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Introduction

The work reported here represents experiences with the PASM parallel 
processing system prototype during its first operational year. Most of the 
experiments were performed by students in the Fall semester of 1987. The 
first programming, and the first timing measurements, were made during the 
summer of 1987 by Sam Fineberg.

The goal of the collection of experiments presented here was to undertake 
an Application-driven Architecture Study of the PASM system as a paradigm 
for parallel architecture evaluation in general. PASM was an excellent vehicle 
for experimenting with this evaluation technique due to its unique 
architectural features. Among these are:
1. A reconfigurable, partitionable multistage circuit-switched network.
2. Support for both SIMD and MIMD programs.
3. Ability to execute hybrid SIMD/MIMD programs.
4. An instruction queue which allows overlap of control-flow and data 

manipulation between micro-control (MC) units and processing elements 
(PE). It had been hypothesized that superlinear speed-up over the number 
of PEs could be attained with this feature, and experimental results 
verified this.

5. Support for barrier synchronization of MIMD tasks. This feature was 
exploited in some non-standard ways to show the ability to decouple 
variant length SIMD instructions into multiple MIMD streams for an 
overall performance benefit.

This type of study is expected to continue in the future on PASM and 
other parallel machines at Purdue. This report should serve as a guide for 
this future work as well.

T.L. Casavant 
School of EE 
Purdue University 
Spring 1988

This work supported by NSF Grant # CCR-8809600, the NSF Software Engineering 
Research Center (SERC), and SRC Grant # 6925.
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Experiences with Parallel Image Smoothing

Wolfram Disch and Thomas L. Casavant 

Abstract

This paper reports results of some of the first programming experiences with 
the PASM parallel processing system prototype at Purdue. PASM is a 
PArtitionable SIMD/MIMD system designed for conducting research in 
parallel computing and for developing software for several applications. The 
image processing task of image smoothing is used to evaluate several features 
of the PASM architecture. The results include an observation of super-linear 
speedup over the number of processing elements (PEs) when operating in 
SIMD mode. This advantage comes from the ability of the microcontrollers 
(which act as control units in SIMD mode) to execute control flow operations 
in parallel with the PEs in SIMD programs. Also included is a comparison of 
computation versus communication overheads, Other experiments and 
analysis show some of the potential advantages of mixed-mode SIMD/MIMD 
programs and alude to the problems of structuring programs in this way.

1. Introduction ■
This paper reports on experimental measurements derived from early 

programming experiences with simple image processing applications on the 
PASM parallel processing system prototype at Purdue [SiS81, SiS87]. The 
intention of the research project surrounding this work is Application-Driven 
Architecture Study, in which easily understood algorithms are implemented as 
programs, and controlled experimentation is done with respect to variable 
program characteristics. The reported results are derived from the first 
segment of a study on Image Processing which includes the following 
algorithms: Image Smoothing, Sobel Image Generation and Threshold 
Determination, Contour Tracing and Block Truncation Coding. In particular, 
we describe a parallel implementation of the image smoothing phase, 
programmed and executed on the PASM prototype. The experiments are 
based on SIMD (single instruction stream — multiple data streams), MIMD 
(multiple instruction streams — multiple data streams) and Hybrid S/MIMD 
programs [Fly66]. The results reported are focused on showing the differences 
with respect to the execution times among the parallel versions and between 
an efficient serial version in order to determine the usefulness of multi-mode



machines and to shed light on the necessary HLL constructs and semantics 
useful for this type of computer.

Section 2 presents the problem and overviews PASM and its prototype, 
while section 3 explains the basic algorithm that was used. Section 4 describes 
the experiments and the program variations used. Section 5 shows the 
performance of each program with respect to its execution time and section 6 
provides a discussion of the results with respect to the architecture of the 
PASM system prototype.

2. Background '.v

2.1. Overview of Image Smoothing
Image Smoothing represents one of the first algorithms used when 

performing Image Processing. The use of Image Smoothing is to filter noise 
from corrupted signals. One way to smooth an image is the average method 
[SiS87bj. A window, including a certain number of pixels, is defined. The 
smoothed value is obtained by averaging the gray levels of the pixels in the 
window. There are different methods for calculating the average. One is to 
divide the sum of the gray levels by the number of pixels in the window; i.e. 
each pixel receives the same weight. Another method distributes 50% to the 
center pixel and 50% for all the others. Our approach uses the first method.

2.2. Overview of PASM and the PASM Prototype
PASM is a partitionable S1MD/MIMD parallel processing system being 

designed to include over a thousand processors [SiS8l]. It is a dynamically 
reconfigurable architecture, where the processors can be partitioned to form 
independent virtual SIMD and/or MIMD machines of various sizes. A 30- 
processor prototype has been completed [SiS87a] and was used in the 
algorithms described in this paper.

The Parallel Computation Unit contains N=2m PEs (numbered from 0 to 
N—1), and an interconnection network. Each PE (processing element) is a 
processor/memory pair. The PE processors are sophisticated microprocessors 
that perform the actual SIMD and MIMD operations. The PE memory 
modules are used by the processors for data storage in SIMD mode and both 
data and instruction storage in MIMD mode. The Micro Controllers (MCs) 
are a set of Q=2q processors, numbered from 0 to Q—1, which act as the 
control units for the PEs in SIMD mode and orchestrate the activities of the



PEs in MIMD mode. Each MC controls N/Q PEs. In SIMD mode, each MC 
fetches instructions and common data from its associated memory module, 
executes the control flow instructions (e.g., branches), and broadcasts the data 
processing instructions to its PEs. In MIMD mode, each MC gets instructions 
and common data for coordinating its PEs from its memory.

: , 4

FIFO
F etch

to PEs

Figure 1: Simplified MC structure

Fetch Unit 
RAM

Memory Fetch Unit 
Controller

Register
Mask

MG CPU

A 30 processor prototype of the PASM system was completed in 
December 1986, with N=16 and Q—4. This system employs Motorola 
MC68000 processors as PE and MC CPUs, with a clock speed of 8 MHz. The 
interconnection network is a circuit-switched Extra-Stage Cube network, 
which is a fault-tolerant variation of the multistage cube network. Since 
knowledge about the MC and the way in which SIMD instructions are 
implemented with standard MC68000 microprocessors is essential to the 
understanding of the behavior that was observed in the experiments, the 
SIMD instruction broadcast mechanism is overviewed below. Consider the 
simplified MC structure shown in Figure 1. The MC contains a menjory 
module from which the MC CPU reads instructions and data. Whenever the 
MC needs to broadcast SIMD instructions to its associated PEs, it first sets the 
Mask Register in the Fetch Unit, thereby determining which PEs will 
participate in the following instructions. It then writes a control word to the



Fetch Unit Controller which specifies the location and size of a block of SIMD 
instructions in the Fetch Unit RAM. The Fetch Unit Controller automatically 
moves this block word by word into the Fetch Unit Queue. Whenever a 
instruction Word is enqueued, the current value of the mask register is 
enqueued as well. Since the Fetch Unit enqueues blocks of SIMD instructions 
automatically, the MC CPU can proceed with other operations without 
waiting for all instructions to be enqueued.

PEs execute SIMD instructions by performing an instruction fetch from a 
reserved memory area called the SIMD instruction space. Whenever logic in 
the PEs detects an access to this area, a request for an SIMD instruction is 
sent to the Fetch Unit. Only after all PEs that are enabled for the current 
instruction have issued a request is the instruction released by the Fetch Unit 
FIFO, and the enabled PEs receive and execute the instruction. Disabled PEs 
do not participate in the instruction and wait until an instruction is broadcast 
for which they are enabled. This way, switching from SIMD and MIMD mode 
is reduced to executing a jump instruction to the reserved memory space, and 
a switch from MIMD to SIMD mode is performed by sending a jump to the 
appropriate PE MIMD instruction address located in the PE main memory 
space.

In order to make comparisons of the speed of the PASM prototype 
relative to other machines and to compare the relative speeds of SIMD and 
MIMD instruction fetches, the raw performance of PASM in SIMD and MIMD 
mode was measured and is illustrated in Table 1 in MIPS (millions of integer 
instructions per second) for two different types of instructions.

Mode Operation Processing
Rate

SIMD 16-bit Reg.-to-Reg. add 22 MIPS
MIMD 16-bit Reg.-to-Reg. add 18 MIPS
SIMD 16-bit Reg.-to-Mem. add 6.4 MIPS
MIMD 16-bit Reg.-to-Mem. add 6.0 MIPS

Table 1: Prototype Raw Performance
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3. Image Smoothing

3.1. Serial Image Smoothing Algorithm
The SISD algorithm offers itself as a good candidate for describing the 

fundamental structure of the parallel image smoothing algorithm. Assuming 
an input image, X, and an output image, Y of size n x n in which each pixel is 
an 8-bit unsigned integer representing one of 256 gray levels, each pixel in the 
smoothed image is the average of the gray level of itself and its 8 nearest 
neighbors. In other words, the average of the gray levels in a 3 x 3 window is 
determined for each pixel in X. The top, bottom, left and right edge pixels of 
the smoothed image are not calculated since their corresponding pixels in the 
input image do not have 8 adjacent neighbors; they are set to zero.

i k=i+l l=j+l
- E E Xkl i,j^0;i,j^n
y k=i—1 l-j.-i /

0 otherwise

3.2. Parallel Image Smoothing Algorithm
In the parallel Image Smoothing programs implemented here, the data 

was equally distributed among 4 and 16 PEs, respectively. Thus, each PE 
holds its own square subimage. Since each PE holds only one subimage, data 
from the borders will have to be transferred from the surrounding PEs in 
order to calculate the smoothed value of the edge pixels. The data transfers 
occur simultaneously across PEs by using the interconnection network. This 
represented the first segment of the parallel Image Smoothing algorithm. The 
second segment includes the calculation of the smoothed image which was 
realized in SIMD, MIMD and Hybrid S/MIMD modes.

Now let us consider the parallel Image Smoothing algorithm in detail. 
Assuming an n x n image, the data transfer requires n transfer operations to 
transmit data from each PE border to a specific PE. Furthermore, 4 transfers 
are needed to get the 4 corner pixels. This is shown in figure 2. Therefore, a 
total of 4n+4 network transfer operations are required to provide each PE 
with the data needed in order to calculate the smoothed image. Since the 
architecture of PASM does not support DMA block transfer, each byte must
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be transmitted separately. Nevertheless, the data transfer occurs 
simultaneously across PEs. Each PE sends data through the interconnection 
network to the corresponding PEs. Then, all PEs must wait for the data to 
be received. The 4n+4 network transfer operations require 8 network circuit 
setups to connect the PEs as shown in figure 2.

PE 0 PE 4 PE 8 PE C

PE 1 PE 5 PE19 PE D

PE 2 PT? A

V J i /
; Ac P F F,JT Jh U ->T JLLi

/ |
i n/ ±i/

PE 3
; V /

PE 7 PEi B
\

PE F

Figure 2: Image Partitioning and PE Interconnection.

Before presenting the calculation portion of the program, the image 
storage will be discussed. The data for both the input image and the output 
image are stored in rows as shown in figure 3. The data of the input sub image 
and the top and bottom data transferred from the other PEs are stored 
contiguously in a linear data structure. The data coming from the left and the 
right bordered PEs are stored after the bottom data. This structure permits 
fast storage of data from an incoming image at a high data rate (e.g. from a 
video camera) into the PEs, and after processing to another peripheral.

For the calculation of the smoothed value, a window of 9 pixels has been 
defined. Obviously, the smoothed value is the average of the gray levels of all 
pixels in the window. In this algorithm, a more efficient programming 
technique using pointers is used. Referring to Figure 3, five pointers are used. 
Three pointers are indexing the subimage, the others are the starting address
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(T)Pata from upper PE ©I
©

Input
Subimage

iiiiiiiiii
ir

Data from lower PE
iData from left PE
Data from right PE

{Data from the corner PEs

y

Figure S: Image Storage Model

of the left and the right border data, respectively. Also, sums of the gray levels 
of three pixels standing in columns are defined (in the following, tps means 
three pixel sum value). Intermediate tps values are stored in a FIFO queue 
and added to a variable S. At the beginning of the loop for calculating a row, 
S is set up with the first three tps. For the next step, the new tps is added, 
and the oldest tps is subtracted from S. This tps is obtained from the top of 
the queue. The next tps becomes the top of the queue. Thus, S contains in 
each step through the loop, the sum of the gray levels of the pixels in the 
window. The smoothed value is obtained by dividing S by the number of 
pixels in the window. These steps are executed for each row of the image.

Basically, the parallel algorithm has the same control-flow structure as 
the SISD algorithm. However, network transfer operations were added and 
several variations for the different parallel modes were performed.

4. Variations of the different versions and experiments



4.1. SIMD Program
In SIMD mode, the program consists of a pure SIMD code. The network 

transfer operations in SIMD are executed synchronously in a straightforward 
fashion. That implies a faster execution time than in MIMD mode, in which 
the program must be blocked in a loop, polling the network buffer for 
incoming data. The second segment of the algorithm is divided into the 
calculation of the smoothed image and the clearing of the edges. An advantage 
of this part is the potential overlapping of instructions sent to the FIFO and 
those executed in the PEs while the control flow operations are executed in the 
MCs. Another advantage of SIMD mode is due to the actual memory boards 
implemented in the PASM system prototype. As can be seen from table 1, 
executing instructions from the fetch unit queue is faster than from the PE 
memory.

4.2. MIMD Program
This version is programmed in pure MIMD mode; the MC is only used to 

calculate the execution time of the program by waiting until the PEs finish 
execution. Since the network operations are carried out in MIMD mode, the 
data transmission is executed asynchronously. Hence, there is more overhead 
than in SIMD mode to check whether the network buffer is ready to accept 
data during send operations and when data is received from other PEs.

The calculation part of the program determines first, the inner pixels of 
the smoothed image. Then, all the edge pixels having eight neighbors are 
calculated and those pixels which do not have eight adjacent neighbors are 
cleared. Since each PE corresponds to a specific part of the total image it 
needs to be calculated and cleared on different sides. Thus, various MIMD 
sub-programs are required to execute the MIMD version.

One advantage of the MIMD version is due to the MC68000. The 
MC68000 has instructions with data dependent execution times (e.g. the divide 
instruction execution time differs up to 70% for 16-bit operations). In SIMD 
mode, all PEs have to wait on each divide instruction until the last PE has 
completed the instruction before fetching the next instruction. In MIMD 
mode, each PE works independently. The execution time of the program 
depends on the PE which finishes last.
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4.3. Hybrid S/MEMD Program
In the Hybrid S/MIMD mode, data transfer and the calculation of the 

inner pixels of each subimage is written in SIMD mode. The third part is 
identically with the MIMD program. It calculates the edge pixels. This 
program should out-perform the other versions since the data-independent 
segment of the algorithm is written in SIMD mode and the data-dependent
segment is written in MIMD mode.

4.4. Experiments
One goal of this research was to identify the most efficient mode of 

parallelism for Image Smoothing on PASM. The programs were written in 
MC68000 assembly language. Pure SIMD, pure MIMD and Hybrid S/MIMD 
implementations were tested for 4 PEs. The 16 PE versions have been 
implemented, but at the time of this writing had not been tested due to 
hardware difficulties. An SISD (serial) version was programmed in order to 
make comparisons with the parallel versions.

In detail, execution times were measured with respect to the image sizes 
642, 2562 and 10242. To illustrate the data dependent execution times, 
artificial input images with constant 00, alternating 00 and FF and constant 
FF data bytes were created, respectively.

5. Data Measurements
Figure 4 illustrates the execution times of the SIMD, MIMD, Hybrid 

S/MIMD and the SISD version. For comparison purposes the computation 
time of the SISD version is quarter scaled. Therefore, Whenever any curve 
passes below the SISD curve, super-linear speedup with respect to the number 
of PEs is being exhibited. This discussed further in section 6. There are 2 
intersection points in Figure 4; one between the SISD and the SIMD version 
shown on Figure 5a; the other between the SISD and the Hybrid S/MIMD 
version shown on Figure 5b. Figures 5a and 5b represent smaller windows of 
graph 1. .

