
Purdue University
Purdue e-Pubs
Department of Electrical and Computer
Engineering Technical Reports

Department of Electrical and Computer
Engineering

1-1-1988

Experimental Benchmarks and Initial Evaluation of
the Performance of the PASM System Prototype
T. L. Casavant
Purdue University

H. S. Siegel
Purdue University

T. Schwederski
Purdue University

Leah H. Jamieson
Purdue University

A. Fineberg
Purdue University

See next page for additional authors

Follow this and additional works at: https://docs.lib.purdue.edu/ecetr

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact epubs@purdue.edu for
additional information.

Casavant, T. L.; Siegel, H. S.; Schwederski, T.; Jamieson, Leah H.; Fineberg, A.; and McPheters, M. J., "Experimental Benchmarks and
Initial Evaluation of the Performance of the PASM System Prototype" (1988). Department of Electrical and Computer Engineering
Technical Reports. Paper 588.
https://docs.lib.purdue.edu/ecetr/588

https://docs.lib.purdue.edu?utm_source=docs.lib.purdue.edu%2Fecetr%2F588&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/ecetr?utm_source=docs.lib.purdue.edu%2Fecetr%2F588&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/ecetr?utm_source=docs.lib.purdue.edu%2Fecetr%2F588&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/ece?utm_source=docs.lib.purdue.edu%2Fecetr%2F588&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/ece?utm_source=docs.lib.purdue.edu%2Fecetr%2F588&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/ecetr?utm_source=docs.lib.purdue.edu%2Fecetr%2F588&utm_medium=PDF&utm_campaign=PDFCoverPages

Authors
T. L. Casavant, H. S. Siegel, T. Schwederski, Leah H. Jamieson, A. Fineberg, and M. J. McPheters

This unpublished paper is available at Purdue e-Pubs: https://docs.lib.purdue.edu/ecetr/588

https://docs.lib.purdue.edu/ecetr/588?utm_source=docs.lib.purdue.edu%2Fecetr%2F588&utm_medium=PDF&utm_campaign=PDFCoverPages

Experimental Benchmarks
and Initial Evaluation
of the Performance of the
PASM System Prototype

T. L. Casavant, H. J.
T. Schwederski, L. H. Jamieson,

A. Fineberg, M. J. McPheters,
C. Bronson, W. Disch.
Schurecht, E. H. Loh, C. Ringer

B. Cox and C. A. Toomey

TK-EE 88-2
January 1988

School of Electrical Engineering
Purdue University
West Lafayette, Indiana 47907

Experimental Benchmarks and Initial Evaluation of the
Performance of the PASM System Prototype

T.L. Casavant, H.J. Siegel, T. Schwederski, L.H. Jamieson,
S.A. Fineberg, M.J. McPheters, E.C. Bronson, W. Disch,
K. Schurecht, E.H. Loh, C. Ringer, B. Cox, C.A. Toomey

Purdue University School of Electrical Engineering
Technical Report #TR-EE 88-2

January, 1988

ii

TABLE OF CONTENTS

Introduction......................... iii

I. Image Processing

1. "Experiences with Parallel Image Smoothing,"
WolframDischandT.L. Casavant.........2

2. "Threshold Generation for Image Processing," Kurt Schurecht............15
3. "MIMD Contour Tracing for Image Processing," Brian Cox............. ..25
4. "Parallel Block Truncation Coding of Images," Chris A. Toomey.......36

II. Mathematical Operators

1. "Non-Deterministic Instruction Time Experiments,"
S.A. Fineberg, T.L. Casavant, T. Schwederski and H.J. Siegel........47

2. "Experimental Analysis of Multi-Mode Fast Fouirier Transforms,"
E.C. Bronson, T.L. Casavant and L.H. Jamieson........69

3. ’Parallel 2DFFT Implementation," E.H. Loh.....................................,96

III. Speech Processing and Al-related

1. "Experimental Analysis of SEMD Recursive Digital Filtering,"
M.J. McPheters Jr. and T.L. Casavant.............107

2. "AI Graph Searching and Parallel N-Min-Finding," C. Ringer123

Ill

Introduction

The work reported here represents experiences with the PASM parallel
processing system prototype during its first operational year. Most of the
experiments were performed by students in the Fall semester of 1987. The
first programming, and the first timing measurements, were made during the
summer of 1987 by Sam Fineberg.

The goal of the collection of experiments presented here was to undertake
an Application-driven Architecture Study of the PASM system as a paradigm
for parallel architecture evaluation in general. PASM was an excellent vehicle
for experimenting with this evaluation technique due to its unique
architectural features. Among these are:
1. A reconfigurable, partitionable multistage circuit-switched network.
2. Support for both SIMD and MIMD programs.
3. Ability to execute hybrid SIMD/MIMD programs.
4. An instruction queue which allows overlap of control-flow and data

manipulation between micro-control (MC) units and processing elements
(PE). It had been hypothesized that superlinear speed-up over the number
of PEs could be attained with this feature, and experimental results
verified this.

5. Support for barrier synchronization of MIMD tasks. This feature was
exploited in some non-standard ways to show the ability to decouple
variant length SIMD instructions into multiple MIMD streams for an
overall performance benefit.

This type of study is expected to continue in the future on PASM and
other parallel machines at Purdue. This report should serve as a guide for
this future work as well.

T.L. Casavant
School of EE
Purdue University
Spring 1988

This work supported by NSF Grant # CCR-8809600, the NSF Software Engineering
Research Center (SERC), and SRC Grant # 6925.

1

PARTI

Image Processing

;k ■.;.... 2 vA.. ■■■■■-. - -.A

Experiences with Parallel Image Smoothing

Wolfram Disch and Thomas L. Casavant

Abstract

This paper reports results of some of the first programming experiences with
the PASM parallel processing system prototype at Purdue. PASM is a
PArtitionable SIMD/MIMD system designed for conducting research in
parallel computing and for developing software for several applications. The
image processing task of image smoothing is used to evaluate several features
of the PASM architecture. The results include an observation of super-linear
speedup over the number of processing elements (PEs) when operating in
SIMD mode. This advantage comes from the ability of the microcontrollers
(which act as control units in SIMD mode) to execute control flow operations
in parallel with the PEs in SIMD programs. Also included is a comparison of
computation versus communication overheads, Other experiments and
analysis show some of the potential advantages of mixed-mode SIMD/MIMD
programs and alude to the problems of structuring programs in this way.

1. Introduction ■
This paper reports on experimental measurements derived from early

programming experiences with simple image processing applications on the
PASM parallel processing system prototype at Purdue [SiS81, SiS87]. The
intention of the research project surrounding this work is Application-Driven
Architecture Study, in which easily understood algorithms are implemented as
programs, and controlled experimentation is done with respect to variable
program characteristics. The reported results are derived from the first
segment of a study on Image Processing which includes the following
algorithms: Image Smoothing, Sobel Image Generation and Threshold
Determination, Contour Tracing and Block Truncation Coding. In particular,
we describe a parallel implementation of the image smoothing phase,
programmed and executed on the PASM prototype. The experiments are
based on SIMD (single instruction stream — multiple data streams), MIMD
(multiple instruction streams — multiple data streams) and Hybrid S/MIMD
programs [Fly66]. The results reported are focused on showing the differences
with respect to the execution times among the parallel versions and between
an efficient serial version in order to determine the usefulness of multi-mode

machines and to shed light on the necessary HLL constructs and semantics
useful for this type of computer.

Section 2 presents the problem and overviews PASM and its prototype,
while section 3 explains the basic algorithm that was used. Section 4 describes
the experiments and the program variations used. Section 5 shows the
performance of each program with respect to its execution time and section 6
provides a discussion of the results with respect to the architecture of the
PASM system prototype.

2. Background '.v

2.1. Overview of Image Smoothing
Image Smoothing represents one of the first algorithms used when

performing Image Processing. The use of Image Smoothing is to filter noise
from corrupted signals. One way to smooth an image is the average method
[SiS87bj. A window, including a certain number of pixels, is defined. The
smoothed value is obtained by averaging the gray levels of the pixels in the
window. There are different methods for calculating the average. One is to
divide the sum of the gray levels by the number of pixels in the window; i.e.
each pixel receives the same weight. Another method distributes 50% to the
center pixel and 50% for all the others. Our approach uses the first method.

2.2. Overview of PASM and the PASM Prototype
PASM is a partitionable S1MD/MIMD parallel processing system being

designed to include over a thousand processors [SiS8l]. It is a dynamically
reconfigurable architecture, where the processors can be partitioned to form
independent virtual SIMD and/or MIMD machines of various sizes. A 30-
processor prototype has been completed [SiS87a] and was used in the
algorithms described in this paper.

The Parallel Computation Unit contains N=2m PEs (numbered from 0 to
N—1), and an interconnection network. Each PE (processing element) is a
processor/memory pair. The PE processors are sophisticated microprocessors
that perform the actual SIMD and MIMD operations. The PE memory
modules are used by the processors for data storage in SIMD mode and both
data and instruction storage in MIMD mode. The Micro Controllers (MCs)
are a set of Q=2q processors, numbered from 0 to Q—1, which act as the
control units for the PEs in SIMD mode and orchestrate the activities of the

PEs in MIMD mode. Each MC controls N/Q PEs. In SIMD mode, each MC
fetches instructions and common data from its associated memory module,
executes the control flow instructions (e.g., branches), and broadcasts the data
processing instructions to its PEs. In MIMD mode, each MC gets instructions
and common data for coordinating its PEs from its memory.

: , 4

FIFO
F etch

to PEs

Figure 1: Simplified MC structure

Fetch Unit
RAM

Memory Fetch Unit
Controller

Register
Mask

MG CPU

A 30 processor prototype of the PASM system was completed in
December 1986, with N=16 and Q—4. This system employs Motorola
MC68000 processors as PE and MC CPUs, with a clock speed of 8 MHz. The
interconnection network is a circuit-switched Extra-Stage Cube network,
which is a fault-tolerant variation of the multistage cube network. Since
knowledge about the MC and the way in which SIMD instructions are
implemented with standard MC68000 microprocessors is essential to the
understanding of the behavior that was observed in the experiments, the
SIMD instruction broadcast mechanism is overviewed below. Consider the
simplified MC structure shown in Figure 1. The MC contains a menjory
module from which the MC CPU reads instructions and data. Whenever the
MC needs to broadcast SIMD instructions to its associated PEs, it first sets the
Mask Register in the Fetch Unit, thereby determining which PEs will
participate in the following instructions. It then writes a control word to the

Fetch Unit Controller which specifies the location and size of a block of SIMD
instructions in the Fetch Unit RAM. The Fetch Unit Controller automatically
moves this block word by word into the Fetch Unit Queue. Whenever a
instruction Word is enqueued, the current value of the mask register is
enqueued as well. Since the Fetch Unit enqueues blocks of SIMD instructions
automatically, the MC CPU can proceed with other operations without
waiting for all instructions to be enqueued.

PEs execute SIMD instructions by performing an instruction fetch from a
reserved memory area called the SIMD instruction space. Whenever logic in
the PEs detects an access to this area, a request for an SIMD instruction is
sent to the Fetch Unit. Only after all PEs that are enabled for the current
instruction have issued a request is the instruction released by the Fetch Unit
FIFO, and the enabled PEs receive and execute the instruction. Disabled PEs
do not participate in the instruction and wait until an instruction is broadcast
for which they are enabled. This way, switching from SIMD and MIMD mode
is reduced to executing a jump instruction to the reserved memory space, and
a switch from MIMD to SIMD mode is performed by sending a jump to the
appropriate PE MIMD instruction address located in the PE main memory
space.

In order to make comparisons of the speed of the PASM prototype
relative to other machines and to compare the relative speeds of SIMD and
MIMD instruction fetches, the raw performance of PASM in SIMD and MIMD
mode was measured and is illustrated in Table 1 in MIPS (millions of integer
instructions per second) for two different types of instructions.

Mode Operation Processing
Rate

SIMD 16-bit Reg.-to-Reg. add 22 MIPS
MIMD 16-bit Reg.-to-Reg. add 18 MIPS
SIMD 16-bit Reg.-to-Mem. add 6.4 MIPS
MIMD 16-bit Reg.-to-Mem. add 6.0 MIPS

Table 1: Prototype Raw Performance

6

3. Image Smoothing

3.1. Serial Image Smoothing Algorithm
The SISD algorithm offers itself as a good candidate for describing the

fundamental structure of the parallel image smoothing algorithm. Assuming
an input image, X, and an output image, Y of size n x n in which each pixel is
an 8-bit unsigned integer representing one of 256 gray levels, each pixel in the
smoothed image is the average of the gray level of itself and its 8 nearest
neighbors. In other words, the average of the gray levels in a 3 x 3 window is
determined for each pixel in X. The top, bottom, left and right edge pixels of
the smoothed image are not calculated since their corresponding pixels in the
input image do not have 8 adjacent neighbors; they are set to zero.

i k=i+l l=j+l
- E E Xkl i,j^0;i,j^n
y k=i—1 l-j.-i /

0 otherwise

3.2. Parallel Image Smoothing Algorithm
In the parallel Image Smoothing programs implemented here, the data

was equally distributed among 4 and 16 PEs, respectively. Thus, each PE
holds its own square subimage. Since each PE holds only one subimage, data
from the borders will have to be transferred from the surrounding PEs in
order to calculate the smoothed value of the edge pixels. The data transfers
occur simultaneously across PEs by using the interconnection network. This
represented the first segment of the parallel Image Smoothing algorithm. The
second segment includes the calculation of the smoothed image which was
realized in SIMD, MIMD and Hybrid S/MIMD modes.

Now let us consider the parallel Image Smoothing algorithm in detail.
Assuming an n x n image, the data transfer requires n transfer operations to
transmit data from each PE border to a specific PE. Furthermore, 4 transfers
are needed to get the 4 corner pixels. This is shown in figure 2. Therefore, a
total of 4n+4 network transfer operations are required to provide each PE
with the data needed in order to calculate the smoothed image. Since the
architecture of PASM does not support DMA block transfer, each byte must

.7

be transmitted separately. Nevertheless, the data transfer occurs
simultaneously across PEs. Each PE sends data through the interconnection
network to the corresponding PEs. Then, all PEs must wait for the data to
be received. The 4n+4 network transfer operations require 8 network circuit
setups to connect the PEs as shown in figure 2.

PE 0 PE 4 PE 8 PE C

PE 1 PE 5 PE19 PE D

PE 2 PT? A

V J i /
; Ac P F F,JT Jh U ->T JLLi

/ |
i n/ ±i/

PE 3
; V /

PE 7 PEi B
\

PE F

Figure 2: Image Partitioning and PE Interconnection.

Before presenting the calculation portion of the program, the image
storage will be discussed. The data for both the input image and the output
image are stored in rows as shown in figure 3. The data of the input sub image
and the top and bottom data transferred from the other PEs are stored
contiguously in a linear data structure. The data coming from the left and the
right bordered PEs are stored after the bottom data. This structure permits
fast storage of data from an incoming image at a high data rate (e.g. from a
video camera) into the PEs, and after processing to another peripheral.

For the calculation of the smoothed value, a window of 9 pixels has been
defined. Obviously, the smoothed value is the average of the gray levels of all
pixels in the window. In this algorithm, a more efficient programming
technique using pointers is used. Referring to Figure 3, five pointers are used.
Three pointers are indexing the subimage, the others are the starting address

8

(T)Pata from upper PE ©I
©

Input
Subimage

iiiiiiiiii
ir

Data from lower PE
iData from left PE
Data from right PE

{Data from the corner PEs

y

Figure S: Image Storage Model

of the left and the right border data, respectively. Also, sums of the gray levels
of three pixels standing in columns are defined (in the following, tps means
three pixel sum value). Intermediate tps values are stored in a FIFO queue
and added to a variable S. At the beginning of the loop for calculating a row,
S is set up with the first three tps. For the next step, the new tps is added,
and the oldest tps is subtracted from S. This tps is obtained from the top of
the queue. The next tps becomes the top of the queue. Thus, S contains in
each step through the loop, the sum of the gray levels of the pixels in the
window. The smoothed value is obtained by dividing S by the number of
pixels in the window. These steps are executed for each row of the image.

Basically, the parallel algorithm has the same control-flow structure as
the SISD algorithm. However, network transfer operations were added and
several variations for the different parallel modes were performed.

4. Variations of the different versions and experiments

4.1. SIMD Program
In SIMD mode, the program consists of a pure SIMD code. The network

transfer operations in SIMD are executed synchronously in a straightforward
fashion. That implies a faster execution time than in MIMD mode, in which
the program must be blocked in a loop, polling the network buffer for
incoming data. The second segment of the algorithm is divided into the
calculation of the smoothed image and the clearing of the edges. An advantage
of this part is the potential overlapping of instructions sent to the FIFO and
those executed in the PEs while the control flow operations are executed in the
MCs. Another advantage of SIMD mode is due to the actual memory boards
implemented in the PASM system prototype. As can be seen from table 1,
executing instructions from the fetch unit queue is faster than from the PE
memory.

4.2. MIMD Program
This version is programmed in pure MIMD mode; the MC is only used to

calculate the execution time of the program by waiting until the PEs finish
execution. Since the network operations are carried out in MIMD mode, the
data transmission is executed asynchronously. Hence, there is more overhead
than in SIMD mode to check whether the network buffer is ready to accept
data during send operations and when data is received from other PEs.

The calculation part of the program determines first, the inner pixels of
the smoothed image. Then, all the edge pixels having eight neighbors are
calculated and those pixels which do not have eight adjacent neighbors are
cleared. Since each PE corresponds to a specific part of the total image it
needs to be calculated and cleared on different sides. Thus, various MIMD
sub-programs are required to execute the MIMD version.

One advantage of the MIMD version is due to the MC68000. The
MC68000 has instructions with data dependent execution times (e.g. the divide
instruction execution time differs up to 70% for 16-bit operations). In SIMD
mode, all PEs have to wait on each divide instruction until the last PE has
completed the instruction before fetching the next instruction. In MIMD
mode, each PE works independently. The execution time of the program
depends on the PE which finishes last.

10

4.3. Hybrid S/MEMD Program
In the Hybrid S/MIMD mode, data transfer and the calculation of the

inner pixels of each subimage is written in SIMD mode. The third part is
identically with the MIMD program. It calculates the edge pixels. This
program should out-perform the other versions since the data-independent
segment of the algorithm is written in SIMD mode and the data-dependent
segment is written in MIMD mode.

4.4. Experiments
One goal of this research was to identify the most efficient mode of

parallelism for Image Smoothing on PASM. The programs were written in
MC68000 assembly language. Pure SIMD, pure MIMD and Hybrid S/MIMD
implementations were tested for 4 PEs. The 16 PE versions have been
implemented, but at the time of this writing had not been tested due to
hardware difficulties. An SISD (serial) version was programmed in order to
make comparisons with the parallel versions.

In detail, execution times were measured with respect to the image sizes
642, 2562 and 10242. To illustrate the data dependent execution times,
artificial input images with constant 00, alternating 00 and FF and constant
FF data bytes were created, respectively.

5. Data Measurements
Figure 4 illustrates the execution times of the SIMD, MIMD, Hybrid

S/MIMD and the SISD version. For comparison purposes the computation
time of the SISD version is quarter scaled. Therefore, Whenever any curve
passes below the SISD curve, super-linear speedup with respect to the number
of PEs is being exhibited. This discussed further in section 6. There are 2
intersection points in Figure 4; one between the SISD and the SIMD version
shown on Figure 5a; the other between the SISD and the Hybrid S/MIMD
version shown on Figure 5b. Figures 5a and 5b represent smaller windows of
graph 1. .

6. Discussion
As expected, the SIMD version outperformed the MIMD version. Table 2

points but that the SIMD version is 8-20% faster. First of all, this is based on
the overlapping of the control flow instructions in the MC and the data
processing instructions in the PEs in SIMD mode. In addition, there are

11

Table 2: Time of Computation in sec.

image image parallel(4 PEs)

size data
serial

SIMD MIMD Hybrid

0000 0.1435 0.0718 0.0896 0.0687
642 00FF 0.1399 0.0709 0.0887 0.0679

FFFF 0.1364 0.0699 0.0878 0.0670
0000 2.3655 0.6126 0.7038 0.5751

2562 00FF 2.3052 0.5983 0.6888 0.5615
FFFF 2.2465 0.5844 0.6742 0.5471
0000 38.134 9.1379 9.8796 8.5877

10242 00FF 37.167 8.9103 9.6369 8.3697
FFFF 32.216 8.6889 9.3987 8.1356

differences in fetch time as mentioned in section 2. The graphs illustrate that
the execution times of the SIMD and the MIMD versions diverge for larger
sizes of images. That means that the part which is responsible for the speed up
of the SIMD version has a greater impact for larger loop iteration counts.
Finally, the overhead to synchronize the network in MIMD mode should be
mentioned as the major cause of the slowness of that version.

The Hybrid S/MIMD version was found to be the fastest version. It
outperforms all parallel and the serial versions. Table 2 shows it to be 4-6%
faster than the SIMD version. Since the Hybrid S/MIMD and the SIMD
version contains nearly the same code, the difference is not as great as that
between the SIMD and MIMD versions. This is based on the fact that the
Hybrid version uses the calculation and the clear routine for the edges in
MIMD mode. So there is no overhead as in the SIMD program which
calculates at first the whole image, and then clears the proper edges after that.
In other words, the Hybrid routine does not calculate the edges twice as it has
to be done in the SIMD version. However, also in this case the graphs point
out the diverging of the execution times.

The tests of the serial versus the parallel versions produce surprising
results. The execution times of the Hybrid S/MIMD version disprove the
supposition that the execution time of the parallel version would have a speed

up of less than the number of active PEs. This assumption is based on the
fact that the parallel versions need to perform network transfer operations;
unlike the serial version [SiS87bj. The graph demonstrates obviously that in
this, case the Hybrid S/MIMD and the SIMD version is more than 4 times
faster than the SISD version referring to the 10242 pixel image. This comes
from the fact that the control flow instructions executed in the MC save more
time than the transfer operations used. In addition, two intersection points
can be seen. From that size of an image, up to larger sizes, begins the most
efficient advantage of the parallel version over the serial version. In other
words, for smaller image sizes the network transfer operations in the Hybrid
S/MIMD and the SIMD version use more time than the overlapping of the
control flow instructions can save, respectively.

7. Conclusion
This study of different parallel versions of the Image Smoothing algorithm

has shown that the Hybrid S/MIMD version outperforms the SIMD and the

13

SISD x 1/4
HYBRID

45500 46000 46500 47000
Image size in bytes

Figure 5a: Speed comparison between Hybrid and SISD version

SISD x 1/4
SIMD

12500001150000 1200000

Figure 5b: Speed comparison between SIMD and SISD version

MIMD version clearly. Therefore, it serves as a useful paradigm for
illustrating some of the potential advantages of a partitionable SIMD/MIMD
parallel processing system such as PASM. Furthermore it turned out that the
Hybrid S/MIMD and the SIMD version are more than 4 times faster than the
SISD version when 4 PEs are used and the images are larger than 2002 bytes.

14

While this fact seems counter-intuitive at first, in SIMD mode, a speedup of
up to 2p (assuming p PEs) should be attainable since each PE has a logical
MC to which control-flow activities may be off-loaded. The MIMD version
represents the most inefficient algorithm. It is also less than 4 times faster
than the SISD version. That results from the fact that the MIMD version has
the same mode as the SISD version, but added network transfers.

Probably the most important implication of this work is related to the
level at which programming was done :— assembly language. Many of the
performance differences observed rely on the fact that mode-switching, and
network access times were on the order of a few instruction cycles. The
important issue to be addressed is related to the problem of how to develop
efficient HLL constructs which preserve these performance benefits while
providing adequate expressive power to the programmer. It is the intention of
this work to identify which semantics are most useful and to guide the
development of efficient HLL and OS interfaces for them.

References

M. J. Flynn, “Very high-speed Computing systems,” Proceedings of
the IEEE, Vol. 54, December 1966, pp. 1901-1909.
H. J. Siegel, L. J. Siegel, F. C. Kemmerer, P. T. Mueller, Jr., H. E.
Smalley, Jr., and S. D. Smith, “PASM: a partitionable
SIMD/MIMD system for image processing and pattern
recognition,” IEEE Transactions on Computers, Vol. C-30,
December 1981, pp. 934-947.
H. J. Siegel, T. Schwederski, J. T. Kuehn, and N. J. Davis IV, “An
overview of the PASM parallel processing system,”in Computer
Architecture, D. D. Gajski, V. M. Milutinovic, II. J. Siegel, and B.
P. Furht, eds., IEEE Computer Society Press, Washington, D.C.,
1987, pp. 387-407,
H. J. Siegel, T.Schwederski, D. G. Meyer, and W. Tsun-Yuk Hsu,
“Large-scale parallel processing systems,” Microprocessors and
Microsystems, Vol, 11, No.l, Jan/Feb 1987.
H. S. Stone, “Parallel computers,"in Introduction to Computer
Architecture (second edition), H. S. Stone, ed., Science Research
Associates, Inc., Chicago, IL, 1980, pp. 363-425.

[Fly 66]

[SiS8l]

[SiS87a]

[SiS87b]

[Sto80]'

15

Threshold Generation for Image Processing
on PASM

Kurt Schurecht

Abstract
Research is being done on how to best use the PASM parallel processing

system the most efficiently with respect to many applications. Four image
processing applications have been chosen, smoothing, thresholding, edge
tracing, and block truncation coding. Different configurations of the PASM
machine are being analyzed to obtain the optimal algorithm times with
respect to the Sobel Threshold generation procedure. Different size images as
well as different data sets have been examined. Results have shown that
different configurations of the PASM system can cause vastly different funning
times.

