meant that even small registration errors could cause a prior map
to close off the current path, which happened to us in the fourth run. Note that
the map reuse was run open-loop: after registering with an initial image at the
beginning of the run, we relied on VO to keep the robot localized.

We compared our results with the published results of the other teams, both
the average and the best for each test (Figure C.19). In all these tests, we had
the best score (or tied for the best). Typically we out-performed the average
team by a factor of two. In the most difficult test, 26b, even our first-run score
was almost as good as the best overall team score; map reuse enabled us to do
even better. The controller, planner, and visual odometry system were used in
the best-in-class NIST system, and in fact NIST was our closest competition in
two of the tests, including the difficult Test 26b. We also surpassed the target
of 2x baseline performance, achieving almost a 4x improvement, better than the
3x improvement of the Phase I tests. There is no doubt that map reuse was the
primary enabler for this performance.

While many teams concentrated on finding obstacles at a distance using color-
based learning, we decided that the risk of using this technique in complicated
environments was not worth the results. In some simple (and contrived) scenar-
ios, such as Test 27a (Figure C.18(c)), it could indeed help, but if it were used
all the time, it would be as likely to lead to bad choices as good (dark green
areas could be shadows instead of trees), and cause poor overall behavior. Our
online path-learning, by contrast, used both geometric and color/texture cues
to reliably find good paths, with almost no false positives.

C.7 Conclusion

We have demonstrated a complete autonomous system for off-road navigation in
unstructured environments, using stereo vision as the main sensor. The system
is very robust – we can typically give it a goal position several hundred meters
away, and expect it to get there. It is also one of the first to demonstrate the
practical use of visual odometry as the primary method of registration, with
extremely good results. The precision of VO is such that maps can be reused
on subsequent runs, doubling the performance of the system.

142 P a p e r C

To be sure, there are hazards that are not dealt with by the methods discussed
in this paper: water and ditches are two robot-killers. We also were restricted
to running open-loop in reusing maps; we would like to use visual landmarks to
re-register the position of the robot in the map, but this work was not ready at
the time of the last tests.

C.7 Conclusion 143

analysis
color

(1/d) image
disparity

points
3D

lines
sight

plane
ground

analysis
height

analysis
path

3Dimage

traversibility

obstacles

freespace

local map

(a) Processing Diagram

Points for estimating
ground plane

Space declared empty
based on sight line

"Sight line" marking clear space
along azimuth

Distant points
above ground plane

Fitted ground plane

(b) Stereo point interpretation

Figure C.2: Visual processing. In (a), the paths from visual input depict the
processing flow in constucting the local map. The interpretation of stereo data
points is in (b): nearby points (out to 6m) contribute to the ground plane and
obstacle detection; further points can be analyzed to yield probably freespace
(“sight lines”) and extended ground planes.

144 P a p e r C

(a) Disparity Image (b) Disparity Image Ground Plane

(c) Interpreted Image

Figure C.3: (a) Disparity image from the left stereo pair of the robot in Figure
C.1. Closer pixels are lighter. (b) Extracted ground plane, in green overlay.
Limit of ground plane is shown by green bar; sight line has a red bar. (c)
Ground plane overlayed on original image, in green. Obstacles are indicated in
purple.

Figure C.4: Synthetic texture mosaic used (provided by USC via its website).
The left image is the texture mosaic. The right image shows which texture
regions belong to which texture.

C.7 Conclusion 145

(a) (b) (c)

(d) (e)

Figure C.5: Results for the synthetic texture segmentation. Each color repre-
sents a different histogram cluster. An overlay shows which regions should have
homogeneous colors. (a) LM Filter, 32, (b) RGB 5x5, 32, (c) LBP 3x3,32, (d)
SRI 3x3,32, (e) SRI 5x5,64.

146 P a p e r C

(a) (b)

(c) (d)

Figure C.6: Various steps of our segmentation algorithm on a typical outdoor
image. (a) The image from one of the stereo cameras. (b) Each pixel assigned
to a texton. (c) Each histogram of textons gets assigned to a histogram profile.
(d) A path is recognized (in yellow).

Figure C.7: Reconstruction on a 130m autonomous run. Yellow is recognized
path, black is freespace, and white and gray are obstacles.

C.7 Conclusion 147

Figure C.8: Three stages during a run using GPS filtered pose. Obstacle points
are shown in white, freespace in black, and the yellow line is the robot’s path.
The linear feature is marked by hand in red in all three maps, in its initial pose.
Map extent is 35m on a side.

Figure C.9: VO in the same sequence as Figure C.8. GPS filtered path in yellow,
VO filtered path is in green.

Figure C.10: Progression of Center-Surround bi-level filters. (a) circular sym-
metric BLOG (Bilevel LOG) filter. Successive filters (octagon, hexagon, box)
have less symmetry.

148 P a p e r C

Figure C.11: CenSurE features tracked over several frames.

Figure C.12: Images from the Canopy dataset.

(a) (b)

Figure C.13: Results of VO on the Canopy dataset. (a) RMS error between
VO (with different filters) and the RTK waypoints, on the return path. (b)
Trajectory of bundle adjusted VO (without any filtering) compared to RTK
groundtruth.

C.7 Conclusion 149

(a) Test 25 Initial Run

(b) Test 25 Second Run

Figure C.14: Map reuse during Test 25. The global map in (a) shows the first
run: black is freespace (including long sightlines), white and gray are obstacles.
The robot path estimated from VO is the yellow line. Starting position of the
robot is the left side of the screen; goal is on the right at about 80m. Note the
many extended concave obstacles and cul-de-sacs. Image (b) shows the robot’s
trajectory for the second run in green, bypassing the cul-de-sac obstacles and
heading around to the right. The original run is superimposed.

150 P a p e r C

Figure C.15: Line goals for a robot in a 200m environment. The line goal is
placed 60m ahead of the robot, and its extent varies with the distance to the
goal.

(a) (b) (c)

Figure C.16: The controller generates trajectories by sampling feasible velocities
and simulating their application over a short time horizon. Generated trajecto-
ries are purple, the chosen trajectory is yellow, the desired global path is cyan,
and obstacles are white. As shown in (a) and (b), the trajectories are smooth
but not easily parameterizable as they depend on the vehicle’s current veloc-
ity and its acceleration limits. When forward motion is not possible, backward
trajectories are considered (c) - robot is facing down towards obstacles.

C.7 Conclusion 151

(a) Test 12

(b) Test 13

Figure C.17: Aerial views of the Phase I tests. In (a), the haybale maze is drawn
in blue, while the mulch path leading to the goal is in red. The tree copse leading
directly to the goal was not traversable. In (b), four possible routes to the goal
are drawn, with the third from the left being the easiest (154m).

152 P a p e r C

(a) Test 25 (b) Test 26b

(c) Test 27a

Figure C.18: Views of three final tests. In (a), a robot’s-eye view of the beginning
of Test 25. The copse in the distance could be avoided on the right or left. The
yellow line is the robot’s horizon from a noisy INS, while the green line is the
VO-stabilized horizon. In (b), a pipe corridor from Test 26b – note the blocked
left corridor. In (c), Test 27a shows the jersey barrier, with the goal immediately
behind.

C.7 Conclusion 153

Figure C.19: Summary of results from the last 3 LAGR tests. Raw scores are
given for the Baseline software and the SRI system, where 1 is a perfect score
(as fast as the robot can go). The other scores are presented as a factor over
Baseline; the target performance for the project was 2x Baseline.

154 P a p e r C

P a p e r D

Fault-Tolerant 3D Mapping
with Application to an

Orchard Robot

Morten Rufus Blas, Mogens Blanke, Radu Bogdan Rusu and Michael Beetz.
Fault-Tolerant 3D Mapping with Application to an Orchard Robot. 7th IFAC
Symposium on Fault Detection, Supervision and Safety of Technical Processes,
pages 893-898, Barcelona, Spain, 2009. Published.1

1This work was supported by The Danish Food Industry Agency under contract 3412-06-
01729, and the CoTeSys (Cognition for Technical Systems) excellence cluster at the Technische
Universität München.

156 P a p e r D

Abstract:
In this paper we present a geometric reasoning method for dealing with noise
as well as faults present in 3D depth maps. These maps are acquired using
stereo-vision sensors, but our framework makes no assumption about the origin
of the underlying data. The method is based on observations made on the
environment from different camera poses (viewpoints), where the occupied space
as well as uncertainties in the range measurement are modelled using dynamic
octree structures. This scheme allows us to detect and diagnose faulty range
measurements in an efficient manner. We present results on the acquisition of
comprehensive 3D maps for an agricultural robot operating in an orchard.

D.1 Introduction

Mobile robotic research is typically organized into perception, planning, and
control. Our work concentrates on the first problem, namely perception, where
the acquisition and interpretation of 3D maps representing the surrounding envi-
ronment are critical for the robot’s operating safety and reliability. As a sensing
modality, we make use of stereo-vision techniques, but the methods presented
in this paper are crafted with generality in mind, thus the data can be acquired
using any general range sensor. Stereo-vision is cheap, and passive, as it relies
on inferring distance by matching 2D features between pairs of images taken by
two synchronized cameras.

The penalty of stereo-vision however is that range accuracy quickly degrades
with distance from the cameras, and that areas of the image where it is hard
to match features can result in wrong or no range measurements. The outliers
can be filtered based on the matching confidence but there is no assurance that
all such faulty measurements can be removed. The output of stereo-vision is a
depth map commonly referred to as a disparity image where each pixel contains
depth information that can be projected out in 3D. Since there is overlap in the
image stream a number of depth maps can be created for the same objects taken
from different ranges and viewpoints. This creates a certain data redundancy
in the system which can be used to detect inconsistencies in the depth maps
such as faulty measurements. To do this it is a necessity that the depth maps
can be considered in the same coordinate system. For moving stereo platforms
this involves precise relative positioning of the images. In this paper we present
a method for using this data redundancy along with an accurate positioning
system to fuse multiple depth maps in order to reduce noise and filter out faulty
measurements. We use a robust image derived positioning system called Visual

D.1 Introduction 157

Odometry (VO) [67].

Figure D.1: An overview of the evaluated dataset with GPS overlayed on Google
Maps. The robot was driven around in the area that it is likely to operate in.
The driven path from the GPS is drawn in color to illustrate signal quality. Blue
is GPS DOP less than 2, purple is 2 to 3, and red is DOP higher than 3.

The amount of research in 3D mapping is overwhelming, and due to space
constraints we are unable to cover all similar initiatives. Instead, we will just
reference the ones most appropriate for our work. Traditionally, highly accurate
maps are created using low-noise laser range finders, as for example shown
in [98]. Stereo sensors have considerable less accuracy but can be tweaked to
still obtain reasonably good results for some applications as presented in [116]. A
critical point in any mapping system is good positioning information. For stereo-
vision a solution to this problem is given by the use of VO techniques (see [67]),
which offer ways of obtaining accurate 6-degrees of freedom poses. There are
many alternatives where GPS is traditionally widely used in agriculture. We
demonstrate a fault-tolerant positioning system integrating GPS and stereo-
vision for applications in agriculture in [18].

The system presented in this paper uses a stereo camera pair as its primary
sensor input data stream, and is comprised of a series of geometric reasoning
techniques, which are at the core of data acquisition, filtering, and 3D mapping
(see fig. D.2). Due to the poor accuracy of stereo sensors in terms of distance
measurements, these techniques must be robust enough to account for the faulty
measurements. Filtering bad data at an early level by fusing multiple depth
maps acquired from different camera poses constitutes a primary goal of our
approach.

158 P a p e r D

In detail, the depth map fusion is produced by aligning the data in the same
coordinate system and then merging several views together while trying to elim-
inate noise. Similar initiatives are presented in [141], where an algorithm is used
to consider only surfaces in cells that were supported by a consensus from mul-
tiple depth maps. In [117] each range measurement votes for a cell to contain
a surface or free space between the camera and the surface. In [104] all data
is merged into a single reference view, and conflicts in visibility are resolved by
looking for occlusions as well as support for different hypotheses.

The 3D mapping system presented here goes beyond what has previously been
demonstrated in agricultural environments in terms of robustness and accuracy
- specifically when using stereo-vision. The proposed method of dealing with
faulty range measurements in the context of mapping is also novel.

Figure D.2: Top row: left and right camera images acquired with the stereo
pair; bottom row: disparity image (depth map) and the associated Point Cloud
Data (PCD) frame.

D.2 Stereo Processing 159

D.2 Stereo Processing

Stereo vision perceives depth using triangulation. The distance to a point is
determined by the triangle between the point and where it appears in each of
two images. To do this the two images must be aligned. the process of aligning
the images is part of a calibration step. Given a calibrated stereo camera the
images are then aligned by warping them. This is known as rectification. This
gives two cameras with parallel optical axes and horizontal epipolar lines. A
dense estimation of ranges is then performed at each pixel by matching along
the epipolar lines. This is done using a correlation window with typical sizes of
around 10x10 pixels. The correlation window matches texture in the two images
with each other. The output of the matching process is a disparity image. This
gives the image difference between the position of objects in the two cameras.
The horizontal distance from the image center to the object image is dl for the
left image and dr for the right image (See Fig. D.3). Then the disparity value
d is given by:

d = dl − dr (D.1)

A pixel in the disparity image can then be projected to a 3D coordinate using
triangulation.

For a stereo-camera a point in the depth map is defined by (u, v, d) which is the
column, row, and disparity value in the disparity image. This can be projected
to and from a 3D coordinate defined by (x, y, z) in the camera coordinate system
using the following formula:

x̄l =

x
y
z

 =

(u−u0)b
d

(v−v0)b
d
fb
d

 (D.2)

where u0 and v0 are the column and row coordinate of the optical center of
the image in pixels. b is the camera baseline and f is the focal length for the
rectified image.

D.2.1 Artifacts

The stereo processing algorithm relies on objects being matched correctly in
the two images. Incorrect matches give a wrong disparity value in the disparity

160 P a p e r D

Figure D.3: A simplified view of stereo geometry. Disparity is the offset of the
image location of an object: d = dl − dr. a is the range to an object. b is the
baseline between images. f is the focal length of the cameras.

D.3 Visual Odometry 161

image. This in turn yields an incorrect range measurements for a given pixel in
the disparity image. These incorrect matches represent artifacts (faults) in the
stereo imaging. A filtering step is usually performed after the stereo algorithm
to remove artifacts. We use 3 well-known methods. A confidence filter removes
matches in areas of low texture (where it is hard to match). A uniqueness filter
removes matches with high ambiguity. A speckle filter removes small regions
using a salt-and-pepper filter. Generally these filters do well but they will not
catch all incorrect matches. The motivation is to exploit the redundancy that
using multiple images gives in order to detect these artifacts. This requires us
to be able to transform multiple images to the same coordinate system. This is
the output of VO.

D.3 Visual Odometry

The VO system derives from recent research on high-precision positioning (see [67])
using a stereo camera. By tracking image features between images the change
in pose of the camera can be estimated. This is done by computing changes
in position between image frames. In this type of system GPS or other aiding
positioning sensors are typically needed to maintain global consistency as VO
will slowly drift as noise in the positioning estimate will also be integrated. GPS
in orchards generally have poor performance as seen in our dataset Fig. D.1.

For each new frame, we perform the following process in the VO algorithm:

1. Distinctive features are extracted from each new frame in the left image.
Standard stereo methods are used to find the corresponding point in the
right image.

2. Left-image features are matched to the features extracted in the previous
frame.

3. From these uncertain matches, a consensus pose estimate is recovered
using a RANSAC method [32]. Several thousand relative pose hypotheses
are generated by randomly selecting three matched non-collinear features,
and then scored using pixel reprojection errors.

4. The pose estimate is refined further in a sparse bundle adjustment (SBA)
framework, as presented in [29, 135]. SBA is a nonlinear batch optimiza-
tion over camera poses and tracked features.

The output of the VO system is the transformation matrix (rotation R and
translation T) between the camera poses.

162 P a p e r D

D.4 3D Model

D.4.1 Visual Odometry and PCD registration

Each pair of images from the stereo camera delivers a set of point cloud data
(PCD), that is, every point in the disparity image is projected in local 3D
coordinates. The local coordinate system has the current camera pose as the
origin. Our 3D map building is performed by registering multiple PCDs in a
global coordinate frame. VO allows us to register individual PCD frames relative
to each. Let (Rt,tt) be the transformation from camera coordinates to global
coordinates for the PCD in frame t. Then we denote Pt the registered PCD in
the global coordinate frame.

D.4.2 Spatial decomposition of PCD using Octrees

To account for spatial visibility across the entire map, we construct a dynamic
fixed-width octree structure. This is a hierarchical data structure that is based
on the recursive decomposition of a 3D region. An octree node is a cube in 3D
space. Each node has eight children, and the actual data is stored at the node
leaves.

As soon as the first PCD frame is acquired, the octree is initialized and its
bounds set to the bounds of the PCD. For each subsequent PCD frame (Pt),
the octree structure is grown and adapted to fit the new data in. In general
the use of octrees allow for compact representation and fast indexing. This in
turn gives good scalability properties. An illustration of an octree is given in
Fig. D.4.