6. Discussion
As expected, the SIMD version outperformed the MIMD version. Table 2 

points but that the SIMD version is 8-20% faster. First of all, this is based on 
the overlapping of the control flow instructions in the MC and the data 
processing instructions in the PEs in SIMD mode. In addition, there are
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Table 2: Time of Computation in sec.

image image parallel(4 PEs)

size data
serial

SIMD MIMD Hybrid

0000 0.1435 0.0718 0.0896 0.0687
642 00FF 0.1399 0.0709 0.0887 0.0679

FFFF 0.1364 0.0699 0.0878 0.0670
0000 2.3655 0.6126 0.7038 0.5751

2562 00FF 2.3052 0.5983 0.6888 0.5615
FFFF 2.2465 0.5844 0.6742 0.5471
0000 38.134 9.1379 9.8796 8.5877

10242 00FF 37.167 8.9103 9.6369 8.3697
FFFF 32.216 8.6889 9.3987 8.1356

differences in fetch time as mentioned in section 2. The graphs illustrate that 
the execution times of the SIMD and the MIMD versions diverge for larger 
sizes of images. That means that the part which is responsible for the speed up 
of the SIMD version has a greater impact for larger loop iteration counts. 
Finally, the overhead to synchronize the network in MIMD mode should be 
mentioned as the major cause of the slowness of that version.

The Hybrid S/MIMD version was found to be the fastest version. It 
outperforms all parallel and the serial versions. Table 2 shows it to be 4-6% 
faster than the SIMD version. Since the Hybrid S/MIMD and the SIMD 
version contains nearly the same code, the difference is not as great as that 
between the SIMD and MIMD versions. This is based on the fact that the 
Hybrid version uses the calculation and the clear routine for the edges in 
MIMD mode. So there is no overhead as in the SIMD program which 
calculates at first the whole image, and then clears the proper edges after that. 
In other words, the Hybrid routine does not calculate the edges twice as it has 
to be done in the SIMD version. However, also in this case the graphs point 
out the diverging of the execution times.

The tests of the serial versus the parallel versions produce surprising 
results. The execution times of the Hybrid S/MIMD version disprove the 
supposition that the execution time of the parallel version would have a speed



up of less than the number of active PEs. This assumption is based on the 
fact that the parallel versions need to perform network transfer operations; 
unlike the serial version [SiS87bj. The graph demonstrates obviously that in 
this, case the Hybrid S/MIMD and the SIMD version is more than 4 times 
faster than the SISD version referring to the 10242 pixel image. This comes 
from the fact that the control flow instructions executed in the MC save more
time than the transfer operations used. In addition, two intersection points 
can be seen. From that size of an image, up to larger sizes, begins the most 
efficient advantage of the parallel version over the serial version. In other 
words, for smaller image sizes the network transfer operations in the Hybrid 
S/MIMD and the SIMD version use more time than the overlapping of the 
control flow instructions can save, respectively.

7. Conclusion
This study of different parallel versions of the Image Smoothing algorithm 

has shown that the Hybrid S/MIMD version outperforms the SIMD and the
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SISD x 1/4 
HYBRID

45500 46000 46500 47000
Image size in bytes

Figure 5a: Speed comparison between Hybrid and SISD version

SISD x 1/4 
SIMD

12500001150000 1200000

Figure 5b: Speed comparison between SIMD and SISD version

MIMD version clearly. Therefore, it serves as a useful paradigm for 
illustrating some of the potential advantages of a partitionable SIMD/MIMD 
parallel processing system such as PASM. Furthermore it turned out that the 
Hybrid S/MIMD and the SIMD version are more than 4 times faster than the 
SISD version when 4 PEs are used and the images are larger than 2002 bytes.
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While this fact seems counter-intuitive at first, in SIMD mode, a speedup of 
up to 2p (assuming p PEs) should be attainable since each PE has a logical 
MC to which control-flow activities may be off-loaded. The MIMD version 
represents the most inefficient algorithm. It is also less than 4 times faster 
than the SISD version. That results from the fact that the MIMD version has 
the same mode as the SISD version, but added network transfers.

Probably the most important implication of this work is related to the 
level at which programming was done :— assembly language. Many of the 
performance differences observed rely on the fact that mode-switching, and 
network access times were on the order of a few instruction cycles. The 
important issue to be addressed is related to the problem of how to develop 
efficient HLL constructs which preserve these performance benefits while 
providing adequate expressive power to the programmer. It is the intention of 
this work to identify which semantics are most useful and to guide the 
development of efficient HLL and OS interfaces for them.
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Threshold Generation for Image Processing 
on PASM

Kurt Schurecht

Abstract
Research is being done on how to best use the PASM parallel processing 

system the most efficiently with respect to many applications. Four image 
processing applications have been chosen, smoothing, thresholding, edge 
tracing, and block truncation coding. Different configurations of the PASM 
machine are being analyzed to obtain the optimal algorithm times with 
respect to the Sobel Threshold generation procedure. Different size images as 
well as different data sets have been examined. Results have shown that 
different configurations of the PASM system can cause vastly different funning 
times.

1. Introduction
For many years theoretical work has been done relating to parallel 

machines and parallel machine algorithms, but most has not had concrete 
data to back it up. Two types of parallel machine taxonomies described by 
Flynn [Fly66] are SIMD (single instruction stream - multiple data stream) and 
MIMD (multiple instruction stream - multiple data stream). Work has 
recently begun that compares these two modes within the scope of many 
different applications. This paper describes an application from the image 
processing area using the PASM prototype System. The PASM system allows 
the user to switch quickly from SIMD to MIMD mode. A major result of this 
paper is to show the benefits and drawbacks of both SIMD and MIMD modes 
in the use of the PASM system and with respect to the chosen algorithm. 
This paper describes algorithms to find threshold levels for a given image, 
with emphasis on where SIMD mode or MIMD mode is more appropriate. 
Timing measurements have been made to compare the two modes, and with 
these times, some qualified conclusions about the two modes are made. The 
tests have been run using best, average, and worst case data Sets, with three 
different image sizes. All programs have been written to run on four
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processing elements controlled by one micro-controller.
Section 2 explains the PASM prototype and the background of the 

threshold problem. Section 3 details the problem in more depth, showing the 
algorithm used. The data taken and results of that data are presented in 
sections 4 through 6. Some conclusions and further work are detailed in 
sections 7 and 8.

2. Background

2.1. PASM Architecture
PASM is a partitionable SIMD/MIMD parallel processing system being 

designed to include over a thousand processors [SiS8l]. It is a dynamically 
reconfigurable architecture, where the processors can be partitioned to form 
independent virtual SIMD and/or MIMD machines of various sizes. A 30- 
processor prototype has been completed [SiS87] and was used in the 
experiments described in this paper.

The prototype includes four micro-controllers that each control four 
processing elements. Each MC and PE has its own memory associated with it. 
Each MC also has a Fetch Unit associated with it to send SIMD commands to 
its PEs. The programs described in this paper use one MC, its Fetch Unit and 
the four PEs associated with it. When processing in SIMD mode, the MC 
sends a command to its associated Fetch Unit to send a set of instructions 
from the Fetch Unit’s memory to the PEs under it. A mask register in the 
Fetch Unit determines which if any of the PEs associated with it will execute 
those instructions. The Fetch Unit places the instructions in a FIFO queue 
and each enabled PE takes the instruction off the head of the queue. When 
ALL PEs have finished that instruction, they all get the next one off the head 
of the queue. If the queue becomes empty, the PEs wait until another batch 
of instructions are placed in the queue. During the time while the PEs are 
executing instructions already in the queue, the MC can be doing other 
instructions. It may be taking care of looping overhead, or requesting the next 
set of instructions to be sent.

To switch from SIMD to MIMD mode a machine instruction is sent 
through the FIFO that executes a jump in the PEs into the MIMD memory 
area. Once this jump is executed, the PEs are no longer synchronized and 
may act alone. At this point the PEs start executing instructions that are 
stored at that location in their own memory. The PEs continue executing 
alone until they reach an instruction to return to SIMD memory. When this 
happens, each PE must wait until all others have also returned to SIMD space 
before they can get the next instruction off the FIFO queue.



The last relevant part of the architecture is the extra stage cube 
interconnection network. This network connects every PE to every other PE 
for use in sending data that needs to be shared between them. A routing tag 
is sent to set up the connection and then the information can be sent along 
the line. The receiving PE must be ready to receive data though. Finally a 
routine is run to drop the path. Once the path is dropped, the PE can 
connect to another PE.

2.2. Threshold Determination
Threshold levels are used to find the most defined edge in an image. In a 

picture, there are generally many different shades of the object, and also many 
small objects. The goal of thresholding is to find the most defined shape in 
the picture. The threshold level when found, is sent to a program that will 
trace the edge of the contour found by the threshold level. For example, if the 
image were a bird in the sky, the edge trace program would want to trace only 
the outline of the bird, not that of the clouds or just part of the bird. If the 
threshold level is chosen correctly, the bird is reduced to a block of black and 
the surroundings are reduced to a white background. With this image the 
edge detection program can trace the outline of the bird. The threshold 
generation algorithm used in this paper [TuA83] uses a Sobel edge operator 
and figure of merit, both defined later, to find the best threshold level.

The images used in this algorithm are stored as pixels of gray levels 
ranging from $00 to $FF. These gray levels are stored in consecutive locations 
of the PE memory. Each PE memory contains a subset of the entire image. 
All PEs then find a threshold gray level for their subset of the image.

3. Project Description

3.1. Problem
Threshold generation. consists of choosing a gray level that will best find 

the edge of an image when used in conjunction with an edge tracing program. 
The threshold level is used by setting all pixel values equal to or greater than 
the threshold level to $FF and all values less to $00. If the threshold is chosen 
correctly, the crossovers between $00 and $FF will be the best edge to trace. 
To find the best edge, a Sobel operator is used on a window around each pixel 
value. A window is formed around each pixel, consisting of the pixel and its 
eight nearest neighbors. The following operation is performed on the window.
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Gradient = VAX2 + AY2

AX and AY are found by multiplying the corresponding value in the 
matrix by the pixel in that window position, and then adding each of the nine 
results. The Sobel value is then found using AX and AY. The Sobel value is 
the gradient of the window. It is a measure of how well the window can act as 
an edge. Windows with greatly different gray levels have higher gradients 
than windows with very similar gray levels. The minimum pixel value and the 
maximum pixel value are found for each window also, to be used later. Next, 
each threshold level is checked to find the best value for edge detection. A 
figure of merit is found for each threshold level, with a high value meaning it 
is a good edge detector. The figure of merit is found by comparing the 
threshold level to each window figured above. If the threshold level is between 
the minimum and the maximum of the window then that window would 
contain an edge if the threshold level were used. In this case, the gradient 
found earlier for this window is added into this threshold’s total. When all 
pixel windows have been checked, all gradient values are added together and 
averaged to find the figure of merit for that threshold. The threshold level 
chosen to send to the edge detection program is the one with the highest 
valued figure of merit.

On PASM, this same procedure is done with a few minor modifications. 
The data is assumed to be evenly distributed in each PE, with each PE 
containing a square subsection of the whole image. When the windows are 
formed for the pixels on a PE edge, the PE needs the pixels contained on the 
edge of the neighboring PE. When handling corners, likewise, the corner pixel 
in the diagonal PE is also needed. In total there are eight PEs that need to be 
connected to to get all necessary data for the computations, as shown if Figure 
1. The threshold generation procedure on PASM involves four steps. The 
first involves transferring all needed outside edge pixels to PEs that will need 
them for their calculations. The second involves figuring the minimum, 
maximum, and gradient of each pixel window not on a PE edge. The third 
step is to take the edge pixel windows and find their minimum, maximum, 
and gradient. Finally, the figure of merit is determined for each threshold 
level and the highest threshold level is stored for use by the edge detection



program. The threshold level found in one PE has no effect oil: the threshold
level found in any other PE. Each PE finds its Own threshold level to send to 
the next program. .——-------- T- — --- _p_— . .

Figure 1

3.2. Algorithms
The following algorithm applies to SIMD and MIMD parallelism- The 

basic algorithm structure remains the same, but the actual code differs.

Threshold generation algorithm:

1. Connect to and transfer edges to each of 8 neighboring PEs
2. For each interior pixel

Find gradient, min, max of window
3. For each edge pixel

Find gradient, min, max of window
4. For each candidate threshold value

For each pixel figured above 
If threshold > min and < max 

Add gradient to total 
Add 1 to matched 

FOM = total / matched
5. Threshold = Candidate Threshold with highest FOM
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Completed to this point are programs that handle 4 PEs with 1 MC. 
There are three programs in ~/pasm/appl/histks that find threshold levels and 
save timing information. The programs are:

thr4s - a four pe program with steps 1,2 in SIMD mode 
steps 3,4,5 in MIMD mode 
only three transfers are conducted

thr4m - a four PE program with step 1 in SIMD mode 
steps 2,3,4,5 in MIMD mode 
only three transfers are conducted

thr4ma- a four PE program with step 1 in SIMD mode 
steps 2,3,4,5 in MIMD mode 
all eight transfers are conducted

Since each of these programs use 4 PEs, each data set is in a corner of the 
complete image, and only three transfers are actually necessary. This makes 
the 4 PE programs easier to write, but the code is very difficult to change for 
increasing to 8 and 16 PEs. Therefore code with both types of transfers has 
been included. 4

4. Experiments Performed
All experiments performed have been done using 4 PEs. Each of the 

three programs have been tested using data blocks in each PE of 16x16, 
32x32, and 64x64. This implies complete images of size 32x32, 64x64, and 
128x128 respectively. The data for the 32x32 case was also varied to get best 
case, average case, and worst case times. The data for all other sizes was only 
taken with average case data. Examples of each data set for a size of 8x8 
follows.
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Best Case

00 00 00 00 
00 00 00 00 
00 00 00 00 
00 00 00 00

Average Case

00 0102 03 
04 05 06 07 
08 09 0A OB 
OC OD OE OF

Worst Case

00 FF 00 FF 
00 FF 00 FF 
00 FF 00 FF 
00 FF 00 FF

5. Measured Data
Timings were taken that measured steps 1, 2, and 3 separately, and 4 and 

5 together. All timings are shown in the table below. The size refers to the 
size of the data in each PE and the letters following refer to each of the 
sections and whether that portion of the program is written in SIMD or MIMD 
mode. The last letter corresponds to the type of transfers that Were used in 
that program, "a" designates three transfers performed, "b" designates eight 
transfers. Best case is data set "A", average case is data set "B", and worst 
case is data set "C".

Timings for Threshold Programs
Data size/type transfers inside edges thresh

B 16ssmma 1.02 49 7.4 681 .
B 32ssmma 1.44 225 15.5 3460
B 64ssmma 2.29 965 31.7 16900
A 32ssmma 1.44 197 13.6 2980
C 32smmma 1.44 207 14.4 5090

B lGsmmma 1.02 49 7.4 681
B 32smmma 1.44 227 15.5 3460
B 64smmma 2.29 971 31.7 16900
A 32smmma 1.44 203 13.7 2980
C 32smmma 1.44 211 11.4 5090

B 16smmmb 1.64 49 7.4 681
B 32smmmb 2.60 I' 227 15.5 3460
B 64smmmb 4.57 971 31.7 16900

All times in milliseconds.
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6. Interpretation of Data

6.1. Problem Related
The most obvious point from the data in the previous section is that the 

time for the last set of operations is very data dependent. The time varies 
from almost three to over five seconds. This data dependency will play an 
important part in the justifications in the next section. The data dependency 
also holds for the inside and edge times, but to a lesser extent. The problem 
related results of the data above give justifications as to why some portions of 
the program need to be in SIMD or MIMD mode.