1. Introduction
For many years theoretical work has been done relating to parallel

machines and parallel machine algorithms, but most has not had concrete
data to back it up. Two types of parallel machine taxonomies described by
Flynn [Fly66] are SIMD (single instruction stream - multiple data stream) and
MIMD (multiple instruction stream - multiple data stream). Work has
recently begun that compares these two modes within the scope of many
different applications. This paper describes an application from the image
processing area using the PASM prototype System. The PASM system allows
the user to switch quickly from SIMD to MIMD mode. A major result of this
paper is to show the benefits and drawbacks of both SIMD and MIMD modes
in the use of the PASM system and with respect to the chosen algorithm.
This paper describes algorithms to find threshold levels for a given image,
with emphasis on where SIMD mode or MIMD mode is more appropriate.
Timing measurements have been made to compare the two modes, and with
these times, some qualified conclusions about the two modes are made. The
tests have been run using best, average, and worst case data Sets, with three
different image sizes. All programs have been written to run on four

16

processing elements controlled by one micro-controller.
Section 2 explains the PASM prototype and the background of the

threshold problem. Section 3 details the problem in more depth, showing the
algorithm used. The data taken and results of that data are presented in
sections 4 through 6. Some conclusions and further work are detailed in
sections 7 and 8.

2. Background

2.1. PASM Architecture
PASM is a partitionable SIMD/MIMD parallel processing system being

designed to include over a thousand processors [SiS8l]. It is a dynamically
reconfigurable architecture, where the processors can be partitioned to form
independent virtual SIMD and/or MIMD machines of various sizes. A 30-
processor prototype has been completed [SiS87] and was used in the
experiments described in this paper.

The prototype includes four micro-controllers that each control four
processing elements. Each MC and PE has its own memory associated with it.
Each MC also has a Fetch Unit associated with it to send SIMD commands to
its PEs. The programs described in this paper use one MC, its Fetch Unit and
the four PEs associated with it. When processing in SIMD mode, the MC
sends a command to its associated Fetch Unit to send a set of instructions
from the Fetch Unit’s memory to the PEs under it. A mask register in the
Fetch Unit determines which if any of the PEs associated with it will execute
those instructions. The Fetch Unit places the instructions in a FIFO queue
and each enabled PE takes the instruction off the head of the queue. When
ALL PEs have finished that instruction, they all get the next one off the head
of the queue. If the queue becomes empty, the PEs wait until another batch
of instructions are placed in the queue. During the time while the PEs are
executing instructions already in the queue, the MC can be doing other
instructions. It may be taking care of looping overhead, or requesting the next
set of instructions to be sent.

To switch from SIMD to MIMD mode a machine instruction is sent
through the FIFO that executes a jump in the PEs into the MIMD memory
area. Once this jump is executed, the PEs are no longer synchronized and
may act alone. At this point the PEs start executing instructions that are
stored at that location in their own memory. The PEs continue executing
alone until they reach an instruction to return to SIMD memory. When this
happens, each PE must wait until all others have also returned to SIMD space
before they can get the next instruction off the FIFO queue.

The last relevant part of the architecture is the extra stage cube
interconnection network. This network connects every PE to every other PE
for use in sending data that needs to be shared between them. A routing tag
is sent to set up the connection and then the information can be sent along
the line. The receiving PE must be ready to receive data though. Finally a
routine is run to drop the path. Once the path is dropped, the PE can
connect to another PE.

2.2. Threshold Determination
Threshold levels are used to find the most defined edge in an image. In a

picture, there are generally many different shades of the object, and also many
small objects. The goal of thresholding is to find the most defined shape in
the picture. The threshold level when found, is sent to a program that will
trace the edge of the contour found by the threshold level. For example, if the
image were a bird in the sky, the edge trace program would want to trace only
the outline of the bird, not that of the clouds or just part of the bird. If the
threshold level is chosen correctly, the bird is reduced to a block of black and
the surroundings are reduced to a white background. With this image the
edge detection program can trace the outline of the bird. The threshold
generation algorithm used in this paper [TuA83] uses a Sobel edge operator
and figure of merit, both defined later, to find the best threshold level.

The images used in this algorithm are stored as pixels of gray levels
ranging from $00 to $FF. These gray levels are stored in consecutive locations
of the PE memory. Each PE memory contains a subset of the entire image.
All PEs then find a threshold gray level for their subset of the image.

3. Project Description

3.1. Problem
Threshold generation. consists of choosing a gray level that will best find

the edge of an image when used in conjunction with an edge tracing program.
The threshold level is used by setting all pixel values equal to or greater than
the threshold level to $FF and all values less to $00. If the threshold is chosen
correctly, the crossovers between $00 and $FF will be the best edge to trace.
To find the best edge, a Sobel operator is used on a window around each pixel
value. A window is formed around each pixel, consisting of the pixel and its
eight nearest neighbors. The following operation is performed on the window.

-1 0 1 1 2 i
-2 0 2 * I . ./ AY = 0 0 0
-1 0 1 -1 -2 —1

Gradient = VAX2 + AY2

AX and AY are found by multiplying the corresponding value in the
matrix by the pixel in that window position, and then adding each of the nine
results. The Sobel value is then found using AX and AY. The Sobel value is
the gradient of the window. It is a measure of how well the window can act as
an edge. Windows with greatly different gray levels have higher gradients
than windows with very similar gray levels. The minimum pixel value and the
maximum pixel value are found for each window also, to be used later. Next,
each threshold level is checked to find the best value for edge detection. A
figure of merit is found for each threshold level, with a high value meaning it
is a good edge detector. The figure of merit is found by comparing the
threshold level to each window figured above. If the threshold level is between
the minimum and the maximum of the window then that window would
contain an edge if the threshold level were used. In this case, the gradient
found earlier for this window is added into this threshold’s total. When all
pixel windows have been checked, all gradient values are added together and
averaged to find the figure of merit for that threshold. The threshold level
chosen to send to the edge detection program is the one with the highest
valued figure of merit.

On PASM, this same procedure is done with a few minor modifications.
The data is assumed to be evenly distributed in each PE, with each PE
containing a square subsection of the whole image. When the windows are
formed for the pixels on a PE edge, the PE needs the pixels contained on the
edge of the neighboring PE. When handling corners, likewise, the corner pixel
in the diagonal PE is also needed. In total there are eight PEs that need to be
connected to to get all necessary data for the computations, as shown if Figure
1. The threshold generation procedure on PASM involves four steps. The
first involves transferring all needed outside edge pixels to PEs that will need
them for their calculations. The second involves figuring the minimum,
maximum, and gradient of each pixel window not on a PE edge. The third
step is to take the edge pixel windows and find their minimum, maximum,
and gradient. Finally, the figure of merit is determined for each threshold
level and the highest threshold level is stored for use by the edge detection

program. The threshold level found in one PE has no effect oil: the threshold
level found in any other PE. Each PE finds its Own threshold level to send to
the next program. .——-------- T- — --- _p_— . .

Figure 1

3.2. Algorithms
The following algorithm applies to SIMD and MIMD parallelism- The

basic algorithm structure remains the same, but the actual code differs.

Threshold generation algorithm:

1. Connect to and transfer edges to each of 8 neighboring PEs
2. For each interior pixel

Find gradient, min, max of window
3. For each edge pixel

Find gradient, min, max of window
4. For each candidate threshold value

For each pixel figured above
If threshold > min and < max

Add gradient to total
Add 1 to matched

FOM = total / matched
5. Threshold = Candidate Threshold with highest FOM

20

Completed to this point are programs that handle 4 PEs with 1 MC.
There are three programs in ~/pasm/appl/histks that find threshold levels and
save timing information. The programs are:

thr4s - a four pe program with steps 1,2 in SIMD mode
steps 3,4,5 in MIMD mode
only three transfers are conducted

thr4m - a four PE program with step 1 in SIMD mode
steps 2,3,4,5 in MIMD mode
only three transfers are conducted

thr4ma- a four PE program with step 1 in SIMD mode
steps 2,3,4,5 in MIMD mode
all eight transfers are conducted

Since each of these programs use 4 PEs, each data set is in a corner of the
complete image, and only three transfers are actually necessary. This makes
the 4 PE programs easier to write, but the code is very difficult to change for
increasing to 8 and 16 PEs. Therefore code with both types of transfers has
been included. 4

4. Experiments Performed
All experiments performed have been done using 4 PEs. Each of the

three programs have been tested using data blocks in each PE of 16x16,
32x32, and 64x64. This implies complete images of size 32x32, 64x64, and
128x128 respectively. The data for the 32x32 case was also varied to get best
case, average case, and worst case times. The data for all other sizes was only
taken with average case data. Examples of each data set for a size of 8x8
follows.

21

Best Case

00 00 00 00
00 00 00 00
00 00 00 00
00 00 00 00

Average Case

00 0102 03
04 05 06 07
08 09 0A OB
OC OD OE OF

Worst Case

00 FF 00 FF
00 FF 00 FF
00 FF 00 FF
00 FF 00 FF

5. Measured Data
Timings were taken that measured steps 1, 2, and 3 separately, and 4 and

5 together. All timings are shown in the table below. The size refers to the
size of the data in each PE and the letters following refer to each of the
sections and whether that portion of the program is written in SIMD or MIMD
mode. The last letter corresponds to the type of transfers that Were used in
that program, "a" designates three transfers performed, "b" designates eight
transfers. Best case is data set "A", average case is data set "B", and worst
case is data set "C".

Timings for Threshold Programs
Data size/type transfers inside edges thresh

B 16ssmma 1.02 49 7.4 681 .
B 32ssmma 1.44 225 15.5 3460
B 64ssmma 2.29 965 31.7 16900
A 32ssmma 1.44 197 13.6 2980
C 32smmma 1.44 207 14.4 5090

B lGsmmma 1.02 49 7.4 681
B 32smmma 1.44 227 15.5 3460
B 64smmma 2.29 971 31.7 16900
A 32smmma 1.44 203 13.7 2980
C 32smmma 1.44 211 11.4 5090

B 16smmmb 1.64 49 7.4 681
B 32smmmb 2.60 I' 227 15.5 3460
B 64smmmb 4.57 971 31.7 16900

All times in milliseconds.

22

6. Interpretation of Data

6.1. Problem Related
The most obvious point from the data in the previous section is that the

time for the last set of operations is very data dependent. The time varies
from almost three to over five seconds. This data dependency will play an
important part in the justifications in the next section. The data dependency
also holds for the inside and edge times, but to a lesser extent. The problem
related results of the data above give justifications as to why some portions of
the program need to be in SIMD or MIMD mode.

6.2. Architecture Related
The main test of this program on PASM was to see if programs run

fastest in SIMD, MIMD, or a hybrid of S/MIMD. Some of the routines lend
themselves to using SIMD mode, as in step 1. Other steps lend themselves to
MIMD mode, as in step 3. Steps 2, 4, and 5 though are not necessarily faster
one way from just looking at the algorithm. There is one main advantage to
each SIMD mode and MIMD mode. The data above has been taken to try and
show the effects of each of these advantages. The advantage of SIMD mode
comes from the fact that the code is straight inline code. The looping
structure inherent in the program can be eliminated when using SIMD code,
by having the MC do the looping and sending only one stream of inline code
to the PEs. This takes away all of the overhead of looping out of the
processor that has to do the raw mimber crunching, leaving it to concentrate
on its task. There is a drawback of SIMD, which is the advantage of MIMD.
When the SIMD program executes a variable length instruction, or sequence of
instructions, each of the PEs must finish that instruction before any of them
can go on to the next instruction. Because of this, all variable length
instructions will take the time of the worst case time of all PEs. This can be
very costly when an instruction, or group of instructions has a large time
variation.

Looking at step 1, there are no variable length instructions, but there are
transfers. Transfers are must faster to execute in SIMD mode. The subroutine
calls to send data over the network can be replaced by one "move" instruction
if the sending PE knows that the receiving PE is ready to receive.
Implementing this section in SIMD mode, each PE knows exactly when the
other PEs are ready and the transfer time can be minimized by replacing the
subroutine calls. The main SIMD advantage also comes into play. Using
SIMD mode, all the looping can be done in the MC. This function is
obviously best written in SIMD mode.

23

Step 2 is not as easy to discern. The compares for the minimum and
.maximum are done as a small MIMD subroutine. For these purposes, this
subroutine can be thought of as a variable length instruction. Two factors are
weighting the timing. In SIMD mode, the looping overhead is eliminated, but
if a new minimum is found in any PE, all PEs must wait until that hew value
is saved before they can go on to the next instruction. The two different
programs that were timed show that elimination of the looping saves at most
finis. The difference in best and Worst case data is 24ms for the MIMD
version. Therefore if the worst case is distributed properly, either all in one
PE, or distributed over all PEs, the time for all PEs, even ones with best case
data will be 24ms longer than necessary. This is a much greater time than the
6ms saved from the looping. A similar argument can be made for steps 4 and
5. ' :: v

Step 3 has been implemented in MIMD mode, because the PEs that
contain the outside edges of the image do not figure those edges. Therefore, a
check is made to determine which PE is figuring its edge and then finds only
the necessary edge window values. In the four PE case, each PE figures only
two edges.

In general, it can be said that this program is a very good improvement
oyer a comparable serial version. The only overhead incurred is the time for
transfers and the time for finding edge values. A serial program would have
those two times subtracted, but the inside and threshold times multiplied by
N, with N being the number of PEs used in the parallel version. This time is
much greater than the overhead for measured for transfers.

7. Future Work .
Future possibilities in this area include expanding the number of PEs to

eight and sixteen. The program thr4mb is a good starting place because it
already makes the eight transfers, whether they are used or not. Sections 4
and 5 could also be tested comparing SIMD and MIMD modes, but the
conclusions should be the same as section 2. Section 3 can be modified to
work in SIMD mode by disabling PEs that do not take part in figuring a
certain edge. Other possibilities are to examine the actual code for finding the
figure of merit and best threshold level, to see if there is a way to optimize it
and reduce the overall time of execution. A program also needs to be written
that will take a file, split it up for placement in PEs and create downloadable
files to place the data.

24

8. Conclusions
Examples of algorithms that show a definite speedup over their serial

counterpart have been shown. The different parts of the chosen algorithm
have given examples of where SIMD and where MIMD modes of operation
work best. The SIMD / MIMD tradeoff has been discussed in detail, showing
the attributes of each. Each of the programs written has been detailed and a
future trail of work has been left for someone to pick up.

References

[Fly66]

[SiS81]

[SiS87]

[TuA83]

M. J. Flynn, "Very high-speed computing systems," Proceedings
of the IEEE, Vol. 54, December 1966, pp. 1901-1909.
H. J. Siegel, L. J. Siegel, F. C. Kemmerer, P. T. Mueller, Jr., H.
E. Smalley, Jr., and S. D. Smith, 'PASM: a partitionable
SIMD /MIMD system for image processing and pattern
recognition," IEEE Transactions on Computers, Vol. C-30,
December 1981, pp. 934-947.
H. J. Siegel, T. Schwederski, J. T. Kuehn, and N. J. Davis IV,
"An overview of the PASM parallel processing system," in
Computer Architecture, D. D. Gajski, V. M. Milutinovic, II. J.
Siegel, and B. P. Furht, eds., IEEE Computer Society Press,
Washington, D.C., 1987, pp. 387-407.
D. L. Tuomenoksa, G. B. Adams III, II. J. Siegel, and O. R.
Mitchell, "A parallel algorithm for contour extraction:
advantages and architectural implications," 1988 IEEE Comp,
■Sac." Symp. Computer Vision and Pattern Recognition, June
1983, pp. 336-344.

MIMD ContpuP Tracing for Image Processing

Brian Cox

Abstract '
As part of a coordinated study of novel parallel architectures, contour

tracing of images is being performed on the PASM system prototype. The
group of applications was concerned with image smoothing, histogramming,
image compaction and contour tracing. The contour tracing algorithm was
designed as an MIMD program. The project was divided into two phases. In
the first phase, a graphic image was divided into separate subimages and; all
local contours were traced and recorded. In phase two, the partial contours
previously traced are connected. Several experiments have been run on the
first phase of the algorithm with different data image sets. Analysis is focused
on determining communication overheads, speedup over serial program
versions, and overall efficiency. Continuing work is extending these programs
to examine SIMD/MIMD trade-offs.

1. Introduction
In the area of parallel processing, there are several types of applications

that benefit from parallelism. One of these applications is image processing.
Many parallel image processing algorithms have been studied such as image
coding [9], image correlation [7,12], image segmentation [14], two-dimensional
FFT [10], histogramming [11], and line segment generation [13]. The
algorithm of interest to this project is contour extraction. The parallel
implementation of contour extraction can be beneficial from applications such
as quality control inspection of printed circuit boards to military projects in
which both algorithm speed and accuracy are crucial [8]. Contour extraction
can be divided into two major algorithms: edge-guided thresholding and
contour tracing. The edge-guided thresholding algorithm is used to determine
a set of optimal thresholds which are used in the contour tracing algorithm to
segment an image and trace the contours. This project is concerned with the
parallel implementation of the contour tracing algorithm and its relation to
the PASM architecture.

26

2. PASM
The PASM architecture is capable of dynamically reconfiguring to

operate in SIMD and/or MIMD mode. The partitionable SIMD /MIMD
machine consists of a control unit, an interconnection network, N processing
elements , and Q micro controllers. The control unit is responsible for the
overall coordination of the PASM system. The interconnection network is a
circuit-switched Extra-Stage Cube network, which is a fault-tolerant variation
of the multistage cube network. The processing elements (PEs) are
sophisticated microprocessors that perform the actual SIMD and MIMD
operations. The processing elements are controlled by the micro controllers
(MCs). The PASM architecture when completed will consist of 1024 PEs and
32 MCs [11]. At this time, a PASM prototype has been completed which
consists of 16 PEs and 4 MCs [2].

Several applications have been designed and implemented to test the
performance of the PASM prototype. These applications range from matrix
multiplications to AI algorithms [3,6]. The application group, of which this
project is a part, is concerned with image processing. The image processing
applications consist of four parts: image smoothing, histogramming, contour
extraction and image compaction [4,5]. This paper is concerned with the
application of contour extraction. The contour extraction application is
benificial in testing of the PASM prototype [l]. 3

3. Problem Structure
The implementation of contour extraction on a partitionable

SIMD/MIMD machine such as PASM is advantageous in that it demonstrates
several features of this type of machine. An SIMD/MIMD machine consists of
a control unit, an interconnection network, and N processing elements. The
PASM prototype has 16 processing elements(PEs), four of which are used in
segmenting the graphic image in this project. When operating in SIMD mode,
the control unit broadcasts instructions to all processors and each processor
executes the instruction on data in its own memory. This mode of operation
is well suited to edge-guided thresholding. The edge-guided thresholding
algorithm uses a Sobel edge operator, meaning each pixel is processed
identically. Therefore, SIMD parallelism would be the most efficient mode of
operation for this algorithm. When operating in MIMD mode, each processor
fetches instructions from its own memory and executes them on data in its
own memory. Contour tracing, which is divided into two phases, is more
suitable to this mode. The interconnection network is used in both
algorithms. In the contour tracing algorithm (PHASE II) the interconnection
network would be used to transfer partial contour information between PEs.

This project, however, is mainly concerned with PHASE I which requires only
local data and no PE-to-PE communication.

4. Problem Solution

4,1. High-Level Description
As previously stated, the contour tracing project is divided into two

phases. In PHASE I, the subimage within each PE is segmented and all local
contours are traced and recorded. In PHASE H, the partial contours traced
during PHASE I are connected. Initially, the graphic image is divided into
subimages within each PE. For this project, four PEs were used with each
subimage having a resolution of 8-by-8 pixels. Each PE also contains a list of
threshold values for its individual sub image which were generated using edge-
guided thresholding.

PHASE I begms by segmenting the image accordingly to each threshold
value. The threshold values are considered seperately. Each pixel in the
source image is compared to the current threshold value. If the pixel value is
less than the threshold value, a zero is stored for that pixel. If the pixel value
is greater than or equal to the threshold, the pixel value is set to one.
Therefore, only valid contours are left for tracing. Tracing begins by scanning
rows of the image from left to right, starting with the top row. The scanning
will stop when a pixel with a value of one is found with a zero-valued pixel to
either side. This pixel is the beginning of a new contour and is marked as the
starting point. To determine the direction of this new contour, the
surrounding pixels are scanned for a pixel of value one. The surrounding
pixels are initially scanned counterclockwise as seen in Fig. 1. For easy
reference to each pixel, a standard Cartesian coordinate system is used with
the addition of each PE number (i). The i-x-y coordinates of this contour are
stored and the next pixel is treated as the center point of the 3-by-3 window
in Fig. 1. Counterclockwise scanning Will begin again with this new point.
The tracing will continue until a point of indecision is reached. Initially, if all
the surrounding pixels of the startpoint are zero the pixel is not the start of a
contour and is ignored. However, if the pixel is an edge pixel with an adjacent
PE, the pixel could be the starting point of a contour which extends into the
sub image of the adjacent PE. This pixel is marked as a startpoint and
extension is verified in PHASE II, When a point of indecision is reached, data
from the adjacent subimage will be needed to determine the direction of the
contour. This point is marked as an endpoint and the PE (s) which contains
the subimage with the possible extension is recorded. The tracing will then
return to the startpoint and begin tracing in a clockwise direction. This

v 28

continues until another point of indecision is reached. When tracing
clockwise, the i-x-y sequence of the pixels should be stored in front of the
previous i-x-y contour sequence. This partial contour sequence is pointed to in
the contour table located in each PE.

The contour table, which was not implemented in this project, should
contain an entry for each individual contour. The contour table consists of
the following fields:

1) a contour identification number
2) the threshold value which generated the contour
3) the number of pixels in the contour
4) a flag indicating if the contour is closed or partial
5) a pointer to the array containing the i-x-y sequence of the
contour ■ . •.
6) a flag indicating whether the partial contour has been connected
7) the physical address of the PE which linked the contour
8) the physical PE address and identification number which is
blocking extension of the contour
9) a locked/unlocked semaphore

A contour table should be constructed for each contour in each subimage for
each threshold value.

3. " 2. ; 1.

' .;:y. . :4. . . 0.

5. 6. ; 7. ■

. Figure 1

An example 10-by-20 contour image is shown in Fig. 2. The images have
been segmented in each PE with similar thresholds. PHASE I begins,
simultaneously, in each PE by scanning each pixel. In PE 0 the startpoint is
found to be (0,3,3). Counterclockwise tracing traces the contour to a point of
indecision at (0,7,9). This point is recorded as an endpoint, the blocking PE is
stored, and tracing returns to the startpoint for clockwise tracing. After the
clockwise tracing has reached the point of indecision at (0,3,9), the first pixel

29

in the i-x-y sequence should then be (0,3,9). The scanning will then resume
and find no more pixels since each previous pixel has been marked as already
part of a contour. PHASE I will then repeat the process for a new threshold
value. PHASE I is then complete and PHASE II begins. Since this project is
mainly concerned with PHASE I, a brief description of PHASE II is given for
clarity.

PHASE II will connect the partial contours traced in PHASE I. PHASE
II can either begin after all the PEs in PHASE I have completed processing or
after each individual PE has completed its processing. Since a complete
contour may be contained in several PEs, a priority is established for which
PE will link the contours. The priority is that each PE will only attempt to
close a contour which is bordering a subimage to the left or above. To
prevent several PEs from accessing a contour table at the same time a
semaphore is introduced. The semaphore is a variable which locks a contour
table while it is being modified to prevent other PEs from simultaneously
modifing the same table. When a PE attempts to close a contour it must
check the bordering pixels in the adjacent subimage. It compares the
bordering pixels to the pixels in the

PEq PEj

(0,3,J) (0,3.«)
©0OO0O>4*0 0

(0,4,4)0 •
o • • • *

O • • •
004 >000000
(0,7,9) (1J.0)

O Start point
-o Counterclockwise trace mark
0* CIockwiM trace mark
< End point (countereioekwiae)
► End point (doekwiae)

Figure 2

30

partial contour list for endpoints which match the border pixels. If the
contour is found, the partial contour is transferred to the PE attempting
closure. The i-x-y sequence is added to the contour to form an extended trace.
If the contour is not found in the adjacent contour table, the PE attempting
closure will probe into the adjacent subimage with the current threshold in an
attempt to find a contour which may not have been detected with the
adjacent PE thresholds. A limit is placed on the length of a contour to assure
termination of the algorithm.

4.2. Algorithm
The actual MIMD algorithm was implemented in 68000 assembly code.

Following is an outline of this algorithm:

I. Initialization
A. Constants
B. Data

II. Segmentation

III. Scanning Routine
A. Initialize x-y coordinates
B. Scan Image

1. check for edgepixels
a) valid startpoint?

2. check for internal startpoint

IV. Startpoint Routine
A. Save x-y coordinate of startpoint
B. Check for edgepoint
C. Trace counterclockwise
D. Check for edgepoint
E. Trace clockwise
F. Reset for newcontour

31

V. Edgepoint Routine
A. Check for corner blocking pixels

1. Determine blocking PEs
2. Store string for table
3. Store pixel

B. Check for normal edges
1. Determine blocking PE
2. Store string for table
3. Store pixel

VI. Tracecounterclock Routine
A. Compute x-y locations
B. Valid startpoint?

VII. Traceclock Routine
; A. Compute x-y locations

B. Valid startpoint?

VIII. Store Routine
A. Modify traced pixels
B. Reset image pointer

5. Program Variants
Two versions of the contour tracing algorithm were developed: a parallel

version and a serial version. To effectively test the efficiency of parallelism,
the two versions of the algorithm should be optimized. The parallel algorithm
should be the best possible parallel version while the serial algorithm should
be the best possible serial version. While these programs are far from the best
possible implementations, they are, however, the best possible versions relative
to each other, since the serial version is based upon the same programming
techniques as the parallel version. Therefore, the speedup analysis due to
parallelism should be accurate.

