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Abstract

Subclasses of linear inequalities where each inequality has at most two vari-
ables are popular in abstract interpretation and model checking, because they
strike a balance between what can be described and what can be efficiently
computed. This paper focuses on the TVPI class of inequalities, for which each
coefficient of each two variable inequality is unrestricted. An implied TVPI in-
equality can be generated from a pair of TVPI inequalities by eliminating a
given common variable (echoing resolution on clauses). This operation, called
result, can be applied to derive TVPI inequalities which are entailed (implied)
by a given TVPI system. The key operation on TVPI is calculating closure:
satisfiability can be observed from a closed system and a closed system also
simplifies the calculation of other operations. A closed system can be derived
by repeatedly applying the result operator. The process of adding a single TVPI
inequality to an already closed input TVPI system and then finding the closure
of this augmented system is called incremental closure. This too can be calcu-
lated by the repeated application of the result operator. This paper studies the
calculus defined by result, the structure of result derivations, and how deriva-
tions can be combined and controlled. A series of lemmata on derivations are
presented that, collectively, provide a pathway for synthesising an algorithm
for incremental closure. The complexity of the incremental closure algorithm is
analysed and found to be O((n2+m2) lg(m)), where n is the number of variables
and m the number of inequalities of the input TVPI system.
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1. Introduction

The study of how to eliminate a variable from a system of linear inequali-
ties dates back to at least Fourier’s 1824 work [15], that demonstrates that the
satisfiability of a system of inequalities can be established by successively elim-
inating variables until exactly one remains. This satisfiability argument is also
used by Nelson [34], who considers it in the special case that each inequality
has at most two variables, a satisfiability problem further considered by [7, 21].
Further restrictions to the class of linear inequalities have also been considered,
with Harvey [19] considering the integer satisfiability of systems of inequalities
with two variables per inequality where the coefficients are unit (that is, 0, 1 or
-1).

These unit two variables per inequality systems are also considered in the
context of program analysis, where they form the underlying system of inequali-
ties of the abstract domain of Octagons [33]. A number of classes of inequalities
have been used as the foundation of numeric abstract domains, including the
class of inequalities with at most two variables per inequality [40]. Note that
Octagons are a strict subclass of these inequalities.

This paper is concerned with systems of inequalities with two variables per
inequality (TVPI), and the addition of inequalities to the system. In particular
adding inequalities incrementally, that is, one at a time. The work is focused
on a normal form for systems of inequalities with two variables per inequality,
and how the normal form can be reached using a calculus of operations which
combines inequalities using a resolution-like operator, similar to the Fourier-
Motzkin elimination step. Key results in this work will show that the calculus
need only be applied in a restricted way in order to derive the inequalities
required for the normal form.

A system (set) in this normal form is called closed. Given a set of two or
fewer variables, the syntactic projection of a system onto these variables is the
subsystem (subset of the given system) consisting solely of those inequalities
whose variables are drawn entirely from the set. A system is closed when every
inequality with two or fewer variables that is entailed (implied) by the system
is also entailed by the syntactic projection of the system onto the variables of
the inequality being considered. For example, consider the system {x − y ≤
0, y − z ≤ 1}. This is not closed since the x − z ≤ 2 is entailed by the system,
but not by the subsystem of inequalities that contain only the variables x, z
(which is empty in this case). However, {x − y ≤ 0, y − z ≤ 1, x − z ≤ 1} is
closed, because the syntactic projection onto x, z is the subsystem {x− z ≤ 1}
which entails x− z ≤ 2.

To obtain a closed system, implied inequalities in each two variable projec-
tion need to be made explicit and inserted. To be closed, all the irredundant
inequalities in each one or two variable projection must be enumerated. Im-
plied inequalities can be found by eliminating a single common variable from a
pair of inequalities drawn from the system, or calculating a resultant of the two
inequalities, using the terminology of Nelson [34]. The resultant calculation is
here formalised (see Section 3) as the result operator. Control of the generation
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of these inequalities is not straightforward, as the following example illustrates.
Consider the system of inequalities I0 = {x − y ≤ 0, 2x − z ≤ 0}, which is
closed. Now consider augmenting the system with c0 = −x + z ≤ 0, and note
that I ′0 = I0 ∪ {c0} is not closed, since z − y ≤ 0 is entailed by I ′0, but not
included in it, nor entailed by the syntactic projection of I ′0 onto {z, y} (which
is empty). Using the result operation, implied inequalities can be derived. For
example, the result operation can be applied four times to give the following
derivation (the notation will be formally introduced in Section 3):

c0
−x+ z ≤ 0 x− y ≤ 0

z − y ≤ 0
x

2x− z ≤ 0

2x− y ≤ 0
z −x+ z ≤ 0

2z − y ≤ 0
x

2x− z ≤ 0

4x− y ≤ 0
z

The system is incrementally augmented with derived inequalities as follows.

I1 = I ′0 ∪ {z − y ≤ 0} I2 = I1 ∪ {2x− y ≤ 0}
I3 = I2 ∪ {2z − y ≤ 0} I4 = I3 ∪ {4x− y ≤ 0}

Observe that the syntactic projection of I ′0 onto {x, y} is x− y ≤ 0, which does
not entail 2x − y ≤ 0. Thus I ′0 is not closed. To address this, the syntactic
projection of I2 onto {x, y} is tightened. Again the syntactic projection of I2
onto {x, y} does not entail 4x− y ≤ 0, hence I2 is not closed. Therefore, again
the syntactic projection of I4 onto {x, y} is tightened. In this way, the syntactic
projection onto x, y can be tightened ad infinitum, hence a closed system is
never achieved. However, observe that

2x− z ≤ 0 −x+ z ≤ 0
x ≤ 0

z

If this were added to I ′0 then 2x − y ≤ 0 would be entailed by the syntactic
projection onto {x, y}, {x − y ≤ 0, x ≤ 0}, and its addition would not tighten
the system. In fact, the system I ′0 ∪ {z − y ≤ 0, x ≤ 0, z ≤ 0} is closed. Note
that the addition of new inequalities might well make some inequalities within
the system redundant.

This poses some questions as to how to derive a closed system. Which
inequalities should be combined using the result operator, and in what order
should this be done, so that a terminating procedure giving a closed system is
realised? In addition, are all the new inequalities necessary for a closed system
or its derivation? Can unnecessary inequalities be removed?

The work in this paper answers these questions by reasoning about the result
calculus. The answers then inform the construction of a polynomial algorithm
for incrementally closing a system of TVPI inequalities. This results in an al-
gorithm whose construction is principled, and whose results are justified rather
than merely aligning with a closed system for inexplicable reasons; the technical
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challenge is not formulating the algorithm, but understanding and demonstrat-
ing that it is correct.

In studying this problem, this paper makes the following contributions:

• formalisation of the result calculus and notions including syntactic projec-
tion, closure, filtering (removal of extraneous inequalities) and completion
(a combination of closure and filtering);

• the result calculus is treated as an object of study. A series of results are
presented on the rewriting of derivations of inequalities into derivations
where structural properties hold, demonstrating that only a certain class
of derivations need to be considered; these results stem from the desire to
make progress [41] on TVPI by advancing reasoning on TVPI systems;

• an algorithm is presented for inserting a new two (or fewer) variable in-
equality into a non-redundant planar system of inequalities, which results
in an updated system with no redundancy. This is lifted to systems of
TVPI inequalities and is used to define incremental completion;

• a complexity analysis of operations relating to incremental completion is
given. Incremental closure realised as incremental completion resides in
O((n2 +m2) lg(m)) time where n is the number of variables and m is the
number of inequalities in the system being augmented;

• the restriction of these results to the Octagon and Logahedra subclasses
of two variables per inequality systems is also considered. The complex-
ity of operations (in particular closure) on Octagons over rationals of this
specialisation matches that given in previous work [33] despite not relying
on the encoded matrix representation given there. This suggests that al-
ternative representations of Octagons, including compact representations,
are conceivable;

• the algorithm is implemented and the growth of incrementally closed sys-
tems is evaluated.

The rest of the paper is structured as follows: Section 2 places this paper in
the context of related work and Section 3 defines key concepts. Section 4 gives
the proof of the correctness of incremental closure (using completion). This
is followed by Section 5 that gives a discussion of the construction of the algo-
rithm together with analysis of its complexity, and Section 6 that experimentally
evaluates the algorithm. Section 7 concludes.

2. Context and Background

This section positions the current work in the context of previous work on re-
stricted classes of linear inequalities, how they arise and the problems addressed.
This work is motivated by applications in abstract interpretation (Section 2.4)
and model checking (Section 2.3).
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2.1. Satisfiability

Given a system S of m TVPI inequalities over a set of n variables X, a chosen
variable x ∈ X and an arbitrary constant c ∈ Q, it is possible to decide whether
the augmented system S ∪ {x = c} is satisfiable over Q in O(mn) time [1].
Strongly polynomial decision procedures for feasibility have been proposed for
TVPI systems [7], including one, founded on [1], which resides in O(mn2 lg(m))
[21]. The satisfiability problem for integer TVPI is NP-complete [26].

2.2. Linear Programming

Linear programming over TVPI has attracted interest because the dual prob-
lem is a generalised minimum-cost flow problem (flow with losses and gains)
[20]. A linear program over TVPI can be solved in O(m3n2 lg(m) lg(B)) time
[44] where B is an upper bound on the number of bits required to store the
absolute value of the largest (rational) coefficient of the TVPI system. The B
term implies the algorithm is not strongly polynomial. Integer TVPI linear pro-
gramming is NP-complete since satisfiability for integer TVPI is NP-complete
[26] (it also follows by encoding the vertex cover problem [17, Section 3.1.3]).

2.3. Model Checking

Pratt [35] observed that solving systems of TVPI inequalities of the restricted
form xi − xj ≤ c, where xi, xj ∈ X, can be solved in polynomial time. These
inequalities, called difference constraints, have gained traction in model checking
[11, 28], where they are deployed to bound the time difference [31] between event
i and event j. If X = {x0, . . . , xn−1} then an inequality xi − xj ≤ c can be
represented by storing c at the i, j entry of an n× n matrix, called a Difference
Bound Matrix (DBM). The absence of an upper bound on xi − xj is indicated
by an entry of ∞. A DBM thus gives a natural representation for differences,
and an all-pairs shortest path algorithm [14, 43] can determine satisfiability
in O(n3), whereas a single source shortest path algorithm [3] can determine
satisfiability in O(nm) time.

2.4. Abstract Interpretation

The class of TVPI inequalities where the coefficients are either -1, 0 or 1 is
called Octagons [33]. DBMs can be adapted to represent Octagons [33] and an
all-pairs shortest path algorithm used to determine satisfiability [33], including
over integers [2], in O(n3) time (based on the Floyd-Warshall all pairs shortest
path algorithm), or O(n2 lg n+mn) (based on Johnson’s algorithm [24], exploit-
ing a sparse representation). A single source algorithm has also been applied
to this satisfiability problem [27] yielding an O(nm) algorithm, work that has
been extended to check satisfiability incrementally in O(n lg(n) +m) [38].

Two important operations in abstract interpretation are join (least upper
bound) and projection (forget). These operators are deployed in concert in ab-
stract interpretation [8] to compute invariants that hold on every path through a
program, even when there are infinitely many. For Octagons, join computes the
least Octagon which includes two given Octagons; it is used to summarise the
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properties that hold on different branches of a program. Projection eliminates
a variable from an Octagon; it is used to discard information pertaining to a
variable of a program which goes out of scope. Closed systems of inequalities
provide a way to straightforwardly compute the join and projection operators.
The join of two closed systems can be computed pairwise, by considering each
two variable pair, and calculating the convex union of the two sets of inequalities
found by projecting each of the two input systems onto this pair. Similarly, join
and projection for closed TVPI systems can be calculated pairwise for closed
systems.

To illustrate, consider again I ′0 = {x−y ≤ 0, 2x−z ≤ 0,−x+z ≤ 0} (coloured
red in the first row of Figure 1) and recall that I ′′0 = I ′0∪{z−y ≤ 0, x ≤ 0, z ≤ 0}
is closed (coloured grey in the first row of Figure 1). Now consider in addition,
J ′0 = {x+ y ≤ 0, 2x− y ≤ 0, z ≤ −1, y+ z ≤ 0, z− y ≤ −1} (coloured red in the
second row of Figure 1) and observe that J ′′0 = J ′0 ∪ {x ≤ 0} is closed (coloured
grey in the second row of Figure 1). Observe that the third row of Figure 1
describes the TVPI system that encloses those of I ′′0 and J ′′0 . Moreover, this
system can be derived pairwise by computing the planar join (convex union)
of each two variable projection. That is, each projection on the final row of
Figure 1 is the convex union of the two projections on the preceeding rows.
Notice that without computing closure the pairwise convex union calculations
will not give the join of the two input systems; for example, without closure,
the convex union of the two {y, z} spaces is the whole {y, z} space.

Invariants can be inferred using general polyhedra [9], but there is much
interest in identifying subclasses of linear inequalities which balance the ex-
pressiveness of the invariants against computational tractability. As well as
Octagons and TVPI [40], other examples of these weakly relation domains in-
clude: differences (or zones) [32], pentagons [30], zonotopes [18], Logahedra [22],
octahedra [6], subpolyhedra [29], and linear template constraints [37].

A frequently occurring use-case in abstract interpretation is adding a single
constraint to system of constraints and then checking satisfiability, a problem
which is addressed herein for TVPI. This use-case arises when a TVPI descrip-
tion for the program state at one line is adjusted to obtain a TVPI description
for the next, possibly adding a series of TVPI inequalities to a given TVPI system
[33]. Incremental closure also arises when modelling machine arithmetic with
polyhedra [39] where integer wrapping is simulated by repeatedly partitioning a
space into two (by adding a single unary inequality), closing and then perform-
ing translation. Integer wrapping is applied whenever a guard is encountered
and since each encounter invokes incremental closure repeatedly, the faithful
modelling of machine arithmetic is predicated on the existence of an efficient
incremental closure algorithm.

2.5. Polyhedral Compilation

Polyhedral compilation [36] offers a formal way to understand loop optimisa-
tion for bounded iteration, where array indices are restricted to affine functions
on the loop variables (possibly augmented with symbolic constants). A depen-
dency graph is created with statements for nodes and edges which indicate a
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dependence between one statement that writes to an array element and another
that reads from an array. Each edge is decorated with a polyhedron, which
indicates how the array indices differ or overlap when the read of one statement
is reached after the write of another statement [12]. A transformation phase [10]
then follows, for example to minimise the overall latency [13], which amounts
to finding a partial order (a schedule) whose edges include those of the depen-
dency graph, which can be realised with code that satisfies given architectural
constraints. Although it appears intractable to compute a best schedule [25],
good schedules can be derived efficiently by approximating the polyhedra with
TVPI inequalities, so as to provide a way of scaling polyhedral compilation [42].

3. Preliminaries

The study commences with the class of two variables per inequality con-
straints [34, 40] that is defined over a given set of variables X:

Definition 1. TVPIX = {ax+ by ≤ e | x, y ∈ X ∧ a, b, e ∈ Q}

Suppose X = {u, x, y, z}. Note that TVPIX includes unary constraints, such
as 2x ≤ 3, by setting, say, b = 0. It also contains constant constraints such
as 0 ≤ 0 and 0 ≤ −1 which abbreviate to true and false respectively. This
class of inequalities possesses the property that TVPIX is closed under variable
elimination. That is, eliminating variables from some S ⊆ TVPIX results in
a system of inequalities S′ ⊆ TVPIX . For example, the variable y can be
eliminated from the system S = {x−2y ≤ 5, 3y+z ≤ 7, 5y−u ≤ 0} by combining
pairs of inequality with opposing signs for y. This yields the projection S′ =
{3x+ 2z ≤ 29,−2u+ 5x ≤ 25}, which is indeed a system of TVPIX inequalities.

Observe that c ∈ TVPIX can be represented in several ways. For example the
inequality 2x+4y ≤ 2 might also be represented by x+2y ≤ 1. This leads to the
concept of semantic equivalence. Denote by c ≡ c′ that one inequality is merely
a multiple of the other. This will be used when naming inequalities, for example,
c ≡ x−2y ≤ 3 or c1 ≡ a1x+b1y ≤ e1. More generally, equivalence is formulated
in terms of the entailment relation. Given two systems S, S′ ⊆ TVPIX , S entails
S′, denoted S |= S′, if any assignment that satisfies S also satisfies S′ (where
an assignment is assumed to be a mapping from X to Q). For instance, S |= S′

where S = {x − 2y ≤ 7, y ≤ −2} and S′ = {x ≤ 4} since every assignment
to x and y that satisfies S also satisfies S′. The converse is not true since the
assignment {x 7→ 4, y 7→ 3} satisfies S′ but not S. Equivalence is defined as
S ≡ S′ iff S |= S′ and S′ |= S. The entailment of a single inequality c by system
S will be denoted S |= c. For notational convenience this paper implicitly
assumes that an inequality is a representative of an equivalence class and might
be multiplied through by any positive constant.