D.4.3 Modeling Measurement Uncertainties

The uncertainty in the measured ranges is affected by a number of things such as
image noise, matching inaccuracies, and low-pass effects from using a correlation
window in the stereo algorithm. Additionally, the actual range accuracy is
governed by camera calibration errors, lens distortion and camera alignment
errors.

We apply a similar assumption as in [119] that the image error in the stereo

D.4 3D Model 163

Figure D.4: Octree Decomposition. Each cube of space can recursively be split
into 8 sub-cubes called nodes. At the bottom of the hierarchy (node leaves) the
3D points themselves are stored. Here illustrated with points x1,x3 at the end
of one leaf, and x2 at the end of another.

164 P a p e r D

matching algorithm is governed by:

(
σ2

v , σ
2
u, σ

2
d

)
= (0.5, 0.5, 1.0) (D.3)

These are the assumed variances for a point in the disparity image of being in
a specific row (σ2

v) and column (σ2
u), as well as having a specific disparity (σ2

d).

The diagonals of the covariance estimate for the 3D projection of a point in the
image is then:

σ2
x =

b2σ2
u

d2
+
b2 (u− u0)σ

2
d

d4

σ2
y =

b2σ2
v

d2
+
b2 (v0 − v)σ2

d

d4

σ2
z =

f2b2σ2
d

d4
(D.4)

The covariance Ql in camera 3D coordinates is then:

Ql =

σ2
x 0 0
0 σ2

y 0
0 0 σ2

z

 . (D.5)

This is rotated from the local to the global coordinates as:

Qg = RT
l2gQlRl2g, (D.6)

where Qg is the covariance in global frame and Rl2g is the rotation matrix from
local to global coordinate frames.

The estimated location of the point in 3D is transformed to the global frame
by:

x̄g = Rl2gx̄l + Tl2g , (D.7)

where Tl2g is the translational from local to global.

For each point in the octree we store not only the coordinate of the point but
also now its covariance Qg. As we won’t be looking up points based on their
covariance it does not add further dimensionality to the octree structure. It is
simply metadata that gets attached to a point.

D.5 Point Filtering 165

D.5 Point Filtering

When a new disparity image is acquired, all existing points in the octree which
lie inside the field of view of the camera and inside stereo-camera range are
transformed into the new local frame and projected back into the disparity
image. The octree structure allows us to find these relevant points in a fast and
efficient manner. Classification techniques are used to detect and isolate points
(distance measures), which represent artifacts in the stereo imaging.

D.5.1 Artifact detection

Let each measurement (xi) be associated with a covariance Qi according to D.5.
We then wish to express the divergence (distance between stochastic distribu-
tions) between measurements [xi,Qi] and [xj ,Qj].

A general measure of distance between distributions fi and fj [87], is the
Jeffreys-Matusita (JM) divergence defined as

Jij =

(
∫

Ω

(
√

fi(r) −
√

fj(r)

)2

dr

) 1

2

(D.8)

The JM distance has the salient feature to be easily applicable on arbitrary dis-
tributions. The JM distance Jij = 0 when the distributions fi(r) and fj(r) are
equal and overlapping. The JM distance takes the value Jij =

√
2 when the two

distributions are totally separated. Bhattacharyya introduced the parameter

ρij =

∫

Ω

√

fi(r)
√

fj(r)dr, (D.9)

and the negative logarithm, αij , of this quantity,

αij = − lnρij , (D.10)

to obtain
J2

ij = 2(1 − ρij) = 2(1 − exp(−αij)) (D.11)

[54] showed that when the two distributions are normal multivariate of degree
n: fi(r) = N(xi,Qi) and fj(r) = N(xj ,Qj) then

αij =
1

8
(xi − xj)

TQ−1
ij (xi − xj) (D.12)

+
1

2
ln

det(Qij)
√

detQi detQj

, (D.13)

where Qij =
Qi + Qj

2
.

166 P a p e r D

Further, the probability of misclassification Pe is bounded:

1

16
(2 − J2

ij)
2 ≤ Pe ≤ 1 − 1

2
(1 +

1

2
J2

ij), (D.14)

which is equivalent to

(0.5 exp(−αij))
2 ≤ Pe ≤ 0.5 exp(−αij). (D.15)

In this context we calculate αij from Eq. D.13 and use the upper bound in
D.15 to estimate misclassification. When a new point is outside this bound, we
consider the point an artifact of the 3D stereo processing and discard the point.

D.5.2 Startup and algorithm procedure

A mapping can be initialized by a prior map or it can be initialized by a first
stereo image of the map. Hence there exist octrees occupied by sets [xi,Qi]
and subsequent stereo images provide [xj ,Qj], j = i + 1, i + 2, ..i + N . If the
first two points are outside the accepted divergence, a third is processed, until
at least two points agree within the chosen value of αij . If the point lies within
the interval then it is assumed that both measurements pertain to the same
object and the map is updated by merging the two distance estimates into a
new estimate given by:

Q−1
m = Q−1

i + Q−1
j ,

x̄m = Qm

(
Q−1

i x̄i + Q−1
j x̄j

)
. (D.16)

Subsequent measures are compared with [xm,Qm], which replaces [xi,Qi] in
the calculations. The two measurement i and j are deleted from the octree and
replaced by the merged estimate m.

D.5.3 Algorithm simplification from Octree quantization

To gain computational efficiency, the procedure can be simplified when the minor
axis of the covariance ellipse have dimensions lower than those of the octree.
Then points need only be considered that lie on the projection between camera
and object. This simplification is supported by the fact that main source of
artifacts in the disparity image is a wrong disparity value, which gives a wrong
range estimate along the ray. This is done efficiently by projecting the points in
the map back to the disparity image. All points which land in the same pixel lie

D.6 Results 167

along the ray.2 To handle occlusions, i.e. a point in the map lies behind a new
measurement and αij is outside the upper bound, the point is not discarded but
measurements are taken to belong to different objects.

D.6 Results

An example of the results for filtering is shown in Fig. D.5. The sequence
contains some ground and a few trees. In Fig. D.5(c) some faulty measurements
are removed near the ground plane. Specifically in the bottom image of Fig.
D.5(c) many of these points are groups of data, which were not present in the
real environment. The Figure has been done using only 2 disparity images.
This is mostly for illustration purposes as the 3D map gets messy if all faulty
measurements are shown for larger amounts of disparity images. Of special note
is that most of the points being removed are at long range. This is consistent
with the fact that range measurements are less accurate at long range.

The method has been evaluated on a manually recorded dataset of an orchard.
Due to space limits, only parts of the results are given here. Fig. D.6. shows
the 3D map for the trajectory in headland. This is the part at the southern end
of the field in Fig. D.1. The total distance covered in this part of the trajectory
is roughly 114 meters. As seen there is little noise in the final map. Due to lack
of texture there are some holes in the map in certain parts of the image. We
currently do not consider dynamically moving obstacles which means that the
person moving at the end of the field appears multiple times in the final map.

D.7 Conclusions

This paper presented a method for fault detection in depth maps generated
from stereo data through multiple depth map fusion and geometric reasoning.
We presented the theory behind our approach, and gave a demonstration of its
efficiency on data collected by an agricultural robot in an orchard environment.
The proposed method can account for measurement noise at different ranges
while trying to detect faults in stereo data. The implementation showed that
computational effort need be considered and the fault-tolerant 3D imaging could
need a dedicated processor to run in real time. Extensions could well be to

2This concept is similar to that employed in computer graphics called z-buffering to decide
which elements of a rendering scene are visible, and which are hidden.

168 P a p e r D

(a) (b) (c) (d)

Figure D.5: Results for the filtering for faulty range measurements. (a) Raw
data (b) Raw data overlayed with octree cubes (c) Red are faulty measurements
(d) Filtered data.

combine semantic labeling techniques for the objects in the map [115], as well
as extend the method to dynamic obstacles.

Acknowledgments The authors would like to thank Dr. M. Agrawal at SRI
International for numerous advices and for providing the VO library. We would
also like to thank Dr. J.C. Andersen at DTU for collecting the used dataset.

D.7 Conclusions 169

(c)

(a)

(b)

Figure D.6: Three views of headland in the orchard from the 3D map recon-
struction. Blue dots represent the trajectory of the camera poses. The fence can
be clearly seen to the right. The orchard rows are on the left side. A moving
person taken from different views can be seen in the distance. (a) view from
below camera. (b) view from above camera. (c) Top-down view.

170 P a p e r D

P a p e r E

Natural Environment
Modeling & Fault-Diagnosis
for Automated Agricultural

Vehicle

Morten Rufus Blas and Mogens Blanke. Natural Environment Modeling &
Fault-Diagnosis for Automated Agricultural Vehicle. Proc. 17th IFAC World
Congress, pages 1590-1595, Seoul, Korea, 2008. Published.

172 P a p e r E

Abstract:
This paper presents results for an automatic navigation system for agricultural
vehicles. The system uses stereo-vision, inertial sensors and GPS. Special em-
phasis has been placed on modeling the natural environment in conjunction
with a fault-tolerant navigation system. The results are exemplified by an agri-
cultural vehicle following cut grass (swath). It is demonstrated how faults in
the system can be detected and diagnosed using state of the art techniques
from fault-tolerant literature. Results in performing fault-diagnosis and fault
accomodation are presented using real data.

E.1 Introduction

Agricultural machinery is increasingly getting automated. For example, agri-
cultural vehicles have seen a revolution in automation by adoption of GPS for
automatic steering. A number of technical limiting factors of these GPS sys-
tems however do exist. Some of these are faults inherent to GPS receivers, such
as those induced by satellite occlusions and multipath errors. Others include
that the GPS systems require a detailed navigation plan as they themselves
cannot ”see” features in the field that want to be followed. It is thus of interest
to find a solution to these limitations.

Earlier research results can be split into 3 broad categories: work in fault-
tolerance, stereo-vision, and position estimation for navigation in agriculture.
Stereo-vision is an active topic in agriculture. It has been shown that stereo-
vision can be used for navigation by finding the relative position of a vehicle
to a variety of agricultural structures: [112], [62]. Relative position estima-
tion has been fused in [111]. Visual odometry has been fused in [4]. Sensor
faults in these articles are typically treated in simple fashion by gating on, for
example, the innovation in a kalman filter. Literature however exists to treat
fault detection systematically, [14], [15], by using systematic fault-tolerant de-
sign tools. They have been demonstrated to work in practice on for example
ships: [13]. How the systematic methods as presented in [15] can be applied
to navigation in agriculture and especially with vision-based navigation sensors
has not previously been demonstrated.

This paper will deal with a specific field operation that involves the agricultural
vehicle to follow cut grass (swath) in order to pick it up with a baler (see
fig. E.1). The system to be analyzed is equipped with stereo-vision, a single
antenna GPS and an IMU, in one configuration. GPS positions of the vehicle

E.2 Swath Model 173

Figure E.1: This is an example of a swath that the navigation system should
follow. The vision system locks on and tracks the swath most central in the
image.

that formed the swath are known. The combination of stereo-vision and GPS
allows the system both to ”see” the swath but also navigate based on the given
map. This creates system redundancy that is essential for achieving fault-
tolerance. A visual odometry algorithm on the stereo-camera allows for the
relative positionment of the vehicle without GPS or IMU. The GPS receiver
used was a high-end EGNOS receiver and the IMU was a tactical grade (low
accuracy) MEMS based unit.

The two main ideas presented here is first a behavior model for representing
the natural environment, namely the swath. Secondly, it is shown how parts of
this model (the swath location) can be used in conjunction with sensor inputs
to create a fault tolerant sensor fusion system. The fault diagnosis is illus-
trated using real data. Combining the sensor information optimally for state
estimation beyond estimating faults is not delved into.

E.2 Swath Model

A model of the swath requires extracting the salient features of the environment
required for the field operation and storing them in the model representation.
The salient features are the location of the swath and the distribution of the

174 P a p e r E

Figure E.2: Using position information and 3D data from the stereo-camera the
entire field (if necessary) can be reconstructed in 3D. This is a 15 m section of
a swath.

Figure E.3: The middle of the swath can be represented by a cubic spline with
a number of knots. This is accompanied by the width of the swath at each
location along the spline as well as the height of the material within the bounds
of the swath. The height of the swath is shown as different intensities. The
illustration is from a top-down view.

swath material across the swath. The location of the swath is modeled as a
cubic spline with the number of knots being fixed for a certain length of swath.
The spline is positioned along the middle of the swath. The distribution of
the swath material is first modeled by defining the swaths width at any given
point along the spline. Secondly, points inside the 2D volume enclosed by the
swath width are assigned a value pertaining to the height of the swath at this
point relative to the ground. The swath height is represented by a grid map of
resolution 2 cm for each grid point. The model is illustrated in fig. E.3. The
concept behind the swath location, width, and height is now explained in more
detail.

E.2 Swath Model 175

E.2.1 Swath Location

The swath location is defined as being in a 2D coordinate system on the ground
plane. A function f represents the lines down the middle of the swaths. Given
coordinate pairs (x, y) then f is:

y = f(x) (E.1)

The model of the swath location is then s(x) with s ∈ S3(k0:n), where k0:n are
the spline knots and the spline coefficients and S3 is the cubic spline domain.
Then the model is equal to the swath location plus the approximation error ǫa
of fitting a spline to f :

s(x) = f(x) + ǫa (E.2)

Based upon the concept of having a controller that allows the vehicle to follow
the swath location, the x-track error εx (signed shortest distance from the control
point to the spline) can be found as a function of the tractor position and the
spline. Defining the spline sb in body coordinates a function E can be set to
find the x-track error:

εx = E(sb) (E.3)

E.2.2 Swath Width

For each point on s the swath width is defined by the two points on either side
of s that are orthogonal to s at these points and which lie a distance dw away
from s at each point. The function g defines dw as a function of x and the
model s. The tangent of s at a specific point is given by differentiation of s.
This allows for the swath width to change along the length of the swath.

dw = g(x, s) (E.4)

176 P a p e r E

E.2.3 Swath Height

The swath height is the mean swath height inside each grid square in the grid
map bounded by the swath sides as defined by the swath width and location.
Given the grid map coordinates (x, y) the swath height zm at this point is defined
by the function h:

zm = h(x, y) (E.5)

E.2.4 Swath Sets

The above model is only for a single swath. Each swath in the field is then
described by a set of the above functions with M being the set of such swaths
and n being the number of swaths:

M = {si, gi, hi} , i = 1...n

E.3 Behavior Models

The following sections outline how the behavior-based model of the swath can
combined with models of GPS, stereo-vision sensor and odometry data. The
purpose is to arrive at a set of constraints that can be used for analysis of system
structure and subsequent generation of residuals for fault diagnosis. This idea
was brought into the field of fault diagnosis by [126] and later expanded, see [125]
and [15]. The advantage of this approach over classical methods, [136], include
the ability to use a formulation of behaviors at high level of abstraction.

E.3.1 GPS

The GPS positions of the vehicle that formed the swath is fitted with the spline
(see fig. E.4). The distribution of the swath cannot be measured by the GPS
receiver. Knowledge of the machine settings used to construct the swath are
assumed known giving an approximate height hest and width dw,est of the swath.
These settings can be used as estimates for the swath model fitting. Given the
measured GPS positions p̂n

2 of the vehicle and the attitudes of the vehicle Θ̂2

E.3 Behavior Models 177

0 50 100 150 200

−20

0

20

40

60

80

100

120
Swath Location

Figure E.4: The location of the swath as recorded by the GPS mounted on the
vehicle that formed the swath. It is assumed the start and end points of the
GPS trajectory have been recorded. The swath location is shown in red and
has been fitted with a spline. Green indicates the trajectory followed by the
vehicle where it was not forming swath - raw GPS readings. All units are in
meters in the NED coordinate system.

the position of swath formation behind the vehicle can be calculated. The path
formed by these positions is then fitted with the spline model using the function
k to provide an estimate of the swath location. The information in the GPS
map is then, in an abstract formulation:

sg = k(p̂n, Θ̂2) (E.6)

E.3.2 Stereo-Camera

A stereo algorithm is used to find the correspondence between features in the
left and right image sensor (il, ir). The position of the features relative to the
stereo-camera can then be inferred in 3D. Modern vision algorithms then exist
to register 3D models with the 3D point cloud provided by the stereo-camera:
[36]. An algorithm has been constructed that allows such registration between
the swath model and the 3D points. The stereo-algorithm and registration will
be denoted by the function areg. Thus, given the two images a measurement
of the swath location sc, width gc, and height hc can be computed for the part

178 P a p e r E

Figure E.5: (a) RGB topdown-view of the swath with swath location and swath
width superimposed on the swath. (b) The swath model showing both swath
location, width and height by image feature extraction.

of the swath in the image.

sc

gc

hc

 = areg(il, ir) (E.7)

These measurements are stored in a map representation for an individual swath.
sm is the spline formed by combining previous measurements.

E.4 Structural Model 179

E.4 Structural Model

The structural model describes the behavior of variables in the normal, fault-free
system using a behavior based approach. A violation of a behavior indicates
a fault in the system. Given the current setup a fault could for example be
in a sensor, an algorithm, and/or an assumption about the environment. The
structural approach treats faults unambiguously.

The constraints are composed of a number of measurement (m), differential
(d), and system constraints (c). The variables in the constraints are likewise
composed of two groups: the subset of known variables K and the subset of
unknown variables X . The constraints are listed in Eq. E.9.