5.1. Experiments
The experiments were performed on 8-by-8 pixel images with four

processing elements. This gives a complete graphic image of 16-by-16 pixels.
Since the contour tracing algorithm is best suited for MIMD, the only mode of
parallelism used was MIMD. The contour tracing algorithm is highly data

V "32

dependent. Therefore, several data sets were used and designed to test the
performance of the parallel algorithm. The data sets range from a minimal
set of elements to a maximal set. The data images consist of a zero element
data set, a horizontal and vertical contour data set, a spiral image data set, a
square image data set, and a random contour data set. The zero element data
set has no contours, thus having the fastest execution time. The horizontal
and vertical contour images represent the maximal number of individual
contours that an image can hold. The execution times for these data sets
should have the longest execution times due to the large number of contours
and pixels that need to be traced. The spiral image has a maximal number of
pixels in a single contour and no edge pixels. Thus, the execution delay is due
mainly to the tracing routines within the algorithms. The square image is
representative of a closed contour and the random data is used just to
introduce some variability. The data sets were run five times on both the
parallel version and serial version of the algorithm. The execution times were
then averaged to eliminate any unnecessary delays such as that incurred by
dynamic memory.

6. Measured Data

Parallel
Execution Times

(m-sec)

Serial
Execution Times

(m-sec)
Speedup

no_data 2.900 11.880 4.10
horiz—data 5.696 20.404 3.58
vert—data 6.256 24.456 3.91
spiral-data 4.592 18.720 4.08
square-data 5.004 20.416 4.08
random—data 5.396 21.688 4.02

7. Interpretation of Data

7.1. Problem Related
From comparing the serial execution times to the parallel, it is obvious

that there is a considerable speedup of the parallel algorithm. For all
experiments, the speedup is close to O(n). The speedup is less than O(n) for a
few data sets due to the extra analysis of the parallel algorithm. Since the
graphic image is divided into four subimages, the parallel algorithm must
cheek each PE for edges which block the extension of the contour. Within the

33

edgeblock subroutine, the algorithm must determine which PE (s) is blocking
the contour and store the string. Therefore, the subroutine must check each
coordinate to determine if it is an edge pixel or a corner pixel. The number of
blocking PEs can range from zero to three. The edgeblock routine is the most
time consuming.

In the serial version, the image is not subdivided and intensive edge
detection is not required, therefore, eliminating the overhead, PHASE II of
the parallel algorithm is also not required. The extension of the contours
would increase the overhead and decrease the overall speedup. This is the
main advantage to the serial approach. One of the disadvantages to the serial
approach is the edge-guided thresholding required for this algorithm. The
EGT performance decreases with the increase of image size. Thus, for reasons
of speed and accuracy, the parallel approach is more favorable.

From the data, it can be seen that the majority of the speedup figures are
greater than O(n). Since it is impossible to achieve a speedup greater than
O(n), it can be assumed that the speedup figures are inaccurate. This is due
to the fact that the parallel and serial implementations are not ideal. To
achieve an accurate speedup time due to parallelism, the execution times of a
best possible serial algorithm should be divided by the execution times of the
best possible parallel algorithm.

7.2. Architecture Related
The PASM architecture is very well suited for the needs of the entire

contour extraction algorithm. The SIMD capability of PASM allows the
execution time of the Sobel operator to be a minimum. Both the EGT and
contour tracing require PE-to-PE communication. Therefore, the
performance of the interconnection network must be efficient. Since, PHASE
I of the contour tracing requires only local data, there were no PE-to-PE
communications to decrease execution times. Also, because of the
implementation of the algorithm in MIMD, the Fetch Unit delays were a
minimum. One minor architecture related delay affecting PHASE I was the
dynamic memory refreshing. This had a very minor effect on the entire
parallel contour tracing algorithm and was very similiar in the serial
approach. This project did not fully utilize the PASM architecture. The
complete contour extraction algorithm would be much more appropriate for
testing PASM.

34

8. Future Work
To fully test the PASM architecture, the complete contour extraction

algorithm should be implemented. PHASE II of this project would allow a
more complete study on the interconnection network and a more accurate
comparison of the serial and parallel approaches. This would require the
combined execution of the EGT and the contour tracing. Once completed,
more realistic results could be obtained by using actual image data sets. A
complete study could be done by combining these algorithms with several
image processing tasks such as image smoothing, two-dimensional FFT, and
histogramming. Since the field of image processing is so vast, the problems for
future study are limitless. The major task in relation to this project, however,
should be the completion of PHASE II.

9. Conclusions
Overall, the contour tracing algorithm is very well suited for parallel

implementation on PASM. The complete design utilizes the architecture very
well. From the testing of PHASE I, it can be seen that the parallel
programming approach has several advantages that include a considerable
speedup of execution and an improved accuracy due to the Sobel operator.
Thus, the parallel implementation of the contour extraction routines could be
very useful for many applications.

References

|l] D. L. Tuomenoksa, G. B. Adams HI, H. J. Siegel, O. R. Mitchell, "A
Parallel Algorithm for Contour Extraction: Advantages and Architectural
Implications," Proceedings of IEEE Computer Society Conference of
Computer Vision and Pattern Recognition , June 1983.

[2j II. J. Siegel, T. Schwederski, J. T. Kuehhj N. J. Davis IV, "An Overview
of the PASM Parallel Processing System,' Computer Architecture , D. D.
Gajski, V. M. Milutinovic, H. J. Siegel, B. P. Furht, eds,, IEEE Computer
Society Press, Washington, D.C., 1987, pp. 387-407.

[3] S. Fineberg, T. Casavant, T. Schwederski, H. J. Siegel, "Non-
Deterministic Instruction Time Experiments on the PASM System
Prototype," 1988 IEEE International Conference on Parallel Processing ,
Chicago, August, 1988. 4

[4] W. Disch, T. Casavant,"Experiences with Parallel Image Smoothing on
the PASM System Prototype," ACM SIGPLAN Symposium on Parallel
Programming: Experiences with Applications, Languages and Systems,
June 1988.

35

[5] K. Schurecht, "Threshold Generation on PASM," Final Report, EE 495,
School of EE, Purdue University, Fall 1987.

[6] C. Ringer, "AI Graph Searching and Parallel N-Min-Finding on PASM,"
Final Report, EE 696, School of EE, Purdue University, Fall 1987.

[7] D. L. Ackerman, "Algorithm design for digital image correlation on a
parallel processing system," in High Speed Computer and Algorithm
Organization , edited by D. J. Kuck, D. H. Lawrie, and A. H, Sameh,
Academic Press, Inc., New York, 1977, pp. 307-308.

[8] J. A. Cornell, 'Parallel processing of ballistic missile defense radar data
with PEPE," COMP CON ’12, Sept. 1972, pp. 69-72.

[9] T. N. Mudge, E. J. Delp, L. J. Siegel, and H. J. Siegel, "Image coding
using the multimicroprocessor system PASM," 1982 IEEE Comput. Soc.
Conf. Patern Recognition lmage Processing, June 1982, pp. 200-205.

[10] P. T. Mueller, Jr., L. J. Siegel, and H. J. Siegel, 'Parallel algorithms for
the two-dimensional FFT," 5th Int’l Conf. Pattern Recognition, Dec.
1980, pp. 497-502.

[11] H. J. Siegel, L. J. Siegel, F. C. Kemmerer, P. T. Mueller, Jr., H. E.
Smalley, Jr., and S. D. Smith, 'PASM: a partionable SIMD/MIMD
system for image processing and pattern recognition," IEEE Trans.
Comput., vol. C-30, pp. 934-947, Dec. 1981.

[12] L. J. Siegel, II. J. Siegel, and A. E. Feather, 'Parallel processing
approaches to image correlation," IEEE Trans. Comput., vol. C-31, pp.
208-218, Mar. 1982.

[13] G. D. Stamopoulous, 'Parallel algorithms for joining two points by a
straight line segment," IEEE Trans. Comput., vol C-23, pp. 642-646,
June 1974.

[14] R. J. Douglass, "A pipeline architecture for image segmentation," 15th
Hawaii Int’l Conf. on System Sciences, Jan. 1982, pp. 360-367.

Parallel Block Truncation Coding of linages

Chris A. Toomey

Abstract
This work is a practical look at the question of computational speedup,

from the point of view of a specific algorithm (Block Truncation Coding)
implemented on a specific parallel processor (the PASM prototype). By
examining actual timing data from a real application program, much can be
learned about the proper design of parallel computers and algorithms.

The paper discusses specifics of the PASM prototype (a partionable
SIMD /MIMD non-shared memory machine) and Block Truncation Coding (an
image compression algorithm). Theoretical and actual execution times were
compared for different image sizes and numbers of processors used. The paper
ends with general conclusions and ideas for future research.

1. Introduction
The fundamental purpose of parallel processing is increased computation

speed. This paper is a practical look at the question of computational
speedup, from the point of view of a specific algorithm (Block Truncation
Coding) implemented on a specific parallel processor (the PASM prototype).
By examining actual timing data from a real application program, much can
be learned about the proper design of parallel computers and algorithms.

There two main reasons for using parallel processing to increase execution
speed. One reason is to get maximum speed for minimum cost. This requires
using efficient parallel algortihms, to maximum speed for the number of
processors being used. The other reason for parallel processing is to increase
maximum execution speed. The goal in this case is maximum speedup, even if
the processors are not efficiently used. Both viewpoints will be examined in
this paper.

The paper begins with a description of the PASM prototype (the parallel
computer used) and Block Truncation Coding (the algorithm investigated).
Next, implementation questions are discussed. Then the experiments
performed and data gathered are presented. The paper ends with general
conclusions derived from this project and suggestions for future research.

2. Overview of the PASM Prototype
The PASM prototype is a partionable SIMD/MIMD computer being used

for parallel processing research at Purdue University. The PASM prototype
(henceforth referred to as PASM) is collection of 30 microprocessors set-up for
executing SIMD, MIMD, and hybrid SIMD/MIMD programs. These
microprocessors are divided into 4 groups of 5 processors (called MC-groups)
and assorted additional processors for system control and memory
management. Each of the four MC-groups consists of one Micro Controller
(MC) and four Processing Elements (PEs). The MCs and PEs use Motorola
MC68000 microprocessors (running at 8MHz) as CPUs. Each processor has
two dual-ported memory boards (1 Mbyte/board) so that program execution
and data loading/storing can be overlapped. Since only MIMD programs were
implemented in this project, the SIMD instruction broadcast hardware (Fetch
Unit) can be ignored. Because the algorithms studied require no
interprocessor communication, the programs can be run without modification
on either MCs, PEs, or a combination of both.

For additional information on specifics of the PASM prototype, see
references 1 and 2. 3

3. Overview of Block Truncation Coding
Block Truncation Coding (BTC) is an image compression algorithm that

works by storing an approximation of the original image on a block by block
basis. The original image consists of a height by width array of pixels, each
pixel stored as one byte of grey level information. First the image to be
compressed is split into 4 pixel by 4 pixel blocks. Then each block is
compressed totally independently of all other blocks. The 16 bytes of grey
level data is converted to 16 bits of pixel data (the bit-plane), an 8 bit mean
value, and an 8 bit standard deviation value. The complete encoding
alogrithm appears on the following page.

.. 38 ; /

The BTC decoding algorithm works by computing two numberes to
replace the one bit values used for each pixel (the bit-plane). These two
values (which shall be called low and high) are computed in such a way that
when the replacement is done, the mean value and standard deviation of the
decoded block is the same as the original. The complete decoding algorithm
appears below.

BTC Encoding Algorithm
For each 4 x 4 block do

Compute the mean Value of the 16 pixels in that block.
Compute the mean square value of the 16 pixels in that block.
For each pixel in the current block do

If pixel brightness ^ mean then pixel bit value = 1
If pixel brightness < mean then pixel bit value = 0

Compute standard deviation of the 16 pixels in that block.
Store the mean, std, and bit-plane for that block.

BTC Decoding Algorithm
For each 4 x 4 block do

Get the mean, std, and bit-plane for that block.
Compute q — the number of bits in the bit-plane that are ones.
Compute the low fill value: low — mean - (std[q/(16—q)])'5
Compute the high fill value: high = mean + (std[(16—q)/q])‘5
For each pixel in the current block do

If pixel bit value == 1 then pixel value = high
If pixel bit value = 0 then pixel value = low
Store the pixel value.

To help clarify the encoding/decoding procedure, consider the following
example (note: the sample used was selected to make the example clear and
easy to understand, not because it is a typical image block).

Sample Block

10 20 30 40
20 30 40 50
30 40 50 60
40 50 60 70

39

mean = (10+20+30+40+20+30+40+50+30+40+50+60+40+50+60+70)/16 = 40
variance = (100+400+900+1600+400+900+1600+ ... +3600+4900)/16 = 1850
std = [variance - mean2]'4 5 = 16

The resulting bit-plane is:

0 0 0 1
0011
0 1 1 1
1111

The encoding algorithm would store mean, std, and the bit-plane (requiring a
total of 32 bits).

To decode the block, first q would be computed.

' q = 10

low = 19
high = 52

The resulting decoded block is:

19 19 19 52
19 19 52 52
19 52 52 52
52 52 52 52

For additional information on the Block Truncation Coding algorithms,
see references 3, 4, and 5.

4. Theoretical Execution Times for BTC
The terms speedup and efficiency were mentioned above as being two of

the prime criteria for judging parallel algorithms. Speedup shows how much
faster a parallel algorithm works than a serial algorithm for the same problem.
It is computed by the following equation:

40

Speedup = Serial Execution Time / Parallel Execution Time

Obviously, the higher the speedup is, the faster the algorithm will run. In
general, execution time decreases as more processors are used, increasing
speedup. The increase in speedup due to using more processors depends on
the efficiency of the parallel algorithm. Efficiency is computed as follows:

Efficiency == Speedup / Number of Processors Used

In general, efficiency is less than or equal to 1. An efficiency of 1 is called
linear speedup, because an increase in number of processors used causes a
linearly proportional increase in execution speed. The timing relationship for
such algorithms is of the form:

Execution Time = F(n)/N

F(n) is some function of the input size n, and N is the number of processors
used. Few algorithms exactly fit this form, but many approximate it. In the
case of Block Truncation Coding, the theoretical timing relationships are:

Encode Time == kj + kgn/N
Decode Time ~~ k3 + k4n/N

N is the number of processors used, n is the input size (in pixels), and the k’s
are constants dependant or the actual implementation. The ki constant
represents the initialization time required before any blocks are actually
encoded. The k£ constant represents the time required per pixel for one
processor (not including the initialization time). The constants L3 and k4

work the same for the decoding algorithm. Obviously if ki and k3 are very
small, or the number of pixels per processor (n/N) is very large, the equations
approximate linear speedup very closely. Therefore, there is a need to actually
implement the algorithms to determine how close they come to the ideal of
linear speedup, for different values of n/N.

41

5. Implementation
The BTC encoding and decoding algorithms were implemented in

MC68000 assembly language. Assembly language was used because it provides
maximum execution speed and because high-level parallel optimizing
compilers are not available for PASM. The two algorithms were written in a
single program, for simplicity of experimentation (they are totally separate
routines, but putting them in one file simplifies downloading, etc.)

There were two possible ways to optimize the BTC programs for fast
execution speed. The first would be to maximize speedup for the resulting
program. Maximum speedup would require encoding/decoding only one block
per processor. The resulting execution times would then be:

Minimum Encode Time = k4 + k2
Minimum Decode Time = k3 T k4

By minimizing the constants, the resulting programs would run tremendously
fast (less than 100 [Js each). Unfortunately, for images of realistic size, this
would require far too many processors. Therefore the programs were
optimized for the other case.

The other way to optimize the programs was in terms of high efficiency.
This approach has each processor encoding/decoding several image blocks. As
a result the k2 and k4 constants become most important, because they are
multiplied by n/N, which for realistic images would be at least 16 or more.
Therefore the primary goal was to optimize k2 and k4.

Three important methods of optimization were used. The first was to use
assembly language to write the programs, instead of a higher level language.
Even if a high-level optimizing compiler was available for PASM, it could not
compete with the speeds possible with quality assembly code. Second, Some
time was saved by expanding loops. Specifically, this meant repeating sections
of code the 16 times needed to process each pixel in a block. This saved loop
overhead time, which would have been significant. And third, extensive use of
lookup tables was made. These lookup tables store pre-computed values for
different calculations (such as the square root of an 8-bit number), saved
significant amounts of execution time.

42

6. Experiments performed
Three different experiments Were conducted with the BTC

encoding/decoding program- The first experiment was to determine the effects
of image variations (other than image size) on execution speed. The second
experiment was to see the effect of image size on execution speed, given a
constant number of processors. The third experiment tested execution speed
for a constant image size using a variable number of processors.

In the first experiment, 20 randomly generated images were used to
determine approximate best case, worst case, and average case execution
times. These were then compared to produce an approximate percentage
variation in execution speed due to image variations. The random images
consisted of 4096 pixels (64 x 64) each, and were processed using four PEs.

In the second experiment, random images of three different sizes were
tested to determine the effects of image size on processing rate. Images sizes of
1024 pixels (32 x 32), 4094 pixels (64 x 64), and 16384 pixels (128 x 128) were
used. The images were processed using four PEs, with the four PE execution
times being averaged to produce the actual timing data.

In the third experiment, a random image was processed using different
numbers of PEs, in order to determine execution speedup and efficiency due to
increasing parallelism. The same image was processed using 1, 2, and 4 PEs.
The random image consisted of 4096 pixels (64 x 64).

7. Data
The tables below list the actual timing data collected for each of the

three experiments. Image size is in pixels and execution times are in
milliseconds. Except for experiment 1, all execution times are the average
values for all images used and all PEs used.

Experiment 1

Data Type Encode Time Decode Time
Best case 20.008 9.452
Average case 20.0348 9.4864
Worst case 20.064 9.532

43

Experiment 2

Image Size Encode Time Decode Time

1024 5.058 2.436
4096 20.037 9.488

16384 79.864 37.564

Experiment 3

Processors Encode Speedup Decode Speedup

79.868 1.0000 37.576 1.0000
;'/2Y:;vAv'. 39.944 1.9995 18.810 1.9977

20.037 3.9860 9.488 3.9604

8. Interpretation of Data
Using the data gathered in experiment one, it is possible to compute an

approximate percentage varation in execution speed due to image variations.
The actual results are:

Actual Encoding Time = Average Encoding Time ± .14%
Actual Decoding Time = Average Decoding Time ± .42%

Clearly the effect of image differences (other than size) on execution time is
practically insignificant.

In order to determine the affect of image size on execution speed, the
results of experiment two were graphed as shown on page 11. The graph
clearly shows that execution time increases linearly with image size, as
expected. From the data it is possible to compute kj and ks, the time taken
when the image size is zero. The values are:

/hi = 70.9 ps
k3 = 94.1 jUs

The constants k2 and k4 are the slopes of the encoding and decoding lines,
respectively. Calculating the slopes results in:

k2 = 19.48 us

44 '

k4 = 9.148 /js

In order to determine the affect of increasing parallelism on execution
speed, the results of experiment three were graphed as shown on pages 12-15.
The two speedup graphs show that both the encoding and decoding
algorithms exhibit (approximately) linear speedup. The two efficiency graphs
show that efficiency drops only slightly as parallelism increases.

Using the results of the three experiments, it is possible to produce
equations for the actual execution times based on image size and number of
processors. The resulting equations are:

Encoding Time = 70.9 + 19.48 * (n/N) fjs + .14%
Decoding Time = 94.1 + 9.148 * (n/N)/is ±.42%

Clearly these equations match the theroretical equations of section 4.

9. Future Research
There are several possible lines of research continuing where this project

left off. The most obvious possibility would be to just continue directly.
Additional optimization may be possible. More data could be gathered (time
and machine problems prevented tests using larger images or more processors).
A hybrid SIMD/MIMD version could be written (the current version is entirely
MIMD). Note: It is not recommended that a pure SIMD version be written
using the current condition code hardware. There is little chance that a pure
SIMD version could run faster than an MIMD version on this machine (due to
the nature of the problem and the nature of the computer being used). To
write such a version may be an example of using the wrong hardware for the
wrong problem.

Another research idea than beating this relatively dead horse, would be to
convert the BTC programs to do real disk I/O to get data and store results.
Because there is native operating system kernel, all data Was downloaded with
the programs, totally ignoring the usefulness of having two dual-ported
memory boards with each processor. It would be very good to find out how
well the I/O processors and dual-ported memory boards work for a real
program using large amounts of data.

References

[1] T. Schwederski, W. G. Nation, H. J. Siegel, and D. G. Meyer, "The
Implementation of the PASM Prototype Control Hierarchy"

[2] H. J. Siegel, T. Schwederski, J. T. Kuehn, and N. J. Davis IV, "An
Overview of the PASM Parallel Processing System," in Computer
Architecture, D. D. Gajski, V. M. Milutinovic, H. J. Siegel, and B. P.
Furht, eds., IEEE Computer Society Press, Washington, D.C., 1987, pp.
387-407.

[3] L. J. Siegel, E. J. Delp, T. N. Mudge, and H. J. Siegel, "Block
Truncation Coding on PASM," 19th Annual Allerton Conference on
Communication, Control, and Computing, Allerton House, Monticello,
IL, Sept. 1981.

[4] E. J. Delp and O. R. Mitchell, "Image Compression Using Block
Truncation Coding," IEEE Trans. Commun., vol. COM-27, pp. 1335-
1342, Sept. 1979. " ,

[5] O. R. Mitchell and E. J. Delp, 'Multilevel Graphics Representation
Using Block Truncation Coding," Proceedings of the IEEE, vol. 68, no.
7, July 1980.

45A

' V ' 50 0 -

CO
3 30 0

‘Encode

Decode

0.00 2 00 H 00 6 60. 8 00 10 0 12 0 1H 0 16 0

Image Size (Kpixels)

Figure 1.
Execution Time vs Image Size for 4 PEs.

i . 2 3
Number of Processors

©Encode

ClDTJ
(b 2.0 0/a . w

°Decode

.1. 2 ■■ 3

Number of Processors

Figure 2.
Speed-up for Encode and Decode vs Number of PEs.

Ef
 f i

ci
en

cg
45B

l.;. 2 3

/ Number of Processors

-^Encode

u*
u.
c.;-<i>

"^Decode

8 3
Number of Processors

Figure 3.
Efficiency for Encode and Decode vs Number of PEs.

46

PART n

Mathematical Operators

47

Mon-Deterministic Instruction Time Experiments

Samuel A. Fineberg, Thomas L. Casavant* **, Thomas Schwederski, H.J. Siegel

Abstract
Experimentation aimed at determining the minimum-granularity at

which variable-length SIMD operations may be decoupled into identical
asynchronous MIMD streams for a performance benefit is reported. The
experimentation is based on timing measurements made on the PASM system
prototype at Purdue. The application used to measure and evaluate this
phenomenon was matrix multiplication, which has feasible solutions in both
SIMD and MIMD modes of computation, as well as in a hybrid of SIMD and
MIMD modes. Matrix multiplication was coded in these three ways and
experiments were performed which examine the tradeoffs among all of these
modes.

I. Introduction
While extensive past efforts have dealt with analytical and simulated

performance analysis of SIMD and MIMD algorithms, computations, and
machines, this work describes empirically-based research generated from
experiments on a parallel machine. This research was performed in an
attempt to gain insight into the effect of certain aspects of novel architectures
on applications programs. Specifically, the performance of the PASM
prototype, a machine capable of both SIMD and MIMD modes of
computation, is evaluated from the perspective of matrix multiplication. This
application was chosen because it has obvious optimal solutions and a simple
enough structure to permit analysis of architecture features through controlled
measurements of program execution time. The experiments described are

* Supported by the Supercomputing Research Center under contract
number 6925.

** Currently on leave from Purdue.

48

based on SIMD, MIMD, and hybrid S/MIMD algorithms for multiplying n x n
matrices for values of n ranging from 4 to 256. Operations were performed on
16-bit integers utilizing 16 processors in several 4, 8, and 16 processor
configurations.

The primary architecture feature being evaluated in this work is the
ability to decouple small grains of variable execution-time operations from
SIMD sections of code into multiple asynchronous MIMD threads of control.
This unique feature derives from the ability to dynamically reconfigure the
parallelism mode of PASM.

Results indicate that when mode-changing operations induce a minimal
overhead, benefits of such decoupling may be found even for relatively small
amounts of variation in the execution-time of individual operations. This
same low-overhead mode-changing feature was also used to greatly improve
the performance of the inter-process communication components of parallel
programs by using the implicit hardware synchronization of SIMD mode to
reduce the complexity of message passing protocols through the PASM
interconnection network. Finally, experiments indicate that due to the
existence of finite queues for issuing instructions from the control units to the
processing elements in SIMD mode, superlinear speed-up1 is achievable.

Section 2 briefly describes generally related work, and Section 3 overviews
PASM and its prototype. Section 4 describes the basic algorithm that was
used while Section 5 describes the programmed variations of this algorithm as
implemented on PASM for use in the experiments presented in Section 6. In
Sections 7 through 11, the empirical results are discussed under special
consideration of the PASM architecture as well as the central issue of
decoupling variable-length SIMD operations into multiple asynchronous MIMD
streams.

2. Background and Related Work
Related experimental research has been carried out on several machines

through the use of both simulation and experimental techniques. Simulation-
based analysis was performed by Su and Thakore for the SM3 system and a
hypercube architecture [SuT87]. Experimental work involving measurements
on working machines has also been performed. Examples include Work

■ ;We define superlinear speed-up as the condition in which the speed-up to
number of PEs (processing elements) ratio is greater than 1.

49

involving several machines: the BBN Butterfly [CrG85], Cm* [GeS87], the
Encore Multimax [Hud88], the Intel Hypercube [Hud88], PASM [FiC87], and
the Warp system [AilA87]. In these efforts, matrix multiplication was
normally employed as an example algorithm. Other reported work involving
efficiency measurements and algorithm optimization on parallel machines
includes work done On an Affiant FX/8 [JaM86, Han88], a CRAY XMP
[Cal84], and a combination of Apollo work-stations and an Affiant FX/8
[KuN88]. '

3. Overview of PASM and the PASM Prototype
The PASM (partitionable SIMD/MIMD) system is a dynamically

reconfigurable architecture in which the processors may be partitioned to form
independent virtual SIMD and/or MIMD machines of various sizes [SiS8l]. A
30-processor prototype has been constructed and was used in the experiments
described in Section 6. This section discusses the PASM architecture
characteristics which are most relevant to the reported experimentation. For
a more general description of the architecture, see [SiS87],

The Parallel Computation Unit of PASM contains N PEs where N is a
power of 2 (numbered from 0 to N—1), and an interconnection network. Each
PE (processing element) is a processor/memory pair. The PE processors are
sophisticated microprocessors that perform the actual SIMD and MIMD
operations. The PE memory modules are used by the processors for data
storage in SIMD mode and both data and instruction storage in MIMD mode.
The Micro Controllers (MCs) are a set of Q=2q processors, numbered from 0
to Q—1, which act as the control units for the PEs in SIMD mode and
orchestrate the activities of the PEs in MIMD mode. Each MC controls N/Q
PEs. PASM has been designed for N==1024 and Q= 32 (N—16 and Q=4 in
the prototype). A set of MCs and their associated PEs form a virtual
machine. In SIMD mode, each MC fetches instructions and common data
from its associated memory module, executes the control flow instructions
(e.g., branches), and broadcasts the data processing instructions to its PEs. In
MIMD mode, each MC gets instructions and common data for coordinating its
PEs from its memory.

