Purdue University

Purdue e-Pubs

Department of Electrical and Computer Department of Electrical and Computer
Engineering Technical Reports Engineering
1-1-1988

Experimental Benchmarks and Initial Evaluation of
the Performance of the PASM System Prototype

T. L. Casavant
Purdue University

H.S. Siegel
Purdue University

T. Schwederski
Purdue University

Leah H. Jamieson
Purdue University

A. Fineberg
Purdue University

See next page for additional authors

Follow this and additional works at: https://docs.lib.purdue.edu/ecetr

Casavant, T. L.; Siegel, H. S.; Schwederski, T.; Jamieson, Leah H.; Fineberg, A.; and McPheters, M. J., "Experimental Benchmarks and
Initial Evaluation of the Performance of the PASM System Prototype" (1988). Department of Electrical and Computer Engineering
Technical Reports. Paper 588.

https://docs.lib.purdue.edu/ecetr/588

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact epubs@purdue.edu for

additional information.

https://docs.lib.purdue.edu?utm_source=docs.lib.purdue.edu%2Fecetr%2F588&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/ecetr?utm_source=docs.lib.purdue.edu%2Fecetr%2F588&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/ecetr?utm_source=docs.lib.purdue.edu%2Fecetr%2F588&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/ece?utm_source=docs.lib.purdue.edu%2Fecetr%2F588&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/ece?utm_source=docs.lib.purdue.edu%2Fecetr%2F588&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/ecetr?utm_source=docs.lib.purdue.edu%2Fecetr%2F588&utm_medium=PDF&utm_campaign=PDFCoverPages

Authors
T. L. Casavant, H. S. Siegel, T. Schwederski, Leah H. Jamieson, A. Fineberg, and M. J. McPheters

This unpublished paper is available at Purdue e-Pubs: https://docs.lib.purdue.edu/ecetr/588

https://docs.lib.purdue.edu/ecetr/588?utm_source=docs.lib.purdue.edu%2Fecetr%2F588&utm_medium=PDF&utm_campaign=PDFCoverPages

Experimental Benchmarks
and Initial Evaluation
of the Performance of the
PASM System Prototype

. L. Casavant H. J. Slegel
T, Schwederskl L. H. Jamieson,
S A F meberg, M J. McPheters
E. C. Bronson, W. DlSCh R -
K. Schurecht, E H. Loh, C. nger B
B Cox and C A. Toomey R

'TR-EE 88-2
January 1988

School of Electrical Engmeermg

Purdue University
~West Lafayette, Indiana 47907

Experimental Benchmarks and Initial Evaluation of the‘
Performance of the PASM System Prototype '

T.L. Casavant, H.J. Siegel, T. Schwederski, L.H. Jamieson,
S.A. Fineberg, M.J. McPheters, E.C. Bronson, W. Disch,
K. Schurecht, E.H. Loh, C. Ringer, B. Coz, C.A. Toomey

Purdue University School of Electrical Engineering
Technical Report #TR-EE 88-2
' January, 1988

i

TABLE OF CONTENTS

NUTOAUCTION evevreersroercscasorensssrsosssvosssoconcsosns eeeceacans D S PPN :

L. Ima.ge Processing |

1. "Experiences with Parallel Image Smoothing,"

Wolfram Disch and T.L. CaSQUaNL.....ccuvueeereeeeenerreareeroneeroreeeeenanssns
2. "Threshold Generation for Image Processing," Kurt Schurecht
3. "MIMD Contour Tracing for Image Processing,”" Brian Coz............
4. "Parallel Block Truncation Coding of Images," Chris A. Toomey....

II. Mathematical Operators

1. "Non-Deterministic Instruction Time Experiments,"

S.A. Fineberg, T.L. Casavant, T. Schwederski and H.J. Sz'egel |

2. "Experimental Analysis of Multi-Mode Fast Fouirier Transforms,"
~ E.C. Bronson, T.L. Casavant and L.H. JaMI€SONveriverereesivreiuenion.
3. "Parallel 2DFFT Implementation,” E.H. Loh....ccccevunrvuinnnieninnens .

III. Speech Processing and Al-related

1. "Experimental Analysis of SIMD Recursive Digital Filtering,"

M.J. McPheters Jr. and T.L. CaSQUANE ceucvviernrrinrerevrersereenranrnnsanens
2. "AI Graph Searching and Parallel N-Min-Finding," C. Ringer

i

Introduction

.- The work reported here represents .eXperiences with the PASM .p'a__rallel
processing system prototype during its first operational year. Most of the

experiments were performed by students in the Fall semester of 1987. The |

first programming, and the first timing measurements, were made duri.n'_gfth_e '
summer of 1987 by Sam Fineberg. ’

The goal of the collection of experlments presented here was to undertake -
an Application-driven Architecture Study of the PASM»system as a paradigm
for parallel architecture evaluation in general. PASM was an excellent vehicle
for experimenting with this evaluation technique due to its - unique
archltectural features. Among these are: e

1. A reconﬁgurable, partltlonable multistage c1rcu1t sw1tched network
2. Support for both SIMD and MIMD programs.
3. Ability to execute hybrid SIMD /MIMD programs.

4

. An instruction queue which allows overlap of control-flow and data
manipulation between micro-control (MC) units and processing elements
(PE). It had been hypothesized that superlinear speed-up over the number
of PEs could be attained with thls feature, and experlmental results
Verlﬁed this.

5. Support for barrierpsynchronization of MIMD tasks.v This feature was
exploited in some non-standard ways to show the ability to decouple'

variant length SIMD instructions into multlple MIMD streams for an

. overall performance benefit.

This type of study is expected to continue in the future on PASM and -
other parallel machines at Purdue. This report should serve as a guide for
this future work as well. v '

T.L. Casavant -
School of EE
Purdue University
Spring 1988

This Work supported by NSF Grant # CCR-8809600, the NSF Softwa.re Engmeermg
Research Center (SERC), and SRC Grant # 6925

PART I

Image Processing

= Experiences with Parallel image Smoothing' -
Wolfram Disch and Thomas L. Casavant L
Abstract

Thls paper reports results of some of the first programmmg experlences Wlth :
the PASM parallel processing system prototype at Purdue. PASM is a
PArtltlonable SIMD/MIMD system designed for conducting research in
parallel computing and for developing software for several apphcatlons The
"1mage processing task of image smoothmg is used to evaluate several features
of the PASM architecture. The results include an observation of super—lmear

o speedup over the number of processing elements (PES) when operating in

SIMD mode This advantage comes from the ability of the microcontrollers
(whlch act as control units in SIMD mode) to execute control ﬂow operatlons

| in para_llel with the PEs in SIMD programs. -Also included is a comparison of ‘_
computation versus communication overheads. Other experiments and
,analysm show some of the potent1a1 advantages of mlxed-mode S]l\/ID /MIMD
programs and alude to the problems of structurmg programs in thls way.

o 1 Introductlon

ThlS ‘paper reports on experlmental ‘measurements derived from early
, ’programmmg experiences with simple image processing apphcatlons on the
‘PASM parallel processing system prototype at Purdue [81881 81887] The
intention of the research project surrounding this work i is Application-Driven
Archztecture Study, 1 in which easily understood algorlthms are implemented as
programs, and controlled experimentation is done with respect to variable
program characteristics. The reported results are derived from the first
- segment of a study on Image Processing which includes the following
“algorithms: I'mage Smoothing, Sobel Image Generation and Threshold
Determination, Contour Tracing and Block Truncation deing; In particular,
W_e describe a parallel implementation - of the image SmOOthz'ng ‘phase,
programmed and executed on the PASM prototype. The experiments are -
basedon SIMD (single iastruction stream — multiple data streams), MIMD
(multiple instruction streams — multiple data streams) and Hybrid S/MIMD
programs [Fly66]. The results reported are focused on showing the differences

B ~ with respect to the execution times among the parallel versions and between

“an efficient serial version in order to determine the usefulness of multi-mode

'machlnes and to shed hght on the necessary HLL constructs and semantlcs B

- useful for th1s type of computer

Sectlon 2 presents ‘the problem and overvrews PASM and its prototype,
 while. sectlon 3 explains the basic algorithm that was used. Section 4 describes
the experlments and - the program var1at1ons used. Sectlon 5 shows the
performance of each program Wlth respect to its.execution time and section 6
‘.',"‘.prowdes a dlscussron of the results with respect to the archltecture of the '
”PASM system prototype T : : S

2. 'Back_g.round

2 1 Overv1ew of Image Smoothlng

Image Smoothlng represents one of the: ﬁrst “algorithms used. when
performlng Image Processing. The use of Image Smoothing is- to filter noise
’ from corrupted signals. One way ‘to smooth an image is the average method g
[SlSS7b] A WlndOW, 1nclud1ng a certain number of plxels, is defined. ‘The

L smoothed value is obtained: by averaglng the gray levels of the plxels in the)

“ Wl]ldOW There are- dlﬂerent methods for calculatlng the average. One is to S
- divide the sum of the gray levels' by the number of plxels in the W1ndow, ie.

each plxel teceives the same Welght Another method distributes 50% to the

B _:center plxel and 50% for all the others Our approach uses the ﬁrst method

2 2 Overvrew of PASM and the PASM Prototype : .
' PASM is a part1tlonable SIMD/MIMD parallel processrng system belng‘

-'demgned to 1nclude ‘over a thousand processors [SiS81]. It is'a dynamically
reconﬁgurable arch1tecture, where the processors can be’ partltloned to form -

S 1ndependent virtual SIMD and/or MIMD machines of varlous sizes. A 30- .
+ processor prototype has been completed [SlSS7a] and was used 1n the
“algorlthms descr1bed in th1s paper ; o B

- " 'The Parallel Oomputatzon Unit conta1ns N—2m PEs (numbered from] to

N—l), and an 1nterconnectlon network. ‘Each PE (processmg element) isa »‘l
’ processor/memory pair. ‘The PE processors are sophisticated mlcroprocessors -

~ that. perform the actual SIMD and - operatlons The PE memory_

,modules are used by the processors for data storage in SIMD mode and both'—-(g

~data and instruction storage in MIMD mode The Micro Controllers: (MCs)

~ are a set of Q—2q processors; - numbered from 0 to Q—1, Whlch act as the L

o 'f‘control un1ts for the PEs in SIMD mode and orchestrate the act1v1t1es of the» '

PEs in MIMD mode. Each MC cohtrbls N/Q PEs. In SIMD 'mode, each MC

fetches instructions and common data from its associated memory module,

executes the control flow instructions (e.g., bra.nches), and broadeasts the data

processmg instructions to its PEs. In MIMD mode, each MC gets. 1nstruct10ns
and common data for coordmatmg its PEs from its memory.

ommm e a e m e mcmmm e ———————————— 1
' 1

MC : 3
Memory-' H - Fetch Unit =~ Fetch Unit E

' ' Controller 1 " RAM i

i : . S |

1)

1 3

! A i

R v i Mask IR
. MC CPU . i " Register { 7 - T E
i :

1 - '

R i

! : FIFO . 1

] . N A 1

i Fetch —

[., - [}

! oy —- !

5 Unlt’ : l to PEs ;

H . ‘7 B :

b e e e e e e ———————— e e e J

- Figure 1: Simpliﬁed MC structure.

- "A - 30 processor prototype of the PASM system' was completed in
December 1986, with N==16 and Q=4. This system employs Motorola
‘MC68000 processors as PE and MC CPUs, with a clock speed of 8 MHz. The
" interconnection network is a circuit-switched Extra-Stage Cube network,
which is a fault-tolerant variation of the multistage cube network. Since
knowledge about the MC and the way in- which SIMD instructions are
implemented ‘with standard MC68000 mic_roprocessors' is essential to the
understanding of the behavior that was observed in the experiments, the
'SIMD - instruction broadcast mechanism is overviewed below. Consider the
" simplified MC structure shown in Figure 1. The MC contains a memory
module from which the MC- CPU reads instructions and data. Whenever the
MC needs to broadcast SIMD instructions to its associated PEs, it first sets the
Mask Register in the Fetch Unit, thereby determining which PEs will
| participate in the following instructions. It then writes a control word to the

Fetch Unit Controller which specifies the location and size of a block of SIMD
instructions in the Fetch Unit RAM. The Fetch Unit Controller automatically
moves this block word by word into the Fetch Unit Queue. Whenever a
instruction word is enqueued, the current value of the mask register is
enqueﬁed as well. Since the Fetch Unit enqueues blocks of SIMD instructions
automatically, the MC CPU: can proceed Wlth other operations. without
waiting for all instructions to be enqueued

PEs execute SIMD instructions by performing an instruction fetch from a
reserved memory area called the SIMD instruction space. Whenever ;l'ogic' in
the PEs detects an access to this area, a request for an SIMD instruction is
sent to the Fetch Unit. Only after all PEs that are enabled for the current
instruction have issued a request is the instruction released by the Fetch Unit
FIFO, and the enabled PEs receive and execute the instruction. Disabled PEs '
do not part1c1pate in the instruction and wait until an instruction is broadcast
for which they are enabled. This way, switching from SIMD and MIMD mode
is reduced to executing a jump instruction to the reserved memory space, and'

“a switch from MIMD to SIMD mode is performed by sending a. jump to the
approprlate PE MIMD 1nstruct10n address located in the PE main memory :
space. ' : :

In order to ‘make comparisons of the speed of the PASM prototype
relative to other machines and to compare the relative speeds of SIMD and
MIMD instruction fetches, the raw performance of PASM in SIMD and MIMD
, mode was measured and is illustrated in Table 1 in MIPS (mllhons of mteger
instructions per second) for two dlﬁerent types of 1nstruct10ns ‘

Processing

‘Mod Operati |
» ode . Pera 10N Rate v

SIMD 16-bit Reg.-to-Reg. add | 22 MIPS

MIMD | 16-bit Reg.-to-Reg. add 18 MIPS |
SIMD 16-bit Reg.-to-Mem. add | 6.4 MIPS
'MIMD | 16-bit Reg.-to-Mem. add 6.0 MIPS

Table 1: Prototype Raw Performance

3. Image Smoothing

3.1. Serial Image Smoothing Algorithm

The SISD algorithm offers itself as a good candidate for describing the
fundamental structure of the parallel image smoothing ‘algorithm. Assuming
an input image, X, and an output image, Y of size n x n in which each pixel is
. an 8- b1t unsigned integer representing one of 256 gray levels, each pixel in the
' smoothed image is the average of the gray level of itself and its 8 nearest
neighbors. In other words, the average of the gray levels in a 3 x'3 window is
determined for each pixel in X. The top, bottom, left and right edge plxels of
the smoothed i image are not calculated since their corresponding pixels. in the
input image do not have 8 adJacent neighbors; they are set to zero.

1 k 141 1=j+1 : o .
Yoy X bi#054Lj#n

3 Yl.] = |9 k—l 1 l—-_] —1

0o B - otherwise

3.2. Parallel Image Smoothing Algorithm

_ _In the parallel Image Smoothing programs 1mplemented here, the data
was equally distributed among 4 and. 16 'PEs, respectively. Thus, each PE
holds its own square subimage. Since each PE holds only one subimage, data
from the borders will have to be transferred from the surrounding PHEs in
order to calculate the smoothed value of the edge pixels. The data transfers
occur simultaneously across PEs by using the intercohnection network. This

represented the first segment of the parallel Image Smoothing algorithm. The

second segment includes the calculation of the smoothed 1mage which was
reahzed in SIMD, MIMD and Hybrld S/MIMD modes.

Now let us consider the parallel Image Smoothmg algonthm in detail.
Assummg an n X n image, the data transfer requires n transfer operations to

 transmit data from each PE border to a specific PE. Furthermore, 4 transfers -

are needed to get the 4 cbr_ner piXels.' This is shown in figure 2. Therefore, a
total of 4n-+4 network transfer operations are required to provide each PE
with the data needed in order to calculate the smoothed ’i»mbage. Since the
, arehitecture.of PASM does not,support DMA block tranSfer»,f eech byte must

be transmitted separately. ‘Nev,ertheless,“ ‘the data transfer - occurs _

simultaneously across PEs. Each PE sends data through the interconnection .

network to the corresponding PEs. Then, all PEs must wait for the data to
- ‘be recelved The 4n+4 network transfer operations requlre 8 network c1rcu1t"
' setups to connect the PEs as shown in ﬁgure 2. ' .

PEO | PE4 | PES | PEC

'PE1 |“PE5 | PE9 | PED

PE2 | PE6—>PE A<l PEFE

PE3 | PE7T | PEB | PEF

Figure 2: Image Partifioning -and»-PE'.Interconnéc't-ion.v!‘ o

- Before presenting the c':_i-lculvation portion of the _'progr'ar’n,‘“the image
storage will be discussed. The data for both the input image and the output
image are stored in rows as shown in figure 3. The data of the input subimage
and the top and bottom data transferred :from the other PEs are stored
contiguously in a linear data structure The data coming from the left and the
. right bordered PEs are stored a,fter the bottom data. This structure permits
 fast storage of data from an incoming image at a high data rate (e.g. from a
-»v1deo ca.mera) into the PEs, and after processmg to another perlpheral

.~ For the calculatron of the smoothed value, a window of 9 pixels has been
“defined. ObviOuSly, the smoothed value is the average of the gray levels of all
pixels ‘in the window. In this algorithm, a more efficient programming
technique using pointers is used. Referring to Figure 3, five pointers are used.
‘Three -poin_ters_ are indexing the subimage; the others are the starting address

- @%Deta from}_upr)er PE @i

R ‘~:V»In1’>:ut o
- Subimage.

~ - Data vfr’omitheu corner PEs -
i L-l\’ Data from lower PE I e
- o= :Da,ta from left PE o }

IData from rlght PE é/ | IZ

: Figjur_e 3: Irage Storage Model

* of the 1eft and the rlght border data, respectxvely Also, sums of the gray levels
~of three’ plxels standing in colum_ns are defined (in the- followmg, {ps means
three pixel sum value). Intermediate tps Values are stored in a FIFO queue -

“and added to a variable S. At the beginning of the loop for YCa,‘lculavting a row,

S is set up with the first three tps. For the next step, the ‘n'e'wvt‘ps is added,
and the oldest tps is subtracted from S. This tps is obtained from the top of

‘the queue. The next tps bécomes the top of the queue. Thus, S contains in
‘each step through the loop, the sum of the gray levels of ‘th"e pixels'in the
window. The smoothed value . is obtamed by dividing § by the number of

- ‘plxels in the Wmdow These steps are executed for each row ‘of the image.

Basmally, the parallel algorlthm has the same control ﬂow structure as
 the SISD algorrthm However, network transfer operations Were added and -
R several variations for the dlﬁ”erent parallel modes were performed

: 4. Vari"at'ion_s of the different 'versi()nsvia.n‘d eXperimeIirs'v e

4.1. SIMD Program v

In SIMD mode, the program consists of a pure S]l\/[D code. The network
. transfer operations in SIMD are executed synchronously in a stra1ghtforward
fashion. That implies a faster execution time than in MIMD mode, in which
the. program must be blocked in a loop, polhng the mnetwork buffer for
incoming data. The second segment of the algorlthm is ‘divided into the
calculatlon of the smoothed i image and the clearmg of the edges An advantage
of this part is the potential overlapping of instructions sent to the FIFO and
" those executed in the PEs while the control flow operations are executed in the
MCs. Another advantage of SH\ID mode is due to the actual memory boards
-1mplemented in the PASM system prototype As can be seen from table I,

executlng 1nstruct10ns from the fetch un1t queue is faster than from the PE .
memory ‘ ' '

4.2, MIMD Program :

Thls version is programmed in pure MHV[D mode, the MC'is only used to
calculate the execution time of the program by waiting until the PEs finish -

execution. Since the network operatlons are carried out in MIMD mode, the =~

data transmission is executed asynchronously Hence, there is more overhead
than in SIMD mode to check whether the network buffer is ready to. accept
data durlng send operations and when data is received from other PEs ’

The calculation part of the program determlnes first, the inner p1xels of- :
»the smoothed image. Then, all the edge pixels having eight nelghbors are

calculated and those pixels which do not have elght adjacent nelghbors are
cleared Since each PE corresponds to a specific part of the total image it -
needs to” be calculated and cleared on different sides. Thus, var1ous MIMD-
sub-programs are requ1red to execute the MIMD version.

‘ One advantage of the MIMD version is due to the MC68000 The
: MCSSOOO has instructions with data dependent execution times (e. g. the d1v1de ,
'1nstructlon executlon time d1ffers up to 70% for 16-bit operatlons) In SIMD

: mode, all PEs have to wait on each divide instruction until the last PE has -
completed ‘the instruction before fetching the next instruction. In M]MD' ’
mode, each PE works 1ndependently The execut1on time of the program
: _-depends on the PE Whlch ﬁmshes last N S B

- 10

4.3. Hybrid §/MIMD Program

: In the Hybrid S/MIMD mode, data. transfer and the calculatlon of the
- inner plxels of each subimage is written in SIMD mode. The ‘third part is
identically with the MIMD program. It calculates the edge pixels. This

.- program should out-perform the other versions since the dataéindependent _

_segment of the algorithm is written in SIMD mode and the data—dependent o
{segment is written in MIMD mode. - '

‘4.4;-" 'Experiments ' o k

Ore goal of this research was to identify the mostefficient mode of -
parallelism for Image Smoothing on PASM." The programs were Written'in
MC68000 assembly language. Pure SIMD, pure MIMD and Hybrld S/MII\/[D
1mplementat10ns were tested for 4 PEs. The 16 PE versions have been
implemented, but at the time of this writing had not been tested due’ to
“hardware difficulties. An SISD (serlal) version was programmed in order to- v

- make comparisons with the parallel versions.

- In detall execution tlmes were measured Wlth respect to the i 1mage sizes
642, 2562 and 10242, To illustrate the data dependent execution times,
art1ﬁc1al input images with constant 00, alternating 00 and FF and constant

FF data bytes were created respectlvely ‘

‘ 5 Data. Mea.surements -

_ Flgure 4 illustrates the execution times of the SIMD MIMD Hybrid
S/MIMD and the SISD version. For comparison purposes ._the computation
time of the SISD' version is quarter scaled. Therefore, whenever any curve
passes below the SISD curve, super-linear speedup with respect to the number
of PEs is being exhibited. This d_isk:ussed"fﬁrther in section 6. There are 2
~ intersection points in Figure 4; one between the SISD and the SIMD version

- shown on Figure 5a; the other between the SISD and the Hybrid S/MIMD

version shown on Flgure 5b Flgures 5a and 5b represent smaller windows of
. graph 1. ’ ‘

' B. Dls(;ussmn) o , : v
. Ag'expected, the SIM]) version outperformed the MIMD version. Table 2
p.omts out that the SIMD»versmn is 8-20% faster. First of all, this is based on

o the overlapping of the control flow instructions in the MC and the data

p_rocessing‘in‘s'tru_ctiOns in the PEs in SIMD mode. In addition, there are

' Table?Tlme of “'Computation-:in;"sec".;-’ A

. |image | image | - g 1 parallel(4 PEs) _
R A - - |- seria ’ o S

| o000 | 0.1435 | _00718" 00896 | '.0.0687_’
| 64% | OOFF | =~ 0:1399 | 0.0709 | 0.0887 | 0.0679 | =
| | FFFF | 0.1364 | 0.0699 | 0.0878 | 0.0670 |
|| o000 | 23655 | 0.6126 | 0.7038 | 05751
| 2567 | OOFF | 23052 | 0.5983 | 0.6888 | 0.5615 | ~ -
.| FFFF | 22465 | 0.5844 | 0.6742 | 05471 |
| | o000 | 38134 | 9.1379 | 9.8796 | 8.5877 |
©]'1024% | - OOFF | 37.167 | 8.9103 | 9.6369 | 8.3697 |.
.| FFFF | '32.216 | 8.6889 | 9.3987 | 8.1356

. dlﬁerences in: fetch tlme as mentloned in sectlon 2. The graphs 1llustrate that

. the execut1on tlmes of the SIMD and the MIMD versions d1verge for larger
" sizes of i 1mages That means that the part which is respon31ble for the speed up

- of the SIMD version has a greater 1mpact for larger loop 1teratlon counts.
o F1nally, the- overhead to synchromze ‘the network in MIMD mode should be
’ 'mentloned as the major cause: of the slowness of that version. - ..

" The Hybrzd S/MIMD version was found to ‘be the. fastest version. Tt
_outperforms all parallel and the. ‘serial verswns ‘Table 2 shows it to be 4-6% N
 faster than the SIMD verswn Since the Hybrld S/MIMD and’ the SIMD-

= - version contalns nearly the same ‘code, the d1fference is ‘not- .as great as that' S
between the S[MD and MIMD versions. This is based on the fact that the.

~Hybrid version uses the calculatlon and the clear routine for. the edges in o
- MIMD mode So there is no overhead ‘as in the- SIMD program which -

A calculates at first the whole i 1mage, ‘and then clears the proper edges after that. - R
o Tn other Words, the: Hybrid routine does not, calculate the edges twrce as it has .

: fto be done in the SIMD version. However, also in th1s case the graphs pomt

- out the d1verg1ng of the executlon times.

_ The tests of the serial versus “the parallel versions produce surprlsmg
results The executlon times' of ‘the Hybrid - S/l\/[[MD version disprove the
, supposrtron that the executlon tlme of the parallel version would have a speed :

12

104

MIMD -
SISD x.1/4
, SIMD
g _ HYBRID
- e
- fsec]
, 42
0 l
6422562 1024

- Image size in bytes
o sz"l]urq'#:r S'peed‘compari:son b,_etween_ Parallel Cornputation, Modes'

~up of less than the number of actlve PEs. Th1s assumption is based on. the
© fact that the parallel versions need to perform network transfer operatlons,
~ unlike the serial version [SiS87b]. The graph demonstrates obviously that in
this case the Hybrld S/M[MD and the SIMD version is more than 4 times
faster than the SISD version referrlng to the 10242 pixel image. This comes 1
from the fact that the control flow instructions executed in the MC save more
» ;tlme than the transfer operat10ns used. In addition, two intersection points
~can be seen. From that size. of an image, up to larger sizes, begins the most

~ efficient - ‘advantage of ‘the parallel version - over - the serial Vers1on In other

Words, for smaller image sizes the network transfer operatlons in the Hybrid
li.S/MIMZD and ‘the SIMD version use more time than the overlapplng of the :
: .control ﬂow instructions can save, respectlvely

7. ‘C'OnclusiOn' o : » - v -
‘ : Th'is: study of diﬁ"erei_lt .par-allel versions of the Image Smoothing algorithm
_'/:‘has’ shown that the Hybrid S/MIMD version outperforms the SIMD and the

SISDx1/4 -

Co ams

: t’ime-“

' [sec] .}
C 4044

.;400- .{

45500 46000 46500 - 47000
Image size in bytes '

o Fzgure 5a Speed comparlson between Hybrld and SISD versmn': o

R vl

108_ N
[sec] . |

ET ‘1;041'.—-—"f e

L 1 02 -{'_V .

1150000 1200000 - 1250000 B
: Image size in bytes

o F zgure 5b Speed comparlson between S]MD and SISD vers1on _b -

“MIMD versron clearly Therefore, 1t serves -as a useful paradlgm for

g _1llustrat1ng some of the potentlal advantages of a partltlonable SIMD /MIMD |

parallel processing system such as. PASM Furthermore it turned out that the
»Hybrld S/MIMD and the SIMD version are more than 4 times faster than the
SISD versmn When 4 PEs are used and the 1mages are larger than 2002 bytes)

14

While this. fact seems counter-intuitive a.tvﬁrst, in SIMD ‘mode, a speedup .of
up to 2p (assuming p PEs) should be attainable since each PE has a logical
MC to which control-flow acti_vities' may be off-loaded. The MIMD version
represents the most inefficient algorithm. It is also less than 4 times faster -
than the SISD version. That results from the fact that the MIMD version has
the same mode as the SISD verswn, but added network transfers.

. Probably the most 1mportant implication of this work is related to the
level at which programming was done — assembly language. Many of the
performance differences observed rely on the fact that mode—sw1tch1ng, and
network access times were on the order of a few instruction cycles. The
important issue to be addressed is related to the problem of how to develop
efficient HLL constructs which preserve these performance benefits while
providing adequate expressive power to the programmer. It is the intentien of
this work. to identify which semantics are most useful and to gulde the
development of efficient HLL and OS interfaces for them. '

References

[Fly6_6] © M. J. Flynn, “Very hlgh-speed computing systems, Proceedings.of
' the IEEE, Vol. 54, December 19686, pp. 1901-1909. ’ '

- [siss81] . - H. J. Siegel, L. J. Siegel, F. C. Kemmerer, P. T. Mueller, Jr., H. E.
i Smalley, Jr., and S. D. Smith, “PASM: a partitionable

SIMD/MIMD system - for image processing and pattern

recognition,” IEEE Transactions on Computers, Vol. C-30,

December 1981, pp. 934-947.

[SiS_87e]"‘ H. J. Siegel, T. Schwederskl, J T. Kuehn, and N. J. Dav1s IV, “An

‘ - overview of the PASM parallel processing system,’”’in Computer
Architecture, D. D. Gajski, V. M. Milutinovic, H. J. Siegel, and B.
P. Furht, eds., IEEE Computer Soc1ety Press, Washmgton, D. C
1987, pp. 387-407. o |

[SiSS7b]_ CH. . Siegel, T.SchwederSki, D. G.'Meyer, and W. Tsun-Yuk Hsuy,

“Large-scale parallel processing systems,
Microsystems, Vol. 11, No.1, Jan/Feb 1987.

[Sto80] H. S. Stone; “Parallel computers,”in Introduction to Computer
' Architecture (second edition), H. S. Stone, ed., Science Research
- Associates, Inc., Chicago, IL; 1980, pp. 363-425.