The set of variables that occur in c is denoted vars(c) and is defined:
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Definition 2.

vars(ax+ by ≤ e) =


∅ if x = y ∧ a = −b
∅ else if a = b = 0
{y} else if a = 0
{x} else if b = 0
{x, y} otherwise

The set vars(c) contains either 2, 1 or 0 variables defining whether c is binary,
unary or constant. This is then lifted to sets of inequalities, so as vars(S∪{c}) =
vars(S) ∪ vars(c). For example, in the example at the start of this section,
vars(S) = X.

Other classes of inequalities with two variables per inequality can be de-
fined and are of interest. In particular, Octagons [33] and their generalisation,
Logahedra [22]. These classes of inequalities are given below. Octagons have
variations where the constant term is drawn from Z; in addition, bounded Lo-
gahedra are defined where the set of coefficients is generated with a maximum
exponent (so that Octagons are 0-Logahedra).

Definition 3. OctX = {ax+ by ≤ e | x, y ∈ X ∧ a, b ∈ {−1, 0, 1} ∧ e ∈ Q}

Definition 4. LogX = {ax+ by ≤ e | x, y ∈ X ∧a, b ∈ {−2n, 0, 2n |n ∈ Z}∧e ∈
Q}

Observe that OctX ⊆ LogX ⊆ TVPIX .
As noted above, when a variable is eliminated from a subset of TVPIX (or

LogX or OctX), the resulting inequalities are still a subset of TVPIX (or LogX
or OctX). In particular, the action of combining a pair of inequalities in TVPIX
with a common variable to eliminate this variable results in an inequality that is
again in TVPIX . The action of combining inequalities, or computing resultants
to use the terminology of Nelson [34], is formalised below:

Definition 5. If c1 ≡ a1x+ b1y ≤ e1, c2 ≡ a2x+ b2z ≤ e2 and a1a2 < 0 then

c = result(c1, c2, x) = |a2|b1y + |a1|b2z ≤ |a2|e1 + |a1|e2
otherwise result(c1, c2, x) = ⊥. This resultant will also be denoted:

c1 c2
c x

The term in y is said to derive from c1 and that in z to derive from c2.

Note that a single pair of inequalities may possess two resultants, as is il-
lustrated by the pair c1 ≡ x + y ≤ 1 and c2 ≡ −2x − 3y ≤ 1 for which
result(c1, c2, x) = −y ≤ 3 and result(c1, c2, y) = x ≤ 4. Hence it is necessary
to stipulate which variable is being eliminated. However, in contexts when the
eliminated variable is not named result(c1, c2) will be used without explicit stip-
ulation of the variable. Pairs of inequalities for which the given variable cannot
be eliminated are indicated by ⊥, which can be ignored from that point on.

The result operation defines a resultant calculus, and it is derivations of
inequalities in this calculus that are the object of study in much of this paper.
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Definition 6. A series of applications of result form a derivation tree. If c is
a leaf of the derivation tree (that is, not the result of an application of result)
then size(c) = 0. If size(c1) = n1 and the size(c2) = n2, and c = result(c1, c2, x)
then size(c) = n1 + n2 + 1.

Note the slight abuse of notation. The size is a property of a derivation, not
an inequality, hence size(c) will have differing values for different derivations of
c.

Example 1. Let c0 ≡ x + y ≤ 1, c1 ≡ −2x + u ≤ 2, c2 ≡ −4y − x ≤ 1 and
c3 ≡ −y + z ≤ 1. Consider the following derivation tree of c ≡ 2u+ z ≤ 11:

c0
x+ y ≤ 1

c1
−2x+ u ≤ 2

x
2y + u ≤ 4

c2
−4y − x ≤ 1

y
2u− x ≤ 9

c0
x+ y ≤ 1

c3
−y + z ≤ 1

y
x+ z ≤ 2

x
2u+ z ≤ 11

In this derivation size(c) = 4.

The resultant operator lifts to sets of inequalities by:

Definition 7. If C1, C2 ⊆ TVPIX then

result(C1, C2) =

{
c

∣∣∣∣ c1 ∈ C1 ∧ c2 ∈ C2 ∧ x ∈ vars(c1) ∩ vars(c2)∧
c = result(c1, c2, x) ∧ c 6= ⊥

}
The following abbreviations are used: result(c, C) = result({c}, C) and result(C, c) =

result(C, {c}), where c ∈ TVPIX and C ⊆ TVPIX .
Another fundamental operator is syntactic projection, defined below.

Definition 8. The syntactic projection, denoted πY for some Y ⊆ X, of system
of inequalities S ⊆ TVPIX is defined as πY (S) = {c ∈ S | vars(c) ⊆ Y }.

That is, the syntactic projection onto Y retains all inequalities whose vari-
ables are all in Y and discards all others. In a non-closed system syntactic
projection will possibly lose information; syntactic projection is not semantic
projection.

Consider the definition of a closed system:

Definition 9. A system C ⊆ TVPIX is closed if the following predicate holds:

closed(C) ⇐⇒ ∀c ∈ TVPIX . (C |= c⇒ πvars(c)(C) |= c)

A closed system is defined so that syntactic and semantic projection coincide.
No further implied inequalities can be added to the system that will tighten any
two variable projection.

The following example illustrates closed systems.
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Figure 2: π{x,y}(C
′), π{x,z}(C

′) and π{y,z}(C
′)

Example 2. Suppose C = {x + y ≤ 0,−x + y ≤ 0,−y + z ≤ 0, 2y + x ≤ 2}.
Put C ′ = C ∪ {x + z ≤ 0,−x + z ≤ 0, y ≤ 0, z ≤ 0}. Then C ′ is closed. Note
that y ≤ 0 is redundant in π{x,y}(C

′) = {x + y ≤ 0,−x + y ≤ 0, y ≤ 0} but is
irredundant in π{y,z}(C

′) = {−y+z ≤ 0, y ≤ 0, z ≤ 0} as illustrated in Figure 2.
Further note that 2y+x ≤ 2 is redundant in each two variable projection; closed
systems can contain truly redundant inequalities.

The second example illustrates closed systems, noting that unary inequalities
need to be considered.

Example 3. Suppose C = {x+ y ≤ 0,−x+ y ≤ 0}. Then C is not closed since
C |= y ≤ 0 but π{y}(C) = ∅ 6|= y ≤ 0. However, C ∪ {y ≤ 0} is closed.

The third example illustrates that consistency of the system needs to be
considered.

Example 4. Suppose C = {x ≤ −1,−x ≤ −1}. Then C is not closed because
C |= false and π∅(C) = ∅ 6|= false. Put C ′ = C ∪ {false}. For any other
constraint c ∈ TVPIX if C ′ |= c it follows that πvars(c)(C

′) |= c hence C ′ is
closed. In particular C ′ |= true and π∅(C

′) = {false} |= true.

A system C can be augmented with inequalities to get C ′ so that closed(C ′),
that is, the system can be closed in a process called closure.

If Y = {x, y} then the syntactic projection πY (S) yields a planar system.
A planar system over Y can be filtered to remove any redundant inequalities.
Similarly, the syntactic projection onto a single variable can be filtered (and
this is trivial for projection onto no variables). These operators can be con-
structed for planar (and zero and one dimensional) polyhedra and lifted to
systems of inequalities by taking the union of each filtered planar (and zero and
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one dimensional) projection. This is formalised in Definition 10. Therefore,
only inequalities that are redundant in all one and two variable projections are
removed.

The next definition considers how a two (or one or zero) dimensional projec-
tion can be filtered. This operation can then be lifted to systems of inequalities.

Definition 10. The mapping filter : ℘(TVPIX)→ ℘(TVPIX) is defined:

filter(C) = ∪{filterY (πY (C))|Y ⊆ X ∧ |Y | ≤ 2}

where:

• filterY (C) ⊆ C

• filterY (C) ≡ πY (C)

• for every C ′ ⊂ filterY (C), C ′ 6≡ C.

That no information is lost by filtering is formalised in the following lemma.

Lemma 1. If X ′ ⊆ vars(C) and πX′(C) |= c then πX′(filter(C)) |= c.

Proof . Since πX′(C) = ∪{πY (C)|Y ⊆ X ′∧|Y | ≤ 2} and πY (C) ≡ filterY (πY (C))
for each Y then πX′(C) ≡ ∪{filterY (πY (C))|Y ⊆ X ′ ∧ |Y | ≤ 2}. Hence
πX′(filter(C)) |= c. �

Example 5. If S = {x+ y ≤ 0,−x+ y ≤ 0, y ≤ 0} then filter(S) = S.

Example 6. If S = {x ≤ −1,−x ≤ −1, false} then filter(S) = {false}.

The following lemma demonstrates that a closed system remains closed after
filtering.

Lemma 2. If S ⊆ TVPIX and closed(S) then closed(filter(S)).

Proof . Let S ⊆ TVPIX and suppose closed(S) holds. Let c ∈ TVPIX such that
S |= c. Then πvars(c)(S) |= c. Therefore by Lemma 1, πvars(c)(filter(S)) |= c. �

4. Completion

A closed system of inequalities I ⊆ TVPIX [40] can be found by augmenting
I with inequalities result(I, I) until an I ′ is obtained such that no further (non-
redundant) inequalities can be added to πY (I) for any |Y | ≤ 2. In this paper,
the process of finding a closed system, including an interleaved filtering step to
remove unnecessary inequalities, is called completion. Nelson [34] used closure
as a way of deciding whether a given I ⊆ TVPIX is satisfiable over Q or R and
this provides the starting point for this section.
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4.1. Full completion

The following result is Lemma 1b from Nelson [34].

Lemma 3. Suppose C ⊆ TVPIX , c ∈ TVPIX and that C∪{¬c} is unsatisfiable,
where C ′ ∪ {¬c} is satisfiable for all C ′ ⊂ C. Then, there exists X ′ ⊆ X such
that |X ′| ≤ b|X|/2c+ 1 and πX′(C ∪ result(C,C)) ∪ {¬c} is unsatisfiable.

Note that for c ∈ TVPI the constraint ¬c is a strict two variable inequality,
hence ¬c 6∈ TVPI, given the definition of TVPI used in this paper. However,
the results in [34] allow strict inequalities. Hence the following is a corollary of
Lemma 3, expressing the result in terms of entailment.

Corollary 1. Suppose C ⊆ TVPIX , c ∈ TVPIX and that C |= c. Then, there
exists X ′ ⊆ X such that |X ′| ≤ b|X|/2c+ 1 and πX′(C ∪ result(C,C)) |= c.

The following defines the congruence relation ∼= for TVPI systems. Two
systems are congruent when they agree when syntactically projected onto each
projection of two or fewer variables.

Definition 11. I ∼= I ′ iff for all Y ⊆ X such that |Y | ≤ 2, πY (I) ≡ πY (I ′).

The following lemma states that repeatedly applying result and filter leads
to stability.

Lemma 4. Let I ⊆ TVPIX . Put I0 = filter(I) and Ii+1 = filter(Ii∪result(Ii, Ii)).
Then Ik ∼= Ik+1 where k = dlg2(|X|)e.

Proof . Note that I0 ≡ ... ≡ Ik ≡ Ik+1.

1. For Y ⊆ X, |Y | ≤ 2 consider c ∈ πY (Ik+1). Observe that I0 ≡ Ik+1, hence
I0 |= c. Put X0 = X. By Corollary 1 it follows that there exists Xi+1 ⊆ Xi

such that |Xi+1| ≤ b|Xi|/2c+ 1 and πXi+1
(Ii∪ result(Ii, Ii)) |= c, hence by

Lemma 1 πXi+1
(Ii+1) |= c. In particular, πY (Ik) |= c, since vars(c) ⊆ Y .

2. For Y ⊆ X, |Y | ≤ 2 consider c ∈ πY (Ik). Since Ik+1 |= c it follows that
πY (Ik+1) |= c

Thus πY (Ik) ≡ πY (Ik+1), hence Ik ∼= Ik+1. �

The definition of closed allows systems to contain inequalities that are re-
dundant in the sense that they can be removed from the system whilst every one
or two variable syntactic projection will still define the same space. These are
the inequalities that are removed by filter. Computationally these inequalities
incur a performance hit for operations on TVPIX systems. This motivates a
variation on closed systems, here called complete. This is specified as a function
on TVPIX systems below. A system where complete(I) = I will be referred to
as complete, and the process of computing a complete system will be referred
to as completion.
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Definition 12. Let I ⊆ TVPIX . Put I0 = filter(I) and Ii+1 = filter(Ii ∪
result(Ii, Ii)). Then complete : ℘(TVPIX)→ ℘(TVPIX) is defined

complete(I) = In where In+1
∼= In and for every 0 ≤ m < n, Im+1 6∼= Im.

The following lemma shows that the complete function calculates a stable
fixed point.

Lemma 5. Let complete(I) = In, as in Definition 12. Then for all m ≥ n
Im ∼= In.

Proof . Consider Im where m > n and Im ∼= Im−1. Then Im = filter(Im−1 ∪
result(Im−1, Im−1)). Suppose c ∈ result(Im−1, Im−1). Then, since Im−1 is com-
plete, πvars(c)(Im−1) |= c. If c ∈ Im−1 then the result hold immediately. If
c /∈ Im−1 then filter(Im−1 ∪ {c}) ∼= Im−1 and the result holds. �

The intention is that complete returns closed systems, and this is established
by the following theorem.

Theorem 1. Let C ⊆ TVPIX . Then closed(complete(C)) holds.

Proof . Since complete(C) ≡ C it is enough to show that for every c ∈ TVPIX ,
if complete(C) |= c, then πvars(c)(complete(C)) |= c. Following the proof of
Lemma 4 πvars(c)(complete(C)) ≡ πvars(c)(Ik), where k = dlg2(|X|)e, hence if
C |= c, then πvars(c)(complete(C)) |= c. �

The remainder of this paper is concerned with calculating completion, hence
maintaining closed systems.

4.2. Incremental completion

This work is primarily concerned with incremental completion in two vari-
ables per inequality systems, that is, considering how to make a system complete
after the addition of a single new inequality to a complete system. Formally,
where I ⊆ TVPIX , complete(I) = I and c0 ∈ TVPIX , the incremental comple-
tion is complete(I ∪ {c0}), which is a closed system.

As demonstrated in the introduction, when a new inequality is added to a
TVPI system the resultant calculus allows many new inequalities to be derived
from arbitrarily complicated derivation trees. However, with the exception of
false, only those derived from one or two result steps need to be considered. The
approach taken here is to consider derivation trees as objects of study.

The following sections give a series of lemmata relating to derivations trees:

• a result on redundancy (Lemma 6), showing that redundant inequalities
cannot be used in the derivation of non-redundant inequalities;

• two results on compaction of derivations, showing that a derivation of
a non-redundant inequality consisting of three successive applications of
the result operation can be rewritten to a derivation of lower depth (one
result for binary inequalities, Lemma 7, and one for unary inequalities,
Lemma 9);
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• a result on linearisation of derivations (Lemma 10), showing that the
derivation of a non-redundant inequality can be rewritten so that one
premiss of every result step is a leaf;

• two results showing that it is unnecessary to use the new inequality added
to the complete system more than once, Lemmata 11 and 12.

The concluding Theorem 2 uses the lemmata to demonstrate that any ele-
ment of the incremental completion can be generated using at most two result
steps (with the exception of false indicating an inconsistent system, which can be
detected within the closed system). The proofs of the lemmata and theorem are
constructive, and contain rewriting rules for derivations in order to demonstrate
their results.

Example 7. Returning to the derivation given in Example 1, first observe that
{c1, c2, c3} is a complete, hence closed system of inequalities. Adding c0 to
this system allows additional inequalities to be derived using the result calculus.
Example 1 gives one such derivation, which involves more than two result steps.
The concluding Theorem 2 says that c can either be derived using fewer result
steps, or that c /∈ complete({c0, c1, c2, c3}). The proofs of the theorem and
lemmata specify reductions to demonstrate this. In this example, case (5) of
the proof of Theorem 2 indicates that Lemma 10 (linearisation), following by
Lemma 12 (multiple use, which in turn utilises the compaction Lemma 7) can
be used to show that c /∈ complete({c0, c1, c2, c3}). The reasoning is illustrated
in Example 13 and Example 11, and the redundancy indicated by the latter is
described in Example 9. The complete and closed system generated by adding
c0 to {c1, c2, c3} is considered in Example 15.

4.3. Inconsistency

As noted above, and demonstrated in this paper, any inequality in complete(I∪
{c0}) can be found in at most two results steps. However, it should be noted
that inconsistency of a system might not be detected in these two steps. This
is illustrated in the following example.

Example 8. Let I = {c1, c2}, where c1 ≡ −x − u ≤ 0, c2 ≡ −3x − u ≤ −3,
hence closed(I) and complete(I) = I. Consider adding c0 ≡ 2x + u ≤ 1 to I.
Observe that the system is then inconsistent:

c0 c1
x ≤ 1

u
c0 c2
−x ≤ −2

u

0 ≤ −1
x

where 0 ≤ −1 ≡ false. Observe that there is no selection of ci, cj ∈ I so that
result(result(c0, ci), cj) = false.