K = {vb,ab,pn
1 , sg, sc, sm,R

n
b (Θ, λ)}

X = {pn, ṗn, sb, s, εx} (E.8)

c1 : sb = Rn
b (Θ, λ)s+ pn

c2 : εx = E(sb)

d1 : ṗn =
d

dt
pn

m1 : vb = Rn
b (Θ, λ)ṗn

m2 : ab =
d

dt
Rn

b (Θ, λ)ṗn (E.9)

m3 : pn
1 = pn

m4 : sg = s

m5 : sc = sb

m6 : sm = sb

Following the notation in [33]: vb is the tractor’s velocity vector over ground
seen in body coordinates as measured by visual odometry; ab is the acceleration
vector given by the IMU; pn the position in (North, East) coordinates with
pn

1 being the position measurement from the GPS; Rn
b is the rotation matrix

from body to navigation frame, which is a function of Θ, the attitude vector
(Euler angles roll, pitch and yaw) and of λ, the latitude. sb is the spline body
coordinates. In this analysis, the Rn

b matrix is assumed to be known.

180 P a p e r E

Table E.1: Incidence Matrix.
known unknown

\ sg sc sm vb ab p1 p ṗ εx

m1 1 1
m2 1 1
m3 1 1
m4 1 1 1
m5 1 1
m6 1 1

Table E.2: Dependability Matrix.
constraints

\ d1 m1 m2 m3 m4 m5 m6

p1 1 1 1
p2 1 1
p3 1 1 1
p4 1 1

E.5 Structural Analysis

As described in [13] a structural analysis is then performed on the structural
model. The constraint d1 is a differential constraint and as such cannot fail.
To simplify the structural analysis the constraints {c1, c2} are pulled into the
measurement constraints {m4,m5,m6} and faults in them are treated as sub-
system faults in the respective measurement constraints instead. The incidence
matrix can be seen in table E.1. A number of parity relations are then found
as shown in Table E.2.

Based on the dependability matrix in Table E.2, the parity relations are derived
in analytical form and used as the basis for the residuals (Eq. E.10). As
all the columns of Table E.2 are different, it follows that all faults should be
structurally detectable and isolable as the faults will have a unique signature in
these residuals.

E.6 Field Tests 181

r1 : vb − Rn
b (Θ, λ)

d

dt
pn

1 = 0

r2 :
d

dt
vb − ab = 0

r3 : E(sc) − E(Rn
b (Θ, λ)sg + pn

1) = 0 (E.10)

r4 : E(sc) − E(sm) = 0

E.6 Field Tests

The properties of residuals were investigated based on recorded data. The data
stems from the test field run illustrated in fig. E.4. The position of the swath
was first logged by following the middle of the swath manually - emulating the
vehicle forming the swath. This was repeated for a second pass emulating the
vehicle that should pick up the swath. This provides some form of limited
ground truth. The position error of the driver is bounded between the runs as
he constantly steers relative to the swath. Experience with driving with balers
puts the error associated with not driving exactly over the center of the swath to
under ±0.2 m as this is required to pick up the swath successfully. In the data
examined the GPS has a false offset in the second pass relative to the first pass
of approximately 0.6 m for the first approx. 70 s before it corrects its position
estimate to bring it to about 0.15 m of the swath location. This second offset
is acceptable for normal operation. Field tests enabled calculation of residuals
r1, r3 and r4 as an instrumentation issue prevented data reception from the
IMU. The field test is hence representing a case of one permanent failure and
an additional fault occurring.

E.6.1 Detailed Design of Residual Generators

The parity relations Eq. E.10 are now further scrutinized as a basis for change
detector and hypothesis evaluation design. A common assumption for readily
available change detection algorithms is that of a Gaussian amplitude distri-
bution. A required property of residuals for average run length calculations is
whiteness. Fig. E.7 shows the histograms of residuals. The figure also shows
Gaussian distributions with mean and variance as observed. Residual 1 suffers
from a deadband in the calculation of velocity from the stereo images, hence, the
distribution is not Gaussian. The cause of the deadband must be investigated
further. Residual 3 appears to follow a shifted Rayleigh distribution.

182 P a p e r E

0 20 40 60 80 100 120
−100

0

100

200

300

400

500

600

700

800
X−track Error (GPS & Vision)

X
−

tr
ac

k
E

rr
or

 (
m

m
)

Time (s)

Stereo−vision
Vision Map
GPS Map

Figure E.6: The vehicle was driven manually over a swath. The driver centered
the vehicle over the middle of the swath and drove for 2 min while maintaining
this centered position. The x-track errors from the subsystems were recorded.

Statistical change detection will ideally be based on a log-likelihood ratio test

si = ln(pθ1
(ri) − ln(pθ0

(ri)) (E.11)

where the probability densities from the observed distributions should be used,
pθ1

for the case of a fault, pθ0
for the normal case, respectively. With the shifted

Rayleigh shape distribution of r3 in the no-GPS-fault case, a change detection
of CUSUM or GLR type is straight forward to compute, [9]. The Rayleigh
distribution gives, however, some computational burden over the tests when
Gaussian distributions are assumed. The testing was therefore conducted using
a Gaussian assumption. In the above analysis, it is also noted that a GPS fault
is strongly detectable in residual r3 while only weakly detectable in r1 due to
the position differentiation in the parity relation of r1. A low-pass filter is hence
applied on r1.

With respect to testing whiteness of the residuals, Fig. E.8 shows the auto-
correlation functions for the three available residuals. Residual r3 is seen to
comprise some correlation due to filtering within the algorithm that determines
the spline approximation to the swath. Whiteness is particularly important to
reach design conclusions about average run length.

E.6 Field Tests 183

−100 −50 0 50 100
0

0.005

0.01

0.015

0.02

r
1
 (No Fault)

Norm. Velocity
−100 −50 0 50 100

0

0.005

0.01

0.015

0.02

r
4
 (No Fault)

Norm. Distance

−200 −100 0 100 200
0

2

4

6

x 10
−3 r

3
 (GPS Fault)

Norm. Distance
−100 0 100

0

0.005

0.01

r
3
 (No Fault)

Norm. Distance

Figure E.7: Normalized histograms for residuals r1, r3, r4 in the faultless scenario
along with r3 in the case of the GPS fault. Fitted gaussian distributions are
shown on top of the histograms.

184 P a p e r E

0 5 10 15 20
−1

0

1

r
1

0 5 10 15 20
−1

0

1

S
am

pl
e

A
ut

oc
or

re
la

tio
n r

3

0 5 10 15 20
−1

0

1

Lag

r
4

Figure E.8: Autocorrelation function for residuals r1, r3, r4 in the faultless case.
The blue lines indicate the bounds of the 95% confidence intervals.

E.6 Field Tests 185

0 20 40 60 80 100 120
0

200

400

600

800

1000

Residual r
3

D
is

ta
nc

e
(m

m
)

Time (s)

Figure E.9: Residual r3.

0 20 40 60 80 100 120
0

0.2

0.4

0.6

0.8

1

CUSUM Test − r
3

H
0

Time (s)

Figure E.10: CUSUM test for residual r3. H0 = 0 indicates no fault.

E.6.2 Change Detection and Hypothesis Evaluation

Change detection on the residual vector could be made using a vector-based
approach, where a known signature ρ(τ) = [ρ1(τ), ρ3(τ), ρ4(τ)]

T is sought for
in r(t) = [r1(t), r3(t), r4(t)]

T . The computational burden is, however, larger
than by applying a simple CUSUM test for change in mean on r3 and r4 and
make a threshold test on r1. With adequate logics used for hypothesis testing,
this allows for isolation of faults. The result for r3 is shown in fig. E.10. The
CUSUM test is given a mean value to test for so that an erroneous x-track error
of up to 0.2 m is permissible. From the system is started it takes 1 s to isolate a
fault. The CUSUM test for residual r4 stays 0 for the data indicating that sc

and sm agree, and that any variation between them is due to noise.

Isolation of the fault to the GPS subsystem (GPS sensor and GPS Map) can,
as minimum be achieved by considering the residual vector [r3, r4]

T . Stronger
isolation is achieved by considering the full residual vector [r1, r2, r3, r4]

T where
the output of the GPS subsystem is also compared to the visual odometry which
in turn is compared to the IMU output. The GPS jump is clearly seen as a
spike in residual r1 as shown in Fig. E.11.

186 P a p e r E

20 40 60 80 100 120
−50

0

50

100

Residual r
1

Time (s)

D
is

ta
nc

e
(m

m
)

Figure E.11: Low-pass filtered residual r1.

0 20 40 60 80 100 120
0

0.2

0.4

0.6

0.8

1

Hypothesis Test − r
1

Time (s)

H
0

Figure E.12: Hypothesis test by thresholding for residual r1.

E.7 Fault Handling

There are a number of approaches to fault accomodation. In the present case,
a GPS fault can be isolated, and the magnitude of the fault can be estimated.
It is then a straight forward task to reconfigure the navigation controller either
to avoid using the faulty sensor or to attempt to compensate for the fault by
compensating the sensor readings. Given that the residuals have detected the
fault in the GPS x-track signal it is indeed possible to handle the fault auto-
matically. The approach adopted here was to do this is by estimating the GPS
fault magnitude using a Kalman filter and the vision x-track signal. The esti-
mated mean difference is used as the correction estimate. Threshold detection
on r1is used to prevent invalid signals from being passed to the controller. The
response of the thus corrected position estimate is shown in Fig. E.13.

It can be seen that discrepencies in the GPS and vision x-track signals quickly
converge (the two signals in the example are roughly within ±10 cm of each
other). This approach only works for correcting faults which are stationary
errors to the input signal. It is stipulated that most other GPS faults will be
caught by the visual odometry or IMU.

E.8 Conclusion 187

0 20 40 60 80 100 120
−200

−100

0

100

200

300

Residual r
3
 with Fault Accomodation

D
is

ta
nc

e
(m

m
)

Time (s)

Figure E.13: By estimating the magnitude of the fault in the GPS sensor it was
possible to do fault accomodation.

E.8 Conclusion

It has been demonstrated both using principles from fault diagnosis and from
fault-tolerant sensor fusion theory, as well as experimentally, that an agricultural
vehicle equipped with GPS, IMU and stereo-vision can be made fault-tolerant
to sensor faults. The results presented here were done offline and work will be
pursued to demonstrate them online. Real-time implementations are available
for the image processing algorithms. The computational requirements for the
fault-tolerant sensor fusion framework is insignificant compared to the image
processing. The system should thus have a very good chance of working online.

188 P a p e r E

P a p e r F

Automatic Baling Using
Stereo Vision and Texture

Learning

Morten Rufus Blas and Mogens Blanke. Automatic Baling Using Stereo Vision
and Texture Learning. J. of Computers and Electronics in Agriculture, 2010.
Submitted.

190 P a p e r F

Abstract:
This paper presents advances in automated baling using stereo-vision. A robust
classification scheme is developed for learning and classifying based on texture
and shape. Using a state-of-the-art texton approach a fast classifier is suggested
that can handle non-linearities and artifacts in data. Shape information is
employed to make the classifier robust to large variations in lighting conditions
and greatly reduce the likelihood that artifacts in signals from the stereo vision
system lead to gross errors in estimated object positions. The classifier is
tested on data from a stereovision guidance system on a tractor. The system
is shown to be able to classify cut plant material (called swath) by learning it’s
appearance. A 3D classifier is successfully used to train the texture classifier.
It is demonstrated from field tests how fault-tolerant fusion of steering reference
data are obtained for an automated baling vehicle.

F.1 Introduction

Figure F.1: The system in context. The red line shows the motion of the
camera, the blue lines are the swath boundaries inside the camera’s field of
view.

Autonomous navigation for outdoor, unstructured environments is an impor-
tant research problem in robotics with numerous applications. Being able to

F.2 Related Work 191

recognise specific structures in the environment will in many cases enhance the
ability of a robot to make the right navigation decisions. Typical outdoor
systems rely on range sensors such as stereo cameras or laser range finders for
reasoning about the geometry of the world and identifying geometrical shapes.

This paper combines a 3D classifier and a texture classifier for a general prob-
lem related to agricultural robotics. In agriculture typical tasks are to follow
structures in the field to for example plow, seed, spray or harvest. This paper
focuses on the specific harvesting task of baling, which involves following rows
of cut straw or grass (swath) in order to pick it up and process it into bales.
This is a labour intensive and repetitive task which is of interest to automate.
The difficulties pertaining to automating this task are similar to the difficulties
in automating a large range of agricultural tasks. The ability to track this
structure using 3D shape information from a stereo camera and/or GPS infor-
mation has previously been demonstrated [18]. In order to add redundancy to
the system this paper presents a classifier that uses online learning to learn tex-
ture information about the swath and the surroundings. This is then coupled
with shape information to extract the swath position. A mapping system keeps
track of measured swath positions. The map is then used to guide the vehicle
along the swath by steering the tractors front wheels while a driver controls the
throttle and brakes.

The main contributions of this paper are, a classifier framework with online
learning of texture in an agricultural environment, a method of supervising and
fusing 3D and texture in a map, improved results using state-of-the-art stereo
camera positioning and the application to automatic baling with round-baler
feedback.

F.2 Related Work

In agricultural robotics, most current efforts at following field structures without
GPS use 3D such as in [52],[112],[24]. Generally speaking, texture methods
have had limited success due to large variations in conditions. Colour methods
are generally restricted to for example identifying green plants [8]. Existing
camera-based methods generally do not use mapping and instead rely only on
data from single images for steering. The mapping system implemented in this
paper relies on visual odometry (VO) and GPS for positioning [66]. A simpler
and much slower mapping approach using VO has previously been described in
[61]. The advantage of VO over for example GPS is that it is generally more
robust and accurate over shorts distances. In robotics, recent uses of classifying
based on color/texture include [5] where it was used to classify terrain for a

192 P a p e r F

Mars rover. In [105] a combination of visual and geometric features are used
for outdoor classification. Texture using a bag-of-words type approach is used
with the words trained off-line. This has the disadvantage that a very large set
of filter-banks must be used in order to be able to handle all variations. The
approach described in [17] forms the basis for the texture representation used in
this paper. It has the advantage that the texture representation can be learnt
online which allows the classifier to be optimised for individual scenes which
reduces the need for a large set of filters.

There has generally been little efforts at improving redundancy in vision based
guidance systems. The system presented here improves redundancy by com-
bining 3D measurements, texture, and mapping. This is different than in [24]
where a 2D laser scanner is also used to follow a 3D swath profile and mapping
is required to extract an angle of the swath relative to the vehicle. Such systems
require a clear 3D profile of the structure and do not work in areas where the
structure is flat. In [24] the mapping comes from wheel odometry which is often
inaccurate and subject to wheel slips.

F.3 System Overview

The automatic baling system is composed of two parts: a vision system and a
control system (See Fig.F.2 and Fig.F.14). In the vision system, a left and right
image are acquired from a stereo camera. A stereo algorithm is then used to
extract 3D information from the images. This is then fed into a 3D tracking
algorithm that tracks the swath field structure. A learning algorithm is then
used to teach a texture tracking algorithm to track the swath. Supervision is
then used to make the learning process fault-tolerant. Mapping then provides
fusion of tracking information. To enable mapping a fault-tolerant positioning
fuses and supervises visual odometry and GPS information. The output from
the mapping system is fed to a track controller that in turn steers the wheels of
the tractor.

F.3.1 Hardware

In a proof of concept configuration and for the present paper, image processing
was done on a laptop which interfaces to the vehicle controller ECU through
the tractor’s CAN bus. The driver interfaces to the control system through
a terminal to change settings and engages/disengages the automatic steering
system through a switch. The baler has integrated pressure sensors which are

F.4 3D Classification 193

Figure F.2: Overview of the vision system. Images from a stereo camera are
used to track 3D field structures. Online learning of texture enables texture
tracking of the structure. Supervision of the learning process provides fault-
tolerance. Visual odometry and GPS are fused and supervised to allow fault-
tolerant mapping of the field structure.

used to measure the bale diameter. This information is used in the controller
to assure an even filling of the bale chamber. A wheel angle sensor provides
feedback about the angle of the front wheels of the tractor. Hydraulics allow
actuation of the front wheels. A stereo camera is mounted in front of the tractor
and an RTK GPS on the roof provides position information.

F.4 3D Classification

Stereo-vision perceives depth using triangulation. The distance to a point is
determined by the triangle between the point and where it appears in each of
two images. To do this the two images must be aligned. The process of aligning

194 P a p e r F

the images is part of a calibration step. Given a calibrated stereo camera the
images are then aligned by warping them. This is known as rectification. This
gives two cameras with parallel optical axes and horizontal epipolar lines. A
dense estimation of ranges is then performed at each pixel by matching along
the epipolar lines. This is done using a correlation window with typical sizes of
around 10x10 pixels. The correlation window matches texture in the two images
with each other. The output of the matching process is a disparity image (See
Fig.F.5). This gives the image difference between the position of objects in the
two cameras. The horizontal distance from the image centre to the object image
is dl for the left image and dr for the right image. Then the disparity value d is
given by:

d = dl − dr (F.1)

A pixel in the disparity image can then be projected to a 3D coordinate using
triangulation.