Microprocessors and

15

Threshold Generatlon for Image Processmg
: on PASM

Kurt Schurecht

v , o Abstract - _

Research is being done oxi how to best use the PASM parallel processing
~ system the most efficiently with respect to many applications. Four image
proeeSSing applications have been chosen, smoothing, thresholding, edge
'tracmg, and block truncation coding. Different configurations of the PASM
machme are being analyzed to obtain the optimal algorithm times with
respect to the Sobel Threshold generation procedure. Different size 1mages as
well as different data sets have been examined. Results have shown that
dlﬂ'erent conﬁguratlons of the PASM system can cause vastly different - runmng
‘tlmes

1. Introductlon

: For many Yyears theoretical Work has been done relatmg to parallel
machines and parallel machine algorithms, but most has not had concrete
data to back it up. Two types of parallel machine taxonomies described by
Flynn [Fly66] are SIMD (single instruction stream - multiple data stream) and
MIMD (multiple instruction stream - multiple data stream). Work has
recently begun that compares these two modes within the scope of many
different applications. This paper describes an apphcatlon from the image
processing area using the PASM prototype system. The PASM system allows
the user to switch ‘quicklyy from SIMD to MIMD mode. A major result of this
paper is to show the benefits and drawbacks of both SIMD and MIMD modes
in the use of the PASM system and with respect to the chosen algorithm.
This paper descr1bes algorithms to find threshold levels for a given image,
with emphasis on where SIMD mode or MIMD mode is more appropriate,
Timing measurements have been made to compare the two modes, and with
~ these times, some qualified conclusmns about the two modes are made. The
~ tests have been run using best average, and worst case data sets, with three
'_ different 1mage sizes. All programs have _been written to run on four

16

: processmg elements controlled by one mlcro-controller

, Section 2 explains the PASM prototype and the background . of the -
threshold problem. Section 3 details the problem in more depth, showing the

algorlthm used. The data taken and results of that data are presented in

sections 4 through 6. Some conclus1ons and further work are detalled in
sectlons 7 and 8. ‘ ‘

' 2; Background .

| 2. 1 PASM Archltecture

~ PASM is a partltlonable SIMD /MIMD - parallel processing system being
_designed to include over a thousand processors [SiS81]. It is a dynamically

"”‘reconﬁgurable architecture, where the processors can be partltloned to form

~ independent virtual SIMD and/or MIMD machlnes of various sizes. A 30-
:processor prototype has been completed [81887] and was u_sed in the
experiments described in this paper. ' k

- The prototype includes four mlcro-controllers that each control four
processmg ‘elements. Each MC and PE has its own memory assoclated with it.
Each MC also has a Fetch Unit associated with it to send SIMD commands to
its PEs. The programs described in this paper use one MC, its Fetch Unxt and

the four PEs associated with it. When processmg in SIMD mode, the MC

sends a command toits associated Fetch Unit to send a set of instructions

from the Fetch Unit’s memory to the PEs under it. A mask register in the - |

~ Fetch. Un1t determines which if any of the PEs associated with it will execute
' those 1nstruct10ns The Fetch Unit places the instructions in a FIFO queue
and each enabled PE takes the instruction off the head of the queue. When
- ALL PEs have finished that instruction, they all get the next one off the head
- of the queue. If the. queue becomes ‘empty, the PEs wait until another batch
of 1nstruct1ons are placed in the queue. During the time while the PEs are
executing 1nstructlons already in the queue, the MC can be doing other =
instructions. - It may be taking care of looplng overhead or requestlng the next<
set of instructions to be sent : : : :

To sw1tch from SIMD to MIMD rnode a machlne 1nstruct1on 1s sent ..

area. . Once thls jump is executed the PEs are no longer synchronlzed and‘
may act alone. At this point: the PEs start executing instructions that are-

stored at that locat1on in- the1r own memory The PEs continue . executlng . :
" alone until they reach an instruction to return to SIMD memory. When this =

~ happens, each PE must Walt untll all others have also returned to S[MD space '
before they can get the next 1nstructlon oﬁ‘ the FIFO queue. :

17

The last relevant part of the architecture is the extra stage cube
"1nterconnect1on network. This network connects every PE to every other PE
for use in sending data that needs to be shared between them. A routrng tag
" is'sent to set up the connection and then the information can be sent along

o the line. The receiving PE must be rea.dy to receive data though. Finally a ‘

rout1ne is Tun to drop the path Once the path is dropped the. PE can
connect to another PE. :

2.2. Threshold Determmatlon :

Threshold levels are used to find the most- defined edge in an 1mage ‘Ina’
p1cture, there are generally many different shades of the object, and also many
~small ob.]‘ects The goal of thresholding i is to find the most defined shape in
the "pictjnre’_. The threshold level when found, is sent to a program that will.
trace the edge of the contour found by the threshold level. For example, if the
image were a bird in the sky, the edge’ trace program Would want to trace only
the outline of the bird, not that of the clouds or just part of the bird. If the
threshold level is chosen correctly, the bird is reduced to a block of black and

~the surroundings are reduced to a white background. - With this image the
- edge detection program can . trace the outline of the bird. The threshold
~ generation algorithm used in this paper [TuA83] uses a Sobel edge operatorb ‘
and ﬁgure of nmerit, both defined later, to find the best threshold level '

 The images used in this algor1thm are stored as p1xe1s of gray levels
ranging from $00 to $FF. These gray levels are stored in consecutive locations
of the PE memory. FEach PE memory contains a subset of the entire image.
All PEs then find a threshold gray level for their subset of the image.

3. Project Description

3.1. Problem .

Threshold generatlon consists of choosmg a gray level that will best find
the edge of an image when used in conjunction with an edge tracing program.
The threshold level is used by settmg all pixel values equal to or greater than
the threshold level to $FF and all values less to $00. If the threshold is chosen

“correctly, the crossovers between $00 and $FF will be the best edge to trace.
- To find the best edge, a Sobel operator is used on a window around each pixel
value. A window is formed around each pixel, consisting of the pixel and its
eight nearest neighbors. The following operation is performed on the window.

E O TR

o 12

AX=|-202/*1 AY=|0 0 o0 *I -

,l','"101 | | :__1 ~2 _1 |
Gl‘adlent AX2 + AY2 ¥

' AX and AY are found by multlplylng the correspond1ng value in the-'. B
: ’_matrlx by the p1xe1 in that w1ndow position, and then adding each of the nine’
results. The Sobel value is- then found us1ng AX and AY. The Sobel valueis
the gradient of the window. It is a measure of how well the window can act as |
an edge. Windows with greatly different gray levels have higher gradients
than windows with very similar gray levels. The minimum pixel value and the; .

- ~maximum pixel value are found for each w1nd0W also, to be used later. Next

each threshold level is checked to find the best value for edge detectlon A
- figure of merit is found for each threshold level, with a. high value meaning it
is a- good edge detector. The ﬁgure of merit is found by comparlng the
threshold level to each window figured above. If the threshold level is between

, ;b.the minimum and the max1mum of the wmdow then that. w1ndow ‘would

E contaln an edge if the threshold level were used. In this case, the gradlent
found earlier for this window is added into this threshold’s total. When all

pixel Wlndows have been checked all gradlent values are added together and S

averaged to find the figure of merit for that threshold. The threshold level
chosen to send to the edge detectlon program is the one Wlth the hlghest_'
'valued figure of merit. » o :

} On PASM this same procedure is done with a few mlnor mod1ﬁcatlons -
 The data is assumed to be evenly distributed in each PE, w1th ‘each PE E
containing a square subsectlon of the whole image. When the Wmdows are"-
~-formed for the pixels on a PE edge, the PE needs the pixels contalned on the '
" edge of the nelghborlng PE. When handllng corners, hkeW1se, the corner pixel
in the d1agonal PE is also needed In total there are eight PEs that need to. be .
connected to to get all necessary data for the computations, as. shown if Flgure o
1. The threshold generatlon procedure on PASM involves four steps The"
ﬁrst involves transferring all needed outside edge pixels to PEs that Wlll need .
; them for ‘their calculations. ‘The second involves figuring the’ rmmmum, _,
max1mum, and gradlent of each pixel window not on a PE edge The thlrd_ o
step is to take the edge pixel windows and find their minimum, maxunum, L
and gradient. Flnally, the figure of merit is determined for each threshold -
Ht-level and the hlghest threshold level is stored for use by the edge detectlon '

g

program. The threshold level found in one PE has no eﬂ'ecf on the threshold
level found in any other PE Each PE finds its:own threshold level to send to

the next program.

Flgure 1 o

3.2, Algorlthms

- The following algorlthm apphes to SIMD and MIMD parallehsm. The
baszlc algorithm structure remains the same, but the actual code differs.

,’Threshold generatlen algorlthm :

1. Connect to and transfer edges to each of 8 nelghbormg PES k
2. For each interior pixel ' : -
Find gradlent min, max of wmdow :
. For each edge pixel -
Find gradient, min, max of W1nd0W .
4. For each candidate threshold value o
. For each pixel ﬁgured above o
" If threshold > min and < max
. Add gradient to total e
~ Add 1 to matched -
" FOM = total / matched '
Threshold Candldate Threshold thh hlghest FOM

oy

R

3 3. Programs SR , , _ R

. , Completed to th1s pornt are programs that handle 4 PEs Wlth 1 MC
- There are three programs in ~/ pasm/ appl/ hlstks that find threshold levels and
; 'save t1m1ng 1nformat10n The programs are:. : ‘ ,

thr4s -a four pe program W1th steps 1, 2 in SIMD mode
steps3451nM]MDmode , R
’ ‘;‘_ only three transfers are conducted

thr4m a four PE program Wlth step 1 in SIMD mode ; _—
» steps 2,3,4,5 in MIMD mode- S
‘ only three transfers are conducted =

thr4ma— a four PE program w1th step 1in SI]\/[D mode =
‘ : steps23451nMIMZDmode- : fe :
all eight transfers are conducted

Slnce each of these programs use 4 PEs, each data set is in a corner of the“ :
' -,complete 1mage, and only three transfers are a.ctually necessary This makes . -
~ the 4 PE programs easier to erte, but the code is very difficult to change for
increasing to 8 and 16 PEs Therefore code Wlth both types of transfers has ‘
jrbeen included. Pl ‘ - :

4. Experlments Performed : _ , 7

All exper1ments performed have been done using 4 PEs Each of - the
. "three programs have beeén tested using data blocks in each PE of 16x186,
‘»32x32 and 64x64. This implies ‘complete images of size 32x32, 64x64 and -
128x128 respectlvely The data for the 32x32 case was also varied to. get best
"_case, average case, and worst case times. The data for all other sizes was only
taken w1th average case data Examples of each data set for a s1ze of 8x8 _

s follows

" Best Case

00 00 00 00
00 00 0000

~ 00 00 00 00

00 00 00 00

b. Measured Data

~ Timings were taken thé.tv.‘measured’ steps 1, 2, and 3 separately, and 4 and
5 together. All timings are shown in the table below. The size reférs to the -
size of the data in each PE and the letters following' refer to each of the :
sections and whether that portion of the program is written in SIMD or MIMD
mode. The last letter corresponds to the type of transfers that were used in
'a" designates three transfers performed, "b" designates eight
E ‘transfers. Best case is data set A average case is data set "B , and ‘worst

that program. '

‘ case is data set "'C".

Average Case

00 01 02 03
04 05 06 07
08 09 0A 0B
0C 0D OF OF

| ..Wo_rst Case o

00 FF 00 FF
00.FF 00 FF
00 FF 00 FF
00 FF 00 FF -

Timings for Threshold Programs R
1 Data size/type transfers | inside edges | thresh | - ‘
| B 16ssmma 1.02 49 | 74 681

B | 32ssmma 1.44 225 | 15.5 | = 3460
B 64ssmma 2.29 | 965 | 31.7 | 16900
A | 32smma | 144 197 | 13.6 | 2980 |
C | 32smmma | 144 | 207 | 144 | 5090
B 16smmma 1.02 49 7.4 - 681
B | 32smmma | 1.44 227 | 155 | 3460 |
B | 64smmma | 2.29 971 | 31.7 | 16900
A 32smmma 1.44 203 13.7 2980
C | 32smmma | 144 | 211 | 144 | 5090 |
B | 16smmmb 1.64 | 49 74 | 681
B | 32smmmb | 260 | 227 | 155 | 3460
B | 64smmmb 457 | 971 | 31.7 | 16900

1All times in milliseconds. -

99
6 Interpretatlon of Data. 5

6.1. Problem Related

The most obvious point frorn the data in the previous section is that the
time for the last set of operatlons is very data dependent. The time varies
 from almost three to over five seconds. This data dependency will play an

' important part-in the Justlﬁcatlons in the next section. The data dependency.

* also holds for the inside and edge times, but to a lesser extent. The _problem
related results of the data-above give Justlﬁcatlons as to Why some portlons of

" the program need to be in S]IVID or M[MD mode

: 6.2. Archltecture Related

, The main test of thls program on PASM was to see 1f programs run
fastest in SIMD, MIMD, or a-hybrid of S JMIMD. Some of the routines lend
themselves to usmg SIMD mode, as in step 1. Other steps lend themselves to -
- MIMD mode, -as in step 3. Steps 2, 4, and 5 though are not necessarily faster
- one way from just looking at the algorithm. There is one main advantage to
each SIMD mode and MIMD mode. The data above has been taken to try and
show the effects of each of these advantages. The advantageof 'SIMD mode
comes from the fact that the code is straight inline code.: "The looping '
structure inherent in the program can be eliminated when using, SIM:D code,
: .by hav1ng the MC do the looplng and sending only one stream of lnhne code
to the PEs. This takes ‘away all of the overhead of looplng out of the:
processor that has to do the raw number crunching, leaving it to concentrate
on its task. There i is a drawback of SIMD, which is the advantage of MIMD.
“When the SIMD program executes a variable length instruction, or sequence of
‘instructions, each of the PEs must finish that instruction before any of them
“can go on to the next instruction. Because of this, all variable length -

i 1nstruct10ns will take the time of the Worst case time of all PEs. Thrs ¢an be -

very costly When an 1nstruct10n, or group of 1nstruct10ns has a large tlme
varlatlon : L

Lookmg at step 1, there are no varlable length 1nstruct10ns, but there arev
transfers Transfers are must faster to execute in SIMD mode The subroutine
- calls to send data over the network can be replaced by one "move' 1nstructlon
~if the sendmg PE knows ‘that the receiving PE is ready to receive.
' ‘Implementmg this section in SIMD mode, each PE knows exactly when the

~“other PEs are ready and the transfer time can be minimized by replacmg the L

- subroutlne calls. The main S[MD advantage also comes into. play. Usmg S
~ SIMD mode, all the looping can be done 1n the McC. ThlS functlon 1s;
obv1ously best ertten in SIM]) Inode ' = P

Step 2 is - not as easy to discern. The compares for: the mlnlmum and

B max1mum ‘are done as a small MIMD subroutlne “For these purposes, this

subroutlne can be thought of as a variable’ length instruction. ‘Two factors are
welghtmg the timing. In SIMD mode, the looplng overhead is ellmmated but
if a new. minimum is found in any PE, all PEs must wait untll that new value
is saved before they: can go on to the next instruction. The two different
':programs that were timed show that ehmlnatron of the looplng saves at most
- 6ms. "The difference in best and worst case data is' 24rms for the MIMD
_» ":verswn ‘Therefore if the worst case is d1str1buted properly, either all in one
PE, or dlstrlbuted over all PEs, the time for all PEs, even ones with best case
data will be 24ms longer than necessary. This is'a much greater time than the
6ms saved from the loop1ng A srmllar argument can be made for steps 4 and '

Step 3 has been 1mplemented in MIMD mode, because the PEs that

a contaln the outside edges of the i image do not. figure those edges Therefore,

- check is’ ‘made to determine which PE is ﬁgurrng its edge and then finds only

the necessary edge wrndow values In the. four PE case, each PE ﬁgures only

N ..'two edges ' ' - g .

' In general it can be sa1d that thls program 1s a very good 1mprovement
over a comparable serial version. The only overhead incurred is the time for

‘transfers and- the time for finding edge values.. A serial program would have
* those- two times subtracted, but the inside and threshold times multiplied by
‘N, with N being the number of PEs used in the parallel verswn Thls t1me is
’much greater than the overhead for measured for transfers

'»:7 Future Work

Future possrblhtles in this area mclude expandlng the number of PEs to
' e1ght and sixteen. -The program thr4mb is a good startlng place because it
‘ already makes the eight transfers, whether they are used or not. Sections 4
and 5 could also be tested comparing SIMD and MIMD modes, but the -
' conclus1ons should be the same as sectlon 2. Section 3 can be modified to

Work in SIMD mode by disabling’ PEs that do not take part in ﬁgurlng a .
B certaln edge ‘Other possibilities are to examine the actual code for finding the
- ﬁgure of merit and best threshold level, to see if there i is a - way to optimize it

“and reduce the overall time of executlon A program also needs to be written -
that will take a file, split it up for placement in PEs and create downloadable
) _‘ files to place the data. ' : : T

'8. » Concluslons

Examples of algorlthms that show a deﬁmte speedup over- thelr serlal

- '»vcounterpart have been shown. " The different parts of the chosen algorlthm,
© . have given examples of where SIMD and where MIMD modes of operatronf” ,
. work best ~The SIMD / MIMD tradeoﬁ' has been' discussed in detall showmg.-“ '

- "the attrlbutes of each. Ea.ch of the programs ertten has been detalled and a -

. future trall of Work has been Ieft for someone to plck up.

- [siss1)

S 'References .

7 M J. Flynn, Very hlgh—speed computmg systems, Proccedmgs
X _‘of the IEEE, Vol. 54, December 1966, pp. 1901-1909. B

H. J. Siegel, L. J. Siegel, F'. C. Kemmerer, P. T. Mueller, Jr H

E. Smalley, .Ir, and S. D Smith, "PASM a. partxtlonable o
' _:SIMD/MIMD system for 1mage processmg ~and - pattern . .

. o recognltlon, IEEE T ransactions on C’omputers, Vol C 30
: .-December 1981, pp- 934—947 ‘ :

S

 fuas

H L Slegel T. Schwederskl, J. T Kuehn, and N J Davrs IV

"An. overview of the PASM parallel processmg system, in
. Computer Archztccture, D. D. Gajski, V. M. Mllutmowc, H. J
.’Slegel and B. P: Furht, eds., IEEE Computer Soc1ety Press,f :
- *Washmgton, D C., 1987, PP. 387 407. R

D. L. Tuomenoksa, G. B. Adams III, H J. Slegel and O R
. Mitehell, "A parallel algorithm = for contour “extraction:
"""a'dva'ntages and architectural implications,” 1988 IEEE Comp.
- Soc . Symp. C’omputer stzon ‘and Pattern Recogmtzon, June‘ o
: "1983, PP- 336—344 | S e

25

:NﬂMD"Contour Tracin,g for ImagevPro.ceSS'ing o

g Brz'an .G'o:c

Abstra.ct

o As part of a coordlnated study of novel parallel archrtectures, contour '
'traclng of images is being’ performed on the PASM system prototype. The
. group of. apphcatrons was concerned Wlth image smoothing, hlstogrammlng,
image compactlon and contour ‘tracing. . The contour tracmg algorithm was
_ desrgned as-an MIMD program. The: pro_]ect was d1v1ded into two phases In
~ the ﬁrst phase, a graphic 1mage was divided 1nto separate sublmages and all
local contours were traced and . recorded In phase two, the partlal contours
. prevrously traced are connected. Several experlments have Dbeen run on the

i ﬁrst phase of the algorithm with dlﬁ'erent data image sets. Analysrs is focused

" on determlnlng communication overheads speedup over serial program

. f‘versmns, and ‘overall efficiency. Contlnulng Work is extendmg these programs o
- to examine SIMD /MIMD trade—offs ' ' : :

N ,1 Introductlon

In the area of parallel processing, there are several types of apphcatlons
“that beneﬁt from parallehsm One of these applrcatlons is image processing.
. Many parallel image processlng algorlthms have been studled such as image
*. coding [9], image correlation [7,12], image segmentation [14], two-dimensional

-~ FFT [10], histogramming ([11], and line segment generation . [13] .The
- algorithm of interest to this’ project . is contour extractlon The paralle] .
- _}1mplementat10n of contour extractlon can be beneficial from apphcatlons such

as quality control inspection of prlnted c1rcu1t boards to m1]1tary projects in
- which both algorithm speed and accuracy are crucial [8] Contour extractlon.
~ “can be d1v1ded into two ‘major algorlthms edge- u1ded thresholdlng and
- contour tracing. The edge-guided thresholdlng algorithm is used to determine
" a set of optimal thresholds which are used in the contour tracrng algorlthm to

_»segment an image and trace the contours. This prOJect is concerned with the

- parallel implementation of the. contour trac1ng algorlthm and 1ts relation to
.~ the PASM archltecture : U

26

2. PASM

. The PASM archltecture is capable of dynamically - reconﬁgurmg to
operate in SIMD and/or MIMD mode. The partitionable SIMD/MIMD
-'machine consists of a control unit, an interconnection network, N processing -
- elements , and Q micro controllers. The control unit is responsible for the v
- overall coordination of the PASM system. The 1nterconnect10n network isa
, c1rcu1t-swrtched Extra-Stage Cube network; which is a fault—tolerant variation
of the multistage cube network. The processing elements (PEs) are _
sophisticated mlcroprocessors that perform the actual SIMD and MIMD
operations. - The processing elements are controlled by the micro controllers
-~ (MCs). The PASM architecture when completed will consist of 1024 PEs and =~ |
~32'MCs [11]. ‘At this time, a PASM prototype has been . completed which - ’
~ consists of 16 PEs and 4 MCs {2] SRR : .

Several a.pphcatlons have been designed and lmplemented to test the _
performance of the PASM prototype. These appllcatlons range from matrix
multlphcatlons to Al algorithms [3 6]. The application group, of . whlch this
project is a part, is concerned with image processing. The image processing
apphcatlons consist of four parts: -image smoothing, histogramming, contour
extraction and image compaction [4,5]. * This paper is concerned with ‘the
application of contour extraction. The contour extraction. appllcatlon is
benlﬁclal in testlng of the PASM prototype [1]

'3 Problem Structure _.

B T_h‘ep 1mplementatlon of - contour extra'ctlon on a partltlonable '

. SIMD /MIMD machine such as PASM is advantageous in that it demonstrates

‘several features of this type of machine. An SIMD /MIMD mach1ne cons1sts of '

a control unlt an 1nterconnect10n network; and N processmg elements. The
PASM prototype has 16 process1ng elements(PEs), four of which are used in
: segmentlng the graphlc image in this project. When operatmg in SIMD mode,b
the control unit broadcasts instructions to all processors and each _processor
executes the instruction on data in its own memory. This mode of operatlon N
is well sulted to edge-guided - thresholdmg’ The edge—gulded thresholdlngf

algorlthm uses a Sobel - edge operator, meaning each pixel is- processed ‘ B

' 1dent1cally Therefore, SIMZD parallelism would: be the most eﬁiclent mode of
- operation for thIS algorlthm When operatlng in. MIMD mode, each processor
fetches 1nstructlons from its own memory and executes them on data in’ its
_own memory Contour tracmg, whlch is divided "into two phases, is more
~‘stitable to this- mode. ~The interconnection mnetwork is used in both
: algorlthms ‘In the contour tracmg algorithm (PHASE II) the 1nterconnect10n
A network would be used to transfer partlal contour 1nformatlon between PEs

27

7 This pro_]ect however, is malnly concerned Wlth PHASE I Whlch requlres only
local data and no PE-to-PE commumcatlon :

‘ ‘4.,' ‘_,PrO‘blem Solution

4. 1 ngh-Level Descrlptlon

v As prev1ously stated, the contour tracmg project: is d1v1ded 1nto two

phases In PHASE 1, the subimage within each PE is segmented and all local
contours are traced and recorded. In PHASE II, the partial contours traced
durmg PHASE 1 are connected. Initially, the graphic image is divided into
‘sublmages within each PE. For this project; four PEs were used with each
subimage having a resolution of 8-by-8 pixels. Each PE also contains a list of
threshold values for its individual subimage which were generated usmg edge-
' gulded thresholdlng ‘ '

PHASE 1 begins by segmentlng the 1ma.ge accordlngly to each threshold
value. The threshold values are considered seperately. Each pixel in the
' source image is compared to the current threshold value. If the pixel value is
less than the threshold value, a zero is stored for that plxel If the pixel value ,
is greater than or equal to the threshold, the pixel value is set to one.

v Therefore, only valid contours are left for tracing. Tracmg beglns by scannmg
rows of the image from left to right, starting with the top row. The scanning
will stop‘ when a pixel with a value of one is found with a zero-valued pixel to
either side. This pixel is the beginning of a new. contour and is marked as the
starting point. To determine the direction of this new contour, . the
surrounding pixels are scanned for a pixel of value one. The surrounding

. pixels ‘are initially scanned ‘counterclockwise as seen in Fig. 1. For easy

reference to each pixel, a gtandard Cartesian coordinate system is used with
the addition of each PE number (i). The i-x-y coordinates of this contour are
stored and the next pixel is treated as the center point of the 3-by-3 window
» in Fig. 1. - Counterclockwise scanning will begin again with this new point.
The tracing will continue until a point of indecision is reached. Imitially, if all
the surrounding pixels of the startpoint are zero the pixel is not the start of a
contour and is ignored. However, if the pixel is an edge pixel with an adjacent
'YPE, the pixel .could be.the starting ‘point of a contour which extends into the
subimage of the adjacent PE. This pixel is marked as a startpoint and
extension is verified in PHASE II. When a point of indecision is reached, data
.‘,frOm-the' adjacent subimage will be needed to determine the direction of the
contour.. This point is marked as an endpoint and the PE(s) which contains
the subimage with the possible extension is recorded. The tracing will then
return to the startpoint and begin tracing in a clockwise direction. This

‘-'contlnues untll another pomt of 1ndec1s1on is reached When traclng-‘ -
A "_clockW1se, the X~y sequence of the pixels should be- stored in. front of the
. previous ixy contour sequence Thls partlal contour sequence is. pomted to 1n
v:the contour table located in each PE. = - R o

) The contour table, which was not 1mplemented in thls prOJect should
contaln an entry for each 1nd1v1dual contour The contour table consmts of
the follow1ng ﬁelds : - R :

1) a contour 1dent1ﬁcatlon number - -
.2) the threshold value Whlch generated the contour
© . 3) the number of pixels in the contour ‘
. 4) a flag indicating if the contour is closed or partral
5) a pomter to the array’ contalmng the 1-x-y sequence of the
, contour _ : = : : S : ‘

. "6) a flag 1nd1cat1ng Whether the partlal contour has been connected
STy the physical. address of the PE which linked the contour T '
8). the physical PE address and 1dent1ﬁcatlon number Wthh 1s L o

 blocking extension of the contour. ' -

9) -a locked/ unlocked semaphore '

A contour table should be constructed for each contour in each sublmage for
each threshold value ‘ - - .

4 .0
5. 6 7

, An example 10—by—20 contour 1mage is shown in Flg 2. The 1mages have'
been segmented in each PE with 31m11ar thresholds. PHASE I begms,
'srmultaneously, in each PE by scanning each pixel. .In PE 0 the startpomt is
“found to be (0,3,3). Counterclockwise tracing traces the contour to a point of -
1ndeclslon at (0,7;9). This point is recorded as an endpoint, the blockmg PE is.
stored ‘and tracing returns to the startpoint for clockwise tracing. After the ,
 clockwise tracing has reached the point of indecision at (0,3,9), the first pixel ‘

29

in the i-x-y sequence should then be (0,3,9). The scanning will then resume
and find no more pixels since each previous pixel has been marked as already
part of a contour. PHASE I will then repeat the process for a new threshold
value. PHASE I is then complete and PHASE II begins. Since this project is
mainly concerned with PHASE I a brlef descrlptlon of PHASE II is given for
clarity.

‘ PHASE IT will connect the partial contours traced in PHASE 1. PHASE
II can either begin after all the PEs in PHASE I have completed processing or
after each individual PE has completed its processing. Since a complete
contour may be contained in several PEs, a priority is established for which
PE will link the contours. The priority is that each PE will only attempt to
close a contour which is bordering a subimage to the left or above. To
prevent several PEs from accessing a contour table at the same time a
semaphore is introduced. The semaphore is a variable which locks a contour

table while it is being modified to prevent other PEs from simultaneously

- modifing the same table. When a PE attempts to close a contour it must

check the bordering pixels in the adjacent sublmage It co}mpa'res the
bordermg pixels to the pixels in the :

PE, PE,
(0,3,3) (0,3.8)
' 000000»«40@
(0,4,4)OD « » + o .« O
0 L] DR Y » . e o "O
Qe O
Yo%k Il Jogodosodosog
(0,7,9){(1,7,0)

© Start point

O Counterclockwise trace mark
© Clockwise trace merk ‘
< End point (counterclockwise)
» End point (cloekw.e)

Figure 2

partial contour list for endpoints which match the border pixels.
contour is found, the partial contour is transferred to the PE. attempting
closure. The i-x-y sequence is added to the contour to form an extended trace.
If the contour is not found in the adjacent contour table, the PE attempting
“closure will probe into the adjacent subimage with the current threshold in an
attempt to find a contour which may not have been detected with the
adjacent PE thresholds. A limit is placed on the length of a contour to assure

30

‘termination of the algorithm.

4.2, Aigorithm

The actual MIMD algorithm was implemented in 68000 assembly code.

Following is an outline of this algorithm:

- IL

II.

HEHY oW R

Initialization

A. Constants

- B. Data

Segmentation

Scanning Routine
A. Initialize x-y coordinates

‘B. Scan Image

1. check for edgepixels
a) valid startpoint?
2. check for internal startpoint

. Startpoint Routine

Save x-y coordinate of startpoint
Check for edgepoint

Trace counterclockwise

Check for edgepoint

Trace clockwise

Reset for newcontour

31

g V Edgepomt Routine

- A. Check for corner blocking plxels

" 1. Determine blocking PEs
2. Store string for table
3. Store pixel '

B. Check for normal edges
1. Determine blocking PE

2. Store string for table
3. Store plxel o

: 'VI Tracecounterclock Routme
-+ +A. Compute x-y locations-
“#. B. Valid startpoint?

VII Traceclock Routine
-+ A. Compute x-y locations-
B. Valid sta,rtpomt"

'jVHI Store Routine =~
A, Modify traced pixels
B. Reset image pointer

5 Program Varlants -

‘Two. versions of the contour tracing algorlthm were developed a parallel
“version and a serial version. To effectively test the efficiency of parallehsm,'
the two versions of the algorithm should be optimized. The parallel algorithm R
should be the best possible parallel version while the serial algorithm should
be the best possible serial version.. While these programs are far from the best
possible implementations, they are, however, the best possible versions relative
to each other, since the serial version is based upon the same programming
techniques as the parallel version. Therefore, the speedup analysis due to
‘ parallelism~.should be accurate.

5. 1 Experlments

‘The experlments were performed on 8-by-8 pixel . 1mages with four
processmg elements. This gives a complete graphic image of 16-by-16 pixels.