At the heart of this paper is the result that when incrementally adding a new
inequality to a closed system of inequalities, any inequality that can strengthen
a two dimensional projection can be generated in at most two result steps.
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In the case above, the two dimensional projection is already inconsistent, so
generating false does not tighten the projection, hence it is similar to a redundant
inequality, hence is not generated. However, false is needed for closure. This
does, however, mean that this inconsistency of the projection (hence system)
needs to be explicitly noted.

4.4. Redundancy

Redundancy is important in two senses. The first is that using the result
calculus, inequalities redundant with respect to the entire system are added in
order to make them explicit. In a second sense, within a two variable projection
inequalities that are redundant within this projection are not part of the com-
pletion (and are unnecessary for a closed system) and can be removed. That
is, these inequalities are redundant with respect to a complete system. Redun-
dancy is primarily used in this second sense through much of the rest of this
paper, and is defined below.

Definition 13. Inequality c ∈ TVPIX is said to be redundant with respect to
I ⊆ TVPIX iff I |= c and c /∈ complete(I).

In any two variable projection, a redundant inequality can be obtained as the
positive linear combination of one or two other inequalities. This is represented
with the following notation describing the entailment of the inequality in the
conclusion by the two in the premisses:

a1x+ b1y ≤ e1 a2x+ b2y ≤ e2
(λ1a1 + λ2a2)x+ (λ1b1 + λ2b2)y ≤ λ1e1 + λ2e2 + δ

+(λ1,λ2,δ)

This says that multiplying the first premiss by λ1 ≥ 0 and the second premiss
by λ2 ≥ 0, summing the results and adding δ ≥ 0 to the constant term gives
the conclusion.

The following lemma shows that for system of inequalities I, if inequality
c is redundant with respect to complete(I) then the resultant of c with any
inequality c0 is redundant with respect to the completion of I ∪{c0} (hence also
redundant with respect to I ∪ {c0}).

This is a powerful result, redundancy really means just that: a redundant in-
equality is useless for forming non-redundant inequalities, any resultant formed
is guaranteed to be redundant. This will be useful in later results, where deriva-
tions of inequalities are rewritten and after rewriting it might be that some
intermediates are redundant.

Lemma 6 (Redundancy). Let I ⊆ TVPIX and let c, c0 ∈ TVPIX where x ∈
vars(c), x ∈ vars(c0). Suppose c /∈ complete(I) and I |= c. Then complete(I ∪
{c0}) |= result(c0, c, x) and result(c0, c, x) /∈ complete(I ∪ {c0}).

Proof . Without loss of generality there are two cases to consider:

i) Where |vars(c)| = 1.
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ii) Where |vars(c)| = 2.

i) By the definition of closed there exists c1 ∈ complete(I), c1 6≡ c such that
{c1} |= c. Suppose c ≡ ax ≤ e and c0 ≡ a0x + b0y ≤ e0 (where it might
be that b0 = 0). Hence result(c0, c, x) = |a|b0y ≤ |a|e0 + |a0|e. Then put
c1 ≡ ax ≤ e − δ, δ > 0 and consider c′1 = result(c0, c1, x) = |a|b0y ≤
|a|e0 + |a0|e− |a0|δ. Observe that c′1 |= result(c0, c, x) and the result holds.

ii) Suppose vars(c) = {x, z} and vars(c0) ⊆ {x, y}. Consider c ≡ ax + bz ≤ e,
where I |= c, c0 ≡ a0x + b0y ≤ e0 (where it might be that b0 = 0) and
c′ ≡ result(c0, c, x). Then (since I |= c and noting Theorem 1) one of the
two cases holds:

(a) There exists c1 ∈ complete(I) such that c1 ≡ ax+ bz ≤ e− δ, for some
δ > 0 (that is, {c1} |= c)

(b) There exists c1, c2 ∈ complete(I), vars({c1, c2}) = vars(c) such that:

c1 c2
c

+(λ1,λ2,δ)

In each case, considering the resultant of c0 with c1 and/or c2 will lead to
a demonstration of the redundancy of c′.

(a) c′ = result(c0, c, x) is derived as follows:

a0x+ b0y ≤ e0 ax+ bz ≤ e
|a|b0y + |a0|bz ≤ |a|e0 + |a0|e

x

Since {c1} |= c observe that c′1 = result(c0, c1, x) is derived:

a0x+ b0y ≤ e0 ax+ bz ≤ e− δ
|a|b0y + |a0|bz ≤ |a|e0 + |a0|(e− δ)

x

Hence {c′1} |= c′, that is complete(I ∪ {c0}) |= c′.
(b) c′ = result(c0, c, x) is derived as follows:

c0
c1 c2
c

+(λ1,λ2,δ)

c′
x

There are four cases to considered, depending on the values of a1, a2.
Consider the case where a1 > 0 and a2 < 0 and observe that

c0 c1
c′1

x c1 c2
c12

x

c′
+

(λ1−λ2
|a2|
|a1| ,λ2

|a0|
|a1| ,|a0|δ)

The other cases are similar, demonstrating the result. �

Note that the conclusion of Lemma 6, that complete(I∪{c0}) |= result(c0, c, x)
might also be written as, let c′ = result(c0, c, x), then πvars(c′)(complete(I ∪
{c0}) |= c′.

Consider the following example illustrating Lemma 6.
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Example 9. Consider again the inequalities from Example 1. Observe that

c0
x+ y ≤ 1

c1
−2x+ u ≤ 2

c0
x+ y ≤ 1

c2
−4y − x ≤ 1

y
3x ≤ 5

+2,1,0−x+ 2u ≤ 9
x

y + 2u ≤ 10

and that this derivation demonstrates that −x+ 2u ≤ 9 is redundant, therefore
according to Lemma 6 y + 2u ≤ 10 should also be redundant. The following
rewriting, following the proof of the lemma shows this:

c0
x+ y ≤ 1

c1
−2x+ u ≤ 2

x
2y + u ≤ 4

c1
−2x+ u ≤ 2

c0
x+ y ≤ 1

c2
−4y − x ≤ 1

y
3x ≤ 5

x
3u ≤ 16

+( 1
2 ,

1
2 ,0)y + 2u ≤ 10

Hence y + 2u ≤ 10 /∈ complete({c0, c1, c2, c3}).

4.5. Compaction of a chain

The results in this section and the next concern chains of resultant calcu-
lations, explaining that combining a new inequality c0 with three inequalities
drawn from a complete system is unnecessary. That is, if inequality c is de-
rived in three resultant steps, it can be shown either to be redundant in a two
variable projection or to be derivable from fewer resultant steps. Lemma 7
demonstrates this in the case that the derived inequality c contains exactly two
variables. Lemma 9 then demonstrates this in the case that the derived inequal-
ity c contains only a single variable (and will ensure that the strongest unary
inequality is included, even if this is redundant, as in the definition of closed).

Each proof will present its case analysis as a skeleton, that is, showing the
variables involved in the chain of resultant steps, abstracting away from numer-
ical details of coefficients and constants.

Lemma 7 (Compaction). Let c0 ∈ TVPIX , c1, c2 ∈ I ⊆ TVPIX , c3 ∈ I∪{c0}
and x0, x1, x2 ∈ X, where complete(I) = I. If c ∈ complete(I ∪ {c0}) and

c = result(result(result(c0, c1, x0), c2, x1), c3, x2)

and |vars(c)| = 2 then there exists d0, d1 ∈ I and y0, y1 ∈ X such that

c = result(result(c0, d0, y0), d1, y1)

Proof . The structure of the series of resultants being considered is:

c0 c1
c′1

x0
c2

c′2
x1

c3
c x2
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(1)

{x, y} {x, u}
{y, u}

x
{u, v}

{y, v}
u
{v, z}

{y, z}
v

(2)

{x, y} {x, u}
{y, u}

x
{u, v}

{y, v}
u
{y, z}

{v, z}
y

(3)

{x, y} {x, u}
{y, u}

x
{y, v}

{u, v}
y
{u, z}

{v, z}
u

(4)

{x, y} {x, u}
{y, u}

x
{y, v}

{u, v}
y
{v, z}

{u, z}
v

Figure 3: Possible resultant combinations for generating a binary inequality

The proof proceeds by giving a series of reductions demonstrating that by
reordering the application of the result operation either the conclusion of the
lemma holds, or c /∈ complete(I ∪ {c0}), that is the premiss of the lemma does
not hold.

There are four possible configurations that lead to different combinations of
the variables being eliminated in the sequence of resultant steps. The skeletons
of these four cases are given in Figure 3. Only case four is considered in detail.

Where c0 ≡ a0x + b0y ≤ e0, c1 ≡ a1x + b1u ≤ e1, c2 ≡ a2y + b2v ≤ e2 and
c3 ≡ a3v + b3z ≤ e3, with x0 = x, x1 = y, x2 = v. In this case

c0 c1
c′1

x
c2

c′2
y

c3
c v

reduces to
c0 c1
c′1

x c2 c3
c23

v

c
y

Put d0 = c1, d1 = result(c2, c3, v), y0 = x and y1 = y. Since I is complete,
either d1 ∈ I and the result holds, or d1 /∈ I, therefore πvars(d1)(I) |= d1, hence
by Lemma 6 c /∈ complete(I ∪ {c0}).

However, in the case that the variables v and x are the same an alternative
analysis is needed. Here the initial derivation can be reduced to

c0 c1
c′1

x c2 c3
c23

v

c
+(|a2||a3|,|a1||b0|,0)

If c23 ∈ complete(I) then c is redundant because it is a linear combination of
c′1 and c23. If c23 6∈ complete(I), but c′1 ∈ complete(I ∪ {c0}) then by Lemma 6
it also follows that c is redundant. Likewise if c′1 6∈ complete(I ∪ {c0}). In all
cases, the pre-condition of the lemma that c ∈ complete(I∪{c0}) is contradicted.
Other variable identities lead to variations on these two cases. �

19



Example 10. To illustrate case 4 of the proof, as detailed above, suppose c0 ≡
x+ y ≤ 1 and c1, c2, c3 ∈ I ⊆ TVPIX where complete(I) = I and

c1 ≡ −x− 2u ≤ 1 c2 ≡ −y − 5v ≤ 1 c3 ≡ v − 2z ≤ 0

Then c in the proof is derived:

c0
x+ y ≤ 1

c1
−x− 2u ≤ 1

x
−2u+ y ≤ 2

c2
−y − 5v ≤ 1

y
−2u− 5v ≤ 3

c3
v − 2z ≤ 0

v
−2u− 10z ≤ 3

This can be reduced to the following derivation of c:

c0
x+ y ≤ 1

c1
−x− 2u ≤ 1

x
−2u+ y ≤ 2

c2
−y − 5v ≤ 1

c3
−3y − 2z ≤ 0

v
−y − 10z ≤ 1

y
−2u− 10v ≤ 3

that is, where d0 = c1 d1 = result(c2, c3, v), y0 = x, and y1 = y. Notice that
either d0 ∈ I, or Lemma 6 says that c /∈ complete(I ∪ {c0}).

Example 11. Returning to the set of inequalities from Example 1, consider the
following where x and v coincide, leading to the redundancy of c in complete(I∪
{c0}), again as given in the proof above:

c0
x+ y ≤ 1

c1
−2x+ u ≤ 2

x
2y + u ≤ 4

c2
−4y − x ≤ 1

y
2u− x ≤ 9

c0
x+ y ≤ 1

x
2u+ y ≤ 10

From this, the following can be observed:

c0
x+ y ≤ 1

c1
−2x+ u ≤ 2

x
2y + u ≤ 4

c2
−4y − x ≤ 1

c0
x+ y ≤ 1

x
−3y ≤ 2

+(4,2,0)
4u+ 2y ≤ 20

demonstrating that 2u+ y ≤ 10 /∈ complete(I ∪ {co}).

4.6. Unary inequalities

Unary inequalities are of particular importance in domains with two variables
per inequality since a single unary inequality might be included in many two
variable projections. The definition of closure used in this paper makes this
explicit by stating that a closed system must include all unary inequalities (see
Example 3). The example in the introduction shows why this is. Some of

20



these unary inequalities might well be redundant in the sense that they are
redundant in each two variable projection in which they occur. The example in
the introduction can be viewed as demonstrating either that unary inequalities
need to be generated whether redundant or not, or that all projections onto two
or fewer variables need to be considered – then the unary inequalities are not
redundant in unary projections.

Lemma 9 augments Lemma 7 by showing that when adding a single new
inequality to a complete system all unary inequalities required to ensure that
the new system is also complete – including redundant unary inequalities – can
be derived in at most two resultant steps.

Before the main result, Lemma 9, a preliminary lemma on the entailment of
unary inequalities is given. This is used in the proof of Lemma 9. Lemma 8 says
that if two consistent unary inequalities entail a third, then that third unary
inequality must be entailed by one of the other two.

Lemma 8. Suppose vars(c) = {x}, vars(c1), vars(c2) ⊆ {x} and that {c1, c2} |=
c. Then either c1 |= c or c2 |= c.

Lemma 9 (Unary inequalities). Suppose that I ⊆ TVPIX and complete(I) =
I. Suppose c0 ∈ TVPIX and that c ∈ complete(I ∪ {c0}) where

c = result(result(result(c0, c1), c2), c3)

and |vars(c)| = 1, c1, c2 ∈ I and c3 ∈ I ∪ {c0}. Then there exists d0, d1 ∈ I such
that one of the following holds:

1. c = result(result(c0, d0), d1)

2. c = result(c0, d0)

Proof . Figure 4 gives the structure of three resultant steps, and skeletons (the
variables occurring in each inequality) for each of the fifteen possible configu-
rations where three resultant steps end in a unary inequality. Analysis of each
case demonstrates the result (often by showing that c /∈ complete(I ∪ {c0}).
Only cases 2 and 3 are detailed here.

2. Where c0 ≡ a0z + b0u ≤ e0, c1 ≡ a1y+ b1u ≤ e1, c2 ≡ a2x+ b2z ≤ e2 and
c3 ≡ a3y ≤ e3. Consider:

c0
c1 c3
c13

y

c′13
u

c2
c z

c13 = result(c1, c3, y) is a unary inequality, hence either c13 ∈ I and case
1 holds or c13 /∈ I and by Lemma 6 c /∈ complete(I ∪ {c0}). Note that the
result still holds if u = x.
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c0 c1
c′1 c2

c′2 c3
c (1)

{x, u} {z, u}
{x, z}

u
{z, y}

{x, y}
z
{y}

{x}
y

(2)

{z, u} {y, u}
{z, y}

u
{x, z}

{x, y}
z
{y}

{x}
y

(3)

{z, u} {y, u}
{z, y}

u
{z}

{y}
z
{x, y}

{x}
y

(4)

{z, u} {y, u}
{z, y}

u
{z, y}

{y}
z
{x, y}

{x}
y

(5)

{z, u} {u}
{z}

u
{z, y}

{y}
z
{x, y}

{x}
y

(6)

{z, u} {z, u}
{z}

u
{z, y}

{y}
z
{x, y}

{x}
y

(7)

{x, u} {z, u}
{x, z}

u
{z, y}

{x, y}
z
{x, y}

{x}
y

(8)

{z, u} {y, u}
{z, y}

u
{x, z}

{x, y}
z
{x, y}

{x}
y

(9)

{y, u} {z, u}
{y, z}

u
{z, y}

{y}
z
{x, y}

{x}
y

(10)

{z, u} {x, u}
{x, z}

u
{z, y}

{x, y}
z
{y}

{x}
y

(11)

{y, u} {z, u}
{z, y}

u
{x, z}

{x, y}
z
{y}

{x}
y

(12)

{z, u} {x, u}
{x, z}

u
{z, y}

{x, y}
z
{x, y}

{x}
y

(13)

{y, u} {z, u}
{z, y}

u
{x, z}

{x, y}
z
{x, y}

{x}
y

(14)

{u} {u, z}
{z}

u
{z, y}

{y}
z
{x, y}

{x}
y

(15)

{y, u} {z, u}
{z, y}

u
{z}

{y}
z
{x, y}

{x}
y

Figure 4: Possible derivations for generating a unary inequality from c0, c1, c2, c3

3. Where c0 ≡ a0z + b0u ≤ e0, c1 ≡ a1y + b1u ≤ e1, c2 ≡ a2z ≤ e2 and
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c3 ≡ a3x+ b3y ≤ e3. The original derivation is:

a0z + b0u ≤ e0 a1y + b1u ≤ e1
|b1|a0z + |b0|a1y ≤ |b1|e0 + |b0|e1

u
a2z ≤ e2

|a2||b0|a1y ≤ |a2||b1|e0 + |a2||b0|e1 + |a0||b1|e2
z

a3x+ b3y ≤ e3
|a1||a2||b0|a3x ≤ |a2||b1||b3|e0 + |a2||b0||b3|e1 + |a0||b1||b3|e2 + |a1||a2||b0|e3

y

Hence the same inequality might be derived

a0z + b0u ≤ e0 a2z ≤ e2
|a2|b0u ≤ |a2|e0 + |a0|e2

z
a1y + b1u ≤ e1 a3x+ b3y ≤ e3
|a1|a3x+ |b3|b1u ≤ |b3|e1 + |a1|e3

y

|a1||a2||b0|a3x ≤ |a2||b1||b3|e0 + |a2||b0||b3|e1 + |a0||b1||b3|e2 + |a1||a2||b0|e3
u