For a stereo camera a point in the depth map is defined by (u, v, d) which is the
column, row, and disparity value in the disparity image. This can be projected
to and from a 3D coordinate defined by (x, y, z) in the camera coordinate system
by:

x̄l =

x
y
z

 =

(u−u0)b
d

(v0−v)b
d

fb
d
,

 (F.2)

where u0 and v0 are the column and row coordinate of the optical centre of
the image in pixels. b is the camera baseline and f is the focal length for the
rectified image.

F.4.1 Height Classifier

In order to identify the swath in 3D the ground plane is first estimated (See
[66]). The distance from each pixel in the disparity image to the plane is then
calculated (Using the 3D coordinates and the point-to-plane distance). Pixels
below the plane are set to zero-distance. The height values are then normalised
based on a median value of a subset of the largest height values. The output
is a 2D image scaled from 0-1 with a higher value indicating a higher likelihood
of pertaining to the swath (under the assumption that only the swath is higher
than the ground plane). An example result is shown in Fig.F.2.

F.5 Texture Classification 195

F.5 Texture Classification

In a seminal paper, Leung and Malik [74] showed that many textures could
be represented and re-created using a small number of basis vectors extracted
from the local descriptors; they called the basis vectors textons. While Leung
and Malik used a filter bank, Varma and Zisserman [139] showed that small
local texture neighbourhoods may be better than using large filter banks. In
addition, a small local neighbourhood vector can be much faster to compute
than multichannel filtering such as Gabor filters over large neighbourhoods.

F.5.1 Texton classifier

Given a colour image as input pixel neighbourhoods in the image are grouped
into belonging to 1 of 23 texton types (texton image). This number was chosen
as a compromise between quality and speed. These textons are learnt from the
training image (See [17]). This is done by first extracting a descriptor in the
form of a vector from each pixel location in the image. For each location pi the
vector is:

pi =

W1 ∗ Lc

W2 ∗ ac

W2 ∗ bc
W3 ∗ (L1 − Lc)

...
W3 ∗ (L8 − Lc)

(F.3)

Where Lc, ac, bc is the colour of the pixel at this location in CIE*LAB colour-
space. (L1 −Lc), ..., (L8 −Lc) are the intensity differences between the pixel at
this location and the 8 surrounding pixels in a 3×3 neighbourhood. The vector
elements are then weighted using {W1 = 0.5,W2 = 1,W3 = 0.5}. A K-means
algorithm is then run on all these descriptors to extract 23 cluster centres which
we refer to as textons. Each pixel location in the image is then classified as
belonging to a texton by finding the nearest texton in Euclidean space. An
example of such a classification is shown in Fig.F.3.

196 P a p e r F

(a)

(b)

Figure F.3: The input RGB image is transformed to an image where each pixel
is labeled by color as belonging to one of 23 textons. (a) The original image
with a swath in the middle. (b) The labeled texton classification.

F.5 Texture Classification 197

0 5 10 15 20 25
0

0.02

0.04

0.06

0.08

0.1

0.12
Normalized Mean histogram of texton occurences (no swath)

texton no.

oc
cu

re
nc

e
ra

te

(a)

0 5 10 15 20 25
0

0.05

0.1

0.15

0.2
Normalized Mean histogram of texton occurences (swath)

texton no.

oc
cu

re
nc

e
ra

te

(b)

Figure F.4: Normalised Texton Histograms. (a) Texton occurrences for ”no
swath”. (b) Texton occurrences for ”swath”.

F.5.2 Texture Training

The texton image is used as the basic input to train the texture classifier. Given
a training mask representing the location of the swath in an image (representing
the location of the ”swath” as well as the surroundings ”not swath”), and a
texton image the average histogram of texton occurrences around 32×32 image
patches for the ”swath” and ”not swath” case can be constructed (With 32×32
pixels corresponding to 1 − 2% of the total image size). These are illustrated
in Fig.F.4. The histograms are clearly different in the two cases, for example
texton #2 occurs with high probability for the ”swath” case and little for the
”not swath” case.

198 P a p e r F

As is apparent from the swath images in Fig.F.7 there are multiple objects with
unique textures present in both the swath and in the area surrounding the swath.
For example, stubble from harvested plants may be present in part of the image
or tire tracks from other machines may form separate textures. The solution
presented here is to identify and model each texture independently by represent-
ing each of them with a mean histogram. Identification the different textures
is done by taking the list of histograms for the ”swath” and ”not swath” cases
and clustering them (similarly to what was done for the textons) independently
of each other using K-means [50]. For the results presented here, the number
of clusters was 3 for each case. The reason for using K-means was simply for
speed. Other probabilistic learning approaches could be used, including Support
Vector Machines [19] and Gaussian Mixture Models.

F.5.3 Texture Classifier

Classification is done on a texton image by identifying a likelihood that a his-
togram centred around a pixel is either ”swath” or ”not swath”. This is rep-
resented by the two hypotheses: Hs for ”swath” and Hn for ”not swath”. A
suitable distance measure must be used to compare the histograms. Having
considered several distance measures: Euclidean distance, histogram intersec-
tion kernels, Kullback-Leibler divergence, chi-square divergence, earth-movers
distance, and Battacharrya distance, the sum-of-absolute (SAD) distances was
chosen and the ratio of the distance from an observed distribution to either of
the hypotheses were used for classification. The operator ⊕ is used here to
denote the SAD distance. A main reason for using this distance measure was
that it can be implemented to run very fast since it does not involve square
roots or exponential functions:

a⊕ b =
k∑

i=1

|ai − bi| (F.4)

All histograms in this context have the same number of elements and there is
no need to normalise when calculating distances. Given a histogram h and
a set of mean histograms for Hs denoted by Hs = {hs,1,...,hs,m} and Hn =
{hn,1,...,hn,m} for Hn then the distance ratio is formulated as:

distance ratio =
min({h ⊕ hn,1,...,h ⊕ hn,m})
min({h ⊕ hs,1,...,h ⊕ hs,m}) (F.5)

F.5 Texture Classification 199

(a) (c)

(b) (d)

Figure F.5: Illustration of the texture and height classification. (a) original left
image. (b) disparity image (warmer colors indicate shorter range). (c) Texture
classified image. (d) Height classified image.

The distance is computed for each pixel in the input texton image. Similarly
to the height classification, the image is normalised from 0 − 1. Results are
shown in Fig.F.5.

F.5.4 Swath Detection

The swath in the image is parameterised by a width, position and orientation.
A mask can then be constructed for all feasible swath parameterisations (See
Fig. F.6 for an example of a mask). An exhaustive search is then performed
within a quantised set of the parameter space to maximise a match score. In
Fig. F.6 the dark region has a value of −1, the white region has a value of 1.
This mask is multiplied pixel-wise with the classified images for both the height
as well as the texture, and then summed to produce a scalar value indicating
goodness of a match.

200 P a p e r F

Figure F.6: (a) The original image with a swath in the middle. (b) Mask
illustrating width, position, and orientation of swath extracted from stereo-
algorithm.

F.5 Texture Classification 201

F.5.5 Updating Texture Model

The texture training produces a model of the texture that the classifier uses.
In the current implementation, training is performed at a rate of about 1 Hz.
Training is only done if the 3D classifier match score is above a threshold. The
newly trained texture model is then validated by testing the match score from
using the old model against the new one. If better, the old model is discarded.
It has been considered whether it could pay off to use an incremental texture
model where the old model is not completely discarded. This approach had
difficulties with local minima. In effect, as new models are constantly being
tested, the learning system does have an incremental attribute in that often the
method converges to finding a single training image that best represents the
field variations. Nevertheless, it still has the ability of quickly switching model
if a new type of environment is encountered.

F.5.6 Texture Results

In order to evaluate the performance of the classifier, a simple scoring scheme
was designed. The classification rate was defined as the number of correct
pixel classifications Dc normalised by the maximum number of correct pixel
classifications, Dc,max. High classification rate is the better. The false alarm
rate was defined as the number of false pixel classifications (false alarms) Df

normalised by the maximum number of possible false pixel classificationsDf,max.
Low false alarm rates are preferred. A hand labeled image was used as ground
truth.

Classification rate =
Dc

Dc,max
(F.6)

False alarm rate =
Df

Df,max
(F.7)

A set of 20 images were selected at random from 5 different data-sets of swaths
(See F.7). A hand labeled set of ground truth images were made for all 100
images. For each of the sequences, the classifier was learnt from one image
and then applied to the others. For this image the position of the swath was
calculated using the 3D classifier that extracts the width and position of the
swath based on the 3D profile in the stereo images.

202 P a p e r F

1(a) 1(b) 1(c) 1(d) 1(e)

2(a) 2(b) 2(c) 2(d) 2(e)

Figure F.7: Images 1(a-e) illustrate the training images used. Image #10 in
each dataset is classified in 2(a-e) with the blue lines representing the swath
bounds.

The results are very good with an average of around 90% detection rate relative
to the ground truth. The false alarm rate is around 4% and is thus also good.
Some images in data-set #3 have problems getting the heading of the swath
correct as in Fig.F.7 where 2(c) has a slightly wrong heading. This error was
attributed to limited resolution this far out meaning that there was not enough
texture information to classify reliably on this specific swath. There was a spike
on image #17 in data-set #4. This was due to an ambiguity in the image where
the classifier chose a solution slightly to the left of the hand labeled image to
compensate for a large lump of swath lying off centre relative to the rest of the
swath. This is shown in Fig.F.9.

A false positive could potentially be triggered by a patch of grass or ground that
has a shape that reasonably looks like a swath. Such objects were not present
in the available dataset.

F.5.6.1 Texture Versus 3D

A comparison between the measured lateral and angular deviation of the swath
position relative to the vehicle for the 3D and texture algorithms is shown in
Fig. F.10. Clearly, the two follow each other closely. It is interesting to note
that the two algorithms complement each other in that sudden drops in the
match score seldom occur in both at the same time. The match score was on
average higher for the texture method than for the 3D method in this sequence.
This may be different from swath to swath depending upon how high it is and

F.5 Texture Classification 203

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
70

75

80

85

90

95

100

Image #

P
er

ce
nt

Datasets − Detection Rate

Set. 1
Set. 2
Set. 3
Set. 4
Set. 5

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
0

2

4

6

8

10

12

Image #

P
er

ce
nt

Datasets − False Alarms

Set. 1
Set. 2
Set. 3
Set. 4
Set. 5

Figure F.8: Classification and false alarm rate for the tested sequences.

204 P a p e r F

Figure F.9: This is the worst match in the used datasets according to the scoring
scheme where the algorithm follows a lump of swath slightly to the left of the
rest of the swath. Image #17 in dataset #4.

how slanted the edges are. Towards the end of the sequence (around frame
1500) the 3D method started to have problems detecting a height difference on
a very flat section of swath, but the texture method continued driving to the
end.

F.6 Mapping

The mapping system relies on recent research for high-precision positioning using
VO fused with GPS (see [66]). By tracking image features between images, the
change in pose of the camera can be estimated. This is done by computing
changes in position between image frames. GPS provides global correction so
drift in the VO subsystem can be avoided. This fused position estimate is used
to maintain a map of the position of the swath.

The swath map is modeled as a Taylor series expansion of a clothoid [123]:

y(x) = y0 + tan(φ)x + C0
x2

2
(F.8)

Where y0 is the lateral offset between the vehicle and the swath centre, φ is the
angle of the swath relative to the vehicle. C0 is the curvature of the swath.

F.6 Mapping 205

0 500 1000 1500 2000
−100

−50

0

50

100
Lateral Deviation

frame

cm

3D
Texture

0 500 1000 1500 2000
−30

−20

−10

0

10

20
Angular Deviation

frame

de
gr

ee
s

3D
Texture

0 500 1000 1500 2000
0

0.2

0.4

0.6

0.8
Match Score

frame

3D
Texture

Figure F.10: Results for 1800 frames of video. The measured lateral and angular
deviation of the swath relative to the vehicle plotted for both 3D and texture.
The match score is shown for the two algorithms. There was no swath inside
the field of view between frames 950-1100, 1270-1380, 1600-1800.

206 P a p e r F

Figure F.11: The swath is modeled as a clothoid, illustrated here with blue lines
and extrapolated beyond the field of view.

Estimating the curvature from a single image can be difficult. This is due to the
natural variance of the swath position and width. To estimate the curvature
requires a larger ”field of view” such as that provided by this mapping system
(Fig. F.11).

For each tracked image the centre point of the swath for each line in the image
is extracted. These centre points are stored as a long list. When a new image
is tracked, old centre points from the list which are inside the field of view are
deleted and the new points added. The clothoid parameters are then estimated
using least-squares on the point list. The map only extends from the camera
field of view back to the pickup on the baler. Since the baler picks the swath
up it does not make sense to keep track of a larger map.

F.7 Supervision and fault-tolerance 207

F.7 Supervision and fault-tolerance

Two supervision systems are run concurrently in the software. The first operates
solely on position sensor information and is based on the work described in [18]
and is thus not repeated here (Positioning Supervision in Fig.F.2). The second
is concerned with supervising the trained texture classifier (Texture Supervision
in Fig.F.2).

To make sure the trained texture classifier is not faulty, a supervision system
has been setup to validate it. This is done by evaluating the performance of
the classifier relative to the 3D classifier over a number of frames. Change
detection theory is then applied to determine if the texture classifier has similar
tracking output. Two residuals are formed: one for the lateral and one for
the angular deviations. These are calculated as the differences between the
measured outputs of the 3D and texture based classifiers.

Statistical change detection will ideally be based on a log likelihood ratio test:

si = ln
pθ1

(ri)

pθ0
(ri)

)) (F.9)

where the probability densities from the observed distributions should be used,
pθ1

for the case of a fault, pθ0
for the normal case, respectively. A residual

sample is denoted ri.

The implemented change detection algorithm uses the standard CUSUM algo-
rithm, see e.g. [15], to detect a change in mean between samples:

S(k) =
k∑

i=1

ln
pθ1

(ri)

pθ0
(ri)

(F.10)

Histograms of the residuals were analysed for cases with and without faults.
These are shown in Fig.F.12. By inspection, faults appears to be given by a shift
in the mean of the residuals ri. For the CUSUM detector, only a change in mean
need be considered and the residuals are assumed Gaussian. A change in mean
of 20 cm and 5 ◦ are used to reject a trained texture classifier. The variance is
estimated to be σ2 = 88.0 cm2 and σ2 = 16.5 ◦2 respectively. A sample window
of N = 20 (roughly 2 seconds) was used to calculate the cumulative sum with
tests for both a positive and negative change in mean. A fault flag was triggered
if this value exceeds γ = 5 for the lateral fault, and γ = 2 for the angular fault.

208 P a p e r F

For a change in mean of A = 20 cm over the sample window it corresponds to

detecting a change in mean between N (0, σ2

N
) and N (A, σ2

N
). The probability

of a false alarm PFA and the probability of detection PD is then given by [56]:

PFA = Q(
γ

√

σ2/N
) = 0.0086 (F.11)

PD = Q(
γ −A
√

σ2/N
) = 1.0000 (F.12)

Where Q is the right-tail probability. For the angular deviation, similar results
can be obtained: PFA = 0.0138, PD = 0.9995. This gives a good detection rate
while also assuring a reasonably low false alarm rate.

The residuals checks are run concurrently with the rest of the system and can be
seen in Fig.F.13 for the run in Fig.F.16. The maximum value is shown at each
time step for both positive and negative changes in mean (denoted by g(k)).
In this run two faults are detected. Only the second fault is detected by both
residuals.

Individual match scores for the two classifiers are first thresholded based on
their match score. If they are both accepted, they are passed to the supervision
system. If no faults are detected, the results are fused by taking a weighted mean
of the lateral and angular deviations (based on the match scores). If a fault is
detected, the texture classifier information is not added to the map. Mapping
provides intelligent filtering of the classifier outputs so jumps are not experienced
when switching between the information used. The approach outlined gave good
fault-tolerance against artifacts in the image processing.

F.8 Control

A tracking control system to collect the swath is shown in the block diagram
in Fig. F.14. The control system remains active as long as the match score is
above a predefined threshold and there is map information ahead of the vehicle
such that a reference track can be computed. The control system has a variable
offset that is calculated to ensure the bale chamber is filled evenly. If the bale
chamber is unevenly filled then the bale becomes cone shaped. Pressure sensors
inside the baler provide a measure of how evenly it is filled. The bale must have

F.8 Control 209

−20 −15 −10 −5 0 5 10 15
0

0.02

0.04

0.06

0.08

0.1

0.12
Angular Deviation (no fault)

degrees
−15 −10 −5 0 5 10
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14
Angular Deviation (faulty)

degrees

−60 −50 −40 −30 −20 −10 0 10 20 30
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035
Lateral Deviation (no fault)

cm
−60 −50 −40 −30 −20 −10 0 10
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07
Lateral Deviation (faulty)

cm

Figure F.12: Normalised histograms for residuals with and without faults. The
histograms are shown with fitted Gaussian probability density functions.

210 P a p e r F

0 500 1000 1500 2000
−2

−1

0

1

2

3

4
Fault Detection (Angular Fault)

g(
k)

frame

0 500 1000 1500 2000
−4

−2

0

2

4

6

8
Fault Detection (Lateral Fault)

g(
k)

frame

Figure F.13: Fault detection in angular and lateral deviations using a CUSUM
change detector. The thick line defines the threshold for a fault.