The PASM prototype system was built for N=16 and Q—4. This system
employs Motorola MC68000 processors as PE and MC CPUs, with a clock
speed of 8 MHz. The intercoiinection network is a circuit-switched Extra-
Stage Cube network, which is a fault-tolerant variation of the multistage cube
network. Because knowledge about the MC and the way in which SIMD

FIFO
queue

;o PEsFetch Unit

MC
Memory

MC CPU
Mask

Fetch Unit
RAM

Fetch Unit
Controller

Figure 1: Simplified MC structure.

instructions are implemented with standard MC68000 microprocessors is
essential to the understanding of the behavior that was observed in the
experiments, the SIMD instruction broadcast mechanism is overviewed below.

Consider the simplified MC structure shown in Figure 1. The MC
contains a memory module from which the MC CPU reads instructions and
data. Whenever the MC needs to broadcast SIMD instructions to its
associated PEs, it first sets the Mask Register in the Fetch Unit, thereby
determining which PEs will participate in the following instructions. It then
writes a control word to the Fetch Unit Controller which specifies; the location
and size of a block of SIMD instructions in the Fetch Unit RAM. The Fetch
Unit Controller automatically moves this block word by word into the Fetch
Unit Queue. Whenever an instruction word is enqueued, the current value of
the Mask Register is enqueued as well. Because the Fetch Unit enqueues
blocks of SIMD instructions automatically, the MC CPU can proceed with
other operations without waiting for all instructions to be enqueued.

PEs execute SIMD instructions by performing an instruction fetch from a
reserved memory area called the SIMD instruction space. Whenever logic in
the PEs detects an access to this area, a request for an SIMD instruction is
sent to the Fetch Unit. Only after all PEs that are enabled for the current
instruction have issued a request is the instruction released by the Fetch Unit
queue, and the enabled PEs receive and execute the instruction. Disabled PEs
do not participate in the instruction and wait until an instruction is broadcast

for which they are enabled. This way, switching from MIMD to SIMD mode is
reduced to executing a jump instruction to the reserved memory space, and a
switch from SIMD to MIMD mode is performed by sending a jump to the
appropriate PE MIMD instruction address located in the PE main memory
space..'

The SIMD instruction broadcast mechanism can also be utilized for
barrier synchronization [LuB80] of MIMD programs. Assume a program uses a
single MC group, and requires the PEs to synchronize R times. First, the MC
enables all its PEs by writing an appropriate mask to the Fetch Unit Mask
Register. Then it instructs the Fetch Unit Controller to enqueue R arbitrary
data words, and starts its PEs which begin to execute their MIMD program.
If the PEs need to synchronize (e.g., before a network transfer), they issue a
read instruction to access a location in the SIMD instruction space. Because
the hardware in the PEs treats SIMD instruction fetches and data reads the
same way, the PEs will be allowed to proceed only after all PEs have read
from SIMD space. Thus, the PEs are synchronized. The R synchronizations
require R data fetches from the SIMD space. Thus, the Fetch Unit Queue is
empty when the MIMD program completes, and subsequent SIMD programs
are not affected by this use of the SIMD instruction broadcast mechanism..

In order to make comparisons of the speed of the PASM prototype
relative to other machines and to compare the relative speeds of SIMD and
MIMD instruction fetches, the actual raw performance of PASM in SIMD and
MIMD mode was measured on the prototype and is illustrated in Table 1 in
MIPS (millions of integer instructions per second) for two different types of
instructions. The difference in speed between SIMD and MIMD modes can be
attributed to two factors. SIMD instructions are fetched from the Fetch Unit
Queue in the MC, and the queue can deliver data with one less wait state than
can the PEs’ main memories. In addition, PEs’ main memories are
implemented with dynamic memories. While care was taken in the hardware
design that all refresh operations occur simultaneously in all PEs, and are
performed invisible to the PE CPU, some delay is still possible. No such delay
occurs during SIMD instruction fetches because the Fetch Unit queue is
implemented with static RAM components. Measurements were made with
repeated blocks of straight line code which were large enough to make the
loop control overlap insignificant.

52

Table 1: Prototype raw performance.

Mode Operation
Processing

Rate

SIMD 16-bit Reg.-to-Reg. add 22 MIPS
MIMD 16-bit Reg.-to-Reg. add 18 MIPS
SIMD 16-bit Reg.-to-Mem. add 6.4 MIPS
MIMD 16-bit Reg.-to-Mem. add 6.0 MIPS

4. Matrix Multiplication Algorithms Used
The parallel matrix multiplication algorithm used here had 0(n3/p) time

and space complexity for multiplying two nxn matrices employing p PEs.
Figure 2 shows an 0(n3) time and space complexity serial algorithm. This
particular algorithm is provided to illustrate the ordering of multiplications as
they are done in the parallel version of Figure 3. Figure 4 demonstrates the
progress of the serial algorithm for n—4. The two data-flow graphs illustrate
what occurs during the first two iterations of the second j loop of Figure 3.
The i loop of the serial algorithm simulates the PE number in the parallel
algorithm. The calculation of ((i+j) mod n) in the serial version allows the
rows of the B matrix to be stepped through as the j loop proceeds with the
initial B matrix row number being i. The serial algorithm used in the
measurements on PASM, however, was optimized in order to permit accurate
evaluation of speed-up, and therefore did not perform multiplies in this
columnar manner. Rather, it followed a more straightforward row-column
order.

In the parallel algorithm, the outer for all loop represents iteration across
space rather than time. Each PE contains n/p adjacent columns of each
matrix as shown in Figure 5. Within each PE these columns are numbered
from 0 to (n/p)—1 as shown in the algorithm of Figure 3. This layout is
similar to that used by Su and Thakore in their experiments for the SM3
System [SuT87]. Using the for v loop, each of these adjacent columns is
stepped through by each PE in sequence, and each PE appears as if it has n/p *

* This effectively rotates all internal columns of the A matrix to the left
without destroying the data in column 0 of the PE, or actually moving the
data.

53

for i=0 to n—1 do
for j=0 to n—1 do

cy=°;
for i=0 to n—1 do

for j=0 to n—1 do
for k=0 to n—1 do

ck,i ck,i ~k ak,((i+j) mod n) F((i+j) mod n),i>

Figure 2: Serial matrix multiplication algorithm.

for all i, O^i^n—1, do
for v=0 to (n/p)—1 do

for j =0 to n—1 do
cj,v = 0;

for j=0 to n—1 do
for v=0 to (n/p)—1 do

for k=0 to n—1 do begin
ck,v = ck,v "F 3-k,v b^j^n^pj_[_v_j.j^ mo(j n),v!

for v=l to (n/p)—1 do
change the pointer to column v—1 of the A matrix to point to
column v;*

for k=0 to n—1 do
send a^ o to PE (i—1) mod p;
receive a value and move it into

Figure 3: Parallel matrix multiplication algorithm.

virtual PEs within it. The virtual PE number is then defined as (n/p)i+v.
Thus, the row subscript of B is calculated by replacing i in Figure 3 with this
virtual PE number. Data movement internal to each PE involves only a
pointer adjustment. Only on the boundaries (i.e. the highest and lowest
numbered columns of each PE) is the inter-PE network employed.

54

V*
oorQ

•—^ X a00 + c00 = c00

*>10 'Vv X a10 + c10 = c10

cr
*

to o Y* X a20 + c20 = c20

*>30 ^ X a30 + c30 ~ c30

a

Figure 4

PE 0

a00 a01 *>oo *>oi coo C01 a06 a07 boe *>07 c06 g07
a10 all *>10 *>11 c10 Cll a16 a17 *>16 *>17 ^16 c17
a20 a21 *>20 *>21 c20 C21 a26 a27 *>26 *>27 e26 c27
a30 a31 *>30 b31 c30 C31 • •• a36 a37 *>36 *>37 c36 c37
a40 a41 *>40 b41 c40 C41 a46 a47 *>46 b47 G46 c47
a50 a51 *>50 *>51 c50 C51 a56 a57 *>56 b57 G56 c57
a60 a61 beo *>61 c60 C61 a66 a67 *>66 *>67 c66 c67
a70 a7T *>70 . *>71 . _Cl£L_ C71 a7fi a77 .*>.7fi_. b?7 C7R c77

Figure 5: Data Layout for n=8, p—4.

This particular algorithm was chosen over a more standard parallel
matrix multiplication algorithm (e.g., see Stone [Sto80]) for several reasons.
First, if a broadcast approach is used to distribute the "a" coefficients to the

55

PEs, n network set-up cycles are incurred in addition to n network transfer
cycles. In the chosen algorithm, the network remains in one configuration
(i.e., PE i connected to PE (i-1) mod p), thus eliminating any recurring
network set-up costs, while not incurring any additional network transfer
costs. Also, this algorithm facilitates a columnar data format which was
preferable for several reasons. First, because all matrices are stored in
columnar format, BxA may be calculated as well as AxB without
rearrangement of the data. Second, each matrix may be used in subsequent
multiplications without reformatting. Data uniformity is also desirable to
facilitate parallel I/O transfers of large data sets from secondary memory.

What follows is a semantic description of the progress of the algorithm.
During each of the n2/p iterations of the innermost loop of the algorithm
shown in Figure 3, each of the elements of the columns of the A matrix is
multiplied by an element of the B matrix. Note that due to the columnar
storage, the column of the B matrix matches the internal column number of
the A matrix. However, the absolute row of B must match as the absolute
column number of the A matrix (i.e. the column number when j=0 and
k=0). This value is then added to an element of the 0 matrix. Therefore,
there is a total of n multiplications and additions per inner loop with this
second loop being executed n/p times. In the second innermost loop, the
columns of the A matrix are shifted one column to the left. Within each PE,
this transfer involves a single memory move, because a pointer to the entire
column is changed rather than moving its elements. However, for the lowest
numbered column of each PE, the transfer employs the interconnection
network. This column is transferred through the network and stored in the
highest numbered column of PE ((i—1) mod p). The data received through
the network is placed in the PEs memory as its highest numbered column.
This transfer requires n network operations (one for each element of the
column). This procedure is repeated until all of the columns of the A matrix
have been through each of the (n/p) positions of each PE for a total of n2
network transfer operation times incurred.. During each of these elemental
time periods, p values are exchanged.

Consider the time required for index calculation. The constant ix(n/p)
was pre-calculated and placed in the programs data segment since it was
constant in each PE for a given value of n and p. Also, the j+k operation
involved in the B matrix row calculation was done outside the k loop and
therefore only contributes Q(n) time complexity per PE. The calculation of
the A and C matrix row indices was done with the MC68000’s auto-increment

56

mode. Due to the pipelined structure of the MC68000 this does not add any
extra execution time of the non-autoincrement mode. Therefore, the index
calculation, as a separate component of the execution, time is not significant.

The current implementation of the network in PASM supports 8-bit data
transfers. Because these experiments involved 16-bit data, each element
transfer required two shift operations (one for transmitting and one for
receiving), an OR operation, and two network operations. Because no DMA
block transfers were possible given the current implementation of PASM, each
column transfer required n single-element transfers for a total of 2n network
operations per column.

Being circuit switched, setting up a path in the PASM prototype network
is a time consuming operation: However, in this algorithm only a single path
set-up is required, (i.e. PE i always sends to PE (i—l) mod p). Thus the
measurements made do not reflect any significant influence from network
reconfiguration overhead. Hence, there were 2n2 network accesses, n3/p
multiplications, and n3/p additions required. This resulted in a 0(n3/p)
growth in execution time.

5. Implementations of the Algorithm
Three variations of the parallel algorithm, as well as an efficient serial

version, were programmed in MC68000 assembly language for execution on
the PASM prototype. The parallel versions included a pure SIMD, a pure
MIMD, and a hybrid S/MIMD version. These three programs may be
executed on 4, 8, or 16 processors simply by changing variables embedded in
their data sections.

5.1. SIMD
The SIMD version executes all looping and control flow instructions in

the MCs. Arithmetic, data movement, and index calculation instructions are
executed on the PEs in SIMD mode. The PE instruction stream is obtained
through the MC’s Fetch Unit Queue and is executed synchronously on all PEs.

In PASM, the network appears to the PEs as two memory locations
(transmit and receive registers). Network transfers are made directly to the
transfer registers using memory-to-memory move instructions.

For several reasons, the SIMD version appeared to be the most natural
choice for implementation. First, in the matrix multiplication algorithm used
all PEs are always enabled, thus eliminating the need for enabling and

57

disabling the PEs. Second, the implicit synchronization inherent in SIMD
mode allowed the network transfer operations to be carried out in a
straightforward fashion requiring only two memory- to-memory move
instructions. Third, the only data-dependent portion of the algorithm, is the
actual multiplication instruction, which has a variable execution length due to
its microcoded implementation in the MC68000. A final advantage of the
SIMD version is due to the use of a FIFO queue in the Fetch Unit of the MCs.
Because this queue buffers instructions being sent to the PEs, the execution of
SIMD instructions by the PEs can be overlapped with the execution of control
flow instructions by the MCs.

In addition to these conceptual factors involved in the SIMD version,
there are some factors that were present due to the implementation of the
PASM prototype. First, instructions may be accessed more quickly from the
Fetch Unit Queue than from the PEs main memory. This is due to the use of
faster memory technology in the queue. Also, the overlap of the control flow
instructions with PE instructions is only present if the queue remains non-
empty. In other words, the PEs can only proceed if the MCs supply
instructions faster than the PEs can remove them from the queue.

5.2. MIMD
The second version was a pure MIMD program in which the MCs were

only used for initiating the PE programs. The PEs executed all instructions
asynchronously including all network, control flow, and arithmetic operations.
Although the network hardware prevents overwriting of old data in the
transfer register, the asynchronous network operations necessitated polling of
the network buffer in order to determine whether it was ready to accept new
data. After transmission, the network buffer must be polled to assure that the
data is valid before a receive Operation can be completed.

The major advantage of the MIMD version was rooted in the variation of
the execution time of the MC68000 multiply instruction. Multiply or divide
instructions require an amount of time which is related to the number of l’s in
the binary representation of one operand. Assume an algorithm is executed on
K PEs, each PE executes J instructions, and instruction j on PE k takes time
t^. Then the total execution time in SIMD mode (tSjmd) is the sum of the
worst case times for each instruction as given by:

58

j K
TsiMD = E^fS^jk

j=l
In MIMD mode each PE proceeds independently, and therefore the execution
time (tmimd) *s *he worst case sum of instruction execution times as given by:

k j
rMlMD : max Erjk

k~° j-i
In general, rMIMD ^ rSIMD.

5.3. S/MIMD
The hybrid S/MIMD algorithm was developed to take advantage of the

fast barrier Synchronization mechanism described in Section 3 and to exploit
the execution time advantage of the MIMD program (i.e. decoupling at low
cost). In this version, the main program was the same as in the MIMD case.
The difference was in the method of determining whether the network was
ready to accept a transfer operation. Rather than polling the network buffer,
barrier synchronization "Was used to allow network operations to be carried out
as simple memory-to-memory move operations as in the SIMD version. This
lowered the amount of network overhead to a level comparable but slightly
greater than the SIMD version due to the mode switching time. The other
advantages of SIMD mode (i.e., faster instruction fetch and control flow
instruction overlap) could not be realized in this version. 6

6. Experiments Performed
Experiments were performed on nxn matrices and measurements were

made of the execution times for n== 4, 8, 16, 64, 128, and 256. The algorithm
was implemented for SIMD, MIMD, and S/MIMD mode and was run on p =
4, 8 and 16 PEs. All operations were 16-bit unsigned integer operations and
overflow was ignored. To allow for varying machine and problem size, loops
were utilized wherever possible.

To measure the amount of asynchronous execution necessary to yield
better performance by the hybrid version over the SIMD version, the number
of multiplies in each innermost loop of the algorithm was made to be a
dependent variable. These multiplies were added as straight line code in order
to prevent skewing of execution time data due to control flow overlap. The
multiplies were added to study the effect on the total execution time and did
not affect the values in the C matrix. Let Tsjmd and Ts/mimd be the total

execution time for the SIMD and S/MIMD programs respectively. The
performance of each of the components of the execution time was measured at
points corresponding to quantities of inner loop multiplications where:

59

TsiMD < Ts/MIMD)

Tsimd = Ts/mh^d, and
A tsimd > TS/mimd-

Measurements were made with the internal system timers (MC68230).
Experiments were performed for each version with the identity matrix in A
and random data in B. While the value of the multiplier used in the MC68000
multiplication instruction affects the execution time, the data value of the
multiplicand has no effect. Therefore, the elements of the A matrix, which
were always used as the multiplicand could be chosen as the identity matrix
without affecting program performance. By using the identity matrix, matrix
multiplication results could be easily verified, thereby simplifying the
debugging process. Random data, produced from a uniformly distributed
random number generator, was chosen for these experiments in order to
represent the average case, and the same data sets were used on all versions of
the algorithm with the same value of n and p.

7. Speed-up & Overall Comparison
Figure 6 illustrates execution time of matrix multiplication vs. problem

size observed in the parallel versions of the algorithm for p=8. The difference
between the SISD time and that of the parallel versions represents an
improvement by a factor of approximately p.

Although not readily apparent in the graph, it should be rioted that
Tmimd/Ts/mimd decreases as n increases. The only difference between these
two versions is attribxited to the contribution to the execution time of
communication. Note that for p fixed, and small n (e.g. n=8), the time

. . 3 2 ✓ \
complexity of the multiplications is — or’ = n2. This is the same

A..A ■ # p 8 .
order of contribution as communication. Hence, for small n, the 0(n2)
communication contribution dominates the 0(n3) arithmetic. However, for
larger n, the 0(n3) component ultimately dominates and all three curves
converge.

60

100000

SIMD
10000

log scale

64 128 256
Problem Size (n)

Figure 6: Execution time vs. problem size for p—8
and one multiply per inner loop.

The third aspect of this graph is the apparent advantage of the SIMD
version over the S/MIMD version. The difference is caused by the ability of
the MCs to execute control flow in parallel with arithmetic. However, the
S/MIMD version has the potential for better performance due to the
decoupling effect associated with MIMD execution of data-dependent execution
time operations. In order to determine the point where these graphs cross,
however, experiments were conducted which added more data-dependent
instructions in a controlled way.

8. Execution Time vs. Number of Variable Length Operations
To determine the amount of asynchronous execution needed to achieve a

benefit when executing a portion of a computation asynchronously in MIMD
mode, additional multiplication operations were added to the innermost loop
of the algorithm. Figure 7 plots total execution time for SIMD and S/MIMD
programs with added multiplications vs. the number of added multiply
instructions for n-=64 and p=4 with random data. The lines plotted include
3 different points with the number of multiplications ranging from 13 to 15.
These lines are disjoint at the endpoints with the SIMD version being faster
for small numbers of added multiplies and S/MIMD being faster as the

/S/MIMD

Number of Multiplies

Figure 7: Execution time vs. number of
inner loop multiplications for

n=64 and p=4.

number of added multiplies is increased. The point at which
TSimd = Tg/MIMD was with approximately fourteen added multiplications.
This was due to the increase in execution efficiency when the multiplications
were executed asynchronously, i.e., fewer processors were idle while waiting for
all multiplications to complete.

9. Contributions to Execution Time
To further demonstrate that the execution time advantage was

manifested in the multiplication instruction execution time, the contributions
of the total execution time of the hybrid and SIMD programs were broken
down and plotted. Figures 8, 9, and if) contain plots of execution time vs.
problem size at each of the endpoints and at the crossover point of Figure 7.

62

10000 Multiplication

Communication

log scale
OtherSIMD

S/MIMD

64 128 ; 256
Problem Size (n)

Figure 8: Contributions to execution time for
matrix multiplication with one multiply

per inner loop and p=4.

The times shown are broken down into: (i) multiplication time, (ii)
communication time, and (iii) other contributions such as time for clearing the
C matrix and shifting pointers for internal data movement. Multiplication
and communication times include related address calculation operations. The
multiplication time also includes the addition operation required to add the
calculated value to the proper C matrix element. Figure 8 shows clearly that
as problem size increases the time required for the multiplications increases
faster than the communication time. This was mainly due to to the difference
in the order of the communication time and the multiplication time (i.e, 0(n2)
vs. 0(n3/p)). Due to this difference in time complexity, the time required for
the multiplication instructions becomes the largest component of execution
time, even without the added multiplication instructions. The S/MIMD
program, however, does not execute faster than the SIMD version due to both
the control unit instruction overlap and the faster memory access time of the
Fetch Unit Queue unless extra data-dependent instructions are added.

In Figure 9, the execution times are equal at n—64. With the total time
broken down, it is apparent that the matrix multiplication times are close for
all values of n, and when n=64 the matrix multiplication time is less in the
S/MIMD program than in the SIMD program. However, the matrix
multiplication time was the same because the communication time in the

100000
Multiplication10000 -

time 1000
Communication .

log scale
OtherSIMD

S/MIMD

16 64 128 - 256
Problem Size (n)

Figure 9: Contributions to execution time for
matrix multiplication with 14 multiplies

per inner loop and p=4.

S/MIMD version was slightly more than in the SIMD version. Also, it should
be noted that this effect would be greater if the constant value representing
the instruction fetch time advantage were removed.

Figure 10 demonstrates the advantage provided by the asynchronous
multiplication instructions when enough were added to make the other effects
diminish in importance. In this Version with 30 added multiplications per
inner loop the S/MIMD version is faster for the larger values of n and this
difference increases with n.

10. Efficiency vs. Problem Size
Figure 11 plots efficiency vs. problem size for the three modes of

computation possible on PASM with p=4 as well as the serial case where
efficiency is defined as:

>v, Tserial
E = _

-1 parallel Xp

The efficiency of the S/MIMD and MIMD versions increased with the problem
size, and never reaches or exceeds unity. The reason for the increasing
efficiency can be accounted for by the fact that the quantity of communication
overhead increases as 0(n2), and the computation increases as 0(n3/p). The

100000
Multiplication

10000

Communication

log scale

OtherSIMD

S/MIMD

64 128 , ' ■ 256
Problem Size (n)

Figure 10: Contributions to execution time for
matrix multiplication with 30 multiplies

per inner loop and p=4.

best efficiency was 96% for the S/MIMD version and 87% for MIMD version
(for n=256 and no added multiplies). The MIMD efficiency was lower due to
the extra overhead required for the MIMD communication.

The SIMD version, however, Was not only more efficient than the MIMD
and S/MIMD versions, but was able to achieve an efficiency greater than unity
when compared only to the number of PEs employed. This difference can be
attributed to the ability of the PEs to do computation while the MCs are
doing looping and other control operations. If the queue can remain non
empty and non-full at all times, it should be possible to eliminate all of the
time required for the control operations. Because this amount increases with n,
it is not surprising that the benefit also increases with n. This amount of
benefit is related to the the ratio of control operations versus computation and
communication operations. This does, however, demonstrate that the overlap
of control flow and computation is possible and does provide some efficiency
benefits — especially for applications that strongly exhibit a large quantity of
control flow operations that can be performed on the MCs. This effect was
predicted earlier by Kuehn et al in [KuS86].

65

Efficiency

>4 128 ■
Problem Size (n)

Figure 11: Efficiency vs. problem size for p 4 and one
multiply per inner loop.

— SISD

0.8 -
SIMD

S/MIMD

•MIMD

0.2 4
Number of Processors (p)

Figure 12: Efficiency vs. number of processors for n=64
and one multiply per inner loop.

11. Efficiency vs. Number of PEs
Figure 12 shows how efficiency drops as the number of processors utilized

increases. This drop in efficiency is due to several factors. First, the value of
n/p drops as p increases representing a decrease in the amount of computation
done by each processor. While this does allow better parallelization of the
algorithm, it makes the time consumed by inter-processor communication and
other factors not present in the serial version become more significant
compared to the time required by the computation portion of the algorithm.

12. Summary
Experiments designed to examine the tradeoffs among the SIMD, SISD,

MIMD, and MIMD with barrier synchronized modes on the PASM parallel
processing system prototype were described. In particular, the effects of
instructions with data dependent execution times were considered. Tests were
coded and executed on the prototype. Runtimes for different numbers of
multiplies, numbers of processors, array sizes, and modes of parallelism were
collected. This data was evaluated and discussed, analyzing the effects of the
various parameters in the tests.

The experiments presented used an actual parallel system and pointed
out some of the trade-offs among these modes of parallelism. Experiments
such as these on working prototypes are important in order to begin to learn
how to effectively harness the power of parallel processing.

Acknowledgements: The authors of this paper acknowledge many useful
discussions with Pierre Pero, Tom Pusateri, Ed Bronson, Henry Dietz, Wayne
Nation, and the other members of the PASM working group.

66

References

[AnA87] M. Annaratone, E. Arnould, T. Gross, H. T. Kung, M. Lam, O.
Menzilcioglu, and J. A. Webb, "The Warp computer: architecture,
implementation, and performance," IEEE Transactions on
Computers, Vol. C-36, December 1987, pp. 1523-1538.

67

[Cal84] D. A. Calahan, "Influence of task granularity on vector
multiprocessor performance," 1984 International Conference on
Parallel Processing, August 1984, pp. 278-284.