_.. Since the contour tracing algorlthm is best suited for MIMD, the only mode of

parallehsm used was MIMD. The contour tracmg algorlthm is hlghly data

32

dependent... Therefore, se‘fefal data sets were used and designed to test the -

performance of the parallel algorithm. The data sets range from a minimal
set of elements to a maximal set. The data images consist of a zero element
data set, a horizontal and vertical contour data set, a spiral image data set, a
_ Sqilare image data set, and a random contour data set. The zero element data
set has no contours, thus having the fastest execution time. The horizontal =
and vert1ca1 contour 1mages represent the maximal number of 111d1v1dual_ ,
~ contotirs that an image can hold. The execution times for these datd sets -

should have the longest execution times due to the large number of contours_'_

“and pixels that need to be traced. The spiral image has a maximal number of

pixels in a single contour and no edge pixels. Thus, the execution delay is due =
mainly to the tracing routines within the algorithms. The square image'is

representative of a closed contour and the random data is used just to
introduce some varlablhty The data sets were run five times on both the .
parallel version and serial version of the algorithm. The execution times were
‘then averaged to eliminate any - unnecessary delays such as that- 1ncurred by' o
dynamlc memory : ' ' -

6. MeaSur‘ed .D‘ata

Parallel - | Serial R
Execution Times ‘| Execution Tlmes ! Speed'up“
i N _ (m-sec) ___ (m-sec) Sl
| no_data 2.900 . 11.880 | 4.10
horiz_data ~ 5.696 20404 | 3558 |
‘vert_data ~6.256 - 24.456 | 391
| spiral_data L4592 | 18720 | 408 |
‘'square_data 5004 | 20416 408 |
random_data | 5396 | 21688 | 402 |

7'.:\’ Interpretation of Data

7. 1 Problem Related

: From comparmg the serial executlon times to the parallel, 1t is obv1ous
_that there is a considerable speedup of the parallel algorlthm ’ For all
: experlments, the speedup is close to O(n). The speedup is less than: O(n) for a
few - rdata sets due to the extra analysis of the parallel algorlthm ‘Since the
. graphic image is divided into four subimages, the parallel algorithm must
check each PE for edges which block the extension of the contour. Within the -

33

- edgeblock subroutine, the algorithm must determine which PE(s) is blocking

‘the contour and store the string. Therefore, the subroutine must check each

_coordinate to determine if it is an edge pixel or a corner pixel. The number of

_ blockmg PEs can range from zero to three. The edgeblock routme is the most
‘time consummg

E In the serial version, the image is not subdivided and 1nten31ve edge
‘detection is not required, therefore, eliminating the overhead. PHASE II of
‘the parallel algorithm is also not required. The extension of the contours
would increase the overhead and decrease the overall speedup. This is the
main advantage to the serial approach. One of the dlsadvantages to the serial
approach is the edge-guided thresholdlng required for this algorithm. The
EGT performance decreases with the increase of image size. Thus, for reasons
of speed and accuracy, the parallel approach is more favorable.

From the data, it can be seen that the majority of the speedup ﬁgures are
greater than O(). Since it is impossible to achieve a speedup greater than
O(n), it can be assumed that the speedup figures are inaccurate. This is due
“to the fact that the parallel and serial implementations are not ideal. To
‘ achiéve' an accurate speedup time due to parallelism, the executibn times of a
- best pos51ble serial algorithm should be divided by the executlon tlmes of the
best p0531b1e parallel algorithm.

7.2. Archltecture Rela.ted

The PASM architecture is very well suited for the needs of the entlre
contour extraction algorithm. The SIMD capability of PASM allows the
executlon time of the Sobel operator to be a minimum. Both the EGT and
contour - tracing require = PE-to-PE communication. = Therefore, the
performance of the interconnection network must be efficient. Since, PHASE
I of the contour tracing requires only local data, there were no PE-to-PE
communications to decrease execution times. Also, because of the
implementation of the algorithm in MIMD, the Fetch Unit delays were a
 minimum. One minor architecture related delay affecting PHASE I was the
‘dynamic- memory refreshing. This had a very minor effect on the entire
- parallel contour tracing algorithm and was very similiar in the serial
approach. This project did not fully utilize the PASM architecture. The
‘complete contour extraction algorithm would be much more appropriate for
' testing PASM. ‘ : : '

34

8. Future Work

To fully test the PASM archltecture, the complete contour extractlon'
: .algorlthm should be implemented. PHASE II of this project would allow a .
“more complete study on the interconnection network and a more. accurate
comparison of the serial and parallel approaches This would ‘require the
“combined execution of the EGT and the contour tracing. Once completed
' "vm_ore realistic results could be obtained by using actual image data sets. A
* - complete study could be done by combining these algorithms with several
image processing tasks such as image ‘smoothing, two—dlmenswna.l FFT, and

hlstogrammmg Since the field of i image processing is so vast, the. problems for

- future study are limitless. The major task in relation to this prOJect however, 7
~-should be the completlon of PHASE IL.

'»9 Conclusmns »

Overall, -the contour tracmg algorithm is very well sulted for parallel
,1mplementat10n on PASM. The complete desxgn utilizes the archltecture very
well. From the testing of PHASE I, it can be seen that the parallel-
programmmg approach has several advantages that include a considerable
speedup of execution and an 1mproved accuracy due to the Sobel operator.
’Thus, the ‘parallel 1mplementat10n of the contour extraction routlnes could be
_'very useful for many apphcatlons

References

[] D. L. Tuomenoksa, G B Adams I, H. J Slegel 0. R. Mltchell
~“Parallel Algorithm for:Contour Extractlon Advantages and Archltectural
- Implications," Proceedings of IEEE Computer Society Conferencc of
C’omputer stzon and. Pattern Recognztzon June 1983

2] 'H J. Siegel, T. Schwederskl, J. T. Kuehn, N. J. Davis Iv, "An Overv1ew

 of the PASM Parallel Processing System, Computer Archztecture , D.D.

. Gajski, V. M. Milutinovic, H. J. Siegel, B. P. Furht, eds., IEEE Computer -
Soc1ety Press, Washmgton, D.C., 1987, pp 387—407 R

[3] ‘“S Flneberg, T. Casavant T Schwederskl, H. J Slegel Non-

Determlmstlc Instruction Tlme Experiments on the PASM System

Prototype," 1988 IEEE International Conference on Parallel Processzng)
Chlcago, August 1988. - - ;

[4] W, Disch, T Casavant 'Experlences W1th Parallel Image Smoothlng on,

" the PASM ‘System Prototype, ACM SIGPLAN Symposium on Parallel

Programming: E:cperzences wzth Applzcatzons, Languages and Systems,
June 1988. : . ,

B

e
S Fmal Report EE 696, School of EE, Purdue Umversﬂ;y, Fall 1987

m

K Schurecht Threshold Generatxon on PASM Fmal Report EE 495

: .‘-School of EE, Purdue Umvermty, Fall 1987

C. nger, "Al Graph Searchmg and Parallel N-Mm-Fmdmg on PASM "

g.D L Ackerman, Algorlthm de81gn for digital unage correlatlon on 2
*parallel ‘processing system," in High Speed Computer . and Algorithm - -

- Organization , edited by D. J. Kuck, D. H. Lawrle, and A H. Sameh _—

o [8] o

o [9]

using the multimicroprocessor system PASM," 1982 IEEE Comput. Soc..:

o Academxc Press, Inc., NeW York 1977, pp 307 308.

J. A Cornell 'Parallel processmg of balllstxc mlssxle defense radar data

:thh PEPE " COMPCON ’72 Sept 1972, pp. 69-72.

T. N Mudge, E . Delp, L J. Sxegel ‘and H J Slegel Image codmg‘

' C'onf Patern Recogmtwn Image Processmg, June 1982, pp. 200-205.

:‘[150]

[12]

P. T Mueller, Jr.; L. J Slegel and H J. Slegel 'Parallel algorlthms for
the two-dlmensronal FFT 5th Int’l C'onf Pattern Recogmtzon Dec.

'1980, pp 497- 502

H. J. Slegel L. J. Slegel F C Kemmerer, P T. Mueller, Jr, H E.

Smalley, Jr., and S. D.° Smith, "PASM: a partionable SIMD /MIMD
system for image processmg and pattern recogmtlon,, IEEE Trans
C'omput vol C-30, pp. 934—947 Dec 1981

L. J. Siegel, H. J. Slegel and A E Feather, 'Parallel processing
~ approaches to unage correlatlon, IEEE Trans C’omput vol. C-31, Pp-

: -208 218 Mar. 1982.

s

)

C. D Stamopoulous, 'Parallel algorlthms for Jomlng two pomts by a
straight line segment IE’EE Trans C'omput vol C- 23, PP 642-646,
June 1974 A . ,

R. J. Douglass, "A pi-peline» architecture for imagefsegmentation," 15th

“Hawait Int’l Conf. orl-System Sciences, Jan. 1982, pp. 360-367.

36

| Parallel Block Truhcdti’on Coding of Images’

Chris A. ‘Tao,'niey |

Abstract

_ ThlS work is a practlcal look at the questlon of computatlonal speedup,
from the pomt of view of a specific. algorithm. (Block Truncation Codmg)‘
1mplemented on a specific parallel processor (the PASM prototype). By
- examining actual timing data from a real application program, much can be
» learned about the proper de31gn of parallel computers and algorlthms

The paper' discusses speciﬁcs of the PASM prototype' (a partlona.ble
SIMD /M[MD non-shared memory machine) and Block Truncation Coding (an
image: compress1on algorithm). Theoretical and actual executlon times were
compared for different image sizes and numbers of processors used. The paper
-ends with genera,l conclusions and ideas for future research '

1. Introduction _

The ,fundamenta}l purpose of parallel processing is increased computation
speed. This paper is a practical look at the question of computational
speedup, from the point of view of a specific algorithm (Block Truncation
Codlng) 1mplemented on a specxﬁc parallel processor (the PASM prototype).

- By examining actual tlmmg data from a real apphcatlon program, much can

be learned about the proper de31gn of parallel computers and algorlthms

. There two main reasons for using parallel processmg to inerease executlon
" speed. One reason is to get maximum speed for minimum cost. This requires
~ using efficient, parallel algortlhms, to maximum speed for, the number of
processors'being used. The other reason for parallel processing ivs'to increase
maximum execution speed. The goal in this. case” is maximum speedup, even if
the processors are not efﬁc1ently used Both viewpoints will be examined in
thls paper. '

v The paper beglns W1th a descrlptlon of the PASM prototype (the parallel o
. '_computer used) and Block Truncation Codlng (the algorlthm 1nvest1gated) ‘
, Next 1mplementat1on questlons ‘are discussed. . Then the experlments‘-

- 'performed ‘and data gathered are presented The paper ends with general' .

"conclusmns derlved from this prOJect and suggestlons for future research

o 2 Overv1ew of the PASM Prototype

The PASM prototype i is'a partlonable Sl:MD /M[MD computer bemg used : "
‘ for parallel processmg research at Purdue Unlver51ty The PASM prototype :
- _(henceforth referred to as PASM) is collect1on of 30 microproeessors set-up for

'»ﬂexecutlng S]]\/ID MIMD, ‘and:° hybrld SIMD/MIMD programs. -~ These

mlcroprocessors are d1v1ded into 4 groups of 5 processors (called MC- groups)’

~and ‘assorted. additional - processors for system control and . memory

: -,management Each of the four MC -groups. consists of one MlCI‘O Controller o
" (MC) and. four Processing Elements (PEs). The MCs and PEs use Motorola B
. M068000 mlcroprocessors (running at 8MHz) as CPUs.. Each processor has

two dual-ported memory boards (1 Mbyte/board) so that program executlon o

and data loadlng /storing can be overlapped Since only MIMD programs were‘_

¥ 1mplemented 1n this prOJect the SIMD - 1nstruct1on broadcast hardware (Fetch
Umt) can be ‘ignored. Because the algorlthms ‘studied 'requlre no. -
o 1nterprocessor commumcatlon, the programs can be run Wlthout mod1ﬁcatlon.* o

"_f'.;‘on either MCs, PEs, or a comblnatlon of both ' ' L Rt

For add1t1onal 1nformat10n on spec1ﬁcs of the PASM prototype, see "_» f__'-' -

R references 1 and 2

: '.>‘3 Overvxew of Block Trunca.tlon Codmg

Block Truncatlon Codmg (BTC) is an nnage compressmn algonthm that
’ works by stormg an approx1mat10n of the original image on a block by block‘
o ba31s The or1g1nal image con81sts of a helght by width array of plxels, each
- plxel stored ‘as ‘one byte of grey. level 1nformatlon First the 1mage to be

o compressed is spllt 1nto 4 plxel by 4 plxel blocks." Then each block 1s '
i compressed totally 1ndependently of all other blocks. The 16 bytes of grey,

“level data i is converted to 16 bits of plxel data (the bit-plane); an 8 blt mean
» 'value, “and an ‘8 bit standard dev1at10n ‘value. The complete encodlng
o ._"-%.alogrlthm appears on the followmg page

The.. BTC decodlng algorlthm Works by computlng two numberes to

v replace the one bit values- used for each pixel (the blt-plane) These two
values (Whlch shall be called low and hlgh) are computed in such a way that

when the replacement is done, the mean value and standard deviation of the -
~decoded block is the same as- the orlgmal "The complete decoding algorlthm
appears below : ‘ o RN '

. : BTC Encodlng Algorlthm :
V For each 4 >< 4 block do '
' Compute the mean value of the 16 plxels in that block.
Compute the mean square value of the 16 plxels in that block
" For each pixel in the current block: do . ’
If pixel brlghtness Z mean then p1xel b1t Value =1
- If pixel brightness < mean then plxel b1t Value = 0

Compute standard dev1atlon of the 16 plxels in that block
Store the mean, std, and blt-plane for that block. 7 ‘

S : ,BTC De.coding: Algorithm T
For each 4x4 block do : '
_ Get the mean, std, and blt-plane for that block :
Compute q = the number of blts m the blt—plane that are ones
Compute the low fill value: low = mean - (std[q/(16—q)])°
Compute the high fill value: high = mean + (std[(16—q) /q
A 'For each pixel in the current block do
- If pixel bit value =1 then plxel value = hlgh
If pixel bit value =0 then pixel value = low
Store the pixel value

_ To help clarlfy the encodmg/ decodlng procedure, con31der the followmg
- example (note the sample used was selected to make the example clear and
easy to understand not because 1t is a typlcal 1mage block)

Samplfe B‘lOCk".. ‘_ |

10203040
20304050
30405060

40506070

fmean == (10+20+30+40+20+30+40+50+30+40+50+60+40-|—50+60+70)/ 16 = 40
' Var1ance = (100-|—400+900+1600+400+900+1600+ +3600+4900)/ 16 = 1850
std [varlance mean’ 2]:8 f_ 16 RTINS e

The re‘_s‘ultin‘g": bit’-pla‘ne 'i'sj:"‘ 3 -

0001
o011

o011l
Lt 1"1,,:.1'."-’

. , The encodmg algorlthm Would store mean, std and the blt-plane (requlrmg a
total of 32 brts) R :

‘ | To decode the block ﬁrst q Would be computed
q“: 10 “
. Then h1gh 'an,df 10W Would becomputed
“low ‘—-'19’ o
hlgh —'52
,‘ : The resultmg decoded block is:

: -7 19 1‘91’19;'5?2';, R

©1919 52°52.

19 52 5252 y
Sl ’;,5_2_ 52 52 ,5.2 r’ -

‘For addrtlonal 1nformat10n on. the Block Truncatlon Codlng algonthms, "
see references 3 4, and 5 ‘

4. Theoretlca.l Executlon Tlmes for. BTC

.- The terms speedup and efﬁclency were mentroned above as belng two of
the prrme criteria for Judgmg parallel algorlthms Speedup shows how much
, 'faster a parallel algorithm Works than a serlal algorlthm for the same problem
- It 1s computed by the followmg equatlon ’ Ll

40
, Speedup = Serial Execution Time" / Parallel Exec‘ution ’l_‘ime

ObV1ously, the hlgher the speedup 1s, the fa,ster the algorlthm will run In
' general, execution time decreases as more processors are used, increasing
.‘speedup The increase in speedup due to using more processors depends on

the efficiency of the parallel algor_lthm Efﬁclency is com_puted as follows: ’

Efﬁciency = Speedup / Number of VPjrocessors Used :

In general, efﬁclency is less than or equal to 1 -An efﬁclency of 1is called ,
linear speedup, because an'increase in number of processors used causes a
linearly: proportional increase in executlon speed The tlmmg relatlonshlp for
such algorlthms is of the form ‘

' Execution Time = F("n) / N
(11) is some functlon of the input size n, and N is the number of processors

*used. Few algorlthms exactly fit this form, but many approx1mate it. In the
- case of Block Truncation Codmg, the theoretwal timing relatmnshlps are:

Enéode‘-Timle == k’l 'fl‘ kzn/N -
,Decode Time = k3 + k4n,/ N -

o -N is the number of Processors used n is the 1nput size (in plxels) and the s

‘are constants dependant or the actual implementation. The k- constant

~ represents the 1n1t1allzatlon time required before ‘any blocks are actually. L

- encoded. The kz constant represents the time requlredi per pixel for one
processor (not including the initialiszatio_n_'time). The (':on'stants ks and kg
"~ work the same for the decoding algorithm.- Obviously if k; and kj are very
 small, or the number of pixels per processor (n/N) is very large, the equations .

- approx1mate linear speedup very closely. Therefore, thereis a need to actually

1mplement the algorithms to determine how close they come to the ideal of
o ,ﬂhnear speedup, for dlfferent values of n/ N '

41

5. Implementatlon

The BTC encodlng and decodrng algorlthms were 1mplemented in
MCG8000 assembly language. Assembly language was used because it provides
» maxxmum _execution speed = and because high-level parallel’ optimizing
- compilers are not available for PASM. The two algorithms were written in a
“ single program, for s1mphc1ty of experlmentatlon (they .are totally separate‘
routlnes, but puttlng them :in one file simplifies downloadlng, ete.) -

‘There were two p0551ble Ways to optlmlze the BTC programs for. fast
execution speed. The first. ‘would be to max1m1ze speedup for the resultlng
program. Maxxmum speedup Would require encoding/ decodlng only one block
- per processor. The resultlng executlon trmes would then be:

Minimum Encode Time - = kl +ky
Mi‘nimum“Decode Time =ks +ky

- By minimizing the constants, the resultlng programs would run tremendously
- fast (less than 100 us each) Unfortunately, for images of real1st1c srze, this

would require far too many processors.- - Therefore ' the programs were
‘ optlmlzed for. the other case. ‘

‘The other way to optimize the programs was in terms of hlgh eﬂiclency
Th1s approach has each processor encodmg / decoding several image blocks As
a result the ko and ky constants become most important, because they are
,mult1phed by n/N which' for realistic images would be at least 16 or more.
Therefore the primary goal was to optlmlze ko and ky. '

Three 1mportant methods of optlmlzatlon were used. The first was to use
assembly language to write the programs, 1nstead of a h1gher level language.
Even if a h1gh—level opt1mlzmg compller was available for PASM,; it could not.
‘compete with the speeds possible: with quallty assembly code. Second Some
time was saved. by expanding loops Specifically, this ‘meant repeatlng sections
of code the 16 times needed to process each pixel in a block. This saved loop'
overhead: time, ‘which would have been srgmﬁcant And third, extensive use of
lookup tables was made. These lookup tables store pre-computed values for
different calculations (such as the square root of an 8-bit number) saved
‘ 31gn1ﬁcant amounts of executlon tlme ‘ o

6 Experlments perf ormed

Three “different, experlments were conducted < with the BTC
; encodmg /decoding program. The first expenment was to determine the effects
-of image varlatlons (other than image size) on execution speed. The second
- experiment was to see the effect of image size on execution speed, given a
The third experiment tested executlon speed
fora constant image size using a variable number of Processors. -

constant number of processors

‘In ‘the ﬁrst experiment, 20 randomly generated nnages were used to
determlne approximate best ca.se, worst case, and average case execution
tlmes These were then compared to produce an approximate percentage
'varlatlon in execution speed due to 1mage variations. . The random images
| consisted of 4096 pixels (64 x 64) each, and were processed using four PEs

- In the second experiment, random 1mages of three dlfferent sizes were
“tested to determme the effects of image size on processing rate. Images sizes of

1024 p1xels (32 x 32), 4094 pixels (64 X 64), and 16384 pixels (128 x 128) were

 used. The'i images were processed using four PEs, with the four PE executlon '
. times bemg averaged to produce the actual tlmmg data.

In the third experiment, a random 1mage was processed using dlﬁ'erent
‘numbers of PEs, in order to determine execution speedup. and efficiency due to
increasing parallehsm The same image was processed usmg 1, 2 and 4 PEs.
- 'The random i image consisted of 4096 pixels (64 x 64). ’

7. Data '

The tables below list the actual tlmmg data collected for each of the
three experiments. Image size is in p1xels and execution times are in
milliseconds. Except for experlment 1, all execution times are the average

* values for all images used and all PEs used.

‘ EXperiment 1

" Data Type | Encode Time | Decode Time :
‘Best case - 20.008 9.452
| Average case 20.0348 9.4864

| Worst case 20.064 9.532

" Experiment 2

43

Image Size | Encode Time | Decode Time i
1024 5.058 2.436
4096 ©20.037 9.488
116384 - 79.864 37.564
Experiment 3 - |
‘ Processors | Encode Speedup Decode HS'pee»djup
1| 79.868 | 1.0000 | 37.576 | 1.0000
2. | 39.944 1.9995 - 18.810 | 1.9977
4 | 20037 | 3.9860 | . 9.488 | 3.9604

8. Interpretatron of Da.ta _ ,

Usmg the data gathered in experlment one, it is poss1ble to compute an
approximate percentage varatron in executlon speed due to 1mage variations.
The actual results are: '

+.14%
42%

_ Actual Encodmg Tlme *Av‘era‘ge Encoding Time

Actual Decodrng Tlme Average Decodlng Tlme +

: ’Clearly the eﬂect of image dlﬂerences (other than sme) on executiOn_ time is
' practlcally 1nsrgn1ﬁcant - .

In order to: determine the affect of image size on executlon speed the

 results of expern:nent two were: graphed as shown on page 11. The graph' R

clearly shows that execution time 1ncreases linearly with image size, as
. expected. From the data it is possible to compute k; and kg3, the time taken
when: the 1mage s1ze is zero The values are o ’

o ;f,f'k1 ='7°_-9 bs
kvl

3 ’The constants k2 and ky are the slopes of the encodlng and decodmg 11nes,,
respectlvely Calculatlng the slopes results in: LT

k=1948us

44

In order to determine the affect of .increasing parallelism on execution -
speed, the results of experiment three were graphed as shown on pages 12-15.
The - two vspeedup graphs show that both the encoding and "deCOding
algorithms exhibit (approximately) linear speedup. The two efficiency graphs
show that efficiency drops only slightly as parallelism i increases: |

Usmg the results of the three experiments, it is p0531ble to produce
'equa.tlons for the actual execution times based on image size and number of
processors. The resulting equations are:

Encoding Time = 70.9 -+ 19.48 * (n/N) us =+ .14%
‘Decoding Time = 94.1 + 9.148 * (n/N) us =+ .42%

C‘learly these equations match the theroretical equations of section 4. B

9. Future Research

There are several possible lines of research contmumg Where thls project
left off. The most obvious possibility would be to just contlnue directly.
_Addltxonal optimization may be possible. More data could be gathered (time
and machine problems prevented tests using larger images or more processors).
A hybrid SIMD /MIMD version could be written (the current version is entirely
MIMD). Note: It is not recommended that a pure SIMD version be written
using the current condition code hardware. There is little chance that a pure
SIMD version could riun faster than an MIMD version on this machine (due to
the nature of the problem and the nature of the computer being used). To
write such a version may be an example of using the wrong hardware for the

wrong problem.

Another research idea than beating this relatively dead horse, would be to
convert the BTC programs to do real disk I/O to get data and store results.
Because there is native operating system kernel, all data was downloaded with
- the programs, totally ignoring the usefulness of ,ha‘»'fingvv two. dual-ported
memory boards with each processor. It 'Would be very good to find out how
well the I/O processors and dual-ported memory boards work for a real
’program usmg large amounts of data

B

R

‘Truncatlon Coding," IEEE Trans Commun vol. COM-27, pp- 1335—

45

R References :

. T Schwederskl, W. G Natlon, H J. Slegel and D G. Meyer, The
- .Implementatlon of the PASM Prototype Control Hierarchy' AR

H' J Siegel T. Schwederski, I T 'Kuehn, and N. J"DaviS'NI;T"An o

Overview. of the PASM Parallel. Processing System,” 'in Computerf
Archltecture, D. D. Ga_]Skl, ~_V M. Milutinovic, H. J. Siegel, and B. P.

Furht, eds IEEE Computer Soclety Press, Washmgton, D C 1987 PP-
‘ _387 407. : . r |

L. J. .S‘i'egel., E. J. Delp, T. N. Mudge, and H. J. Siegel, "Block
Truncation Coding on PASM," 19th Annual Allerton Conference on
_Communlcatlon, Control and Computmg, Allerton House, Montlcello,)
- IL, Sept 1981. S : R -

E .I Delp and O. R Mltchell Image Compressmn Us1ng Block |

1-342,»Sept‘. 1979,'

B8

O R Mltchell and - E e Delp, 'Multﬂevel Graphlcs Representatlon: —_
-Usrng Block Truncatlon Codlng, Proceedlngs of the IEEE, vol 68, ‘no.
7, July 1980.

354

204

2.5 4

. 66'0'

.60.0.4

S0 0

Execut1on Time (ms)

A

9 00 +—
- 0.00

2 00

-

00

680 800 100 120 140 160

Imaqe Snze (prxels)

Flgure 1.

Executlon Tune vs Image Slze for 4 PEs.

409
354"

301

2.0

Speedup

- 1.5

104

g0

Nudber of Processors

,,’bv oo 0] ll.v‘ ',-2‘ s - 3- 'q'

Number. of Processors

Flgure 2.

Speed—-up for Encode a.nd Decode vs Number of PEs.

Efficiency :

75 4

.63 1

30 4
- 38

T es

Efficiency

“‘vDecode :

0.0

'x;numpekUdF Proég#sﬁksix S S e j;;’»“ ~',A';~ - NUM5er'o£‘Proéé550r5

‘ S g Flgure3 G e e T
Eﬂiclency for Encode and Decode vs Number of PEs. o

46

PART II

Mathematical Operators

47

Non-Deterministic Instruction Time Experiments

Samuel A. Fineberg, Thomas L. Casavant®, Thomas Schwederski, H.J. Siegel

Abstract

Experimentation aimed at determining the minimum-granularity at
which variable-length SIMD operations may be decoupled into. identical
asynchronous MIMD streams for a performance benefit is reported. The
experimentation is based on timing measurements made on the PASM system
prototype at Purdue. The application used to measure and evaluate this
phenomenon was matrix multiplication, which has feasible solutions in both
SIMD and MIMD modes of computation, as well as in a hybrid of SIMD and
MIMD modes. Matrix multiplication was coded in these three ways and
experiments were performed which examine the tradeoffs among all of these
modes.

1. Introduction

While extensive past efforts have dealt with analytical and simulated
performance analysis of SIMD and MIMD algorithms, computations, and
machines, this work describes empirically-based research generated from
experiments on a parallel machine. This research was performed in an
attempt to gain insight into the effect of certain aspects of novel architectures
on applications programs. Specifically, the performance of the PASM
prototype, a machine capable of both SIMD and MIMD modes of
computation, is evaluated from the perspective of matrix multiplication. This
" application was chosen because it has obvious optimal solutions and a simple
enough structure to permit analysis of architecture features through controlled
measurements of program execution time. The experiments described are’

* Supported by the Supercomputing Research Center under contract
number 6925. _ '
** Currently on leave from Purdue.

48

: -bas'ed’on"vSIM].), MIMD, and hybrid_ S/MIMD algorithms for 'multiplying:' nxn

R matrices for values of n ranging from 4 to 256. Operations were performed on':

“"_.3'16 blt 1ntegers ut111z1ng 16 processors in several 4, 8, and 16 processor-’ »

R conﬁguratlons

The. primary archltecture feature belng evaluated in thls Work is the

ablhty to decouple small grains of ‘variable execution-time operat1ons from -

- SIMD sectlons of code into multiple asynchronous MIMD threads of control.

: "-Th1s umque feature derives from the ablhty to dynamlcally reconﬁgure the')
N parallehsm mode of PASM. : ‘

" Results 1nd1cate that When mode—changlng operations 1nduce a mlmmal'
"_:overhead benefits of such decouphng may be found even for relatively small

~_amounts - of varlatlon in the execution-time of individual operations. This

‘same low-overhead mode—changlng feature was also used to greatly. 1mprove-b ‘
. the: performance of the inter-process communication components .of parallel
_programs by- using the implicit hardware synchronization of SIMD mode to

- . reduce the complexrt}r of message - pass1ng protocols through the PASM .

_f',1nterconnect1on network Flnally, experlments indicate that due to the

o . exrstence of ﬁnlte queues for issuing instructions from the control units to the

- processmg elements in SIMD. mode, superhnear speed-up ! is achlevable

_ " Section 2 brleﬂy descrlbes generally related work, and Section- 3 overv1ews
PASM and its- prototype Sectron 4 describes the basic algorrthm that was
' used whlle Section 5 descrlbes the programmed variations of this algorlthm as -
1mplemented on PASM for use in the experrments presented in Section 6. In
Sections 7 through 11, the- emprrlcal results are d1scussed under speclal)
' consrderatron of the PASM architecture as well as the central ‘issue of
"~decoupllng varlable-length S[MD operatlons 1nto mult1ple asynchronous MIMD
streams : :

2. Background a.nd Related Work

Related experimental research has been carried out on several machlnes_
through the -use of both simulation and experlmental techmques Slmulatlon- '

'based analysis was performed by Su and Thakore for the SM3. system and a2

__'hypercube architecture [SuT87] Experlmental work 1nvolv1ng measurements :
y‘on workmg machmes has also ‘been performed Examples 1nclude Work.

: 1We deﬁne superhnear speed—up as the cond1t10n in which the speed—up to
. ,number of PEs (processmg elements) ratiois greater than 1 '

49

involving several machines: the BBN Butterfly [CrG85], Cm* [GeS87], the
Encore Multimax [Hud88|, the Intel Hypercube [Hud88], PASM [FiC87], and
the Warp system [AnA87]. In these efforts, matrix multiplication was .
: normally employed as an example algorithm. Other reported work involving
efficiency measurements and algorithm optimization on parallel machines
includes work done on an Alliant FX/8 [JaM86, Han88], a CRAY XMP
[Ca184] and a combination of Apollo Work—statlons and an Alhant FX/S
[KuN88] :

3. »Overbview of PASM and the PASM Prototype

The PASM (partitionable SIMD/MIMD) system is a dynamlcally
-reconﬁgurable architecture in which the processors may be partltloned to form
mdependent virtual SIMD and/or MIMD machines of various sizes [SiS81].
30—processor prototype has been constructed and was usedvm the experlments
described in Section 6. This section discusses the PASM architecture
charaeteristics which are most relevant to the reported experimentation. ‘,For
~a more general descrlptlon of the architecture, see [SiS87].