6.2. Architecture Related
The main test of this program on PASM was to see if programs run 

fastest in SIMD, MIMD, or a hybrid of S/MIMD. Some of the routines lend 
themselves to using SIMD mode, as in step 1. Other steps lend themselves to 
MIMD mode, as in step 3. Steps 2, 4, and 5 though are not necessarily faster 
one way from just looking at the algorithm. There is one main advantage to 
each SIMD mode and MIMD mode. The data above has been taken to try and 
show the effects of each of these advantages. The advantage of SIMD mode 
comes from the fact that the code is straight inline code. The looping 
structure inherent in the program can be eliminated when using SIMD code, 
by having the MC do the looping and sending only one stream of inline code 
to the PEs. This takes away all of the overhead of looping out of the 
processor that has to do the raw mimber crunching, leaving it to concentrate 
on its task. There is a drawback of SIMD, which is the advantage of MIMD. 
When the SIMD program executes a variable length instruction, or sequence of 
instructions, each of the PEs must finish that instruction before any of them 
can go on to the next instruction. Because of this, all variable length 
instructions will take the time of the worst case time of all PEs. This can be 
very costly when an instruction, or group of instructions has a large time 
variation.

Looking at step 1, there are no variable length instructions, but there are 
transfers. Transfers are must faster to execute in SIMD mode. The subroutine 
calls to send data over the network can be replaced by one "move" instruction 
if the sending PE knows that the receiving PE is ready to receive. 
Implementing this section in SIMD mode, each PE knows exactly when the 
other PEs are ready and the transfer time can be minimized by replacing the 
subroutine calls. The main SIMD advantage also comes into play. Using 
SIMD mode, all the looping can be done in the MC. This function is 
obviously best written in SIMD mode.
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Step 2 is not as easy to discern. The compares for the minimum and 
.maximum are done as a small MIMD subroutine. For these purposes, this 
subroutine can be thought of as a variable length instruction. Two factors are 
weighting the timing. In SIMD mode, the looping overhead is eliminated, but 
if a new minimum is found in any PE, all PEs must wait until that hew value 
is saved before they can go on to the next instruction. The two different 
programs that were timed show that elimination of the looping saves at most 
finis. The difference in best and Worst case data is 24ms for the MIMD 
version. Therefore if the worst case is distributed properly, either all in one 
PE, or distributed over all PEs, the time for all PEs, even ones with best case 
data will be 24ms longer than necessary. This is a much greater time than the 
6ms saved from the looping. A similar argument can be made for steps 4 and 
5. ' :: v

Step 3 has been implemented in MIMD mode, because the PEs that 
contain the outside edges of the image do not figure those edges. Therefore, a 
check is made to determine which PE is figuring its edge and then finds only 
the necessary edge window values. In the four PE case, each PE figures only 
two edges.

In general, it can be said that this program is a very good improvement 
oyer a comparable serial version. The only overhead incurred is the time for 
transfers and the time for finding edge values. A serial program would have 
those two times subtracted, but the inside and threshold times multiplied by 
N, with N being the number of PEs used in the parallel version. This time is 
much greater than the overhead for measured for transfers.

7. Future Work .
Future possibilities in this area include expanding the number of PEs to 

eight and sixteen. The program thr4mb is a good starting place because it 
already makes the eight transfers, whether they are used or not. Sections 4 
and 5 could also be tested comparing SIMD and MIMD modes, but the 
conclusions should be the same as section 2. Section 3 can be modified to 
work in SIMD mode by disabling PEs that do not take part in figuring a 
certain edge. Other possibilities are to examine the actual code for finding the 
figure of merit and best threshold level, to see if there is a way to optimize it 
and reduce the overall time of execution. A program also needs to be written 
that will take a file, split it up for placement in PEs and create downloadable 
files to place the data.
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8. Conclusions
Examples of algorithms that show a definite speedup over their serial 

counterpart have been shown. The different parts of the chosen algorithm 
have given examples of where SIMD and where MIMD modes of operation 
work best. The SIMD / MIMD tradeoff has been discussed in detail, showing 
the attributes of each. Each of the programs written has been detailed and a 
future trail of work has been left for someone to pick up.
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MIMD ContpuP Tracing for Image Processing

Brian Cox 

Abstract '
As part of a coordinated study of novel parallel architectures, contour 

tracing of images is being performed on the PASM system prototype. The 
group of applications was concerned with image smoothing, histogramming, 
image compaction and contour tracing. The contour tracing algorithm was 
designed as an MIMD program. The project was divided into two phases. In 
the first phase, a graphic image was divided into separate subimages and; all 
local contours were traced and recorded. In phase two, the partial contours 
previously traced are connected. Several experiments have been run on the 
first phase of the algorithm with different data image sets. Analysis is focused 
on determining communication overheads, speedup over serial program 
versions, and overall efficiency. Continuing work is extending these programs 
to examine SIMD/MIMD trade-offs.

1. Introduction
In the area of parallel processing, there are several types of applications 

that benefit from parallelism. One of these applications is image processing. 
Many parallel image processing algorithms have been studied such as image 
coding [9], image correlation [7,12], image segmentation [14], two-dimensional 
FFT [10], histogramming [11], and line segment generation [13]. The 
algorithm of interest to this project is contour extraction. The parallel 
implementation of contour extraction can be beneficial from applications such 
as quality control inspection of printed circuit boards to military projects in 
which both algorithm speed and accuracy are crucial [8]. Contour extraction 
can be divided into two major algorithms: edge-guided thresholding and 
contour tracing. The edge-guided thresholding algorithm is used to determine 
a set of optimal thresholds which are used in the contour tracing algorithm to 
segment an image and trace the contours. This project is concerned with the 
parallel implementation of the contour tracing algorithm and its relation to 
the PASM architecture.
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2. PASM
The PASM architecture is capable of dynamically reconfiguring to 

operate in SIMD and/or MIMD mode. The partitionable SIMD /MIMD 
machine consists of a control unit, an interconnection network, N processing 
elements , and Q micro controllers. The control unit is responsible for the 
overall coordination of the PASM system. The interconnection network is a 
circuit-switched Extra-Stage Cube network, which is a fault-tolerant variation 
of the multistage cube network. The processing elements (PEs) are 
sophisticated microprocessors that perform the actual SIMD and MIMD 
operations. The processing elements are controlled by the micro controllers 
(MCs). The PASM architecture when completed will consist of 1024 PEs and 
32 MCs [11]. At this time, a PASM prototype has been completed which 
consists of 16 PEs and 4 MCs [2].

Several applications have been designed and implemented to test the 
performance of the PASM prototype. These applications range from matrix 
multiplications to AI algorithms [3,6]. The application group, of which this 
project is a part, is concerned with image processing. The image processing 
applications consist of four parts: image smoothing, histogramming, contour 
extraction and image compaction [4,5]. This paper is concerned with the 
application of contour extraction. The contour extraction application is 
benificial in testing of the PASM prototype [l]. 3

3. Problem Structure
The implementation of contour extraction on a partitionable 

SIMD/MIMD machine such as PASM is advantageous in that it demonstrates 
several features of this type of machine. An SIMD/MIMD machine consists of 
a control unit, an interconnection network, and N processing elements. The 
PASM prototype has 16 processing elements(PEs), four of which are used in 
segmenting the graphic image in this project. When operating in SIMD mode, 
the control unit broadcasts instructions to all processors and each processor 
executes the instruction on data in its own memory. This mode of operation 
is well suited to edge-guided thresholding. The edge-guided thresholding 
algorithm uses a Sobel edge operator, meaning each pixel is processed 
identically. Therefore, SIMD parallelism would be the most efficient mode of 
operation for this algorithm. When operating in MIMD mode, each processor 
fetches instructions from its own memory and executes them on data in its 
own memory. Contour tracing, which is divided into two phases, is more 
suitable to this mode. The interconnection network is used in both 
algorithms. In the contour tracing algorithm (PHASE II) the interconnection 
network would be used to transfer partial contour information between PEs.



This project, however, is mainly concerned with PHASE I which requires only 
local data and no PE-to-PE communication.

4. Problem Solution

4,1. High-Level Description
As previously stated, the contour tracing project is divided into two 

phases. In PHASE I, the subimage within each PE is segmented and all local 
contours are traced and recorded. In PHASE H, the partial contours traced 
during PHASE I are connected. Initially, the graphic image is divided into 
subimages within each PE. For this project, four PEs were used with each 
subimage having a resolution of 8-by-8 pixels. Each PE also contains a list of 
threshold values for its individual sub image which were generated using edge- 
guided thresholding.

PHASE I begms by segmenting the image accordingly to each threshold 
value. The threshold values are considered seperately. Each pixel in the 
source image is compared to the current threshold value. If the pixel value is 
less than the threshold value, a zero is stored for that pixel. If the pixel value 
is greater than or equal to the threshold, the pixel value is set to one. 
Therefore, only valid contours are left for tracing. Tracing begins by scanning 
rows of the image from left to right, starting with the top row. The scanning 
will stop when a pixel with a value of one is found with a zero-valued pixel to 
either side. This pixel is the beginning of a new contour and is marked as the 
starting point. To determine the direction of this new contour, the 
surrounding pixels are scanned for a pixel of value one. The surrounding 
pixels are initially scanned counterclockwise as seen in Fig. 1. For easy 
reference to each pixel, a standard Cartesian coordinate system is used with 
the addition of each PE number (i). The i-x-y coordinates of this contour are 
stored and the next pixel is treated as the center point of the 3-by-3 window 
in Fig. 1. Counterclockwise scanning Will begin again with this new point. 
The tracing will continue until a point of indecision is reached. Initially, if all 
the surrounding pixels of the startpoint are zero the pixel is not the start of a 
contour and is ignored. However, if the pixel is an edge pixel with an adjacent 
PE, the pixel could be the starting point of a contour which extends into the 
sub image of the adjacent PE. This pixel is marked as a startpoint and 
extension is verified in PHASE II, When a point of indecision is reached, data 
from the adjacent subimage will be needed to determine the direction of the 
contour. This point is marked as an endpoint and the PE (s) which contains 
the subimage with the possible extension is recorded. The tracing will then 
return to the startpoint and begin tracing in a clockwise direction. This
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continues until another point of indecision is reached. When tracing 
clockwise, the i-x-y sequence of the pixels should be stored in front of the 
previous i-x-y contour sequence. This partial contour sequence is pointed to in 
the contour table located in each PE.

The contour table, which was not implemented in this project, should 
contain an entry for each individual contour. The contour table consists of 
the following fields:

1) a contour identification number
2) the threshold value which generated the contour
3) the number of pixels in the contour
4) a flag indicating if the contour is closed or partial
5) a pointer to the array containing the i-x-y sequence of the
contour ■ . •.
6) a flag indicating whether the partial contour has been connected
7) the physical address of the PE which linked the contour
8) the physical PE address and identification number which is 
blocking extension of the contour
9) a locked/unlocked semaphore

A contour table should be constructed for each contour in each subimage for 
each threshold value.

3. " 2. ; 1.

' .;:y. . :4. . . 0.

5. 6. ; 7. ■

. Figure 1

An example 10-by-20 contour image is shown in Fig. 2. The images have 
been segmented in each PE with similar thresholds. PHASE I begins, 
simultaneously, in each PE by scanning each pixel. In PE 0 the startpoint is 
found to be (0,3,3). Counterclockwise tracing traces the contour to a point of 
indecision at (0,7,9). This point is recorded as an endpoint, the blocking PE is 
stored, and tracing returns to the startpoint for clockwise tracing. After the 
clockwise tracing has reached the point of indecision at (0,3,9), the first pixel
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in the i-x-y sequence should then be (0,3,9). The scanning will then resume 
and find no more pixels since each previous pixel has been marked as already 
part of a contour. PHASE I will then repeat the process for a new threshold 
value. PHASE I is then complete and PHASE II begins. Since this project is 
mainly concerned with PHASE I, a brief description of PHASE II is given for 
clarity.

PHASE II will connect the partial contours traced in PHASE I. PHASE 
II can either begin after all the PEs in PHASE I have completed processing or 
after each individual PE has completed its processing. Since a complete 
contour may be contained in several PEs, a priority is established for which 
PE will link the contours. The priority is that each PE will only attempt to 
close a contour which is bordering a subimage to the left or above. To 
prevent several PEs from accessing a contour table at the same time a 
semaphore is introduced. The semaphore is a variable which locks a contour 
table while it is being modified to prevent other PEs from simultaneously 
modifing the same table. When a PE attempts to close a contour it must 
check the bordering pixels in the adjacent subimage. It compares the 
bordering pixels to the pixels in the

PEq PEj

(0,3,J) (0,3.«)
©0OO0O>4*0 0

(0,4,4)0 . ... •
o • • • *

O • • •
004 >000000
(0,7,9) (1J.0)

O Start point
-o Counterclockwise trace mark 
0* CIockwiM trace mark 
< End point (countereioekwiae) 
► End point (doekwiae)

Figure 2
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partial contour list for endpoints which match the border pixels. If the 
contour is found, the partial contour is transferred to the PE attempting 
closure. The i-x-y sequence is added to the contour to form an extended trace. 
If the contour is not found in the adjacent contour table, the PE attempting 
closure will probe into the adjacent subimage with the current threshold in an 
attempt to find a contour which may not have been detected with the 
adjacent PE thresholds. A limit is placed on the length of a contour to assure 
termination of the algorithm.

4.2. Algorithm
The actual MIMD algorithm was implemented in 68000 assembly code. 

Following is an outline of this algorithm:

I. Initialization
A. Constants
B. Data

II. Segmentation

III. Scanning Routine
A. Initialize x-y coordinates
B. Scan Image

1. check for edgepixels 
a) valid startpoint?

2. check for internal startpoint

IV. Startpoint Routine
A. Save x-y coordinate of startpoint
B. Check for edgepoint
C. Trace counterclockwise
D. Check for edgepoint
E. Trace clockwise
F. Reset for newcontour
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V. Edgepoint Routine
A. Check for corner blocking pixels

1. Determine blocking PEs
2. Store string for table
3. Store pixel

B. Check for normal edges
1. Determine blocking PE
2. Store string for table
3. Store pixel

VI. Tracecounterclock Routine
A. Compute x-y locations
B. Valid startpoint?

VII. Traceclock Routine
; A. Compute x-y locations 

B. Valid startpoint?

VIII. Store Routine
A. Modify traced pixels
B. Reset image pointer

5. Program Variants
Two versions of the contour tracing algorithm were developed: a parallel 

version and a serial version. To effectively test the efficiency of parallelism, 
the two versions of the algorithm should be optimized. The parallel algorithm 
should be the best possible parallel version while the serial algorithm should 
be the best possible serial version. While these programs are far from the best 
possible implementations, they are, however, the best possible versions relative 
to each other, since the serial version is based upon the same programming 
techniques as the parallel version. Therefore, the speedup analysis due to 
parallelism should be accurate.

5.1. Experiments
The experiments were performed on 8-by-8 pixel images with four 

processing elements. This gives a complete graphic image of 16-by-16 pixels. 
Since the contour tracing algorithm is best suited for MIMD, the only mode of 
parallelism used was MIMD. The contour tracing algorithm is highly data
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dependent. Therefore, several data sets were used and designed to test the 
performance of the parallel algorithm. The data sets range from a minimal 
set of elements to a maximal set. The data images consist of a zero element 
data set, a horizontal and vertical contour data set, a spiral image data set, a 
square image data set, and a random contour data set. The zero element data 
set has no contours, thus having the fastest execution time. The horizontal 
and vertical contour images represent the maximal number of individual 
contours that an image can hold. The execution times for these data sets 
should have the longest execution times due to the large number of contours 
and pixels that need to be traced. The spiral image has a maximal number of 
pixels in a single contour and no edge pixels. Thus, the execution delay is due 
mainly to the tracing routines within the algorithms. The square image is 
representative of a closed contour and the random data is used just to 
introduce some variability. The data sets were run five times on both the 
parallel version and serial version of the algorithm. The execution times were 
then averaged to eliminate any unnecessary delays such as that incurred by 
dynamic memory.