[CrG85] W. Crowther, J. Goodhue, R. Thomas, W. Milliken, and T.
Blackadar, "Performance measurements on a 128-node butterfly
parallel processor," 1985 International Conference on Parallel
Processing, August 1985, pp. 531-540.

[FiC87] S. A. Fineberg, T. L. Casavant, and T. Schwederski,“Mixed-inode
computing with the PASM prototype," 25th Allerton Conference
on Control, Communications and Computing, September 1987, pp.

"'V/ 258-267.
[GeS87] E. F. Gehringer, D. P. Siewiorek, and Z. Segall, Parallel

processing: the Cm* experience, Digital Press, Bedford, MA, 1987.
[Han88] F.B. Hanson, ’Vector multiprocessor implementation for

computational stochastic dynamic programming," IEEE Technical
Committee on Distributed Processing Newsletter, Vol. 10, 1988, (to

[Hud88] P. Hudak, ’Exploring parafunctional programming: separating the
what from the how," IEEE Software, Vol. 5, January 1988, pp.
54-61. ;

[JaM86] W. Jalby and U. Meier, "Optimizing matrix operations on a
parallel multiprocessor with a hierarchical memory system," 1986
International Conference on Parallel Processing, August 1986, pp.

; 429-432.
[KuN88] J. G. Kuhl, J. J. Norton, and S. R. Sataluri, "A large-scale

application of coarse-grained parallel and distributed processing,"
IEEE Technical Committee on Distributed Processing Newsletter,
Vol. 10, 1988, (to appear).

[KuS86] J. T. Kuehn and H. J. Siegel, "Simulation based performance
measures for SIMD/MIMD processing," in Evaluation of
Multicomputers for Image Processing, L. Uhr, K. Preston, Jr., S.
Levialdi, and M. J. B. Duff, eds., Academic Press, Orlando, FL,
1986, pp. 139-158.

[LuB80] S. F. Lundstrom and G. H. Barnes, "A controllable MIMD
architecture," 1980 International Conference on Parallel
Processing, August 1980, pp. 165-173.

■ - 68'

H. J. Siegel, L. J. Siegel, F. C. Kemmerer, P. T. Mueller, Jr., H. E.
Smalley, Jr., and S. D. Smith, 'PASM: a partitionable
SIMD /MIMD system for image processing and pattern
recognition," IEEE Transactions on Computers, Vol. C-30,
December 1981, pp. 934-947.
H. J. Siegel, T. Schwederski, J. T. Kuehn, and N. J. Davis IV, "An
overview of the PASM parallel processing system," in Computer
Architecture, D. D. Gajski, V. M. Milutinovic, H. J. Siegel, and B.
P. Furht, eds., IEEE Computer Society Press, Washington, D.C.,
1987, pp. 387-407.
H. S. Stone, 'Parallel computers," in Introduction to Computer
Architecture (second edition), H. S. Stone, ed., Science Research
Associates, Inc., Chicago, IL, 1980, pp. 363-425.
S.Y W. Su and A. K. Thakore, "Matrix operations on a
multicomputer system with switchable main memory modules and
dynamic control," IEEE Transactions on Computers, Vol. C-36,
December 1987, pp. 1467-1484.

69

Experimental Analysis of
Multi-Mode Fast Fourier Transforms

Edward C. Bronson, Thomas L. Casavant, Leah H. Jamieson

Abstract
This paper describes a detailed study of parallel fast Fourier transform

programs executing on the 30-processor prototype of the PASM parallel
processing system. Detailed execution time measurements using specialized
timing hardware were made for the complete FFT and for components of
MIMD, SIMD, and hybrid SIMD/MIMD (mixed mode) implementations.
Compared to a baseline serial FFT, the parallel MIMD, SIMD, and hybrid
implementations achieved efficiencies of 0.47, 0.70, and 0.76 respectively. The
component measurements isolated the effects of floating point arithmetic
operations, interconnection network transfer operations, and program control
overhead. Using these detailed component measurements, an expression to
project the execution time for an M-point FFT executing on M/2 PASM
processing elements (PEs) is derived. The measured execution times for 4-PE
and 8-PE programs verify this expression to within 1%. This expression is
then used to obtain an accurate extrapolation of the execution time and
speedup of the MIMD, SIMD, and hybrid programs to a full 1024-processor
PASM system. Overall, the experimental results demonstrate the value of the
multi-mode capability of PASM and the suitability of PASM Computationally
intensive algorithms such as the FFT.

1. Introduction
This paper describes a detailed study of parallel fast Fourier transform

programs executing on the 30-processor prototype of the PASM parallel
processing system. PASM is a dynamically reconfigurable architecture
designed to allow both SIMD and MIMD operation, and to provide the flexible
computation and communications capability needed for the wide range of
algorithms used in image and speech processing applications [SiS81, SiS87]. In

70

this paper we use the FFT algorithm as a vehicle for comparing the SIMD,
MIMD, and hybrid SIMD/MIMD modes of operation. The FFT programs
exercise PASM’s floating point hardware for arithmetic operations, the
multistage Cube interconnection network, and the specialized timing
hardware. Detailed experimental results are obtained for small FFTs on the
prototype hardware, then are extrapolated to obtain execution time and
speedup figures for a full 1024-processing element (PE) PASM system. The
extrapolation technique is verified analytically and the measurements used for
the components of the extrapolation are verified experimentally to within 1%
using 4-PE and 8-PE programs.

In the experiments reported, three implementations of a 4-PE single
precision floating-point 8-point FFT are studied. These programs were
written to examine the trade-offs between the different modes of parallel
computation on PASM. An SIMD version performs all FFT operations in
SIMD mode. An MIMD version performs arithmetic operations in MIMD
mode and polls the interconnection network to determine the network status
during data transfer operations. A third program uses barrier synchronization
to align the operations of the PEs during interconnection network transfer
operation in place of polling and testing the status of the network. This
program is a hybrid of the SIMD and MIMD modes of computation: the
arithmetic calculations and the network transfers are performed in MIMD
mode, while the barrier synchronization operation is performed by using
hardware designed for SIMD operation. The hybrid mode gave the best
execution time, 9% faster than the SIMD implementation and 39% faster than
the MIMD version. Measurements of the components of the implementations
isolate the effects of the floating point arithmetic operations, interconnection
network transfer operations, and program control overhead, and allow
interpretation of the differences in the three overall execution times; Effects
due to the number of memory wait states, movement to and from the floating
point coprocessor, masking to enable and disable PEs, synchronization,
network setup and data transfer, and mode switching are analyzed. Finally
the detailed component measurements are used to project a speedup of 814 for
a 1024-PE 2048-point hybrid algorithm.

The programs and execution times presented in this paper are among the
first applications of the PASM system and are the first floating-point program
results obtained on the system. The results demonstrate the value of the
multi-mode capability of PASM and its suitability for computationally
intensive algorithms such as the FFT. The ability to obtain very detailed

7i:

measurements has proven invaluable in understanding and interpreting results
from the different implementations of the algorithm and in projecting the
results from the prototype to a larger system.

The following section presents an overview of the PASM system and
details of the PASM prototype. The fast Fourier transform algorithm is
described in Section III. In Section IV, details of the various FFT program
implementations are described. Section V presents the measurements
techniques used. The experimental results are presented in Section VI and
discussed in Section VII.

2. Overveiw of PASM and the PASM Prototype
PASM is a dynamically reconfigurable architecture in which the

processors may be partitioned to form independent virtual SIMD and/or
MIMD machines of various sizes [SiS81, SiS87]. A 30-processor prototype has
been completed and was used in the experiments described in Section VI.
This section discusses the PASM architecture characteristics which are most
relevant to the reported experimentation. For a more general description of
the architecture, see [SiS87].

The Parallel Computation Unit of PASM contains N processing elements
(PEs) (numbered from 0 to N—1, where N is a power of 2) and an
interconnection network. Each PE is a processor/memory pair. The PE
processors are sophisticated microprocessors that perform the actual SIMD
and MIMD operations. The PE memory modules are used by the processors
for data storage in SIMD mode and both data and instruction storage in
MIMD mode. The Micro Controllers (MCs) are a set of Q=2q processors,
numbered from 0 to Q—1, which act as the control units for the PEs in SIMD
mode and orchestrate the activities of the PEs in MIMD mode. Each MC
controls N/Q PEs. PASM has been designed for N--1024 and Q— 32. A set
of MCs and their associated PEs form a virtual machine. In SIMD mode, each
MC fetches instructions and common data from its associated memory
module, executes the control flow instructions (e.g., branches), and broadcasts
the data processing instructions to its PEs. In MIMD mode, each MC gets
instructions and common data for coordinating its PEs from its memory.

The PASM prototype system, completed in December 1986, was built for
N—16 PEs and Q=4 microcontrollers. This system employs Motorola
MC68000 processors as PE and MC CPUs, with a clock speed of 8 MHz. The
interconnection network is a circuit-switched Extra-Stage Cube network

72

[AdS82], which is a fault-tolerant variation of the multistage cube network. In
the following paragraphs, aspects of the prototype system that are essential to
the understanding of the algorithm implementations are described.

Consider the simplified MC structure shown in Figure 1. The MC
contains a memory module from which the MC CPU reads instructions and
data. Whenever the MC needs to broadcast SIMD instructions to its
associated PEs, it first sets the Mask Register in the Fetch Unit, thereby
determining which PEs will participate in the following instructions. It then
writes a control word to the Fetch Unit Controller which specifies the location
and size of a block of SIMD instructions in the Fetch Unit RAM. The Fetch
Unit Controller automatically moves this block word by word into the Fetch
Unit Queue. Whenever an instruction word is enqueued, the current value of
the Mask Register is enqueued as well.

PEs execute SIMD instructions by performing an instruction fetch from a
reserved memory area called the SIMD instruction space. Whenever logic in
the PEs detects an access to this area, a request for an SIMD instruction is
sent to the Fetch Unit. Only after all PEs that are enabled for the current
instmetion have issued a request is the instruction released by the Fetch Unit
FIFO, and the enabled PEs receive and execute the instruction. Disabled PEs
do not participate in the instruction and wait until an instruction is broadcast
for which they are enabled. This way, switching from MIMD to SIMD mode is
reduced to executing a jump instruction to the reserved memory space, and a
switcli from SIMD to MIMD mode is performed by sending a jump to the
appropriate PE MIMD instruction address located in the PE main memory
space. ' /

The SIMD instruction broadcast mechanism can also be utilized for
barrier synchronization [LuB80] of MIMD programs. Assume a program uses a
single MC group, and requires the PEs to synchronize R times. First, the MC
enables all its PEs by writing an appropriate mask to the Fetch Unit Mask
Register. Then it instructs the Fetch Unit Controller to enqueue R arbitrary
data words, and starts its PEs which begin to execute their MIMD program.
If the PEs need to synchronize (e.g., before a network transfer), they issue a
read instruction to access a location in the SIMD instruction space. Because
the hardware in the PEs treats SIMD instruction fetches and data reads the
same way, the PEs will be allowed to proceed only after all PEs have read
from SIMD space. Thus, the PEs are synchronized. The R synchronizations
require R data fetches from the SIMD space. Thus, the Fetch Unit Queue is
empty when the MIMD program completes, and subsequent SIMD programs

73

are not affected by this use of the SIMD instruction broadcast mechanism.
Along with the main MC68000 processor, each PE has a Motorola

MC68881 floating-point coprocessor [Mot85]. The MC68881 is a full
implementation of the IEEE floating-point standard. An IEEE format single
precision floating-point value is 32-bits in length. Intended primarily for use
as a coprocessor to the MC68020 microprocessor, communication during
floating-point operations proceeds as with any peripheral. The PASM
prototype hardware permits the MC68000 processor to be run with a 8 MHz
clock and the MC68881 coprocessor to operate with a 16 MHz clock.

Each PE contains special purpose hardware timing circuitry. Two
independent timers, each consisting of a Motorola MC68230 Timer enhanced
with additional TTL counting logic to improve resolution, can be used to
count processor clock cycles. After initialization, each timer can be started
and stopped by writing a 16-bit word to a timer control register. Each PE
contains independent timer circuitry and the timers can be started and
stopped when processing in SIMD or MIMD mode. Since timer initialization is
performed independently of starting a timer, each timer can be started and
stopped multiple times during the execution of a program to measure the
elapsed time of non-contiguous portions of code.

The circuit-switched PASM interconnection network is capable of
operating in both point-to-point and broadcast modes. In order to
communicate with another PE using the network, the initiating PE must set
up a path through the network. A path is established by first writing a PE
routing tag to the network Data Transfer Register (DTR). The PE must then
set a bit in a control register to instruct the network interface to interpret the
value in the DTR as a routing tag for setting up the network. The routing
tag will be the first data item received from the network at the beginning of
an network transfer. Byte data values may now be written to the DTR and
automatically sent through the network. The receiving PE reads the
transferred byte from its DTR. At the end of a network transfer, the sending
PE must write a "drop path request" to the network control register. This
will close the established network path and free the network for further
transfers.

The execution time of an MC68000 instruction is dependent upon the
speed of the program memory that is used. A memory read or write cycle
time requires a minimum of four clock periods. Accessing slower memory will
cause the generation of one or more wait states which will increase an

74

instruction cycle time. Each memory wait state requires an additionaldock
cycle to perform a 16-bit read or write. The memory of each PASM PE
contains static RAM which can be switched to operate at 0 or 1 wait state.

In order to make comparisons of the speed of the 16-PE PASM prototype
relative to other machines and to compare the relative speeds of SIMD and
MIMD instructions, the actual raw performance of PASM in SIMD and MIMD
mode was measured on the prototype. Raw processing rates for 16-bit integer
addition and floating-point addition operations are given in Table 1. The
difference in speed between SIMD and MIMD modes can be attributed to the
operation of the Fetch Unit hardware. SIMD instructions are fetched from the
Fetch Unit Queue in the MC; MIMD instructions are fetched from the PE
memories. The queue delivers data to the PEs with a delay of 2 wait states
whereas the PE static RAM memory operates at 0 or 1 wait states. The speed
of executing a program in MIMD mode will depend upon the number of wait
states of the program memory.

3. Fast Fourier Transform
The discrete Fourier transform (DFT) of a complex M-point sequence,

sm, 0 2s ra < M, is defined as

cFk — ■ j] sme i(27r/M)mk ? 0 ^ k < M (!)
m — 0

where j2 = —1 [OpS75]. The direct calculation of the DFT using Equation 1
requires 0(M2) operations. The fast Fourier transform (FFT) computes the
DFT of a sequence in 0(Mlog2M) serial operations. One FFT formulation is
the radix two decimation-in-time (DIT) algorithm. In this algorithm, the M-
point input sequence, s, is divided into two M/2-point subsequences

and

s m s2m > m U " ‘ , M/2 1, (2)

Sm =s2m + 1, m = 0,1, • • • , M/2-1 . (3)

75

The DFT of the sequence s can now be written using the two subsequences as

2

m = 0

1 M ■1
= E SamW2mk + J] s m W*2 m + x)k

2

m = 0
(4)

k' = 0, 1, 2, • • • , M —1 ,

where W = e H2ir/M) and js called a twiddle factor. By factoring out Wk,
Equation 4 can be rewritten as

= Sfc +Wk Sbk (5)

where S k and S f1. are the M/2-point DFTS of s / and s /, respectively.
Equation 5 shows that an M-point DFT can be computed from two M/2-point
DFTs. By halving the number of points in the transform at each stage of the
FFT, the DFT of an M-point sequence can be computed in 0(Mlog2M)
operations.

Figure 2 is a signal flow graph of an 8-point radix two DIT FFT
algorithm mapped to 4-PEs. The algorithm consists of log2M stages. At each
stage, M/2 butterfly operations are executed. A butterfly operation is shown
in Figure 3. For each butterfly operation the input consists of two complex
items, A and B. One complex multiplication and two complex additions are
performed, and two complex outputs, X and Y, are generated. The twiddle
factor, Wk, used in the calculation of each butterfly is marked in Figure 2 and
the value differs from stage to stage and among the stages. It should be noted
that W° = 1 and therefore the first stage of the algorithm requires no
multiplications. Similarly, the twiddle factor WM//4 = j and therefore, the
second stage of the algorithm also requires no multiplications. The M/2
butterfly operations performed within each stage are independent and can be
executed in parallel. Parallel algorithms to perform an M-point FFT in M/2
PEs are presented in [Be69], [Pea77], [Sto7l], and [JaM86].

Between stages, the PEs must exchange data items before performing the
next set of butterfly operations. This exchange can be performed by the cube
interconnection function. The Cube interconnection function, cubeC)
0 ^ c < log2M/2, is defined as

76

cubec(pn_! • • • pc+i PcPc-i * * * Po) = Pu-l V" Pc+l Pc Pc-i * / ' Po, (6)

where pn^i • • * pp is the binary representation of an arbitrary logical PE
address, and p^ is the complement of pc [Sie85j.

The complexity of the M-point radix two DIT FFT serial algorithm and
the parallel algorithm in M/2 PEs, where M is a power of 2, are given in
Table 2± The multiplication step entries of Table 2 reflect that there are no
multiplication steps necessary in the first stage of the DIT FFT since W° = 1
nor are there any in the second stage of the FFT since WM'4 — j.

4. Implementation Issues
Three 4-PE parallel FFT programs, one 8-PE parallel FFT program, and

one serial FFT program were executed on PASM. Execution time
measurements were made for each of these programs. The experimental
results are presented in section VI and discussed in Section VII. In this
section, we outline the programs that were implemented and discuss relevant
details of the implementations.

Three implementations of a 4-PE single precision floating-point 8-point
FFT were studied. These programs were written to examine the trade-offs
between the different modes of parallel computation in PASM. An SIMD
version performs all FFT operations in SIMD mode. A second program is an
MIMD version that calculates the butterfly operations in MIMD mode and
polls the interconnection network to determine the network status during
interconnection network transfer operations. A third 4-PE program uses
barrier synchronization to align the operations of the PEs during an
interconnection network transfer operation in place of polling and testing the
status of the network. This program is a hybrid of both the SIMD and MIMD
modes of computation. Although the butterfly calculations and the network
transfers are all performed in MIMD mode, the barrier synchronization
operation is performed using hardware designed for SIMD operation. The
execution times for each of the program component parts of these three FFT
programs were measured. A discussion comparing each of the component

F Parallel FFT algorithms using fewer than M/2 PEs are presented in
JaM86]. In the experiments described here, we consider only the M-point,

M/2 PE case. Because of the similarity of the algorithms using fewer PEs
to those examined here, similar execution characteristics and speedups can
be projected.

■ . :.■■■■ 77 ' ■. ;

parts of these programs is presented in Section VII. Values obtained for the
component parts for each of these programs were used to predict the execution
time of larger FFTs executing on a greater number of PEs and allows accurate
extrapolation of the results to a full 1024-PE PASM system.

An 8-PE SIMD 16-point FFT program was also implemented. The
execution time measured for this program was used to verify the projected
execution time expression presented in Section VII.

A single PE 8-point FFT program was implemented in order to obtain
serial execution times. Execution time measurements from this program were
used to calculate the values for speedup presented in Section VII.

All of the programs were written in MC68000 assembly language [Mot84]
as straight in-line code with no loops. This generated the fastest possible code
and eliminated issues of programming style from the execution time studies.
All MC control code such as instructions to perform PE masking and
operations to direct the operation of the Fetch Unit were explicitly written
into each program.

The programs also used the MC68881 floating-point coprocessor to
perform all arithmetic. A floating-point operation is initiated when the
MC68000 processor writes an instruction word to the command register of the
MC6888!. This is followed by successive reads and Writes by the MC68000 to
the response and operand registers of the coprocessor. The amount of
communication with the coprocessor will depend upon the floating-point
operation being performed. An operation between two floating-point registers
within the MC68881 requires a single write to the command register and a
single read of the response register. Moving a single precision value to or from
the coprocessor requires two additional 16-bit writes or reads to the operand
register. In a typical application, the main processor would test the response
register of the coprocessor to determine whether any additional processing is
required, whether there is an error condition, or to determine whether the
floating-point operation has completed. Detailed analysis of the number of
accesses to the coprocessor registers by the MC68000 during floating-point
operations has provided exact execution times for these operations on a PASM
PE. Tbs execution times for each coprocessor operation are independent of
the value of the floating-point data. Efficient procedures were written to
interface with the MC68881 and perform the floating-point operations by
waiting a constant delay during operation without testing the coprocessor
response register. These procedures were originally written to operate the

PE’s coprocessor in SIMD mode. This was necessary since branching and
testing in SIMD mode may be very inefficient. The resulting procedures were
always more efficient than code that polled the coprocessor response register.
These constant delay procedures were used for both SIMD and MIMD modes
of computation. Six different coprocessor operations are used in the various
butterfly calculations: floating-point add, subtract, and multiply, single
precision moves to and from the coprocessor, and moves between the floating
point registers. Testing the coprocessor for error states during program
execution was not performed:

Each cube interconnection network transfer required the transfer of two
32-bit single precision floating-point numbers (the real and imaginary parts of
the complex X or Y). Since the network is 8-bits wide, transferring each
floating-point number requires 4 writes and 4 reads to the network DTR. A
cube interconnection transfer operation proceeds in the following way. First,
the sending PE writes the routing tag to the DTR and requests a network
path. A cube interconnection network function is non-blocking and the entire
network is configured within a few clock cycles after the last PE requests a
network path. The transmitted routing tag is read from the receiving PE’s
DTR. Each floating-point number is then transferred a byte at a time. The
receiving PE must reassemble the floating-point number. The partitioning
and recombination of floating-point operands are performed in MC68000
registers. After the transfer and reassembly of the second floating point
number, the sending PE drops the interconnection network path.

Each program has an initialization phase, an FFT algorithm phase, and
an output phase. Execution time measurements are made on the FFT
algorithm phase of each program. The processing of the initialization and
output phases is performed using both SIMD and MIMD modes of
computation. In the initialization phase, the MC and each PE pre-compute
and store all necessary data in preparation for the timing of the FFT
algorithm phase of the program. During the output phase, the execution time
and the transformed data are printed.

The FFT programs are written as efficiently as possible by performing all
computations that are not dependent the operations of the FFT in the
initialization phase. This optimization includes: ordering and initializing the
input data in PE memory, pre-calculating the PE masks used by the MC, and
pre-calculating the logical PE number, cube function network routing tags,
and FFT twiddle factors in each PE. Each PE has internal access to its own
physical PE number; For a fixed PASM partition size, the logical PE number

78

, 79

can be determined from the physical PE number. The order of the input data
is dependent upon the logical PE number. The value of the PE masks vary
with the number of PEs. The routing tags for each interconnection network
operation can be computed from the physical PE number and the physical
MC number. The values for the twiddle factors are dependent upon the size
of the FFT, the stage number of the EFT, and the logical PE number. These
values are calculated by each PE and Stored in memory. No pre-loaded
register values are assumed. The interconnection network hardware is also
initialized in the initialization phase. This only involves clearing control
registers so that any existing network connection is dropped.

In the FFT algorithm phase, each PE obtains the two complex floating-
point input data items from PE memory, computes the FFT, and stores the
transformed data back to PE memory. The storage location of the
intermediate data during program execution is dependent upon the number of
data points within each PE. Since the M-point parallel FFT programs
discussed in this paper are computed using M/2 PEs, each PE contains only
two complex data items (four 32-bit single precision floating-point numbers).
During the butterfly calculations, all of the data resides in registers of the
floating-point coprocessor. Each inter-stage interconnection network
operation transfers only one of the two complex values. The data that is not
transferred remains in each PE’s coprocessor registers during the network
transfer. Therefore, it is necessary for each PE to move only two floating
point numbers to and from the coprocessor registers before and after the
network transfers. The data that is transferred is stored in the data registers
of the MC68000 during the interconnection network operation. In the serial
FFT program, all of the data must reside within a single PE. Although
MC68000 data registers are not used for network transfer operations, there are
not enough data registers or coprocessor floating-point registers to store all of
the intermediate data. Therefore, all of the intermediate data is stored in
memory. It is necessary to move both of the complex data items to
coprocessor registers before each butterfly operation and and return the data
values to memory afterwards.

5, Measurement Techniques
This section describes the techniques used to obtain the execution times

for the programs and program components presented in Section VI.
Execution times were obtained using the special purpose PE hardware timing
circuitry described in Section II. The timers were configured to count 8 MHz

■ 80 ;?

clock periods resulting in timing accuracy of ± 125 nanoseconds. *
As shown in Table 1, the mode of processing and the memory cycle time

will greatly influence the execution time of a program executing on PASM. A
block of PE instructions will execute faster in MIMD mode from 0 wait state
static RAM memory than the same set of instructions executed in MIMD mode
from 1 wait state RAM or in SIMD mode from the Fetch Unit Queue. In
order to compare the execution of programs operating in SIMD or MIMD
mode and from memory with varying wait states, it is necessary to normalize
the memory access time of all instructions. The memory access time for all
instructions was normalized to 2 wait states (six clock cycles). This is the PE
SIMD instruction bus access time and no normalization is necessary for SIMD
instruction fetches. All other memory access cycles must be normalized.

During program execution, only static RAM memory was used within
each PE. For SIMD mode, the static RAM was only used for variable storage.
For each experiment, the execution time was measured once using 0 wait state
static RAM and again using 1 wait state static RAM. The difference between
these two execution times is the time required for a single wait state per
memory cycle. Adding the difference between these two execution times to the
1 wait state execution time is equivalent to the program executing using 2 wait
state memory. By using this 2 wait state normalized execution time, the time
of an instruction fetch in SIMD mode from the Fetch Unit Queue is equivalent
to an instruction access in MIMD mode from memory. Direct comparison of
program times is then possible.

The time required to start and stop the timers will vary according to the
mode of computation, the number of PEs enabled, and the access time of the
memory in which the instruction are stored. This timer overhead -was
removed from the measured program execution times before the 2 wait state
memory access time normalization was calculated.