If c13 = result(c1, c3, y) ∈ I then case 1 holds. If c13 6∈ I then by Lemma 6
c /∈ complete(I ∪ {c0}). Note that the result still holds if z = x.
If in the derivation immediately above u = x, then c′2 and c13 are given
by:

a0z + b0x ≤ e0 a2z ≤ e2
|a2|b0x ≤ |a2|e0 + |a0|e2

z

and
a1y + b1x ≤ e1 a3x+ b3y ≤ e3

(|a1|a3 + |b3|b1)x ≤ |b3|e1 + |a1|e3
y

Hence (scaling with λ1 = |b1||b3| and λ2 = |a2||b0| respectively)

|a2||b0|(|a1|a3 + |b3|b1)x+ |a2||b1||b3|b0x
≤

|a2||b0|(|b3|e1 + |a1|e3) + |b1||b3|(|a2|e0 + |a0|e2)

Noting that b0b1 < 0 this gives

|a1||a2||b0|a3x ≤ |b1||b3||a2|e0 + |a2||b0||b3|e1 + |a0||b1||b3|e2 + |a1||a2||b0|e3

Hence by Lemma 8 c′2 |= c or c13 |= c. In the former case then either case
2 has been demonstrated or c /∈ complete(I ∪ {c0}). In the latter case,
either c ∈ I or c /∈ complete(I ∪ {c0}). In all cases the result holds. �

Example 12. Suppose that complete(I) = I. Further suppose that c0 ≡ z +
u ≤ 1, c1 ≡ y − u ≤ 2, c2 ≡ −2z ≤ −1, c3 ≡ x − y ≤ −1, where c1, c2, c3 ∈ I,
then c = result(result(result(c0, c1, u), c2, z), c3, y) = 2x ≤ 3. As in case 2 of the
lemma, c can be derived as

c0
z + u ≤ 1

c1
y − u ≤ 2

u
z + y ≤ 3

c2
−2z ≤ −1

z
2y ≤ 5

c3
x− y ≤ −1

y
2x ≤ 3
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With d0 = c2 and d1 ≡ x− u ≤ 1 = result(c1, c3, y), if d1 ∈ I then the result is
demonstrated by the following rewriting:

c0
z + u ≤ 1

c2
−2z ≤ −1

z
2u ≤ 1

c1
y − u ≤ 2

c3
x− y ≤ −1

y
x− u ≤ 1

u
2x ≤ 3

However, if the variables x and u coincide, then observe that from

c0
z + x ≤ 1

c1
y − x ≤ 2

x
z + y ≤ 3

c2
−2z ≤ −1

z
2y ≤ 5

c3
x− y ≤ −1

y
2x ≤ 3

it can be observed that

c0
z + x ≤ 1

c2
−2z ≤ −1

z
2x ≤ 1

c1
y − x ≤ 2

c3
x− y ≤ −1

y
0 ≤ 1

and that {2x ≤ 1, 0 ≤ 1} |= 2x ≤ 3, hence by Lemma 8 either 2x ≤ 1 |= 2x ≤ 3
or 0 ≤ 1 |= 2x ≤ 3, and it is easy to see that it is the former in this case.

4.7. Linearisation of a tree

The next step in demonstrating the correctness of the incremental completion
algorithm is to demonstrate that any derivation tree of inequality c can be
replaced by a linear derivation of c (see the following definition).

Definition 14. A derivation is said to be linear if each result step in the deriva-
tion has at most one premiss with size greater than 0. By convention the right
premiss will have size 0.

Lemma 10 shows that a derivation whose final resultant calculation has linear
premisses can be replaced by a linear derivation. Any inequality can either be
derived linearly, or is redundant, or is false (see the example in section 4.3).

Lemma 10 (Linearisation). Let I ⊆ TVPIX . Suppose that c0, c1, . . . , cj ∈ I
and d0, d1, . . . , dk ∈ I where j, k ∈ N. Where c′0 = c0 and d′0 = d0, define c′i+1 =
result(c′i, ci+1, xi), where xi ∈ X and also define d′i+1 = result(d′i, di+1, yi), where
yi ∈ X. Consider c = result(c′j , d

′
k, z), where z ∈ X. At least one of the following

holds:

1. There exists f0, f1, . . . , f` ∈ I, where f0 = f ′0 = c0, f ′i+1 = result(f ′i , fi+1, wi),
wi ∈ X, and c ≡ f ′`

2. c is redundant with respect to complete(I), that is, complete(I) |= c and
c 6∈ complete(I)

3. c ≡ false
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Proof . If c = result(c′j , d0, z), then case 1 is immediate. If c = result(c0, d
′
k, z),

note the symmetry of the premisses (so that c = result(c′j , d
′
k, z) = result(d′k, c

′
j , z)),

hence case 1 is again immediate.
In other cases, the derivation can be written, and it is argued that repeated

rewritings will establish the result. The core case and one restricted case are
detailed here.

Where j, k ≥ 0 consider c = result(c′j+1, d
′
k+1, z). That is, where result is

applied to two inequalities that are not leaves of the derivation tree. With
x, y, z, w distinct variables and all coefficients are non-zero, then

a1x+ b1z ≤ e1
a2z + b2w ≤ e2 a3w + b3y ≤ e3
|a3|a2z + |b2|b3y ≤ |a3|e2 + |b2|e3

w

|a2||a3|a1x+ |b1||b2|b3y ≤ |a2||a3|e1 + |a3||b1|e2 + |b1||b2|e3
z

can be rewritten to:

a1x+ b1z ≤ e1 a2z + b2w ≤ e2
|a2|a1x+ |b1|b2w ≤ |a2|e1 + |b1|e2

z
a3w + b3y ≤ e3

|a2||a3|a1x+ |b1||b2|b3y ≤ |a2||a3|e1 + |a3||b1|e2 + |b1||b2|e3
w

That is, c = result(c′j+1, result(d′k, dk, w), z) = result(result(c′j+1, d
′
k, z), dk, w).

There is a symmetric case when z derives from the second premiss of d′k+1.
The four variables may coincide. The only case detailed here is when y and

z coincide, then result(c′j+1, d
′
k+1, z) can be rewritten to result(d′k+1, c

′
j+1, z).

Associate a weight to the derivation of inequality c, c = result(c1, c2, v).
This weight is an ordered triple (n, |vars(c1)|, size(c2)), where n is the number
of inequalities above c in the derivation with a right premiss with size greater
than 0. In the original derivation of c, observe that at most one result operation
has size(c2) > 0 (that is, n ≤ 1). Each rewriting step results in at most one
result step with the size of the second argument greater than zero (again n ≤ 1).
Hence the weights are totally ordered. The rewriting process has terminated if
there are no result steps with right premiss with size greater than 0 (i.e. when
n = 0, or when it is observed that the concluding inequality is redundant). Now
observe that for each rewriting step either c is found to be redundant or the
weight of the derivation of c is strictly less than previously. Hence by induction
the result holds. �

Example 13. Consider again the derivation from Example 1. Figure 5 gives
this derivation, indicating which inequalities are taking the role of d0 and d1 in
Lemma 10, and illustrates its linearisation.

The weight of the first derivation of 2u+z ≤ 11 is (1, 2, 1). Here, the rewrite
rule applies: the variable eliminated in the result is x deriving from the first
premiss, d0 = c0. After rewriting, the weight of the derivation of 2u+ z ≤ 11 is
(0, 2, 0), strictly less than before, and the resulting derivation is linear.
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Original derivation:

c0
x+ y ≤ 1

c1
−2x+ u ≤ 2

x
2y + u ≤ 4

c2
−4y − x ≤ 1

y
2u− x ≤ 9

d0 = c0
x+ y ≤ 1

d1 = c3
−y + z ≤ 1

y
x+ z ≤ 2

x
2u+ z ≤ 11

Linearisation of the original derivation:

c0
x+ y ≤ 1

c1
−2x+ u ≤ 2

x
2y + u ≤ 4

c2
−4y − x ≤ 1

y
2u− x ≤ 9

d0 = c0
x+ y ≤ 1

x
2u+ y ≤ 10

d1 = c3
−y + z ≤ 1

y
2u+ z ≤ 11

Figure 5: Linearisation of a tree composed of two chains into a single chain

4.8. Multiple use

This section analyses what happens when a derivation uses the new inequal-
ity more than once.

The following shows that from the perspective of completing a system when
a new constraint c0 is added, it is fruitless to recombine c0 with any inequality
that results from a derivation that emanates from c0. It is sufficient to consider
chains that start at c0 with at most two intermediate inequalities; as will be
seen in the concluding theorem, chains with more intermediates can be collapsed
down using the preceding lemmata.

Lemma 11 (Multiple use: part 1). Let c0, c1 ∈ TVPIX , where vars(c0) =
{x, y}. If c = result(result(c0, c1, x), c0, y) then there exists c′ = result(c0, c1, y)
such that c ≡ c′.

Proof . Where c0 ≡ a0x + b0y ≤ e0, c1 ≡ a1x + b1y ≤ e1, suppose that
c′1 ≡ result(c0, c1, x) and c ≡ result(c′1, c0, y), that is:

a0x+ b0y ≤ e0 a1x+ b1y ≤ e1
(|a1|b0 + |a0|b1)y ≤ |a1|e0 + |a0|e1

x
a0x+ b0y ≤ e0

|(|a1|b0 + |a0|b1)|a0x ≤ |a1||b0|e0 + |a0||b0|e1 + |(|a1|b0 + |a0|b1)|e0
y

Notice that:

1. this is the only possible configuration. If b0 = 0 then the second resultant
step is not possible, and if vars(c1) 6= {x, y} one of the two resultant steps
is not possible.
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c0 c1
c′1 c2

c′2 c0
c (*)

{y} {x, y}
{x}

y
{x, y}

{y}
x
{y}

> or ⊥
y

(1)

{x, y} {y, z}
{x, z}

y
{x, y}

{y, z}
x
{x, y}

{x, z}
y

(2)

{x, y} {x, y}
{x}

y
{x, y}

{y}
x
{x, y}

{x}
y

(*)

{x, y} {y, z}
{x, z}

y
{u, z}

{u, x}
z
{x, y}

{u, y}
x

(3)

{x, y} {y, z}
{x, z}

y
{x, z}

{x}
z
{x, y}

{y}
x

(4)

{x, y} {y, z}
{x, z}

y
{y, z}

{x, y}
z
{x, y}

{x}
y

(*)

{x, y} {y, z}
{x, z}

y
{y, z}

{x, y}
z
{x, y}

{y}
x

Figure 6: Resultant combination sequences involving c0, c1, c2

2. a0a1 < 0

3. (|a1|b0 + |a0|b1)b0 < 0, hence b0b1 < 0

4. Hence |a0b1| > |a1b0|

Since b0b1 < 0 c′ = result(c0, c1, y) can be obtained as follows:

a0x+ b0y ≤ e0 a1x+ b1y ≤ e1
(|b1|a0 + |b0|a1)x ≤ |b1|e0 + |b0|e1

y

It can be demonstrated that c = |a0|c′ (i.e. c ≡ c′), establishing the result.�

The final lemma considers the inequality derived by using the new inequality
twice, together with two other inequalities.

Lemma 12 (Multiple use: part 2). Suppose that I ⊆ TVPIX , complete(I) =
I and c1, c2 ∈ I. If c ∈ complete(I∪{c0}), where c = result(result(result(c0, c1), c2), c0),
with |vars(c)| ≥ 1, then there is d0 ∈ I such that c ≡ result(c0, d0).

Proof . The potential combinations of variables occurring (and being elimi-
nated) in c0, c1 and c2 are given in Figure 6. The three (∗) cases are not pos-
sible. Each of the four potential cases has already been considered in Lemma 7
(compaction) and Lemma 9 (unary) and the results follows. �

The following example illustrates the lemma. In addition, Example 11 earlier
in the paper follows one case of the proof.
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Example 14. Consider:

c0 ≡ x− y ≤ 1 c1 ≡ y + z ≤ 1 c2 ≡ −2x− z ≤ 2

Then
c0

x− y ≤ 1
c1

y + z ≤ 1
y

x+ z ≤ 2
c2

−2x− z ≤ 2
z

−x ≤ 4
c0

x− y ≤ 1
x

−y ≤ 5

and also

c0
x− y ≤ 1

c1
y + z ≤ 1

c2
−2x− z ≤ 2

z
y − 2x ≤ 3

x
−y ≤ 5

That is, c = result(c0, result(c1, c2)) as prescribed by the lemma.

4.9. The Incremental Completion Theorem

The findings can now be summarised in a single statement. The result follows
by using the lemmata above to show that the result of any derivation tree for
c ∈ complete(I ∪ {c0}), where the leaf inequalities are drawn from I ∪ {c0},
can be collapsed into a chain that coincides with one of the three cases. The
strength of the result is that only these simple chains need be considered when
computing incremental closure.

Theorem 2. Consider adding c0 ∈ TVPIX to I ⊆ TVPIX where complete(I) =
I. If c ∈ complete(I ∪ {c0}) and c 6= false, then one of the following holds:

1. c ∈ I ∪ {c0}
2. c = result(c0, c1) where c1 ∈ I
3. c = result(result(c0, c1), c2) where c1, c2 ∈ I

Proof . Suppose that c = result(c1, c2, x) and that c ∈ complete(I ∪ {c0}) (as
assumed in the lemmata above). Since size(c1), size(c2) < size(c) assume induc-
tively that c1, c2 are obtained as in the theorem. Then, using Lemmata 6–12, it
can be shown that the result holds for c.

The premisses of the resultant can be derived in one of three ways (as in
the theorem). Noting the symmetry between the two premisses, this leaves six
cases to be examined.

1. c1 ∈ I ∪{c0} and c2 ∈ I ∪{c0}. Since c1 and c2 cannot both be c0 assume
that c1 = c0, then c = result(c0, c2, x) and the result holds immediately.
Alternatively, c1 ∈ I and c2 ∈ I and again the result is immediate.

2. c1 = result(c0, c3, x) and c2 ∈ I ∪ {c0}. That is,

c0 c3
c2 c0

c

Hence using Lemma 11 (multiple use, part 1) c ≡ result(c0, c3) and the
result holds. Otherwise, if c2 ∈ I then the result holds immediately.
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3. c1 = result(result(c0, c3), c4) and c2 ∈ I∪{c0}. That is (noting the symme-
try of the premisses), one of two cases holds (the second case being where
c2 ∈ I):

c0 c3
c′3 c4

c1 c0
c

c0 c3
c′3 c4

c1 c2
c

The first case follows immediately from Lemma 12 (multiple use, part 2).
The second case follows immediately using Lemma 7 (compaction) or
Lemma 9 (unary inequalities).

4. c1 = result(c0, c3) and c2 = result(c0, c4). That is:

c0 c3
c1

c0 c4
c2

c

Applying Lemma 10 (linearisation), and since c ∈ complete(I ∪ {c0}),
results in either:

c0 c3
c1 c0

c′1 c4
c

c0 c3
c1 c4

c14 c0
c

In the first of these cases Lemma 11 (multiple use) on the derivation of c′1
leads to:

c0 c3
c′1 c4

c

and the result holds. The second case is an instance of case 3 of this proof.

5. c1 = result(result(c0, c4), c5) and c2 = result(c0, c3). That is (noting the
symmetry of the premisses):

c0 c4
c′4 c5

c1
c0 c3
c2

c

Applying Lemma 10 (linearisation) for the derivation of c leads to one of
the following:

c0 c4
c′4 c5

c1 c0
c′1 c3

c

c0 c4
c′4 c5

c1 c3
c′1 c0

c

In the first case consider the derivation of c′1, this is an instance of case
3. Then taking this together with the final resultant step gives the result
using Lemma 7 (compaction) or Lemma 9 (unary inequalities).
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In the second case noting that c ∈ complete(I∪{c0}) and applying Lemma 7
(compaction) or Lemma 9 (unary inequalities) to the derivation of c′1 leads
to:

c0 c6
c′6 c7

c′1 c0
c

where c6, c7 ∈ I. This is then an instance of case 3.

6. c1 = result(result(c0, c3), c4) and c2 = result(result(c0, c5), c6). That is:

c0 c3
c′3 c4

c1

c0 c5
c′5 c6

c2
c

Applying Lemma 10 (linearisation) to this gives:

c0 c3
c′3 c4

c1 c7
c′7 c8

c′8 c9
c

where c0 ∈ {c7, c8, c9} and {c7, c8, c9} − {c0} = {c5, c6}. Consider each of
the three possibilities for the occurrence of c0.
If c0 = c7. Consider the derivation of c′7. This can be treated as in case 3.
Following this with one (or two) application(s) of Lemma 7 (compaction)
or Lemma 9 (unary inequalities) gives the result.
If c0 = c8. An application of Lemma 7 (compaction) or Lemma 9 (unary
inequalities) to the derivation of c′7, then using case 3, and a second ap-
plication of Lemma 7 (compaction) or Lemma 9 (unary inequalities) gives
the result.
If c0 = c9. Two applications of Lemma 7 (compaction) or Lemma 9 (unary
inequalities) to the derivation of c′8, followed by an argument as in case 3
gives the result.