6. Measured Data

Parallel
Execution Times 

(m-sec)

Serial
Execution Times 

(m-sec)
Speedup

no_data 2.900 11.880 4.10
horiz—data 5.696 20.404 3.58
vert—data 6.256 24.456 3.91
spiral-data 4.592 18.720 4.08
square-data 5.004 20.416 4.08
random—data 5.396 21.688 4.02

7. Interpretation of Data

7.1. Problem Related
From comparing the serial execution times to the parallel, it is obvious 

that there is a considerable speedup of the parallel algorithm. For all 
experiments, the speedup is close to O(n). The speedup is less than O(n) for a 
few data sets due to the extra analysis of the parallel algorithm. Since the 
graphic image is divided into four subimages, the parallel algorithm must 
cheek each PE for edges which block the extension of the contour. Within the
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edgeblock subroutine, the algorithm must determine which PE (s) is blocking 
the contour and store the string. Therefore, the subroutine must check each 
coordinate to determine if it is an edge pixel or a corner pixel. The number of 
blocking PEs can range from zero to three. The edgeblock routine is the most 
time consuming.

In the serial version, the image is not subdivided and intensive edge 
detection is not required, therefore, eliminating the overhead, PHASE II of 
the parallel algorithm is also not required. The extension of the contours 
would increase the overhead and decrease the overall speedup. This is the 
main advantage to the serial approach. One of the disadvantages to the serial 
approach is the edge-guided thresholding required for this algorithm. The 
EGT performance decreases with the increase of image size. Thus, for reasons 
of speed and accuracy, the parallel approach is more favorable.

From the data, it can be seen that the majority of the speedup figures are 
greater than O(n). Since it is impossible to achieve a speedup greater than 
O(n), it can be assumed that the speedup figures are inaccurate. This is due 
to the fact that the parallel and serial implementations are not ideal. To 
achieve an accurate speedup time due to parallelism, the execution times of a 
best possible serial algorithm should be divided by the execution times of the 
best possible parallel algorithm.

7.2. Architecture Related
The PASM architecture is very well suited for the needs of the entire 

contour extraction algorithm. The SIMD capability of PASM allows the 
execution time of the Sobel operator to be a minimum. Both the EGT and 
contour tracing require PE-to-PE communication. Therefore, the 
performance of the interconnection network must be efficient. Since, PHASE 
I of the contour tracing requires only local data, there were no PE-to-PE 
communications to decrease execution times. Also, because of the 
implementation of the algorithm in MIMD, the Fetch Unit delays were a 
minimum. One minor architecture related delay affecting PHASE I was the 
dynamic memory refreshing. This had a very minor effect on the entire 
parallel contour tracing algorithm and was very similiar in the serial 
approach. This project did not fully utilize the PASM architecture. The 
complete contour extraction algorithm would be much more appropriate for 
testing PASM.
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8. Future Work
To fully test the PASM architecture, the complete contour extraction 

algorithm should be implemented. PHASE II of this project would allow a 
more complete study on the interconnection network and a more accurate 
comparison of the serial and parallel approaches. This would require the 
combined execution of the EGT and the contour tracing. Once completed, 
more realistic results could be obtained by using actual image data sets. A 
complete study could be done by combining these algorithms with several 
image processing tasks such as image smoothing, two-dimensional FFT, and 
histogramming. Since the field of image processing is so vast, the problems for 
future study are limitless. The major task in relation to this project, however, 
should be the completion of PHASE II.

9. Conclusions
Overall, the contour tracing algorithm is very well suited for parallel 

implementation on PASM. The complete design utilizes the architecture very 
well. From the testing of PHASE I, it can be seen that the parallel 
programming approach has several advantages that include a considerable 
speedup of execution and an improved accuracy due to the Sobel operator. 
Thus, the parallel implementation of the contour extraction routines could be 
very useful for many applications.
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Parallel Block Truncation Coding of linages

Chris A. Toomey 

Abstract
This work is a practical look at the question of computational speedup, 

from the point of view of a specific algorithm (Block Truncation Coding) 
implemented on a specific parallel processor (the PASM prototype). By 
examining actual timing data from a real application program, much can be 
learned about the proper design of parallel computers and algorithms.

The paper discusses specifics of the PASM prototype (a partionable 
SIMD /MIMD non-shared memory machine) and Block Truncation Coding (an 
image compression algorithm). Theoretical and actual execution times were 
compared for different image sizes and numbers of processors used. The paper 
ends with general conclusions and ideas for future research.

1. Introduction
The fundamental purpose of parallel processing is increased computation 

speed. This paper is a practical look at the question of computational 
speedup, from the point of view of a specific algorithm (Block Truncation 
Coding) implemented on a specific parallel processor (the PASM prototype). 
By examining actual timing data from a real application program, much can 
be learned about the proper design of parallel computers and algorithms.

There two main reasons for using parallel processing to increase execution 
speed. One reason is to get maximum speed for minimum cost. This requires 
using efficient parallel algortihms, to maximum speed for the number of 
processors being used. The other reason for parallel processing is to increase 
maximum execution speed. The goal in this case is maximum speedup, even if 
the processors are not efficiently used. Both viewpoints will be examined in 
this paper.



The paper begins with a description of the PASM prototype (the parallel 
computer used) and Block Truncation Coding (the algorithm investigated). 
Next, implementation questions are discussed. Then the experiments 
performed and data gathered are presented. The paper ends with general 
conclusions derived from this project and suggestions for future research.

2. Overview of the PASM Prototype
The PASM prototype is a partionable SIMD/MIMD computer being used 

for parallel processing research at Purdue University. The PASM prototype 
(henceforth referred to as PASM) is collection of 30 microprocessors set-up for 
executing SIMD, MIMD, and hybrid SIMD/MIMD programs. These 
microprocessors are divided into 4 groups of 5 processors (called MC-groups) 
and assorted additional processors for system control and memory 
management. Each of the four MC-groups consists of one Micro Controller 
(MC) and four Processing Elements (PEs). The MCs and PEs use Motorola 
MC68000 microprocessors (running at 8MHz) as CPUs. Each processor has 
two dual-ported memory boards (1 Mbyte/board) so that program execution 
and data loading/storing can be overlapped. Since only MIMD programs were 
implemented in this project, the SIMD instruction broadcast hardware (Fetch 
Unit) can be ignored. Because the algorithms studied require no 
interprocessor communication, the programs can be run without modification 
on either MCs, PEs, or a combination of both.

For additional information on specifics of the PASM prototype, see 
references 1 and 2. 3

3. Overview of Block Truncation Coding
Block Truncation Coding (BTC) is an image compression algorithm that 

works by storing an approximation of the original image on a block by block 
basis. The original image consists of a height by width array of pixels, each 
pixel stored as one byte of grey level information. First the image to be 
compressed is split into 4 pixel by 4 pixel blocks. Then each block is 
compressed totally independently of all other blocks. The 16 bytes of grey 
level data is converted to 16 bits of pixel data (the bit-plane), an 8 bit mean 
value, and an 8 bit standard deviation value. The complete encoding 
alogrithm appears on the following page.
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The BTC decoding algorithm works by computing two numberes to 
replace the one bit values used for each pixel (the bit-plane). These two 
values (which shall be called low and high) are computed in such a way that 
when the replacement is done, the mean value and standard deviation of the 
decoded block is the same as the original. The complete decoding algorithm 
appears below.

BTC Encoding Algorithm
For each 4 x 4 block do

Compute the mean Value of the 16 pixels in that block. 
Compute the mean square value of the 16 pixels in that block. 
For each pixel in the current block do

If pixel brightness ^ mean then pixel bit value = 1 
If pixel brightness < mean then pixel bit value = 0 

Compute standard deviation of the 16 pixels in that block. 
Store the mean, std, and bit-plane for that block.

BTC Decoding Algorithm
For each 4 x 4 block do

Get the mean, std, and bit-plane for that block.
Compute q — the number of bits in the bit-plane that are ones. 
Compute the low fill value: low — mean - (std[q/(16—q)])'5 
Compute the high fill value: high = mean + (std[(16—q)/q])‘5 
For each pixel in the current block do

If pixel bit value == 1 then pixel value = high 
If pixel bit value = 0 then pixel value = low 
Store the pixel value.

To help clarify the encoding/decoding procedure, consider the following 
example (note: the sample used was selected to make the example clear and 
easy to understand, not because it is a typical image block).

Sample Block

10 20 30 40 
20 30 40 50 
30 40 50 60 
40 50 60 70
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mean = (10+20+30+40+20+30+40+50+30+40+50+60+40+50+60+70)/16 = 40 
variance = (100+400+900+1600+400+900+1600+ ... +3600+4900)/16 = 1850 
std = [variance - mean2]'4 5 = 16

The resulting bit-plane is:

0 0 0 1 
0011 
0 1 1 1 
1111

The encoding algorithm would store mean, std, and the bit-plane (requiring a 
total of 32 bits).

To decode the block, first q would be computed.

' q = 10

low = 19 
high = 52

The resulting decoded block is:

19 19 19 52 
19 19 52 52 
19 52 52 52 
52 52 52 52

For additional information on the Block Truncation Coding algorithms, 
see references 3, 4, and 5.

4. Theoretical Execution Times for BTC
The terms speedup and efficiency were mentioned above as being two of 

the prime criteria for judging parallel algorithms. Speedup shows how much 
faster a parallel algorithm works than a serial algorithm for the same problem. 
It is computed by the following equation:
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Speedup = Serial Execution Time / Parallel Execution Time

Obviously, the higher the speedup is, the faster the algorithm will run. In 
general, execution time decreases as more processors are used, increasing 
speedup. The increase in speedup due to using more processors depends on 
the efficiency of the parallel algorithm. Efficiency is computed as follows:

Efficiency == Speedup / Number of Processors Used

In general, efficiency is less than or equal to 1. An efficiency of 1 is called 
linear speedup, because an increase in number of processors used causes a 
linearly proportional increase in execution speed. The timing relationship for 
such algorithms is of the form:

Execution Time = F(n)/N

F(n) is some function of the input size n, and N is the number of processors 
used. Few algorithms exactly fit this form, but many approximate it. In the 
case of Block Truncation Coding, the theoretical timing relationships are:

Encode Time == kj + kgn/N 
Decode Time ~~ k3 + k4n/N

N is the number of processors used, n is the input size (in pixels), and the k’s 
are constants dependant or the actual implementation. The ki constant 
represents the initialization time required before any blocks are actually 
encoded. The k£ constant represents the time required per pixel for one 
processor (not including the initialization time). The constants L3 and k4 

work the same for the decoding algorithm. Obviously if ki and k3 are very 
small, or the number of pixels per processor (n/N) is very large, the equations 
approximate linear speedup very closely. Therefore, there is a need to actually 
implement the algorithms to determine how close they come to the ideal of 
linear speedup, for different values of n/N.
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5. Implementation
The BTC encoding and decoding algorithms were implemented in 

MC68000 assembly language. Assembly language was used because it provides 
maximum execution speed and because high-level parallel optimizing 
compilers are not available for PASM. The two algorithms were written in a 
single program, for simplicity of experimentation (they are totally separate 
routines, but putting them in one file simplifies downloading, etc.)

There were two possible ways to optimize the BTC programs for fast 
execution speed. The first would be to maximize speedup for the resulting 
program. Maximum speedup would require encoding/decoding only one block 
per processor. The resulting execution times would then be:

Minimum Encode Time = k4 + k2 
Minimum Decode Time = k3 T k4

By minimizing the constants, the resulting programs would run tremendously 
fast (less than 100 [Js each). Unfortunately, for images of realistic size, this 
would require far too many processors. Therefore the programs were 
optimized for the other case.

The other way to optimize the programs was in terms of high efficiency. 
This approach has each processor encoding/decoding several image blocks. As 
a result the k2 and k4 constants become most important, because they are 
multiplied by n/N, which for realistic images would be at least 16 or more.
Therefore the primary goal was to optimize k2 and k4.

Three important methods of optimization were used. The first was to use 
assembly language to write the programs, instead of a higher level language. 
Even if a high-level optimizing compiler was available for PASM, it could not 
compete with the speeds possible with quality assembly code. Second, Some 
time was saved by expanding loops. Specifically, this meant repeating sections 
of code the 16 times needed to process each pixel in a block. This saved loop 
overhead time, which would have been significant. And third, extensive use of 
lookup tables was made. These lookup tables store pre-computed values for 
different calculations (such as the square root of an 8-bit number), saved 
significant amounts of execution time.
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6. Experiments performed
Three different experiments Were conducted with the BTC 

encoding/decoding program- The first experiment was to determine the effects 
of image variations (other than image size) on execution speed. The second
experiment was to see the effect of image size on execution speed, given a 
constant number of processors. The third experiment tested execution speed 
for a constant image size using a variable number of processors.

In the first experiment, 20 randomly generated images were used to 
determine approximate best case, worst case, and average case execution 
times. These were then compared to produce an approximate percentage
variation in execution speed due to image variations. The random images 
consisted of 4096 pixels (64 x 64) each, and were processed using four PEs.

In the second experiment, random images of three different sizes were 
tested to determine the effects of image size on processing rate. Images sizes of 
1024 pixels (32 x 32), 4094 pixels (64 x 64), and 16384 pixels (128 x 128) were 
used. The images were processed using four PEs, with the four PE execution 
times being averaged to produce the actual timing data.

In the third experiment, a random image was processed using different 
numbers of PEs, in order to determine execution speedup and efficiency due to 
increasing parallelism. The same image was processed using 1, 2, and 4 PEs. 
The random image consisted of 4096 pixels (64 x 64).

7. Data
The tables below list the actual timing data collected for each of the 

three experiments. Image size is in pixels and execution times are in 
milliseconds. Except for experiment 1, all execution times are the average 
values for all images used and all PEs used.

Experiment 1

Data Type Encode Time Decode Time
Best case 20.008 9.452
Average case 20.0348 9.4864
Worst case 20.064 9.532
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Experiment 2

Image Size Encode Time Decode Time

1024 5.058 2.436
4096 20.037 9.488

16384 79.864 37.564

Experiment 3

Processors Encode Speedup Decode Speedup

79.868 1.0000 37.576 1.0000
;'/2Y:;vAv'. 39.944 1.9995 18.810 1.9977

20.037 3.9860 9.488 3.9604

8. Interpretation of Data
Using the data gathered in experiment one, it is possible to compute an 

approximate percentage varation in execution speed due to image variations. 
The actual results are:

Actual Encoding Time = Average Encoding Time ± .14%
Actual Decoding Time = Average Decoding Time ± .42%

Clearly the effect of image differences (other than size) on execution time is 
practically insignificant.

In order to determine the affect of image size on execution speed, the 
results of experiment two were graphed as shown on page 11. The graph 
clearly shows that execution time increases linearly with image size, as 
expected. From the data it is possible to compute kj and ks, the time taken 
when the image size is zero. The values are:

/hi = 70.9 ps 
k3 = 94.1 jUs

The constants k2 and k4 are the slopes of the encoding and decoding lines, 
respectively. Calculating the slopes results in:

k2 = 19.48 us



44 '

k4 = 9.148 /js

In order to determine the affect of increasing parallelism on execution 
speed, the results of experiment three were graphed as shown on pages 12-15. 
The two speedup graphs show that both the encoding and decoding 
algorithms exhibit (approximately) linear speedup. The two efficiency graphs 
show that efficiency drops only slightly as parallelism increases.

Using the results of the three experiments, it is possible to produce 
equations for the actual execution times based on image size and number of 
processors. The resulting equations are:

Encoding Time = 70.9 + 19.48 * (n/N) fjs + .14%
Decoding Time = 94.1 + 9.148 * (n/N)/is ±.42%

Clearly these equations match the theroretical equations of section 4.

9. Future Research
There are several possible lines of research continuing where this project 

left off. The most obvious possibility would be to just continue directly. 
Additional optimization may be possible. More data could be gathered (time 
and machine problems prevented tests using larger images or more processors). 
A hybrid SIMD/MIMD version could be written (the current version is entirely 
MIMD). Note: It is not recommended that a pure SIMD version be written 
using the current condition code hardware. There is little chance that a pure 
SIMD version could run faster than an MIMD version on this machine (due to 
the nature of the problem and the nature of the computer being used). To 
write such a version may be an example of using the wrong hardware for the 
wrong problem.