Execution time measurements were made by inserting instructions to
start and stop the timers in the code before program assembly. The execution
time for a parallel program is the greatest amount of time required by the MC
and any one PE to complete execution. When measuring the execution time
of a complete FFT program the timers were started and stopped
simultaneously in SIMD mode. The measured times for SIMD mode
operations agreed within 1 clock cycle across all PEs. In MIMD mode, since
each PE operates independently, the measured execution times across the PEs
varied.

All execution times were measured for a single pass through the program.
If repeated executions of the program resulted in varying execution times, the
measurement was repeated until a clear median was established. This
variance in execution times was observed only when executing SIMD mode
programs and was less than 3% of the total program execution time. In
MIMD mode, repeated execution time measurements were always within 1
clock cycle. The variation in SIMD mode execution times is due to
synchronization of instructions in PEs with processor clocks that are not
always in phase. Each PE has its own internal independent 16 MHz clock.
The 8 MHz clock signal used to operate the MC68000 processor is obtained by
dividing the output of a 16 MHz clock. There is no circuitry to synchronize
PE clocks. Therefore, the phase of any two 8 MHz PE clocks will differ by as
much as one clock cycle of the 16 MHz clock (0.063 ns). The relative phase of
any two PE clocks will change during the algorithm as different sets of PEs
are enabled and disabled by the MC.

Upon completion of the initialization phase of the program, each PE
waits for an instruction from the Fetch Unit Queue. Measurements were
made for execution of the entire FFT and for the components of each
program. If a measurement of the execution time for the entire FFT is being
made, the first instruction executed by all of the PEs (in SIMD mode) is to
enable the timing hardware. For the SIMD program, each PE continues to
execute only instructions read from the SIMD instruction space. The last
instruction of the FFT algorithm phase will disable the timing hardware. For
the MIMD and hybrid programs, the next instruction will be a jump from the
SIMD instruction space to PE memory. From this point, the PE will execute
instructions from its own memory until jumping back to SIMD instruction
space at the completion of the FFT algorithm phase to disable the timing
hardware. When components of the program are being timed, the timing
hardware is enabled and disabled at intermediate points during execution of
the FFT. 6

6. Experimental Results
Execution time measurements of the complete FFT algorithm were made

for the three 4-PE 8-point parallel implementations, for the 8-PE 16-point
SIMD program, and the single PE 8-point serial program. The execution
times for the 4-PE 8-point FFT programs are shown in Figure 4. In addition
to these complete FFT execution time measurements, the components of the
three 4-PE parallel programs were studied (see Figure 2). These

measurements included the execution time of the FFT stage 1, cubeq
interconnection function, FFT stage 2, cubeo function, FFT stage 3, register
initialization, and MIMD mode program control overhead.

The execution times for the components of each of the 4-PE programs are
shown in Figure 5. The length of each bar in Figure 5 indicates the maximum
execution time for each program component. The FFT stage execution time
includes the time required to compute the floating-point butterfly operation
plus the time required to move floating-point data to, from, and Within the
coprocessor. The network execution time is the time to transfer a complex
floating-point value from the MC68000 data registers of the sending PE to the
data registers of the receiving PE. This includes the time to write the routing
tag to the network, request a network path, transfer the data one byte at a
time through the network, reconstruct the transferred data, and drop the
interconnection network path. A solid line across a bar indicates that while
some of the PEs executed the program component at the maximum time
indicated by the length of the bar, other PEs only required the time indicated
by the solid line. This is due to the specific implementation of the FFT
algorithm and will be described later. A dotted line across a bar indicates the
minimum execution time for the program component. The measured
execution times across all PEs for this component lie between the time
indicated by the length of the bar and the time indicated by the dotted line.
The times presented in Figure 5 are quite accurate: the summation of the
component execution times for each of the 4-PE program sum to within 1% of
the execution time for the complete program. The execution times presented
here are discussed in the next section.

7. Discussion

7.1. Comparison of Execution Times
Figure 4 shows that the MIMD program has the longest execution time

for any of the 4-PE parallel programs. This parallel implementation of the
FFT algorithm has a speedup of 1.87 over the serial FFT program. The SIMD
program requires 33% less time than the MIMD program with a speedup over
the serial FFT of 2.78. The execution time of the hybrid SIMD/MIMD mixed
mode program is 9% less than the execution time of the SIMD program. The
speedup for this program with respect to the serial program is 3.05. The
reasons for the variation in execution times can be determined by examining
the individual program components (Figure 5).

83

In stage 1, each prograin executes a W° butterfly. This butterfly requires
2 additions and two subtractions, and these floating-point operations require
the same time when executing in either SIMD, MIMD, or hybrid modes. The
additional execution time for the SIMD stage 1 is a result of the data
movement from the coprocessor after the butterfly calculation. In the cube^
network transfer that follows stage 1, PEs 0 and 1 transfer Y while PEs 2 and
3 transfer X. In the MIMD and hybrid modes, each PE moves the appropriate
complex X or Y value from the coprocessor registers to the data registers of
the MC68000 processor. This requires two floating-point move operations. In
SIMD mode, PEs 0 and 1 must first be enabled while PEs 2 and 3 are
disabled. The complex Y value is then moved from the coprocessor. PEs 0
and 1 are then disabled while PEs 2 and 3 are enabled. The complex X value
is then moved from the coprocessor requiring two more floating-point move
operations. Compared to the MIMD and hybrid implementations the SIMD
mode program requires two additional move operations.

In stage 2, the difference between the execution time for the SIMD mode
programs and the MIMD mode programs is even greater than for stage 1. One
half of the PEs perform a W° butterfly while the other half compute an W2
butterfly. Both of these butterfly operations require two floating-point
additions and two floating-point subtractions. In the MIMD and hybrid
program versions, calculation of this stage 2 is straightforward. Each PE
moves the recently transferred data item to the coprocessor registers,
computes the butterfly, and moves a single complex data item from the
coprocessor in preparation for the cubeo network transfer. The SIMD stage 2
operation is much more complex. Although W° and W2 butterflies require the
same number of arithmetic operations, the butterfly computations combine
the A and B data values in a different order. By using a judicious sequence of
masking operations, it is possible to move the data correctly into coprocessor
registers so that the addition and subtraction operations can be performed
simultaneously in all PEs. Additional masking and data movement is then
necessary to prepare for the interconnection network transfer.

Another reason for the longer stage 2 SIMD execution time is the
necessity for an SIMD stage computation . to leave the data that is not
transferred in the correct floating-point registers across all PEs, For example,
after stage 2, PEs 0 and 2 transfer the Y butterfly output value over the
network. The X value remains in the coprocessor registers and becomes the A
input value for the stage 3 butterfly operation. Since the stage 3 butterfly is
performed in SIMD mode, the A input value must be in the same coprocessor

84

registers across all PEs. These registers will be referred to as the A storage
registers. Another set of coprocessor registers is used as the B storage
registers. The sequence of arithmetic operations performed during the
calculation of the stage 2 butterfly leaves different butterfly output values in
the coprocessor registers for the PEs executing the W° butterfly than for the
PEs executing the W2 butterfly. It is necessary for PE 0 to obtain the X
butterfly outputs from one set of registers and move the values to the A
storage registers while PE 2 must obtain the X butterfly outputs from a
different set of registers. A similar sequence of operations must be performed
by PEs 1 and 3 in order to move the Y butterfly output values to the B
storage registers. Since the PEs executing the same butterfly operation must
transfer different output values, the data movement required by each PE is
different. As part of the SIMD stage 2 calculation, the MC must enable and
disable all of the PEs in various combinations in order to move the X and Y
output values to the correct A and B storage registers. This data movement is
not necessary for the MIMD or hybrid programs since each PE computes the
stages independently and knows the storage locations of the data from the
previous stage.

In stage 3, PEs 2 and 3 compute butterflies complete with twiddle factors
and multiply operations. PEs 0 and 1 compute the less complex W° and W2
butterflies. For MIMD and hybrid mode, the execution time for the butterflies
computed by PEs 2 and 3 are indicated by the length of the bar. The
execution time for PEs 0 and 1 is indicated by the solid line across the bar. In
SIMD mode, all of the PEs execute butterflies with twiddle factors and
multiply operations. Since one half of the PEs transferred the A value in the
preceding cube0 function and the other half transferred the B data item, extra
processing is required by the SIMD stage 3 to enable and disable the two sets
of PEs and move the data values to different coprocessor registers.

The execution time required for the interconnection network transfers
varies widely among the three program implementations. The SIMD network
operation requires the least amount of processing time. Since all PEs execute
the network operations in lock-step fashion, the data transfers are
synchronized. There is no need to test the network for a pending network
transfer or to determine if there is transferred data to read from the DTR. In
MIMD mode, each PE executes each butterfly stage independently and no
synchrony can be assumed when reaching the interconnection network
component of the program. Therefore, it is necessary for each PE to test the
network before transferring a data item and to wait on the network for a data

■ ■ 85

item to become available. This testing and waiting on tbe network results in
a high network transfer time. Like the MIMD program, each PE executes
each butterfly stage independently in the hybrid version. The hybrid version
performs a barrier synchronization during the interconnection network
transfer. Once all of the PEs are synchronized, the data is Sent and received
without testing the status of the network. The execution time for the hybrid
version is slightly greater than for the SIMD version. The difference is the
time required to synchronize the PEs.

Since the execution time for the SIMD interconnection network transfer is
less than the time for barrier synchronization network transfer used in the
hybrid program, it would appear that a faster program could be constructed
by using the SIMD mode network transfer. This is not the case. The
overhead incurred by jumping to SIMD instruction space before the network
transfer and back to MIMD program space for the next butterfly stage exceeds
the expected time savings. In addition, each time MIMD mode operation is
resumed, it would be necessary to test and branch in order for each PE to
determine which butterfly operation it is to perform. The execution time
overhead for these test and branch operations will exceed the time for testing
and branching of an MIMD program that remains in MIMD mode and uses
barrier synchronization.

7.2. Projecting Program Execution Times
In this section, an expression for the execution time of an M-point FFT

program running on M/2 PASM PEs, M §£ 4, is presented. The expression is
a linear sum of the execution times of the components of an FFT program.
For an M-point FFT, the number of each component to sum is either fixed for
all size FFTs or can be expressed as a function of M. The expression
presented is used to predict the execution times for larger size FFTs using a
greater number of PEs and allows us to extrapolate our results to a full 1024-
PE PASM system- The values to be used for the terms of the expression were
obtained from execution time measurements made on the 4-PE 8-point FFT
program. For the 4-PE case, the expression yields execution times for the
MIMD, SIMD, and hybrid programs that are within 1% of the measured
execution times. The expression was also validated for the 8-PE 16-point
SIMD FFT program. The execution time measured for this program is also
within 1% of the execution time predicted by the expression.

For M/2 PEs and M data items the execution time of an FFT program
can be expressed as

Tfft(M/2) = J+R + (A + C)log2 (M/2) + ST (7)

where the component execution times are defined as

jump to and from SIMD instruction space
data and address register initialization
a single MIMD test and branch operation
complex floating-point cube interconnection network transfer
execution of all FFT butterfly stages

The total time to execute all of the butterfly stages can be expressed as

ST = Si + S2 + (log2M/2—2)Sm + Sf (8)

where the component execution times are defined as

R
A
C

Sf stage 1 (W°)
S2 stage 2 (W° and WM//4)
Sm intermediate stage (with a multiplication butterfly)
Sf final stage

The execution time, Tfft(M/2), for an M-point FFT program executing on
M/2 PASM PEs, M/2 ^ 4, can be projected using the data in Table 3.

The graph shown in Figure 6 illustrates the projected execution times for
an M-point FFT program on M/2 PEs for M = 4 to M = 1024. The times are
extrapolated with high confidence since the expression used to generate the
aggregate times was Verified by comparing the predicted 8-PE aggregate time
to the actual measured time for an SIMD version of the algorithm. The
predicted time was derived by using component times from the 4-PE version.
These same component times were then used to determine the projected times
shown in Figure 6.

As the number of points in the FFT (and number of PEs) increases, the
effect of MIMD network operations (the main difference between the Hybrid
and MIMD versions) causes the gap between the performance of the MIMD
version and both the SIMD and Hybrid versions to widen. Note the general

87

logarithmic growth in execution time (the horizontal axis is a log scale) as the
number of points in the FFT increases. This was predicted by equations 7
and 8. ■

7.3. Measurement and Projection of Speedup

In order to analyze further the performance of the MIMD, SIMD, and
hybrid implementations, a serial FFT executing in a single PASM PE was
implemented and used to obtain estimates of speedup for the parallel
programs. The serial version is comparable to the parallel versions except that
intermediate values are stored in memory instead of in registers. This is more
realistic for the serial implementation since a single processor will not have
enough registers to hold these values, whereas the M/2-PE algorithm uses 2
floating-point registers for storage in each PE, independent of M. The
resulting speedups for the 4-PE algorithms are 1.87, 2.78, and 3.05 for the
MIMD, SIMD, and hybrid implementations respectively, corresponding to
efficiencies of 0.47 (MIMD), 0.70 (SIMD), and 0.76 (hybrid).

Figure 7 illustrates the projected speedups for system sizes up to 1024
PEs. These figures are based on the extrapolated execution times of the
parallel algorithms obtained with equations 7 and 8, and comparable analytic
prediction of the larger serial versions. Note that for 1024-PEs in SIMD and
hybrid modes, the predicted efficiency is almost 80%. Hence, the overhead of
communication remains low. This is significant and has even greater positive
implications for a similar system with a message or packet-switched network:
the FFT is nearly worst case with respect to network configuration overheads
in a circuit-switched system.

8. Conclusions
This work focused on obtaining performance measurements for various

implementations of fast Fourier transform algorithm running on the prototype
PASM parallel processing system. Detailed measurements allowed evaluation
of the effects of a number of aspects of the architecture on the performance of
the FFT programs. Most notable is the significant performance advantage of
the SIMD implementation over the MIMD implementation, and the even
further improvement attained with a hybrid implementation. The difference
between the SIMD and MIMD implementations can be attributed primarily to
interconnection network time; the improvement gained with the hybrid
version is principally due to MIMD execution of arithmetic operations

; -88.

combined with barrier synchronization at the points at which data transfers
occur. This constitutes one of the first results of this kind, in which controlled
experiments on fixed hardware were used to make comparisons of these
fundamental modes of computing. The results demonstrate the value of the
multi-mode capability of PASM, and the viability of mode switching to obtain
“the best of both worlds.”

Also notable are the projections in which the information obtained by
executing the FFT programs on a small number of processors is used to
extrapolate performance for larger FFTs on a larger system. Although 8-point
FFTs are used as the basis for these projections, these algorithms exhibit all of
the basic parts of larger FFT algorithms. The detailed measurements of the
components of the implementations allow us to do a very accurate
construction of the execution times and speedups for larger size problems.
The projections accurately model interconnection network access, data
transfers, floating point arithmetic, coprocessor access, use of registers and
memory, and program control overhead. The extrapolation is verified to
within 1% by comparing the predicted 16-point 8-PE time to the actual
measured time for a 16-point 8-PE implementation. The projections indicate
a widening of the gap between the performance of the MIMD version and the
SIMD and hybrid implementations due to network operation costs.

All of the programs were written in MC68000 assembly language. Many
of the interesting comparisons between the various implementations of the
FFT would not have been observed if the programs had not been written at
this fine level of detail. The detailed experiments reported here provided
significant insight into many aspects of the PASM architecture and prototype
implementation. This knowledge will be useful for optimizing high level
parallel language compilers designed to produce code for executing on PASM.

The authors would like to thank Sam Fineberg, Wayne Nation, Pierre
Pero, Tom Schwederski, and H. J. Siegel for their many helpful discussions.

References

[AdS82] G. B. Adams and H. J. Siegel, “The extra stage cube: a fault-
tolerant interconnection network for supersystems,” IEEE Trans.
Computers, Vol. C-31, May 1982, pp. 443-454.

[Be69] G. D. Bergland, “Fast Fourier transform hardware implementations
— an overview,” IEEE Trans. Audio Electroacoustics, Vol. AU-17,
June 1969, pp. 104-108.

[JaM86] L. H. Jamieson, P. T. Mueller, Jr., and H. J. Siegel, “FFT
algorithms for SIMD parallel processing systems,” J. Parallel and
Distributed Computing, Vol. 3, Mar. 1986, pp. 47-71.

[LuB80] S. F. Lundstrom and G. H. Barnes, “A Controllable MIMD
Architecture,” 1980 International Conference on Parallel
Processing, August 1980, pp. 165-173.

[Mot84] Motorola, MC68000 16/82-Bit Microprocessor Programmer’s
Reference Manual, fourth edition, Prentice-Hall, Inc., Englewood
Cliffs, NJ, 1984.

[Mot85] Motorola, MC68881 Floating-Point Coprocessor User’s Manual, first
edition, MC68881UM/AD, Motorola MOS Integrated Circuits
Division, Austin, Texas, 1985.

. [OpS75] A. V. Oppenheim and R. W. Schafer, Digital Signal Processing,
Prentice-Hall, Inc., Englewood Cliffs, NJ, 1975.

[Pea77] M. C. Pease, “The indirect binary n-cube microprocessor array,”
IEEE Trans. Computers, Vol. C-26, May 1977, pp. 458-473.

[SiS81; H. J. Siegel, L. J. Siegel, F. C. Kemmerer, P. T. Mueller, Jr., II. E.
Smalley, Jr., and S. D. Smith, “PASM: a partionable SIMD/MIMD
system for image processing and pattern recognition,” IEEE Trans.
Computers, Vol. C-30, Dec. 1981, pp. 934-947.

[Sie85] H. J. Siegel, Interconnection Networks for Large-Scale Parallel
Processing: Theory and Case Studies, Lexington Books, D. C.
Heath, Lexington, MA, 1985.

[SiS87j H. J. Siegel, T. Schwederski, J. T. Kuehn, and N. J. Davis IV, “An
overview of the PASM parallel processing system,” in Computer
Architecture, D. D. Gajski, V. M Milutinovic, H. J. Siegel, and B.
P. Furht, eds., IEEE Computer Society Press, Washington, D.C.,
1987, pp. 387-407.

[Sto7l] H. S. Stone, “Parallel processing with the perfect shuffle,” IEEE
Trans. Computers, Vol. C-20, Feb. 1971, pp. 153-161.

90

MC
Memory Fetch Unit Fetch Unit

Controller RAM

to PEs

"T
I
I
I
I
I
I
I■ i ■■
i

.. i ■
i
ir
iii
i
i

4
i
i
i
i
i
ii
i
i
i
i

i
i
i
i- J

Figure 1. Simplified MC structure.

Table 1. Raw performance of the PASM prototype.

Register-to-Register

Operation
Mode

Instruction
Memory

Wait States

Processing

Rate

16-bit integer
addition

MIMD
0 Y ■ 25.6 MIPS

v/a'a i 'A" 21.2 MII’S

SIMD 18.3 MIPS

single precision
floating-point

addition

MIMD
A A o 4.7 MFLOPS

AAAV-l - 4.3 MFLOPS

SIMD "'AAV'-V 3.9 MFLOPS

stage 1 stage 2 stage 3

cubej
transfer

cubeo
transfer

Signal flow diagram of an 8-point FFT on 4 PEs,
twiddle factor for each butterfly operation is W'
number adjacent to each butterfly arrow.

X=A+BW

FFT butterfly operation

The value of the
where k is the

92

Table 2. Complexity of the M-point radix two DIT FFT algorithms.

Multiplication Addition Cube Transfer
Steps Steps Steps

serial
M/2 PEs

(M/2)(log2M-2) Mlog2 M
log2 M — 2 21og2M log2M/2

MIMD
SIMD
Hybrid

0 200 400
-i

600-
Execution Time (/is)

800

Figure 4. Execution time for 8-point FFT programs on 4 PASM PEs.

Figure J

MIMD
Stage 1 SIMD

Hybrid

MIMD
Stage 2 SIMD

MIMD
Stage 3 SIMD

Hybrid

MIMD
Network SIMD

Hybrid

50 100 150 200 250
Execution Time (/is)

Execution time
PASM PEs.

components of 8-point FFT programs on 4

94

Table 3. Execution time (/is) for components of FFT programs.

J R B V; c Si s2 sm Sf

MIMD 4.000 17.000 5.000 222.000 76.500 52.000 99.500 128.000

SIMD 0.000 13.500 0.000 77.625 90.625 91.500 111.000 139.500

Hybrid 4.000 17.000 5.000 80.750 76.500 52.000 99.500 128.000

MIMD

2.5 -

Execution
2.

Time SIMD

Hybrid

0.5 -

8 16 32 64 128 256 51210244

Figure 6. Projected execution times for an M-point FFT program on M/2

PASM PEs, 8 ^ M ^ 2048, where M is a power of 2,

95

800

600

SpeedujoO

200

0

PEs

Figure 7. Projected speedup for an M-point FFT program on M/2 PASM
PEs, 8 ± M ± 2048, where M is a power of 2.

. Hybrid

o S IMD ,

o MIMD

8 8

a
o

a
o

4 8 16 32 64 128 256 5121024

Parallel 2DFFT Implementation

; Eng HwieLoh

.Abstract!"
As part of a coordinated architecture study of novel machines,

implementation of 2 Dimension Fast Fourier Transform (2DFFT) on PASM
has been conducted. FFT is used in many areas such as image processing,
speech analysis, optics, antennas, and random process. The goal of the project
is to compare the performance in different modes: SIMD , SIMD/MIMD and
MIMD for the implementation of 2DFFT on PASM. The implementation of
decimation in time of serial FFT is used as a baseline algorithm for
comparison to the parallel version of 2DFFT.

1. Introduction
The PASM prototype was completed in December 1986. There has been

an effort to develop application programs to utilize the features of PASM. One
of these applications is the Two Dimensional Fast Fourier Transform (2DFFT)
which is the main topic of this project report. Discrete Fourier Transform is
used in wide areas such as optics, antennas, random process, probability,
image processing, and speech analysis. 2DFFT is used in image processing to
extract features and improve image quality. The main objective of this
project is to implement 2DFFT on PASM, and to compare the performance in
different modes: SIMD, SIMD/MIMD and MIMD.

Section 2 gives the background and references to start the project,
Section 3 describes the algorithm implemented in this project, Section 4
describes the specifications of the experiment performed, and results are
presented in Section 5. In Section 6, discussion and interpretation of results
are given, Section 7 provides a trail for someone who wants to continue this
project.

97

2.

2.1. Problem-area related references and background
Background on Discrete Fourier Transforms can be found in [Ziemer]. It

gives a basic understanding about Fourier Transform, and then it discusses
Discrete Fourier Transform and presents an introduction to Fast Fourier
Transform. It shows the flow graph of the computation for the FFT; For the
complete discussion on Cooley-Tukey algorithm used in this project for the
1DFFT, [Blahut] gives a very detail description of the algorithm.

The reference that explains how to parallelize 2DFFT can be found in
[Mueller]. It describes how to parallelize both 1DFFT and 2DFFt, and how to
do the transfer using the PASM interconnection network efficiently.

2.2. Relevant Part of PASM
A 30 processor prototype of the PASM system was completed in

December 1986, with 16 PEs (PE processors are microprocessors that perform
the actual SIMD and MIMD operations) and 4 MCs (Micro Controllers are
processors which act as the control units for PEs in SIMD mode and
orchestrate the activities of the PEs in MIMD mode. Each MC controls 4
PEs. This system employs Motorola MC68000 processors as PE and MC
CPUs, with a clock speed of 8 MHz. The interconnection network is a
circuit-switched Extra-Stage Cube network, which is a fault-tolerant variation
of the multistage cube network. Since knowledge about the MC and the way
in which SIMD instructions are implemented with standard MC68000
microprocessors is essential to the understanding of the behavior that was
observed in the experiments, the SIMD instruction broadcast mechanism is
overviewed below. Consider the simplified MC structure shown in Figure 1.
The MC contains a memory module from which the MC CPU reads
instructions and data. Whenever the MC needs to broadcast SIMD
instructions to its associated PEs, it first sets the Mask Register in the Fetch
Unit, thereby determining which PEs will participate in the following
instructions. It then writes a control word to the Fetch Unit Controller which
specifies the location and size of a block of SIMD instructions in the Fetch
Unit RAM. The Fetch Unit Controller automatically moves this block word
by word into the Fetch Unit Queue. Whenever a instruction word is
enqueued, the current value of the mask register is enqueued as well. Since
the Fetch Unit enqueues blocks of SIMD instructions automatically, the MC

CPU can proceed with other operations without waiting for all instructions to
be enqueued.

FIFO

to PEs

Fetch Unit
RAM

Fetch Unit
Controller

MC CPU

Memory

Mask
Register

Figure 1: Simplified MC structure.

PEs execute SIMD instructions by performing an instruction fetch from a
reserved memory area called the SIMD instruction space. Whenever logic in
the PEs detects an access to this area, a request for an SIMD instruction is
sent to the Fetch Unit. Only after all PEs that are enabled for the current
instruction have issued a request is the instruction released by the Fetch Unit
FIFO, and the enabled PEs receive and execute the instruction. Disabled PEs
do not participate in the instruction and wait until an instruction is broadcast
for which they are enabled; This way, switching from SIMD and MIMD mode
is reduced to executing a jump instruction to the reserved memory space, and
a switch from MIMD to SIMD mode is performed by sending a jump to the
appropriate PE MIMD instruction address located in the PE main memory
space.

The SIMD instruction broadcast mechanism can also be utilized for
barrier synchronization [Schwed] of MIMD programs. Assume a program uses
a single MC group, and requires the PEs to synchronize R times. First, the
MC enables all its PEs by writing an appropriate mask to the Fetch Unit
Mask register. Then it instructs the Fetch Unit Controller to enqueue R

99

arbitrary data words, and starts its PEs which begin to execute their MIMD
program. If the PEs need to synchronize (e.g., before a network transfer),
they issue a read instruction to access a location in the SIMD instruction
space. Since the hardware in the PEs treats SIMD instruction fetches and
data reads the same way, the PEs will be allowed to proceed only after all PEs
have read from SIMD space. Thus, the PEs are synchronized. The R
synchronizations require R data fetches from the SIMD space. Thus, the
Fetch Unit Queue is empty when the MIMD program completes, and
subsequent SIMD programs are not affected by this use of the SIMD broadcast
mechanism.