In all cases the result has been shown to hold. �

Since closed(complete(I ∪ {c0})) by Theorem 1 it has been established that
incremental closure can be found using these newly generated inequalities.

Example 15. Consider again the inequalities from Example 1. Where c1 ≡
−2x+ u ≤ 2, c2 ≡ −4y− x ≤ 1, c3 ≡ −y+ z ≤ 1 and I = {c1, c2, c3}, note that
complete(I) = I. Where c0 ≡ x+ y ≤ 1, consider complete(I ∪ {c0}). As stated
in the theorem, new inequalities can be derived from one or two applications of
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result. This gives the nine new inequalities as below, the first seven of which are
contained in the completion, and the last two are redundant:

c0
x+ y ≤ 1

c1
−2x+ u ≤ 2

x
2y + u ≤ 4

c0
x+ y ≤ 1

c2
−4y − x ≤ 1

x
−3y ≤ 2

c0
x+ y ≤ 1

c2
−4y − x ≤ 1

y
3x ≤ 5

c0
x+ y ≤ 1

c3
−y + z ≤ 1

y
x+ z ≤ 2

c0
x+ y ≤ 1

c2
−4y − x ≤ 1

y
3x ≤ 5

c1
−2x+ u ≤ 2

x
3u ≤ 16

c0
x+ y ≤ 1

c3
−y + z ≤ 1

y
x+ z ≤ 2

c1
−2x+ u ≤ 2

x
2z + u ≤ 6

c0
x+ y ≤ 1

c3
−y + z ≤ 1

y
x+ z ≤ 2

c2
−4y − x ≤ 1

x
z − 4y ≤ 3

c0
x+ y ≤ 1

c1
−2x+ u ≤ 2

x
2y + u ≤ 4

c2
−4y − x ≤ 1

y
2u− x ≤ 9

c0
x+ y ≤ 1

c1
−2x+ u ≤ 2

x
2y + u ≤ 4

c3
−y + z ≤ 1

y
u+ 2z ≤ 6

Observe that I∪{c0} augmented with these nine inequalities is closed (and that
I ∪ {c0} augmented with the first seven is complete). It is interesting to note
that the unary inequalities in x and y are redundant in the {x, y} projection,
yet are not redundant in the closed system.
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function inc complete(I ⊆ TVPIX where complete(I) = I, I = I ′ ∪B, c0 ∈ TVPIX)
(1) A := {c0}
(2) for each c1 ∈ I
(3) C ′0 := result({c0}, {c1})
(4) A := A ∪ C ′0
(5) for each c2 ∈ I
(6) C ′′0 := result(C ′0, {c2})
(7) A := A ∪ C ′′0
(8) return filter(A, I ′, B)

Figure 7: Incremental Completion

5. Algorithm for Incremental Closure

The previous section shows that when a new inequality is added to a com-
plete (hence closed) system of TVPI inequalities, every new inequality in the
completion of the augmented system can be generated using at most two in-
stances of the result operation (except for false). The augmented system of
inequalities might well contain redundancy, or be inconsistent. To maintain a
complete representation inconsistency needs to be detected, and redundancies
removed. This section gives an algorithm that shows how the system of inequal-
ities might be maintained so that inconsistency is detected and redundancy re-
moved, hence the resulting incrementally augmented system is complete and
closed. It further gives the complexity of incremental completion, and relates
the result presented to other weakly relational domains.

The outline of the algorithm is as follows. A complete (hence closed) system
is a set of collections of ordered inequalities, one for each two variable projec-
tion. When a new inequality is added to the system, a set of new inequalities is
generated as in Theorem 2. Each of these new inequalities is then added to the
previously closed system. This involves finding the projection or projections to
which it must be added, inserting it so that updated inequalities are correctly
ordered and removing any inequalities that are now redundant. The three com-
ponents of the algorithm are presented in Figures 7 and 8 and are discussed from
the inside out, starting with the update of a two variable projection with insert,
then how this is used to filter the augmented system with filter, and finishing
with incremental completion, inc complete, as given in Figure 7.

The input complete system consists of a pair of mappings, one from X×X →
TVPIX and another from X → TVPIX , where the first maps a pair of variables
to a two variable projection, and the second maps a variable to its bounds. It
should also be noted that the arithmetic for the indices of the elements of I
is modulo `, i.e. c` is c0 and c−1 is c`−1. When performing the complexity
analysis of the algorithms in Figures 7 and 8 it is assumed that Ic (in insert) is
represented as an AVL-tree, hence insertion, deletion, next, previous, split and
join are all O(lg(|Ic|)) [4].
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function filter(A ⊆ TVPIX , I ⊆ TVPIX , B ⊆ TVPIX)
(1) for each c ∈ reduce(A)
(2) P ′ = find projections(vars(c), I)
(3) for each P ∈ P ′
(4) I ′ = insert(c, P )
(5) if I ′ = false
(6) return false
(7) else
(8) B′ = extract bounds(I ′)
(9) B = update bounds(B,B′)
(10) I = (I \ P ) ∪ I ′
(11) end if
(12) return (I,B)

function insert(c ∈ TVPIX , Ic ⊆ TVPIX)
Let Ic = 〈c0, ..., c`−1〉
(1) if Ic = 〈〉
(2) return {c}
(3) else
(4) i = find position(c, Ic)
(5) if {ci−1, ci} |= c
(6) return Ic
(7) else if Ic = 〈c0〉
(8) if c |= c0
(9) D = {c0}
(10) else if {c0, c} ≡ false
(11) return false
(12) else
(13) D = ∅
(14) end if
(15) else
(16) m = min{` > k ≥ 1 | {ci−k−1, c} 6|= ci−k}
(17) n = min{` ≥ k ≥ 0 | {c, ci+k+1} 6|= ci+k}
(18) if {ci−m, c, ci+n} ≡ false
(19) return false
(20) end if
(21) D = {ci+k | 1−m ≤ k ≤ n− 1}
(22) end if
(23) return (Ic \D) ∪ {c}
(24) end if

Figure 8: Filtering

5.1. Insertion
The function insert in Figure 8 inserts a new inequality into a non-redundant

two variable projection. If that two variable projection is unconstrained, then
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the set containing the new inequality is returned on line (2). The inequalities
of the projection are ordered by angle (the actual 0 angle is irrelevant) and
line (4) finds the least i such that if c were inserted into Ic it would become ci
shuffling cj one position along to cj+1 for each i ≤ j ≤ ` − 1. Line (5) tests
whether the new inequality is redundant and if so it is discarded. Suppose that
cj is redundant and cj lies between cj−1 and c (symmetrically, cj lies between
c and cj+1), then observe that {cj−1, c} |= cj (and symmetrically {c, cj+1} |=
cj). By convexity the redundant inequalities must be contiguous. In the case
that c is non-redundant, a set of redundant inequalities D ⊆ Ic is constructed.
Lines (16) and (17) define offsets m and n so that set of inequalities D =
{ci−m+1, ..., ci+n−1} defined on line (21) is redundant with the addition of the
new inequality. Note that m and n are well-defined because Ic has two or more
inequalities (on lines (16), (17)), hence at least one of these must satisfy the
disentailment condition. Having found the position that c should be inserted
into the ordered Ic, line (18) considers c together with its neighbours (the two
neighbours could coincide); if this system is inconsistent, then Ic ∪ {c} is also
inconsistent and false is returned. Lines (8)-(14) address the case where Ic
consists solely of a single inequality, c0. If c |= c0 then line (9) sets D = {c0},
else if c0, c are unsatisfiable together then false is return on line (11), otherwise,
no inequality should be deleted from Ic. Line (23) constructs and returns the
irredundant set of inequalities that results.

Example 16. Consider the two variable projection defined by 〈c0, c1, c2, c3, c4〉
in case a) of Figure 9. Suppose that inequality c is added to this, as in case b).
On line (4) of insert, find position will set i = 2. On lines (16) and (17) of insert,
indices m = 2 and n = 1 are set. In the first case {c2−2−1, c} 6|= c2−2 (that is,
where k = 2) and also {c0, c} |= c1. In the second case {c, c2+1+1} 6|= c2+1 and
also {c3, c} |= c2. This describes the situation where c1, c2 are redundant as on
line (21), so the updated system is 〈c0, c, c3, c4〉, described by the shaded red
area in case b) of Figure 9.

Now consider the unbounded two variable projection defined by 〈c0, c1, c2, c3, c4〉
in case a) of Figure 10. Suppose that inequality c is added to this, as in case
b). On line (4) of insert, find position will set i = 0 (hence i − 1 = 4). On
lines (16) and (17) of insert, indices m = 5 and n = 0 are set. In the first
case {c0−5−1, c} 6|= c0−5 (that is, where k = 5) and also {c0, c} |= c1. In the
second case {c, c0+0+1} 6|= c0+0, that is when k = 0, its minimum possible value.
This describes the situation where c4, c3, c2, c1 are redundant as on line (21),
so the updated system is 〈c0, c〉, described by the shaded red area in case b) of
Figure 10.

Consider the complexity of a call to insert. Where A is the set of newly
generated inequalities, and I the input system of inequalities (minus unary
bounds that do not further constrain the system), note that |Ic| ≤ |A| + |I|.
The function find position has cost O(lg(|Ic|)). The lookup for ci, ci+1 costs
O(lg(|Ic|)), and the entailment checks are constant time. The cases for |Ic| = 1
are all constant time operations. In the definition of m,n on lines (16) and (17),
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Figure 9: Insertion and filtering
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Figure 10: Insertion and filtering for an unbounded two variable projection

each entailment check requires a single lookup with cost O(lg(|Ic|)). Hence the
overall cost of defining m,n is O(d lg(|Ic|)), where d = |D|, is the number of
inequalities to be deleted. The construction of the updated and returned Ic on
lines (21) and (23) requires two split operations and a join operation, which is
again O(lg(|Ic|)). Hence a single call to insert has cost O(d lg(|Ic|) + lg(|Ic|)).
That is, O(d lg(|Ic|)).

5.2. Filtering

The function filter in Figure 8 controls the addition of a newly generated set
of two variable inequalities to a complete system represented as a pair of sys-
tems, where I represents the two variable projections and B represents the one
variable projections. On line (1), reduce ensures that the set of new inequalities
considered does not contain any pair of unary inequalities where one entails the
other. Each new inequality is considered one at a time.

On line (2), find projections gives the two variable projections on which the
new inequality might impact. The set of projections found is a singleton if
|vars(c)| = 2, and a set of size |X| − 1 if |vars(c)| = 1. Hence, the number of
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calls to insert on line (4) of filter is bounded by |A|+ |X|2 (where A is the set of
newly generated inequalities). After the call to insert, if the resulting system is
inconsistent false is returned, otherwise the TVPI system is updated. First on
line (8), extract bounds finds all bounds implied by the updated projection I ′

and on line (9) the one variable projections are tightened accordingly. Second
on line (10), the two variable projection considered is updated to the new space
described by I ′. After considering each new inequality the updated complete
system is returned on line (12).

Now consider the complexity of the operations involved in filter. The cost
of find projections is O(|X| lg(|X|)), that of extract bounds O(|I|+ |A|), that of
update bounds O(|X|) and of updating I O(lg(|X|)), hence the dominating cost
comes from insert. Notice that within a two variable projection each inequality
occurrence can only be deleted once. Note |P | is bounded by |A|+ |I|+4. Hence
summing the cost of each insertion gives an overall of cost of

(|X|−1)2∑
i=1

|d| lg(|A|+ |I|+ 4) = lg(|A|+ |I|+ 4)

n2∑
i=1

|d|

= lg(|A|+ |I|+ 4)(|A|+ 4(|X| − 1)2)

Hence complexity is O((|A|+ |I|+ |X|2) lg(|A|+ |I|).

5.3. Incremental Completion

In Figure 7 the function inc complete controls the process. It is invoked with
the first argument I being a consistent set of inequalities, the union of binary
inequalities I ′ and unary inequalities B. The set A of new inequalities is ini-
tialised with the incrementally added inequality c0 on line (1). Lines (2)-(7)
describe the generation of new inequalities using one or two applications of the
result operation (as in Theorem 2), before passing these to filter on line (8). This
operation has complexity O(|I|2), where |A| ≤ |I|2. The number of inequalities
in A is quadratic in the number of inequalities in I and it is expected that |A|
is the dominating term and the complexity may be described as O(|A| lg(|A|)).
The incremental completion operation requires a quadratic number of applica-
tions of result, which when TVPI inequalies are represented using integers is a
strongly polynomial operation. Hence a single application of incremental com-
pletion is strongly polynomial. As noted in Section 6, the number of successive
applications of incremental completion is typically small.

5.4. Restrictions to Octagons and Logahedra

The work is this paper is aimed at the TVPI class of linear inequalities. As
discussed earlier, Octagons and Logahedra are subclasses of TVPI. Working with
Octagons as the representation, each Ic has at most 8 inequalities. Therefore
the cost of each of the AVL operations insertion, deletion, next, previous, split
and join is constant time. Redoing the complexity analysis above leads to the
conclusion that the complexity of incremental completion for Octagons isO(|A|).
Again since each projection has at most 8 inequalities |A| ≤ 4|X|(|X| − 1), that
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is, the complexity is O(|X|2). This is the same as the complexity of incremental
completion given by [33]. Similarly, any bounded Logahedral representation
ensures that Ic has at most a fixed number of inequalities, hence as for Octagons,
incremental completion has complexity O(|X|2).

The represention of systems of inequalities in this paper is compact, in the
sense that the only inequalities represented are those needed to support a closed
system; redundant inequalities are not stored. This is interesting, since it says
that Octagons and Logahedra can be implemented using a compact represen-
tation, rather than using matrices (where entries in the matrix may represent
a redundant inequality), without a penalty in terms of complexity. It has been
noted [2] that Johnson’s all pairs shortest path algorithm [24] can be used to
calculate closure when Octagons are represented as a graph. However, observe
that the output corresponds to the entire matrix representation (which is not
compact in the terminology used in this paper), even though the input was a
graph.

6. Experimental Results

The performance of TVPI is predicated on how TVPI systems grow with
incremental completion. To assess this growth, incremental completion has been
implemented, and experiments performed to investigate the size of the resulting
closed systems after a number of inequalities have been incrementally added.
Calling incremental completion repeatedly is the worst-case for TVPI since the
system can grow on each invocation, and the size of representation impacts on
both the memory footprint and the running time. Recall that, as discussed in
Section 2.4, in the context of abstract interpretation, other operations (join and
projection) for TVPI systems rest on closure.

6.1. Implementation

Incremental completion has been implemented1 in Java 8 making use the
BigInteger class for arbitrary precision integer arithmetic. Recalling that a lin-
ear inequality over the rationals is a representative of an equivalence class of
inequalities, the implementation works with a representation where all coeffi-
cients are integral – inequalities with rational coefficients and constants can be
rewritten, using a suitable integer multiplier, hence integer arithmetic is suffi-
cient.

Although the insert algorithm is neutral regarding the particular angular
ordering, the implementation assigns an angle to an inequality ax + by ≤ c,
where a 6= 0 or b 6= 0, which is the angle through which the inequality x ≤ 0 has
to be rotated anti-clockwise so its half-space coincides with that of ax+ by ≤ 0.
Following this convention, the relative order of two inequalities a1x+ b1y ≤ e1

1The code is available at https://www.cs.kent.ac.uk/people/staff/amk/tvpi.zip and
includes a program VisualiseInsert which graphically illustrates the irredundant inequalities
found by the insert (filtering) algorithm.
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and a2x + b2y ≤ e2 can then be calculated without recourse to trigonometric
operations as follows:

compare(a1x+b1y ≤ e1, a2x+b2y ≤ e2) =


−1 if class(a1, b1) < class(a2, b2)

1 else if class(a1, b1) > class(a2, b2)
−1 else if a2b1 < a1b2

1 else if a2b1 > a1b2
0 otherwise

where

class(a, b) =



0 if a > 0 ∧ b = 0
1 else if a > 0 ∧ b > 0
2 else if a = 0 ∧ b > 0
3 else if a < 0 ∧ b > 0
4 else if a < 0 ∧ b = 0
5 else if a < 0 ∧ b < 0
6 else if a = 0 ∧ b < 0
7 otherwise

6.2. Experimental setup

To exercise incremental completion, TVPI systems of fixed dimension d were
randomly generated where the coefficients and constants of each inequality were
integers randomly drawn from the ranges [-16, 15] and [0, 31] respectively (en-
larging these ranges makes little difference to the results), and pairs of variables
were randomly selected from {x0, . . . , xd−1}. Non-negative constants ensured
that each inequality was satisfied by the origin, hence each randomly generated
TVPI system was satisfiable as a whole, so as to avoid the system collapsing to
false (which can be represented in constant space). The Apron [23] implemen-
tation of Octagons applies symbolic reasoning to reduce an arbitrary constraint
into a system of simpler linear inequalities which are then added to an oc-
tagon one-by-one by applying incremental closure [33]. Experiments with the
abstract interpretation plugin for Frama-C, EVA [5], instantiated with Apron,
suggest that incremental closure is rarely called more than 8 times back-to-back.
Therefore, for a given fixed dimension, either 2, 4, 8 or 16, TVPI systems with 8
inequalities were randomly generated. Incremental completion was then applied
7 times to add each inequality, in turn, so as to derive a closed system. The
size of resulting output (closed) system was then recorded for 4096 randomly
generated (input) systems of 8 inequalities. The same experiment was repeated
for input systems of 12, 16, . . . , 32 random inequalities. Figure 11 records how
the size of the closed system depends on the dimension and the number of input
inequalities. The pair of graphs in the first row of Figure 11 corresponds to
dimension 2, the second row to dimension 4, etc. The left hand graphs record
how often the output systems are of a given number of inequalities (size). The
right hand graphs present a different perspective on this frequency information,
recording the proportion of the 4096 input systems whose output does not ex-
ceed a given size. Figure 12 repeats the frequency experiments for Logahedra
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and Octagons where the coefficients are randomly drawn from {−2,−1, 0, 1, 2}
and {−1, 0, 1} respectively and the constants are integers again drawn from [0,
31].