F.8 Control 211

Figure F.14: Block diagram of tracking control for baling. An inner loop pro-
vides cone correction of the bale, an outer loop uses the swath tracking vision
system as tracking error.

a certain size before the pressure sensors give usable feedback. To compensate
for this lack of feedback the controller has two states. In the initial state where
pressure has not yet built up an open-loop steering pattern is followed where the
vehicle changes between being positioned on the left edge of the swath and then
the right edge of the swath. This motion is parameterised as how far out this
edge is relative to the centre of the swath; how long it should follow an edge,
and how sharply it should change sides. The steering system changes mode
when the bale size reaches a minimal level and sensor feedbacks can be used.
The sensor feedback provides a signal in the range −1 to 1 indicating how cone
shaped the bale is. An adequately amplified version of this signal is added to
the measured lateral offset. The swath parameters y0, φ, C0 are finally fed to
the tracking controller.

F.8.1 Results

Results for the system operating live are provided in Fig.F.16. The results
span a period of about 800 s and involves creating 7 bales. The system steers

212 P a p e r F

Figure F.15: The open-loop zig-zag motion of the vehicle is here clearly illus-
trated by the red line. The vehicle in turn drives on the left edge of the swath
and then on the right edge.

autonomously. There were 3 drops in the match score which were where the
swath ended in the headland and manual steering was required to bring the
vehicle to the next length of swath. During the turning periods the lateral
deviation measurements were ignored. The match scores shown have been
normalised from 0 − 1. The vehicle needed to stop when ejecting a finished
bale, which can be observed from the velocity plot. Similar results have been
obtained at speeds up to 20km/h, which was the legal restriction for maximal
speed of the autonomous vehicle.

F.9 Conclusion

The results presented in this paper showed that textures present in outdoor agri-
cultural environments can be learnt and tracked robustly. 3D data provided
by the stereo camera facilitated such learning. Geometric shape constraints
allowed an initial sorting of false positives from a swath from analysis of width,
position, and orientation. Supervision provided further detection of faults by
comparing the learnt model to 3D tracking. Future work for the texture classi-
fier will involve eliminating the need for online learning and thus make it more

F.9 Conclusion 213

100 200 300 400 500 600 700 800 900 1000
−200

−100

0

100

200

cm

Lateral Deviation VS Bale Pressure

Scaled Pressure Difference
Swath Lateral Deviation

100 200 300 400 500 600 700 800 900 1000
0

50

100

150

200
Bale Diameter

cm

100 200 300 400 500 600 700 800 900 1000
0

0.2

0.4

0.6

0.8

1
Match Score

100 200 300 400 500 600 700 800 900 1000
0

1

2

3
Velocity

m
/s

time (s)

Figure F.16: Results for a 13 minute run where 7 bales are created. The con-
troller is using the feedback signal from the baler.

214 P a p e r F

capable to perform independently of 3D data.

The mapping component allowed additional parameters such as the swath cur-
vature to be tracked and increased robustness of the overall system. Extensive
tests demonstrated the system to work online on an autonomous vehicle on a
variety of swath.

P a p e r G

Stochastic Automata with
Optimal Signal Quantisation
for Classification of Outdoor

Environments

Fabio Caponetti, Morten Rufus Blas and Mogens Blanke. Stochastic Automata
with Optimal Signal Quantisation for Classification of Outdoor Environments.
Control Engineering Practice, 2009. Submitted.1

1This work was supported by The Danish Food Industry Agency under contract 3412-06-
01729.

216 P a p e r G

Abstract:
A stochastic automaton is introduced for the purpose of classifying different
types of environments of a mobile robot. Perception uncertainties are man-
aged by applying a probabilistic model to quantised signals. An automaton
models the spatial relationships between environments and is in turn used for
classification. Quantisation is designed based on cumulative probability densi-
ties of sensor signals for particular environments. Learning algorithms provide
automatic tuning of the modeling and quantisation process to assure a low
level of misclassification by the automaton. Data recorded on an autonomous
agricultural robot are used to compare the proposed quantisation method and
automata-based classification against other state-of-the-art classification tech-
niques. Considering methods that can assess the confidence of classification, an
essential feature for use in supervision, the new method is shown to compare
very favourably to those existing. The states of the stochastic automaton are
shown to be intuitively linked with behaviour modeling and with the optimal
signal quantisation, the method provides fast learning and very good saleability.
The classification ability in the natural test environment is close to the best of
comparable algorithms.

G.1 Introduction

The ability to classify is a fundamental requirement for robots to be able to
perform a large range of tasks autonomously. Classification is a subproblem
in robotic perception. Robot systems are typically composed of modules for
perception, planning, and control. For many applications, perception is usually
the weakest link. Thus it is very important to come up with robust methods for
amongst other things recognising objects and scenes.

What makes perception difficult is that it often involves high dimensional data
such as those coming from a video stream. Sensor signals may often be noisy
and have a number of shortcomings in terms of accuracy and range. The classi-
fication problem in turn involves classifying objects with very high complexity
that can be difficult to model.

Robotic research has turned to learning algorithms to automatically create such
models from sensor data. Basic statistics is typically extracted from sensor data
and fed into learning algorithms. Currently, these statistics have to be designed
by hand and act as a first step in reducing the dimensionality of the input data.
Learning is often supervised using hand-labeled training data. An issue here

G.2 Background and Related Research 217

is that training data can only be a small subset of all expected variation. A
system that is to recognise a tree would, as example, only train on a subset of
different trees recorded from a subset of different sensor positions relative to the
tree. A learning algorithm must hence be good at generalising about objects.
With high dimensionality on a limited set of training data, it means that the
data will generally be very sparse which in turn makes it hard to generalise.
Dimensionality reduction is a way of generalising. Dimensionality reduction is
also necessary to make classification problems tractable to compute.

This paper demonstrates a novel method of applying stochastic automata to the
task of classification. Data recorded from an autonomous agricultural robot is
used as the basis for classifying different types of environments that the robot
frequents. The states of the automata are modeled a-priori and represent the
different environment types. The state transitions model how the different en-
vironment types are connected and provide a topological map of environments.

A stochastic automaton extends the notion of non deterministic discrete-event
systems in such a way that the frequency of occurrence of the different events can
be addressed. Perception and structure uncertainties are managed using quan-
tised signal spaces [79] and by modeling the spacial relations between semantic
places with probabilities. Quantisers for continuous perception signals will be
designed in order to maximise the classification capability of the automaton.

Fig. G.1 illustrates modeling of the environment with a stochastic automaton.
The real valued input and output are quantised and fed to the model. Through
abstraction, the model is tuned to fit the current environment. Knowing the
current discrete input and output, the current state probability is estimated
through an observation algorithm. Having the state estimate, the robot plan
execution can be supervised, controllers be redefined or the localisation process
can be boosted while assuring high levels of safety and reliability.

G.2 Background and Related Research

State-of-art for environment classification include methods like Support Vector
Machines (SVM), Adaboost classifiers and Gaussian mixture emitting Hidden
Markov Model (GHMM) [142].

SVM is a general class of supervised learning techniques based on statistical
learning theory used for classification and regression problems.

Adaboost is a boosting technique which linearly combine simple weak classifiers

218 P a p e r G

Figure G.1: Modeling the environment by a stochastic automaton with quan-
tised input and an observer to estimate state probability

G.2 Background and Related Research 219

on the basis of the classification performances on a training set. Such classifiers
have been used previously by [94] to classify indoor places. Several approaches
were proposed in the literature to improve performance by taking advantage of
object recognition [99] and probabilistic environment models [95].

A GHMM consists of a discrete time and discrete space Markov process that
contains some hidden parameters and emits observable outputs [107]. A GHMM
is built for each possible state by using labeled observations to train the Gaussian
mixtures characterising the emissions.

A finite state machine was used to detect and classify film scenes, [143]. Struc-
tural information of the scenes together with low and mid-level features were
used to classify the scenes for a better content retrieval. Such approach is here
extended and ported to the problem of classification and diagnosis of the be-
haviour of an autonomous mobile robotic system.

G.2.1 Stochastic automaton

The supervised system is modeled as a discrete-event system subject to input
with tailored output. The states in which the model evolves are the locations
in which the hybrid system works. The dynamic behaviour of the model is
described by changes in the discrete signals values, referred to as events. The
system’s discrete input, state and output are denoted by v,z and w. Their
discrete value sets are enumerated as,

Input: v ∈ Nv ⊂ Q, Nv = {1, 2, . . . ,M} ,
State: z ∈ Nz ⊂ Q, Nz = {1, 2, . . . , N} ,

Output: w ∈ Nw ⊂ Q, Nw = {1, 2, . . . , R} .

Using the notation of [118], an initialised stochastic automaton is described by
the five− tuple:

S = (Nz,Nv,Nw, L, P (zk)) (G.1)

L is the behavioural function, the law that governs the stochastic process un-
derlying the automaton and is defined as,

L : Nz ×Nw ×Nz ×Nv → [0, 1] ⊂ R

L(z′, w, z, v) = P (zk+1 = z′, wk = w|zk = z, vk = v) .

220 P a p e r G

G.2.2 Classification

Being able to classify the environment state using the available information is
equivalent to solve an observation problem for the stochastic automaton.

Given an input and output sequence and an initialised automaton S, the so-
lution to the observation problem is obtained by determining the conditional
probability distribution [118],

P (zk|k) = P (zk|V (0...k),W (0...k)). (G.2)

The solution of the observation problem is given by the set of all the states zk to
which the automaton may move with non zero probability while accepting the
input sequence and generating the output sequence specified. The a-posterior
state probability distribution can be evaluated on-line by iterative application
of a predict and correct schema discussed in [118, 15].

G.2.3 Quantisation of the signal spaces

Through quantisation the real-valued signals can be fed to the automaton. Let
x(t), R → R be continuous. A quantiser splits the signal space R into a finite
number of disjoint sets Qx(ξ) where ξ ∈ Nx ⊂ Q. With Qx(ξ) denoting the
set of values in x associated with the quantised value ξ, the quantiser function
reads, in terms of intervals,

Qx(ξ) = (xlow
ξ , xup

ξ], ξ ∈ Nx = {1, . . . , Nx} (G.3)

where xlow
ξ and xup

ξ are the lower and upper bound of the quantisation respec-
tively.

The index ξ of the partition Qx(ξ) to which the current value of x belongs,
represents the qualitative level of the signal. [118] points out that such levels can
be chosen arbitrarily since no grounded methods are given. In this work, a more
concrete procedure driven by examples will be exploited to define discretisation
levels.

Let x ⊂ R be a generic continuous signal sampled in the time with uniform fre-
quency. N samples are drawn independently from the acquired signal to define
the subset γ = {xi, i = 1...N}. Each sample is associated to the corresponding
class z to define the training data (xi, θi), i = 1, . . . , N .

Since all xi are independent and identically-distributed samples of a random
variable, the probability density function f̂(ρ) can be estimated by kernel density

G.2 Background and Related Research 221

estimation, [101].

f̂(ρ) ≈ 1

Nh

N∑

i=1

K(
ρ− xi

h
), (G.4)

where K is a kernel function, N is the number of samples and h is a smoothing
parameter. Given a Gaussian kernel in the form of Eq. G.5, the value of h can
be chosen to maximise the reconstruction performance ([21]),

K(ϕ) =
1

2π
e−

1

2
ϕ2

. (G.5)

Given the approximated probability density function the cumulative density
function F̂ (x) is,

F̂ (x) =

x∫

−inf

f̂(ρ)dρ ≈
x∑

ρ=−inf

f̂(ρ). (G.6)

Defining
γz = {(xj , θj); ∀j : θj = z} (G.7)

as the subset of samples related to the state z, it is possible to use the above
results to estimate F̂ (x|θ = z), for each z ∈ Nz. Fig. G.2 shows the results of
the procedure when applied to a synthetic dataset.

To simplify the notation, define

F̂ (x)z = F̂ ((xj , θj); ∀j : θj = z), z ∈ Nz .

Reverting to classification, the quantiser defined in Eq. G.3 can be interpreted
as a linear machine, which splits the continuous time signal x into segments. A
simple classifier would select the state by looking at the discrete level in which
the signal falls. The probability that the robot is in state z while observing a
discrete output equal to ξ is,

P (z|Qx(ξ)) =
P (Qx(ξ)|z)P (z)

∑

ζ∈Nz

P (Qx(ξ)|ζ)P (ζ)
. (G.8)

Rewriting Eq. G.8 using Eq. G.3,

P (θ = z|xlow
ξ < x ≤ xup

ξ)

=
P (xlow

ξ < x ≤ xup
ξ |θ = z)P (θ = z)

∑

ζ∈Nz

P (xlow
ξ < x ≤ xup

ξ |θ = ζ)P (θ = ζ)
.

222 P a p e r G

0 5 10 15 20
0

10

20

30

40

50

60

70

80

90

Signal 1

P
ro

ba
bi

lit
y

di
st

rib
ut

io
n

State 2
State 1
State 3

(a)

0 5 10 15
0

10

20

30

40

50

60

70

Signal 2

P
ro

ba
bi

lit
y

di
st

rib
ut

io
n

State 2
State 1
State 3

(b)

0 5 10 15 20
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Signal 1

P
ro

ba
bi

lit
y

de
ns

ity
 fu

nc
tio

n

State 1
State 2
State 3

(c)

0 5 10 15
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Signal 2

P
ro

ba
bi

lit
y

de
ns

ity
 fu

nc
tio

n

State 1
State 2
State 3

(d)

Figure G.2: Synthetic dataset composed of two signals generated by three differ-
ent models. (a)(b) Two continuous independent signals are uniformly sampled
and grouped in states according to a hand-labeled classification. (c)(d) State
conditioned probability distribution estimated via kernel density estimation

Further, from Eq. G.8, the conditional probability is a function of the condi-
tional cumulative density function,

P (Qx(ξ)|θ = z) = P (xlow
ξ < x ≤ xup

ξ |θ = z) = F̂ (xup
ξ)z − F̂ (xlow

ξ)z.

Hence,

P (z|Qx(ξ)) =
P (Qx(ξ)|z)P (z)

∑

ζ∈Nz

P (Qx(ξ)|ζ)P (ζ)

=

(

F̂ (xup
ξ)z − F̂ (xlow

ξ)z

)

P (z)
∑

ζ∈Nz

(

F̂ (xup
ξ)ζ − F̂ (xlow

ξ)ζ

)

P (ζ)
. (G.9)

Eq. G.9 describes the probability that the system is in the semantic state z while
the continuous signal x is contained in the quantised level ξ. This information

G.2 Background and Related Research 223

is used to define the quantisation levels by maximising the probability that the
robot is in a state z while x ∈ Qx(ξ) and minimising the number of levels ξ,
(|Nx|).

min
|Nx|

max
Qx(ξ)

P (z|Qx(ξ)) , ξ ∈ Nx, z ∈ Nz. (G.10)

Non informative intervals, with low discriminative performance are merged with
the confining interval.

An approximation is used for the problem in Eq. G.10. Since the variability
space of continuous variables could not be known exactly, the quantisation levels
are defined in the probability space. Since the space is delimited to the set
[0, 1] ⊂ R it is possible to cover the whole space:

{pj}, pj ∈ [0, 1] ⊂ R; j = 1, . . . , Np

For each pj a value in the signal space can be found from the state conditional
cumulative density function. An algorithm to find initial estimates of the quan-
tisation levels is,

∀ pj find xj such that F̂ (xj)z = pj, z ∈ Nz

X = {xi : F̂ (xi)z = pj , ∀z ∈ Nz, j = 1...Np, i = 1...Nx}

Fig. G.2.3 visually explains the procedure for one signal in Fig. G.2.

Supposing the model composed by N states, X contains Nx = N ·Np points.

By sorting X , the initial quantisation intervals are defined as:

Qx(1) =(−∞, x1]

Qx(2) =(x1, x2]

...

Qx(ξ) =(xi, xi+1], ξ ∈ Nx (G.11)

...

Qx(Nx) =(xNx
, ∞)

Each quantisation level ξ ∈ Nx is associated to the state z for which the following
condition holds,

max
z
P (θξ = z|Qx(ξ)). (G.12)

224 P a p e r G

0 2 4 6 8 10 12

0.1

0.3

0.5

0.7

0.9

State 1 conditioned cdf

Signal 1

C
um

ul
at

iv
e

de
ns

ity
 fu

nc
tio

n

0 5 10 15 20

0.1

0.3

0.5

0.7

0.9

State 2 conditioned cdf

Signal 1

C
um

ul
at

iv
e

de
ns

ity
 fu

nc
tio

n

0 2 4 6 8 10

0.1

0.3

0.5

0.7

0.9

State 3 conditioned cdf

Signal 1

C
um

ul
at

iv
e

de
ns

ity
 fu

nc
tio

n

︸ ︷︷ ︸

0 5 10 15 20

0.1

0.3

0.5

0.7

0.9

State conditioned cdf

Signal 1

C
um

ul
at

iv
e

de
ns

ity
 fu

nc
tio

n

State 1
State 2
State 3

Figure G.3: The probability space is uniformly sampled between 0.1 and 0.9
with step 0.1. For each level, the corresponding signal value is mapped on the
state conditional cumulative distribution function.