- The Parallel Computation Unit of PASM contains N PEs Where Nis a
. power of 2 (numbered from 0 to N—1), and an interconnection network. Each
PE (-processi_ng element) is a processor/memory pair. The PE processors are
sophistieated microprocessors that perform the actual SIMD and MIMD
_operatlons The PE memory modules are used by the processors: for data
storage-in SIMD mode and both data and instruction storage in MIMD mode.
The Micro Controllers (MCs) are a set of Q=29 processors, numbered from 0
to- Q—1, which act as the control units for the PEs in SIMD mode and
orchestrate the activities of the PEs in MIMD mode. Each MC controls N/Q
. PEs. PASM has been designed for N:102'4 and Q=32 (N=16 and Q=4 in
the prototype). A set of MCs and their associated PEs form a virtual
machine. In SIMD mode, each MC fetches instructions and common data
from its associated memory module, executes the control flow instructions
bk (e.g., branches) and broadcasts the data processing instructions to its PEs. In
MIMD mode, each MC gets mstructlons and common data for coordmatmg its
’ PEs from its memory.

‘ " The PASM prototype system was built for N=16 and Q 4. This system

employs Motorola MC68000 processors as PE and MC CPUs, with a clock
: speed of 8 MHz. The mterconnectlon network is a c1rcu1t—sw1tched Extra-
- Stage Cube network, which is a fault-tolerant variation of the multistage cube
o network Because knowledge about the MC and the way in which SIMD

50

e e ;

o ‘ EE

- MC. 1 T s BN

I [Fetch Unit | * |Fetch Unit{ ¢
. Memory N R Controller : RAM. : .
SRR 1 | v | Mask [. R R
I MCCPU [!'| Register |- l vt
] . | B B q o

: qu'eue‘ :

{Fetch _U_Ill_t _______ oFEs

Figure 1: Simpliﬁed, MC structure.

" instructions are implemented with standard MC68000° microprocessors is
essential to the understanding of the behavior that was observed in the
experlments, the SIMD instruction broadcast mechanism is overviewed below.

Cons1der the simplified MC structure shown in Flgure 1. The MC
contains a memory module from Whlch the MC CPU reads 1nstruct10ns and
. data. Whenever the MC needs to broadcast SIMD instructions to, its

 associated PEs, it first sets the Mask Register in the Fetch Unit, thereby

determining ‘which PEs will participate in the following instructions. It then
writes a control word to the Fetch Unit Controller which specifies the location -
~ and size of a block of SIMD instructions in the Fetch Unit RAM. The Fetch
Unit Controller automatically moves this block word by word iutq the Fetch
Unit Queue. Whenever an instruction word is enqueued, the current value of
the Mask Register is enqueued as well. Because the Fetch Un‘it enqueues
blocks of SIMD instructions autematically, the MC CPU can proceed with
other operations without Waltmg for all instructions to be enqueued - S

PEs execute SIMD instructions by performmg an mstructlon fetch from a
re’served memory area called the SIMD instruction space. Whenever loglc in
the PEs detects an access to this area, a request for an SIMD instruction is
sent to the Fetch Unit. Only after all PEs that are enabled for. the current‘ v
1nstruct10n have issued a request is the instruction released by the Fetch Unit
.,queue, and the enabled PEs recelve and execute the instruction. Dlsabled PEs
do not partlclpate in the mstructmn and wait until an instruction is broadcast

51

for Whrch they are enabled ThlS way, sw1tch1ng from M]]VID to SIMD mode is
- reduced to executrng a _]ump instruction to the reserved memory space, and a
switch from SIMD to MIMD mode is performed by sending a jump to the
, approprlate PE MIMD lnstructlon address located in the PE main memory
space.

The SIMD instruction broadcast mechanlsm can also be ut111zed for
barrier synchromzatzon [LuB80] of M[MD programs. Assume a program uses a
single MC group, and requires the PEs to ‘synchronize R times. First, the MC
enables all its PEs by writing an appropriate mask to the Fetch Unit Mask
Register” Then it instructs the Fetch Unit Controller to enqueue R arbitrary
data words, and starts its PEs which begin to execute their MIMD program.
If the PEs need to synchronize (e g., before a network- transfer), they issue a
read 1nstruct10n to access a location i in the SIMD instruction space. Because
the hardware in the PEs treats SIMD instruction fetches and data reads the
same way, the PEs will be allowed to proceed only after all PEs have read
from SIMD_space Thus, the PEs are synchronized. The R synchronrzatlons '
require R data fetches from the SIMD space. Thus, the Fetch Unit Queue is
empty when the MIMD program completes, and subsequent SIMD programs
are not affected by this use of the SIMD instruction broadcast mechanlsm

In order to make comparisons of the speed of the PASM prototype
relatrve,to other machines and to compare the relative speeds of SIMD and
MIMD instruction fetches, the actual raw performance of PASM in SIMD and
MIMD mode was measured on the prototype and is illustrated in Table 1 in
MIPS (millions of integer instructions per second) for two different types of
“instructions. The difference in speed between SIMD and MIMD modes can be
attributed to two factors. SIMD instructions are fetched from the Fetch Unit
Queue in the MC, and the queue can deliver data with one léss wait state than
can the PEs’ main memories. In addition, PEs’ main memories are
~ implemented with dynamic memories. While care was taken in the hardware
design ‘that all refresh operations occur simultaneously in all PEs, and are
~ performed invisible to the PE CPU, some delay is still possible. No such delay
occurs during SIMD instruction fetches because the Fetch,Unitv queue is
implemented with static RAM components. Measurements were made with
repeated blocks of straight line code Whlch were large enough to make the
loop control overlap insignificant.

- os2

' Table 1 Prototype raw performance.

e Processing'_f“-"
» vMoyde' Operatlon ___ | Rate | B

| SIMD | 16-bit Reg.-to-Reg. add ~ 22 MIPS |

- MIMD | 16-bit Reg.-to-Reg. add 18 MIPS

© | SIMD | 16-bit Reg.-to-Mem. ‘add | 6.4MIPS | e

| MIMD 16- bit Reg —to—Mem add | 6.0MIPS | =

4 Ma.trlx Multlpllca.tlon Algorlthms Used

v The parallel matrix multiplication algor1thm used here had O 3 /p time.
" and space complexity for multlplylng two nxn matrices employlng p PEs.

.‘F1gure 2 shows an O(n 3) time and space complexity serial algorithm. This .
= ».part1cular algorlthm is prov1ded to illustrate the ordering of mult1phcat1ons as -

'vthey are done in the parallel version of Figure 3. Figure 4 demonstrates the
. . progress of the serial algorithm for n=4. The two data-flow graphs illustrate -
 what occurs durlng the first two 1terat10ns of the second j loop of Figure 3.

= -The ! loop of the serial algorithm simulates. the PE number in the ‘parallel

‘a,lgor1thm The calculation of ((i+j) mod n) in the serial version allows the - |

. TOWS: of the B matrlx to be stepped through as the j loop proceeds W1th the
' 1n1t1a1 B matrix row. number belng N " The serial algorithm "used in the

' “measurements-on PASM, however, was optimized in order to permit accurate

fevaluatlon of : speed -~up, and therefore did not perform - multiplies in this
columnar manner Rather, 1t followed a. more stra1ghtforward row—column
.order ' : : .

- In the parallel algorlthm, the outer for all loop represents 1terat1on across
’space rather than tlme Each PE contalns n/p adjacent columns of ‘each

© . matrix 4s. ‘shown in Figure 5. Wlth1n each PE these columns aré numbered

"‘:'br.from 0 to n/p ~1 as shown 1n ‘the algorlthm of Figure 3. Thls layout is
s1m11ar to ‘that used by Su and Thakore in their experlments for the SM3
'system [SuT87] Using the for v loop, each of these ad_]acent columns is

vstepped through by each PE in sequence, and each PE appears as 1f it has n / p :

* Th1s eﬁectlvely rotates all mternal columns of the A matr1x to the left -
 without' destroylng the data in. column 0. of the PE or actually mov1ng the :
data e L o

53

for i=0 to n—1 do
for j=0 to n—1 do
¢;,;=0;
for i=0 to n—1 do
- for j=0 to n—1 do
for k=0 to n—1 do

Ck,i = Ck,i T+ 2k ((i+j) mod n) P((i+}) mod n),i’

Figure 2: Serial matrix multiplication algorithm.

for alli, 0=i=n-1, do
for v=0 to (n/p)—1 do
for j=0 to n—1 do
Cv = 0;
for j==0 to n—1 do
for v=0 to (n/p)—1 do
. for k=0 to n—1 do begin
Cv = Cky T 2ky b((i(n/p)+v+jj mod n),v’
for v=1 to (n/p)—1 do
change the pointer to column v—1 of the A. matrix to point to
column v;*
for k=0 to n—1 do
send ay o to PE (i—1) mod p;
receive a value and move it into ak,((n/p)-1)>

Figure 3: Parallel matrix multiplication algorithm.

virtual PEs within it. The virtual PE number is then defined as (n/p)i+v.
Thus, the row subscript of B is calculated by replacing ¢ in Figure 3 with this
virtual PE number. Data movement internal to each PE involves only a
pointer adjustment. Only on the boundaries (i.e. the highest and lowest
numbered columns of each PE) is the inter-PE network employed.

Flgure 4 Two 1teratlons of the serlal algorlthm for n—4; .
SR (a) i= ,_]—0 O<k<3 (b) 1——0,3—1 0<k<3 '

PEO .

54

ago

ato

ago.

. 330

. Ao
221

agy

o+ 4+

T

Coo =
C10 =
Co0 —

C3p —

Cop =
Cpo =

C30 =

€00

€10

Ca0

C30

cOO .
C10 -
€20;

630')

PE3

a7

€70

Figure 5: Data Layout for n=8, p==4.

ago 201 | boo bo1 | Coo o1 ags ag7 | bog ‘bor | cos o7
ajo - a1y | bio bii | cio cnn a1 a7 big bz | ¢ €7
ago agy | bag bor [cp cm agg agy | bag baz | cap coy
azp a3y bgo - bay | €30 ¢c31 so0 azg agy | bzg bay | c3s ca7
240 341 |'bgo by | ego oy | ags 247 | Dag ' bar | g - €47
ago asy | bso bsy | es0 e | ase aAs7 bsg bsy | €56 cCs7
ago 2e1 | bgo Dbe1 | ceo Ce1 ags 2g7 | bes be7 | Ces Cor
az7q 70 . b7 €71 azg agy | byg byg | crg

Cr7

. This partlcular algorlthm was chosen over a more standard parallel‘,'

,_ matrlx multiplication algorlthm (e. g, see Stone [StoSO]) for several reasons. :
First, 1f a broadcast approach 1s used to dlstrlbute the a" coeﬂiments to the '

PEs, n network set-up cycles are incurred in addition to n network: trans.fer\
- cycles. - In the chosen algorithm, the network remains in one conﬁguratlon
(1e o PE 1 connected to PE (1—1) mod p), thus eliminating. any recurring

' i network set-up costs, while not 1ncurr1ng any additional network transfer

costs Also, this algorithm facilitates a columnar data format whlch ‘was
preferable for several reasons. First, because all matrlces are stored in

",columnar format, BxA may be’ calculated as “well as AxB ‘without

' rearrangement of the data. Second each matrix may be used in subsequent
multlphcatlons Wlthout reformattlng Data’ unlformlty is also des1rable to
fac1l1tate ‘parallel I/O transfers of large data sets from secondary memory

: What follows is a semantic descrlptlon of the progress of the algonthm
} Durmg each of the n? /p 1teratlons of the innermost loop of. ‘the algorlthmv
shown in Figure 3, each of the elements of the columns of the A matrix is
'multlphed by an element of the B matrix. Note that due to the columnar
_storage, the column of the B matrix matches the mternal column number of
the A matrix. However, the absolute row of B must match as the absolute
i column number of the A matrix (i.e. the column number.when j=0 and
k= O) This value is then added to an element of the C matrix. Therefore,
-.there is a total of n multiplications and additions per inner loop with this
second loop being executed n/p times. In the second 1nnermost loop, the
‘columns of the A matrix are shifted one column to the left. Wlthln each PE,
: thls transfer involves a single memory move, because a pointer to the entire
,: column is changed rather than moving its elements However, for the lowest

. numbered column of each PE, the transfer employs the interconnection

network. This column is transferred through the network and stored in the
‘highest numbered column of PE ((i—1) mod p). The data received. through
“the ne:tv'vork.‘ is placed in the PEs memory as its highest numbered column.
This -transfer requires n network operations (one for each element of the
»column) This procedure is repeated until all of the columns of the A matrix
have been through each of the (n/p) positions of each PE for a total of n?
network transfer operation times ‘incurred.. During each of these elemental
~ time per1ods, p values are exchanged : '

Consider the time requlred for index calculation. The constant ix(n/p
was pre—calculated and placed in the programs data segment since -it was
._constant.ln each PE for a given value of n and p. Also, the j-+k operation

"~ involved. in the B matrix row calculation was done outside the k loop and

therefore only contributes O(n) time complexity per PE. The calculation of
the A and C matrix row indices was done with the MC68000’s auto-increment

‘56

mode.- Due to the pipelined structure of the MC68000 this does not add any
‘extra execution time of the non-autoincrement mode. Therefore, the index
»c'alculation, as a separate component of the execution, time is not significant.-

~ The current implementation of the network in PASM supports 8-bit data
- transfers. Because these experiments involved 16-bit data, each element
transfer requlred two shift operations (one for transmlttlng and one for
vrecelvmg), an OR operation, and two network operations. Because no DMA
‘ block transfers were possible given the current implementation of- PASM, each
column transfer required n s1ngle—element transfers for a total of 2n network ’
‘ operat1ons per column. ‘

Belng circuit switched, setting up a path in the PASM prototype network
is a time ‘consuming operatlon However, in this algorithm only a single path’
" set-up is required, (i.e. PE i always sends to PE (i—1) mod p). Thus the
" measurements made do not reflect any. signiﬁcant influence from network
reconﬁguratlon overhead. Hence, there were 2n? network accesses, 1 /p
multlphcatlons, and n® /p addltlons requ1red This resulted in a O 3 /p)
growth in execution time. :

' 5 Implementatlons of the Algorlthm

- Three variations of the parallel algorithm, as well as an eﬁ3c1ent serlal
, versron, were programmed in MC68000 assembly language for executlon on
the PASM prototype. The parallel versions included a pure SMD a pure
MIMD, and " a hybrid S/MIIVID version. These three programs may be
executed on 4 8, or 16 processors 51mply by changing variables embedded in
thelr data sect1ons : :

5.1 SIMD v |

_ "~ The SIMD version executes all looplng and control ﬂow 1nstruct10ns 1n
the MCs - Arithmetie, data movement and 1ndex calculatlon 1nstruct10ns are-
executed on the PEs in SIMD mode The PE instruction stream is obtalned

'through the MC s Fetch Unit Queue and is executed synchronously on all PEs

‘In PASM, the network appears to the PEs as two memory locations
(transmlt and receive reglsters) Network transfers are made- dlrectly to the
. transfer reglsters usmg memory—to-memory move mstructmns .

; For several reasons, the SIMD version appeared to be the most natural ‘
chome,for 1mplementatlon. Flrst. in the matrix multiplication algorithm used
: :all PEs are ‘always enabled, thus. eliminating the need. for enabling and

- disabling“the PEs. Second, the ‘implicit . synchronization inh'erent in SIMD
" mode allowed the network transfer operatlons to be carried out in a
‘strarghtforward fashion requiring only. two memory—to—memory _move
_instructions. Third, the only data-dependent portion of the algorlthm is the
actual multiplication instruction, which has a variable execution length due to ,
A‘1ts mlcrocoded 1mple1nentatlon in" the MCBSOOO A final advantage of the
SIMD version is due to the use of a FIFO ‘queue in the Fetch Unit of the MCs |

' » ~Because' this queue buffers. mstructlons being sent to the PEs, the executlon of

~‘S[MD 1nstruct10ns by the PEs can be overlapped W1th the execution of control
ﬂow 1nstruct10ns by the MCs. L

I add1tlon to these conceptual factors 1nvolved in the SIl\/ID ver31on, i
there are some factors that were present due to the 1mplementatron of the
v PASM prototype. First, instructions may be accessed more qulckly from the

- Fetch Unit, Queue than from the PEs main memory. This is due to the use of
- faster memory technology in the queue. AJso, the overlap of the control ﬂow
1nstruct10ns with PE instructions is. only present if the queue remains. non- |
empty. In other words, the PEs can only proceed if the MCs supply
- 1nstruct10ns faster than the PEs can remove them from the queue

MIMD

The second version was a pure MIMD program in Wthh the MCs were

, only used- for initiating the PE programs. The PEs executed all 1nstruct10ns B

~ asynchronously 1nclud1ng all network, control flow, and arithmetic operations.

Although the network hardware prevents overwriting of old data in the

transfer register, the asynchronous network operatlons necessitated polling of
the netWork buffer in order to determine Whether it was ready' to accept new
data. After transmission, the network buffer must be polled to assure that the
data is valid before a recerve operation can be completed. . '

‘The major advantage of the MIMD version was rooted in"the varratlon of

the execution time of the MC68000 multiply 1nstruct10n Multiply or divide
instructions require an amount of ‘time which is related to the number of 1’s in
~the binary representation of one operand Assume an algorlthm is executed on
K PES, each PE executes J instructions, and instruction j on PE k takes tlrne"
Tjk- Then the total execution time in SIMD mode (TSIMD) is the sum of the

- ~worst case tlmes for each 1nstruct10n as glven by:

58

; J K
) TSIM:D }_‘_,max %
: j=1%0
In MIMD mode each PE proceeds 1ndependently, and therefore the execution
tlme (TMIMD) is the worst case sum of instruction execution tnnes as given by
TMIMD = rilax > Tix
) _] =1

. I]l general,v TMIMD é TSIMD -

5 3. S /MIMD , - 5
| The hybrld S /MIl\/fD algorrthm was developed to take advantage of the

- fast barrier synchronization mechanism- described in Section 3 and to explo1t_ _

the execution time advantage of the MIMD program (i.e. decoupling at low

cost). In this version, the main program was the same as in the MIMD. case.. ”

"The difference was in the method of determining whether the network was -

ready to accept a transfer operation. Rather than polling the network buffer,
barrier synchronization was used to allow network operations to be carried out
~ as simple memory-to-memory move operations as in the SIMD ‘version.: This -

lowered the amount of network overhead to a level comparable but slightly o

greater than the SIMD version due to the mode switching time.. The other -
advantage’s of SIMD mode (le, faster instruction fetch and control ﬂow ':_
instruction overlap) could not be reallzed in this version. ‘

8. Experunents Perf'ormed

Experlments were performed on nxn matrices and measurements were
made of the execution times for n= 4, 8, 16, 64, 128, and 256. The algorlthm v
was 1mplemented for SIMD, MIMD, and S/MIMD mode and was run on p = -
4, 8 and 16 PEs. All operatlons ‘were 16-bit unsigned integer operatlons and
overflow was ignored. To allow for varying machine and problem size, loops
‘were utilized Wherever poss1ble : '

To measure the amount of asynchronous executlon necessary to yleld
- b,etter performance by the hybrid version over the SIMD version, the number
of rnnltiplies in each innermost loop of the algorithm was made to be a
dependent variable. These mult1phes were added as straight line code in order
to prevent skeW1ng of execution time data due to control flow overlap The
multiplies were added to study the effect on the total execution time and did -
not affect .the_::values in the C»':matrix. Let Tspvp 'and Ts/MlMJ) be the total

59

| executlon time for the S]l\/ID and S /MIMD programs respectlvely The |
performance of each of the components of the execution time was measured at
pomts correspondlng to quantltles of inner. 100p multiplications where

Tonp: < TS/MIMDa» |
~ Tsovp = Tsmmmp, and
- Tsivp > Tsmmmp-

Measurements were made with the 1nternal system tirmers (M068230)
-Experiments were performed for each version with the identity matrix in A
and random data in B. While the value of the multlpher used in .the_MCﬁ8000

multiplication instruction affects the execution time, the data value of the

multlphcand has no effect. Therefore, the elements of the A matrix, which '

were always used as the multiplicand could be chosen as the 1dent1ty matrix

“without affecting program performance. By using the 1dent1ty matrix, matrix -
'multlphcatlon results could " be easily. verified, thereby s1mp11fy1ng ‘the
debugging process. Random data, produced from a- unlformly ‘distributed
- random number generator, was chosen- for these experiments in order to
represent the average case, and the same data sets were used on all Versmns of
the algorlthm with the same value of n and p-

, 7 Speed-up & Overa.ll Comparlson

Flgure 6 1llustrates execution time of matrlx multlphcatxon vs. problem.

. size observed in the parallel versions of the - algorithm for p= =8. The difference

. between the SISD time and that of the parallel versions represents an
' 1mprovement by a factor of approx1mately p. ‘ '

‘Although not readily apparent in the graph, it should be noted that R
- Tvvo /TS MIMp decreases as n increases. The only difference between these

two versions ‘is attributed to the contribution to the execution time of

' commumcatlon Note . that for P ﬁxed and small n (e.g. n=8), the time

2

‘ complex1ty of the multlphcatlons is — or ——(—)- =n". ThlS is the same

b .
order of contribution as communlcatlon Hence, for small n, the O(nz)_

communication contribution dominates the O(n®) ar1thmet1c. However, for

larger n, the O(n®) component ultimately dominates and all three cur_ves, o

converge.

T N R SISD
100000 {
Jw0004 0 LT
time - - o /// .
| . [msec] 1000 b ‘.f.;-{/ v -
. log scale PR /
100 a "“;.-;.// .
) I —I o . i . .
16 64 198 256

Problem Size ()

Flgure 6 Executlon tlme vs. problem size for p—8
and one multlply per inner loop o '

The thlrd aspect of thls graph is the apparent advantage of the SIMD

"*».;‘versmn over the S /MIMD version. The difference is caused- by the ablhty of

~ the MCs to execute control’ ﬁow 1n parallel with arithmetie. However, the
S /MIMD version has the potentlal for- better performance due to the
_decouphng eﬁect assoclated w1th M]]\/fD executlon of data-dependent execution

time operat1ons In order to- determlne the. pomt where these graphs Cross,

however, experlments were conducted wh1ch added more data—dependent
- 11nstruct10ns in.a controlled Way R : :

‘8. Executlon Tlme vs. Number of. Varlable Length Operatlons

v To determlne the' amount of asynchronous execution needed to achieve a -
! beneﬁt ‘when executing a portlon of a computatlon asynchronously in MIMD

: ~ mode, addltlonal multlphcatlon operatlons were added to the innermost loop

- of the algorlthm Flgure 7 plots total executlon time for SIMD and S /MIMD
“programs w1th ‘added - multlphcatlons vs. the : number of added | multlply '
1nstructlons for n=64 and p—-4 with random data. The hnes plotted 1nclude
3 dlﬁerent pomts w1th the number of multlphcatlons ranging from 13 to 15.
These hnes are dls_]omt at the endpomts with the SIMD versxon belng faster ’

T vfor small numbers of added mult1phes and S/M]l\/ﬂ) bemg faster as the

~ time
[sec] |

3. 1 15
- © - Number of Multiplies :

| Flgure 7: Executlon time vs. number of
inner loop multlphcatlons for
—64 and p——4

" number of added multlphes is increased ~The point ~ at which
TSIMD TS/MIMD was with approx1mately fourteen added multlphcatlons '
This was due to the increase in execution. efficiency when the ‘multiplications
were executed asynchronously i.e., fewer processors were idle while waiting for
all multiplications to complete. |

- 9. Contributions to Execution Time

To further demonstrate that the execution time advan’tage was
manifested in the multiplication instruction execution time, the contributions
of the total execution time of the hybrid and SIMD programs were broken
~down- and plotted. Figures 8 9, and 10 contain plots of execution time vs.
problem size at each of the endpoints and at the crossover pomt of Figure 7.

100004 22" yvusiplcation

10004 7 _o==F -
time . - ; P Communication -

[msec] 100 1
log scale : 10

i | SIMD ;Othgr BURE
1, . ====8/MIMD -

0.1 4 — N
S 16 64 128 256
~ Problem Size (n) .

| Figufe 8: Conﬁrib.utions to execution time for
matrix multiplication with one multiply
per inner loop and p=4.

The times shown are broken down into: (i) multlphcatlon t1me, (11).
communication time, and (iii) other contributions such as time for clearmg the -
' C matrix and’ shifting pointers for internal data movement. Multiplication
and communication times include related address calculation operatidxi_S.g The
multiplication time also in‘clud'e_s the addition operétion required to add the
~ calculated value to the proper C matrix element. Figure 8 shows 'c'.learly'i‘;]iat
“as problem size increases the time required for the multiplications increases _
~ faster fhan’the communication time. This was mainly due to to the dlﬁereﬁée

' in the order of the communication time and the multiplication time (i.e. O(nz) e

vs. O(n® /p)) Due to this difference in time complexity, the time required for
the multlpllcatlon instructions becomes the largest component of executlon
time, even without the added multiplication instructions. The S/MIMD .
~ program, however, does not execute faster than the SIMD version due to both

- the control unit instruction OVerlap and the faster memory access time of the

Fetch Umt Queue unless extra data-dependent instructions are added

“In Flgure 9, the execution times are equal at n=64. With the total tlme
broken down, it is apparent that the matrix multiplication’ times are close for
all values of n, and when n—64 the matrix multiplication time is less in the
S /M]MD program than in the SIMD program. However, - the matrlx ,
multlphcatlon time was the same because the communication time in the

63

100000 -

. 10000 4 - ~Mlﬂtip’li§ali,0ﬁv
time 10004 / e
) y : B = Commumcatlon
[msec] 4]
" log scale - .
' - 10 . S
S e SIMD - Other: g
14 S
. - === 8/MIMD.
0.1'—-I —— | RN .)
16 64 128 256 -

‘Problem Size (n) -

Flgure 9 Contrlbutlons to executlon tlme for -
matr1x multlphcatlon with 14 multiplies - .
- per inner- loop and p=4. '

S / M[MD version was slightly more than in the SIMD version. Also,'it should
‘be noted that this effect would ‘be greater if the constant value representmg
the instruction fetch tlme advantage were removed.

Flgure 10 demonstrates the advantage prov1ded by the asynchronous»
‘ multlpllcatlon 1nstruct10ns When enough were. added to- make the other effects -
) dlmllllSh in importance. In thls version with 30 added mult1pl1cat10ns per
inner loop- the - S/MIMZD version is faster for the larger values of n and this
)) d1ﬁ"erence increases with n. : : :

- 10. Efﬁclency vs. Problem Slze - g

_ Flgure 11 plots’ efﬁcxency vs. problem size for the three modes of
__'computatmn p0331ble on PASM Wlth p—4 as well. as the serlal case Where
;efﬁc1ency is deﬁned as: ‘ : -
: ‘ Tserlal B
.o oo TparalleIXp _ .
The eﬂimency of the S /MIM'D and. MIMD versions 1ncreased W1th the problem

- size, and never reaches or exceéds unity. The reason for the increasing -

efficiency can be accounted for by the faet that the quantity. of ‘communication
-overhead increases as O(n 2), and the computatlon 1ncreases as O 3 /p) ‘The

64

100000 -| v ~
A Multiplication.
- 10000 o

. Commounication =
~ |msec] _ . -
' log scale 100 1
BN - ——smmp Otber.
e ——~—§/MIMD
0”"1;! — —
16 64 . 128 256

~ Problem Size (n)

Figure 10: Contributions to eﬁcecﬁtioﬁ time for
- matrix multiplication with 30 multiplies
_per inner loop and p==4.

best efficiency was 96% for the S/MIMD version and 87% for MIMD version
~(for n=256 and no added multiplies). The MIMD efficiency was lower due to |

- ‘the extra overhead required for the MIMD commumcatlon

' The SIMD version, however, was not only more efficient than the M]MD :
and S/MIMD versions, but was able to achieve an efficiency greater than unity
when compared only to the number of PEs employed. This difference can be
attributed to the ability of the PEs to do computation while the MCs are
doing looping and other control operations. If the queue can remain non-
empty and non-full at all times, it should be possible to eliminate all of thé_
_ time required for the control operations. Because this amount increases with m, -
it is not surp'r'ising that the benefit also. increases with n. This amount of _
benefit is related to the the ratio of control operations versus computation and
" communication operations. This does, however, demonstrate that the overlap
| of control flow and computation is possible and does provide some efficiency
benefits — especially for applications that strongly exhibit a large quantity of
control flow operations that véan be perfoi“med on the MCs. This effect was
predicted earlier by Kuehn et al in [KliSSB].

65

L0+

Efﬁcienrc}())

0.6 4

0.4/

o

16 64

128
Problem Size (n)

‘ Figu,re 11: Efficiency vs. problem size for p—=4 and one

»multiply per inner loop.

Lesse®

1.0 e

0.8 "

Efﬁe_ieﬁcy '

0.6 4

-
‘e
e
Tees
.
. vy
.
..,

.
......
‘.
o

MIMD

0.2 E

Processors (p)

7]

16

)
Number of

Figure 12: Efficiency vs. number of ‘processors for n=64

and one

multiply per inner loop.

'11. Efficiency vs. Number of PEs
Figure 12 shows how efficiency drops as the number of processors utilized
increases. This drop in efﬁciencyk is due to several factors. First, the value of
n/p drops as p increases representing a decrease in the amount of computation
done by each processor. While this does allow better parallelization of ‘the
algorithm, it makes the time consumed by inter—p‘rocessor communication and
. other factors not present in the serial version become more significant -
.compared to the time requlred by the computatlon portion of the algorithm.

12, Summa.ry

Experlments desrgned to examine the tradeoffs among the SIMD SISD '
MIMD, and MIMD with barrier synchromzed modes on the PASM parallel,

© processing system prototype were described. In partlcular the effects of .

instructions with data dependent executlon times were considered. Tests were)
~coded - and executed on the prototype Runtimes for different. numbers of

multiplies, numbers of processors, array sizes, and modes-of parallehsm were. -

collected ThlS data was evaluated and dlscussed analyzmg the: eﬁects of the
varlous parameters in the tests. g o

The experlments presented used an actual parallel system and p01nted
, out some of the trade-offs among these modes of parallehsm Expenments‘ o
“such as these on Worklng prototypes are 1mportant in order to begln to. learn‘» '
~ how to eﬁ"ectlvely harness the power of parallel processmg

, Acknowledgements. The authors of thrs paper acknowledge many useful

discussions wrth Pierre Pero, Tom Pusateri, Ed Bronson, Henry Dletz, Wayne |

: Natlon, and the other members of the PASM worklng group

. References :

| [A_nA87] M. Annaratone, E Arnould T Gross, H T. Kung, M Lam, 0.