3. Problem Description
To implement 2DFFT algorithm for this project, it is necessary to

understand how serial 1DFFT works since the parallel version of 2DFFT
algorithm is based on the serial 1DFFT.

3.1. Cooley-Tukey algorithm for 1DFFT
The definition of the one dimensional Discrete Fourier Transform is

X{»)' Vxllcjw^

where■■■:■

N — the number of input samples x
k <= {0,1,2, . . . ,N-l}

. ' n < == {0,1,2, . . . ,N-l} x

Multiplication step complexity is N2.

Note that for N a power of 2, the equation may be written as:

N/2 - 1 ' N/2 - 1 . ;
X(n) = S x(2k) wfn 4-W^i x: x(2k+l) w|jk11

k=0 k=0

where n = 0,1,2,3,. . N/2 - 1

Multiplication step complexity is now N log N
For the details of the derivation refer to [Blahut]. The decimation in time

FFT or Cooley-Tukey algorithm breaks the input data vector into the set of
components with odd index and the set with even index. The output vector is
broken into the set containing the first N/2 components and the set containing
the second N/2 components.

An example showing the flowgraph for an 8 point (N---8) lDFFT
Cooley-Tukey algorithm and can be found in Figure 2. Figure 2 shows that
the x(k) inputs are arranged such to perform a butterfly computation for two
adjacent inputs; Note that the results of tansformation is in the right order.

Figure 3 shows the implementation of this algorithm in a high-level
language.

'3.2. 2DFFT
The definition of 2DFFT is

X(u,v)
N—1 N—1
£ X) x(l,m) W

1—0 m- =0

vm
N

We can see that to do 2DFFT computation, we can perform lDFFT on
the rows of the N x N matrix and then perform another lDFFT on the
columns of the matrix of the intermediate results, for two different types of
instructions.

101

for k = 1 to m /* N=2m */
begin

■ le = 2k
lei = le/2

u = (1.0,0.0)
W = crap lex (cos(7r/lel), sin((—7r)/lel))
for j ■== 1 to lei

for i = j to N step le
begin

ip == 1 + lei
t = fa(l,ip) x u

l,ip)fa(l,i) - t
l,i) = fa(l,i) -i t

end
u === ux W
end

end

Figure 3: Cooley-Tukey algorithm in a high-level language.

3.3 Implementation of 2DFFT'on PASM

3.3.1. Procedures
For an N x N input matrix and p PEs, each PE is assigned N/p rows.

N X N inputs matrix
u,v -- 0,1,2,..., N-l
l,m = 0,1,2,..., N-l

f Wn == exp(^527r/lSr ■'

In the first stage, each PE performs 1DFFT calculations for the rows assigned
to that PE to produce an intermediate matrix result. Then, the matrix is
transposed, and assigned N/p rows of the new matrix to each PE, 1DFFT is
then performed on the rows assigned to that PE. The result of the second
stage is a transposed matrix of the 2DFFT transformation.

102

For a more clear explanation, Figure 4 shows how to parallelize a 2DFFT
for N x N inputs and N PEs* First, each PE is assigned a row of the matrix.
Then each PE is to do a serial 1DFFT on each row simultaneously. After
that, the new matrix is transposed and then each PE is assigned a row of that
matrix. Each PE then performs, for the second time, a serial 1DFFT on the
row, (i.e. column of the original matrix) it is assigned.

3.3.2. Transpose alternatives
There are two possible methods to do the transpose using the network

transfers.
The first is by connecting each PE to its adjacent PE and then to do

simultaneous transfers N x N times. For each N transfers, each PE takes and
saves the value needed, after N x N transfers each PE will have all the value
needed from the transposed matrix (Figure 5).

The second Method is to connect each PE to the PE that has value
needed and then do the transfers simultaneously, then drop the path, then
again connect to other PE to get the next needed value. After N transfer, the
matrix is already transposed (Figure 6).

The second method should take less time to do the transpose since the
transfers is in O(N) and the first method is in 0(N X N), but the second
method will have to do the open and drop path N times.

4. Experiments Performed
The experiments that can be performed at this point are 4 x 4 2DFFT

using 4 PEs in SIMD, S/MIMD, and MIMD modes. All operations were 8 bit
complex integer operations, and overflow Was ignored. The two method to do
the transpose are performed to see which one is faster to do the transpose.
Method one requires 0(N2) transfers and method 2 requires O(N) transfers but
with additional open and drop path.

The SIMD version of the method 1 is not a pure SIMD version. The
reason is not possible to write the purl SIMD version is because of the need to
save the data needed after each N transfers, Each PE has to save the needed
data from different location, so this part has to be executed in MIMD mode.
The rest of the program are executed in SIMD mode.

SIMD/MIMD version of method 1 executes the FFT calculations in SIMD
mode and does the transfers to transpose the intermediate result matrix in

103

MIMD mode. The barrier synchronization is used to perform the transfers
data.

The MIMD version of method 1 executes the FFT calculations and
performs the transpose in MIMD modes. The barrier synchronization is used
each time the FFT calculation and the transpose is performed. Clearly the
MIMD version requires more jump action from SIMD mode to MIMD mode.

For the method one, the SIMD, S/MIMD, MIMD methods are all
performed , but for the method 2 only the SIMD is performed since the correct
results could not be obtained (the fault might be in the network transfer
though the time will be the same).

The data sets for the experiments in this case will not make any
difference, so only one data set was used.

5. Data Measurements Taken
... Method 1

SIMD ;+../:'-'.0.78 milliseconds.
S/MIMD 0.842 milliseconds
MIMD 0.888 milliseconds

Method 2

S IMD 1.04 milliseconds

6. Discussion and Interpretation of Results
SIMD version of the program is the fastest among other modes in method

1. The main reason is that this version requires the least overhead to jump
from SIMD mode to MIMD mode since the frequency to jump to MIMD mode
is also the least. Note that the programs for all three modes are basically the
same, only the frequency of jumping from SIMD to MIMD mode makes one
mode faster than the others. With that reason in mind, it could be
understood that SIMD/MIMD mode is the second fastest since it has more
frequency than SIMD but less frequency than MIMD version to jump from
SIMD mode to MIMD mode. And the the slower is the MIMD mode with the
same reason above.

The result of method 2 is very surprising since it takes longer to the
finish executing the program compare to the SIMD version of the method 1.
Once again, method 2 only has transfers in O(N) compare to method 2 which
is 0(N2), but method 2 has has to open and drop path O(N) compare to 1

time for method 1. From the result, we can conclude that the overhead to do
the open and drop path is very high.

104

7. Future Work
Much further effort is needed in order to utilize this program. One

possibility is to expand the program to be able to execute larger input matrix
(i.e 1024 x 1024 matrix). To do that, one must write a general program which
is able to perform transformations for any input matrix and for any number
of PEs. The 2DFFT calculations need to use floating point computations since
the results are generally noninteger complex numbers.

8. Conclusions
For the 4 x 4 matrix inputs, method 1 gives a faster speed than the

method 2, and for the method 1 the SIMD is the faster, followed by the
S/MIMD than MIMD.

The fact that the method 2 is slower though it requires less transfers
means that the overhead to do the open and drop path is very significant.

References

[Blahut] Richard E. Blahut, 'Fast Algorithms For Digital Processing",
Addison-Wesley publishing Company, Reading, Massachusetts,
1983, pp. 115-127.

[Ziemer] Rodger E. Ziemer, et ai, "Signals and Systems", Macmillan
Publishing Co., Inc., New York, pp. 388-412.

[Mueller] Philip T. Mueller, et., FFT Algorithms for SIMD Parallel
Processing Systems", Journal of Parallel and Distributed
Computing 3, 1986, pp. 48-71.

[Siegel] H. J. Siegel, T. Schwederski, J. T. Kuehn, and N. J. Davis IV, "An
Overview of the PASM Parallel Processing System," in Computer
Architecture, D. D. Gajski, V. M. Milutinovic, H. J. Siegel, and B.
P. Furht, eds., IEEE Computer Society Press, Washington, D. C.,

105

1987, pp. 387-407.
[Schwed] T. Schwederski, H. G. Dietz, "Barrier Synchronization in the

PASM Parallel Processing System," 3rd SIAM Conference on
Parallel Processing for Scientific Computing, Los Angeles, CA,
Dec. 1987. A

106

PART m

Speech Processing and AI-Related

Experimental Analysis of SIMD Recursive Digital
Filtering oil the PASM System Prototype

107

Michael J. McPheters Jr. and Thomas L. Casavant

Abstract
Experimental analyses of an implementation of an SIMD algorithm for

recursive digital filtering using the PASM parallel processing system prototype
at Purdue are presented. The algorithm used easily generalizes to use N PEs
(processing elements). Timing-based analyses are made based on a four PE
version by examining the following constituent execution times: micro
controller execution time, PE execution time, broadcast communication time,
and the execution time of five additional phases in the recursive digital
filtering summation calculation. Broadcast execution time was found to
account for roughly 44% of the total execution time and the implication of
this is discussed for larger problem sizes and machine sizes. The total
measured execution time is verified through summation of execution times for
the various components of the algorithm.

1. Introduction
This paper reports on experimental measurements of an SIMD recursive

digital filtering algorithm implemented on the PASM (PArtitionable
S1MJ)/MIMD) parallel processing system prototype at Purdue [S5S81, SiS87j.
An SIMD algorithm Was chosen to perform recursive digital filtering because
SIMD structures most naturally allow for exploitation of the parallelism found
in this application [YoS81]. The main purpose of this research project was to
provide information for an Application-Driven Architecture Study, in which
easily understood algorithms are implemented as programs, and controlled
experimentation is done with respect to execution time of the algorithm in
order to evaluate particular architecture features. This phase of architecture
evaluation research represents some of the first experimentation with the
broadcasting feature of the PASM Extra-Stage Cube interconnection network
[AdS82]. Finally, this work is useful in gaming insight into the potential use
of PASM for this type of application. The results reported are focused on
showing the difference in execution times among the various phases of the
algorithm implementation. For example, when the algorithm is mapped to
the machine such that one input sample is assigned to each PE, and one

108

output is generated per PE, the broadcast execution time was found to be
44.59% of the total execution time, while the partial summation calculation
was 12.33%.

Section 2 provides background information and related work while
Section 3 gives an overview of PASM and its prototype. Section 4 reviews the
basic operations of digital filtering and describes the algorithm that was used.
The experiments performed, the results, and a general discussion of results
and their implication are presented in Sections 5 through 8.

2. Background and Related Work
Related experimental research has been carried out on several machines

through the use of both simulation and experimental techniques. Simulation-
based analysis was performed by Yoder and Siegel [YoS8l] for the PASM
system, and by Su and Thakore for the SM3 system and a hypercube
architecture [SuT87]. Experimental work involving measurements on working
machines has also been performed. Examples include work involving several
machines: the BBN Butterfly [CrG85], Cm* [GeS87], the Encore Multimax
[Hud88], the Intel Ilypercube [Hud88j, PASM [FiC88j, and the Warp system
[AnA87]. In these efforts, matrix multiplication was normally employed as an
example algorithm. Other reported work involving efficiency measurements
and algorithm optimization on parallel machines includes work done on an
Affiant FX/8 [JaM86, Iian88], a CRAY XMP [Cal84], and a combination of
Apollo work-stations and an Affiant FX/8 [KuN88].

Research involving digital filtering algorithm implementation has been
examined by Hodges et al [HoB80j. This work examined the use of skewed
SIMD-mode parallel digital filtering. Using this approach, all PEs execute the
same instruction stream, but the execution of given instructions are skewed in
time. Work done by Yoder and Siegel examined different strategies for
recursive digital filtering computations. Their work compares the use of a
systolic array and SIMD algorithms and performs simulation-based analyses of
the SIMD versions for PASM [YoS8l].

3. Overview of PASM and the PASM Prototype
PASM is a dynamically reconfigurable architecture in which the

processors may be partitioned to form independent virtual SIMD and/or
MIMD machines of various sizes [S5S81]. A 30-processor (16 in the
computation unit) prototype has been completed and was used in the

experiments described in Section 5, This section discusses the PASM
architecture characteristics which are most relevant to the reported
experimentation. For a more general description of the architecture and
prototype, see [SiS87].

The Parallel Computation Unit of PASM contains N PEs where N is a
power of 2 (numbered from 0 to N—1), and an interconnection network. Each
PE (processing element) is a processor/memory pair. The PE processors are
sophisticated microprocessors that perform the actual SIMD and MIMD
operations. The PE memory modules are used by the processors for data
storage in SIMD mode and both data and instruction storage in MIMD mode.
The Micro Controllers (MCs) are a set of Q==2q processors, numbered from 0

to Q—l, which act as the control units for the PEs in SIMD mode and
orchestrate the activities of the PEs in MIMD mode. Each MC controls N/Q
PEs. PASM has been designed for N -1024 and Q --32 (N—16 and Q---4 in
the prototype). A set of MCs and their associated PEs form a virtual
machine. In SIMD mode, each MC fetches instructions and common data
from its associated memory module, executes the control flow instructions (i.e.,
branches), and broadcasts the data processing instructions to its PEs. In
MIMD mode, each MC gets instructions and common data for coordinating its
PEs from its memory.

The PASM prototype system, completed in December 1986, was built for
N—16 and Q=4. This system employs Motorola MC68000 processors as PE
and MC CPUs, with a clock speed of 8 MHz. The interconnection network is
a circuit-switched Extra-Stage Cube network, which is a fault-tolerant
variation of the multistage cube network.

The PASM network is capable of operating in both point-to-point and
broadcast modes. The recursive filtering application described in this work
makes use of the broadcast facilities. In order to establish a broadcast
communication session, the sending node first must set up a path through the
network. This path is established by the execution of PE code which writes a
routing tag (for broadcasting, this value is $F0FC) into the DTR (Data
Transfer Register). The PE then sets a bit in a second control register to
instruct the network interface to interpret the value in the DTE as a routing
tag for setting up the network. Once the routing tag has been written to the
DTR each PE (sending and receiving) must poll a third control register to
verify that the path was actually set up. This polling will place the used
routing tag in a PE data register for each PE to verify. Byte data values are
then written to the DTR and automatically sent through the network. The

109

Fetch UnitMemory

MC CPU Register

FIFO
F etch

to PEs

Figure 1: Simplified MC structure

receiving PEs then initiate a read from the DTR to obtain the sent data value
which again is put in a PE data register. To conclude the broadcast session,
the sending PE code then initiates a drop path request that will free the
network by closing the established network path.

Consider the simplified MC structure shown in Figure 1. The MC
contains a memory module from which the MC CPU reads instructions and
data. Whenever the MC needs to broadcast SIMD instructions to its
associated PEs, it first sets the Mask Register in the Fetch Unit, thereby
determining which PEs will participate in the following instructions. It then
writes a control word to the Fetch Unit Controller which specifies: the location
and size of a block of SIMD instructions in the Fetch Unit RAM. The Fetch
Unit Controller automatically moves this block word by Word into the Fetch
Unit Queue. Whenever an instruction word is enqueued, the current value of
the Mask Register is enqueued as well. Because the Fetch Unit enqueues
blocks of SIMD instructions automatically, the MC CPU can proceed with
other operations without waiting for all instructions to be enqueued.

PEs execute SIMD instructions by performing an instruction fetch from a
reserved memory area called the SIMD instruction space. Whenever logic in
the PEs detects an access to this area, a request for an SIMD instruction is
sent to the Fetch Unit. Only after all PEs that are enabled for the current

■ ‘ Ill ; \ .

instruction have issued, a request i$ the instruction released by the Fetch Unit
FIFO. The enabled PEs then receive and execute the instruction. Disabled
PEs do not participate in the instruction and wait until an instruction is
broadcast for which they are enabled. This way, switching from MIMD to
SIMD mode is reduced to executing a jump instruction to the reserved
memory space, and a switch from SIMD to MIMD mode is performed by
sending a jump to the appropriate PE MIMD instruction address located in
the PE main memory space.

In order to make comparisons of the speed of the PASM prototype
relative to other machines and to compare the relative speeds of SIMD and
MIMD instruction fetches, the actual raw performance of PASM in SIMD and
MIMD mode was measured on the prototype and is illustrated in Table 1 in
MIPS (millions of integer instructions per second) for two different types of
instructions.

Mode Operation
Processing

Rate
SIMD
MIMD
SIMD
MIMD

16-bit Reg.-to-Reg. add
16-bit Reg.-to-Reg. add

16-bit Reg.-to-Mem. add
16-bit Reg.-to-Mem. add

22 MIPS
18 MIPS
6.4 MIPS
6.0 MIPS

Table 1: Prototype raw performance.

4. The Recursive Digital Filtering Algorithm

4.1. Algorithm Used
The basic operations in digital filtering are the computation of sum of

products terms, with output ym given by

p q
7m = £ ak y(m_k) + £ bk x(m_k) p,q ^ m ^ M

k=l k=0

where xm is a sample input to the filter. The ak's and bk's are the filter
coefficients which define the characteristics of the filter operation to be
performed, and M is the number of samples in the signal to be filtered

[YoS8l]. The parallel recursive digital filtering algorithm used to compute ym
is shown in Figure 2.

ADDR — Address of PE (e.g., ADDR = 0 in PE 0)
DTRin — Data Transfer Register input to the PE
DTRout — Data Transfer Register output from the PE
COEF[] — Vector of coefficients
FLAG[i] Equals 1 if COEF[i] is an “a” coefficient
SUM = Contains partially computed ym

for j := 0 to M-fp-fq-1 do
where ADDR = j mod (p+q-KL) do /* Select PE containing

DTRout := SUM; * new y value yj_(q+i)
■/; : ; ;.;V [AV '-V. y ■ ; ^ ■

SUM := 0; /* Broadcast that y and
broadcast; * start new sum there

■-"v7- -■

where FLAG [j mod (p-fq+1)] ==■ 1 do /* In each PE, select
TMP :== DTRin; * either broadcast y

elsewhere do
TMP := Xj; /* or the new x value

v 77 '*f\ : -V:V / ■■ '

SUM SUM + TMP *
. COEF [j mod (p+q l l)];

Figure 2: General SIMD Digital Filtering Algorithm.

The first step in the high level algorithm is to select which PE contains the
Uewly computed ym value based on the loop index, j, and number of summation
terms, p+q+1. The selected PE will then be enabled and the SUM (i.e., ym) will
be broadcast to all PEs, including itself, and then reset to zero to begin
calculating a new ym. In the second step, using the FLAG matrix, each PE must
determine which data value to use in the running sum calculation and store it in
TMP. This value stored in TMP may be either the broadcast ym output value
or the new xm filter input value. In the third step, because each PE holds a copy
of the filter coefficients, the algorithm makes use of the loop index and number
of summation terms, to determine which coefficient to use in a given step of the
algorithm. The third step also involves computing the partial running sum

113

within each PE using one multiplication and one addition.
The broadcast flow for the ym calculation is illustrated in Figure 3 where

the double boxes indicate the start of a, new ym computation.

Figure 3: Data Flow Diagram for p = 2 and q

The operations executed during one stage (i.e., one loop iteration) include one
selection of a filter coefficient, two broadcasts, one addition, one multiplication,
and one scalar assignment. Therefore, because all PEs are effectively active
computing one part of ym, one output (ym) is completed at each stage.

4.2. Implementation Discussion
The algorithm of Figure 2 was implemented in 68000 assembly language on

the PASM system prototype. The “where...do” and “where...elsewhere”
statements are used to indicate the setting of the Mask Register in the Fetch
Unit. This conditional evaluation for the “where” is done in the MC in order to
determine which PE or sets of PEs are to be activated for the set of SIMD
instruction(s) following the “do”. In the “where...elsewhere” statement, the
conditional “where” is also evaluated in the MC. The PEs for which the
condition holds are enabled and execute the SIMD instruction(s) following the
“do”, while the remaining PEs execute the SIMD instruction(s) following the
“elsewhere do”. The FLAG matrix is also evaluated in the MC. When FLAGfi]

114

is 1, then the associated filter coefficient in CGEF is an “a” coefficient which
would indicate that a PE should use the broadcasted ym value, otherwise (i.e.,
when FLAG[i] — 0) a new xm filter input value should be used. Finally, the
coefficient matrix is set up such that each PE only needs a single row of the
matrix to compute ym as shown in Figure 4.

PE COEFIO] COEF[1] COEF[2]. . . .C0EF[p+q~-l]COEF[p-Fqj

0 kq bq-1 bq-2 . .a2 al
1 ai bq bq—1 a3 a2
2 a>2 al bq a3

P ap ap—1 ap-2 bl bo

P+1 bo aP ap—1 b2 bi

p+q-1 bq-2 fiq-3 bq—4 • • ••bq bq—1

p+q bq—1 bq-2 bq—3 • • . ,ai bq

Figure 4: Skewed Coefficient Storage.

4.3. SIMD vs. Systolic
Both systolic array and SIMD structures are well suited for exploiting the

parallelism inherent in certain tasks performed on vectors and arrays [YoS81].
There are two potential advantages of choosing an SIMD implementation. First,
an SIMD machine supporting dynamic broadcast reconfiguration allows for a
value of ym to be computed every time unit, whereas a systolic implementation
would require two time units. The systolic implementation allows flow between
cells in a pipelined fashion such that communication with the outside world can
only occur at the “boundary cells” [Kun82]. For a systolic implementation the
xm values flowing “up” the pipeline must be synchronized with the ym values
flowing “down” the pipeline so that they meet in the correct PE with the correct
coefficient [YoS81]. Therefore, valid data only exists in the even numbered PEs
during odd numbered cycles and in odd numbered PEs during even numbered
cycles, hence effectively requiring two time units for each ym computation. The
broadcast for an SIMD implementation can be handled by using the

115

interconnection network to transfer the data item to the set of desired PEs (as
done on PASM), hence effectively requiring only one time unit for each ym
computation. Second, an SIMD implementation easily allows for strip-mine
mapping of larger problem sizes to smaller machines when the problem size
increases beyond the number of PEs available,

5. Experiments Performed
Timing measurements were made for eight separate phases of this SIMD

implementation of recursive digital filtering. All operations were performed
with integer byte-operands (8-bit), and overflow was ignored. The experimental
results were obtained from the calculation of 52 ym values where the 52 xm
inputs were unity and the filter coefficients % and were also set to unity.
This choice of input data simplified debugging, but also permitted gathering of
the needed timing measurements.

The following eight time measurements were made using the system’s
internal timers (Motorola 68230) and were repeated five times. The five trials
were used to reduce anomalous data resulting from asynchronous hardware
behavior1. The timer clock period was four microseconds, therefore, five
decimal places to the right of the decimal point were significant.
1. MC execution time for computing ym. This is the aggregate algorithm

time to compute a single ym value as measured in the MC. It is the total
measured MC time divided by 52 to obtain the average MC execution time
for computing ym. The timer chip on the MC board was used.

2. PE execution time for computing ym, This is the aggregate algorithm time
to compute a single ym value as measured in the PE. It is the total
measured PE time divided by 52 to obtain the average PE execution time
for computing ym. The PE timers were Used and the largest single PE
time of the four PEs was reported.

3. Broadcast communication time. This is the time needed to establish the
communication path from one PE to the other PEs and itself, send and
receive data, and then to drop the communication path so that a new path
may be established in the next stage.

1 The PEs in SIMD mode operate on separate clocks, however hardware synchronization
is done on word fetches. Thus, some PEs may take more time to fetch complete
instructions than others.

4. Path acknowledge time. This is the time needed for each PE to
acknowledge receipt of a routing tag. This is a direct measure of the
amount of serialization caused by SIMD execution of the broadcast.

5. Summation calculation execution time. This is the time needed to compute
one stage of the summation. This is dominated by the coefficient
multiplication time and the time required to add this product to the
partial running sum in each PE.

6. Execution time for choosing ym after broadcast. This is the time needed to
determine if ym should be used for the ym calculation in the current stage
based on the FLAG matrix. Choosing ym involves requesting a network
read and storing the read ym value in TMP.

7. Execution time for choosing xm. This is the time needed to determine if xm
should be used for the ym calculation in this given stage based on the
FLAG matrix. Choosing xm involves indexing into the data array of x
values using the loop index and then storing it in TMP.

8. Execution time to increment mod 4 stage counter. This is the time needed
to increment the stage counter by one or reset it to zero when the fourth
stage has been reached. There are four stages because there are four terms
in the ym calculation.

6. Data Measurements
The data measurements appear in Table 2.

116

Measurement Time Percent of
Total Time

MC execution time 0.4281 100%
PE execution time 0.4311 * 100%

Broadcast execution time (B) 0.1880 44.59%
Path acknowledge time (A) 0.0520 12.33%
Summation calculation (S)

execution time 0.0520 12.33%

Execution time for ym (CY) 0.0632 7.50%
Execution time for xm (CX) 0.0680 8.06%

Execution time for (X)
counter increment 0.0640 15.18%

*greater than MC execution time due to MC overhead to start and
stop tinier in PEs.

Table 2: Experimental Measurements
(All times in milliseconds.)

Note, one can verify the total time to calculate four ym values based on
Equation 1.

4 ym= 4 B + 4 A + 4 S + 2 CY + 2 CX + 4 I (l)

To verify the data values obtained, note that the left side of this equation is
equal to four times the PE execution time. The measured PE time was
1.7244ms, and the right hand side is equal to 1.6864ms, This represents
approximately a 2.20% error which is insignificant relative to other differences
noted. This 2.20% error occurred for primarily two reasons. First, the PE
execution time includes the overhead time for manipulating the timers in each
PE which would account for the higher left-hand side of the equation. Second,
the measured time for each phase is an average of five trials which would reduce
the effects of extreme data measurements on the right side.

The percentages in Table 2 are expressed relative to the right hand side of
Equation 1. For example, the broadcast execution time percentage of 44.59% is
calculated by dividing four times the broadcast execution time (0.7420ms) by
the total execution time (l.6864ms).

