3,055 research outputs found

    Loo.py: transformation-based code generation for GPUs and CPUs

    Full text link
    Today's highly heterogeneous computing landscape places a burden on programmers wanting to achieve high performance on a reasonably broad cross-section of machines. To do so, computations need to be expressed in many different but mathematically equivalent ways, with, in the worst case, one variant per target machine. Loo.py, a programming system embedded in Python, meets this challenge by defining a data model for array-style computations and a library of transformations that operate on this model. Offering transformations such as loop tiling, vectorization, storage management, unrolling, instruction-level parallelism, change of data layout, and many more, it provides a convenient way to capture, parametrize, and re-unify the growth among code variants. Optional, deep integration with numpy and PyOpenCL provides a convenient computing environment where the transition from prototype to high-performance implementation can occur in a gradual, machine-assisted form

    Soft-error resilient on-chip memory structures

    Get PDF
    Soft errors induced by energetic particle strikes in on-chip memory structures, such as L1 data/instruction caches and register files, have become an increasing challenge in designing new generation reliable microprocessors. Due to their transient/random nature, soft errors cannot be captured by traditional verification and testing process due to the irrelevancy to the correctness of the logic. This dissertation is thus focusing on the reliability characterization and cost-effective reliable design of on-chip memories against soft errors. Due to various performance, area/size, and energy constraints in various target systems, many existing unoptimized protection schemes on cache memories may eventually prove significantly inadequate and ineffective. This work develops new lifetime models for data and tag arrays residing in both the data and instruction caches. These models facilitate the characterization of cache vulnerability of the stored items at various lifetime phases. The design methodology is further exemplified by the proposed reliability schemes targeting at specific vulnerable phases. Benchmarking is carried out to showcase the effectiveness of these approaches. The tag array demands high reliability against soft errors while the data array is fully protected in on-chip caches, because of its crucial importance to the correctness of cache accesses. Exploiting the address locality of memory accesses, this work proposes a Tag Replication Buffer (TRB) to protect information integrity of the tag array in the data cache with low performance, energy and area overheads. To provide a comprehensive evaluation of the tag array reliability, this work also proposes a refined evaluation metric, detected-without-replica-TVF (DOR-TVF), which combines the TVF and access-with-replica (AWR) analysis. Based on the DOR-TVF analysis, a TRB scheme with early write-back (TRB-EWB) is proposed, which achieves a zero DOR-TVF at a negligible performance overhead. Recent research, as well as the proposed optimization schemes in this cache vulnerability study, have focused on the design of cost-effective reliable data caches in terms of performance, energy, and area overheads based on the assumption of fixed error rates. However, for systems in operating environments that vary with time or location, those schemes will be either insufficient or over-designed for the changing error rates. This work explores the design of a self-adaptive reliable data cache that dynamically adapts its employed reliability schemes to the changing operating environments in order to maintain a target reliability. The experimental evaluation shows that the self-adaptive data cache achieves similar reliability to a cache protected by the most reliable scheme, while simultaneously minimizing the performance and power overheads. Besides the data/instruction caches, protecting the register file and its data buses is crucial to reliable computing in high-performance microprocessors. Since the register file is in the critical path of the processor pipeline, any reliable design that increases either the pressure on the register file or the register file access latency is not desirable. This work proposes to exploit narrow-width register values, which represent the majority of generated values, for making the duplicates within the same register data item. A detailed architectural vulnerability factor (AVF) analysis shows that this in-register duplication (IRD) scheme significantly reduces the AVF in the register file compared to the conventional design. The experimental evaluation also shows that IRD provides superior read-with-duplicate (RWD) and error detection/recovery rates under heavy error injection as compared to previous reliability schemes, while only incurring a small power overhead. By integrating the proposed reliable designs in data/instruction caches and register files, the vulnerability of the entire microprocessor is dramatically reduced. The new lifetime model, the self-adaptive design and the narrow-width value duplication scheme proposed in this work can also provide guidance to architects toward highly efficient reliable system design

    A Study on Performance and Power Efficiency of Dense Non-Volatile Caches in Multi-Core Systems