6.3. Results

The first row of Figure 11 suggests that for the planar case the number of
inequalities in the output is typically around 6, irrespective of the size of the
input. For 4 dimensional systems, there is a divergence in output size with input
size, but the output size has a stable profile for 16 or more input inequalities.
A similar phenomenon occurs for dimension 8 at 24 or more input inequalities.
The cumulative distribution graphs of Figure 11 are annotated with the 95th
percentile line, showing that 95% of the time the output was no more than 3, 4
and 12 times the size of the input for the dimensions 4, 8 and 16 respectively.
Thus growth is dependent on dimension.

The incremental completion algorithm is applicable to both Logahedra, where
the coefficients are powers, and Octagons, since these are instances of TVPI sys-
tems. To aid growth comparisons, the ranges of Figure 12, which gives the size
frequency distributions for Logahedra and Octagons, coincide with those of Fig-
ure 11. Compared to general TVPI, the frequency distributions for Logahedra
are shifted to the left, and spike higher, a pattern which is accentuated further
for Octagons. The output is thus smaller, which can be explained because of the
likelihood of one two variable inequality being entailed by another. On the other
hand, the growth rate for TVPI is no worse than 2 or 3 fold that of Octagons.

7. Conclusion

This paper has shown how a key operation for manipulating the TVPI class
of inequalities — incremental closure — can been derived by a systematic ex-
amination of the structure of derivation trees that arise when a new inequality
is added to a closed system. By studying derivation trees an algorithm for in-
cremental closure is synthesised which sits on a firm theoretical foundation. An
experimental evaluation studies the growth of systems of inequalities built by
successive applications of incremental completion.

The algorithm manipulates systems of inequalities which are compact, that
is, the only inequalities represented are those needed to support a closed system.
This chimes with the desire to derive memory efficient decision procedures [16].

The presented algorithm is incremental. Although motivated by the design
of abstract domains, incrementality is a key attribute for any theory deployed
in an SMT solver. For the target application in abstract interpretation, it
is sufficient to work with non-strict inequalities only. The extension of the
results in this work to additionally allow strict inequalities is straightforward.
Hence the techniques in this paper are suitable for incorporating with the theory
component of an SMT solver. The extension of the algorithms presented to
maintain a certificate which tracks how inequalities are derived, and in particular
when inconsistency is detected, is also easy to achieve.
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Figure 11: Frequency and cumulative distributions for 2-, 4-, 8- and 16-dimensional completion

40



Figure 12: Frequency distributions for Logahedra (left) and Octagons (right)
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As well as providing a systematic construction of the incremental closure
algorithm, the analysis of the derivations in the calculus defined by the result
operation provides a scaffold on which to build other algorithms, such as those
maintaining certificates, for linear inequalities.
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[33] A. Miné. The Octagon Abstract Domain. Higher-Order and Symbolic
Computation, 19(1):31–100, 2006.

[34] C. G. Nelson. An nlgn Algorithm for the Two-Variable-Per-Constraint
Linear Programming Satisfiability Problem. Technical Report STAN-CS-
78-689, Stanford University, Computer Science Department, 1978.

[35] V. R. Pratt. Two Easy Theories Whose Combination is Hard. http:

//boole.stanford.edu/pub/sefnp.pdf, 1977.

44
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A. Appendices

This section contains the full detailed proofs of results with outline proofs
in the main body of the paper.

Lemma 6 (Redundancy). Let I ⊆ TVPIX and let c, c0 ∈ TVPIX where x ∈
vars(c), x ∈ vars(c0). Suppose c /∈ complete(I) and I |= c. Then complete(I ∪
{c0}) |= result(c0, c, x) and result(c0, c, x) /∈ complete(I ∪ {c0}).

Proof 6. Without loss of generality there are two cases to consider:

i) Where |vars(c)| = 1.

ii) Where |vars(c)| = 2.
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i) By the definition of closed there exists c1 ∈ complete(I), c1 6≡ c such that
{c1} |= c. Suppose c ≡ ax ≤ e and c0 ≡ a0x + b0y ≤ e0 (where it might
be that b0 = 0). Hence result(c0, c, x) = |a|b0y ≤ |a|e0 + |a0|e. Then put
c1 ≡ ax ≤ e − δ, δ > 0 and consider c′1 = result(c0, c1, x) = |a|b0y ≤
|a|e0 + |a0|e− |a0|δ. Observe that c′1 |= result(c0, c, x) and the result holds.

ii) Suppose vars(c) = {x, z} and vars(c0) ⊆ {x, y}. Consider c ≡ ax + bz ≤ e,
where I |= c, c0 ≡ a0x + b0y ≤ e0 (where it might be that b0 = 0) and
c′ ≡ result(c0, c, x). Then (since I |= c and noting Theorem 1) one of the
two cases holds:

(a) There exists c1 ∈ complete(I) such that c1 ≡ ax+ bz ≤ e− δ, for some
δ > 0 (that is, {c1} |= c)

(b) There exists c1, c2 ∈ complete(I), vars({c1, c2}) = vars(c) such that:

c1 c2
c

+(λ1,λ2,δ)

In each case, considering the resultant of c0 with c1 and/or c2 will lead to
a demonstration of the redundancy of c′.

(a) c′ = result(c0, c, x) is derived as follows:

a0x+ b0y ≤ e0 ax+ bz ≤ e
|a|b0y + |a0|bz ≤ |a|e0 + |a0|e

x

Since {c1} |= c observe that c′1 = result(c0, c1, x) is derived:

a0x+ b0y ≤ e0 ax+ bz ≤ e− δ
|a|b0y + |a0|bz ≤ |a|e0 + |a0|(e− δ)

x

Hence {c′1} |= c′, that is complete(I ∪ {c0}) |= c′.
(b) c′ = result(c0, c, x) is derived as follows, where c is given by:

a1x+ b1z ≤ e1 a2x+ b2z ≤ e2
(λ1a1 + λ2a2)x+ (λ1b1 + λ2b2)z ≤ λ1e1 + λ2e2 + δ

+(λ1,λ2,δ)

and
a0x+ b0y ≤ e0 c

c′
x

with

c′ =
|λ1a1 + λ2a2|b0y + |a0|(λ1b1 + λ2b2)z

≤ |λ1a1 + λ2a2|e0 + |a0|(λ1e1 + λ2e2) + |a0|δ

Note that a = λ1a1 + λ2a2, b = λ1b1 + λ2b2, e = λ1e1 + λ2e2 + δ.
Observe from the resultant step that a0(λ1a1 + λ2a2) < 0. There are
two cases to consider:

i. a1 > 0, a2 ≥ 0 (symmetrically, a1 < 0, a2 ≤ 0)
ii. a1 > 0, a2 < 0 (symmetrically, a1 < 0, a2 > 0)

To demonstrate that in each case c′ is redundant:
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i. Consider c′1 = result(c0, c1, x) and c′2 = result(c0, c2, x):

a0x+ b0y ≤ e0 a1x+ b1z ≤ e1
|a1|b0y + |a0|b1z ≤ |a1|e0 + |a0|e1

x

and
a0x+ b0y ≤ e0 a2x+ b2z ≤ e2
|a2|b0y + |a0|b2z ≤ |a2|e0 + |a0|e2

x

It will be demonstrated that:

c′1 c′2
c′

+(λ1,λ2,|a0|δ)

Observe that, scaling the coefficients of c′1 by λ1 ≥ 0 and of c′2 by
λ2 ≥ 0:

λ1|a1|b0 + λ2|a2|b0 = |λ1a1 + λ2a2|b0
λ1|a0|b1 + λ2|a0|b2 = |a0|(λ1b1 + λ2b2)

and also that:

λ1|a1|e0 + λ1|a0|e1 + λ2|a2|e0 + λ2|a0|e2 + δ|a0|
= (λ1|a1|+ λ2|a2|)e0 + λ1|a0|e1 + λ2|a0|e2 + δ|a0|
= |λ1a1 + λ2a2|e0 + |a0|(λ1e1 + λ2e2) + |a0|δ.

hence {c′1, c′2} |= c′ and the result holds, except where a2 = 0.
Here, put c′2 = |a0|c2 and the result goes through as above.

ii. It will be demonstrated that (when a2 < 0):

c0 c1
c′1

x c1 c2
c12

x

c′
+(λ0,λ3,|a0|δ)

First consider c′1 = result(c0, c1, x) (without loss of generality, the
conditions imply that λ1|a1| > λ2|a2|)

a0x+ b0y ≤ e0 a1x+ b1z ≤ e1
|a1|b0y + |a0|b1z ≤ |a1|e0 + |a0|e1

x

Also note that if a1a2 < 0 then the resolvant of c1 and c2, c12 =
result(c1, c2, x), is as follows:

a1x+ b1z ≤ e1 a2x+ b2z ≤ e2
|a2|b1z + |a1|b2z ≤ |a2|e1 + |a1|e2

x

Now appropriate values (λ0, λ3, δ
′) can be found that will show

that c′ is redundant. First, putting

λ0 =
|a|
|a1|

=
|λ1a1 + λ2a2|

|a1|
=
|λ1a1| − |λ2a2|

|a1|
= λ1 − λ2

|a2|
|a1|
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means that λ0c
′
1 has the same y coefficient as c′.

Second, putting

λ3 = λ2
|a0|
|a1|

observe that

λ0|a0|b1 + λ3|a2|b1 + λ3|a1|b2 = λ1|a0|b1 + λ2|a0|b2 − λ2
|a0||a2|b1
|a1|

+ λ2
|a0||a2|b1
|a1|

= |a0|(λ1b1 + λ2b2)

= |a0|b

Now consider the constant term.

λ0(|a1|e0 + |a0|e1) + λ3(|a2|e1 + |a1|e2)

= (λ1 − λ2
|a2|
|a1|

)(|a1|e0 + |a0|e1) + λ2
|a0|
|a1|

(|a2|e1 + |a1|e2)

= λ1|a1|e0 + λ1|a0|e1 − λ2
|a2|
|a1|
|a1|e0 − λ2

|a2|
|a1|
|a0|e1

+ λ2
|a0|
|a1|
|a2|e1 + λ2

|a0|
|a1|
|a1|e2

= λ1|a1|e0 + λ1|a0|e1 − λ2|a2|e0 + λ2|a0|e2
= |λ1a1 + λ2a2|e0 + |a0|(λ1e1 + λ2e2)

with last step following since a2 < 0. This shows that δ′ = |a0|δ.
Hence, {c′1, c12} |= c′ and the result follows.

In all cases c′ has been shown to be redundant. �

Lemma 7 (Compaction). Let c0 ∈ TVPIX , c1, c2 ∈ I ⊆ TVPIX , c3 ∈ I∪{c0}
and x0, x1, x2 ∈ X, where complete(I) = I. If c ∈ complete(I ∪ {c0}) and

c = result(result(result(c0, c1, x0), c2, x1), c3, x2)

and |vars(c)| = 2 then there exists d0, d1 ∈ I and y0, y1 ∈ X such that

c = result(result(c0, d0, y0), d1, y1)

Proof 7. The structure of the series of resultants being considered is:

c0 c1
c′1

x0
c2

c′2
x1

c3
c x2
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The proof proceeds by giving a series of reductions demonstrating that by
reordering the application of the result operation one of the conclusions of the
lemma holds. A reduction will be given for every possible configuration of the
initial series of resultants.

There are four possible configurations that lead to different combinations of
the variables being eliminated in the sequence of resultant steps. The skeletons
of these four cases are given in Figure 3. These are treated with the greatest
generality possible. If some of the variables occurring in the sequence of resultant
steps are identical these four possible configurations gives rise to a number of
subcases that need to be considered.

First, the cases where all variables occurrences are distinct are considered.

1. Where c0 ≡ a0x + b0y ≤ e0, c1 ≡ a1x + b1u ≤ e1 c2 ≡ a2u + b2v ≤ e2
and c3 ≡ a3v + b3z ≤ e3, with x0 = x, x1 = u, x2 = v (and the variables
x, y, u, v, z are distinct), the derivation gives:

c = |a1||a2||a3|b0y + |a0||b1||b2|b3z ≤
|a1||a2||a3|e0 + |a0||a2||a3|e1 + |a0||a3||b1|e2 + |a0||b1||b2|e3

where a0a1 < 0, b1a2 < 0 and b2a3 < 0. The reduction here is to the
following:

c0
c1 c2
c12

u

c′12
x

c3
c v

that is c = result(result(c0, result(c1, c2, u), x), c3, v). Put d0 = result(c1, c2, u),
d1 = c3, y0 = x and y1 = v. Since I is complete, either d0 ∈ I
and the result holds or d0 /∈ I therefore I |= d0, hence by Lemma 6
result(c0, result(c1, c2, u), x) /∈ complete(I∪{c0}) thence again by Lemma 6
c /∈ complete(I ∪ {c0}).
An alternative reduction, that c = result(result(result(c0, c1, x), c2, u), c3, v)
reduces to c = result(result(c0, c1, x), result(c2, c3, v), u), is also available:

c0 c1
c′1

x c2 c3
c23

v

c u

Put d0 = c1 ∈ I, d1 = result(c2, c3, v), y0 = x and y1 = u. Since I
is complete, either d1 ∈ I and the result holds or d1 /∈ I and therefore
I |= d1, hence by Lemma 6 c /∈ complete(I ∪ {c0}).

2. Consider the case where c0, c1, c2 are as above and c3 ≡ a3y+b3z ≤ e3 and
x0 = x, x1 = u, x2 = y. In this case c = result(result(result(c0, c1, x), c2, u), c3, y)
reduces to c = result(result(c0, result(c1, c2, u), x), c3, y). The argument
that the result holds is the same as for case 1.

3. Consider the case where c0, c1 are as above and c2 ≡ a2y + b2v ≤ e2,
c3 ≡ a3u+ b3z ≤ e3 and x0 = x, x1 = y, x2 = u. In this case

c = result(result(result(c0, c1, x), c2, y), c3, u)
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reduces to
c = result(result(c0, result(c1, c3, u), x), c2, y)

Again, the argument that the result holds is as for case 1. As in case 1,
an alternative is possible, where the reduction is to

c = result(result(c0, c2, y), result(c1, c3, u))

4. Consider the case where c0, c1 are as above and c2 ≡ a2y + b2v ≤ e2,
c3 ≡ a3v + b3z ≤ e3 and x0 = x, x1 = y, x2 = v. In this case

c = result(result(result(c0, c1, x), c2, y), c3, v)

reduces to
c = result(result(c0, c1, x), result(c2, c3, v), y)

Here, the argument that the result holds is similar to that for the alter-
native reduction in case 1.

In each of the above four reductions the variables are assumed to be distinct.
When this restriction is lifted there arise a number of subcases to be considered.
Note that |vars(c)| = 2, hence any identities which give |vars(c)| 6= 2 are not
possible.

1. When the eliminated variables are x, u, v it is possible that z = x or z = u
or v = x. In the first two cases the reductions go through unchanged. In
the third case it should be noted that only the second of the two reductions
given goes through. It is also possible that both v = x and z = u, and
again, the second of the two reductions goes through.

2. Next, consider the case where the eliminated variables are x, u, y.

(a) Suppose that x and z are the same variable. Then the reduction still
holds.

(b) Suppose that z and u are the same variable. Then the reduction still
holds.

(c) Suppose that x and v are the same variable. Then c0 ≡ a0x+ b0y ≤
e0, c1 ≡ a1x+b1u ≤ e1, c2 ≡ a2u+b2x ≤ e2 and c3 ≡ a3y+b3z ≤ e3.
This means that

c = |a0||a3||b1|b2x+ |a1||a2||b0|b3z ≤
|a1||a2||a3|e0 + |a0||a2||a3|e1 + |a0||a3||b1|e2 + |a1||a2||b0|e3

Now consider the following two eliminations, defining c′3 and c12:

a0x+ b0y ≤ e0 a3y + b3z ≤ e3
|a3|a0x+ |b0|b3z ≤ |a3|e0 + |b0|e3

y

and
a1x+ b1u ≤ e1 a2u+ b2x ≤ e2
|a2|a1x+ |b1|b2x ≤ |a2|e1 + |b1|e2

u
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Since a0a1 < 0
c′3 c12

c
+(|a1||a2|,|a0||a3|,0)

If c12 ∈ complete(I) then c is redundant because it is a linear combi-
nation of c′3 and c12. If c12 6∈ complete(I) but c′3 ∈ complete(I ∪{c0})
then by Lemma 6 it also follows that c is redundant. Likewise if
c′3 6∈ complete(I ∪ {c0}). In all cases, the pre-condition of the lemma
that c ∈ complete(I ∪ {c0}) is contradicted. This case also goes
through when both x = v and z = u.