»Menzﬂcloglu, and J. A. Webb, "The Warp computer: archltecture, v o

L implementatlon, “and performance, IEEE T ransactions - on’
. Computers, 'Vol:.0436,‘*Decembe'rx‘1987, pp. 1523—1538.

[Cals4] -
B _"multlprocessor performance, : 1984 International C’onference on
~ Parallel Processing, August 1984, Pp. 278-284. ‘

[CrG85]W Crowther, J. Goodhue, R Thomas, W Mllhken, and T.

6T

D.. A. Calahan, a Inﬂuence of ‘task granulanty on vector‘

Blackadar, 'Performance measurements on a 128-node butterfly

o parallel processor, - 1985 Internatzonal Conference on Parallel
.Processmg, August 1985, pp. 531- 540 :

[Ficst]

8. Al Flneberg, T L. Casavant and T. Schwederskl, “Mixed-mode
, _computlng with the PASM prototype, 25th Allerton. Conference
on Control, Commumcatwns and C’omputmg, September 1987, pp. -

o 258-267.

. : .[eessy]; v

 anss)

E F Gehrmger, D P SleW1orek ‘ and-‘Zr;’," Se'gall_, Parallel
. processmg the Cm _ e:vp.erzence,, Digital Press, Bedford, MA, 1987.

F.B. Hanson, Veetor multiprocessor ’ implemen’tation "~ for

computational stochastic dynamic programmlng, ' IEEE Technical

o~ Committee on Dzstrzbuted Processmg Newsletter, Vol 10, 1988 (to

[Kusss]

'[nuBsm

: "Vappear)

- [Hudss]
SR v‘,What from the hOW," IEEE: Software Vol. 5, January 1988, pp.

R 54 61. 'b

B 'Z’[JaM8‘6]v' 5

P. Hudak 'Explorlng parafunctional programmmg separating the

“W. Jalby and U Meler, Optimizing matri')("operations on a

parallel multiprocessor with a hierarchical memory system," 1986
Internatzonal Conference on Parallel Processmg, August 1986, Pp-

420432,
' [KuN8s]

J. G. Kubhl, I | No'rton, and S R. Sataluri, 'iA' large-s‘cale‘

' apphcation of coarse—grained parallel and distributed processing,"
- IEEE Techmcal Committee on Dzstrzbuted Processzng Newsletter,

Vol. 10, 1988, (to appear) ‘ ‘ o ,
J. T. Kuehn and H. J. Siegel, "'S'imulation -based'performance“

. measures for SIMD/MIMD processmg, 'in. Evaluation of

Multzcomputers for Image Processing, L. Uhr, K Preston, Jr, S.

v Lev1ald1, and M. J. B. Duff, eds, Academic Press, Orlando, FL,

1986, pp. 139-158.
S. F. Lundstrom and G H Barnes, "A controllable ‘MIMD

* architecture,” 1980 International ,C’anerence on Parallel
. Processing, August 1980, pp. 165-173.

: [siS81]

o [81887] ,

[Sto80] . -

suTs?]

- 68

H. J. Siegel, L. J. Siegel, F. C. Kemmerer, P. T. Mueller, Jr., H. E.
_ Smalley, Jr., and S. D. Smith, "PASM: a partitionable

SIMD/M[MD syst’em for image processing and ’pattern'

recognition,” IEEE Transactions on Compulers, Vol. YC—30,‘
~ December 1981, Pp. 934-947. S
~ H. J. Siegel, T. Schwederski, J. T. Kuehn, and N. J. Davis IV, "An

~ overview of the PASM vparallel processing system," in Coniputer
Architecture, D. D. Gajski, V. M. Milutinovic, H. J. Siegel, and B'

P. Furht, eds., IEEE Computer Soc1ety Press, Wa.shmgton, D C

1987, pp. 387-407.

H. S. Stone, 'Para.llél computers,” in Introduction to Computéf
Architecture (second edition), H. S. Stone, ed., Science Research

'Assoc1ates Inc Chicago, IL, 1980, pp. 363-425.

S.Y W Su’ and - A.- K. Tha.kore, "Matrix operatlons on ‘a
multlcomputer system with switchable main memory modules and
dynamic control IEEE Transactions on C’omputers, Vol C 36,
December 1987, Pp. 1467-1484. - -

69

Experimental Analysis of
Multi-Mode Fast Fourier Transforms

" 'Edward C. Bronson, Thomas L. Casavant, Leah; H. Jamieson |

Abstract

~This paper describes a detailed study of parallel fast Fourier transform
programs executing on the 30-processor prototype of the PASM parallel
processing system. Detailed execution time measurements using specialized
timing hardware were made for the complete FFT and for components of
MIMD, SIMD, and hybrid SH\ﬂ)/MIMZD (mixed mode) implementations.
Compared to a baseline serial FFT, the parallel MIMD, SIMD, and hybrid
implementations achieved efficiencies of 0.'47, 0.70, and 0.76 ,‘respectively. The
component measurements isolated the effects of floating point arithmetic
bperafiéﬁs, interconnection network transfer operations, and program control

. overhead. Using these detailed component measurements, an expression to

project the execution time for an M-point FFT executing on M/2 PASM
processing elements (PEs) is derived. The measured execution times for 4-PE
and S—PE programs verify this expression to within 1%. This expression is
‘then used to obtain an accurate extrapolation of the execution time and
vlspeedup of the MIMD, SIMD, and hybrid programs to a full 1024-processor
"PASM system. Overall, the experimental results demonstrate the value of the
" multi-mode capability of PASM and the suitability of PASM computationally
intensive algorithms such as the FFT.

L Introduction

Thls paper descrlbes a detailed study of parallel fast Fourler transform
programs executing on the 30-processor ‘prototype of the PASM parallel}
processmg system. PASM is a- dynamlcally reconﬁgurable architecture
“designed to allow both S]IVID and MIMD operation, and to prov1de the flexible
computatlon and communications capability needed for the wxde range of
‘.algorlthms used in image and speech processmg apphcatlons [SlSSl 81887] In

70

this paper we use the FFT algorithm as a vehicle for comparing the SIMD,'

MIMD, and: hybrid SIMD/MIMD. modes of operation. The FFT ‘programs

exercise PASM’s floating point‘ hardware for arithmetic operations, the.

“multistage Cube interconnection network, and the specialized timing
~ hardware. Detailed experimental results are obtained for small FFTs on the
/'.‘pvrototype “hardware, then are extrap_olated to obtain execution time ‘and
speedup figures for a full 10v24—pr0ce.s"sin'g element (PE) PASM system. The
’ extrapolation technique is verified analytically and the measurements used for
_ the components of the extrapolatlon are verified experlmentally to within 1%
usmg 4- PE and 8-PE programs. ‘

In the experiments reported, three 1mplementatlons of a 4-PE single
prec1s1on ﬂoatmg—pomt 8-point FFT are studied. These programs were "
written to examine the trade-offs between the different modes of parallel :
computation on PASM. An SIMD version performs all FFT operatlons in
SIMD mode. An MIMD version performs arithmetic operations in MIMD
mode and’ polls the interconnection network to determine the network status

. during data transfer operations. A third program uses barrier synchromzatlon

to align ‘the operations of the PEs during interconnection network transfer
oper'ation in place of polling and testing the status of the network. This
program is a hybrid of the SIMD and MIMD modes of computation: the
arithmetic calculations and the network transfers are performed in MIMD '
' mode, Whlle the barrier synchronlzatlon operation is performed by usmg '
‘hardware des1gned for SIMD" operation. The hybrid mode gave the best
" execution tlme, 9% faster than the SIMD implementation and 39% faster than
the MIMD version. Measurements of the components of the implementations
isolate the effects of the floating point arithmetic operations, interconnection
network transfer operations, and program control overhead, and “allow

interpretation of the differences in ‘the three overall execution times: Effects

due to the number of memory wait states, movement to and from the floating
point coprocessor, masking to enable and disable PEs, synchronization,
network setup and data transfer, and mode switching are analyzed. Finally
.the detailed component measurements are used to project a speedup of 814 for
a°1024- PE 2048-point hybrld algorlthm ' '

The programs -and executlon times presented in this paper are among the »
first applications of the PASM system and are the first ﬂoatlng-pomt program
results obtamed on the system The results ‘demonstrate the value of the
. multi-mode capablllty of PASM and - its sultablhty for computatlonally '
- u1ntenswe algonthms such as the FFT The ablhty to obtam very detalled '

71

' measurements has proven invaluable in understanding and interpreting results
from the different implementations of the algorlthm and in projecting the
results from the prototype to a larger system.. ‘

The followmg section presents an overview of the PASM system and

~‘details of the PASM prototype. The fast Fourier transform algorlthm is |

,descrlbed in Section HI. In Section IV, details of the various FFT program

1mplementatlons are described. Section V presents the measurements

» technlques used. The experimental results are presented in Section VI and
d1scussed in Section VIL '

2 Overvelw of PASM and the PASM Prototype

PASM is a dynamically reconﬁgurable archltecture in Whi'ch the
processors may be partitioned to form independent virtual SIMD and/or
- MIMD machines of various sizes [SlSSl 51887] A 30-processor prototype has
been completed and was used in the experiments described in Section VI.
This section discusses the PASM architecture characteristics which are most
relevant to the reported experimentation. ‘For a more general deseription of
the arch1tecture, see [SiS87].

- The Parallel Computation Unit of PASM contalns N processzng elements
- '(PEs) (numbered from 0 to N—1, where N is a power of 2) and an
- interconnection network. Each PE is a processor/memory pair. The PE
processors are sophisticated microprocessors that perform the actual SIMD
and MIMD operations. The PE memory modules are used by the processors
for data storage in SIMD mode and both data and instruction storage in
" MIMD mode. The Micro Controllers (MCs) are a set of Q=23 processors,
‘numbered from 0 to Q—1, which act as the control units for the PEs in SIMD
mode and orchestrate the activities of the PEs in MIMD mode. Each MC
controls N/Q PEs. ’PASM has been designed for N—=1024 and Q=32. A set
of MCs and their associated PEs form a virtual machine. In SIMD mode, each
MC fetches instructions and common data from its associated memory
bmodule executes the control flow 1nstruct10ns (e.g., branches) and broadcasts
) :the data processing 1nstruct10ns to its PEs. In MIMD mode, each MC gets

= 1nstruct10ns and common data for coordmatlng its PEs from its Tnemory,

. ~The PASM prototype system, completed in December 1986 was: built for
_' N=16 PEs _ and Q=4 microcontrollers. This system employs Motorola
-~ MC68000 processors as PE and MC CPUs, with a clock speed of 8 MHz. The
~ interconnection network is a circuit-switched Extra-Stage Cube network

72

[AdSS2], which is a fault-tolerant variation of the multistage cube netWo‘rk. In
“the following paragraphs, aspects of the prototype system that are esSential to
’ the understandmg of the algonthm implementations are described.

.Consider " the srmphﬁed MC structure shown in Flgure 1. The MC -
. contains a memory module from which the MC CPU reads 1nstructlons and
data. Whenever the MC needs to. broadcast SIMD instructions -to its

‘associated PEs, it first sets the Mask Register in the Fetch Unit, thereby
- determining ‘_w’)vhich PEs will participate in the following instructions. It then
writes a control word to the Fetch Unit Controller which specifies the location
and size of a block of SIMD instructions in the Fetch Unit RAM. The Fetch :
Unit Controller automatrcally moves this block word by Word into the Fetch |
Unit Queue. Whenever an instruction word is enqueued, the current value of
. the Mask Register is enqueued as well. : o

» PEs ‘execute SIMD 1nstructlons by performlng an instruction fetch from a
reserved memory area called the SIMD instruction space. Whenever loglc in
the: PEs ‘detects an access to this area, a request for an SIMD instruction is -
sent to the Fetch Unit. Only . after all PEs that are enabled for the current
- instruction have issued a request is the instruction released by the Fetch Unit
"~ _FIFO, and the enabled PEs receive and execute the instruction. Disabled PEs .
‘do not participate in the instruction and wait until an instruction is .broad;ca_st,
for which they are enabled. This way, switching from MIMD to SIMD mode is
reduced to executing a jump instruction to the reserved memory space,' and a
switch from SIMD to MIMD mode is performed by sending a Jump to the

appropriate PE MIMD 1nstructlon address located in the PE main memory o

space.

i The SIMD instruction broadcast mechanism can also be utlllzed for
barrier synchromzatzon [LuBSO] of MIMD programs. Assume a program uses a
srngle MC group, and requires the PEs to synchronize R times. First, the MC
v enables all its PEs by writing an appropriate mask to the. Fetch Unit'Mask
' Register Then it instructs the Fetch Unit Controller to enq‘ueue’R arb'iytrary

.data Words, and starts its PES ‘which begin to execute their MIMD program S

" If the PEs need to synchronize: (e g., before a network transfer), they issue a

‘read instruction to access a location in the SIMD instruction space. Because

the hardware in the PEs treats SIMD instruction fetches and data reads the
. same Way, the PEs will be allowed to proceed only after all PEs have read
,from SIMD space. Thus, the PEs are synchronized. The R synchronizations
require R data fetches from the SIMD space. Thus, the Fetch Unit Queue is
empty when the MIMD program completes, and. subsequent SIM]) programs

73

are not affected by this use of the SIMD instruetion broadeast mechani'sm.: :

Along with the main MC68000 processor, each PE has a Motorola
MC68881 floating-point- coprocessor [Mot85]. The MC68881 is a full
implementation of the IEEFE floating-point standard. An_IEEE‘format single
precision floating-point value is 32-bits in length. Intended primarily for use
- as a . coprocessor: to- the MC68020 microprocessor, communication during
-ﬂoatmg-pomt operations ' proceeds as with any peripheral. The PASM
_ prototype hardware permlts the MC68000 processor to be run Wlth a8 MHz
clock a,nd the MC68881 coprocessor to operate with a 16 MHz clock

Fach PE contains special purpose hardware timing circuitry. Two
1ndependent timers, each consisting of a Motorola MC68230 Timer enhanced
with addltlonal TTL counting loglc to. improve resolution, can be used to
s count processor clock cycles. After 1n1t1ahzat10n, each timer can be started
and stopped by ertlng ‘a 16-bit word to a timer control register. Each PE
contalns independent timer circuitry and the timers can be started and
stopped when processing in SIMD or MIMD mode. Since timer 1n_1t_1ahzat10n is
'performed independently of starting a timer, each timer can be started and
stopped. multiple times during the execution of a program to measure the
elapsed time of non- contiguous portions of code

The circuit-switched PASM 1nterconnect10n network is capable of
operatlng in both point-to-point and - broadcast modes. In . order to
- communicate with another PE using the network, the mltlatlng PE must set
"up a path through the network. A path is established by first writing a PE

routing tag to the network Data Transfer Register (DTR). The PE must then
" set a bit in a control register to instruct the network interface to interpret the
~ value in the DTR as a routing tag for setting up the network. The routing
tag will be the first data item received from the network at the beginning of
an network transfer. Byte data values may now be written to the DTR and
automatically sent through the network. The receiving PE reads the
transferred byte from its DTR. At the end of a network transfer, the sending
PE must write a "drop path request" to the network control register. This
will close the established network path and free the network for further
- transfers. :

‘The execution time of an MC68000 instruction is dependent, upon the
speed of the program memory that is used. A memory read or write cycle
time requires a minimum of four clock periods. Accessing slower memory will
cause the generation of one or more wait states which will increase an

74

instruction cycle time. Each memory wait sté,te requires an additioﬁal clock
- cycle to perform a 16-bit read or write. The memory of each PASM PE
‘ contams static RAM which can be switched to operate at 0 or 1 wait state.

‘In order to make compa,rlsons of the speed of the 16-PE PASM prototype-
relative to other machines and to compare the relative speeds of SIMD and
: MIMD instructions, the actual raw performance of PASM in SIMD' and MIMD
mode’ was measured on the prototype ‘Raw processing rates for 16- blt mteger
‘ addition - and ﬂoatmg—pomt addition operations are given in Table 1. - The
o ‘dlﬂ'erence in speed between SIMD and MIMD modes can be attributed to the |

-‘ operatlon of the Fetch Unit hardware SIMD instructions are fetched from the
Fetch Unit Queue in the MC; M]MD instructions are fetched from the PE
memories. ‘The queue delivers data to the PEs with a delay of 2 wait states
' Whereas the PE static RAM memory operates at 0 or 1 wait states. The speed
of executmg a program in MIMD mode will depend upon the number of Walt .
v states of the program memory L

. 8. Fast Fourier Transform -

The discrete Fourier transform (DF T) of a complex M-point sequence,’
'.sm, 0= m < M is deﬁned as : : :

‘where j2 = —1 [OpS75]. The direct calculation of the DFT using Equation 1
requires O(M?) operations. The fast Fourier iransform (FFT) computes the
- DFT of a sequence in O(MlogzM) serial operatlons One FFT formulation is
the radix two decimation-in-time (DIT) algorithm. In this algorlthm, the M-
‘ pomt mput sequence, s, is d1V1ded into two M /2-pomt subsequences ’ :

_ »saﬁlv‘:»$2m"bv - ,m=0’ 1, ~~-‘,M/2‘—-v1, “ ‘ (2)
and | - -

St1)11I=‘S2m;F_1" - m=0,1, " ,M/2—1 i Sl (3)

75

The DFT of the seqlielice s can now be written vusing the two subsequences as

21 . £ _1 : . o
2 o 2) :

gk —_ E Sz;.nvw2mk + E 5]1);1 W(2m+1)k o | (4)
m=0 m=

k=071:2, ”"M,_l)

where W =¢J (27/M) and is called a thddle factor. By factoring out Wk
Equatlon 4 can be rewrltten as :

F =St +Wksh . (5)

~where S% and S® are the ‘M/2-point DFTS of s2 and s};, respectively.
Equation 5 shows that an M-point DFT can be computed from two M/2-point
- DFTs.. By halving the number of points in the transform at each stage of the
FFT, the DFT of an M-point sequence can be computed in O(MlogyM)
operatlons

Figure 2 is a SIgnal flow graph of an 8-point radix two DIT FFT
algorithm mapped to 4-PEs. The algorlthm, consists of logoM stages. At each
stage, M/2 butterfly operations are executed. A butterfly operation is shown
in Figure 3. For each butterfly operation the input consists of two complex
items, A and B. One complex multiplication and two complex additions are
performed, and two complex outputs, X and Y, are generated. The twiddle
factor, WX, used in the calculation of each butterfly is marked in Figure 2 and
the value differs from stage to stage and among the stages. It should be noted
that W® =1 and therefore the first stage of the algorithm requires no
multiplications. Similarly, the twiddle factor wWM/4 j and . therefore, the
second stage of the algorithm also requires no multiplications. The M/2
“butterfly operations performed within each stage are independent and can be
executed in parallel. Parallel algorithms to perform an M-point FFT in M/2
“PEs are presented in [Be69], [Pea77], [Sto71], and [JaM86).

Between stages, the PEs must exchange data items before performing the
next set of butterfly operations. This exchange can be performed by the cube
interconnection function. - The Cube interconnection function, cube,,
0=c< logzM/Z, is defined as »

76
~cubec(Pa—1 " Poy1PePe1 " Po) = Paoi pc+1‘p_-cpc-1_?--'_ : '-.po,—_r.(ﬁ) s

where Pn_1 "' Pp is the binary representation of an arbltrary 1og1cal PE i :
address, and Do is the complement of p, [Sie85]. ' S

- The complexity of the M-point radix two DIT FFT serial algorlthm and;_ '.
the parallel algorithm in M/2 PEs, where M is a power of 2, are given in :

Table 2.} ‘The multiplication step: entries of Table 2 reflect that there arée ho

‘ multlphcatlon steps necessary in the first stage of the DIT FFT since V\’0 =1
" nor are there any in the second stage of the FFT since WM/ 4 = - §.. e

1. Implementatlon Issues

Three 4-PE parallel FFT programs, one 8- PE parallel FFT program, and. KR

one serial FFT program were executed on PASM. Execution t_une :
measurements were made for each of these programs. The' experirnental--
results are presented in sectlon VI and discussed in Section VIL In this
" section, we outline the programs that ‘were 1mp1emented and discuss relevant
detalls of the 1mplementat10ns ‘

Three 1mp1ementatlons of a 4-PE single precrsron ﬁoatmg-pomt 8-point
FFT were studied. These programs were written to examine the trade—oﬂs
between ‘the. different modes of parallel computatlon in PASM. ~An SIl\/fD'

' 'verswn performs all FET operatlons in SIMD mode A second program is an
MIMD version that calculates the butterfly operatlons in MH\/TD ‘mode and =

polls ‘the 1nterconnectlon network to determine the network status durlng
" interconnection network transfer operations. A third 4- PE program - uses
barrier synchronization ' to alig'n the operatlons “of the PEs during an
interconnection network transfer operatlon in place of polhng and testlng the
status of the network. This program is a hybrid of both the SIMD ‘and MIMD
modes of computatron Although the butterfly caleulations and the network
transfers are all perforrned in MIMD mode, the barrier synchromzatlon
‘ operatlon is performed using hardware de31gned for SIMD operation. The
execution ‘times for each of the program component parts of these three FFT
programs ‘were measured. A discussion comparlng each of the component

i Parallel FEFT algorlthms usmg fewer than M/2 PEs are presented in ..
[JaM86]. In the experiments described here, we consider only the M-point,
M/2 PE case. Because of the similarity of the algorithms using fewer PEs
to those examined here, snnllar executlon characterlstlcs and speedups can.

be pro_]ected ,

77

parts'of these programs is presented in Section VIL. Values obtained for the
component parts for each of these programs were used to predlct the execution
time of’ larger FFTs executing on a greater number of PEs and allows accurate -
extrapolatlon of the results to a full 1024~ PE PASM system.

- An 8-PE SIMD 16-point FFT program was also: 1mplernented The_
executlon time measured for this program was used to verify the- prOJected
executlon time expression presented in Sectlon VIL ‘

‘ A smgle PE 8-point FFT program" was implemented in order to o’otain
‘serial execution times. Executlon time measurements from this program were
' ‘used to calculate the values for speedup presented in Section VIL

" All of the programs were written in MC68000 assembly language [Mot84}
as stralght in-line code with no loops. This generated the fastest possible code
and ehmlnated issues of programmlng style from the execution time studies.
All MC control code such as instructions to .perform PE masking and

operations to direct the operatlon of the Fetch Unit were explicitly written
' 1nto each program.

‘ The programs also used the MC68881 ﬂoatlng—pomt ‘coprocessor to
perform all arithmetic.. A floating-point operation is initiated when - the
MC68000 processor writes an instruction word to the command register of the
iMC68881 This is followed by successive reads and writes by the MC68000 to
the response and operand registers of the coprocessor. The. amount of
communication with the coprocessor will depend upon ‘the floating- po1nt ‘
operatlon being performed. An operation between two ﬂoatlng-pomt registers
within the MC68881 requires a single write to the command register and a
smgle read of the response register. Moving a single precision value to or from
the coprocessor requires two additional 16- bit writes or reads to the operand
register. In a typical application, the main processor would test the response
register of the coprocessor to determine whether any additional processing is
requu'ed whether there is an error condition, or to determine whether the -
floating-point operation has completed. Detailed analysis of the number of
accesses to the coprocessor registers by the MC68000 during floating-point
operations has provided exact er(ecution times for these operations on a PASM
: PE. The execution times for each coprocessor operation are independent of
the value of the floating-point data. Efficient procedures were written to
interface with the MC68881 and perform the floating-point operations by
waltlng a constant delay during operation without testing the coprocessor
response register. These procedures were originally written to operate the

PE’s ’coproces’SOr' in SIMD'mo’de _This was necessary since. branchlng and

E testlng in SIMD mode may ‘be very inefficient. The resultmg procedures were :
“always more efﬁclent than code that polled the COprocessor response register.

““These constant delay procedures were used for both SIMD and M[MD modes A

g ,fof computatlon ‘Six different- coprocessor operatlons are used in the various

butterﬂy calculatrons ﬂoatlng-pomt add, subtract and multlply, smgle :
preclslon moves to and from: the coprocessor, and moves ‘between the ﬂoatlng-,'
8 p01nt reglsters Testlng the coprocessor for error states durlng program }

' ”executlon was not performed.

~ Each cube 1nterconnectlon network transfer requlred the transfer of two
- 32-bit srngle prec1s1on ﬁoatmg—pornt numbers (the real and i 1mag1nary parts of

, the complex . X or Y).. Slnce the network is 8-bits ‘wide, transferring each"—

ﬁoatlng—polnt number requires 4 writes and 4 reads to the network DTR. A

‘cube interconnection transfer operatlon proceeds in the following way. First,

,']v‘the sendlng PE writes the routlng tag to the DTR and requests a network L

“path. A cube interconnection network functlon is non—blockmg and the entire
‘ network is conﬁgured within a few clock cycles after the last ‘PE requests a
, network path The transmitted routlng tag is read from the recelvmg PE s
'DTR Each floating-point number is then transferred a byte at 2 '‘time.: The‘
rece1v1ng PE must reassemble the ﬂoatlng -point number. The partrtlonlng -
‘and recomblnatlon of ﬂoatmg—pornt operands are performed in; MCSSOOO»‘

vreglsters - After the transfer and reassembly of the second ﬂoatlng pomt:

- ;number, the sendrng PE drops the 1nterconnectron network path

Each program has an mztml:zatzon phase, an FF T algorzthm phase, and‘ :
an output phase. Executlon t1me measurements are made on the FFT"

'algorlthm phase of each program The. processmg of the 1n1t1ahzat10n and .
- output phases is performed usmg both SIMD and’ MIMD modes of

computatlon In the 1n1t1ahzatlon phase, the MC and each PE pre-compute
and store all necessary data in’ preparatlon for the timing of' the FFT
‘ ’algorlthm phase of the: program Dunng the output phase, the executlon t1me
and the- transformed data are prlnted IR

T he FFT programs are wrltten as ePﬁclently as posmble by performlng all'

1 computatlons that are not dependent the operatlons of the FFT in the
: 1n1t1a11zat10n phase This optumzatlon 1ncludes ordering and 1n1t1ahz1ng the ’

o 1nput data in PE memory, pre—calculatlng the PE masks used by the MC and
"pre-calculatlng the logical PE number, cube function network routlng tags, o
and FET tw1ddle factors in: each PE. Each PE has internal access to its own

physrcal PE number For a ﬁxed PASM partltron s1ze, the log1ca1 PE number |

79

can be determlned from the physwal PE number The: order of the input data
is dependent upon the logical PE number. The value of the PE masks vary
with the number of PEs. The routing tags for each interconnection network
operatlon can be computed from the physical PE number and the physical
MC number The values for the twiddle factors are dependent upon the size
| of the FFT the stage number of the FFT, and the logical PE number. These
~values ‘are calculated by each PE and stored in memory. No pre-loaded '
reglster values are assumed The 1nterconnect10n network hardware is also
initialized in the initialization phase. This -only 1nvolves c]earlng control
~ registers so that any ex1st1ng network connection is dropped.

~ In the FFT algorithm phase, each PE obtains the two. complex ﬂoatlng-
point input data items from PE memory, computes the FFT, and stores the
transformed data back to PE memory. The storage location of the .
intermediate data during program execution is depe’ndent upon the number of
data. points within each PE. Since the M—pomt parallel FET programs
discussed in this paper are computed using M/ 2 PEs, each PE contains only
two complex data items (four 32-bit single precision floating-point numbers).
- During: the butterfly calculations, all of the data resides in registers of the
ﬂoating-point_ coprocessor. . Each = inter-stage interconnection network
operation-transfers only one of the two complex values. The data that is not
transferred remains in each PE’s coprocessor registers during the network
: transfer. Therefore, it is necessary for each PE to move only two floating-
~ point numbersv to and from the ‘coprocessor registers before and after the.
network transfers. The data that is transferred is stored in ‘the data registers
of the MC68000 durlng the interconnection network operation. In the serial
FFT program, all of the data must reside within a single PE. Although
MC68000 data registers are not used for network transfer operations, there are
‘not enough data registers or coprocessor floating-point registers to s‘t_;oreall‘ of
the intermediate data. Therefore, all of the intermediate data is stored in
memory. It is necessary to move both of the complex data items to
COPTOCESSOr reglsters before each butterfly operatlon and and return the data
3 Values to memory afterwards. - '

' "‘5 Measurement Technlques

This section describes the technlques used to obtain the executlon times
for the programs and program components presented - in Section VL
Execution times were obtained using the special purpose PE hardware timing
vc1rcu1try described in Section II. The tlmers were conﬁgured to count 8 MHz

80

clock periods resultmg in t1m1ng accuracy of + 125 nanoseconds

" As shown in Table 1, the mode of process1ng and the memory cycle time
will greatly influence the execution time of a program executing on PASM. A o

block of PE instructions will execute faster in MIMD mode from 0 Wa1t ‘state

L static RAM memory than the same set of instructions executed in MIMD ‘mode V‘
from 1 wait state RAM or in - SIMD mode from the Fetch- Unit - Queue In
' Morder to compare the executlon of programs operating in' SIMD or MHVJDV"

. mode and from memory with varylng wait states, it is necessary to normallze .

. the memory access time of all instructions. The memory access tlme for all

instructions was normalized to 2 wait states (s1x clock cycles). This is the PE
- SIMD instruction bus access time and no normalization is necessary for SIMD

~ instruction fetches. All other memory access cycles must be normahzed

Durmg program execut1on, only static RAM memory was used W1th1n -
each PE. For SIMD mode, the static RAM was only used for variable storage. .