118

7. Discussion and Interpretation
As seen from Table 2, the execution time for the calculation of ym consists

of 44.59% broadcast time. This means that over 40% of the total calculation
time is spent sending previous values of ym to the other PEs. The PE that has
completed its ym calculation must set up the network for the broadcast,
broadcast ym, and drop the network broadcast path, thus causing a long
serialization which has great negative potential impact for larger numbers of
processors due to effects of Amdahl’s Law.

The actual summation time (multiplication and addition) for this mapping
is only 12.33% of the ym calculation time. Each PE needs to compute the
partial running sum by multiplying either ym or xm by a filter coefficient and
then adding it to the previous partial sum. The coefficient and previous partial
sum stored in each PE memory allows them to be accessed locally. This fact
accounts for this relatively small time contribution.

From these two measurements, it may be concluded that the present
mapping of one xm and ym value per PE results in very inefficient use of
processing resources. If the number of samples per PE increased, the broadcast
time would remain constant while the percentage of time required for carrying
out the summation will increase. At the point where the parallelism benefit
derived from dividing the problem across PEs increases past the overhead from
broadcasting, a point of marginal efficiency may be defined. Beyond this point
the parallel version is justified with respect to its SISD (serial) counterpart.
Below this point, the communication overhead causes the execution time to be
worse then it would be for a serial implementation. The major implication is
that for realistic problem sizes (e.g., N ± 64) that a relatively modest number
of PEs (e.g-, 4-16) would provide tangible improvement over serial execution
and for large numbers of PEs, such resources could likely not be well-utilized.

The percentage of time spent choosing ym and xm are 7.50% and 8.06%,
respectively. The time for choosing ym is relatively low because it is in a data
register after a network read is initiated. The time for choosing xm is also
relatively low, compared to other contributions, because it is accessed locally
from each PE memory, yet slightly larger than ym because the access is to
memory versus a data register.

Finally, the ym calculation includes some pure overhead. This overhead
includes the counter increment time used to index into the coefficient array
stored in each PE. Also, the path acknowledge time is overhead in that a
network read is required to flush the routing tag from the network.

119

8. Future Implications and Extensions
The reported work represents early findings from the past 6-8 months.

While the results offered here are quite useful, one of the greatest uses is toward
guiding future work. First, this implementation was for byte data which quickly
becomes insufficient to store the running sum. Therefore, versions are being
written for word and floating point data. Second, the problem size can be
increased such that the implementation would require more PEs (i.e., 8 or 16).
The problem size in this case is increased by increasing the number of terms in
the ym calculation to fit the number of PEs available. Finally, the problem size
can be increased again, but this time the number of PEs would be less than the
number of terms in the ym calculation. Therefore the efficiency-related
hypothesis of the previous section may be verified.

This future work would focus on the broadcast feature of PASM. In
particular, the point where the negative effects of the broadcast communication
time are overcome by the positive effects of parallelism (i.e., the marginal
efficiency point) can be achieved when the problem size is greater than the
number of PEs. From the current results, we anticipate that this point would
occur when the ratio of problem size to the number of PEs is equal to four.
However, when increasing the problem size beyond the number of available PEs,
a new approach to the algorithm implementation also needs to be examined.

Another area of experimentation would be to analyze possible data
dependencies by examining the impact that word data has on the execution
times. In this case, the broadcast time would most likely increase while the other
times would remain relatively constant. These results will indicate the
importance of large bandwidth systems and also allow prediction of execution
times for floating point data.

Aside from the possibilities for future work, having coded the given
algorithm in assembly language pointed out an additional implication of this
work. When compared to programming in a HLL (High Level Language),
programming in assembly language is arguably more difficult. This relative
difficulty of assembly language programming would make large application
programs rather burdensome to code, thus there is a need for more abstract
programming support on PASM. However, our purpose has been to examine the
characteristics of an experimental architecture. In doing so, assembly language
was used by necessity. As a result two unexpected observations resulted.

First, because there is some overhead associated with using a HLL, it is not
possible to fully achieve the performance benefits as seen with low level assembly

-120

language programming. Assembly language allows for more efficient coding of
loops, array access, and access to the network for interprocessor communication
which can not be provided with a HLL because of its higher level of abstraction.
Second, having an operating system on PASM would again not typically allow
for the writing of efficient code as seen here because of the overhead associated
with an operating system. An operating system, in general, would decrease the
overall performance of most programs because of its underlying purpose to
control and manage the security and integrity of the whole system environment.
Program performance would be inhibited because the operating system Controls
parts of the system in a way more general than that needed depending on the
specific application. Thus, these services would be considered overhead. These
observations will help in determining which characteristics would be needed in a
HLL in order to maintain comparable speed-up gains as seen with assembly
language programming with no resident OS.

9. Summary
Experiments designed to measure execution times of the various phases in

SIMD recursive digital filter calculation of ym on PASM were described. An
equation was given that verified the total ym calculation time with respect to the
various phases in the summation calculation. The results reported show the
difference in execution times among the various phases of the implementation.
In particular, the broadcast execution time was found to be 44.59% of the total
execution time while the partial summation calculation was only 12.33% of the
total execution time.

The experiments presented used an actual parallel machine (the PASM
system prototype) and showed that broadcast communication time is a
significant part of SIMD recursive digital filtering algorithms.

10. Acknowledgements
The authors would like to thank Dr. Leah Jamieson, Ed Bronson, Dr.

Thomas Schwederski, Sam Fineberg, Wolfram Disch, and the PASM
applications group for their many useful discussions.

. 121;

■References

[AdS82] G. B. Adams III and H. J. Siegel, “The Extra Stage Cube: A Fault-
Tolerant Interconnection Network for Supersystems,” IEEE
Transactions on Computers, Vol. C-31, May 1982, pp. 443-454,

,[AnA87] M. Annaratone, E. Arnould, T. Gross, H. T. Kungj M, Lam, O.
Menzilcioglu, and J. A. Webb, “The Warp Computer: Architecture,
Implementation, and Performance,” IEEE Transactions on
Computers, Vol. G-36, December 1987, pp. 1523-1538.

[Cal84] D. A. Calahan, “Influence of task granularity on vector
multiprocessor performance,” 1984 International Conference on
Parallel Processing, August 1984, PP- 278-284.

[CrG85] W. Crowther, J. Goodhue, R. Thomas, W. Milliken, and T,
Blackadar, “Performance measurements on a 128-node butterfly
parallel processor,” August 1985, pp. 531-540. 1985 International
Conference on Parallel Processing,

[FiC88] S. Fineberg, T. Casavant, T. Schwederski, H.J. Siegel, “Non-
Deterministic Instruction Time Experiments on the PASM System
Prototype,” 1988 International Conference on Parallel Processing,
Chicago, August, 1988.

[GeS87] E. F. Gehringer, D. P. Siewiorek, and Z. Segall, Parallel Processing:
The Cm*Experience, Digital Press, Bedford, MA, 1987.

[Han88] F. B. Hanson, “Vector Multiprocessor Implementation for
Computational Stochastic Dynamic Programming,” IEEE
Technical Committee on Distributed Processing Newsletter, Vol. 10,

.f 1988.
[H0B8O] C. J. M. Hodges, T. P. Barnwell, III, and D. McWhorter, “The

Implementation of an All Digital Speech Synthesizer Using a
Multiprocessor Architecture,” 1980 IEEE International Conference
on Acoustics, Speech, and Signal Processing Proceedings, April
1980, pp. 855-858.

[Hud88] P. Hudak, “Exploring Par afunctional Programming: Separating the
What from the How,” IEEE Software, Vol. 5, January 1988, pp. 54-
61.

[JaM86] W. Jalby and U. Meier, “Optimizing Matrix Operations on a Parallel
Multiprocessor with a Hierarchical Memory System,” 1986

[KuN88]

[Kuii82]

[S1S81]

[SIS87]

[Sto80]

[SuT87]

[Y0S8I] .

y 122

International Conference on Parallel Processing, August 1986, pp.
429-432. '■
J. G. Kuhl, J. J. Norton, and S. R. Sataluri, “A Large-Scale
Application of Coarse-Grained Parallel and Distributed Processing,”
IEEE Technical Committee on Distributed Processing Newsletter,
Vol. 10,1988. ■
H. T. Kung, “Why Systolic Architectures?,” Computer, January
1982, pp. 37-46.
H. J. Siegel, L. J. Siegel, F. C. Kemmerer, P. T. Mueller, Jr., H. E.
Smalley, Jr., and S. D. Smith, “PASM: a partitionable SIMD/MIMD
system for image processing and pattern recognition,” IEEE
Transactions on Computers, Vol. C-30, December 1981, pp. 934-947.
H. J. Siegel, T. Schwederski, J. T. Kuehn, and N. J. Davis IV, “An
overview of the PASM parallel processing system,” in Computer
Architecture, D. D. Gajski, V. M. Milutinovic, H. J. Siegel, and B. P.
Furht, eds., IEEE Computer Society Press, Washington, D.C., 1987,
pp. 387-407. - :
H. S. Stone, “Parallel computers,” in Introduction to Computer
Architecture (second edition), H. S. Stone, ed., Science Research
Associates, Inc., Chicago, IL, 1980, pp. 363-425.
S. Y. W. Su and A. K. Thakore, “Matrix Operations on a
Multicomputer System with Switchable Main Memory Modules and
Dynamic Control,” IEEE Transactions on Computers, Vol. C-36,
December 1987, pp. 1467-1484.
M. A. Yoder, L. J. Siegel, “Systolic and SIMD Algorithms for Digital
Filtering,” Proceedings of the Nineteenth Annual Allerton
Conference on Communication, Control, and Computing,
University of Illinois at Urbana-Champaign, October 1981, pp. 880-
889. . Zvu'-'

123

AI Graph Searching and Parallel N-Min-Finding

Carol Ringer

Abstract
This work focuses on ways of parallelizing a searching procedure that could

be implemented on PASM. In particular it focuses on the problem of finding N
minimum values in N processing elements (PE’s), which is a subproblem that
evolves from a larger searching problem. Given a sorted list of Values in each PE
memory find the N minimum values of the combined lists. A four PE SIMD
version of the N-MIN-FINDING algorithm has been implemented.

The choice of an all SIMD version of the program is based on the importance of
having the PE’s easily synchronized to facilitate the network transfers as fast as
possible; Forcing the smallest value array to have identical data in all PE’s
allows the sorting to be very efficient in SIMD mode. In this mode, branching
overheads are incurred in the MC’s and can be overlapped with the actual
comparison and movement of data in the PE’s.

1. Introduction
Current work being done in the area of artificial intelligence often deals

with problems that have a combinatorially large problem space. Searching a
large problem space exhaustively is inefficient and usually impractical. Finding
ways to speed-up and optimize a searching procedure is of major
importance. [L1W84]

Research has been done on ways to optimize the solution search procedure
by making intelligent guesses about the best path to take [Nil80]. Another
approach for speeding up the search is parallelizing it so that more than ope
path is explored at a time.

This paper focuses on ways of parallelizing a searching procedure that
could be implemented on PASM.[Sis87] In particular it focuses on the problem
of finding N minimum values in N processing elements (PE’s), which is a

124

subproblem that evolved from the larger searching problem.

2. Background

2.1. Problem-area related references and background
Search problems can usually be represented as an acyclic graph or tree.

[WaL85] One general technique for searching a graph or tree is a branch-and-
bound algorithm. A b ranch-and-bound algorithm decomposes a problem into
smaller subproblems and keeps decomposing it until a solution is found or the
problem is determined to be unsolvable. The decomposition of the problem is
achieved by using branching and selection rules. Elimination rules can be used
to reduce the search space, and a termination rule is used to check for the goal
state or solution.[LiW84]

GRAPHSEARCH is a branch-and-bound algorithm described in [Nil80]
that keeps a record of the rule applications to a problem space which preserves
the shortest path to the goal or subgoals. The general graph search algorithm as
taken from [Nil80] is given below.

Procedure GRAPHSEARCH

1 Create a search graph, G, consisting solely of the start node, s. Put s on
a list called OPEN.

2 Create a list called CLOSED that is initially empty.

3 LOOP: if OPEN is empty, exit with failure.

4 Select the first node on OPEN, remove it from OPEN, and put it on
CLOSED. Call this node n.

5 If n is a goal node, exit successfully with the solution obtained by
tracing a path along the pointers from n to s in G. (Pointers established
in step 7)

6 Expand node n, generating the set, M, of its successors and install them
as successors of n in G.

A'.vv 125 ; A-'-'-

7 Establish a pointer to n from those members of M that were not
already in G (i.e., not already on either OPEN or CLOSED). Add these
members of M to OPEN. For each member of M that was already on
OPEN or CLOSED, decide whether or not to redirect its pointer to n.
For each member of M already on CLOSED, decide for each of its
descendants in G whether or not to redirect its pointer,

8 Reorder the list OPEN, either according to some arbitrary scheme or
according to heuristic merit.

0 Go to LOOP

Step 8 refers to ordering the list OPEN according to heuristic merit. The
heuristic merit is some estimation of the promise of a node in the graph with
respect to achieving the goal. A node has more promise if it is on the shortest
path to the goal. The expansion in step 6 includes calculating this promise
value. Nilsson claims that if a heuristic function calculated on a node n, is a
lower bound on the actual cost of going from node n to the goal then
GRAPHSEARCH is admissible. An admissible search algorithm always
terminates in an optimal path from the start node to the goal node.

2.2. PASM Overview
Heuristic estimation is one way to optimize the GRAPHSEARCH

algorithm. A way to speed-up the process is by parallelizing the node expansion
process. The PASM architecture can be used to parallelize the
GRAPHSEARCH algorithm by using one micro controller (MC) to keep track of
the graph search path and use the PE’s for expanding and sorting the nodes. A
"parallelized for PASM" graphsearch algorithm is given below. This algorithm
also incorporates the idea of heuristic estimation.

Procedure PARALLEL GRAPHSEARCH

1 In 1 PE create a search graph G consisting solely of the start node, s,
put s on a list called OPEN

2 In 1 MC create a list called CLOSED that is initially empty

126

3 LOOP: Check the size of OPEN if it is 0, exit with failure.

4 IF the size of OPEN is less than the number of PE’s (N)
THEN distribute those nodes to the PE’s
ELSE pick the N minimum values from OPEN and distribute
them among the PE’s

Send and identifier for each node back to MC that will be put on
CLOSED. MC then must send parent address back to the nodes that
will be expanded in PE’s.

5 In MC check the node identifiers sent back and see if the goal state has
been reached if so exit successfully with a path to the goal.

6 Expand the nodes in the PE’s and insert sort them according to
heuristic merit into the OPEN lists of the PE’s.

7 For simplicity assume the problem space can be represented as a tree,
which implies that a node can only be generated once when its unique
parent is expanded. In this case no redirecting of pointers is involved.
If this is not the case each new node must be checked against all other
nodes on OPEN and CLOSED to see if a shorter path is found, this
could be a very cumbersome task. In this simplier case this step is
inherent because each node will have as part of its record the address of
the parent node in MC* sent in step 4.

8 This step is taken care of in step 6 when the new nodes are merged into
■' the OPEN lists.

'; 9 Go to LOOP ■■ .

One major overhead in the parallel graphsearch algorithm that is not found
in the serial algorithm is the cost of finding N nodes with the smallest promise
values such that the most promising nodes will be expanded next. The
distributed architecture of PASM is good for node expansion but the non-shared
memory of the PE’s makes finding the N-minimum promise values a non-trivial
task. Section 3 describes how this task of "N min finding" is accomplished on
PASM.

127

3. Project Description

3.1. Problem
The problem as described in section 2 can be summarized as follows:

Given a sorted list of values in each PE memory find the N minimum
Values of the combined lists.

Since the records associated with each node could be rather large it would
be impractical to try to combine the lists in some way to discover the smallest
nodes. A smarter approach is to utilize the network of PASM to sort according
the promise value such that in the end each PE knows where the smallest nodes
are located and passing records is done only if necessary.

3.2. Algorithms
A high level language algorithm for N-MIN-FINDING on PASM is given

below:

Assumption: Each PE has a list of values sorted from smallest to largest.

Procedure N-MIN-FINDING

arrat/[PEi] <-- list-,value
passregr(PEi) <— list— value
list <-- list—next

while (count!“ 0)

for j — 1 to N-l

passrefif(PEi) <— passreg'fPEi+l)
arrat/[(PEi-|-j) mod N] <-- passre^(PEi)

bubblesort (array)

if (list— value < array[N-l])

then passrey(PEi) <— lisE.vatue
else passrey(PEi) <~MAX

count <— //PE‘s that have smaller values

for k = 1 to Q-l

passreg(PEi) <-- count

■ ■ 128 :

passre</(PEi) <—passreg(PEi+1)
count <-- passreg(PEi) + count

where,

N — number of PE’s being used

Q = number of MC’s being used

hst-is the sorted list (OPEN in GRAPHSEARCH) of the node records.

list—value - is the promise value field of each node record.

array - is the space for the promise values appended with their PE number
to be stored. At the end of the process it will contain the N-minimum values.

passrej(PEi) - is the register in PEi used for passing the values through the network.

count- is the number of PE’s that have a smaller value on their list than the last
value in array.

Notice that during the network transfer the passed values are put into the
array according to their original PE number. This results in all PE’s having
identical arrays to sort and thus the bubblesort can be carried out in SIMD mode
with the MC’s controlling the looping and allowing all PE’s to be enabled
throughout the sort.

The count transfer loop at the end of the program is not executed in the
four PE version because only one MC is used. When more PE’s are used (and
therefore more MC’s) it only takes Q - 1 transfer and add steps to obtain the
total count in all PE’s. This is possible because all PE’s in an MC group have
the same count value and the network is configured such that PE’s in one MC
group are connected to PE’s in another MC group.[SiS87]

3.3. Programs
The four PE version of the N-MIN-FINDING program written for PASM is

appended to the end of this report. Notice that the modifications for eight and
sixteen PE versions are basically changing some program constants, noted in the
comments, and revising output routines.

129

4. Experirrients Performed

4.1. Number of PE’s and modes of parallelism
A four PE version of the N-MIN-FINDING algorithm has been written,

debugged, and tested. The program is entirely SIMD except for the routine that
sends the data back to MC for printing. This routine could be SIMD also with
some modifications.

The choice of an all SIMD version of the program is based on the
importance of having the PE’s easily synchronized to facilitate the network
transfers as fast as possible. Forcing the smallest value array to have identical
data in all PE’s allows the sorting to be very efficient in SIMD mode. In this
mode the branching overhead is taken care of in the MC’s and can be overlapped
with the actual comparison and movement of data in the PE’s. The fact that
the data is the same in this operation implies maximum processor utilization
throughout the sort.

4.2. Data set characteristics
The data sets used for testing and timing the N-MIN-FINDING program

were different distributions of the N smallest values throughout the PE’s. The
inherent best case data for the N-MIN-FINDING algorithm, precluding the
bubblesort effects, is data that is distributed with one minimum value in each
PE. Data arranged in this way will cause only one iteration of the while (count
< > 0) loop. The inherent worst case data set is data that has all N minimum
values in one PE. This data arrangement causes N iterations of the while loop.

5. Data measurements taken
Sample data and timing measurements are given in the table below.

Distribution of the N minimum values is shown for each data set. All times are
in milliseconds.

Data Set Arrangement
PEO PEI PE2 PE3

Total
Time

Transfer
Time

Sort
Time

Overhead
Time

: t/'V 10 11 12 13 2.5 0.152 1.3 v. 0

■.A 2;; 40 31 22 13 4.25 0.152 3.02 0 ■
30 21 . 33 •
AO . :

6.36 0.204 4.31 0.736

. 4
23

C-yA:.;-'y ,;:33

17.1 0.256 14.2 1.47

/\5. ./> 10
10
10
10

14.28 0.308 10.6 2.20

6'': U.UhA;'-. 03
J, 03 ;

03
03

20.92 0.308 17.2 2.20

Table 1
Overhead is checking the PE’s for smaller values and making other
adjustments that must happen before the next iteration. Times in

milliseconds.

Notice that there are two best case data sets (l & 2) and two worst case data
sets (5 & 6). A characteristic of the bubblesort algorithm used is that preordered
data (as in set -/fl) takes much less time to sort than reversed data (as in set f/2).
To negate the effects of bubblesort the best and worst case times for N-min-
iinding are calculated by taking the average of the "bubblesort best and worst"
for the different data distributions. A summary of the timing measurements are
given in the table below.

131

Best Case Ave. Case Worst Case
3.38 10.85 17.6

Table 2 -.'-./v. ■■ +
The best and worst case times are averages of data sets 1 fe 2 and

5 & 6 respectively.
6. Discussion of interpretation of data

6.1. Problem related
As can be seen from the tables the execution times are very dependent on

the data distribution in the PE’s. The fact that the bubblesort algorithm is
dependent on the ordering of the data in the array is one factor in the time
discrepancy. The sorting time is between 60% and 80% of the total execution
time so implementing a faster sorting algorithm might make the total time
faster and not as data dependent. The fact remains that the cases where the N
smallest values are in one PE will be about N times slower than the cases where
the minimum values are evenly distributed. The best and worst case times in
the summary table back up this theory.

6.2. PASM Architecture related
The network transfers only accounted for between 2% and 6% of the total

execution time. Network overhead is data dependent only in the sense that more
iterations of the loop and thus more transfers are needed when the minimum
values are concentrated in one or two PE‘s.

The timings for eight and sixteen PE’s should be proportional to the times
of four PE’s except for the overhead times. The overhead times in the eight and
sixteen PE versions will include a recursive doubling procedure that sums the
total number of PE’s that have a value smaller than the last item in the sorted
array. This procedure adds Q - 1 (where Q — the number of MC’s being
used[Sis86]) transfers per iteration of the loop. The four PE version does not
need to do these transfers because the MC can examine the condition code
register to see if any PE‘s still need to transfer a value. Another approach to
determining the termination condition that may not add as much transfer
overhead when more PE‘s are used is to look at the number of MAX values that
are passed through the PE‘s so that each PE will know when there are no more

132

PE‘s that have a smaller value. The trade off between extra comparison steps
and more network transfers would have to be examined more closely for larger
groups of PE‘s.

7. Conclusions
The conclusions that can be drawn from the work done on N-MIN-

FINDING and PARALLEL GRAPHSEARCH so far are best expressed in terms
of complexity comparisons.

7.1. Comparing parallel min-finding with serial min-finding
The complexity of straight serial min-finding for n values, which is really

just sorting, that assumes a faster sorting algorithm could be used
(Quicksort)[Wir76] is given by:

serial complexity = cj(nlpgn)

The complexity of the N-MIN-FINDING algorithm described in section 3 for n
values and N PE's, and also assuming a Quicksort algorithm can be used for all
the sorting, is given by:

parallel complexity = cx [(n/N)log(n/N) + i@(NlogN)j + ic2(N + Q — 1)

where,
;T =

; ci
c2

r:;VA;4
According to the measurements shown in section 5 c2 is small compared to

cx. If the last term is ignored in parallel expression, then the comparison really
lies in sorting times of two cases. From these general expressions it seems that
the parallel algorithm will be most efficient when N is small and n is large.

7.2. Comparing parallel graph search with serial graph search
In the context of graph search the overhead of N-min-finding can be

counter balanced with speed gained by expanding more than one node at a time.

The serial graph search complexity is estimated by:

mft 4- cj©(n2)]

= expected number of iterations of algorithm
= sorting complexity constant
= communications complexity constant
= number of MG‘s being used

The parallel graph search complexity is estimated by:

(m/N)[t 4- ^©(n2)4-ic2©(NlogN) + ic3(N + Q — 1)]

where,
m = number of nodes expanded to get to the goal
t = time to expand the average node
i — expected number of iterations of algorithm
c4 == insert sorting complexity constant
c2 — quick sorting complexity constant
c3 —communications complexity constant

133

If the communications constant can be considered small then the trade-off
between serial and parallel is based on the size of n and N and also m and t.
From the estimates it appears that a parallel graph search would be most
efficient if the problem space is large and the average time to expand a node is
large.

8. Future work
There are many ways the work on the general searching problem using

P ASM can continue.
The N-MIN-finding algorithm still has other combinations of sorting

algorithms and transfer procedures that could be combined. For example
looking at the the trade-offs of the different ways to determine the termination
condition mentioned in the last section. Also, finding a way to avoid putting the
MAX values into the array so the number of items to be sorted is less.

The PARALLEL GRAPHSEARCH algorithm described in section 2 has
other subproblems related to the PASM architecture that need to be solved
before a parallel graph search can be tested and compared to serial versions. A
method must be developed to distribute the nodes to be expanded among the
PE‘s given that N minimum values are found and each PE knows where they are
located. Different applications of graph search could be studied to discover
when a parallel version will perform better than a serial version. Other
searching, sorting, and min/max-finding problems could also be explored and
hopefully this report will give guidance to someone interested in pursuing them.

References

134

[LiW84] G.Li, B.Wah, "Computational Efficiency of Parallel Approximate
Branch-And-Bound Algorithms," Proc. Int(l Conf. Parallel
Processing, 1984, pp.473-480

[Nil80] N.J. Nilsson, Principles of Artificial Intelligence, Morgan Kaufmann,
Los Altos, CA, 1980
H.J.Siegel, T.Schwederski, J.T.Kuehn, N.J.Davis IV, "An Overview
of the PASM Parallel Processing System," Tutorial: Computer
Architecture, D.D.Gajski, V.M.Milutinovic, H.J.Siegel, and
B.P.Furht,eds., IEEE Computer Society Press, Washington, D.C.,
1987, pp.387-407.

[WaL85] B.W.Wah, G.Li, C.Yu, "Multiprocessing of Combinatorial Search
Problems," Computer, Vol. 10, No. 6, 1985, pp93-108

[Wir76] N.Wirth, Algorithms:+.Data Structures = Programs, Prentice-Hall,
Englewood Cliffs, NJ, 1976

	Purdue University
	Purdue e-Pubs
	1-1-1988

	Experimental Benchmarks and Initial Evaluation of the Performance of the PASM System Prototype
	T. L. Casavant
	H. S. Siegel
	T. Schwederski
	Leah H. Jamieson
	A. Fineberg
	See next page for additional authors
	Authors

	tmp.1542052450.pdf.raYKL