3. Now consider the case where the eliminated variables are x, y, u.

(a) Suppose that x and z are the same variables, then c0 ≡ a0x+b0y ≤ e0,
c1 ≡ a1x + b1u ≤ e1, c2 ≡ a2y + b2v ≤ e2 and c3 ≡ a3u + b3x ≤ e3.
This means that

c = |a1||a3||b0|b2v + |a0||a2||b1|b3x ≤
|a1||a2||a3|e0 + |a0||a2||a3|e1 + |a1||a3||b0|e2 + |a0||a2||b1|e3

Now consider the following two eliminations, defining c′2 and c13:

a0x+ b0y ≤ e0 a2y + b2v ≤ e2
|a2|a0x+ |b0|b2v ≤ |a2|e0 + |b0|e2

y

and
a1x+ b1u ≤ e1 a3u+ b3x ≤ e3
|a3|a1x+ |b1|b3x ≤ |a3|e1 + |b1|e3

u

then
c′2 c13

c
+(|a1||a3|,|a0||a2|,0)

Hence, c is redundant, contradicting the pre-condition of the lemma
that c ∈ complete(I ∪ {c0}).

(b) Suppose that y and z are the same variable. Then note that only the
second of the two reductions given holds.

(c) Suppose that v and x are the same variable, then the reduction still
holds.

(d) Suppose that x and v, and y and z, are the same variable. Then
c0 ≡ a0x + b0y ≤ e0, c1 ≡ a1x + b1u ≤ e1, c2 ≡ a2y + b2x ≤ e2 and
c3 ≡ a3u+ b3y ≤ e3. This means that

c = |a1||a3||b0|b2x+ |a0||a2||b1|b3y ≤
|a1||a2||a3|e0 + |a0||a2||a3|e1 + |a1||a3||b0|e2 + |a0||a2||b1|e3

Now consider the following two eliminations, defining c′2 and c13:

a0x+ b0y ≤ e0 a2y + b2x ≤ e2
|a2|a0x+ |b0|b2x ≤ |a2|e0 + |b0|e2

y
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and
a1x+ b1u ≤ e1 a3u+ b3y ≤ e3
|a3|a1x+ |b1|b3y ≤ |a3|e1 + |b1|e3

u

then
c′2 c13

c
+(|a1||a3|,|a0||a2|,0)

Hence, c is redundant, contradicting the pre-condition of the lemma
that c ∈ complete(I ∪ {c0}).

4. Now consider the case where the eliminated variables are x, y, v.

(a) Suppose that y and z are the same variable. Then: c0 ≡ a0x+ b0y ≤
e0, c1 ≡ a1x+b1u ≤ e1, c2 ≡ a2y+b2v ≤ e2 and c3 ≡ a3v+b3y ≤ e3.
This means that

c = |a0||a2||a3|b1u+ |a1||b0||b2|b3y ≤
|a1||a2||a3|e0 + |a0||a2||a3|e1 + |a1||a3||b0|e2 + |a1||b0||b2|e3

Now consider the following two eliminations, defining c′1 and c23:

a0x+ b0y ≤ e0 a1x+ b1u ≤ e1
|a1|b0y + |a0|b1u ≤ |a1|e0 + |a0|e1

x

and
a2y + b2v ≤ e2 a3v + b3y ≤ e3
|a3|a2y + |b2|b3y ≤ |a3|e2 + |b2|e3

v

then
c′1 c23

c
+(|a2||a3|,|a1||b0|,0)

Hence, c is redundant, contradicting the pre-condition of the lemma
that c ∈ complete(I ∪ {c0}).

(b) Suppose that x and z are the same variable, then the reduction still
holds.

(c) Suppose that x and v are the same variable, then the reduction still
holds. �

Lemma 8. Suppose vars(c) = {x}, vars(c1), vars(c2) ⊆ {x} and that {c1, c2} |=
c. Then either c1 |= c or c2 |= c.

Proof 8. If |vars(ci)| = 0 for i = 1 or i = 2 then the result follows immediately.
Suppose that c1, c2 and c are:

c1 ≡ a1x ≤ e1 c2 ≡ a2x ≤ e2 c ≡ (a1 + a2)x ≤ e1 + e2 + δ ≡ ax ≤ e

Then for a1, a2 6= 0, it is supposed that any multipliers λi have been absorbed
into coefficients a1, a2 and that δ ≥ 0):
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First suppose that sign(a1) = sign(a2), hence sign(a1 + a2) = sign(a) and
it can further be assumed that |a1| = |a2| = 1. Without loss of generality
e1
|a1| ≤

e2
|a2| (hence c1 |= c2). Then:

2x ≤ 2
e1
|a1|
≤ e1
|a1|

+
e2
|a2|
≤ e1 + e2 + δ

and c1 |= c.
Next suppose that sign(a1) 6= sign(a2). Consistency implies that:

0 ≤ e1 +
e2|a1|
|a2|

Without loss of generality assume that sign(a1) = sign(a1+a2), hence |a1| ≥ |a2|
and |a1 + a2| = |a1| − |a2|.

Observe that:

0 ≤ e1 +
e2|a1|
|a2|

e1|a1|
|a2|

≤ e1 +
e2|a1|
|a2|

+
e1|a1|
|a2|

e1|a1| − e1|a2| ≤ e1|a1|+ e2|a1|
e1(|a1| − |a2|) ≤ (e1 + e2)|a1|

Hence
e1
|a1|
≤ e1 + e2
|a1 − a2|

=
e1 + e2
|a1|+ |a2|

and the result holds. �

Lemma 9 (Unary inequalities). Suppose that I ⊆ TVPIX and complete(I) =
I. Suppose c0 ∈ TVPIX and that c ∈ complete(I ∪ {c0}) where

c = result(result(result(c0, c1), c2), c3)

and |vars(c)| = 1, c1, c2 ∈ I and c3 ∈ I ∪ {c0}. Then there exists d0, d1 ∈ I such
that one of the following holds:

1. c = result(result(c0, d0), d1)

2. c = result(c0, d0)

Proof 9. Figure 4 gives the structure of three resultant steps, and skeletons
(the variables occurring in each inequality) for each of the fifteen possible con-
figurations where three resultant steps end in a unary inequality. Each case will
be analysed in turn (many of these can be treated similarly). The algebraic
detail is shown in cases where detailed manipulation is required.
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1. Where c0 ≡ a0x+ b0u ≤ e0, c1 ≡ a1z + b1u ≤ e1, c2 ≡ a2z + b2y ≤ e2 and
c3 ≡ a3y ≤ e3. Consider:

c0 c1
c′1

u c2 c3
c23

y

c z

c23 = result(c2, c3, y) is a unary inequality, hence either c23 ∈ I and case
1 holds or c23 6∈ I and by Lemma 6 c /∈ complete(I ∪ {c0}). Note that the
result still holds if u = y.

2. Where c0 ≡ a0z + b0u ≤ e0, c1 ≡ a1y+ b1u ≤ e1, c2 ≡ a2x+ b2z ≤ e2 and
c3 ≡ a3y ≤ e3. Consider:

c0
c1 c3
c13

y

c′13
u

c2
c z

c13 = result(c1, c3, y) is a unary inequality, hence either c13 ∈ I and case
1 holds or c13 /∈ I and by Lemma 6 c /∈ complete(I ∪ {c0}). Note that the
result still holds if u = x.

3. Where c0 ≡ a0z + b0u ≤ e0, c1 ≡ a1y + b1u ≤ e1, c2 ≡ a2z ≤ e2 and
c3 ≡ a3x+ b3y ≤ e3. The original derivation is:

a0z + b0u ≤ e0 a1y + b1u ≤ e1
|b1|a0z + |b0|a1y ≤ |b1|e0 + |b0|e1

u
a2z ≤ e2

|a2||b0|a1y ≤ |a2||b1|e0 + |a2||b0|e1 + |a0||b1|e2
z

a3x+ b3y ≤ e3
|a1||a2||b0|a3x ≤ |a2||b1||b3|e0 + |a2||b0||b3|e1 + |a0||b1||b3|e2 + |a1||a2||b0|e3

y

Hence the same inequality might be derived

a0z + b0u ≤ e0 a2z ≤ e2
|a2|b0u ≤ |a2|e0 + |a0|e2

z
a1y + b1u ≤ e1 a3x+ b3y ≤ e3
|a1|a3x+ |b3|b1u ≤ |b3|e1 + |a1|e3

y

|a1||a2||b0|a3x ≤ |a2||b1||b3|e0 + |a2||b0||b3|e1 + |a0||b1||b3|e2 + |a1||a2||b0|e3
u

If c13 = result(c1, c3, y) ∈ I then case 1 holds. If c13 6∈ I then by Lemma 6
c /∈ complete(I ∪ {c0}). Note that the result still holds if z = x.
If in the derivation immediately above u = x, then c′2 and c13 are given
by:

a0z + b0x ≤ e0 a2z ≤ e2
|a2|b0x ≤ |a2|e0 + |a0|e2

z

and
a1y + b1x ≤ e1 a3x+ b3y ≤ e3

(|a1|a3 + |b3|b1)x ≤ |b3|e1 + |a1|e3
y

Hence (scaling with λ1 = |b1||b3| and λ2 = |a2||b0| respectively)

|a2||b0|(|a1|a3 + |b3|b1)x+ |a2||b1||b3|b0x ≤
|a2||b0|(|b3|e1 + |a1|e3) + |b1||b3|(|a2|e0 + |a0|e2)
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Noting that b0b1 < 0 this gives

|a1||a2||b0|a3x ≤ |b1||b3||a2|e0 + |a2||b0||b3|e1 + |a0||b1||b3|e2 + |a1||a2||b0|e3

Hence by Lemma 8 c′2 |= c or c13 |= c. In the former case then either case
2 has been demonstrated or c /∈ complete(I ∪ {c0}). In the latter case,
either c ∈ I or c /∈ complete(I ∪ {c0}). In all cases the result holds.

4. Where c0 ≡ a0z + b0u ≤ e0, c1 ≡ a1y + b1u ≤ e1, c2 ≡ a2z + b2y ≤ e2 and
c3 ≡ a3x+ b3y ≤ e3. The original derivation gives:

c = |(|a2||b0|a1 + |a0||b1|b2)|a3x ≤
|a2||b1||b3|e0 + |a2||b0||b3|e1 + |a0||b1||b3|e2+
|(|a2||b0|a1 + |a0||b1|b2)|e3

There are three subcases to consider:

(a) where a1b3 < 0, but b2b3 ≥ 0
(b) where a1b3 ≥ 0, but b2b3 < 0
(c) where a1b3 < 0 and b2b3 < 0

Consider each of these in turn:

(a) Here

c0
c1 c2
c12

y

c′12
z c1 c3

c13
y

c′
u

where c′ is:

|(|a1||a2|b0 + |a0||b2|b1)||a1|a3x ≤
|(|a1||a2|b0 + |a0||b2|b1)|(|b3|e1 + |a1|e3)+
|b1||b3|(|a1||a2|e0 + |a0||b2|e1 + |a0||a1|e2)

Note that b0b1 < 0, a1b2 < 0 and |a1||a2||b0| > |a0||b2||b1|. Dividing
through by |a1| shows that c′ ≡ c and case 1 of the result holds, except
in the case where one or both of result(c1, c2, y) and result(c1, c3, y) are
redundant. In these cases Lemma 6 shows that c′ ≡ c /∈ complete(I ∪
{c0}). Note that the result still holds if z = x.
However, if u = x, instead consider derivations of c13 and c′21

a1y + b1x ≤ e1 a3x+ b3y ≤ e3
(|b3|b1 + |a1|a3)x ≤ |b3|e1 + |a1|e3

y

and

a0z + b0x ≤ e0 a2z + b2y ≤ e2
|a2|b0x+ |a0|b2y ≤ |a2|e0 + |a0|e2

z
a1y + b1x ≤ e1

(|a1||a2|b0 + |a0||b2|b1)x ≤ |a1||a2|e0 + |a0||a1|e2 + |a0||b2|e1
y
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Combining with λ1 = |(|a2||b0|a1 + |a0||b1|b2)| and λ2 = |b1||b3|

(|(|a2||b0|a1 + |a0||b1|b2)||b3|b1 + |(|a2||b0|a1 + |a0||b1|b2)||a1|a3
|a1||a2||b1||b3|b0 + |a0||b1||b2||b3|b1)x

≤
(||a2||b0|a1 + |a0||b1|b2|)(|b3|e1 + |a1|e3)+
|b1||b3|(|a1||a2|e0 + |a0||a1|e2 + |a0||b2|e1)

Which, noting that (|a2||b0|b1 + |a0||b1|b2)b3 < 0 and that b0b1 < 0
simplifies to (after dividing through by |a1|):

|(|a2||b0|a1 + |a0||b1|b2)|a3x
≤

|a2||b1||b3|e0 + |a2||b0||b3|e1 + |a0||b1||b3|e2 + |(|a2||b0|a1 + |a0||b1|b2)|e3

By Lemma 8 this demonstrates that either c13 |= c or c′21 |= c. In the
first case either c ∈ I or c /∈ complete(I ∪ {c0}). In the second case
either case 1 of the lemma holds or c /∈ complete(I ∪ {c0}).

(b) This is symmetric to the previous case.
(c) Here, the following:

c0
c1 c3
c13

y

c′13
u c2 c3

c23
y

c′
z

where c′ is

(|a1||a2||b0||b3|a3 + |b1||b3||a0||b2|a3)x ≤
|b1||a2||b3||b3|e0 + |b0||a2||b3||b3|e1+
|a1||b0||a2||b3|e3 + |a0||b1||b3||b3|e2 + |a0||a2||b1||b3|e3

Note that sign(a1) = sign(b2), hence |a1||a2||b0|a3 + |b1||a0||b2|a3 =
|(|a2||b0|a1+|b1||a0|b2)|a3 after dividing through by |b3|. This demon-
strates that c′ ≡ c and that case 1 of the lemma holds unless one or
both of result(c1, c3, y) and result(c2, c3, y) are redundant, in which
case by Lemma 6 c /∈ complete(I ∪ {c0}).
If u = x, then consider the derivations of c′23 and c13

a0z + b0x ≤ e0 a2z + b2y ≤ e2
|a2|b0x+ |a0|b2y ≤ |a2|e0 + |a0|e2

z
a3x+ b3y ≤ e3

(|a2||b3|b0 + |a0||b2|a3)x ≤ |a2||b3|e0 + |a0||b3|e2 + |a0||b2|e3
y

and
a1y + b1x ≤ e1 a3x+ b3y ≤ e3

(|b3|b1 + |a1|a3)x ≤ |b3|e1 + |a1|e3
y

With λ1 = |b1| and λ2 = |a2||b0| and noting that b0b1 < 0, this gives

(|a1||a2||b0|+ |a0||b1||b2|)a3x ≤
|a2||b1||b3|e0 + |a2||b0||b3|e1 + |a2||b1||b3|e2+
(|a0||b1||b2|+ |a1||a2||b0|)e3
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and since sign(a1) = sign(b2)

|(|a2||b0|a1 + |a0||b1|b2)|a3x ≤
|a2||b1||b3|e0 + |a2||b0||b3|e1 + |a2||b1||b3|e2+
(|a2||b0|a1 + |a0||b1|b2)e3

Which by Lemma 8 demonstrates that either c′23 |= c or c13 |= c. In
the first case either case 1 of the lemma holds or c′ ≡ c /∈ complete(I∪
{c0}), in which case the lemma does not apply to c. In the second
case c′ ≡ c ∈ I or c′ ≡ c /∈ complete(I ∪ {c0}). This gives the result.
If z = x, then consider derivations of c′13 and c23

a0x+ b0u ≤ e0 a1y + b1u ≤ e1
|b1|a0x+ |b0|a1y ≤ |b1|e0 + |b0|e1

u
a3x+ b3y ≤ e3

(|b1||b3|a0 + |a1||b0|a3)x ≤ |b1||b3|e0 + |b0||b3|e1 + |b0||a1|e3
y

and
a2x+ b2y ≤ e2 a3x+ b3y ≤ e3

(|b3|a2 + |b2|a3)x ≤ |b3|e2 + |b2|e3
y

With λ1 = |a2| and λ2 = |a0||b1| and noting that a0a2 < 0 this gives

(|a1||a2||b0|+ |a0||b1||b2|)a3x ≤
|a2||b1||b3|e0 + |a2||b0||b3|e1 + |a0||b1||b3|e2+
(|a2||b0||a1|+ |a0||b1||b2|)e3

and since sign(a1) = sign(a2)

|(|a1||b0|a2 + |a0||b1|b2)|a3x ≤
|a2||b1||b3|e0 + |a2||b0||b3|e1 + |a0||b1||b3|e2+
(|a2||b0||a1|+ |a0||b1||b2|)e3

and by Lemma 8 this demonstrates that either c′13 |= c or c23 |= c.
In the first case either case 1 of the lemma holds or c /∈ complete(I ∪
{c0}). In the second case c ∈ I or c /∈ complete(I ∪ {c0}). This gives
the result.