Another research idea than beating this relatively dead horse, would be to 
convert the BTC programs to do real disk I/O to get data and store results. 
Because there is native operating system kernel, all data Was downloaded with 
the programs, totally ignoring the usefulness of having two dual-ported 
memory boards with each processor. It would be very good to find out how 
well the I/O processors and dual-ported memory boards work for a real 
program using large amounts of data.
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Mon-Deterministic Instruction Time Experiments

Samuel A. Fineberg, Thomas L. Casavant* **, Thomas Schwederski, H.J. Siegel

Abstract
Experimentation aimed at determining the minimum-granularity at 

which variable-length SIMD operations may be decoupled into identical 
asynchronous MIMD streams for a performance benefit is reported. The 
experimentation is based on timing measurements made on the PASM system 
prototype at Purdue. The application used to measure and evaluate this 
phenomenon was matrix multiplication, which has feasible solutions in both 
SIMD and MIMD modes of computation, as well as in a hybrid of SIMD and 
MIMD modes. Matrix multiplication was coded in these three ways and 
experiments were performed which examine the tradeoffs among all of these 
modes.

I. Introduction
While extensive past efforts have dealt with analytical and simulated 

performance analysis of SIMD and MIMD algorithms, computations, and 
machines, this work describes empirically-based research generated from 
experiments on a parallel machine. This research was performed in an 
attempt to gain insight into the effect of certain aspects of novel architectures 
on applications programs. Specifically, the performance of the PASM 
prototype, a machine capable of both SIMD and MIMD modes of 
computation, is evaluated from the perspective of matrix multiplication. This 
application was chosen because it has obvious optimal solutions and a simple 
enough structure to permit analysis of architecture features through controlled 
measurements of program execution time. The experiments described are

* Supported by the Supercomputing Research Center under contract 
number 6925.

** Currently on leave from Purdue.
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based on SIMD, MIMD, and hybrid S/MIMD algorithms for multiplying n x n 
matrices for values of n ranging from 4 to 256. Operations were performed on 
16-bit integers utilizing 16 processors in several 4, 8, and 16 processor 
configurations.

The primary architecture feature being evaluated in this work is the 
ability to decouple small grains of variable execution-time operations from 
SIMD sections of code into multiple asynchronous MIMD threads of control. 
This unique feature derives from the ability to dynamically reconfigure the 
parallelism mode of PASM.

Results indicate that when mode-changing operations induce a minimal 
overhead, benefits of such decoupling may be found even for relatively small 
amounts of variation in the execution-time of individual operations. This 
same low-overhead mode-changing feature was also used to greatly improve 
the performance of the inter-process communication components of parallel 
programs by using the implicit hardware synchronization of SIMD mode to 
reduce the complexity of message passing protocols through the PASM 
interconnection network. Finally, experiments indicate that due to the 
existence of finite queues for issuing instructions from the control units to the 
processing elements in SIMD mode, superlinear speed-up1 is achievable.

Section 2 briefly describes generally related work, and Section 3 overviews 
PASM and its prototype. Section 4 describes the basic algorithm that was 
used while Section 5 describes the programmed variations of this algorithm as 
implemented on PASM for use in the experiments presented in Section 6. In 
Sections 7 through 11, the empirical results are discussed under special 
consideration of the PASM architecture as well as the central issue of
decoupling variable-length SIMD operations into multiple asynchronous MIMD
streams.

2. Background and Related Work
Related experimental research has been carried out on several machines 

through the use of both simulation and experimental techniques. Simulation- 
based analysis was performed by Su and Thakore for the SM3 system and a 
hypercube architecture [SuT87]. Experimental work involving measurements 
on working machines has also been performed. Examples include Work

■ ;We define superlinear speed-up as the condition in which the speed-up to 
number of PEs (processing elements) ratio is greater than 1.
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involving several machines: the BBN Butterfly [CrG85], Cm* [GeS87], the 
Encore Multimax [Hud88], the Intel Hypercube [Hud88], PASM [FiC87], and 
the Warp system [AilA87]. In these efforts, matrix multiplication was 
normally employed as an example algorithm. Other reported work involving 
efficiency measurements and algorithm optimization on parallel machines 
includes work done On an Affiant FX/8 [JaM86, Han88], a CRAY XMP 
[Cal84], and a combination of Apollo work-stations and an Affiant FX/8 
[KuN88]. '

3. Overview of PASM and the PASM Prototype
The PASM (partitionable SIMD/MIMD) system is a dynamically 

reconfigurable architecture in which the processors may be partitioned to form 
independent virtual SIMD and/or MIMD machines of various sizes [SiS8l]. A 
30-processor prototype has been constructed and was used in the experiments 
described in Section 6. This section discusses the PASM architecture 
characteristics which are most relevant to the reported experimentation. For 
a more general description of the architecture, see [SiS87],

The Parallel Computation Unit of PASM contains N PEs where N is a 
power of 2 (numbered from 0 to N—1), and an interconnection network. Each 
PE (processing element) is a processor/memory pair. The PE processors are 
sophisticated microprocessors that perform the actual SIMD and MIMD 
operations. The PE memory modules are used by the processors for data 
storage in SIMD mode and both data and instruction storage in MIMD mode. 
The Micro Controllers (MCs) are a set of Q=2q processors, numbered from 0 
to Q—1, which act as the control units for the PEs in SIMD mode and 
orchestrate the activities of the PEs in MIMD mode. Each MC controls N/Q 
PEs. PASM has been designed for N==1024 and Q= 32 (N—16 and Q=4 in 
the prototype). A set of MCs and their associated PEs form a virtual 
machine. In SIMD mode, each MC fetches instructions and common data 
from its associated memory module, executes the control flow instructions 
(e.g., branches), and broadcasts the data processing instructions to its PEs. In 
MIMD mode, each MC gets instructions and common data for coordinating its 
PEs from its memory.

The PASM prototype system was built for N=16 and Q—4. This system 
employs Motorola MC68000 processors as PE and MC CPUs, with a clock 
speed of 8 MHz. The intercoiinection network is a circuit-switched Extra- 
Stage Cube network, which is a fault-tolerant variation of the multistage cube 
network. Because knowledge about the MC and the way in which SIMD
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Figure 1: Simplified MC structure.

instructions are implemented with standard MC68000 microprocessors is 
essential to the understanding of the behavior that was observed in the 
experiments, the SIMD instruction broadcast mechanism is overviewed below.

Consider the simplified MC structure shown in Figure 1. The MC 
contains a memory module from which the MC CPU reads instructions and 
data. Whenever the MC needs to broadcast SIMD instructions to its 
associated PEs, it first sets the Mask Register in the Fetch Unit, thereby 
determining which PEs will participate in the following instructions. It then 
writes a control word to the Fetch Unit Controller which specifies; the location 
and size of a block of SIMD instructions in the Fetch Unit RAM. The Fetch 
Unit Controller automatically moves this block word by word into the Fetch 
Unit Queue. Whenever an instruction word is enqueued, the current value of 
the Mask Register is enqueued as well. Because the Fetch Unit enqueues 
blocks of SIMD instructions automatically, the MC CPU can proceed with 
other operations without waiting for all instructions to be enqueued.

PEs execute SIMD instructions by performing an instruction fetch from a 
reserved memory area called the SIMD instruction space. Whenever logic in 
the PEs detects an access to this area, a request for an SIMD instruction is 
sent to the Fetch Unit. Only after all PEs that are enabled for the current 
instruction have issued a request is the instruction released by the Fetch Unit 
queue, and the enabled PEs receive and execute the instruction. Disabled PEs 
do not participate in the instruction and wait until an instruction is broadcast



for which they are enabled. This way, switching from MIMD to SIMD mode is 
reduced to executing a jump instruction to the reserved memory space, and a 
switch from SIMD to MIMD mode is performed by sending a jump to the 
appropriate PE MIMD instruction address located in the PE main memory 
space..'

The SIMD instruction broadcast mechanism can also be utilized for 
barrier synchronization [LuB80] of MIMD programs. Assume a program uses a 
single MC group, and requires the PEs to synchronize R times. First, the MC 
enables all its PEs by writing an appropriate mask to the Fetch Unit Mask 
Register. Then it instructs the Fetch Unit Controller to enqueue R arbitrary 
data words, and starts its PEs which begin to execute their MIMD program. 
If the PEs need to synchronize (e.g., before a network transfer), they issue a 
read instruction to access a location in the SIMD instruction space. Because 
the hardware in the PEs treats SIMD instruction fetches and data reads the 
same way, the PEs will be allowed to proceed only after all PEs have read 
from SIMD space. Thus, the PEs are synchronized. The R synchronizations 
require R data fetches from the SIMD space. Thus, the Fetch Unit Queue is 
empty when the MIMD program completes, and subsequent SIMD programs 
are not affected by this use of the SIMD instruction broadcast mechanism..

In order to make comparisons of the speed of the PASM prototype 
relative to other machines and to compare the relative speeds of SIMD and 
MIMD instruction fetches, the actual raw performance of PASM in SIMD and 
MIMD mode was measured on the prototype and is illustrated in Table 1 in 
MIPS (millions of integer instructions per second) for two different types of 
instructions. The difference in speed between SIMD and MIMD modes can be 
attributed to two factors. SIMD instructions are fetched from the Fetch Unit 
Queue in the MC, and the queue can deliver data with one less wait state than 
can the PEs’ main memories. In addition, PEs’ main memories are 
implemented with dynamic memories. While care was taken in the hardware 
design that all refresh operations occur simultaneously in all PEs, and are 
performed invisible to the PE CPU, some delay is still possible. No such delay 
occurs during SIMD instruction fetches because the Fetch Unit queue is 
implemented with static RAM components. Measurements were made with 
repeated blocks of straight line code which were large enough to make the 
loop control overlap insignificant.
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Table 1: Prototype raw performance.

Mode Operation
Processing

Rate

SIMD 16-bit Reg.-to-Reg. add 22 MIPS
MIMD 16-bit Reg.-to-Reg. add 18 MIPS
SIMD 16-bit Reg.-to-Mem. add 6.4 MIPS
MIMD 16-bit Reg.-to-Mem. add 6.0 MIPS

4. Matrix Multiplication Algorithms Used
The parallel matrix multiplication algorithm used here had 0(n3/p) time 

and space complexity for multiplying two nxn matrices employing p PEs. 
Figure 2 shows an 0(n3) time and space complexity serial algorithm. This 
particular algorithm is provided to illustrate the ordering of multiplications as 
they are done in the parallel version of Figure 3. Figure 4 demonstrates the 
progress of the serial algorithm for n—4. The two data-flow graphs illustrate 
what occurs during the first two iterations of the second j loop of Figure 3. 
The i loop of the serial algorithm simulates the PE number in the parallel 
algorithm. The calculation of ((i+j) mod n) in the serial version allows the 
rows of the B matrix to be stepped through as the j loop proceeds with the 
initial B matrix row number being i. The serial algorithm used in the 
measurements on PASM, however, was optimized in order to permit accurate 
evaluation of speed-up, and therefore did not perform multiplies in this 
columnar manner. Rather, it followed a more straightforward row-column 
order.

In the parallel algorithm, the outer for all loop represents iteration across 
space rather than time. Each PE contains n/p adjacent columns of each 
matrix as shown in Figure 5. Within each PE these columns are numbered 
from 0 to (n/p)—1 as shown in the algorithm of Figure 3. This layout is 
similar to that used by Su and Thakore in their experiments for the SM3 
System [SuT87]. Using the for v loop, each of these adjacent columns is 
stepped through by each PE in sequence, and each PE appears as if it has n/p *

* This effectively rotates all internal columns of the A matrix to the left 
without destroying the data in column 0 of the PE, or actually moving the 
data.
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for i=0 to n—1 do 
for j=0 to n—1 do

cy=°;
for i=0 to n—1 do 

for j=0 to n—1 do 
for k=0 to n—1 do

ck,i ck,i ~k ak,((i+j) mod n) F((i+j) mod n),i>

Figure 2: Serial matrix multiplication algorithm.

for all i, O^i^n—1, do 
for v=0 to (n/p)—1 do 

for j =0 to n—1 do 
cj,v = 0;

for j=0 to n—1 do
for v=0 to (n/p)—1 do 

for k=0 to n—1 do begin
ck,v = ck,v "F 3-k,v b^j^n^pj_[_v_j.j^ mo(j n),v! 

for v=l to (n/p)—1 do
change the pointer to column v—1 of the A matrix to point to 
column v;* 

for k=0 to n—1 do
send a^ o to PE (i—1) mod p; 
receive a value and move it into

Figure 3: Parallel matrix multiplication algorithm.

virtual PEs within it. The virtual PE number is then defined as (n/p)i+v. 
Thus, the row subscript of B is calculated by replacing i in Figure 3 with this 
virtual PE number. Data movement internal to each PE involves only a 
pointer adjustment. Only on the boundaries (i.e. the highest and lowest 
numbered columns of each PE) is the inter-PE network employed.
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Figure 4

PE 0

a00 a01 *>oo *>oi coo C01 a06 a07 boe *>07 c06 g07
a10 all *>10 *>11 c10 Cll a16 a17 *>16 *>17 ^16 c17
a20 a21 *>20 *>21 c20 C21 a26 a27 *>26 *>27 e26 c27
a30 a31 *>30 b31 c30 C31 • •• a36 a37 *>36 *>37 c36 c37
a40 a41 *>40 b41 c40 C41 a46 a47 *>46 b47 G46 c47
a50 a51 *>50 *>51 c50 C51 a56 a57 *>56 b57 G56 c57
a60 a61 beo *>61 c60 C61 a66 a67 *>66 *>67 c66 c67
a70 a7T *>70 . *>71 . _Cl£L_ C71 a7fi a77 .*>.7fi_. b?7 C7R c77

Figure 5: Data Layout for n=8, p—4.

This particular algorithm was chosen over a more standard parallel 
matrix multiplication algorithm (e.g., see Stone [Sto80]) for several reasons. 
First, if a broadcast approach is used to distribute the "a" coefficients to the
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PEs, n network set-up cycles are incurred in addition to n network transfer 
cycles. In the chosen algorithm, the network remains in one configuration 
(i.e., PE i connected to PE (i-1) mod p), thus eliminating any recurring 
network set-up costs, while not incurring any additional network transfer 
costs. Also, this algorithm facilitates a columnar data format which was 
preferable for several reasons. First, because all matrices are stored in 
columnar format, BxA may be calculated as well as AxB without 
rearrangement of the data. Second, each matrix may be used in subsequent 
multiplications without reformatting. Data uniformity is also desirable to 
facilitate parallel I/O transfers of large data sets from secondary memory.

What follows is a semantic description of the progress of the algorithm. 
During each of the n2/p iterations of the innermost loop of the algorithm 
shown in Figure 3, each of the elements of the columns of the A matrix is 
multiplied by an element of the B matrix. Note that due to the columnar 
storage, the column of the B matrix matches the internal column number of 
the A matrix. However, the absolute row of B must match as the absolute 
column number of the A matrix (i.e. the column number when j=0 and 
k=0). This value is then added to an element of the 0 matrix. Therefore, 
there is a total of n multiplications and additions per inner loop with this 
second loop being executed n/p times. In the second innermost loop, the 
columns of the A matrix are shifted one column to the left. Within each PE, 
this transfer involves a single memory move, because a pointer to the entire 
column is changed rather than moving its elements. However, for the lowest 
numbered column of each PE, the transfer employs the interconnection 
network. This column is transferred through the network and stored in the 
highest numbered column of PE ((i—1) mod p). The data received through 
the network is placed in the PEs memory as its highest numbered column. 
This transfer requires n network operations (one for each element of the 
column). This procedure is repeated until all of the columns of the A matrix 
have been through each of the (n/p) positions of each PE for a total of n2 
network transfer operation times incurred.. During each of these elemental 
time periods, p values are exchanged.