" For each experlment the execution time was measured once using 0 wait state

static RAM and again using 1 wait state static RAM. The difference’ between* o Lo

“these two execution times is the time required for a single Walt state per'
memory cycle Adding the dlﬁerence between these two execution tlmes to the _

1 wait state execution time is equlvalent to the program executlng usmg 2 Walt o

state memory. By using this 2 wait state normalized execution time, the time -~

of an ‘instruction fetch in SIMI) mode from the Fetch Unit Queue is equ1valentf"

to an’ 1nstruct1on access in MIMD mode from memory. D1rect comparlson of R

' program tlmes is'then pos51ble

'f The t1me requ1red to start and stop the t1mers Wlll vary accordmg to the e

‘mode of computation, the number of PEs enabled anid the access time of the,
memory in Wh1ch the instruction are stored This timer overhead was
\removed from the measured program executlon tlmes before the 2 wa1t state""
memory access time normahzatlon was calculated o

Executxon time measurements were made by 1nsert1ng 1nstruct10ns to 3 o

“start and’ stop the timers in the code be‘fore program assembly. The executlon ; -

time for a parallel program is the greatest amount of time: requ1red by the MC
and any one PE to complete executlon When measuring the executlon t1me_

of a complete FFT program the tlmers were started and stopped

51multaneously in SIMD - mode The measured times for Sll\/ﬂ) mode

operations agreed within 1 clock cycle across all PEs. In MIMD mode, since -
‘each PE operates 1ndependently, the measured executlon tlmes across the PEs' o

varled

I

All execution times were measured for a single pass threugh the program.
If repeated executions of the program resulted in varying execution times, the
measurement was repeated until a clear median was established. This.
varia‘nce in execution times was. observed only when executing SIMD mode
_ programs and was less than 3% of the total program execution time. In

MIMD mode, repeated execution time measurements were always w1th1n 1

¢clock - cycle ‘"The variation in SIMD mode execution: times is due to

synchromzatlon of instructions in PEs with processor. clocks that are. not
' always in phase. Each PE has its own internal 1ndependent 16 MHz clock.
The 8 M]-Iz clock signal used to operate the MC68000 processor is obtained by
d1v1d1ng the output of a 16 MHz clock. - There is no circuitry to synchromze
PE clocks Therefore, the phase of any two 8 MHz PE clocks will differ by as
much as one clock cycle of the 16 MHz clock (0.063 ns). The relative phase of
any two PE clocks will change during the algorithm as dlﬁerent sets of PEs
rare enabled and disabled by the MC. ' :

Upon - completlon of the initialization ‘phase of the program, each PE
waits for an instruction from the Fetch‘ Unit Queue. Measurements were
made for execution of the entire FFT . arld for ' the components of each
’program If a measurement of the executlon time for the entire FFT is being
'made, the first instruction executed by all of the PEs (in SIMD mode) is to
enable the timing hardware. For the SIMD program, each PE continues to
. execute - only instructions read from the SIMD instruction space. The last
mstructlon of the FF'T algorithm phase will dlsable the timing hardware For -
the MIMD and hybrid programs, the next instruction will be a jump from the
" SIMD instruction space to PE memory. From this point, the PE will execute
instructions from its own memory until jumping back to SIMD instruction
space at the completion of the FFT algorithm phase to disable the timing
hardware. When components of the program are being timed, the timing
hardware ‘is enabled and disabled at intermediate points dliring execution of
the FFT. ' '

8. Experimental Results

‘ , Exeeu__tion time measurements of the complete FFT algorithm were made
" for the three 4-PE 8-point parallel implementations, for the 8-PE 16-point
- SIMD program, and the single PE 8-point. serial program. The execution
times for the 4-PE 8-point FFT programs are shown in Figure 4. In addition
to these complete FFT execution time measurements, the components of the
three 4-PE parallel programs were studied (see Figure 2). These

B measurements 1ncluded the executlon t1me of the FFT stage 1 cubelp'

o 1nterconnect10n function, FFT stage 2, cubeg function, FFT. stage 3, reglster ‘
_1n1t1ahzat10n, and M]l\/ID mode program control overhead

- The execution times for the components of each of the 4-PE programs are
‘shown i in Flgure 5. The length of each bar in Flgure 5 1nd1cates the maxunum'
~ execution time for each program component The FFT stage czecution time

,imcludes the time ‘required to ‘compute the ﬂoatmg—pomt butterﬂy operatlon V

L ,_(plus the t1me required to move ﬂoatlng—polnt data to, from, and w1th1n the

COprocessor. The network execution time is the time to transfer ‘a complex-

o floating- pornt value from the MCGSOOO data reglsters of the sending PE to the

~data registers of the receiving PE. ThlS includes the time to write the routing
tag to the network, request a network path; transfer the ‘data one byte at a
- time through the network, reconstruct the transferred data, and drop the o
vv'_-’lnterconnectlon network path A solld line across a bar 1ndlcates that while -
~gome of" the PEs executed the program component at ‘the max1mum time -
'-,1nd1cated by the length of the bar, other PEs only required the time 1nd1cated.
‘by the solid line. ThlS is due to the specific implementation of the FFT
algorlthm and. will be described later A dotted line across a bar 1nd1cates the
E -mlnlmum executron time for the program component The measured
__execut1on times across all PEs for this component lie between the time
o 1nd1cated by the length of the bar and the time indicated by the. dotted llne "

The. times’ presented in F1gure 5 are quite accurate: the summatlon of the -

" component execution times for each of the 4—PE program sum to within 1% of

o the executlon time for the complete program The executlon tlmes presented'

' here are dlscussed in the next sect1on :

o 7 'DiS‘cUSSi’on

o 7 1 Comparlson of Executlon Txmes '

F1gure 4 shows that the M]IVID program has the longest execut1on tlmei :
»vfor any of the 4-PE parallel programs "This parallel 1mplementat10n of the
 FFT algorlthm has a speedup of 1.87 over the serial FFT program The SIMD »
- program requlres 33% less tlme than ‘the MIMD program with a speedup over
- the serial FFT of 2.78.. The executlon time of the hybrid SIMD /MIMD mlxed :
' '_mode program is 9% less: than the execution time of the SIMD program The

L speedup for this program W1th respect to the serlal program- is_3.05, The_

~ reasons. for the variation in execut1on times can be determined by exammlng
the 1nd1V1dual program components (Flgure 5)

In stage 1, each program executes a W0 butterﬂy Thls butterﬂy requlres
addltlons and two subtractlons, and these ﬂoatmg pomt operatlons require
the same time when executing in either SD\/[D MIMD, or hybrid modes. The
' addltronal execution time for the SIM:D” stage 1 is a result of the data
'mov‘emeut from the coprocessor after the butterfly calculation; ',In the.cubel
network transfer that follows stage 1, PEs 0 and 1 transfer Y while PEs 2 and
3 transfer X ~In the MIMD and hybrid modes; each PE moves the appropriate
'complex X or Y value from the coprocessor registers. to the data registers of
~ the MCGSOOO Processor. Thls requires two ﬂoatmg -point move operations. In
‘i SIMD mode, PEs 0 and 1 must first ‘be enabled while PEs 2 and 3 are
disabled. The complex Y value is then moved from the coprocessor. PEs 0
and 1 are then disabled while PEs 2 and 3 are enabled. The complex X value
is- then moved from the coprocessor requiring two more floating-point move -
‘ operatlons Compared to the MIMD and hybrid 1mplementatlons the SIMD
mode program requlres two additional move operations.

In stage 2, the difference between the execution time for the SIMD mode
programs and the MIMD mode programs is even greater than for stage 1. One
half of the PEs perform a W° butterfly while the other half compute an- w?
butterfly. Both of these butterfly operatrons require two floating-point
:'addltlons and two floating-point subtractlons In the MIMD and -hybrid
program Versmns, calculation of this stage 2 is stralghtforward Each PE
moves “the recently transferred data item to the coprocessor . registers,
computes the butterfly, and moves a single complex data item from the
coprocessor in preparation for the cubey network transfer. The SIMD stage 2
operation is much more complex. Although W? and W? butterflies require the
same number of arithmetic operations, the butterfly computations combine
" the A and B data values in a different order. By using a _]\ldlCIOUS sequence of
masking operatlons it is possrble to move the data correctly into coprocessor
registers so that the addition and subtraction operations can be performed
* simultaneously in all PEs. Additional masking and data movement is then
necessary to prepare for the interconnection network transfer.

Another reason for the longer stage 2 SIMD executlon time is the

‘»f‘necessfcy for an SIMD stage compiitation to leave the data that is not

transferred in the correct floating-point registers across all PEs. For example,
after stage 2, PEs 0 and 2 transfer the Y butterfly output value over the
- network. The X value remains in the coprocessor registers and becomes the A
" input value for the stage 3 butterfly operation. Since the stage 3 butterfly is
~performed in SIMD mode, the A input value must be in the same coprocessor

o84

regrsters across all PEs These reglsters will be referred to as the A storage N
registers. A_nother set of coprocessor reglsters is used as the B storage
regz'sters - The, sequence of -arithmetic operations performed durlng the

calculation of the stage 2 butterﬂy leaves different butterfly output values in :

‘.:"the coprocessor registers for the PEs executrng the W° butterﬂy than for the

. _PEs executrng the W? butterﬂy ‘It is necessary for PE 0 to obtaln the X -

- butterfly outputs from one ‘set of reglsters and move the values to the A -
- gtorage reglsters while PE 2 must obtarn the X butterfly . outputs from a
"',dlﬁ“erent set of reglsters A s1m11ar sequence of operations must be performed’

o .by PEs 1 and 3.in order to move the Y butterfly output values to the B -

storage registers. ‘Since the PEs executlng the same butterﬂy operatlon must ‘
- transfer different. output values, the data movement required by -each PE is

» vdlﬁ"erent ‘As part of the ST;MD stage 2 calculatlon, the MC must enable and
. ,'dlsable all of the PEs in varlous comblnatlons in order to move the X and Y

‘output values to the correct A and B storage reglsters This data movement is

not necessary for the MH\/ID or hybrid programs since each PE computes the
' stages 1ndependently and knows the storage Jocations of the - data from the

o 'vprev1ous stage

_ : s In stage 3, PEs 2 and 3 compute butterﬂles complete W1th tw1ddle factors
-vand multiply’ operations. PEs 0'and 1 compute the less complex W0 and w?
] -butterﬂres For MIMD and hybrld mode, the execution time for the butterﬂles
"’computed by PEs 2 and 3 are ‘indicated by the length of the bar. . The

-executron t1me for PEs 0 and 1is indicated by the solid line across ‘the bar In

SIMD ‘mode, all of the PEs execute butterflies with twiddle factors and

multlply operatlons Slnce one half of the PEs transferred the A’ value in the
‘ precedlng cubeo function and the other half transferred the B data 1tem, extra B

~process1ng is- requ1red by the SIMD stage 3 to enable and dlsable the two sets
‘ xof PEs and move the data values to dlﬂ'erent coprocessor reglsters ' o

The executron tlme requlred for the 1nterconnect10n network transfers
varles wrdely among the three program 1mplementatrons The SIMD network
: ,'operatron requires the least amount of processing time. Slnce all PEs execute :

V‘ “the network ‘operations.” in lock—step fashlon, the - data . transfers are

: 'synchronlzed There is no. need to test the network for a’ pendlng network'
~“transfer-or to deterrmne if - there is transferred data to read from the DTR.. In»
'M[MD mode, each PE executes each butterﬂy stage 1ndependently and no j
synchrony can be assumed When ‘reaching the 1nterconnect10n network
L component of the program.. Therefore, it is. necessary for each PE to test the

y _’ network before transferrlng a data 1tem and to Walt on the network for 2 data L

85

item to- become available. Thls testlng and Waltlng on: the network results in

‘a hlgh network transfer time: Like .the MIMD program, ‘each’ PE executes .
‘each’ butterﬂy stage 1ndependently in- the hybrid version. The hybrld vers1on a

performs a Dbarrier synchromzatlon during the 1nterconnectlon network’ :

A‘_transfer Once all of the PEs are synchronized, the data is sent and recelved

7 _'~w1thout testmg the status of the network The execution tlme for the hybrld "

o version is- shghtly greater than for the SIMD version. The dlﬁerence is the
, tlme requlred to synchronlze the PEs. ‘ : :

Slnce the execution tlme for the SIMD 1nterconnect10n network transfer is
less than the t1me for barrier synchronlzatlon network transfer used in the
hybrld program, it would appear that a faster program could be constructed'
by using the SIMD mode network transfer. This is not ‘the case. The

voverhead incurred by jumping to SIMD instruction space before the network o

transfer and back to MIMD program space for the next butterﬁy stage exceeds
‘the expected time sav1ngs In addltlon, each time MIMD mode operatlon is
“ resumed it would be necessary ‘to test and branch in order for each PE to :
determlne which butterﬂy operation it is to perform.. ‘The executlon tlme'
overhead for these test and branch operatlons will exceed the time. for testlng
and bra.nchmg of an MIMD program that remains in MIMD mode and uses
' barrler synchronlzatlon : P

o 7 2 PrOJectlng Program Executlon Tlmes .

S In this section, an expression for the executlon tlme of an M-p01nt FFT
program running on M/2 PASM PEs, M = 4, is presented “The expressmn is

- a linear sum of the execution times of the components of an FFT program. ‘.
- For an M—pomt FFT, the number of each component to sum is either fixed for
“all size FFTs or can be expressed as ‘a function of M. The express1on -

presented is used to predrct the executron times for larger size FFTs using - a
_ greater number of PEs and allows us to extrapolate our results to a full 1024-
- PE PASM system. The Values to be used. for the terms of the expression were

:»obtalned from execution time measurements made on the 4-PE 8-point FFT -

program. For the 4-PE case, the expressmn y1elds execution: times for the

“.“MIMD, SIMD, and hybrid programs that are within 1% of the measured

- execution 'times The expression was also vahdated for the 8- PE 16 p01nth :
"SIMD FFT program. The execution time measured for th1s program is also
within 1% of the execution time predlcted by the expression. e

86 W

_ | For M/2 PEs and M data 1tems the executlon tlme of an FFT program ‘f '
© . can be expressed as o : S S .

TFFT(M/z) =) I+ ® + (+ C)logz M/2) + ST om
,,.~Where the component executlon tlmes are. deﬁned as

e jump to 'and‘from SHV,[D;instruction space - . vv S

"R data and address register initialization

A asingle MIMD test and branch operation T

- C complex ﬂoatlng—pomt cube’ 1nterconnectlon network transfer i
Spi 'executlon of all FFT butterﬂy stages ‘ S i

‘:'_m
=)

| Y'The total tlme to execute all of the butterﬂy stages can be expressed as 7’

e sT—sl+s2+(1og2M/2 2)s +sf e

where the co‘mpon-en_t' executlon tlmes. are defined as

Sy “stage 1 (W'O) L
Sy stage2 (W* and WM/4) |
- Sm } intermediate stage (W1th a multlphcatlon butterﬂy)
8¢ final stage e ‘ :

» The executlon tlme, TFFT M/2), for an M-pomt FFT program executlng on

o M/2 PASM PEs, M/2 = 4, can. be prOJected using the data in Table3.

© . The graph shown in Flgure 6 illustrates. the projected executlon times for
“an. M-pomt FFT program on M/2 PEs for M = =4 to M = 1024. The times are -
extrapolated w1th high' conﬁdence since the expressmn used to generate the ‘

~aggregate times was verified by comparlng the predicted 8-PE aggregate time

to the actual: measured tlme for an_ S]]\/[D version of the algorlthm The.

‘ predlcted time was derived by using component tlmes from the 4-PE version.
‘These same: component tlmes Were then used to- determlne the prOJected tlmes

o shown n Flgure 6

As the number of pomts in. the FF T (and number of PEs) 1ncreases, the :
'eﬂect of MIMD' network’ operatlons (the main difference between ‘the Hybrld"
and MIMD versions) causes the gap between the performance vof the MIMD
-~ version and both the SIMD ‘and Hybrid versions to widen. Note the general -

87

,: logarlthmlc growth in executlon time (the horlzontal ax1s is a log scale) as the o
L number of pomts in the FFT mcreases Thls ‘was predlcted by equatlons 7
' »and8 o A :

' 7 3 Mea.surement a.nd Pro_]ectlon of Speedup

o In order to analyze further the performance of the MIMD SIMD and
) ;.hybr1d 1mplementatlons, ‘a serial FFT executlng in a s1ngle PASM PE was
’ ._'1mplemented and used to obtain estlmates of speedup - for - the parallel

‘-"programs The serial version is comparable to. the parallel versions except that
intermediate values are stored in memory mstead of in reg1sters “This is more
reahstlc for the serial 1mplementat10n since a s1ngle processor will not have
enough reg1sters to hold these values, Whereas the M/2-PE. algorlthm uses 2
) ﬂoatlng-pomt registers for storage in each PE, 1ndependent of M. The

- 'resultmg speedups for the 4-PE algorlthms are 1.87, 2.78, and 3.05 for the :

- -MIMD, SIMD, and hybrld 1mplementatlons respectlvely, correspondlng to
: efﬁc1enc1es of 0.47 (M]M:D), 0.70 (SIMD) and 0.76 (hybrid). : '

, ‘_ F1gure 7 illustrates. the prOJected speedups for system 51zes up to 1024
PEs. These figures are based on the extrapolated execution tlmes .of the
parallel algorlthms obtained with equat1ons 7 and 8, and comparable analytlc -

'predlctlon of the larger serral versions. Note that for 1024-—PEs in SIMD and -

o 'hybrld modes, the predlcted efficiency is almost 80%. Hence, the overhead of
- communlcatlon remains low. ThlS is srgnlﬁcant and has even greater pos1t1ve L

- 1mphcatlons for a similar system with a message or packet-—sw1tched network:

the FFT is nearly worst case Wlth respect to network conﬁguratlon overheads
ina c1rcu1t—sw1tched system ' :

:8 Conclusmns

Thls work focused on. obtammg performance measurements for various °

" - 1mplementat10ns of fast Fourier transform algorithm running on the prototype
'PASMvparalle_l processing system__ Detalled measurements allow_ed evaluation
- of the effects of a number of aspects of the architecture on the performance of

- the FFT. programs Most notable is. the s1gn1ﬁcant performance advantage of
the SIMD: implementation over the MIMD 1mplementat1on, and the even
further 1mprovement attained w1th a hybrld 1mplementatlon ‘The. dlfference

,-_between the SIMD and MIMD 1mplementat10ns can be attrlbuted prlmanly to

‘ -1nterconnect10n network txme, the 1mprovement galned Wrth the hybr1d
versron is pr1nc1pally due "to MIMD executlon of arlthmetlc operatlons

88

‘combined with barrier synchronization at the points at which data _-t_ransfers :
occur. This constitutes one of the first results of this kind, in which controlled
experlments on fixed hardware were used to make comparisons of these '
“fundamental modes of computing. The results demonstrate the value of the
: multl-mode capablhty of PASM, and the v1ab111ty of mode sw1tch1ng to obtam
“the best of both worlds.” ’

: Also notable are the prOJectlons in which the 1nformat10n obtamed by"
' executing the FFT programs on a small number of Processors is used to :
extrapolate performance for larger FFTs on a larger system.. Although 8- pomt ‘
_FFTs are used as the basis for these projections, these algor1thms exhibit all of
the ba51c parts of larger FFT algorithms. The detailed measurements of the
components . of the 1mplementatlons allow us to do a very accurate
construction” of the execution times and speedups for - larger size problems
The pro_]ect1ons accurately model 1nterconnect10n network access, data
- transfers, ﬁoatmg point. ar1thmet1c, COPTOCessor access, use of regrsters and
memory, and program control overhead. ' The extrapolation is venﬁed to
within 1% by comparing the predlcted 16-point 8-PE time to the actual
measured time for a 16-point 8-PE implementation. The pro_]ectlons indicate
a W1den1ng of the gap between the performance of the MIMD version and the
SIMD and hybrid 1mplementat10ns due to network operation costs

Al of the programs were ‘written in MCBSOOO assembly language Many
of the interesting comparisons between the various 1mplementat10ns of the
FFT would not have been observed if the programs had not been’ ertten at
~ this fine level of detail. The detailed experiments . reported here prov1ded :
significant insight into many aspects of the PASM architecture and prototype
implementation. This knowledge will be useful for optumzmg high level
' parallel language comp1lers des1gned to produce code for executlng ‘on PASM

9. Acknowledgements -

= The ‘authors would l1ke to thank Sam Flneberg, Wayne Natlon, Prerre
' :Pero, Tom Schwederskr, and H J S1egel for their many helpful dlscusswns

. o References o =
[Ad882] G. B. ‘Adams ba.nd”H J. Siegel, “The extra stage 'cﬁb'e ~a fault-

tolerant 1nterconnect10n network for supersystems,” IEEE Trans
Computers, Vol C- 31 May 1982, Pp-. 443 454,

| [Beﬁé] .
‘ [JaMSS]»
LuBso]

Mots4]

[Mot85]

| [ops'js}

[Pea?7]

‘[vSiS‘81} f

89

G D. Bergland “Fast Fourier:transform hardware i‘mplemerltatfons_{
+ — an overview,” IEEE Trans. Audio Electroacoustzcs, Vol AU—17 .

June 1969, pp. 104-108. , :
L. H. Jamieson,- P T. Mueller, Jr, and H J Slegel ‘“FFTVV :

algorithms for S]MD parallel processmg systems,” J Parallel and -

Distributed C’omputmg, Vol. 3, Mar. 1986, pp. 47-71.

S. F. Lundstrom and G. H: Barnes, “A Controllable MII\/ID .

Archltecture, 1980 International Confer_en_ce ~on . Parallel
Processing, August 1980, pp. 165-173. . P 3

'Motorola, MC’68000 - 16/32-Bit Microprocessor Program'me'rsr.

Reference Manual fourth edltlon, Prentlce Hall Inc, Englewood .

‘Cliffs, NJ, 1984.

Motorola, M068881 Floatmg Pomt C’oprocessor User s Manual ﬁrst
edition, MC68881UM/AD Motorola MOS Integrated Clrcults a
Division, Austin, Texas, 1985. :)

A. V. Oppenhelm and - R. Ww. Schafer, Digital Szgnal Processmg,
Prentice-Hall, Inc., Englewood Chﬂs, NJ, 1975 ' e

M. C. Pease, “The 1nd1rect bmary n—cube mlcroprocessor array,
IEEE Trans. C’omputers, Vol. .C-28, May 1977, pp. 458 473.

H. J. Slegel L. J. Slegel F. C. Kemmerer, P. T. Mueller, Jr H E
Smalley, Jr., and S. D. Smith, “PASM: a partlonable SIMD/MEMD

. system for image processmg and pattern recognltlon, IEEE Trans.

[Sie8,$] '

Computers, Vol. C-30, Dec. 1981, Pp- 934-947. ,
H. J. Siegél, Interconnectzon Networks for Large Scale Parallel ,

,Proces,sz'ng Theory and C’ase Studies, Lexmgton Books, D -C.

 Heath, Lexington; MA,. 1985.

[Sis87]

H. J. Siegel, T. Schwederskl, J. T. Kuehn, and N. J Dav1s IV “An
overview of the PASM parallel processing system, ‘in Computer
Architecture, D. D. ‘Gajski, V. M. Mllut1n0V1c, H. J. Siegel, and B.
P. Furht, eds., IEEE Computer Somety Press, Washmgton, D.C,

- 1987, pp. 387-407.

 [stor1]

H. S. Stone, “Parallel processing thh the perfect shufﬂe,” IEEE
Trans. Computers, Vol C-20, Feb. 1971, pPp- 153 161

90

© Memory " Fetch Unit . Fetch Unit |

Con—tro]ler ' : "RAM’

et T

I . Register

F\eLCh ' FIFO - .

-~ - - - - - -

r

i o o 0 o 0 i o s o ot W i e D o -

_ Figure 1. Simplified MC structure.

Table 1. Raw pvex"fojrman_ce (_}f the PASM pro_tiofypjel o

Register-to-Register | - | Imstruction | Processing

i ieation | - Rat
o opemateR o | Wait States | S

0 | 256MIPS

| 1| z12MPS

{smp | - | 183MIPS

Smglepremslon MMD 0 B 4.7 .M‘FLO*PS

| floating-point |~~~} 1 . |43 MFLOPS
i [| | sowmors

16-bit integér- | MIMD 1~
addition - — —

‘stage 1 © stage 2 o stage 3

- cubey cube0
©- transfer: - transfer

Flgure 2 Slgnal flow dlagram of an 8—pomt FFT on 4 PEs The value of the
tW1ddle factor for each’ butterﬁy operatlon is Wk, Where k is the :
' number adjacent to each butterﬂy a.rrow }

AX=A+BWE

‘Figulle 3. FFT butterfly :bperafipn.‘ |

' Table 2. Complexity of the M-point radix two DIT FFT algorithms.

Multib-lica,tion - Addition Cube Transfer |

Steps ~~ Steps Steps

serial (M/2)(log, M—— 2) ‘Mlog.gﬁM, o

M/2 PEs

log, M;Q', ' 2loga M logoM /2

SIMD- 1
.:Hybr.id ’ | :

0200 400
Executlon Time ?,us

Figure 4. Execution time fo‘r:':.8v—point,v FFT pro‘grams on 4 PASM PEs.

o Stage 1

: FStag‘ev 2

‘Stagreb3 SINI]) — l

Net.wor]; E} ;

: R I S
0 50 100 150 200 - 250
. Execution Time ()

Fi'gure"'s.‘E)"cécutibn' ti_n'ié.fo“r"acémpbh:ei:ité of 8-point FFT “p‘rogrbarvns on 4

94

vTable 3. Execution time (us) for components of FFT programs.

0.5

104

. }1 “8‘.’_“‘?1]6: 39 6;%12'825'6 512 1024

J R | B C S, S, S,, Sp
MIMD |[4.000 | 17.000 | 5.000 222,000 | 76.500 | 52.000 | 99.500 | 128.000
SIMD {{0.000 | 13.500 0.000 | 77.625 | 90.625 | 91.500 | 111.000 | 139.500
Hybrid ||4.000 | 17.000 | 5.000 | 80.750 76.500 | 52.000 | 99.500 | 128.000
3.5
3.0 MIMD .-+~
2.5 4
:EXeéution
“Time ~" |
‘.‘(ms) 1.5 -

Figure 6. Projected execution times for an M-point FFT program on M/2

PASM PEs, 8 = M = 2048, where M is a power of 2.

8004 &
6004 o SIMD .
| o MIMD o
Speedutno - - v L ™ »
2004 & °
| .
. R S
01w © 8 8 ¢

8 16 32 64
: PEs

e
o}

T T T T
128 256 5121024

Figure 7. Pfojected speedup for an. M—p'o»in“tvFFT program on M/2 PASM
PEs, 8 = M =< 2048, where M is a power of 2.

‘ ParallelzDF FT I‘mplementati_on; ’

» Eng szeLoh

: Abstra.ct

As part of a coordlnated archltecture study of novel machlnes,
“1mplementatlon of 2 Dimension Fast Fourier Transform (2DFFT) on PASM

. has been. conducted. FFT is used. in many areas such as-image processmg, .

’speech analy31s, optlcs, antennas, and random process. The'goal of the prOJect
is to compare the performance in different modes SIMD, SIMD /M[MD and |
-MIMD for the 1mplementat10n of 9DFET on PASM The 1mplementatlon of
Ademmatlon in time of serlal FFT is used as a basehne algorlthm for
comparlson to the parallel Vers1on of 2DF FT '

| ' 1. Introductlon

- The PASM prototype was completed 1n December 1986 There has been
» an effort to develop apphcatlon programs to utilize the features of PASM. One
of these applications is the Two D1mens1ona_l_, Fast Fourier Transform (2DFFT_)
~ which is the main topic _of this project» report,' Discrete Fourier ’TranSform is
~ used in Wide. ‘areas such as optiés,' 'antennas, ‘random 'process', probability,

image processing, and speech analy31s 2DFFT is ‘used i 1n 1mage processing to-

extract ‘features and improve image- quahty The main- ob_]ectlve of .this
project is to 1mplement 2DFFT on PASM, and to compare the performance in
. different modes SIMD, SIMD /MIMD and M]lV[D o

v Section. 2 gives the background and references to start the prOJect
Sectlon 3 describes the algorlthm 1mplemented in this prOJect Section 4
descrlbes ‘the "specifications of the experlment performed and results are
presented in . Sectlon 5. In- Sectlon 6, dlscussmn and mterpretatlon of results

- are given, Sectlon 7 prov1des a trall for someone Who wants to’ contlnue thls
. prOJect ' ' ' B ' ' '

LT
2. Background

2. 1 Problem—area rela.ted references a.nd background

Background on. Discrete Fourler Transforms can be found in [Ziemer].
gives a basic understandmg about Fourier Transform, and then it dlscusses
Discrete Fourler Transform and presents an introduction to Fast Fourier
Transform It shows the ﬂow graph of the computatlon for the FFT. For the

. complete dlscuss1on on. Cooley-Tukey algorlthm used in this project for the

1DFFT, Blahut] gives a very detall descr1ptxon of the algor1thm

The reference that expla.ms how to parallehze 2DFFT can be found in
[Mueller]. It descr1bes how to parallehze both IDFFT and 2DFFt and how to
-do the transfer using the PASM 1nterconnect1on network efﬁc1ently

2 2. Releva.nt Part of PASM v , . v
- A 30 processor prototype of the PASM system was. completed in
o December 1986 with 16 PEs (PE processors are microprocessors that perform
the actual SIMD and - MIMD operatlons) and 4 MCs (Micro Controllers are
processors. which act as the .control units for PEs in SIMD mode and
orchestrate the activities of the PEs in MIMD mode. Each MC controls 4
PEs. This system employs Motorola MC68000 Processors ‘as. PE' and MC
'CPUs with a clock speed of 8 l\/IHz ‘The 1nterconnect1on network is a
c1rcu1t—SW1tched Extra-Stage: Cube network, ‘which is a fault—tolerant variation
- of the mult1stage cube network ~Since knowledge about the MC and the way
in- which 'SIMD instructions - are implemented with standard MC68000
m1croprocessors is essential to. the understanding of the behav10r that was
observed in the experlments, the SIMD instruction broadcast mechanism is
overviewed below. Consider the s1mpl1ﬁed MC structure shown in Figure 1.
The MC contalns a memory module from which the MC CPU reads
1nstruct1ons and data. Whenever the MC needs to broadeast SIMD
1nstruct10ns to its assoc1ated PEs, it first sets the Mask Reglster in the Fetch
Unit,: thereby determlnlng ‘which PEs will’ participate in the - followmg

e »1nstruct1ons. It then writes a control word to the Fetch Unit Controller which

specifies the' location and"size'ofv a block of SIMD instructions in the F etch
Unit RAM. The Fetch Unit- Controller automat1ca.lly moves this’ block word
by “word -into the Fetch Unit Queue. Whenever a instruction ' word s
, -enqueued the current value of the mask reglster is enqueued as well. Since

'the Fetch Umt enqueues blocks of SIMD 1nstruct1ons automatlcally, the MC

98

CPU can proceed with other operatlons Wlthout waiting for all mstructlons to

be enqueued

—_ o H
R g 1]
MC ' ——— — i
" Memory ! Fetch Unit . Fetch Unit E
: o Controller. - RAM e
"]
T S
] - 1
— o ‘ B
- MCCPU t | ‘Register f
' R i
5 !
oy]
' . FIFO | — i
]
' FIF '
| F etch N b
A
' ' 1
H to.PEs !
. L B l».

Umt | 1

Figure 1: Simplified MC structure.