    Full text link
    In this paper, we present a novel cache design based on Multi-Level Cell Spin-Transfer Torque RAM (MLC STTRAM) that can dynamically adapt the set capacity and associativity to use efficiently the full potential of MLC STTRAM. We exploit the asymmetric nature of the MLC storage scheme to build cache lines featuring heterogeneous performances, that is, half of the cache lines are read-friendly, while the other is write-friendly. Furthermore, we propose to opportunistically deactivate ways in underutilized sets to convert MLC to Single-Level Cell (SLC) mode, which features overall better performance and lifetime. Our ultimate goal is to build a cache architecture that combines the capacity advantages of MLC and performance/energy advantages of SLC. Our experiments show an improvement of 43% in total numbers of conflict misses, 27% in memory access latency, 12% in system performance, and 26% in LLC access energy, with a slight degradation in cache lifetime (about 7%) compared to an SLC cache

    Experimental Benchmarks and Initial Evaluation of the Performance of the PASM System Prototype

    Get PDF
    The work reported here represents experiences with the PASM parallel processing system prototype during its first operational year. Most of the experiments were performed by students in the Fall semester of 1987. The first programming, and the first timing measurements, were made during the summer of 1987 by Sam Fineberg. The goal of the collection of experiments presented here was to undertake an Application-driven Architecture Study of the PASM system as a paradigm for parallel architecture evaluation in general. PASM was an excellent vehicle for experimenting with this evaluation technique due to its unique architectural features. Among these are: 1. A reconfigurable, partitionable multistage circuit-switched network. 2. Support for both SIMD and MIMD programs. 3. Ability to execute hybrid SIMD/MIMD programs. 4. An instruction queue which allows overlap of control-flow and data manipulation between micro-control (MC) units and processing elements (PE). It had been hypothesized that superlinear speed-up over the number of PEs could be attained with this feature, and experimental results verified this. 5. Support for barrier synchronization of MIMD tasks. This feature was exploited in some non-standard ways to show the ability to decouple variant length SIMD instructions into multiple MIMD streams for an overall performance benefit. This type of study is expected to continue in the future on PASM and other parallel machines at Purdue. This report should serve as a guide for this future work as well

    Design and Performance of Scalable High-Performance Programmable Routers - Doctoral Dissertation, August 2002

    Get PDF
    The flexibility to adapt to new services and protocols without changes in the underlying hardware is and will increasingly be a key requirement for advanced networks. Introducing a processing component into the data path of routers and implementing packet processing in software provides this ability. In such a programmable router, a powerful processing infrastructure is necessary to achieve to level of performance that is comparable to custom silicon-based routers and to demonstrate the feasibility of this approach. This work aims at the general design of such programmable routers and, specifically, at the design and performance analysis of the processing subsystem. The necessity of programmable routers is motivated, and a router design is proposed. Based on the design, a general performance model is developed and quantitatively evaluated using a new network processor benchmark. Operational challenges, like scheduling of packets to processing engines, are addressed, and novel algorithms are presented. The results of this work give qualitative and quantitative insights into this new domain that combines issues from networking, computer architecture, and system design

    Content addressable memory: design and usage for general purpose computing

    Get PDF

    Porting Decision Tree Algorithms to Multicore using FastFlow

    Full text link
    The whole computer hardware industry embraced multicores. For these machines, the extreme optimisation of sequential algorithms is no longer sufficient to squeeze the real machine power, which can be only exploited via thread-level parallelism. Decision tree algorithms exhibit natural concurrency that makes them suitable to be parallelised. This paper presents an approach for easy-yet-efficient porting of an implementation of the C4.5 algorithm on multicores. The parallel porting requires minimal changes to the original sequential code, and it is able to exploit up to 7X speedup on an Intel dual-quad core machine.Comment: 18 pages + cove

    Von Neumann bottlenecks in non-von Neumann computing architectures

    Get PDF
    The term "neuromorphic" refers to a broad class of computational devices that mimic various aspects of cortical information processing. In particular, they instantiate neurons, either physically or virtually, which communicate through time-singular events called spikes. This thesis presents a generic RTL implementation of a Point-to-Point chip interconnect protocol that is well-suited to accommodate the unique I/O requirements associated with event-based communication, especially in the case of accelerated mixed-signal neuromorphic devices. A physical realization of such an interconnect was implemented on the most recent version of the BrainScaleS-2 architecture---the HICANN-X system---to facilitate a high-speed bi-directional connection to a host FPGA. Event rates of up to 250MHz full-duplex as well as several stream-secured configuration and memory interface channels are transported via 8*1Gbit/s LVDS DDR serializers. As the presented approach is entirely independent of the serializer implementation, it has applications beyond neuromorphic computing, such as enabling the separation of concerns and aiding the development of serializer-independent protocol bridges for system design
    • …
    corecore