Consider the time required for index calculation. The constant ix(n/p) 
was pre-calculated and placed in the programs data segment since it was 
constant in each PE for a given value of n and p. Also, the j+k operation 
involved in the B matrix row calculation was done outside the k loop and 
therefore only contributes Q(n) time complexity per PE. The calculation of 
the A and C matrix row indices was done with the MC68000’s auto-increment
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mode. Due to the pipelined structure of the MC68000 this does not add any 
extra execution time of the non-autoincrement mode. Therefore, the index 
calculation, as a separate component of the execution, time is not significant.

The current implementation of the network in PASM supports 8-bit data 
transfers. Because these experiments involved 16-bit data, each element 
transfer required two shift operations (one for transmitting and one for 
receiving), an OR operation, and two network operations. Because no DMA 
block transfers were possible given the current implementation of PASM, each 
column transfer required n single-element transfers for a total of 2n network 
operations per column.

Being circuit switched, setting up a path in the PASM prototype network 
is a time consuming operation: However, in this algorithm only a single path 
set-up is required, (i.e. PE i always sends to PE (i—l) mod p). Thus the 
measurements made do not reflect any significant influence from network 
reconfiguration overhead. Hence, there were 2n2 network accesses, n3/p 
multiplications, and n3/p additions required. This resulted in a 0(n3/p) 
growth in execution time.

5. Implementations of the Algorithm
Three variations of the parallel algorithm, as well as an efficient serial 

version, were programmed in MC68000 assembly language for execution on 
the PASM prototype. The parallel versions included a pure SIMD, a pure 
MIMD, and a hybrid S/MIMD version. These three programs may be 
executed on 4, 8, or 16 processors simply by changing variables embedded in 
their data sections.

5.1. SIMD
The SIMD version executes all looping and control flow instructions in 

the MCs. Arithmetic, data movement, and index calculation instructions are 
executed on the PEs in SIMD mode. The PE instruction stream is obtained 
through the MC’s Fetch Unit Queue and is executed synchronously on all PEs.

In PASM, the network appears to the PEs as two memory locations 
(transmit and receive registers). Network transfers are made directly to the 
transfer registers using memory-to-memory move instructions.

For several reasons, the SIMD version appeared to be the most natural 
choice for implementation. First, in the matrix multiplication algorithm used 
all PEs are always enabled, thus eliminating the need for enabling and
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disabling the PEs. Second, the implicit synchronization inherent in SIMD 
mode allowed the network transfer operations to be carried out in a 
straightforward fashion requiring only two memory- to-memory move 
instructions. Third, the only data-dependent portion of the algorithm, is the 
actual multiplication instruction, which has a variable execution length due to 
its microcoded implementation in the MC68000. A final advantage of the 
SIMD version is due to the use of a FIFO queue in the Fetch Unit of the MCs. 
Because this queue buffers instructions being sent to the PEs, the execution of 
SIMD instructions by the PEs can be overlapped with the execution of control 
flow instructions by the MCs.

In addition to these conceptual factors involved in the SIMD version, 
there are some factors that were present due to the implementation of the 
PASM prototype. First, instructions may be accessed more quickly from the 
Fetch Unit Queue than from the PEs main memory. This is due to the use of 
faster memory technology in the queue. Also, the overlap of the control flow 
instructions with PE instructions is only present if the queue remains non- 
empty. In other words, the PEs can only proceed if the MCs supply 
instructions faster than the PEs can remove them from the queue.

5.2. MIMD
The second version was a pure MIMD program in which the MCs were 

only used for initiating the PE programs. The PEs executed all instructions 
asynchronously including all network, control flow, and arithmetic operations. 
Although the network hardware prevents overwriting of old data in the 
transfer register, the asynchronous network operations necessitated polling of 
the network buffer in order to determine whether it was ready to accept new 
data. After transmission, the network buffer must be polled to assure that the 
data is valid before a receive Operation can be completed.

The major advantage of the MIMD version was rooted in the variation of 
the execution time of the MC68000 multiply instruction. Multiply or divide 
instructions require an amount of time which is related to the number of l’s in 
the binary representation of one operand. Assume an algorithm is executed on 
K PEs, each PE executes J instructions, and instruction j on PE k takes time 
t^. Then the total execution time in SIMD mode (tSjmd) is the sum of the 
worst case times for each instruction as given by:
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j K
TsiMD = E^fS^jk 

j=l
In MIMD mode each PE proceeds independently, and therefore the execution 
time (tmimd) *s *he worst case sum of instruction execution times as given by:

k j 
rMlMD : max Erjk 

k~° j-i
In general, rMIMD ^ rSIMD.

5.3. S/MIMD
The hybrid S/MIMD algorithm was developed to take advantage of the 

fast barrier Synchronization mechanism described in Section 3 and to exploit 
the execution time advantage of the MIMD program (i.e. decoupling at low 
cost). In this version, the main program was the same as in the MIMD case. 
The difference was in the method of determining whether the network was 
ready to accept a transfer operation. Rather than polling the network buffer, 
barrier synchronization "Was used to allow network operations to be carried out 
as simple memory-to-memory move operations as in the SIMD version. This 
lowered the amount of network overhead to a level comparable but slightly 
greater than the SIMD version due to the mode switching time. The other 
advantages of SIMD mode (i.e., faster instruction fetch and control flow 
instruction overlap) could not be realized in this version. 6

6. Experiments Performed
Experiments were performed on nxn matrices and measurements were 

made of the execution times for n== 4, 8, 16, 64, 128, and 256. The algorithm 
was implemented for SIMD, MIMD, and S/MIMD mode and was run on p = 
4, 8 and 16 PEs. All operations were 16-bit unsigned integer operations and 
overflow was ignored. To allow for varying machine and problem size, loops 
were utilized wherever possible.

To measure the amount of asynchronous execution necessary to yield 
better performance by the hybrid version over the SIMD version, the number 
of multiplies in each innermost loop of the algorithm was made to be a 
dependent variable. These multiplies were added as straight line code in order 
to prevent skewing of execution time data due to control flow overlap. The 
multiplies were added to study the effect on the total execution time and did 
not affect the values in the C matrix. Let Tsjmd and Ts/mimd be the total



execution time for the SIMD and S/MIMD programs respectively. The 
performance of each of the components of the execution time was measured at 
points corresponding to quantities of inner loop multiplications where:
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TsiMD < Ts/MIMD)

Tsimd = Ts/mh^d, and 
A tsimd > TS/mimd-

Measurements were made with the internal system timers (MC68230). 
Experiments were performed for each version with the identity matrix in A 
and random data in B. While the value of the multiplier used in the MC68000 
multiplication instruction affects the execution time, the data value of the 
multiplicand has no effect. Therefore, the elements of the A matrix, which 
were always used as the multiplicand could be chosen as the identity matrix 
without affecting program performance. By using the identity matrix, matrix 
multiplication results could be easily verified, thereby simplifying the 
debugging process. Random data, produced from a uniformly distributed 
random number generator, was chosen for these experiments in order to 
represent the average case, and the same data sets were used on all versions of 
the algorithm with the same value of n and p.

7. Speed-up & Overall Comparison
Figure 6 illustrates execution time of matrix multiplication vs. problem 

size observed in the parallel versions of the algorithm for p=8. The difference 
between the SISD time and that of the parallel versions represents an 
improvement by a factor of approximately p.

Although not readily apparent in the graph, it should be rioted that 
Tmimd/Ts/mimd decreases as n increases. The only difference between these 
two versions is attribxited to the contribution to the execution time of 
communication. Note that for p fixed, and small n (e.g. n=8), the time

. . 3 2 ✓ \
complexity of the multiplications is — or’ = n2. This is the same

A..A ■ # p 8 .
order of contribution as communication. Hence, for small n, the 0(n2) 
communication contribution dominates the 0(n3) arithmetic. However, for 
larger n, the 0(n3) component ultimately dominates and all three curves 
converge.
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Figure 6: Execution time vs. problem size for p—8 
and one multiply per inner loop.

The third aspect of this graph is the apparent advantage of the SIMD 
version over the S/MIMD version. The difference is caused by the ability of 
the MCs to execute control flow in parallel with arithmetic. However, the 
S/MIMD version has the potential for better performance due to the 
decoupling effect associated with MIMD execution of data-dependent execution 
time operations. In order to determine the point where these graphs cross, 
however, experiments were conducted which added more data-dependent 
instructions in a controlled way.

8. Execution Time vs. Number of Variable Length Operations
To determine the amount of asynchronous execution needed to achieve a 

benefit when executing a portion of a computation asynchronously in MIMD 
mode, additional multiplication operations were added to the innermost loop 
of the algorithm. Figure 7 plots total execution time for SIMD and S/MIMD 
programs with added multiplications vs. the number of added multiply 
instructions for n-=64 and p=4 with random data. The lines plotted include 
3 different points with the number of multiplications ranging from 13 to 15. 
These lines are disjoint at the endpoints with the SIMD version being faster 
for small numbers of added multiplies and S/MIMD being faster as the
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Figure 7: Execution time vs. number of 
inner loop multiplications for 

n=64 and p=4.

number of added multiplies is increased. The point at which 
TSimd = Tg/MIMD was with approximately fourteen added multiplications.
This was due to the increase in execution efficiency when the multiplications
were executed asynchronously, i.e., fewer processors were idle while waiting for 
all multiplications to complete.

9. Contributions to Execution Time
To further demonstrate that the execution time advantage was 

manifested in the multiplication instruction execution time, the contributions 
of the total execution time of the hybrid and SIMD programs were broken 
down and plotted. Figures 8, 9, and if) contain plots of execution time vs. 
problem size at each of the endpoints and at the crossover point of Figure 7.
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Figure 8: Contributions to execution time for 
matrix multiplication with one multiply 

per inner loop and p=4.

The times shown are broken down into: (i) multiplication time, (ii) 
communication time, and (iii) other contributions such as time for clearing the 
C matrix and shifting pointers for internal data movement. Multiplication 
and communication times include related address calculation operations. The 
multiplication time also includes the addition operation required to add the 
calculated value to the proper C matrix element. Figure 8 shows clearly that 
as problem size increases the time required for the multiplications increases 
faster than the communication time. This was mainly due to to the difference 
in the order of the communication time and the multiplication time (i.e, 0(n2) 
vs. 0(n3/p)). Due to this difference in time complexity, the time required for 
the multiplication instructions becomes the largest component of execution 
time, even without the added multiplication instructions. The S/MIMD 
program, however, does not execute faster than the SIMD version due to both 
the control unit instruction overlap and the faster memory access time of the 
Fetch Unit Queue unless extra data-dependent instructions are added.

In Figure 9, the execution times are equal at n—64. With the total time 
broken down, it is apparent that the matrix multiplication times are close for 
all values of n, and when n=64 the matrix multiplication time is less in the 
S/MIMD program than in the SIMD program. However, the matrix 
multiplication time was the same because the communication time in the
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Figure 9: Contributions to execution time for 
matrix multiplication with 14 multiplies 

per inner loop and p=4.

S/MIMD version was slightly more than in the SIMD version. Also, it should 
be noted that this effect would be greater if the constant value representing 
the instruction fetch time advantage were removed.

Figure 10 demonstrates the advantage provided by the asynchronous 
multiplication instructions when enough were added to make the other effects 
diminish in importance. In this Version with 30 added multiplications per 
inner loop the S/MIMD version is faster for the larger values of n and this 
difference increases with n.

10. Efficiency vs. Problem Size
Figure 11 plots efficiency vs. problem size for the three modes of 

computation possible on PASM with p=4 as well as the serial case where 
efficiency is defined as:

>v, Tserial
E = _

-1 parallel Xp

The efficiency of the S/MIMD and MIMD versions increased with the problem 
size, and never reaches or exceeds unity. The reason for the increasing 
efficiency can be accounted for by the fact that the quantity of communication 
overhead increases as 0(n2), and the computation increases as 0(n3/p). The
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Figure 10: Contributions to execution time for 
matrix multiplication with 30 multiplies 

per inner loop and p=4.

best efficiency was 96% for the S/MIMD version and 87% for MIMD version 
(for n=256 and no added multiplies). The MIMD efficiency was lower due to 
the extra overhead required for the MIMD communication.

The SIMD version, however, Was not only more efficient than the MIMD 
and S/MIMD versions, but was able to achieve an efficiency greater than unity 
when compared only to the number of PEs employed. This difference can be 
attributed to the ability of the PEs to do computation while the MCs are 
doing looping and other control operations. If the queue can remain non
empty and non-full at all times, it should be possible to eliminate all of the 
time required for the control operations. Because this amount increases with n, 
it is not surprising that the benefit also increases with n. This amount of 
benefit is related to the the ratio of control operations versus computation and 
communication operations. This does, however, demonstrate that the overlap 
of control flow and computation is possible and does provide some efficiency 
benefits — especially for applications that strongly exhibit a large quantity of 
control flow operations that can be performed on the MCs. This effect was 
predicted earlier by Kuehn et al in [KuS86].
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Figure 11: Efficiency vs. problem size for p 4 and one 
multiply per inner loop.
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Figure 12: Efficiency vs. number of processors for n=64 
and one multiply per inner loop.



11. Efficiency vs. Number of PEs
Figure 12 shows how efficiency drops as the number of processors utilized 

increases. This drop in efficiency is due to several factors. First, the value of 
n/p drops as p increases representing a decrease in the amount of computation 
done by each processor. While this does allow better parallelization of the 
algorithm, it makes the time consumed by inter-processor communication and 
other factors not present in the serial version become more significant 
compared to the time required by the computation portion of the algorithm.

12. Summary
Experiments designed to examine the tradeoffs among the SIMD, SISD, 

MIMD, and MIMD with barrier synchronized modes on the PASM parallel 
processing system prototype were described. In particular, the effects of 
instructions with data dependent execution times were considered. Tests were 
coded and executed on the prototype. Runtimes for different numbers of 
multiplies, numbers of processors, array sizes, and modes of parallelism were 
collected. This data was evaluated and discussed, analyzing the effects of the 
various parameters in the tests.

The experiments presented used an actual parallel system and pointed 
out some of the trade-offs among these modes of parallelism. Experiments 
such as these on working prototypes are important in order to begin to learn 
how to effectively harness the power of parallel processing.
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Experimental Analysis of 
Multi-Mode Fast Fourier Transforms

Edward C. Bronson, Thomas L. Casavant, Leah H. Jamieson

Abstract
This paper describes a detailed study of parallel fast Fourier transform 

programs executing on the 30-processor prototype of the PASM parallel 
processing system. Detailed execution time measurements using specialized 
timing hardware were made for the complete FFT and for components of 
MIMD, SIMD, and hybrid SIMD/MIMD (mixed mode) implementations. 
Compared to a baseline serial FFT, the parallel MIMD, SIMD, and hybrid 
implementations achieved efficiencies of 0.47, 0.70, and 0.76 respectively. The 
component measurements isolated the effects of floating point arithmetic 
operations, interconnection network transfer operations, and program control 
overhead. Using these detailed component measurements, an expression to 
project the execution time for an M-point FFT executing on M/2 PASM 
processing elements (PEs) is derived. The measured execution times for 4-PE 
and 8-PE programs verify this expression to within 1%. This expression is 
then used to obtain an accurate extrapolation of the execution time and 
speedup of the MIMD, SIMD, and hybrid programs to a full 1024-processor 
PASM system. Overall, the experimental results demonstrate the value of the 
multi-mode capability of PASM and the suitability of PASM Computationally 
intensive algorithms such as the FFT.

1. Introduction
This paper describes a detailed study of parallel fast Fourier transform 

programs executing on the 30-processor prototype of the PASM parallel 
processing system. PASM is a dynamically reconfigurable architecture 
designed to allow both SIMD and MIMD operation, and to provide the flexible 
computation and communications capability needed for the wide range of 
algorithms used in image and speech processing applications [SiS81, SiS87]. In
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this paper we use the FFT algorithm as a vehicle for comparing the SIMD, 
MIMD, and hybrid SIMD/MIMD modes of operation. The FFT programs 
exercise PASM’s floating point hardware for arithmetic operations, the 
multistage Cube interconnection network, and the specialized timing 
hardware. Detailed experimental results are obtained for small FFTs on the 
prototype hardware, then are extrapolated to obtain execution time and 
speedup figures for a full 1024-processing element (PE) PASM system. The 
extrapolation technique is verified analytically and the measurements used for 
the components of the extrapolation are verified experimentally to within 1% 
using 4-PE and 8-PE programs.