Two quantisers, Qx(ξ) and Qx(ξ + 1) are merged if:

P (θξ+1 = θξ|Qx(ξ + 1)) ≥ P (θξ+1 = ζ|Qx(ξ + 1)), ζ 6= θξ, ∀ζ ∈ Nx, (G.13)

The conditional probability of the resulting merged quantisation interval is re-
evaluated before being compared to the succeeding interval Qx(ξ + 2). By this
procedure the number of levels decreases drastically while fulfilling Eq. G.12,
as shown in Fig. G.4 for the example dataset.

G.2.4 Model abstraction

The estimation of the behavioural relation for each transition can be done using
the abstraction algorithm reported in [15]. From a hand-classified dataset the
transition probability is approximated by frequency count. For large sample
sizes not all state transition for all the possible input/output couples are found,
yielding to L(z′, w|z, f, v) = 0 even if the transition z → z′ is feasible for the
real system.

To overcome these limitations, the same proportion of training points were se-

G.3 Case study 225

0 5 10 15 20
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Signal 1

P
ro

ba
bi

lit
y

de
ns

ity
 fu

nc
tio

n

State 1
State 2
State 3

Qx(1) Qx(2) Qx(3)

0 5 10 15
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Signal 2

P
ro

ba
bi

lit
y

de
ns

ity
 fu

nc
tio

n

State 1
State 2
State 3

Qx(1) Qx(2) Qx(3)

Figure G.4: Estimated discretisation levels resulting by the application of the
proposed procedure on the synthetic data. The initial quantisation levels esti-
mated shown in Fig. G.2.3 is reduced by the application of Eq. G.13.

lected for each state while a bias in the state transition matrix is added for
transitions that might not be represented in the sample sequence but physically
feasible.

G.3 Case study

The data used in this section has been recorded during autonomous operations of
a tractor in an experimental orchard owned by Copenhagen University visible in
Fig. G.5 in summer time. Typical operations performed by the tractor includes
spraying and mowing and are executed according to a task plan.

The tractor is a standard orchard tractor that has been retrofitted with addi-
tional sensors and computing power [39]. For environment classification a stereo
camera and a laser scanner are used as sensor input.

G.3.1 States and Perception

A state is an environment type that the tractor should be able to recognise. For
the orchard it has been chosen to model four different types of environments.

226 P a p e r G

Figure G.5: A typical tour covers the track shown in the image as GPS route
on Google Earth background. 1. Open field (Road) 2. Headland 3. Dense trees
4. Sparse trees

To each state is associated the set of allowed actions which the tractor is allowed
to execute. Referring to Fig. G.5 and G.6 the states are:

1. Open field Few obstacles in view and freely traversable space in the field
of view, i.e. a road or a low vegetation field.

2. Headland Defines the start/end of the orchard area. It is usually delimited
by fences, markers or open space.

3. Dense trees The distance between trees limits sensibly the field of view
and the manoeuvring possibilities.

4. Sparse trees Sparse vegetation, manoeuvres constrained to the layout of
the plants.

The perception system is designed to provide a compact set of signals that can
discriminate between the semantic environments.

The signals from the perception system have been setup to detect: (a) The
amount of visible ground. (b) Space occupied by obstacles. (c) Linear features
such as fences. (d) Estimation of free space around the tractor. (e) Vegetation
permeability.

It is important to note that visible ground plane and the space occupied by
obstacles are not mutually exclusive. In the 3D data it is possible to observe

G.3 Case study 227

(1) (2)

(3) (4)

Figure G.6: Pictures from the left stereo-camera for the orchard semantic places
in summer time. These images show the resolution available from the sensor.
1. Open field 2. Headland 3. Dense trees 4. Sparse trees

large amounts of ground while observing obstacles. For example sparse trees do
not prevent observing the ground plane even if the crown of the trees form large
obstacles in view.

G.3.1.1 Signal ygp: Visible Ground plane

The approach for extracting ground plane is similar to [66]. Given a 3D point
cloud a RANSAC technique [32] is used to construct ground plane hypotheses.
This is done by: (a) choosing three non-collinear points at random from the point
cloud; (b) constructing a plane estimate from the three points; (c) ranking the
plane estimates based on number of inliers.

A 2D grid map is then constructed. The set of grid cells that get assigned to the
ground plane can then be summed to give the amount of ground plane visible.

Let the found ground plane be written in the Hessian normal form of a plane
with unit normal vector n̂ and distance p along the line. Let P be the set
of points in the point cloud considered. If a point falls within a grid cell cxy,
defined by a quantisation interval Qxy, Eq. G.3 and its distance to the plane is

228 P a p e r G

Figure G.7: A graphical representation of the perception output. Blue trans-
parency shows obstacles. Red transparency shows ground plane. The laser
measurements are overlaid as red dots

less than Dmax then the cell belongs to the ground. For x ∈ P ,

cx,y =
∣
∣
{
x
∣
∣ xx ∈ Qxy ∧ n̂ · x + p < Dmax

}∣
∣ > 0

ygp =

n1∑

x=n0

m1∑

y=m0

cx,y. (G.14)

G.3.1.2 Signal yfs: Laser free space

The free space observed by the laser is taken as the area spanned by the mea-
surements. Given two adjacent range measurements si, si+1 i = 1, . . . a triangle
is formed and its area can be easily evaluated using the Heron’s formula,

di = ||li − li+1||2,

si =
li + li+1 + di

2
,

Ai =
√

si(s− li)(s− li+1)(s− di).

Having a single laser scan, by summing the area of each triangle defined by
adjacent readings, an estimate of the free space is,

yfs =

nl−1∑

i=0

Ai. (G.15)

G.3 Case study 229

G.3.1.3 Signal yo: Obstacles

(a) (b)

(c)

(d) (e)

Figure G.8: Images illustrating the information used in detecting obstacles from
stereo and laser. (a) Red overlay of ground plane detection. (b) Red shows laser
range measurements. (c) Blue overlay of detected obstacles. Red shows position
of detected wall segment. (d) Top-down view from 3D stereo points and laser
that was used for obstacle detection. (e) Top-down view from 3D stereo points
and laser. Red line shows detected wall segment

An obstacle signal yo is constructed by creating a 3D grid map. Each point from
the stereo and laser are projected into a grid map. A grid cell is then labeled
as occupied if a stereo point or laser point lands in.

A 3D grid cell cxyz is given the value of 1 if a point falls inside the cell and its

230 P a p e r G

height above the ground plane is larger than Dmax. The number of occupied
grid cells is then counted and used as a measure of the amount of obstacles seen
from the pose,

cxyz =
∣
∣
{
x
∣
∣ x ∈ Qxyz ∧ n̂ · x + p ≥ Dmax

}∣
∣ > 0

yo =

n1∑

x=n0

m1∑

y=m0

k1∑

z=k0

cxyz. (G.16)

G.3.1.4 Signal yls: Linear structures

This signal detects the presence of linear structures in the environment such as
walls, fences, or hedges. The 3D grid map of obstacles is collapsed into a 2D
grid map, gxy, on the ground plane by summing the number of occupied cells
along the vertical component, see Fig. G.8. A RANSAC line-fitting algorithm
is then run on the 2D grid map to extract the strongest line.

gx,y =

k1∑

z=k0

cx,y,z.

A function l(a, b) returns the grid cells that intersect with the line parametrised
by a and b,

l (a, b) = {j |j ∈ gx,y , jy = ajx + b} .
The RANSAC algorithm finally attempts to maximise the sum of grid cells that
intersect with the line,

yls = max
a,b

|w|
∑

i=1

l (a, b) . (G.17)

G.3.1.5 Signal yvp: Vegetation permeability

Considering a region of interest, the local spatial laser range distribution can be
captured by the principal components of the spatial covariance matrix [70]. By
means of singular value decomposition the covariance matrix can be decomposed
into principal components ordered by decreasing eigenvalues. In case of no
dominant direction it is likely to be tree foliage, a wall or structured obstacles
otherwise. A maximum likelihood strategy for point wise classification is used
to distinguish between hypothesis that a point belongs to a tree and the null
hypothesis [22]. The vegetation is modeled according to a Gaussian Mixture
Model fitted by expectation maximisation.

G.3 Case study 231

G.3.2 Model design

The stochastic automata is composed by N = 4 states,

Nz = {Open field, Headland, Dense trees, Sparse trees} = {1, 2, 3, 4}.

The signals used by the robot to construct the semantic map are divided in two
sets with respect to the automaton: input u ∈ Rm and output y ∈ Rr.

G.3.2.1 Discrete-valued input

Inputs are used to model signals that influence the behaviour of the automaton.
In the case study, robot motion was the only input considered u = [um], hence
Nv = {moving, stand still} = {1, 2}. In order to not allow state transitions
when the tractor is not moving.

G.3.2.2 Discrete-valued output

The perception system consists of a vector

y = [ygp, yfs, yls, yo, yvp]

of continuous signals. The procedure introduced in section G.2.3 is here used to
design quantisators for the experimental data. The γ set of Eq. G.7 is populated
by randomly picking samples from a training set. Fig. G.9 shows the estimated
conditional probability functions for the experimental data sampled as training
set.

Through application of Eq. G.4 the state conditioned probability distribution
function can be estimated. Fig. G.9 shows the computed thresholds (vertical
dotted lines) obtained by applying the quantisation technique proposed to the
estimated distribution functions.

Perceptual aliasing is recognisable in the probability space as an overlap of the
distribution curves. The problem is handled by creating a unique quantisation
level for the interested region. The automaton, through the observer has the
duty to overcome to the problem by combining all the signals with the state
transition model.

Each quantisation level is associated to an integer code ξ ∈ Q.

232 P a p e r G

20 40 60 80 100
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

Laser free space

P
ro

ba
bi

lit
y

de
ns

ity
 fu

nc
tio

n

OpenField
Headland
DenseTrees
SparseTrees

(a)

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Obstacles

P
ro

ba
bi

lit
y

de
ns

ity
 fu

nc
tio

n

OpenField
Headland
DenseTrees
SparseTrees

(b)

0 10 20 30 40 50 60 70 80
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

Visible ground plane

P
ro

ba
bi

lit
y

de
ns

ity
 fu

nc
tio

n

OpenField
Headland
DenseTrees
SparseTrees

(c)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
0

1

2

3

4

5

6

Linear structures

P
ro

ba
bi

lit
y

de
ns

ity
 fu

nc
tio

n

OpenField
Headland
DenseTrees
SparseTrees

(d)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

2

4

6

8

10

12

14

16

18

20

Vegetation permeability

P
ro

ba
bi

lit
y

de
ns

ity
 fu

nc
tio

n

OpenField
Headland
DenseTrees
SparseTrees

(e)

Figure G.9: Refined quantisation levels over the state conditional probability
density function. The quantisation levels are individuated as vertical dotted
lines whereas the conditional PDFs are coded among the states as colours (red
= open field, blue = headland, green = dense trees, magenta = sparse trees).
(a) Laser free space (b) Obstacles (c) Visible ground space (d) Linear structures
(e) Vegetation permeability

G.3 Case study 233

G.3.3 Results

The validation dataset was recorded during a run which covered the track shown
in picture G.5. The path first passed through an apple orchard (dense trees),
then followed the back fence (headland) to a pear orchard (sparse trees), the
path returned along the wine, crossed over behind some nut-trees and took the
back route home to the garage.

The run was made in summer time to catch one extreme of the natural scenario.
Full grown foliage, bushes and grown tree branches hanging increase the vari-
ability of each semantic state. To stress more the robustness of the methods,
humans were moving or standing in the perception field of view during the trip.

The automata Matlab implementation was compared to open source library
implementations of SVM, Adaboost and GHMM.

Four standard SVM kernel types were used during the experiments: linear,
polynomial (degree 3), radial basis function (RBF), and sigmoid. Kernel pa-
rameters were fine tuned by an iterative procedure, which finds the best set
using the training data. The package LIBSVM [23] was used for SVM learning
and classification.

The upper bound for maximum number of Adaboost weak classifiers was set to
10. The implementation used was based on Matlab using tree stumps as weak
classifiers.

The Bayes Net Toolbox for Matlab was been used to produce the results pre-
sented regarding the GHMM.

To produce and compare the results among different methods a K-fold cross
validation procedure was performed. The data collected was split by random
sampling inK disjoint sets. K−1 sets were then merged and used as the training
base for the classifiers while the remaining data were used as a testbed. In this
case, the data collected was composed by 2281 synchronised laser and vision
observations. Due to the lack of a large amount of data, K was chosen equal to
2. In this way the generalisation capabilities together with the robustness could
be stressed by using half of the available dataset for training and half for test.
The features described in section G.3.1 were extracted from the raw data.

The performances were evaluated by collecting the classification results from 5
independent runs of the 2-fold validation. In figure G.10 the aggregated classi-
fication performances are shown.

234 P a p e r G

Aut Lin Pol Rbf Sig Adb Ghmm
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.84 0.84 0.90 0.90 0.84 0.84 0.85

Figure G.10: Correct classification rate for the different approaches considered.
The performances were evaluated by collecting the results from 5 runs of a 2-
fold cross validation process (Both training and validation were done using two
disjoint sets of 1141 samples of 5 features). The standard deviation of the results
has been represented as a error line on top of each bar.

In the automaton all the state transitions were allowed to make the comparison
fair with the other methods. In addition to the classification rates the confusion
matrices of each method has been evaluated and shown in figure G.3.3.

Polynomial and RBF kernel based SVMs show the best classification rate. The
GHMM shows the worse performance and is due to singularity problems which
can be observed from the classification rate variance. All the methods have
problems distinguishing state 1 and 4. Sparse orchards, are characterised by
spaced trees, letting either stereovision and laser perceive only few obstacles.
Missing trees in sparse orchard are then labeled as open areas. The automata
shows similar performance to the other state-of-art methods even though it
employs quantised signals. This shows that the information loss in quantising
the signals is minimal. The design of the raw signals has been made in order
to have as much as possible independent signals. This is further demonstrated
by the fact that the automata can achieve the same performances as the other
methods. The advantage of working with quantised signals is that it simplifies
the classification problem by reducing the amount of data that goes in.

In Fig. G.3.3 the timings for both training and classification are shown for each
method. The SVM clearly requires the longest training time and shows the

G.4 Conclusion 235

worst scalability. This is due to the fact that the signals are not bounded which
the used implementation has problems in handling.

For the classification times the GHMMs are the slowest. The SVMs again seems
to scale the worst. The linear SVM is faster than the automata but the confusion
matrix shows the worst performance in terms of discrimination.

Adaboost performs remarkably well for both training and classification timings.
However the output of Adaboost does not give information about the confidence
of the estimate. This makes the method unsuitable for supervision and diagnosis
tasks where low confidence estimates should not trigger false alarms.

The automata trains faster than SVM and classifies faster than the GHMMs.
It shows good scalability properties and outputs a confidence estimate unlike
Adaboost. Automata based classifiers are easy to implement compared to the
other methods, which makes them suitable for robotic hardware.

G.4 Conclusion

The paper presented a novel approach to classifying outdoor environments by
means of a stochastic automaton. A main advantage of the automata compared
to other classification methods was a straightforward inclusion of how the dy-
namical system evolves over time, in the case study, the tractor motion in the
orchard and the spatial connection of environments. Spurious observations were
effectively dealt with in the updating method for state belief but had a penalty
in the form of of lower adherence to the ground truth during transitions. This
behaviour could be fine-tuned according to the needs of a particular use of the
algorithm.

A case study with an autonomous vehicle in an orchard was used to assess the
properties of the automata-based diagnosis with optimised signal quantisation.
A comparison with state-of-the-art classifiers were made on the same data. Re-
sults showed that the automata trains faster than SVM and classifies faster
than the GHMMs. The automata approach shows good scalability properties
and outputs a confidence estimate, an essential feature to avoid false alerts from
low-confidence hypothesis results. Automata based classifiers were shown to be
easy to implement compared to the other methods, and were found suitable for
implementation in robotic environments with hard real-time requirements.

The method used to optimise quantisation is general and could well apply it to
other classification problems.

236 P a p e r G

G.5 Acknowledgements

The support from the Danish Ministry of Food Agriculture and Fisheries, under
contract 3412-06-01729 is gratefully acknowledged. Our colleagues Dr. J.C.
Andersen from the Technical University of Denmark, Dr. H-W.Griepentrog and
Mr. J. Resting-Jeppesen, both from Copenhagen University, Department of Life
Sciences, are gratefully acknowledged for access to equipment and data. Hako
Werke is acknowledged for providing the tractor used for orchard experiments.