5. Where c0 ≡ a0z + b0u ≤ e0, c1 ≡ a1u ≤ e1, c2 ≡ a2z + b2y ≤ e2,
c3 ≡ a3x+ b3y ≤ e3, the initial derivation is:

c0 c1
c′1

u
c2

c′2
z

c3
c

y

This can be rewritten to:

c0 c1
c′1

u c2 c3
c23

y

c z
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If c23 ∈ I this demonstrates case 1 of the result, or else c23 is redundant
and by Lemma 6 c /∈ complete(I ∪{c0}). Note that the result still holds if
u = y or if u = x.
If z = x consider c′1 and c23

c0 c1
c′1

u c2 c3
c23

y

then {c′1, c23} |= c and again by Lemma 8 either c′1 |= c or c23 |= c. If the
former then either case 2 of the result holds or c /∈ complete(I ∪ {c0}). In
the latter then either c ∈ I or c /∈ complete(I ∪ {c0}).

6. As case 5.

7. As case 5.

8. Where c0 ≡ a0z + b0u ≤ e0, c1 ≡ a1y + b1u ≤ e1, c2 ≡ a2x + b2z ≤ e2,
c3 ≡ a3x+ b3y ≤ e3, the initial derivation is:

c0 c1
c′1

u
c2

c′2
z

c3
c

y

This can be rewritten to:

c0 c2
c′2

z c1 c3
c13

y

c u

If c13 ∈ I this demonstrates case 1 of the result. If c13 /∈ I by Lemma 6
c /∈ complete(I ∪ {c0}). Note that if u = x then {c′2, c13} |= c and again
by Lemma 8 either c′2 |= c or c13 |= c. If the former then either case 2 of
the lemma holds or c /∈ complete(I ∪ {c0}). If the latter then either c ∈ I
or c /∈ complete(I ∪ {c0}).

9. Where c0 ≡ a0y + b0u ≤ e0, c1 ≡ a1z + b1u ≤ e1, c2 ≡ a2z + b2y ≤ e2,
c3 ≡ a3x+ b3y ≤ e3, the initial derivation is:

c0 c1
c′1

z
c2

c′2
u

c3
c

y

This can be rewritten to:

c0
c1 c2
c12

z

c′12
u

c3
c

y

If c12 ∈ I this demonstrates case 1 of the result. Else c12 /∈ I and by
Lemma 6 c /∈ complete(I ∪ {c0}). Note that the result still holds if u = x
or if z = x.
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10. As case 1.

11. Where c0 ≡ a0y + b0u ≤ e0, c1 ≡ a1z + b1u ≤ e1, c2 ≡ a2x + b2z ≤ e2,
c3 ≡ a3y ≤ e3, the initial derivation is:

c0 c1
c′1

u
c2

c′2
z

c3
c

y

This can be rewritten to:

c0 c3
c′3

y c1 c2
c12

z

c u

Either c12 ∈ I and this demonstrates case 1 of the result, or c12 /∈ I and
by Lemma 6 c /∈ complete(I ∪ {c0}). Note that if u = x then {c′3, c12} |= c
and again by Lemma 8 either c′3 |= c or c12 |= c. For the former, either
case 2 of the lemma holds or c /∈ complete(I ∪ {c0}). For the latter, either
c ∈ I or c /∈ complete(I ∪ {c0}).

12. As case 5.

13. As case 11.

14. As case 9.

15. As case 9. �

Lemma 10 (Linearisation). Let I ⊆ TVPIX . Further, suppose that c0, c1, . . . , cj ∈
I and d0, d1, . . . , dk ∈ I where j, k ∈ N. Where c′0 = c0 and d′0 = d0, define
c′i+1 = result(c′i, ci+1, xi), where xi ∈ X and also define d′i+1 = result(d′i, di+1, yi),
where yi ∈ X. Consider c = result(c′j , d

′
k, z), where z ∈ X. Then there exists

f0, f1, . . . , f` ∈ I, where f0 = f ′0 = c0, f ′i+1 = result(f ′i , fi+1, wi), wi ∈ X, and
at least one of the following holds:

1. c ≡ f ′`
2. c is redundant with respect to complete(I), that is, complete(I) |= c and
c 6∈ complete(I)

3. c ≡ false

Proof 10. If c = result(c′j , d0, z), then case 1 is immediate. If c = result(c0, d
′
k, z),

note the symmetry of the premisses (so that c = result(c′j , d
′
k, z) = result(d′k, c

′
j , z)),

hence case 1 is again immediate.
The remainder of the result is presented as a series of rewriting rules for

derivations for which it will be argued that repeated application will establish
the result. The basic case is that when all variables are distinct; this is followed
by cases where these variables may coincide with each other.

Where j, k ≥ 0 consider c = result(c′j+1, d
′
k+1, z).

• Suppose x, y, z, w are distinct variables. Then (where all coefficients are
non-zero) there are two possibilities, corresponding to the premiss of d′k+1

that z derives from:
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1.

a1x+ b1z ≤ e1
a2z + b2w ≤ e2 a3w + b3y ≤ e3
|a3|a2z + |b2|b3y ≤ |a3|e2 + |b2|e3

w

|a2||a3|a1x+ |b1||b2|b3y ≤ |a2||a3|e1 + |a3||b1|e2 + |b1||b2|e3
z

which can be rewritten to:

a1x+ b1z ≤ e1 a2z + b2w ≤ e2
|a2|a1x+ |b1|b2w ≤ |a2|e1 + |b1|e2

z
a3w + b3y ≤ e3

|a2||a3|a1x+ |b1||b2|b3y ≤ |a2||a3|e1 + |a3||b1|e2 + |b1||b2|e3
w

That is,

c = result(c′j+1, result(d′k, dk, w), z) = result(result(c′j+1, d
′
k, z), dk, w)

2. Symmetrically

a1x+ b1z ≤ e1
a2y + b2w ≤ e2 a3w + b3z ≤ e3
|a3|a2y + |b2|b3z ≤ |a3|e2 + |b2|e3

w

|b2||b3|a1x+ |a3||b1|a2y ≤ |b2||b3|e1 + |b1||a3|e2 + |b1||b2|e3
z

which can be rewritten to:

a1x+ b1z ≤ e1 a3w + b3z ≤ e3
|b3|a1x+ |b1|a3w ≤ |b3|e1 + |b1|e3

z
a2y + b2w ≤ e2

|b2||b3|a1x+ |a3||b1|a2y ≤ |b2||b3|e1 + |a3||b1|e2 + |b1||b2|e3
w

That is,

c = result(c′j+1, result(d′k, dk, w), z) = result(result(c′j+1, dk, z), d
′
k, w)

• Now suppose that in the above x = y and the other variables are still
distinct. Observe that the two rewritings are still valid (since x and y are
not eliminated).

• Next suppose that in the above x = z and that the other variables are still
distinct. Observe that the initial derivations can describe this situation
by putting a1 = 0 and that the two rewritings are still valid.

• Next suppose that in the above y = w and that the other variables are still
distinct. Observe that the initial derivations can describe this situation
by putting b3 = 0 in the first case and a2 = 0 in second, and that the two
rewritings are still valid.

• Notice that if in the above z = w and the other variables are still distinct,
then the final resultant eliminating z is not possible.

• If y = z and the remaining variables are still distinct, then result(c′j+1, d
′
k+1, z)

can be rewritten to result(d′k+1, c
′
j+1, z).
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• Suppose that x = w and x, y, z are distinct

a1x+ b1z ≤ e1
a2z + b2x ≤ e2 a3x+ b3y ≤ e3
|a3|a2z + |b2|b3y ≤ |a3|e2 + |b2|e3

x

|a2||a3|a1x+ |b1||b2|b3y ≤ |a2||a3|e1 + |a3||b1|e2 + |b1||b2|e3
z

allows c12 and c3:

a1x+ b1z ≤ e1 a2z + b2x ≤ e2
(|a2|a1 + |b1|b2)x ≤ |a2|e1 + |b1|e2

z
and a3x+ b3y ≤ e3

Similarly,

a1x+ b1z ≤ e1
a2y + b2x ≤ e2 a3x+ b3z ≤ e3
|a3|a2y + |b2|b3z ≤ |a3|e2 + |b2|e3

x

|b2||b3|a1x+ |a3||b1|a2y ≤ |b2||b3|e1 + |a3||b1|e2 + |b1||b2|e3
z

allows c13 and c2:

a1x+ b1z ≤ e1 a3x+ b3z ≤ e3
(|b3|a1 + |b1|a3)x ≤ |b3|e1 + |b1|e3

z
and a2y + b2x ≤ e2

In the first case, since b2a3 < 0, |a3||b1|b2x + |b1||b2|a3x = 0. Observe
that |a3|(|a2|a1 + |b1|b2)x+ |b1||b2|(a3x+ b3y) = |a2||a3|a1x+ |a3||b1|b2x+
|b1||b2|a3x+ |b1||b2|b3y = |a2||a3|a1x+ |b1||b2|b3y. Hence {c12, c3} |= c that
is, case 2 holds.

Note that this holds whether or not |a2|a1 + |b1|b2 = 0. If the equality
holds then c12 is either true or false.

For the second rewriting, case 2 holds by an analogous argument.

• Suppose that x = w and y = z, then result(c′j+1, d
′
k+1, z) can be rewritten

to result(d′k+1, c
′
j+1, z).

• Suppose that x = y and z = w. This is not possible.

• Suppose that x = z and y = w. Then observe that the two rewritings are
still valid.

• Suppose that x = y = w. Then result(c′j+1, d
′
k+1, z) can be rewritten to

result(d′k+1, c
′
j+1, z).

• Suppose that x = y = z, with w distinct. That is, c ≡ true or c ≡ false.
Then case 2 and case 3 apply respectively.

• Suppose that x = z = w, with y distinct. This is not possible.

• Suppose that y = z = w, with x distinct. This is not possible.

• Suppose that x = y = z = w. This is not possible.
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Associate a weight to the derivation of inequality c, c = result(c1, c2, v).
This weight is an ordered triple (n, |vars(c1)|, size(c2)), where n is the number of
inequalities above c in the derivation with a right premiss with size greater than
0. In the original derivation of c, observe that at most one result operation has
size(c2) > 0 (that is, n ≤ 1). Now observe that each rewriting step results in
at most one result step with the size of the second argument greater than zero
(again n ≤ 1). Hence the weights are totally ordered. The rewriting process
has terminated if there are no result steps with right premiss with size greater
than 0 (i.e. when n = 0), or when it is observed that the concluding inequality
is redundant. Now observe that for each rewriting step either c is found to be
redundant or the weight of the derivation of c is strictly less than previously.
Hence by induction the result holds. �

Lemma 11 (Multiple use: part 1). Let c0, c1 ∈ TVPIX , where vars(c0) =
{x, y}. If c = result(result(c0, c1, x), c0, y) then there exists c′ = result(c0, c1, y)
such that c ≡ c′.

Proof 11. Where c0 ≡ a0x + b0y ≤ e0, c1 ≡ a1x + b1y ≤ e1, suppose that
c′1 ≡ result(c0, c1, x) and c ≡ result(c′1, c0, y), that is:

a0x+ b0y ≤ e0 a1x+ b1y ≤ e1
(|a1|b0 + |a0|b1)y ≤ |a1|e0 + |a0|e1

x
a0x+ b0y ≤ e0

|(|a1|b0 + |a0|b1)|a0x ≤ |a1||b0|e0 + |a0||b0|e1 + |(|a1|b0 + |a0|b1)|e0
y

Notice that:

1. this is the only possible configuration. If b0 = 0 then the second resultant
step is not possible, and if vars(c1) 6= {x, y} one of the two resultant steps
is not possible.

2. a0a1 < 0

3. (|a1|b0 + |a0|b1)b0 < 0, hence b0b1 < 0

4. Hence |a0b1| > |a1b0|

Since b0b1 < 0 c′ = result(c0, c1, y) can be obtained as follows:

a0x+ b0y ≤ e0 a1x+ b1y ≤ e1
(|b1|a0 + |b0|a1)x ≤ |b1|e0 + |b0|e1

y

It will be demonstrated below that c = |a0|c′ (i.e. c ≡ c′). There are four
cases to consider, depending on the signs of a0, b0, a1, b1.

1. b0 > 0, b1 < 0, a0 > 0, a1 < 0. First consider the coefficient:

|(|a1|b0 + |a0|b1)|a0 = a0(−|a1|b0 − |a0|b1)

= a0(|b0|a1 + |b1|a0)

= |a0|(|b0|a1 + |b1|a0)
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Second consider the constant:

|a1||b0|e0 + |a0||b0|e1 + |(|a1|b0 + |a0|b1)|e0 = |a1||b0|e0 + |a0||b0|e1
− |a1|b0e0 − |a0|b1e0

= |a0|(|b0|e1 + |b1|e0)

2. b0 > 0, b1 < 0, a0 < 0, a1 > 0. First consider the coefficient:

|(|a1|b0 + |a0|b1)|a0 = a0(−|a1|b0 − |a0|b1)

= a0(−|b0|a1 − |b1|a0)

= |a0|(|b0|a1 + |b1|a0)

Second consider the constant:

|a1||b0|e0 + |a0||b0|e1 + |(|a1|b0 + |a0|b1)|e0 = |a1||b0|e0 + |a0||b0|e1
− |a1|b0e0 − |a0|b1e0

= |a0|(|b0|e1 + |b1|e0)

3. b0 < 0, b1 > 0, a0 > 0, a1 < 0. First consider the coefficient:

|(|a1|b0 + |a0|b1)|a0 = a0(|a1|b0 + |a0|b1)

= a0(|b0|a1 + |b1|a0)

= |a0|(|b0|a1 + |b1|a0)

Second consider the constant:

|a1||b0|e0 + |a0||b0|e1 + |(|a1|b0 + |a0|b1)|e0 = |a1||b0|e0 + |a0||b0|e1
+ |a1|b0e0 + |a0|b1e0

= |a0|(|b0|e1 + |b1|e0)

4. b0 < 0, b1 > 0, a0 < 0, a1 > 0. First consider the coefficient:

|(|a1|b0 + |a0|b1)|a0 = a0(|a1|b0 + |a0|b1)

= a0(−|b0|a1 − |b1|a0)

= |a0|(|b0|a1 + |b1|a0)

Second consider the constant:

|a1||b0|e0 + |a0||b0|e1 + |(|a1|b0 + |a0|b1)|e0 = |a1||b0|e0 + |a0||b0|e1
+ |a1|b0e0 + |a0|b1e0

= |a0|(|b0|e1 + |b1|e0)

In each case the result holds. �

Lemma 12 (Multiple use: part 2). Suppose that I ⊆ TVPIX , complete(I) =
I and c1, c2 ∈ I. If c ∈ complete(I∪{c0}), where c = result(result(result(c0, c1), c2), c0),
with |vars(c)| ≥ 1, then there is d0 ∈ I such that c ≡ result(c0, d0).
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Proof (Lemma 12). The potential combinations of variables occurring (and
being eliminated) in c0, c1 and c2 are given in Figure 6. The four numbered
derivation skeletons correspond to the cases of the proof, the three (∗) cases are
not possible.

Each of the four potential cases has already been considered in an earlier
lemma.

1. This case is covered by Lemma 7 (compaction), case 4(a). This showed
that:

c0 c1
c′1

c2 c0
c20

c +

hence c 6∈ complete(I ∪ {c0}) and the lemma does not apply. Note that c′1
and c20 are both formed as in the lemma.

2. This case is covered by Lemma 9 (unary inequalities), case 6. This again
showed that:

c0 c1
c′1

c2 c0
c20

c +

hence c 6∈ complete(I ∪ {c0}) and the lemma does not apply. Again, c′1
and c20 are both formed as in the lemma.

3. This case is covered by Lemma 9 (unary inequalities), case 9. This showed
that:

c0
c1 c2
c12

c′12 c0
c

Since c ∈ complete(I ∪ {c0}), c12 is not redundant and this is now an
instance of Lemma 11.

4. This case matches Lemma 9 (unary inequalities), case 12. However, a
different analysis is needed. Where c0 ≡ a0x+b0y ≤ e0, c1 ≡ a1y+b1z ≤ e1
and c2 ≡ a2y + b2z ≤ e2, c = result(result(result(c0, c1, y), c2, z), c0, y) is
given by

(|a1||b0||b2|+ |a2||b0||b1|)a0x
≤

(|a1||b0||b2|+ |a2||b0||b1|)e0 + |b0||b0||b2|e1 + |b0||b0||b1|e2

Now observe that result(c0, result(c1, c2, z), y) is given by

|(|b2|a1 + |b1|a2)|a0x ≤ |(|b2|a1 + |b1|a2)|e0 + |b0||b2|e1 + |b0||b1|e2

and since a1a2 > 0

(|a1||b2|+ |a2||b1|)a0x ≤ (|a1||b2|+ |a2||b1|)e0 + |b0||b2|e1 + |b0||b1|e2

and multiplying through by |b0| gives the result. �
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