In the experiments reported, three implementations of a 4-PE single 
precision floating-point 8-point FFT are studied. These programs were 
written to examine the trade-offs between the different modes of parallel 
computation on PASM. An SIMD version performs all FFT operations in 
SIMD mode. An MIMD version performs arithmetic operations in MIMD 
mode and polls the interconnection network to determine the network status 
during data transfer operations. A third program uses barrier synchronization 
to align the operations of the PEs during interconnection network transfer 
operation in place of polling and testing the status of the network. This 
program is a hybrid of the SIMD and MIMD modes of computation: the 
arithmetic calculations and the network transfers are performed in MIMD 
mode, while the barrier synchronization operation is performed by using 
hardware designed for SIMD operation. The hybrid mode gave the best 
execution time, 9% faster than the SIMD implementation and 39% faster than 
the MIMD version. Measurements of the components of the implementations 
isolate the effects of the floating point arithmetic operations, interconnection 
network transfer operations, and program control overhead, and allow 
interpretation of the differences in the three overall execution times; Effects 
due to the number of memory wait states, movement to and from the floating 
point coprocessor, masking to enable and disable PEs, synchronization, 
network setup and data transfer, and mode switching are analyzed. Finally 
the detailed component measurements are used to project a speedup of 814 for 
a 1024-PE 2048-point hybrid algorithm.

The programs and execution times presented in this paper are among the 
first applications of the PASM system and are the first floating-point program 
results obtained on the system. The results demonstrate the value of the 
multi-mode capability of PASM and its suitability for computationally 
intensive algorithms such as the FFT. The ability to obtain very detailed
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measurements has proven invaluable in understanding and interpreting results 
from the different implementations of the algorithm and in projecting the 
results from the prototype to a larger system.

The following section presents an overview of the PASM system and 
details of the PASM prototype. The fast Fourier transform algorithm is 
described in Section III. In Section IV, details of the various FFT program 
implementations are described. Section V presents the measurements 
techniques used. The experimental results are presented in Section VI and 
discussed in Section VII.

2. Overveiw of PASM and the PASM Prototype
PASM is a dynamically reconfigurable architecture in which the 

processors may be partitioned to form independent virtual SIMD and/or 
MIMD machines of various sizes [SiS81, SiS87]. A 30-processor prototype has 
been completed and was used in the experiments described in Section VI. 
This section discusses the PASM architecture characteristics which are most 
relevant to the reported experimentation. For a more general description of 
the architecture, see [SiS87].

The Parallel Computation Unit of PASM contains N processing elements 
(PEs) (numbered from 0 to N—1, where N is a power of 2) and an 
interconnection network. Each PE is a processor/memory pair. The PE 
processors are sophisticated microprocessors that perform the actual SIMD 
and MIMD operations. The PE memory modules are used by the processors 
for data storage in SIMD mode and both data and instruction storage in 
MIMD mode. The Micro Controllers (MCs) are a set of Q=2q processors, 
numbered from 0 to Q—1, which act as the control units for the PEs in SIMD 
mode and orchestrate the activities of the PEs in MIMD mode. Each MC 
controls N/Q PEs. PASM has been designed for N--1024 and Q— 32. A set 
of MCs and their associated PEs form a virtual machine. In SIMD mode, each 
MC fetches instructions and common data from its associated memory 
module, executes the control flow instructions (e.g., branches), and broadcasts 
the data processing instructions to its PEs. In MIMD mode, each MC gets 
instructions and common data for coordinating its PEs from its memory.

The PASM prototype system, completed in December 1986, was built for 
N—16 PEs and Q=4 microcontrollers. This system employs Motorola 
MC68000 processors as PE and MC CPUs, with a clock speed of 8 MHz. The 
interconnection network is a circuit-switched Extra-Stage Cube network



72

[AdS82], which is a fault-tolerant variation of the multistage cube network. In 
the following paragraphs, aspects of the prototype system that are essential to 
the understanding of the algorithm implementations are described.

Consider the simplified MC structure shown in Figure 1. The MC 
contains a memory module from which the MC CPU reads instructions and 
data. Whenever the MC needs to broadcast SIMD instructions to its 
associated PEs, it first sets the Mask Register in the Fetch Unit, thereby 
determining which PEs will participate in the following instructions. It then 
writes a control word to the Fetch Unit Controller which specifies the location 
and size of a block of SIMD instructions in the Fetch Unit RAM. The Fetch 
Unit Controller automatically moves this block word by word into the Fetch 
Unit Queue. Whenever an instruction word is enqueued, the current value of 
the Mask Register is enqueued as well.

PEs execute SIMD instructions by performing an instruction fetch from a 
reserved memory area called the SIMD instruction space. Whenever logic in 
the PEs detects an access to this area, a request for an SIMD instruction is 
sent to the Fetch Unit. Only after all PEs that are enabled for the current 
instmetion have issued a request is the instruction released by the Fetch Unit 
FIFO, and the enabled PEs receive and execute the instruction. Disabled PEs 
do not participate in the instruction and wait until an instruction is broadcast 
for which they are enabled. This way, switching from MIMD to SIMD mode is 
reduced to executing a jump instruction to the reserved memory space, and a 
switcli from SIMD to MIMD mode is performed by sending a jump to the 
appropriate PE MIMD instruction address located in the PE main memory 
space. ' /

The SIMD instruction broadcast mechanism can also be utilized for 
barrier synchronization [LuB80] of MIMD programs. Assume a program uses a 
single MC group, and requires the PEs to synchronize R times. First, the MC 
enables all its PEs by writing an appropriate mask to the Fetch Unit Mask 
Register. Then it instructs the Fetch Unit Controller to enqueue R arbitrary 
data words, and starts its PEs which begin to execute their MIMD program. 
If the PEs need to synchronize (e.g., before a network transfer), they issue a 
read instruction to access a location in the SIMD instruction space. Because 
the hardware in the PEs treats SIMD instruction fetches and data reads the 
same way, the PEs will be allowed to proceed only after all PEs have read 
from SIMD space. Thus, the PEs are synchronized. The R synchronizations 
require R data fetches from the SIMD space. Thus, the Fetch Unit Queue is 
empty when the MIMD program completes, and subsequent SIMD programs
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are not affected by this use of the SIMD instruction broadcast mechanism.
Along with the main MC68000 processor, each PE has a Motorola 

MC68881 floating-point coprocessor [Mot85]. The MC68881 is a full 
implementation of the IEEE floating-point standard. An IEEE format single 
precision floating-point value is 32-bits in length. Intended primarily for use 
as a coprocessor to the MC68020 microprocessor, communication during 
floating-point operations proceeds as with any peripheral. The PASM 
prototype hardware permits the MC68000 processor to be run with a 8 MHz 
clock and the MC68881 coprocessor to operate with a 16 MHz clock.

Each PE contains special purpose hardware timing circuitry. Two 
independent timers, each consisting of a Motorola MC68230 Timer enhanced 
with additional TTL counting logic to improve resolution, can be used to 
count processor clock cycles. After initialization, each timer can be started 
and stopped by writing a 16-bit word to a timer control register. Each PE 
contains independent timer circuitry and the timers can be started and 
stopped when processing in SIMD or MIMD mode. Since timer initialization is 
performed independently of starting a timer, each timer can be started and 
stopped multiple times during the execution of a program to measure the 
elapsed time of non-contiguous portions of code.

The circuit-switched PASM interconnection network is capable of 
operating in both point-to-point and broadcast modes. In order to 
communicate with another PE using the network, the initiating PE must set 
up a path through the network. A path is established by first writing a PE 
routing tag to the network Data Transfer Register (DTR). The PE must then 
set a bit in a control register to instruct the network interface to interpret the 
value in the DTR as a routing tag for setting up the network. The routing 
tag will be the first data item received from the network at the beginning of 
an network transfer. Byte data values may now be written to the DTR and 
automatically sent through the network. The receiving PE reads the 
transferred byte from its DTR. At the end of a network transfer, the sending 
PE must write a "drop path request" to the network control register. This 
will close the established network path and free the network for further 
transfers.

The execution time of an MC68000 instruction is dependent upon the 
speed of the program memory that is used. A memory read or write cycle 
time requires a minimum of four clock periods. Accessing slower memory will 
cause the generation of one or more wait states which will increase an
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instruction cycle time. Each memory wait state requires an additionaldock 
cycle to perform a 16-bit read or write. The memory of each PASM PE 
contains static RAM which can be switched to operate at 0 or 1 wait state.

In order to make comparisons of the speed of the 16-PE PASM prototype 
relative to other machines and to compare the relative speeds of SIMD and 
MIMD instructions, the actual raw performance of PASM in SIMD and MIMD 
mode was measured on the prototype. Raw processing rates for 16-bit integer 
addition and floating-point addition operations are given in Table 1. The 
difference in speed between SIMD and MIMD modes can be attributed to the 
operation of the Fetch Unit hardware. SIMD instructions are fetched from the 
Fetch Unit Queue in the MC; MIMD instructions are fetched from the PE 
memories. The queue delivers data to the PEs with a delay of 2 wait states 
whereas the PE static RAM memory operates at 0 or 1 wait states. The speed 
of executing a program in MIMD mode will depend upon the number of wait 
states of the program memory.

3. Fast Fourier Transform
The discrete Fourier transform (DFT) of a complex M-point sequence, 

sm, 0 2s ra < M, is defined as

cFk — ■ j] sme i(27r/M)mk ? 0 ^ k < M (!)
m — 0

where j2 = —1 [OpS75]. The direct calculation of the DFT using Equation 1 
requires 0(M2) operations. The fast Fourier transform (FFT) computes the 
DFT of a sequence in 0(Mlog2M) serial operations. One FFT formulation is 
the radix two decimation-in-time (DIT) algorithm. In this algorithm, the M- 
point input sequence, s, is divided into two M/2-point subsequences

and

s m s2m > m U " ‘ , M/2 1, (2)

Sm =s2m + 1, m = 0,1, • • • , M/2-1 . (3)
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The DFT of the sequence s can now be written using the two subsequences as

2

m = 0

1 M ■1
= E SamW2mk + J] s m W*2 m + x)k

2

m = 0
(4)

k' = 0, 1, 2, • • • , M —1 ,

where W = e H2ir/M) and js called a twiddle factor. By factoring out Wk, 
Equation 4 can be rewritten as

= Sfc +Wk Sbk (5)

where S k and S f1. are the M/2-point DFTS of s / and s /, respectively. 
Equation 5 shows that an M-point DFT can be computed from two M/2-point 
DFTs. By halving the number of points in the transform at each stage of the 
FFT, the DFT of an M-point sequence can be computed in 0(Mlog2M) 
operations.

Figure 2 is a signal flow graph of an 8-point radix two DIT FFT 
algorithm mapped to 4-PEs. The algorithm consists of log2M stages. At each 
stage, M/2 butterfly operations are executed. A butterfly operation is shown 
in Figure 3. For each butterfly operation the input consists of two complex 
items, A and B. One complex multiplication and two complex additions are 
performed, and two complex outputs, X and Y, are generated. The twiddle 
factor, Wk, used in the calculation of each butterfly is marked in Figure 2 and 
the value differs from stage to stage and among the stages. It should be noted 
that W° = 1 and therefore the first stage of the algorithm requires no 
multiplications. Similarly, the twiddle factor WM//4 = j and therefore, the 
second stage of the algorithm also requires no multiplications. The M/2 
butterfly operations performed within each stage are independent and can be 
executed in parallel. Parallel algorithms to perform an M-point FFT in M/2 
PEs are presented in [Be69], [Pea77], [Sto7l], and [JaM86].

Between stages, the PEs must exchange data items before performing the 
next set of butterfly operations. This exchange can be performed by the cube 
interconnection function. The Cube interconnection function, cubeC) 
0 ^ c < log2M/2, is defined as
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cubec(pn_! • • • pc+i PcPc-i * * * Po) = Pu-l V" Pc+l Pc Pc-i * / ' Po, (6)

where pn^i • • * pp is the binary representation of an arbitrary logical PE 
address, and p^ is the complement of pc [Sie85j.

The complexity of the M-point radix two DIT FFT serial algorithm and 
the parallel algorithm in M/2 PEs, where M is a power of 2, are given in 
Table 2± The multiplication step entries of Table 2 reflect that there are no 
multiplication steps necessary in the first stage of the DIT FFT since W° = 1 
nor are there any in the second stage of the FFT since WM'4 — j.

4. Implementation Issues
Three 4-PE parallel FFT programs, one 8-PE parallel FFT program, and 

one serial FFT program were executed on PASM. Execution time 
measurements were made for each of these programs. The experimental 
results are presented in section VI and discussed in Section VII. In this 
section, we outline the programs that were implemented and discuss relevant 
details of the implementations.

Three implementations of a 4-PE single precision floating-point 8-point 
FFT were studied. These programs were written to examine the trade-offs 
between the different modes of parallel computation in PASM. An SIMD 
version performs all FFT operations in SIMD mode. A second program is an 
MIMD version that calculates the butterfly operations in MIMD mode and 
polls the interconnection network to determine the network status during 
interconnection network transfer operations. A third 4-PE program uses 
barrier synchronization to align the operations of the PEs during an 
interconnection network transfer operation in place of polling and testing the 
status of the network. This program is a hybrid of both the SIMD and MIMD 
modes of computation. Although the butterfly calculations and the network 
transfers are all performed in MIMD mode, the barrier synchronization 
operation is performed using hardware designed for SIMD operation. The 
execution times for each of the program component parts of these three FFT 
programs were measured. A discussion comparing each of the component

F Parallel FFT algorithms using fewer than M/2 PEs are presented in 
JaM86]. In the experiments described here, we consider only the M-point, 

M/2 PE case. Because of the similarity of the algorithms using fewer PEs 
to those examined here, similar execution characteristics and speedups can 
be projected.
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parts of these programs is presented in Section VII. Values obtained for the 
component parts for each of these programs were used to predict the execution 
time of larger FFTs executing on a greater number of PEs and allows accurate 
extrapolation of the results to a full 1024-PE PASM system.

An 8-PE SIMD 16-point FFT program was also implemented. The 
execution time measured for this program was used to verify the projected 
execution time expression presented in Section VII.

A single PE 8-point FFT program was implemented in order to obtain 
serial execution times. Execution time measurements from this program were 
used to calculate the values for speedup presented in Section VII.

All of the programs were written in MC68000 assembly language [Mot84] 
as straight in-line code with no loops. This generated the fastest possible code 
and eliminated issues of programming style from the execution time studies. 
All MC control code such as instructions to perform PE masking and 
operations to direct the operation of the Fetch Unit were explicitly written 
into each program.

The programs also used the MC68881 floating-point coprocessor to 
perform all arithmetic. A floating-point operation is initiated when the 
MC68000 processor writes an instruction word to the command register of the 
MC6888!. This is followed by successive reads and Writes by the MC68000 to 
the response and operand registers of the coprocessor. The amount of 
communication with the coprocessor will depend upon the floating-point 
operation being performed. An operation between two floating-point registers 
within the MC68881 requires a single write to the command register and a 
single read of the response register. Moving a single precision value to or from 
the coprocessor requires two additional 16-bit writes or reads to the operand 
register. In a typical application, the main processor would test the response 
register of the coprocessor to determine whether any additional processing is 
required, whether there is an error condition, or to determine whether the 
floating-point operation has completed. Detailed analysis of the number of 
accesses to the coprocessor registers by the MC68000 during floating-point 
operations has provided exact execution times for these operations on a PASM 
PE. Tbs execution times for each coprocessor operation are independent of 
the value of the floating-point data. Efficient procedures were written to 
interface with the MC68881 and perform the floating-point operations by 
waiting a constant delay during operation without testing the coprocessor 
response register. These procedures were originally written to operate the



PE’s coprocessor in SIMD mode. This was necessary since branching and 
testing in SIMD mode may be very inefficient. The resulting procedures were 
always more efficient than code that polled the coprocessor response register. 
These constant delay procedures were used for both SIMD and MIMD modes 
of computation. Six different coprocessor operations are used in the various 
butterfly calculations: floating-point add, subtract, and multiply, single
precision moves to and from the coprocessor, and moves between the floating
point registers. Testing the coprocessor for error states during program 
execution was not performed:

Each cube interconnection network transfer required the transfer of two 
32-bit single precision floating-point numbers (the real and imaginary parts of 
the complex X or Y). Since the network is 8-bits wide, transferring each 
floating-point number requires 4 writes and 4 reads to the network DTR. A 
cube interconnection transfer operation proceeds in the following way. First, 
the sending PE writes the routing tag to the DTR and requests a network 
path. A cube interconnection network function is non-blocking and the entire 
network is configured within a few clock cycles after the last PE requests a 
network path. The transmitted routing tag is read from the receiving PE’s 
DTR. Each floating-point number is then transferred a byte at a time. The 
receiving PE must reassemble the floating-point number. The partitioning 
and recombination of floating-point operands are performed in MC68000 
registers. After the transfer and reassembly of the second floating point 
number, the sending PE drops the interconnection network path.