PEs execute SIMD 1nstructlons by performlng an 1nstruct10n fetch from a
reserved memory area called the SIMI) instruction space. Whenever logic in
the PEs detects an access to this area, a request for an SIMD 1nstruct10n is

“sent to the Fetch Unit. Only after all PEs that are enabled for the current
instruction have issued a request is the instruction released by the Fetch Unit
FIFO, and the enabled PEs receive and execute the instruction. Disabled PEs
do not part1c1pate in the instruction and wait until an 1nstructlon is broadcast
for which they are enabled: This way, sw1tch1ng from SIMD and MIMD mode
is reduced to executing a jump 1nstructlon to the reserved memory space, and
‘a switch from MIMD to SIMD mode is performed by sending a Jump to the
<appropr1ate PE MIMD instruction address located in. the PE main memory
-~ space. . : : ‘ - :
The. SIMD mstructlon broadcast mechamsm can also be utlllzed for
barrier synchronlzatlon [Schwed] of MIMD programs Assume 2 program- uses
a single MC group, and requires the PEs to synchronize R times. First, the
MC enables all its PEs by writing an appropriate mask to the Fetch Unit
| Mask register. ‘Then 1t 1nstructs the Fetch Umt Controller to. enqueue R

.arbltrary da.ta. words, and starts 1ts PEs whlch begln to- execute therr MIMD ER

'program If the PEs need. to synchromze (e g., before a network transfer)

. _they issue a’ read 1nstruct10n to_access a location in the SIMD" 1nstruct10n_

. space. Slnce the hardware in the PEs treats SIMD instruction fetches and

© . ‘data reads the same way, the PEs will be allowed to proceed only after all PEs .

have read from SIMD space Thus, the PEs are synchronlzed The R,

. synchromzatlons requlre R data fetches from the SIMD: space.' Thus, the
';."_Fetch Unit Queue is empty when the MIMD: program completes, and» :

subsequent SIMD programs are not aﬁected by thls use of the SlV. broadcast‘ .
‘ mechanlsm ' SRR S -

3. Problem Descrlptlon

» To. 1mplement 9DFFT.. algorlthm for this- prOJect, 1t is necessary to
i understand “how :serial lDFFT works. s1nce the parallel vers1on of ZDFFT
algorlthm is. based on the serlal IDFFT S

3 1 Cooley-Tukey algorlthm for 1DFFT » o
. The deﬁnltlon of the one dlmensmnal Dlscrete Fourler Tra.nsform is E . -

X() E X(k)Wkn s

“v_gher‘e Lol

o N= the number of 1nput samples x RO
o k<={0L2,... N1} .
Son<= {012 ,N-1}
o WN = exp(—327r/N)

“Multlphcatlonh step complex1ty is 2,

. Note that for tN_‘a_poiye_r?'c’;_,f}*z:,i_'the«e_qgapﬁifaﬁjIimy-*be, "wﬁt,,t‘eﬁvaszi

X(2k) W2k“ +WN 2 (2k+1) w“’k“'.:-
k 0 E ‘__’_‘,:' k=0 L R

N/z—1 o Nj—

X(Il +N/2) =) E X(2k) W.%}fn: i E (2k+1) Wan S

k=0 R, - k=0

o Wheren—0123 N/2 1

Multlphcatmn step complex1ty is now N log N

For the details of the derivation refer to [Blahut] The decnnatlon in time
FFT or Cooley—Tukey algorithm breaks the 1nput data vector into the set of
components with odd- index and the set with even index. The output vector is
* broken into the set containing the first N/2 components and the set containing

the second N/2 components : ‘

An example showing the ﬂowgraph for an 8 pomt (N—~8) 1DFFT
Cooley—Tukey algorithm and can be found in Figure 2. Figure 2 shows that
the x(k) inputs are arranged such to perform a butterfly computation for two
adjacent 1nputs Note that the results’ of tansformatlon is 1n the right order.

Flgure 3 shows the 1mplementatlon of thls algorlthm in a high-level
language. - ‘

3.2. 2DFFT .
~ The definition of 2DFFT is

v N-1 N-1 :
Xwv)=%» % x(l m) va

10m—0

We can see that to do 2DFFT ‘corr_iputafcion, we can perform 1DFFT on
the rows of the N x N matrix and then perform another lDFFT on the
- columns of the matrix of the mtermedlate resu]ts for two different types of
' 1nstructlons ‘

101

begln o
le = 2k '
lel =1le/2
u = (1.0, 0.0)

W —cmplex (cos(m/lel), sin({—n) /lel)) SRR
for j = 1to lel

o ‘begin-
fori= _] to N step le
begm ,
ip = 1'1—{- lel
t = vfa,('lv,ip), X u
fa(l,ip) = fa(l,i) - t
, fa(l,i) = fa(l,i) +t
‘end -
u=uxW
end

end
Figufe 3: Cooley-Tukey algorithm in a high-level lahgﬁége.

“3.3 Imp'lémentation of2DFFT on PASM o

3.3. 1 Procedures . .
For an N x N 1nput matrlx and P PEs, each PE is assigned N/p TOws.

NX N inputs matfix
cu,v = 0, 1 2,..., N-1

Lm= 0,1,2,..., N-1

- Wy =exp(_—327,r/N)

In the ﬁrSt‘stagé, each PE performs 1DFFT calculations for the rows assigned
to that PE to produce an intermediate matrix'resulﬁ Then, the matrix is
_ transposed and assigned. N/p rows of the new matrlx to each PE. 1DFET is

then performed on the rows assigned to ‘that PE The result of the second
' '.stage is.a transposed matrlx of the ZDFFT transformatlon CIRT

102

For a more clear explanatlon, F1gure 4 shows how to parallellze a 2DFFT '
for N x N inputs and N PEs. First, each PE is assigned a row of the Inatrlx

Then each PE is to do a serial 1DFFT on each row s1multaneously After .

that, the new matrix is transposed and then each PE is assxgned a row of that

matrix. Each PE then performs, for the second time, a serlal 1DFFT on the
oW, (1 e. column of the orlglnal matrlx) it is assxgned :

3 3 2. Transpose a.lternatlves . ‘ ‘
There are two pos31ble methods to do the transpose usmg the network‘
‘transfers ' ‘ S

| The ﬁrst is. by connectlng each PE to its: adJacent PE and then to do
simultaneous transfers Nx N tlrnes For each N transfers, each PE takes and

saves the value needed, after N x N transfers each PE Wlll have all the value

~ needed from the transposed matrix (Figure 5).

The second Method is to. connect -each PE to the PE that has value
needed and then do the ‘transfers s1multaneously, then drop the path, then
. again connect to other PE to get the next needed value. After N transfer, the
matrrx is already transposed (Flgure 6). S '

The second method should take less tlme to do the transpose since the
_ transfers is in O(N) and the first method is in O(N X N), but the second

method will have to do the open and drop path N times.

4. Experlments Performed

 The ‘experiments that can be performed at th1s pomt are 4 x 4 2DFFT
using 4 PEs in SIMD, S /MIl\/[D and MIMD modes. All operations were 8 bit

complex integer operatlons, and overflow was ignored. The two method to do

the transpose are performed to see which one is faster to do the transpose.

Method one requires O(N?) transfers and. method 2 requ1res (N) transfers but’
~ with additional open and drop path. ' : ,

The -SIMD version of the method 1is not a pure "SIMD version. The

- .reason is not possible to write the: puré SIMD version is because of the need to

- save the data needed after each N transfers. Each PE has to.save the needed
- data from different locatlon, so this part has to be executed in MIMD mode.
 The rest of the program are executed in SIMD mode.

SIMD /MIMD version of method 1 executes the FFT calculatlons in SIMD

Inode and does the transfers to transpose the 1ntermed1ate result matrlx in

103

: MIMD mode The barrier synchromzatlon is used to perform the transfers’
data. '

- The MIMD version of method 1 exeCﬁtes the FFT calciu'lations‘ and -
“performs the transpose in MIMD modes. The barrier synchronization is used
each time the FFT calculation and the transpose is performed. Clear’ly the
‘MIMD version requires more jump action from SIMD mode to MIMD mode.

For the method one, the SIMD, S/MIMD, MIMD methods - are all
-performed , but for the method 2 only the SIMD is performed since the correct
~ results could not be obtained (the fault mlght be in the network transfer

though the time will be the same). . IR o

The data sets for the experlments in th1s case Wlll not make any_‘
dlfference, i) only one data set ‘Was used ‘

5 Data Measurements ‘Ta’ken'

Method 1 o
SIMD. 078 'mi"lliseconds_
S /M]MD - 0.842 milliseconds
MIMD . 0.888 milliseconds
Method_ 2
Sﬂ\/ﬂ) S 1.04 milliseconds

6. stcussmn and Interpreta.tlon of Results

S[MD version of the. program 1s the fastest among other modes in method

1. The main reason is that this version requires the least overhead to jump |

- from SIMD mode to MIMD mode since the- frequency to jump to MIMD mode '
, s also-the least. Note that the programs for all three modes are baswally the

- same, only the frequency of j jumping from SIMD to MIMD mode makes one
mode faster than the others. With that reason ‘in mind, 1t could be
“understood that SIMD/MIMD mode is the second fastest since 1t has more
frequency tha.n SIMD but less frequency than MIMD version to jump from
SIMD- mode to MIMD mode And the the slower is the, MIMD mode with the

~ same reason above

104

The result of method 2 is very surprising since it takes longer to the -
‘ ﬁnish“executing the program compare to the SIMD version of the method 1.
Once again, method 2 only has transfers in O(N) compare to method 2 which -
O(N) but method 2 has has to open and drop path O(N) compare. to 1 .
time for method 1. From the result, we can conclude that the overhead to do, .
the open and drop path is very h1gh ’ '

7. Future Work

- Much further effort is needed in order to utlhze thls program One -
possibility is to expand the program to be able to execute larger input matrix
(i.e 1024 x 1024 matrix). To do that, one must write a general program which -

~ is able to perform transformations for any input matrix and for any number

of PEs. The 2DFFT calculations need to use floating pomt computatlons smce
the results are generally nomnteger complex numbers. '

8. Conclusxons

For the 4x4 matrlx inputs, method 1 gives a faster speed than the
method" 2, and for the method 1 the SHV[D is the faster, followed by the
S/ MIMD than MIMD. '

The fact that the method 2 is slower though it requlres less transfers
meansthat the overhead to do the open and drop path is very significant.-

References

[Blahut] Richard E. Blahut, "Past Algorithms For Digital Processing”,
: Addison-Wesley publishing Company, Reading, Massachussetts,
| 1983, pp. 115-127. BN |

[Ziemer] =~ Rodger E. Ziemer, et al., "Signals and Systems”, Maemillan
Publishing Co., In¢., New York, pp. 388-412. =

- [Mueller] Philip T. Mueller, et.; " FFT Algorithms: for SIMD Parallel -

' " . Processing Systems", Journal ~of Parallel and Distributed
- Computing 3, 1986, pp. 48-71. :

[Siegel] ~ H. J. Siegel, T. Schwederski, J. T. Kuehn, and N. J. Davis IV "An

.. Overview of the PASM Parallel Processing System,” in Computer

© Architecture, D. D. Gajski, V. M. Milutinovic, H. J. Siegel, and B.

- P.F urht, eds., IEEE Computer Society Press, Washington, D. C.,

105

1987, pp. 387-407. e , e
[Schwed] - T. Schwederski, H. G Dietz, 'Barrler Synchromzatlon in the

B ,PASM Parallel Processing System,” 3rd SIAM Conference on
“Parallel Processmg for Sc1ent1ﬁc Computmg, Los Angeles, CA,

e Dec 1987.

106

PART II .

Speéch Processing and AI-Related

‘107

' Eklpérimerrta;l Ana.ly,sis’ of SIMD Recursive]jﬁig’ital
‘Filtering on the PASM System Prototype

Mzchael J. McPheters Jr and Thomas L. C’asavant

e , - Abstract e

_ ' Experimental analyses of an implementation of an’Sﬂ\/ﬂj balgorithr‘n’for
recursive. digital filtering using the PASM parallel processmg system prototype
at Purdue are presented. The algorithm used easily generahzes to use N PEs
(,pro,c_essmg elements). Timing-based analyses are made based on a four PE
: versiqn‘ by examining the folIoWin-g constituent execution times: micro-
‘ controllejr execution time, PE execution time, broadcast commiunication time,
and the execution time of - five additional phases in the recursive digital
filtering - summation calculation. Broadcast execution time was found to
account for roughly 44% of the total execution time and the 'implicatiorr of
this is discussed for larger prOblem sizes and machine sizes.. The total
measured execution time is verified through summation of execution ﬁimes for
the;yarieus components of the algorithm. '

1 Introductlon

‘This paper reports on experlmental measurernents of an SIMD recursive
d’igltal, filtering algorithm - implemented on the PASM (PArtitionable
SIMD /MIMD) parallel processing system prototype at Purdue [SiS81, SiS87].
An SIMD algorithm was chosen to perform recursive digital filtering because
SIMD structures most naturally allow for _explo.itation of the parallelism found
in this application [YoS81]. The main purpose of this research proj‘ect was to
provide information for an Application-Driven Arc’hiteC,ture_AStudy, in which
easily understood algorithims are implemented as programs, and controlled
experimentation is done with respect to execition time of the algorithm in-
order to evaluate particular architecture features. This phase of architecture
- evaluation research represents some of the first experlmentatlon with the
broadcastmg feature of the PASM Extra-Stage Cube interconnection network
[AdS82]. Finally, this work is useful in gaining insight into the potential use
of PASM for this type of application. The results reported are focused on
showing the difference in execution times among the varlous phases of the
algorithm implementation. - For example, ‘when the algorlthm is mapped to
the machine such that one input sample is 'assig"ned' to each PE, and one

71308'v~ :

:‘output is generated per PE the broadcast execution time was found to be
- 44.59% of the total executlon tlme, Wh}le the partlal summation calculation
- was 12. 33%. g o

Sectlon 2 prov1des background 1nformat1on and related work whlle ~
~ Section 3 glves an overview of PASM and its prototype. Section 4 reviews the
basic operations of digital filtering and describes the algorithm that was used.
The experiments performed, the results, and a general discussion of results
and their. implication are presented in Sections 5 through 8. -

2. Background and Related Work

Related exper1mental research has been carrled out on several machines
‘through the use of both srmulatlon and experimental technlques.v Simulation-
“based ‘analysis Was,perform‘ed"by‘Yoder and Siegel [YoS81] for the PASM
. system, and by Su and ‘Thakorei for the SM3 system and a hypercube .
architecture [SuT87|. Experimental work involving measurements on working-

o machlnes has also been performed. Examples include work involving several -

machines:- the BBN Butterﬂy [CrG85], Cm* [GeS87|, the Encore Multimax
[Hudss], the Intel Hypercube [Hud88], PASM [FiC88], and the Warp system
[AnAS87]. In these efforts, matrix multiplication was normally employed as an
- example algorithm. Other reported work 1nvolv1ng efficiency measurements‘_
- and algorlthm optimization on parallel machines mcludes work done on an
Alliant FX/8 [JaM86, Han88), a CRAY XMP [Ca184], and a combination of
‘ Apollo work-stations and an Alhant FX/8 [KuN88|. ‘

» Research mvolvmg dlgltal ﬁlterlng a]gorlthm 1mplementatlon has been

examined by Hodges et al [HoBSO] ‘This work examined the use of skewed
'SIMD mode parallel digital ﬁltermg Using this approach, all PEs execute the
same 1nstruct10n stream, but: the execution of given instructions are skewed in

time. Work done by Yoder and - Siegel- examined d1iferent strateg1es for
récursive “digital filtering computatlons Their work compares the ‘use of a -
systolic’ array and SIMD algorlthms and performs srmulatlon-based analyses of ,
the SIMD versions for PASM [YoSSl]

.3 Overv1ew of PASM a.nd the PASM Prototype

PASM is a dynamlcally reconﬁgurable archrtecture in Whlch the _
processors may be partitioned to form 1ndependent virtual S]MD and/or
MIMD machines of various sizes [SiS81]. A 30-processor (16 in the
computat;on unit) prototype_ has been completed and was used in the

109

eﬁ{perimelits ‘described in Section 5. This section discusses the PASM
architecture characteristics which are most relevant to the reported
experimentation. For a more general descrlptlon of the archltecture and
prototype, see [SiS87]. ‘

The Parallel Computation Umt of PASM contains N PEs where N is a
power ofv 2 (numbered from 0 to N—1), and an interconnection network. Each
PE f(prqces'sing element) is a processor/memory pair. The PE proc‘eSso}rs are
sophiSticated microprocesso‘rs: that perform the actual SIMD and MIMD
- operations. The PE memory modules are used by the processors for data
storage in SIMD mode and both data and instruction storage in MIMD mode.
The Miero Controllers (MC's) are a set of Q=29 processors, numbered from 0

to Q—1, which act as the control units for the PEs in SIMD mode and
orchestrate the activities of the PEs in MIMD mode. Each MC. controls N/Q
PEs. PASM has been designed for N==1024 and Q=32 (N—16 and Q=4 in
the .prototype) A set of MCs and their associated PEs form a virtual
machine. In SIMD mode, each MC fetches instructions and common data -
from its associated memory module, executes the control flow 1nstruct10ns (1 e.,
branches) and broadcasts the data processing instructions to its PEs. In
MIMD mode, each MC gets instructions and common data for coordmatmg its
PES from its memory. ' '

The PASM prototype system, completed in December 1986, was bullt for
N==16 and Q==4. This system employs Motorola MC68000 processors as PE
and MC CPUs, with a clock speed of 8 MHz. The interconnection network is
a c1rcu1t—sw1tched Extra-Stage Cube network, whlch is a fault-tolerant
‘ ~variation of the multlstage cube network. ‘

. The PASM network is capable of operatmg in both point-to-point and
broadc‘ast modes. The recursive ﬁltermg_ application described in this work
makes use of the broadcast facilities. In order to establish a broadcast
~communication session, the sending node first must set up a path through the
network. ThlS path is estabhshed by the execution of PE code which writes a
routing tag (for broadcasting, this value is $FOFC) into the DTR (Data
Transfer Register). The PE then sets a bit in a second control register to
_ instruct the network interface to interpret-the value in the DTR as a routing
tag for setting up the network. Once the routing tag has been written to the
DTR each PE (sending and receiving) must poll a third control register to

~verify that the path was actually set up. This polling will place the used
routing tag in a PE data register for each PE to verify. Byte data values are

~ then written to the DTR and automatically sent through the network. The

110

e i o e o i 2 o e e e o o o

: | =
- } ' i
‘MCc | ——— e —_— KE

Memory . | t | - FetchUnit | | FetchUnit [

g E - Controller) 1] RAM A v

ST SET. § E 'Mask" s
MCCPU. - == 1] Register |
v : : et i
1 l“
R L L
T FIFo | — 3
H : 'O !
. .]
\iretch b
T, . . S
g — o
t Uﬂlt DR ' P
L--.._.--_-----_~___-r_________-__-_v_____‘_j,.-

Figure 1: Simplified MC structure.

r'eceiving: PEs then initiate a read from the DTR to obtain the sent data _f_alue '
> "whlch again is put in a PE data register. To conclude the broadcast seséion,
- ‘the sending PE code then initiates a drop path request that Wlll free the
network by closmg the estabhshed network path.

‘ Consider the 31mphﬁed MC structure - shown in Flgure 1 The MC-
contains a memory module from which the MC CPU reads instructions and
- _data. ‘Whenever the MC needs to broadcast SIMD instructions to its -
- associated PEs, it first sets the Mask Register in the Fetch Unit, thereby

determining which PEs will partlclpate in the following 1nstruct10ns It then

wrltes a control word to the Fetch Unit Controller which speclﬁes the location - _

’, and size of a block of SIMD mstructlons in the Fetch Unit RAM The Fetch

Unit.- Controller automatlcally moves this block word by word into the Fetch o

Unit Queue Whenever an instruction -word is enqueued, the current value of
the Mask Register is enqueued as Well Because the Fetch Unit enqueues
blocks of SIMD instructions automatically, the MC CPU can proceed Wlth
other operatlons without waltlng for all 1nstruct1ons to be enqueued

PEs execute SIMD mstructlons by performmg an instruction fetch from a .

' reserved memory area called the SIMD. mstructzon space. Whenever logic in

the PEs detects an . access to this area, ‘a request for an SIMD 1nstruct10n is
‘sent to ,_theFe_tch Unit.- Orlly after all PEs that are enabled for the current

instruction have issued a request is the’ instruction released by the Fetch Unit
FIFO. The enabled PEs then receive . and execute the instruction. " D1sabled-
PEs do not participate in the instruction and wait until an instruction is
broadcast for -which they are ‘enabled. This Way, sw1tch1ng from MIMD to
- SIMD mode is reduced to executing a jump instruction to- the reserved
 memory space, and a SW1tch from" SIMD to MH\/ID mode is performed by -

sending a jump to the appropr1ate PE MIMD 1nstruct1on address located in
| _ the PE main memory space - - ‘ '

~In order to ‘make compa,rlsons of the speed of the PASM prototype
- relative to other machines and to compare the relative: speeds of SIMD and
MIMD instruction fetches; the actual raw ‘performance of PASM in SIMD and
- MIMD - mode was measured on the prototype and is 1llustrated in Table 1 in
MIPS (mllhons of integer 1nstruct10ns per second) for two dlfferent types of
instructlons C :

:| Processing
. | Mode |~ ~Operation Rate :
- SIMD | 16-bit Reg.-to-Reg. add ' | 22 MIPS |
MIMD | . 16-bit Reg.-to-Reg. add | 18 MIPS
| SIMD | 16-bit Reg.-to-Mem. add | ‘6.4 MIPS |
- [MIMD_ | 16-bit Reg.-to-Mem. add | 6.0 MIPS |

Table 1: P"rototype raw .p'erformance. o

4 The‘R‘ecursive ‘Digita.l Filteri'ng Algo‘r'it‘hv‘rnr

4.1. Algorlthm Used

The basic operatlons in digital ﬁlterlng are the cornputation of s‘um' of

. products terms, with output ym given by

N R g
Ve =% % Yay + 2 bk X P =Ems=M
k=1 k=0 S

‘where xm is a sample input to the filter. The ay's and bks are the filter
coefficients which define the characterlstlcs of the ﬁlter operatlon to be
performed and M is the number of samples in the slgnal to be ﬁltered

Coouz

[YoS81] The parallel recursive dlgltal ﬁltermg algorithm used to compute ym‘
is shown in Flgure 2. v o : .

~ ADDR = — Address of PE (e g ADDR = 0 in PE 0)
DTRin = Data Transfer Register input to the PE - :
' DTRout = Data Transfer Register output from the PE -

-COEF[] = Vector of coefficients = o
FLAG(i] = Equals 1 if COEF(i] is an tegn coefﬁc1ent

'SUM = Contains partlally computed ym :

‘ for J= 0 to M+p+q-1 do : :
where ADDR =.j mod (p+q+1) do _+ /* Select PE containing

DTRout = SUM S o * newy value ¥j_(q+1)
SUM := 0, : v' o = : /* vBroadca:s‘t that y and
*“'broadcast; .= % start new sum there
, where FLAG(j mod (p+q+1)] =1 do v / * In each PE, select
. TMP = DTRm, R A * either broadcast y
o elsewhere do ‘ 3 W ;
~ TMP = X5 . [* or the new x value

i
'SUM := SUM + TMP * -
. COEF[j mod (p+q+1)};

Figure 2: General SlMD Digital Filtering Algor_ithm. '

" The first step in the hlgh level algorlthm is to select which PE contains the
newly computed ¥ value based on the loop 1ndex, j, and number of summation
terms, p+q+1. The selected PE will then be enabled and the SUM (i.e., yy,) will
be broadcast to all PEs, including itself, and then reset to zero to begin
calculatmg anew ym In the second step, usmg the FLAG matrix, each PE must _
'_ determme which data value to use in the running sum calculatlon and store it in

~ “TMP. “This va.lue stored in TI\/IP may be elther the broadcast yy, output value

~or the new. X filter input value ‘In the th1rd step, because each PE holds a copy
' of the filter coefﬁclents, the. algorlthm ma.kes use of the loop 1ndex and number
- of summatlon terms, to determlne wh1ch coeﬁc1ent to use in a g1ven step of the o
'. 'algorlthm The thlrd step also 1nvolves computmg the partlal runnlng sum

113

within each PE using one multiplication and one addition.

The broadcast flow for the y,, calculation is illustrated in Flgure 3 where
the double boxes indicate the start of a new ym computatlon

. PEO

- OPEY.

PE2.

PE3 |

Figure 3: ‘Dat;avFloW»Diag;ram”for_pv: 2 and q : 1.

'The operatlons executed durmg one stage (1 €., one loop 1teratlon) 1nclude one
selection of a filter coeficient, two broadcasts, one addition, one multlphcatlon,
and one scalar assignment. Therefore, because all PEs are effectively active
computing one' part of ym, one output (¥) is completed at each stage.

4.2, Implementatlon Dlscussmn '.

The algorlthm of Flgure 2 was 1mp1emented in 68000 assembly language on
the PASM system prototype. The ‘“where...do” and “where...elsewhere”
statements are used to indicate the setting of the Mask Register in the Fetch
Unit. This conditional evaluation for the “where” is done in the MC in order to
determine which PE or sets of PEs are to be activated for the set of SIMD
instruction(s) following the “do”. In the “where...elsewhere’’ statement, the
conditional ‘‘where” is also evaluated in the MC. The PEs for which the
condition holds are enabled and execute the SIMD instruction(s) following the
~“do”, while the remaining PEs execute the SIMD instruction(s) following the
elsewhere do | The FLAG matrlx is also eva]uated in the MC. When FLAG[i]

114

is 1, then the associated ﬁlter‘coefﬁcient'in COEF is an “a” coefficient which
would mdlcate that a PE should use the broadcasted yp, _value, otherwise (i.e.,
“when FLAG[l] = 0) a new Xm- filter input value should be used. Finally, the. .
coefficient matrix is set up such that each PE only needs a smgle row of the
matrlx to compute Vo 88 shown in Figure 4. : '

PE |COEF[0] COEF[1]COEF(z]. . . .COEF[p-+q—1]COEF(p-+q]
2y by o bg1 a3 ag
2 la a by N e
P a‘p ap_l ap_2 ‘ bl ‘ bO
1 P+1 bO ap ap . b2 , bli
Ipteifbes beg bgs -.bg bgg
p+a (bg-1 , bg—2 - bq—3 R bq

Figure 4: v‘Skéwed Coefficient Storage.

~ 4.3. SIMD vs. Systolic
Both systohc array and SIMD structures are well sulted for. exploiting the
parallelism inherent in certain tasks performed on vectors and arrays [YoS81].
“There are two potential advantages of choosing an SIMD 1mplementatlon First,
‘an SIMD machine supporting dynamlc broadcast reconfiguration allows for a
value of yp, to be computed every time unit, whereas a systolic 1mplementatlon
would require two time units. The systohc implementation allows ﬂow between
cells in a pipelined fashion such that communication with the outside world can
only occur at the “boundary célvls"’v [Kun82]. For a systolic implementation the
X, values ﬁowihg’ “ilp” the pipeline must be synchronized with the y, values
flowing ‘““down” the pipeline so that they meet in the correct PE with the correct
~coefficient [YoS81]. Therefore, valid data only exists in the even numbered PEs
- during odd numbered cycles and in odd numbered PEs during even numbered
‘_cycles, hence effectively requiring two time units for each Yo computation. The
broadcast for an SIMD implementatiOn can be handled by using the

115

mterconnectlon network to transfer the data item to the set of des1red PEs (as

done on PASM), hence effectively requiring only one tlme unit for each yp

computation. Second, an SIMD implementation easily allows for strlp -mine

»mappmg of larger problem sizes to smaller machmes When the problem size
1ncreases beyond the number of PEs available.

5. Experlments Perf ormed

v Timing measurements were made for e1ght separate. phases of thls SIMD
implementation of recursive digital ﬁltermg. All operations were performed

with integer byte-operands (8-bit), and overflow was ignored. The experimental .

results were obtained from the calculation of 52 ¥m values where the 52 x

inputs were unity and the filter coefficients ay and bk were also set to unity.

This choice of input data sunphﬁed debugglng, but also permltted gatherlng of

" the needed timing measurements. :

The following eight time measurements were made using the system’s
. internal timer‘sr(Motorola 68230) and were repeated five times. The five trials
were used to reduce anomalous data resulting ‘from asynchronous hardware
behaviorl. The timer clock . period was four microseconds, therefore, five

decimal‘places to the right of the decimal point were significant. ,
1. MC ezecution time for computing y,. This is the aggregate algorithm
© time to compute a single Ym Value as measured in the MC. It is the total
measured MC time divided by 52 to obtam the average MC execution time

for computing y,,. The timer chip on the MC board was used.

2. PE execution time for computing y,,. This is the aggregate algorithm time

© to compute a single y, value as measured in the PE. It is the total

. measured PE time divided by 52 to obtain the average PE execution time
for computing Ym- The PE timers were used and the largest single PE
time of the four PEs was reported.

, 3. Broadcast communication time. ThlS is the time needed to establish the
communication path from one PE to the other PEs and itself, send and
receive data, and then to drop the communlcatlon path so that a new path

 may be established in the next stage. ‘

} The PEs in SIMD mode operate on separate clocks, however hardware sj'nehronization
is done on.word fetches. Thus, some PEs may take more time to fetch complete
. instructions than others. - : « '

116

Path acknowledge time. This is the time needed for each PE to
acknowledge receipt of a routing tag. This is a direct measure of the
amount of serialization caused by SIMD execution of the broadcast.

Summation calculation execution time. This is the time needed to compute
one stage of the summation. This is dominated by the coefficient
multiplication time and the time required to add this product to the
partial running sum in each PE. ' ' '

- Ezecution time for choosing yy, after broadcast. This is the time needed to
determine if y, should be used for the y,, calculation in the current stage -
based on the FLAG matrix. Choosing y,, involves requesting a network
read and storing the read y,, value in TMP.

Ezecution time for choosing x,,. This is the time needed to determine if xfn
should be used for the y,, calculation in this given stage based on the
FLAG matrix. Choosing x,, involves indexing into the data array of x
values using the loop index and then storing it in TMP. '

Ezecution time to increment mod 4 stage counter. ThlS is the time needed
to increment the stage counter by one or reset it to zero when the fourth
stage has been reached. There are four stages because there are four terms
in the y, calculatlon '

6. Data Measurements

The data measurements appear in Table 2.

117

Measurement " ‘ _‘T'_lme ’11?:{:':1(3 I;I(:li
MC execution time 0.4281 - 100%
___. PE execution time 0.4311* | 100%
Broadcast execution time (B) | 0.1880 - 44.59%
Path acknowledge time (A) | 0.0520 12.33%
Summation'.calcelation (s) | 0.0520 12.33%
execution time '7 .
Execution time for v, (CY) | 0.0632 7.50%-
Execution time for x,, (CX) | 0.0680 .8.06%
Execution time for (X) 0.0640 ' 15.18%
counter increment :

*greater thart MC execution time due to MC overhead to start and
stop timer in PEs. ‘ ‘
Table 2: Experimental Measurements ~ .
(All times in milliseconds.)
Note, one can verlfy the total time to calculate four Ym values based on
Equatlon 1.