G.5 Acknowledgements 237

0.19

0.02

0.00

0.06

0.06

0.93

0.02

0.01

0.03

0.04

0.97

0.01

0.71

0.01

0.00

0.92

T
ru

e
cl

as
s

Linear SVM
1 2 3 4

1

2

3

4

0.52

0.03

0.00

0.04

0.06

0.95

0.01

0.01

0.03

0.02

0.98

0.01

0.40

0.01

0.00

0.94

T
ru

e
cl

as
s

Polynomial SVM
1 2 3 4

1

2

3

4

0.54

0.03

0.00

0.05

0.05

0.96

0.02

0.00

0.02

0.01

0.98

0.01

0.39

0.00

0.00

0.94

T
ru

e
cl

as
s

RBF SVM
1 2 3 4

1

2

3

4

0.16

0.03

0.00

0.03

0.07

0.92

0.03

0.02

0.03

0.04

0.97

0.01

0.74

0.01

0.01

0.94

T
ru

e
cl

as
s

Sigmoid SVM
1 2 3 4

1

2

3

4

0.22

0.00

0.00

0.03

0.09

0.97

0.08

0.05

0.09

0.03

0.91

0.00

0.60

0.00

0.01

0.91

T
ru

e
cl

as
s

Adaboost
1 2 3 4

1

2

3

4

0.80

0.13

0.00

0.00

0.13

0.87

0.20

0.10

0.00

0.00

0.70

0.00

0.07

0.00

0.10

0.90

T
ru

e
cl

as
s

GHMM
1 2 3 4

1

2

3

4

0.35

0.02

0.01

0.02

0.04

0.88

0.03

0.03

0.04

0.05

0.93

0.01

0.58

0.05

0.03

0.94

T
ru

e
cl

as
s

Automata
1 2 3 4

1

2

3

4

Figure G.11: Mean confusion matrices collected evaluating the performances
from 5 trials of a 2-fold cross validation validation. The darker is the square the
higher is the related classification probability. All the methods have problems
to distinguish open field and sparse trees due to the strong perception aliasing
which characterise the states.

238 P a p e r G

5 10 15
0

50

100

150

200

Number of features

T
ra

in
in

g
tim

e
[s

]

SVM−Linear
SVM−RBF
SVM−SIG
Automaton
AdaBoost
HMM

5 10 15
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Number of features

C
la

ss
ifi

ca
tio

n
tim

e
[s

]

SVM−Linear
SVM−RBF
SVM−SIG
Automaton
AdaBoost
HMM

Figure G.12: Comparison of training and classification time for evaluated meth-
ods. The test dataset is composed of 1141 samples with 5 features per sample.
For 10 and 15 features the existing 5 features have been replicated 2 and 3 times
in order to see how the algorithms scale.

Bibliography

[1] Motilal Agrawal and Kurt Konolige. Real-time localization in outdoor
environments using stereo vision and inexpensive gps. In ICPR, August
2006.

[2] Motilal Agrawal and Kurt Konolige. Rough terrain visual odometry. In
Proc. International Conference on Advanced Robotics (ICAR), August
2007.

[3] Motilal Agrawal, Kurt Konolige, and Morten Rufus Blas. Censure: Center
surround extremas for realtime feature detection and matching. Lecture
Notes in Computer Science (including subseries Lecture Notes in Artifi-
cial Intelligence and Lecture Notes in Bioinformatics), 5305 LNCS(PART
4):102–115, 2008.

[4] H. J. Andersen, T. Bak, and M. Christensen. Fusion of gps and visual
motion estimates for robust outdoor open field localization. Second Inter-
national Conference on Computer Vision Theory and Applications, VIS-
APP. INSTICC., pages 413–418, 2007.

[5] A. Angelova, L. Matthies, D. Helmick, and Pietro Perona. Slip prediction
using visual information. RSS, 2006.

[6] A. Angelova, L. Matthies, D. Helmick, G. Sibley, and P. Perona. Learning
to predict slip for ground robots. In ICRA, pages 3324–3331, 2006.

[7] Anelia Angelova, Larry Matthies, Daniel Helmick, and Pietro Perona.
Learning and prediction of slip from visual information. J. of Field
Robotics, 24(3):205–231, 2007.

240 BIBLIOGRAPHY

[8] Tijmen Bakker, Hendrik Wouters, Kees van Asselt, Jan Bontsema, Lie
Tang, Joachim Müller, and Gerrit van Straten. Original paper: A vision
based row detection system for sugar beet. Comput. Electron. Agric.,
60(1):87–95, 2008.

[9] M. Basseville and I. Nikiforov. Detection of abrupt changes: Theory and
applications. Prentice-Hall, 1993.

[10] R.E. Bellman. Dynamic Programming. Princeton University Press, Prince-
ton, New Jersey, 1957.

[11] M.G. Bello. A combined markov random field and wave-packet transform-
based approach for image segmentation. IEEE Trans. Image Process, 3
6:834–846, 1994.

[12] P. Bellutta, R. Manduchi, L. Matthies, K. Owens, and A. Rankin. Terrain
perception for DEMO III. In Proc. of the IEEE Intelligent Vehicles Symp.,
2000.

[13] M. Blanke. Fault-tolerant sensor fusion for marine navigation. Proc. 7th
IFAC Conf. on Manoeuvring and Control of Marine Craft, Elsevier IFAC,
sep 2006.

[14] M. Blanke, R. Izadi-Zamanabadi, S. A. Bøgh, and C. P. Lunau. Fault-
tolerant control systems - a holistic view. Control Engineering Practice,
5(5):693–702, 1997.

[15] M. Blanke, M. Kinnaert, J. Lunze, and M. Staroswiecki. Diagnosis and
Fault-Tolerant Control 2nd Edition. Springer, 2006.

[16] M. Blanke and T. Lorentzen. Satool - a software tool for structural analysis
of complex automation systems. 6th IFAC Symposium on Fault Detection,
Supervision and Safety of Technical Processes, pages 673–678, 2006.

[17] M. R. Blas, M. Agrawal, K. Konolige, and A. Sundaresan. Fast
color/texture segmentation for outdoor robots. In IROS, 2008.

[18] M. R. Blas and M. Blanke. Natural environment modeling and fault-
diagnosis for automated agricultural vehicle. In Proceedings 17th IFAC
World Congress, Seoul, Korea, pages 1590–1595, 2008.

[19] B.E. Boser, I.M. Guyon, and V.N. Vapnik. A training algorithm for op-
timal margin classifiers. Proceedings of the Fifth Annual ACM Workshop
on Computational Learning Theory, pages 144–152, 1992.

[20] A.C. Bovik, M. Clark, and W.S. Geisler. Multichannel texture analysis
using localized spatial filters. IEEE Trans. Pattern Analysis and Machine
Intelligence, 12 1:55–73, 1990.

BIBLIOGRAPHY 241

[21] A. W. Bowman and A. Azzalini. Applied Smoothing Techniques for Data
Analysis. Oxford University Press, 1997.

[22] F. Caponetti and M. Blanke. Combining stochastic automata and clas-
sification techniques for supervision and safe orchard navigation. In 7th
IFAC Symposium on Fault Detection, Supervision and Safety of Technical
Processes, 2009.

[23] Chih-Chung Chang and Chih-Jen Lin. LIBSVM: a library
for support vector machines, 2001. Software available at
http://www.csie.ntu.edu.tw/~cjlin/libsvm.

[24] T. Coen, A. Vanrenterghem, W. Saeys, and J. De Baerdemaeker. Au-
topilot for a combine harvester. Comput. Electron. Agric., 63(1):57–64,
2008.

[25] Corinna Cortes and Vladimir Vapnik. Support-vector networks. In Ma-
chine Learning, pages 273–297, 1995.

[26] Hendrik Dahlkamp, Adrian Kaehler, David Stavens, Sebastian Thrun,
and Gary R. Bradski. Self-supervised monocular road detection in desert
terrain. In Robotics: Science and Systems, 2006.

[27] D. Demirdjian and T. Darrell. Motion estimation from disparity images.
In Proc. of the Intl. Conf. on Computer Vision, volume 1, pages 213–218,
2001.

[28] R.O. Duda and P.E. Hart. Pattern Classification and Scene Analysis.
Wiley, 1973.

[29] Chris Engels, Henrik Stewénius, and David Nister. Bundle adjustment
rules. Photogrammetric Computer Vision, September 2006.

[30] Jay Farrell. Aided Navigation: GPS with High Rate Sensors. McGraw-
Hill, Inc., New York, NY, USA, 2008.

[31] D. Fernandez and A. Price. Visual detection and tracking of poorly struc-
tured dirt roads. In 12th International Conference on Advanced Robotics,
2005, pages 553–560, 18-20 July 2005.

[32] M. Fischler and R. Bolles. Random sample consensus: a paradigm for
model fitting with application to image analysis and automated cartogra-
phy. Commun. ACM., 24:381–395, 1981.

[33] T. I. Fossen. Marine Control Systems. Marine Cybernetics, 2002.

[34] D. Fox, W. Burgard, and S. Thrun. The dynamic window approach to
collision avoidance. IEEE Robotics and Automation Magazine, 4(1):23–33,
1997.

http://www.csie.ntu.edu.tw/~cjlin/libsvm

242 BIBLIOGRAPHY

[35] Y. Freund and R. E. Schapire. A decision-theoretic generalization of on-
line learning and an application to boosting. J. of Computer and System
Sciences, 55(1):119–139, 1997.

[36] A. A. Goshtasby. 2-D and 3-D Image Registration: for Medical, Remote
Sensing, and Industrial Applications. Wiley, 2005.

[37] M. Grabner, H. Grabner, and H. Bischof. Fast approximated SIFT. In
Proc. ACCV, volume 1, pages 918–927, 2006.

[38] P. E. Greenwood and M. S. Nikulin. A Guide to Chi-Squared Testing.
Wiley, New York, NY, 1996.

[39] H. W. Griepentrog, N. A. Andersen, J.C. Andersen, M. Blanke, O. Heine-
mann, T.E. Madsen, S.M. Pedersen, O. Ravn, and D. Wulfsohn. Safe
and reliable - further development of a field robot. In Proc. 7th Eu-
ropean Conference on Precision Agriculture (ECPA), Wageningen, July
2009. Academic Publishers.

[40] J. Guivant, E. Nebot, and S. Baiker. High accuracy navigation using laser
range sensors in outdoor applications. In ICRA, pages 3817–3822, 2000.

[41] J. Gutmann and K. Konolige. Incremental mapping of large cyclic en-
vironments. In Proc. IEEE International Symposium on Computational
Intelligence in Robotics and Automation (CIRA), pages 318–325, Mon-
terey, California, November 1999.

[42] Raia Hadsell, Pierre Sermanet, Jan Ben, Ayse Erkan, Marco Scoffier, Ko-
ray Kavukcuoglu, Urs Muller, and Yann LeCun. Learning long-range
vision for autonomous off-road driving. J. Field Robot., 26(2):120–144,
2009.

[43] M Happold, M Ollis, and N Johnson. Enhancing supervised terrain clas-
sification with predictive unsupervised learning. In Robotics: Science and
Systems Conference, 2006.

[44] R.M. Haralick, K. Shanmugan, and I. Dinstein. Textural features for
image classification. IEEE Trans. Syst., Man. Cybern., SMC-3 6:610–621,
1973.

[45] C. Harris and M. Stephens. A combined corner and edge detector. In
Alvey Vision Conference, pages 147–151, 1988.

[46] Tinne Tuytelaars Herbert Bay and Luc Van Gool. Surf: Speeded up robust
features. In European Conference on Computer Vision, May 2006.

[47] A. Howard. Real-time stereo visual odometry for autonomous ground
vehicles. In Proc. of the IEEE/RSJ Intl. Conf. on Intelligent Robots and
Systems (IROS), September 2008.

BIBLIOGRAPHY 243

[48] Thomas Howard, Colin Green, and Alonzo Kelly. State space sampling of
feasible motions for high performance mobile robot navigation in highly
constrained environments. In Proc. of the Intl. Conf. on Field and Service
Robotics, July 2007.

[49] K. Iagnemma, F. Genot, and S. Dubowsky. Rapid physics-based rough-
terrain rover planning with sensor and control uncertainty. In ICRA, 1999.

[50] A.K. Jain and R.C. Dubes. Algorithms for Clustering Data. Prentice-Hall,
1988.

[51] A.K. Jain and F. Farrokhnia. Unsupervised texture segmentation using
gabor filters. Pattern Recognition, 24 12:1167–1186, 1991.

[52] Jian Jin and Lie Tang. Corn plant sensing using real-time stereo vision.
J. Field Robot., 26(6-7):591–608, 2009.

[53] A. E. Johnson, S. B. Goldberg, Yang Cheng, and L. H. Matthies. Robust
and efficient stereo feature tracking for visual odometry. In ICRA, pages
39–46, May 2008.

[54] T. Kailath. The divergence and Bhattacharyya distance measures in signal
selection. IEEE Transac. on Communication Technology, 15(1):52–60,
1967.

[55] T. Kanungo, D. Mount, N. Netanyahu, C. Piatko, R. Silverman, and
A. Wu. An efficient k-means clustering algorithm: analysis and implemen-
tation. IEEE Transactions on Pattern Analysis and Machine Intelligence,
24(7):881–892, 2002.

[56] Steven M. Kay. Fundamentals of Statistical Signal Processing, Volume 2.
Prentice Hall, 1998.

[57] Alonzo Kelly. A feedforward control approach to the local navigation
problem for autonomous vehicles. Technical Report CMU-RI-TR-94-17,
Robotics Institute, Carnegie Mellon University, Pittsburgh, PA, May 1994.

[58] C. Kervrann and F. Heitz. A markov random field model-based approach
to unsupervised texture segmentation using local and global spatial statis-
tics. IEEE Trans. Image Process, 4 6:856–862, 1995.

[59] Uwe Kiencke and Lars Nielsen. Automotive Control Systems: For Engine,
Driveline and Vehicle. Springer-Verlag New York, Inc., Secaucus, NJ,
USA, 2000.

[60] R. Kimmel and J. A. Sethian. Computing Geodesic Paths on Manifolds.
Proc. of the National Academy of Science, 95:8431–8435, July 1998.

244 BIBLIOGRAPHY

[61] M. Kise and Q. Zhang. Creating a panoramic field image using multi-
spectral stereovision system. Comput. Electron. Agric., 60(1):67–75, 2008.

[62] M. Kise, Q. Zhang, and F. Rovira-Más. A stereovision-based crop row de-
tection method for tractor-automated guidance. Biosystems Engineering,
pages 357–367, 2005.

[63] K. Konolige. A gradient method for realtime robot control. In IROS,
2000.

[64] K. Konolige and M. Agrawal. Frameslam: From bundle adjustment to
real-time visual mapping. IEEE Transactions on Robotics, 24(5):1066–
1077, 2008.

[65] Kurt Konolige. Small vision systems: hardware and implementation. In
Eighth International Symposium on Robotics Research, pages 111–116,
1997.

[66] Kurt Konolige, Motilal Agrawal, Morten Rufus Blas, Robert C. Bolles,
Brian Gerkey, Joan Solà, and Aravind Sundaresan. Mapping, navigation,
and learning for off-road traversal. J. Field Robot., 26(1):88–113, 2009.

[67] Kurt Konolige, Motilal Agrawal, and Joan Solà. Large scale visual odom-
etry for rough terrain. In Proc. International Symposium on Robotics
Research, page To appear, November 2007.

[68] Kurt Konolige and David Beymer. SVS Reference
Manual. Technical report, SRI International, 2007.
http://www.videredesign.com/docs/smallv4.4d.pdf; accessed
July, 2007.

[69] S. Kullback and R. A. Leibler. On information and sufficiency. Annals of
Mathematical Statistics, 22:49–86, 1951.

[70] J.F. Lalonde, N. Vandapel, D.F. Huber, and M. Hebert. Natural terrain
classification using three dimensional ladar data for ground robot mobility.
Journal of field robotics, 23(10):839–861, October 2006.

[71] J. Latombe. Robot Motion Planning. Kluwer Academic Publishers, Nor-
well, Massachusetts, 1991.

[72] Steve LaValle. Planning Algorithms. Cambridge University Press, New
York, New York, 2006.

[73] J. J. Leonard and P. Newman. Consistent, convergent, and constant-time
slam. In IJCAI, 2003.

[74] T. Leung and J. Malik. Representing and recognizing the visual appear-
ance of materials using three-dimensional textons. IJCV, 43 (1), 2001.

http://www.videredesign.com/docs/smallv4.4d.pdf

BIBLIOGRAPHY 245

[75] S. Liapis, E. Sifakis, and G. Tziritas. Color and/or texture segmentation
using deterministic relaxation and fast marching algorithms. Journal of
Visual Communication and Image Representation, 15:1–26, 2004.

[76] R. Lienhart and J. Maydt. An extended set of haar-like features for rapid
object detection. In IEEE Conference on Image Processing (ICIP), 2002.

[77] T. Lindeberg. Feature detection with automatic scale selection. Interna-
tional Journal of Computer Vision, 30(2), 1998.

[78] David G. Lowe. Distinctive image features from scale-invariant keypoints.
International Journal of Computer Vision, 60(2):91–110, 2004.

[79] J. Lunze. Diagnosis of quantised systems. Fault Detection, Supervision
and Safety for Technical Processes 2000, 1(1):29–40, June 2001.

[80] K. Madsen, H. B. Nielsen, and O. Tingleff. Methods for non-linear least
squares problems (2nd ed.), 2004.

[81] T. Mäenpää and M. Pietikäinen. Texture analysis with local binary pat-
terns. In C.H. Chen and P.S.P. Wang, editors, Handbook of Pattern Recog-
nition and Computer Vision, 3rd Edition, pages 197–216. World Scientific,
2005.

