Today's highly heterogeneous computing landscape places a burden on
programmers wanting to achieve high performance on a reasonably broad
cross-section of machines. To do so, computations need to be expressed in many
different but mathematically equivalent ways, with, in the worst case, one
variant per target machine.
Loo.py, a programming system embedded in Python, meets this challenge by
defining a data model for array-style computations and a library of
transformations that operate on this model. Offering transformations such as
loop tiling, vectorization, storage management, unrolling, instruction-level
parallelism, change of data layout, and many more, it provides a convenient way
to capture, parametrize, and re-unify the growth among code variants. Optional,
deep integration with numpy and PyOpenCL provides a convenient computing
environment where the transition from prototype to high-performance
implementation can occur in a gradual, machine-assisted form