’4 m=4B+4A+45+2CY +20X+41)

'To verify the: data values obtalned note that the left side of this equation is
equal to four times the PE execution time. The measured PE time was
1.7244ms, and the right hand side is equal to 1.6864ms. This represents
approximately a 2.20% error which is insignificant relative to other differences
noted. This 2.20% error occurred for primarily two reasons. First, the PE
execution time includes the overhead time for manipulating the timers in each
'PE which would account for the higher left-hand side of the equation. Second,
the measured time for each phase is an average of five trials Wthh Would reduce

" “the effects of extreme data measurements on the right side.

The percentages in Table 2 are expressed relative to the rlght hand side of
Equation 1. For example, the broadcast execution time percentage of 44. 59% is
calculated by dividing four times the broadcast execution time (0.7420ms) by
the total execution time (1. 6864ms)

118

7. Discussion and Interpretation

. As seen from Table 2, the execution time for the calculation of y, consists

of 44.59% broadcast time. This means that over 40% of the total calculation
time is spent sending previous values of y,, to the other PEs. The PE that has
completed its y,, calculation must set up the network for the broadcast,
broadcast y,, and drop the network broadcast path, thus causing a long.
serialization which has great negative potential impact for larger numbers of
processors due to effects of Amdahl’s Law. |

The actual summation time (multiplication and addition) for this mapping
is only 12.33% of the'ym calculation time. Each PE needs to compute the
partial running sum by multiplying either y,, or x,, by a filter coefficient and
‘then adding it to the previous partial sum. The coefficient and previous partial k
sum stored in each PE memory allows them to be accessed locally. This fact
accounts for this relatively small time contribution.

Frorn these two measurements, it may be concluded that the present
mapping of one x, and y, value per PE results in very inefﬁcient use of
processing resources. If the number of samples per PE increased, the broadcast
time would remain constant whlle the percentage of time required for carrying
out the summation will increase. ‘At the point where the parallelism benefit
derived from d1v1d1ng the problem across PEs increases past the overhead from
»broadcastmg, a point of margmal efficiency may be defined. Beyond this point
the parallel version is _]ust1ﬁed with respect to its SISD (serial) counterpart.
Below this pomt the communication overhead causes the execution time to be
worse then it would be for a serial implementation. The major 1mphcat10n is
that for realistic problem sizes (eg., N = 64) that a relatively modest number
of PEs (e.g., 4-16) would provide tangible improvement over serial execution
and for large numbers of PEs, such resources could likely not be well-utilized.

The percentage of time spent choosing y,, and x,, are 7.50% and 8. 06%,
respectlvely The time for choosing y,, is relatively low because it i is in a data
register after a network read is initiated. The time for choosmg Xm is also
relatively low, compared to other contributions, because it is accessed locally
from each PE memory, yet slightly larger than ym because the access is to
Memory versus a data register. ' ' '

| Fmally, the yn calculatlon includes some pure overhead Th1s overhead
includes the counter increment time used to index into the coefficient array
stored in “each PE. Also, the path acknowledge time is overhead in that a
network read is requlred to flush the routmg tag from the network.

119

- 8. Future Implications and Extensions

The reported work represents early findings from the past 6-8 months.
While the results offered here are quite useful, one of the greatest uses is toward
guiding future work. First, this implementation was for byte data which quickly
becomes insufficient to store the running sum. Therefore, versions are being
written for word and floating point data. Second, the problem size can be
increased such that the implementation would require more PEs (i.e., 8 or 16).
The"problem size in this case is increased by increasing the number of terms in
the y,, calculation to fit the number of PEs available. Finally, the problem size
can be increased again, but this time the number of PEs would be less than the
number of terms in the y, calculation. Therefore the efficiency-related
hypothesis of the previous section may be verified.

This future work would focus on the broadcast feature of PASM. In
particular, the point where the negative effects of the broadcast communication
time are overcome by the positive effects of parallelism (i.e., the marginal
efficiency point) can be achieved when the problem size is greater than the
number of PEs. From the current results, we anticipate that this point would
occur when the ratio of problem size to the number of PEs is equal to four.
However, when increasing the problem size beyond the number of available PEs,
a new approach to the algorithm implementation also needs to be examined.

Another area of experimentation would be to analyze possible data
dependencies by examining the impact that word data has on the execution
times. In this case, the broadcast time would most likely increase while the other
times would remain relatively constant. These results will indicate the
importance of large bandwidth systems and also allow prediction of execution
times for floating point data. .

Aside from the possibilities for future work, having coded the given
algorithm in assembly language pointed out an additional implication of this
work. When compared to programming in a HLL (High Level Language),
programming in assembly language is arguably more difficult. This relative
- difficulty of assembly language programming would make large application
programs rather burdensome to code, thus there is a need for more abstract
programming support on PASM. However, our purpose has been to examine the
characteristies of an experimental architecture. In doing so, assembly language
was used by necessity. As a result two unexpected observations resulted.

First, because there is some overhead associated with using a HLL, it is not
possible to fully achieve the performance benefits as seen with low level assembly

120 -

" language programmlng Assembly language allows for more eﬂiclent codmg of o

“loops, array access, and access to the network for 1nterprocessor commumcatlon_
- which can not be provided W1th a HLL because of its higher level of abstractlon
Second hav1ng an operatlng system on PASM would again not typlcally allow '
~ for the writing of efficient code as seen here because of the overhead assoclated
with an operating system. An operatlng system, in general, would decrease the

~overall performance of most programs because of its underlylng purpose to - -
. ¢omtrol and manage the security and integrity of the whole system env1ronment '

- Program perfo_rmance would be inhibited because the operating s_yste_m_ controls
parts of the system in a way more general than that needed depending on the
specific application. Thus, these services would be considered overhead. These

‘observations will help in determxnlng which characterlstlcs would be needed i ina

'HLL in order to maintain comparable speed—up gains as seen wrth assembly
language programmlng w1th no res1dent OS. e -

. Surnma.ry‘

Experlments designed to 1 measure execution tlmes of the varlous phases 1n
SIMD recursive digital filter caleulation of Ym on PASM were descrlbed An '
equation was given that verified the total y,, calculation time with respect to the _
various phases in the summation calculation. The results reported show the .
_ difference in execution times among the various phases of the 1mplementatlon .-

In partlcular, the broadcast execution time was found to be 44 59% of the total', '
execution time while the partlal summation calculatlon was only 12 33% of the'
total executlon time. ' : '

The experlments presented used an actual parallel machlne (the PASM
system prototype) and showed that broadcast commumcatlon tlme 1s a
3 V51gn1ﬁcant part of SH\/[D recursrve dlgltal ﬁlterlng algorlthms '

10 Acknowledgements :

“The authors would like to thank Dr Leah Jamreson, ‘Ed Bronson, Dr
* Thomas Schwederskl, Sam - Fineberg, Wolfram D1sch ~and .,,thet PASM o
,apphcatlons group for their many useful dlscuss1ons T IR

[Adss2]

[AnAg7]

| '»[_Ca1'84] |

[CrG85]
[FiCss]

[GeSk87]

{Hz;néS]
[HOBSO]

| [Hﬁdsé]

| V[JaMSé]‘

121

References

G. B. Adams III and H. J. Siegel, “The ExtratStavg‘é Cube: A Fault-
Tolerant Interconnection Network for Supersystems,” IEEE ‘

Transactions on Computers, Vol. C-31, May 1982, pp- 443-454.
M. Annaratone, E. Arnould T. Gross, H. T. Kung, M. Lam, O.

vMenzﬂcmglu, and J A. Webb, “The Warp Computer Architecture,
vaplementatlon, ‘and Performance,” IEEE Transactzons -on

Computers, Vol. C-36, December 1987, pp 1523- 1538

D. A. Calahan, “Influence of task granularity .on vector
multiprocessor performance,” 1984 Internati‘o-nal_C’onfer_ence on
Parallel Processing, August 1984, pp. 278-284.

W. Crowther, J. Goodhue, R. Thomas, W Mllhken, and T.

Blackadar, ‘“Performance measurements on a 128-node butterfly

parallel processor,” August 1985, pp.. 531-540.. 1985 Internatwnal
Conference on Parallel Processing, - :

S. Fineberg, T. Casavant, T. Schwederskl, HJ Siegel, “Non-_

Deterministic Instruction Time Experiments on the PASM System
Prototype,” 1988 International Conference on Parallel Processmg,
Chicago, August 1988. e '

E. F. Gehringer, D. P. Siewiorek, and Z. Segall Parallel Processmg
The Cm* Ezperience, DlgltalPress, Bedford, MA, 1987.

- F. B. Hanson, ‘“Vector Multiprocessor Implementation for

Computational - Stochastic ~Dynamic Programming,” IEEE
Technical C’ommzttee on Dzstrzbuted Processing Newsletter Vol. 10,
1988

'C. J. M. Hodges, T. P. Barnwell, IIl, and D. McWhorter, “The

Implementation of an All Digital Speech Synthesizer Using a

‘Mul‘tiprocessor' Architecture,” 1980 IFEE International Conference

on Acoustics, Speech, and Signal Processing Proceedings, April

- 1980, pp. 855-858.

P. Hudak, “Exploring Parafunctional Programming: Separating the
What from the How,”” IEEE Software, Vol. 5, January 1988, pp. 54-

61. o
W.J alby and U. Meier, “‘Optimizing Matrix Operatidns on a Parallel
Multiprocessor with. a Hierarchical Memory System,” 1986

v[Ku‘ns’z]

[siss81]

[SiS87]

[Sttosyo]

| '[euTsﬂ

‘ [YoSél}v‘

1922

Internatzonal C’onference on Parallel Processmg, August 1986, pp

L : 429 432
' [KuNSS]'

J. G. Kuhl, J. J. Norton, and S R. Satalurl, “A Large—Scale
Apphcatlon of Coarse—Grarned Parallel and Distributed Processing,”

IEEE Technical Commzttee on Dzstrzbuted Processmg Newsletter

Vol. 10, 1988. ~

H. T. Kung, “Why Systohc Archltectures? ” Computer Jandary -
1982, pp. 37-46.

“H. J. Siegel, L. J. Sregel F C Kemmerer, P. T. Mueller, Jr., H. E.
- Smalley, Jr., and S. D. Smith, “PASM: a partitionable SIMD /MIMD

sYstem for image processing and ' pattern recognition,” IEEE
Transactzons on C‘omputers Vol. C-30, December 1981, pp- 934- 947

H. J. Sregel T. Schwederskr, J. T. Kuehn, and N. J. Davrs 1v, “An

7

overview of the PASM parallel processing ‘system,” in- Computerv

. Architecture, D.D. Gajski, V. M. Mrlutlnovw,H J. Siegel, and B. P.
" Furht, eds., IEEE Computer Socrety Press, Washmgton, D C 1987

pPPp- 387 407.

" H. S. Stone, “Parallel computers, in Introduction to C’om’pdtef
Architecture (second edition), H. S. Stone, ed., Science Research _

Associates, Inc., Chicago, IL, 1980, pp. 363-425. . R
S. Y. W. Su and A. K. Thakore, “Matrix Operatrons on. a

: Multlcomputer System with Switchable Main Memory Modules and ‘

Dynamic Control,” IEEE Transactzons on Computers Vol. C-36,
December 1987, pp. 1467-1484.

‘M. A. Yoder, L. J. Siegel, “Systohc and SIMD Algorlthms for Digital
. Filtering,"” Proceedmgs of the. Nineteenth Annual.” Allerton

Conference on 'C'ommum'cation,, Control, and Computzng,

Umversrty of Illmms at Urbana—Champargn, October 1981, Pp- 880-
889.

123

Al Graph Search,ing:and Parallel N-Min—_Find‘ingg

. ‘-C'_lar,ol "Rin;qer B

| Abstract
This 'work focuses on ways of parallelizing a searching procedure that could
be implement‘ed on PASM. In particular it focuses on the problem of finding N
- m1n1mum values in N processing elements (PE s), which is a subproblem that
evolves from a larger search1ng problem. Given a sorted list of values in each PE»

) memory find the N minimum values of the combined hsts A four PE SIMD -

version of the N—MIN FINDING algorlthm has been 1mplemented

The 'cho1ce of an all SIMD 'versmn of the program is based on the 1mportance of ...
 having the PE’s eas1ly synchronlzed to facilitate the network transfers as fast as

possible.. Forc1ng the smallest value array to have identical data in all PE’s

allows the sorting to- be very efficient in STMD mode. In this mode, branching

overheads are incurred in the MC’s and can be overlapped W1th the actual'
comparlson and movement of data.in the PE’s s. ' ' '

1. Introductlon

Current work bemg done in the area of artificial 1ntelhgence often deals,
with problems that have a comblnatonally large problem space. Searching a -
large problem space exhaustively is inefficient and usually impractical. Finding
- ways to speed-up and opt1m1ze a searchlng procedure is of ‘major

importance. [L1W84] o
, Research has been done on Ways to opt1m1ze the solutlon search procedure
: by ‘making intelligent guesses about the best path to take [N1180] - Another
approach for speeding up the search is parallelizing it so that more than one
' path is explored at a time. '

ThlS paper focuses on ways of par‘allelizing a searching procedure that -

| could be 1mplemented on PASM. [Sis87] In particular it focuses on the problem
of finding N minimum values in N processmg elements (PE’s), which is a

124
,su.bproblem thaf,_ evolved f-romvt,he larger searching problem.
2-, Background :

'2 1. Problem-area related- references and background

" Search problems can usually be represented as an acychc graph or tree.
i [WaLSS] One general technique for searching a graph or tree is a branch-and-
bound algorithm. A branch—and—bound algorithm decomposes a problem into
“smaller subproblems and keeps decomposmg it until a solution is found or the
problem is determined to be unsolyable The decomposition of the problem is
achieved by using branching and selection rules, Elimination rules can be used
"to reduce the search space, and a termination rule is used to check for the goal
state or solution. [L1W84]

. GRAPHSEARCH is a branch—and bound algorithm descrlbed in [N1180]
that keeps a record of the rule appllcatlons to a problem space which preserves
the shortest path to the goal or subgoals. The general graph search algorlthm as
 taken from [NllSO] is given below. :

Procedure GRAP HSEARCH

' 1', ' Create a search graph G conmstlng solely of the start node, s Put son
o a llst called OPEN :

g Create a list called CLOSED that is 1n1t1ally empty
- 3 LOOP 1f OPEN is empty, ex1t W1th fallure

4 vSelect the first node on OPEN remove it from OPEN and put 1t on
'CLOSED. Call this noden ' :

5 lef n is a goal node, ex1t successfully ‘with the solution obtained by .
- tracing a path along the po1nters from ntos 1n G (Pomters established _'
“ in step R ’ : '

6 ‘Expand node n, generatmg the set M, of its successors and 1nstall them
“as successors of n in G.- :

s

7. Estabhsh a pomter to n from those members. of M that were not
- already in G (1 e., not already on elther OPEN or CLOSED) ‘Add these
“members of M to OPEN For each member of M that was-already on

~ OPEN or CLOSED, decide whether or not to redirect its pointer to n.

_ For each member of M already on CLOSED, decide for each of its

- 'descendants in G Whether or not to redirect its pomter

,') _8‘ Reorder the list OPEN elther accordlng to some arbltrary scheme or
~ according to heur1st1c merit: - '

: 9,,GotoLOOP '

Step 8 refers to ordering the hst OPEN accordlng to heurlstlc merlt The

) heurlstlc merit is some estimation of the promise of a node in the graph with o

respect to achlevmg the goal A node has more promise if it is on the shortest
path to the goal. The expansion in step 6 includes calculating. this promise -
value. Nllsson claims that if a heuristic functlon calculated on a node n, is a
lower bound on the actual cost of going from node o ‘to the goal then
GRAPHSEARCH is admissible. An. admissible search algorithm always
terminates in an-optimal path from the start node to the goal node. '

' 2.2. PASM Overv1ew

. Heuristic estimation is one Way ‘to optimize the GRAPHSEARCH
~algorithm. A way to speed-up the process is by parallelizing the node expansion
‘process. - The PASM architecture can be wused to parallelize = the
“GRAPHSEARCH algorithm by using one micro controller (MC) to keep track of

the graph search path and use the PE’s for expanding and sorting the nodes. A
"parallelized for PASM" graphsearch algorithm is given below. This algorithm
also incorporates the idea of heuristic estimation.

Procedure PARALLEL GRAPHSEARCH

1 In 1 PE create a search graph G consisting solely of the start node, s,
put son a list called OPEN

2 In1MC createa list called CLOSED that is initially empty

- 126 .
3 'mop-. Check the size of OPEN if it is 0, exit with failure.

4 IF the size of OPEN is less than the number of PE 's (N) -

R THZEN dlstrlbute those nodes to the PE’s . ,
" ELSE p1ck the N rnmlmum values from OPEN and dlstrlbute .

~ them among the PE’s

- Send and 1dent1ﬁer for- each node back to MC that Wlll be put on"»:)

o C CLOSED MC then must send parent address back to the nodes that"t‘ o

| : :Wlll be expanded in PE s.’

5 " In MC check the node 1dent1ﬁers sent back and see 1f the goal state has
'been reached if so. ex1t successfully Wrth a path to the goal :

6 '~Expand the nodes in: the PE S and msert sort them accordlng to”'.‘ S
' heurrstlc merit 1nto the OPEN hsts of the PE S. e ‘ '

. 7 '. For s1mphc1ty assume the problem space can be represented as a tree,’_ i: : o

which 1mphes that a node can only. be generated once when its unique

. parent is. expanded In th1s case no. redlrectlng of pointers'is 1nvolved _'

~ If thisi is not the case each new node must be checked agarnst all other '
nodes on. OPEN and CLOSED to see if a shorter path i is- found thlS‘

“could be a very cumbersome task In this- s1mpher case th1s step is

' 1nherent because each node will have: as partof its record the address of o

the parent node i in MC* sent in step 4

o 8 Thrs step is taken care of in step 6 When the new nodes are merged 1nto", o
. the OPEN hsts S SR o o

9 .GovtovL()OPv‘ v‘ ‘

One ma_]or overhead m the parallel graphsearch algorrthm that is not found - ’

* . in the serial algorlthm is the cost | of ﬁndmg N nodes with the smallest promise '

 values such that the most promlsmg nodes. w1ll be expanded next. The - |
1 d1str1buted architecture of PASM ig" good for node expans1on but the non—shared- o

~ memory of the PE’s makes ﬁndmg the N-rmmmum promise values a non-trivial .

% task Sectlon 3 descrlbes how th1s task of N min ﬁndlng 1s accomphshed on ‘

127
~ 3. Project Description
3.1. Pr'bblem ' o . '
The problem as described in section 2 can be summarized as follov?s:
Given a sorted list of values in each PE memory find the N minimum .
values of the combined lists.

- Since the records associated with each node could be rather large it would
be impractical to try to combine the lists in some way to discover the smallest
~nodes. A smarter approach is to utilize the network of PASM to sort according
the promise value such that in the end each PE knows where the smallest nodes
- are locaﬂed and passing records is done only if necessary. '

3.2. Algorithms E ‘ o SR _
» A high lével language abl-gc;rit‘hvm‘ for N—MIN—FINDING' on PASM is given
‘below: : o .
Assurﬁp’ﬁon: Each PE has a list of Values sorted from smallevst‘to. lar-gésf.-
Procedure N-MIN-FINDING | |

| array[PEi] < -~ list_value
passreg(PEi) <-- list_value
list <= list_next

‘while (count!= 0)
forj=1toN-1

- passreg(PEi) <-- pdssrég(PEi+1)~
array|(PEi+j) mod N] <-- passreg(PEi)

bubblesort (array)
if (lz'si_value < array[N—l])

then passreg(PEi) <-- list_value
else passreg(PEi) <-- MAX

count <-- HPE‘s that have smaller va,lués_
for k = 1to Q-1 |

‘ passreg(PEi) <-- count

128

v pdssreg(PEi) <—¥,passreg(PEi+1)
count <-- passreg(PEi) + count

where, ’
N = number of PE’s being used
Q= number of MC’s belng used
list - is the sorted llst (OPEN in GRAPHSEARCH) of the node recotds.
lzst_value -is the promzse value field of each node record.

array - is the space for the promise values appended with their PE number
to be stored. At the end of the process it will contain the N-minimum values.

- passreg(PEi) - is the register in PEi used for passing the values through the network.

count - is the number of PE s that have a smaller value on thelr list than the last

value in array.

Notice that during the network transfer the passed values are put into the
‘array according to their original PE number. This results in all PE’s having
identical arrays to sort and thus the bubblesort can be carried out in SIMD mode
with the MC’s. controlling the looping and allowing all PE s to be enabled
throughout the sort. :

The count transfer loop at the end of the program is not executed in the
four PE version because only one MC is used. When more PE’s are used (and
therefore more MC’s) it only takes Q - 1 transfer and add steps to obtaln the
total count in all PE’s. This is p0551ble because all PE’s in an MC group have
the same count value and the network is configured such that PE’s in one MC
group are connected to PE’s in another MC group.[SiS87]

3.3. Programs

The four PE version of the N MIN-FINDING program written for PASM is
appended to the end of this report. Notice that the modifications for elght and
sixteen PE versions are basically changing some program constants, noted in the .
comments, and revising output routlnes

129
4. E‘)‘qierimehts Performed

4.1 Number of PE’s and modes of parallelism

A four PE version of the N-MIN-FINDING algorlthm has been written, o
debugged, and tested. The prograim is entirely SIMD except for the routine that
sends the data back to MC for pr1nt1ng ThlS routine could be SIMD also with
some modifications. :

The ch01ce of an all SHVID ‘version of the program is based on the
importance of having the- PE’s easily synchronized to facilitate the network
transfers as fast as possible. Forclng the smallest value array to have 1dent1ca1 '
" data in all PE’s allows the sortmg to be very efficient in SIMD mode. In this
mode the branching overhead is taken care of in the MC’s and can be overlapped
with the actual compar1son and movement of data in the PE’s. The fact that
the data is the same in this operatlon 1mphes maximum processor utlhzatlon
throughout the sort. ' -

4.2. Data set characterlstlcs

The data sets used for testing and tlmlng the N—MIN FINDING program

were different distributions of the'N smallest values throughout the PE’s. The

“inherent best case data for the N-MIN-FINDING algorithm, precluding the

bubblesort effects, is data that is distributed with one minimum value in each

PE. Data arranged in this way will cause only one iteration of the while (count

<> 0) loop. The inherent worst case data set is data that has all N minimum
values in one PE. This data arrangement causes N iterations of the while loop.

5. Data’ measurements ta.ken

- Sample data and t1m1ng measurements are given in the table below.
Distribution of the N minimum values is shown for each data set. All times are
in milliseconds. "

150 R

Data Set |~ Arrangemeht_ : Total -Transfer : >S“:or,t Overhead -
~# | PEO PEl PE2 PE3 | Time | Time | Time | Time
1 f 10 1 12 13 | 25 | 0152 | 13 .| 0
2 40 31 22 13 4.25 | 0152 | 3.02 0
3 | 30 2 33 | 636 | 0204 | 431 | 0736
)0 Sl e
4 g 032 13 [171 | 0256 | 142 | 147
5 10 1428 | 0308 | 106 | 220
10
S 10 n N ;
6 o 03 | 2092 | 0.308 | 17.2 2.20
03 | | ‘
03
03
Table 1

Overhead is checkmg the PE s for smaller values and maklng other .
g adJustments that: must happen ‘before the next lteratlon Tlmes in
R - mllhseconds

Notvice that there are two'b"est case data sets (1 & 2) and two worst case data
~ sets (5 & 6). ‘A characteristic of the bubblesort algorithm used is that preordered -
 data (as in set #1) takes much less time to sort than reversed data (a,s in set #2).
To negate the effects of bubblesort the best and worst- case ‘times- for N—mm—'
finding are calculated by taklng the average of the ' 'bubblesort best and worst

- for the dlfferent data dlstrlbutlons A summary of the tlmlng measurements are

glven in the table below

131 -

Best Casve‘ | Ave. Case | Worst Case |
3.38 | 10.85 176 -

' Table 2
The best and Worst case times are averages of data sets 1 &, 2 and
C 5 & 6 respectively. ' ’
6 Dlscussmn of interpretation of data. ,

| 61 Problem related

~ As can be seen from the tables the executlon tlmes are very dependent on
the data distribution in the PE’s. The fact that the bubblesort algorithm is -
dependent on the ordering of the data in the array is one factor in the time.
d1screpancy The sorting time is between 60% and 80% of the total execution
time so lmplementlng a faster sorting algorlthm might make the total time
faster and not: as data dependent The fact remains that the cases where the N
smallest values are in one PE will be about N times slower than the cases where
the mlnlmum values are evenly distributed. -The best and worst case’ t1mes in
the summary table back up this theory ‘ ’

8. 2 PASM Archltecture related

T he network transfers only accounted for between 2% and 6% of the total '
executlon time. Network overhead is data dependent only in the sense that more
. iterations of the loop and thus more transfers are needed When the minimum
N Values are concentrated in one or two PE's. ‘

The timings for eight and sixteen PE’s should be proport1onal to the times
of four PE’s except for the overhead tlmes The overhead times in the eight and
‘sixteen PE versions will include a recursive doubling procedure that sums the
total number of PE’s that have a value smaller than the last item in the sorted
array. This procedure adds Q -1 (where Q = the number of MC’s being
used[S1586]) transfers per iteration of the loop. The four PE version does not
need to do these transfers because the MC can examine the condition code
register to see if any PE‘s still need to transfer a value. Another approach to
determnining the termination -condition that_may not add as much transfer
overhead when more PE's are used is to Jook at the number of MAX values that

are passed through the PE's so that each PE will know when there are no more-

PE's that have a smaller valuev" The trade off between extra comparison steps a
and more network transfers Would have to be exammed more closely for larger :
groups of PE's. ' : o

| ‘7 Conclusmns

_ The conclusions that can be drawn from the work done on N—MIN-
" FINDING and PARALLEL GRAPHSEARCH so far are best expressed in terms
~of complex1ty comparlsons -

7.1 Comparmg parallel mln-ﬁndlng with serial mm-ﬁndmg

The complexrty of strarght serial mm—ﬁndmg for n values, which is really -

o Just sorting, that assumes a faster sortlng algorithm could. be used
E (Qulcksort)[W1r76] is given by: :

senal complex1ty = (nlogn)

,The complex1ty of the N- MIN—FINDING algorlthm described in sectron 3 for n »
values and N PE s, and also assumlng a Qulcksort algorithm can be used for all
the sortmg, is glven by ' A '

parallel complex1ty = [n/N)log(n/N) + 19 NlogN)] +i 1c2 (N —I— Q - 1)

Where, o ; r

i= expected number of iterations of algorlthm
¢y = sortmg complexity constant

ey = commumcatwns complexity constant

Q= number of MC sbeing used

' Accordmg to the measurements shown in sectron 5 ¢q is small compared to

I the last term is 1gnored in parallel expressron, then the comparison really

hes in sortlng times of two cases. From these general expressmns it seems that”
' ,the parallel algorlthm will be most eﬁiclent When N is small and n is large S

- 7. 2 Comparmg para.llel gra.ph search w1th serial gra.ph sea.rch

In the context of graph search the: overhead of N—mln-ﬁndmg can be
: counter balanced W1th speed garned by expandlng more than one node ata tlme

The serral graph search complexrty is estrmated by:

e+ G o

133

Tlie parall'el, graph search complexity is estimated by: - v
(m/N)[t + ¢; ©(n?)+ icy ©(NlogN) + ics(N + Q-— 1)] v

where, :
m — number of nodes expanded to get to the goal
t = time to expand the average node - v
i= expected number of iterations of algorlthm o
" ¢y = insert sorting complex1ty_constant -
"¢y = quick sorting complexity constant -
- €3 = communications complexity ‘eonstant

If the communications cOnstant can be considered Small vthen the trade-off
between. serial and parallel is based on the size of n and N and also m and t.
From the estimates it appears that a parallel graph search would be most
efficient if the problem space is large and the average time to expand a node is
large. : S '

8. Future work

, There are many ways the Work on the general searchmg problem us1ng
PASM can continue. ‘

The N—MIN—ﬁndlng algorlthm still has other combmatlons of sortlng
- algorithms and - transfer procedures that could be combmed For example
looking at the the trade-offs of the different ways to determine the termination
~ condition mentioned in the last section. Also, finding a way to avoid putting the

 MAXalues into the array so the number of items to be sorted is less.

The PARALLEL GRAPHSEARCH algorithm described in section 2 has
other subproblems related to the PASM architecture that need to be solved
~ before a parallel graph search can be tested and compared to serial versions. A

~method must be developed to distribute the nodes to be expanded among the
PE‘s given that N minimum values are found and each PE knows where they are
located. " Different applications of graph search could be studied to discover
when a parallel version will perform better than a serial version. Other
searching, sorting, and mln/max-ﬁndmg problems could also be explored and
‘ _hopefully this report will give gmdance to someone interested in pursuing them

[Liws4] - G
. 'Branch-And-Bound Algorithms," Proc. Int‘l_. ..Conf. Parallel -

Processmg, 1984, pp.473-480 . _ '
- N.J.Nilsson, Prmczples of Artifictal Intellzgence, Morgan Kaufmann,
'Los Altos, CA, 1980 : S S

piso]

N '[Svils's7] i

134
"~ References

G.Li, B.-Wah, "Computational Efﬁciéncy of Parallel Approxima£e

“H. J Slegel T. Schwederskl, J T. Kuehn, N.J.Davis 1V, An Overwew =
of’ the PASM Parallel Processmg System, Tutorial: Computer

,Archztecture D D. Gajskl, VMMllutmowc, H.J. Slegel " and

. BP Furht eds.,. IEEE Computer Soc1ety Press, Washmgton, D.C,,

[Wal85]

[Wir76|
: , Englewood Chffs, NJ 1976

1987, pp.387-407.

BWWah GLl, CYu, Multlprocessmg of Comblnatonal Search
Problems," Computer, Vol. 10, No 6, 1985, pp93-108 -

N. Wirth, Algorithms + Data Structures = Programs, Prentlce Hall, |

	Purdue University
	Purdue e-Pubs
	1-1-1988

	Experimental Benchmarks and Initial Evaluation of the Performance of the PASM System Prototype
	T. L. Casavant
	H. S. Siegel
	T. Schwederski
	Leah H. Jamieson
	A. Fineberg
	See next page for additional authors
	Authors

	tmp.1542052450.pdf.raYKL