[82] Mark Maimone, Yang Cheng, and Larry Matthies. Two years of visual
odometry on the mars exploration rovers. J. of Field Robotics, 24(3):169–
186, March 2007.

[83] B.S. Manjunath and R. Chellappa. Unsupervised texture segmentation
using markov random field models. IEEE Trans. Pattern Analysis and
Machine Intelligence, 13 5:478–482, 1991.

[84] D.R. Martin, C.C. Fowlkes, and J. Malik. Learning to detect natural
image boundaries using local brightness, color, and texture cues. IEEE
Trans. Pattern Analysis and Machine Intelligence, 26, 2004.

[85] J. Martin-Herrero, M. Ferreiro-Arman, and J.L. Alba-Castro. Grading
textured surfaces with automated soft clustering in a supervised som.
Proceedings International Conference on Image Analysis and Recognition
(ICIAR), pages 323–330, 2004.

[86] Larry Matthies, Mark Maimone, Andrew Johnson, Yang Cheng, Reg Will-
son, Carlos Villalpando, Steve Goldberg, Andres Huertas, Andrew Stein,
and Anelia Angelova. Computer vision on mars. Intl. J. of Computer
Vision, 75(1):67–92, 2007.

[87] K. Matusita. A distance and related statistics in multivariate analysis. In
P. R. Krishnaiah, editor, Multivariate Analysis, pages 187–200. Academic
Press, 1966.

246 BIBLIOGRAPHY

[88] K. Mikolajczyk and C. Schmid. Indexing based on scale invariant interest
points. In International Conference on Computer Vision (ICCV), 2001.

[89] K. Mikolajczyk and C. Schmid. An affine invariant interest point detector.
In European Conference on Computer Vision (ECCV), 2002.

[90] K. Mikolajczyk, T. Tuytelaars, C. Schmid, A. Zisserman, J. Matas,
F. Schaffalitzky, T. Kadir, and L. Van Gool. A comparison of affine region
detectors. IJCV, pages 43–72, 2005.

[91] M. Montemerlo and S. Thrun. Large-scale robotic 3-d mapping of urban
structures. In ISER, 2004.

[92] H. Moravec and A. Elfes. High resolution maps for wide angles sonar. In
ICRA, 1985.

[93] E. Mouragnon, M. Lhuillier, M. Dhome, F. Dekeyser, and P. Sayd. Real
time localization and 3d reconstruction. In CVPR, volume 1, pages 363 –
370, June 2006.

[94] O.M. Mozos, C. Stachniss, and W. Burgard. Supervised learning of places
from range data using adaboost. Proceedings of the 2005 IEEE, Interna-
tional Conference on Robotics and Automation, April 2005.

[95] Oscar MartÃnez Mozos, Patric Jensfelt, Hendrik Zender, Geert Jan Krui-
jff, and Wolfram Burgard. From labels to semantics: An integrated system
for conceptual spatial representations of indoor environments for mobile
robots. In Workshop ”Semantic information in robotics” at the IEEE
International Conference on Robotics and Automation, April 2007.

[96] David Nister. An efficient solution to the five-point relative pose problem.
IEEE PAMI, 26(6):756–770, June 2004.

[97] David Nister, Oleg Naroditsky, and James Bergen. Visual odometry for
ground vehicle applications. J. of Field Robotics, 23(1):3–20, January
2006.

[98] A. Nüchter, K. Lingemann, J. Hertzberg, and H. Surmann. 6d slam—
3d mapping outdoor environments: Research articles. J. Field Robot.,
24(8-9):699–722, 2007.

[99] Andreas Nuchter, Oliver Wulf, Kai Lingemann, Joachim Hertzberg,
Bernado Wagner, and Hartmut Surmann. 3d mapping with semantic
knowledge. RoboCup International Symposium, pages 335–346, 2005.

[100] Christine M. Onyango and John A. Marchant. Physics-based colour im-
age segmentation for scenes containing vegetation and soil. Image Vision
Comput., 19(8):523–538, 2001.

BIBLIOGRAPHY 247

[101] E. Parzen. On estimation of a probability density function and mode.
Ann. Math. Stat., 33:1065–1076, 1962.

[102] S. C. Pei and J. H. Horng. Design of FIR bilevel Laplacian-of-Gaussian
filter. Signal Processing, 82:677–691, 2002.

[103] R. Philippsen and R. Siegwart. An interpolated dynamic navigation func-
tion. In ICRA, 2005.

[104] M. Pollefeys, D. Nistér, J. M. Frahm, A. Akbarzadeh, P. Mordohai,
B. Clipp, C. Engels, D. Gallup, S. J. Kim, P. Merrell, C. Salmi, S. Sinha,
B. Talton, L. Wang, Q. Yang, H. Stewénius, R. Yang, G. Welch, and
H. Towles. Detailed real-time urban 3d reconstruction from video. Int. J.
Comput. Vision, 78(2-3):143–167, 2008.

[105] Ingmar Posner, Mark Cummins, and Paul Newman. A generative frame-
work for fast urban labeling using spatial and temporal context. Auton.
Robots, 26(2-3):153–170, 2009.

[106] Lawrence R. Rabiner. A tutorial on hidden markov models and selected
applications in speech recognition. Readings in speech recognition, pages
267–296, 1990.

[107] L.R. Rabiner. A tutorial on hidden markov models and selected applica-
tions in speech recognition. Proc. IEEE, 77(2):257–286, February 1989.

[108] A. Rankin, A. Huertas, and L. Matthies. Evaluation of stereo vision ob-
stacle detection algorithms for off-road autonomous navigation. In AUVSI
Symp. on Unmanned Systems, 2005.

[109] Edward Rosten and Tom Drummond. Fusing points and lines for high
performance tracking. In ICCV ’05: Proceedings of the Tenth IEEE Inter-
national Conference on Computer Vision, pages 1508–1515, Washington,
DC, USA, 2005. IEEE Computer Society.

[110] Edward Rosten and Tom Drummond. Machine learning for high-speed
corner detection. In European Conference on Computer Vision, volume 1,
2006.

[111] F. Rovira-Más and S. Han. Kalman filter for sensor fusion of gps and
machine vision. Technical report, 2006 ASABE Meeting Presentation -
Paper Number 063034, 2006.

[112] F. Rovira-Más, S. Han, J. Wei, and J. F. Reid. Autonomous guidance of a
corn harvester using stereo vision. Agricultural Engineering International:
the CIGR Ejournal., 9, 2007.

248 BIBLIOGRAPHY

[113] Francisco Rovira-Más, Shufeng Han, Jiantao Wei, and John F. Reid. Fuzzy
logic model for sensor fusion of machine vision and gps in autonomous
navigation. 2005 ASAE Annual Meeting, 051156, 2005.

[114] Yossi Rubner, Carlo Tomasi, and Leonidas J. Guibas. A metric for distri-
butions with applications to image databases. In ICCV ’98: Proceedings of
the Sixth International Conference on Computer Vision, page 59, Wash-
ington, DC, USA, 1998. IEEE Computer Society.

[115] R. B. Rusu, Z. C. Marton, N. B., M. Dolha, and M. Beetz. Towards 3d
point cloud based object maps for household environments. Robotics and
Autonomous Systems Journal, 2008.

[116] Radu Bogdan Rusu, Aravind Sundaresan, Benoit Morisset, Motilal
Agrawal, and Michael Beetz. Leaving flatland: Realtime 3d stereo se-
mantic reconstruction. In ICIRA ’08: Proceedings of the First Interna-
tional Conference on Intelligent Robotics and Applications, pages 921–932,
Berlin, Heidelberg, 2008. Springer-Verlag.

[117] T. Sato, M. Kanbara, N. Yokoya, and H. Takemura. Dense 3-d recon-
struction of an outdoor scene by hundreds-baseline stereo using a hand-
held video camera. In SMBV ’01: Proc. IEEE Workshop on Stereo and
Multi-Baseline Vision (SMBV’01), page 57, Washington, DC, USA, 2001.
IEEE Computer Society.

[118] Jochen Schroder. Modeling, state observation and diagnosis of quantised
systems. Number 282 in Lecture notes in control and information science.
Springer, 2003.

[119] Stephen Se, David Lowe, and Jim Little. Mobile robot localization and
mapping with uncertainty using scale-invariant visual landmarks. Inter-
national Journal of Robotic Research, 21:735–758, August 2002.

[120] J. Shi and C. Tomasi. Good features to track. In Proc. Computer Vision
and Pattern Recognition (CVPR), 1994.

[121] Dong Hun Shin and Sanjiv Singh. Path generation for robot vehicles
using composite clothoid segments. Technical Report CMU-RI-TR-90-31,
Robotics Institute, Pittsburgh, PA, December 1990.

[122] N. Soquet, D. Aubert, and N. Hautiere. Road segmentation supervised by
an extended v-disparity algorithm for autonomous navigation. In Proc.
IEEE Intelligent Vehicles Symposium, pages 160–165, 13-15 June 2007.

[123] B. Southall and C. J. Taylor. Stochastic road shape estimation. Computer
Vision, IEEE International Conference on, 1:205, 2001.

BIBLIOGRAPHY 249

[124] D. J. Spero and R. A. Jarvis. 3D vision for large-scale outdoor environ-
ments. In Proc. of the Australasian Conf. on Robotics and Automation
(ACRA), 2002.

[125] M. Staroswiecki and G. Comet-Varga. Analytical redundancy relations for
fault detection and isolation in algebraic dynamic systems. Automatica,
37(5):687–699, 2001.

[126] M. Staroswiecki and P. Declerck. Analytical redundancy in nonlinear
interconnected systems by means of structural analysis. In Proc. IFAC
AIPAC’89 Symposium., volume 2, pages 23–27. Elsevier - IFAC, 1989.

[127] A. Stentz. Optimal and efficient path planning for partially-known envi-
ronments. In ICRA, volume 4, pages 3310–3317, 1994.

[128] N. Sunderhauf, K. Konolige, S. Lacroix, and P. Protzel. Visual odometry
using sparse bundle adjustment on an autonomous outdoor vehicle. In
Tagungsband Autonome Mobile Systeme. Springer Verlag, 2005.

[129] Niko Sunderhauf and Peter Protzel. Towards using sparse bundle adjust-
ment for robust stereo odometry in outdoor terrain. Towards Autonomous
Robotic Systems TAROS06, pages 206–213, 2006.

[130] L. Tang, L. F. Tian, B. L. Stward, and J. F. Reid. Texture-based weed
classification using gabor wavelets and neural network for real-time selec-
tive herbicide application. In ASAE Paper No. 99-3036, 1999.

[131] Alberto Tellaeche, Xavier P. BurgosArtizzu, Gonzalo Pajares, Angela
Ribeiro, and Cesar Fernandez-Quintanilla. A new vision-based approach
to differential spraying in precision agriculture. Computers and Electronics
in Agriculture, 60(2):144–155, 2008.

[132] Sebastian Thrun, Mike Montemerlo, Hendrik Dahlkamp, David Stavens,
Andrei Aron, James Diebel, Philip Fong, John Gale, Morgan Halpenny,
Gabriel Hoffmann, Kenny Lau, Celia Oakley, Mark Palatucci, Vaughan
Pratt, Pascal Stang, Sven Strohband, Cedric Dupont, Lars-Erik Jen-
drossek, Christian Koelen, Charles Markey, Carlo Rummel, Joe van Niek-
erk, Eric Jensen, Philippe Alessandrini, Gary Bradski, Bob Davies, Scott
Ettinger, Adrian Kaehler, Ara Nefian, and Pamela Mahoney. Stanley:
The robot that won the darpa grand challenge. Journal of Field Robotics,
23(9):661–692, September 2006.

[133] E. Tola, V. Lepetit, and P. Fua. A fast local descriptor for dense match-
ing. 2008 IEEE Conference on Computer Vision and Pattern Recognition,
pages 1–8, 2008.

250 BIBLIOGRAPHY

[134] Engin Tola, Vincent Lepetit, and Pascal Fua. Daisy: An efficient dense
descriptor applied to wide baseline stereo. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 99(1), 5555.

[135] B. Triggs, P. F. McLauchlan, R. I. Hartley, and A. W. Fitzgibbon. Bun-
dle adjustment - a modern synthesis. In Vision Algorithms: Theory and
Practice, LNCS, pages 298–375. Springer Verlag, 2000.

[136] S. Tzafestas and K. Watanabe. Modern approaches to system/sensor fault
detection and diagnosis. Journal A., 31(4):42–57, 1990.

[137] S. Umeyama. Least-squares estimation of transformation parameters be-
tween two point patterns. IEEE Trans. Pattern Analysis and Machine
Intelligence, 13(4), April 1991.

[138] M. Unser. Texture classification and segmentation using wavelet frames.
IEEE Trans. Image Process., 4 11:1549–1560, 1995.

[139] M. Varma and A. Zisserman. Texture classification: Are filter banks
necessary? Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, 2:691–696, 2003.

[140] P. Viola and M. Jones. Robust real-time face detection. In ICCV01, 2001.

[141] M. D. Wheeler, Y. Sato, and K. Ikeuchi. Consensus surfaces for modeling
3d objects from multiple range images. In ICCV ’98: Proc. Sixth Int.
Conf. on Computer Vision, page 917, Washington, DC, USA, 1998.

[142] Denis F. Wolf and Gaurav S. Sukhatme. Semantic mapping using mobile
robots. IEEE Transactions on Robotics, 24(2):245–258, April 2008.

[143] Yun Zhai, Zeeshan Rasheed, and Mubarak Shah. A framework for seman-
tic classification of scenes using finite state machines. Lecture notes in
computer science, 3115:279–288, 2004.

[144] Jinyou Zhang and H.-H. Nagel. Texture-based segmentation of road im-
ages. In Proceedings of the Intelligent Vehicles ’94 Symposium, pages
260–265, October 1994.

www.elektro.dtu.dk
Department of Electrical Engineering
Automation and Control
Technical University of Denmark
Ørsteds Plads
Building 348
DK-2800 Kgs. Lyngby
Denmark
Tel: (+45) 45 25 38 00
Fax: (+45) 45 93 16 34
Email: info@elektro.dtu.dk

ISBN 978-87-92465-22-1

	forside
	MRB_phdthesis
	Summary
	Resumé
	Preface
	Dissemination of Results
	Acknowledgements
	1 Introduction
	1.1 Background
	1.2 Problem Formulation
	1.3 Stereo Vision Guidance
	1.4 Abbreviations

	2 Contributions
	2.1 Learning
	2.2 Visual Odometry
	2.3 Mapping
	2.4 Fault-tolerance

	3 Learning
	3.1 Related Work
	3.2 Learning Algorithms
	3.3 Learning Texture
	3.4 Learning Field Structures

	4 Visual Odometry
	4.1 Related Work
	4.2 Overview
	4.3 Feature Detection
	4.4 Feature Matching
	4.5 Motion Estimation
	4.6 Motion Refinement

	5 Mapping
	5.1 Related Work
	5.2 Frames of Reference
	5.3 Mapping Using Grid Maps
	5.4 Mapping Using Clothoids
	5.5 Mapping 3D Point Clouds

	6 Fault-Tolerance
	6.1 Related Work
	6.2 Behavioral Model
	6.3 Structural Analysis
	6.4 Design of Detectors

	7 Conclusion
	A Fast Color/Texture Segmentation For Outdoor Robots
	A.1 Introduction
	A.2 Algorithm Overview and Related Work
	A.3 Segmentation Algorithm
	A.4 Segmentation Results
	A.5 Application: Path Recognition
	A.6 Path Recognition Results
	A.7 Conclusions

	B CenSurE for Realtime Feature Detection and Matching
	B.1 Introduction
	B.2 Center Surround Extrema (CenSurE) Features
	B.3 Modified Upright SURF (MU-SURF) Descriptor
	B.4 Experimental Results
	B.5 Conclusion

	C Mapping, Navigation, and Learning for Off-Road Traversal
	C.1 Introduction
	C.2 Local map construction
	C.3 Constructing consistent global maps
	C.4 Planning
	C.5 Control
	C.6 Performance
	C.7 Conclusion

	D Fault-Tolerant 3D Mapping with Application to an Orchard Robot
	D.1 Introduction
	D.2 Stereo Processing
	D.3 Visual Odometry
	D.4 3D Model
	D.5 Point Filtering
	D.6 Results
	D.7 Conclusions

	E Natural Environment Modeling & Fault-Diagnosis for Automated Agricultural Vehicle
	E.1 Introduction
	E.2 Swath Model
	E.3 Behavior Models
	E.4 Structural Model
	E.5 Structural Analysis
	E.6 Field Tests
	E.7 Fault Handling
	E.8 Conclusion

	F Automatic Baling Using Stereo Vision and Texture Learning
	F.1 Introduction
	F.2 Related Work
	F.3 System Overview
	F.4 3D Classification
	F.5 Texture Classification
	F.6 Mapping
	F.7 Supervision and fault-tolerance
	F.8 Control
	F.9 Conclusion

	G Stochastic Automata with Optimal Signal Quantisation for Classification of Outdoor Environments
	G.1 Introduction
	G.2 Background and Related Research
	G.3 Case study
	G.4 Conclusion
	G.5 Acknowledgements

	Bibliography

	MRB_bagsideskabelon_80_a4