Each program has an initialization phase, an FFT algorithm phase, and 
an output phase. Execution time measurements are made on the FFT 
algorithm phase of each program. The processing of the initialization and 
output phases is performed using both SIMD and MIMD modes of 
computation. In the initialization phase, the MC and each PE pre-compute 
and store all necessary data in preparation for the timing of the FFT 
algorithm phase of the program. During the output phase, the execution time 
and the transformed data are printed.

The FFT programs are written as efficiently as possible by performing all 
computations that are not dependent the operations of the FFT in the 
initialization phase. This optimization includes: ordering and initializing the 
input data in PE memory, pre-calculating the PE masks used by the MC, and 
pre-calculating the logical PE number, cube function network routing tags, 
and FFT twiddle factors in each PE. Each PE has internal access to its own 
physical PE number; For a fixed PASM partition size, the logical PE number
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can be determined from the physical PE number. The order of the input data 
is dependent upon the logical PE number. The value of the PE masks vary 
with the number of PEs. The routing tags for each interconnection network 
operation can be computed from the physical PE number and the physical 
MC number. The values for the twiddle factors are dependent upon the size 
of the FFT, the stage number of the EFT, and the logical PE number. These 
values are calculated by each PE and Stored in memory. No pre-loaded 
register values are assumed. The interconnection network hardware is also 
initialized in the initialization phase. This only involves clearing control 
registers so that any existing network connection is dropped.

In the FFT algorithm phase, each PE obtains the two complex floating- 
point input data items from PE memory, computes the FFT, and stores the 
transformed data back to PE memory. The storage location of the 
intermediate data during program execution is dependent upon the number of 
data points within each PE. Since the M-point parallel FFT programs 
discussed in this paper are computed using M/2 PEs, each PE contains only 
two complex data items (four 32-bit single precision floating-point numbers). 
During the butterfly calculations, all of the data resides in registers of the 
floating-point coprocessor. Each inter-stage interconnection network 
operation transfers only one of the two complex values. The data that is not 
transferred remains in each PE’s coprocessor registers during the network 
transfer. Therefore, it is necessary for each PE to move only two floating
point numbers to and from the coprocessor registers before and after the 
network transfers. The data that is transferred is stored in the data registers 
of the MC68000 during the interconnection network operation. In the serial 
FFT program, all of the data must reside within a single PE. Although 
MC68000 data registers are not used for network transfer operations, there are 
not enough data registers or coprocessor floating-point registers to store all of 
the intermediate data. Therefore, all of the intermediate data is stored in 
memory. It is necessary to move both of the complex data items to 
coprocessor registers before each butterfly operation and and return the data 
values to memory afterwards.

5, Measurement Techniques
This section describes the techniques used to obtain the execution times 

for the programs and program components presented in Section VI. 
Execution times were obtained using the special purpose PE hardware timing 
circuitry described in Section II. The timers were configured to count 8 MHz
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clock periods resulting in timing accuracy of ± 125 nanoseconds. *
As shown in Table 1, the mode of processing and the memory cycle time 

will greatly influence the execution time of a program executing on PASM. A 
block of PE instructions will execute faster in MIMD mode from 0 wait state 
static RAM memory than the same set of instructions executed in MIMD mode 
from 1 wait state RAM or in SIMD mode from the Fetch Unit Queue. In 
order to compare the execution of programs operating in SIMD or MIMD 
mode and from memory with varying wait states, it is necessary to normalize 
the memory access time of all instructions. The memory access time for all 
instructions was normalized to 2 wait states (six clock cycles). This is the PE 
SIMD instruction bus access time and no normalization is necessary for SIMD 
instruction fetches. All other memory access cycles must be normalized.

During program execution, only static RAM memory was used within 
each PE. For SIMD mode, the static RAM was only used for variable storage. 
For each experiment, the execution time was measured once using 0 wait state 
static RAM and again using 1 wait state static RAM. The difference between 
these two execution times is the time required for a single wait state per 
memory cycle. Adding the difference between these two execution times to the 
1 wait state execution time is equivalent to the program executing using 2 wait 
state memory. By using this 2 wait state normalized execution time, the time 
of an instruction fetch in SIMD mode from the Fetch Unit Queue is equivalent 
to an instruction access in MIMD mode from memory. Direct comparison of 
program times is then possible.

The time required to start and stop the timers will vary according to the 
mode of computation, the number of PEs enabled, and the access time of the 
memory in which the instruction are stored. This timer overhead -was 
removed from the measured program execution times before the 2 wait state 
memory access time normalization was calculated.

Execution time measurements were made by inserting instructions to 
start and stop the timers in the code before program assembly. The execution 
time for a parallel program is the greatest amount of time required by the MC 
and any one PE to complete execution. When measuring the execution time 
of a complete FFT program the timers were started and stopped 
simultaneously in SIMD mode. The measured times for SIMD mode 
operations agreed within 1 clock cycle across all PEs. In MIMD mode, since 
each PE operates independently, the measured execution times across the PEs 
varied.



All execution times were measured for a single pass through the program. 
If repeated executions of the program resulted in varying execution times, the 
measurement was repeated until a clear median was established. This 
variance in execution times was observed only when executing SIMD mode 
programs and was less than 3% of the total program execution time. In 
MIMD mode, repeated execution time measurements were always within 1 
clock cycle. The variation in SIMD mode execution times is due to 
synchronization of instructions in PEs with processor clocks that are not 
always in phase. Each PE has its own internal independent 16 MHz clock. 
The 8 MHz clock signal used to operate the MC68000 processor is obtained by 
dividing the output of a 16 MHz clock. There is no circuitry to synchronize 
PE clocks. Therefore, the phase of any two 8 MHz PE clocks will differ by as 
much as one clock cycle of the 16 MHz clock (0.063 ns). The relative phase of 
any two PE clocks will change during the algorithm as different sets of PEs 
are enabled and disabled by the MC.

Upon completion of the initialization phase of the program, each PE 
waits for an instruction from the Fetch Unit Queue. Measurements were 
made for execution of the entire FFT and for the components of each 
program. If a measurement of the execution time for the entire FFT is being 
made, the first instruction executed by all of the PEs (in SIMD mode) is to 
enable the timing hardware. For the SIMD program, each PE continues to 
execute only instructions read from the SIMD instruction space. The last 
instruction of the FFT algorithm phase will disable the timing hardware. For 
the MIMD and hybrid programs, the next instruction will be a jump from the 
SIMD instruction space to PE memory. From this point, the PE will execute 
instructions from its own memory until jumping back to SIMD instruction 
space at the completion of the FFT algorithm phase to disable the timing 
hardware. When components of the program are being timed, the timing 
hardware is enabled and disabled at intermediate points during execution of 
the FFT. 6

6. Experimental Results
Execution time measurements of the complete FFT algorithm were made 

for the three 4-PE 8-point parallel implementations, for the 8-PE 16-point 
SIMD program, and the single PE 8-point serial program. The execution 
times for the 4-PE 8-point FFT programs are shown in Figure 4. In addition 
to these complete FFT execution time measurements, the components of the 
three 4-PE parallel programs were studied (see Figure 2). These



measurements included the execution time of the FFT stage 1, cubeq 
interconnection function, FFT stage 2, cubeo function, FFT stage 3, register 
initialization, and MIMD mode program control overhead.

The execution times for the components of each of the 4-PE programs are 
shown in Figure 5. The length of each bar in Figure 5 indicates the maximum 
execution time for each program component. The FFT stage execution time 
includes the time required to compute the floating-point butterfly operation 
plus the time required to move floating-point data to, from, and Within the 
coprocessor. The network execution time is the time to transfer a complex 
floating-point value from the MC68000 data registers of the sending PE to the 
data registers of the receiving PE. This includes the time to write the routing 
tag to the network, request a network path, transfer the data one byte at a 
time through the network, reconstruct the transferred data, and drop the 
interconnection network path. A solid line across a bar indicates that while 
some of the PEs executed the program component at the maximum time 
indicated by the length of the bar, other PEs only required the time indicated 
by the solid line. This is due to the specific implementation of the FFT 
algorithm and will be described later. A dotted line across a bar indicates the 
minimum execution time for the program component. The measured 
execution times across all PEs for this component lie between the time 
indicated by the length of the bar and the time indicated by the dotted line. 
The times presented in Figure 5 are quite accurate: the summation of the 
component execution times for each of the 4-PE program sum to within 1% of 
the execution time for the complete program. The execution times presented 
here are discussed in the next section.

7. Discussion

7.1. Comparison of Execution Times
Figure 4 shows that the MIMD program has the longest execution time 

for any of the 4-PE parallel programs. This parallel implementation of the 
FFT algorithm has a speedup of 1.87 over the serial FFT program. The SIMD 
program requires 33% less time than the MIMD program with a speedup over 
the serial FFT of 2.78. The execution time of the hybrid SIMD/MIMD mixed 
mode program is 9% less than the execution time of the SIMD program. The 
speedup for this program with respect to the serial program is 3.05. The 
reasons for the variation in execution times can be determined by examining 
the individual program components (Figure 5).
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In stage 1, each prograin executes a W° butterfly. This butterfly requires
2 additions and two subtractions, and these floating-point operations require 
the same time when executing in either SIMD, MIMD, or hybrid modes. The 
additional execution time for the SIMD stage 1 is a result of the data 
movement from the coprocessor after the butterfly calculation. In the cube^ 
network transfer that follows stage 1, PEs 0 and 1 transfer Y while PEs 2 and
3 transfer X. In the MIMD and hybrid modes, each PE moves the appropriate 
complex X or Y value from the coprocessor registers to the data registers of 
the MC68000 processor. This requires two floating-point move operations. In 
SIMD mode, PEs 0 and 1 must first be enabled while PEs 2 and 3 are 
disabled. The complex Y value is then moved from the coprocessor. PEs 0 
and 1 are then disabled while PEs 2 and 3 are enabled. The complex X value 
is then moved from the coprocessor requiring two more floating-point move 
operations. Compared to the MIMD and hybrid implementations the SIMD 
mode program requires two additional move operations.

In stage 2, the difference between the execution time for the SIMD mode 
programs and the MIMD mode programs is even greater than for stage 1. One 
half of the PEs perform a W° butterfly while the other half compute an W2 
butterfly. Both of these butterfly operations require two floating-point 
additions and two floating-point subtractions. In the MIMD and hybrid 
program versions, calculation of this stage 2 is straightforward. Each PE 
moves the recently transferred data item to the coprocessor registers, 
computes the butterfly, and moves a single complex data item from the 
coprocessor in preparation for the cubeo network transfer. The SIMD stage 2 
operation is much more complex. Although W° and W2 butterflies require the 
same number of arithmetic operations, the butterfly computations combine 
the A and B data values in a different order. By using a judicious sequence of 
masking operations, it is possible to move the data correctly into coprocessor 
registers so that the addition and subtraction operations can be performed 
simultaneously in all PEs. Additional masking and data movement is then 
necessary to prepare for the interconnection network transfer.

Another reason for the longer stage 2 SIMD execution time is the 
necessity for an SIMD stage computation . to leave the data that is not 
transferred in the correct floating-point registers across all PEs, For example, 
after stage 2, PEs 0 and 2 transfer the Y butterfly output value over the 
network. The X value remains in the coprocessor registers and becomes the A 
input value for the stage 3 butterfly operation. Since the stage 3 butterfly is 
performed in SIMD mode, the A input value must be in the same coprocessor
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registers across all PEs. These registers will be referred to as the A storage 
registers. Another set of coprocessor registers is used as the B storage 
registers. The sequence of arithmetic operations performed during the 
calculation of the stage 2 butterfly leaves different butterfly output values in 
the coprocessor registers for the PEs executing the W° butterfly than for the 
PEs executing the W2 butterfly. It is necessary for PE 0 to obtain the X 
butterfly outputs from one set of registers and move the values to the A 
storage registers while PE 2 must obtain the X butterfly outputs from a 
different set of registers. A similar sequence of operations must be performed 
by PEs 1 and 3 in order to move the Y butterfly output values to the B 
storage registers. Since the PEs executing the same butterfly operation must 
transfer different output values, the data movement required by each PE is 
different. As part of the SIMD stage 2 calculation, the MC must enable and 
disable all of the PEs in various combinations in order to move the X and Y 
output values to the correct A and B storage registers. This data movement is 
not necessary for the MIMD or hybrid programs since each PE computes the 
stages independently and knows the storage locations of the data from the 
previous stage.

In stage 3, PEs 2 and 3 compute butterflies complete with twiddle factors 
and multiply operations. PEs 0 and 1 compute the less complex W° and W2 
butterflies. For MIMD and hybrid mode, the execution time for the butterflies 
computed by PEs 2 and 3 are indicated by the length of the bar. The 
execution time for PEs 0 and 1 is indicated by the solid line across the bar. In 
SIMD mode, all of the PEs execute butterflies with twiddle factors and 
multiply operations. Since one half of the PEs transferred the A value in the 
preceding cube0 function and the other half transferred the B data item, extra 
processing is required by the SIMD stage 3 to enable and disable the two sets 
of PEs and move the data values to different coprocessor registers.

The execution time required for the interconnection network transfers 
varies widely among the three program implementations. The SIMD network 
operation requires the least amount of processing time. Since all PEs execute 
the network operations in lock-step fashion, the data transfers are 
synchronized. There is no need to test the network for a pending network 
transfer or to determine if there is transferred data to read from the DTR. In 
MIMD mode, each PE executes each butterfly stage independently and no 
synchrony can be assumed when reaching the interconnection network 
component of the program. Therefore, it is necessary for each PE to test the 
network before transferring a data item and to wait on the network for a data
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item to become available. This testing and waiting on tbe network results in 
a high network transfer time. Like the MIMD program, each PE executes 
each butterfly stage independently in the hybrid version. The hybrid version 
performs a barrier synchronization during the interconnection network 
transfer. Once all of the PEs are synchronized, the data is Sent and received 
without testing the status of the network. The execution time for the hybrid 
version is slightly greater than for the SIMD version. The difference is the 
time required to synchronize the PEs.

Since the execution time for the SIMD interconnection network transfer is 
less than the time for barrier synchronization network transfer used in the 
hybrid program, it would appear that a faster program could be constructed 
by using the SIMD mode network transfer. This is not the case. The 
overhead incurred by jumping to SIMD instruction space before the network 
transfer and back to MIMD program space for the next butterfly stage exceeds 
the expected time savings. In addition, each time MIMD mode operation is 
resumed, it would be necessary to test and branch in order for each PE to 
determine which butterfly operation it is to perform. The execution time 
overhead for these test and branch operations will exceed the time for testing 
and branching of an MIMD program that remains in MIMD mode and uses 
barrier synchronization.

7.2. Projecting Program Execution Times
In this section, an expression for the execution time of an M-point FFT 

program running on M/2 PASM PEs, M §£ 4, is presented. The expression is 
a linear sum of the execution times of the components of an FFT program. 
For an M-point FFT, the number of each component to sum is either fixed for 
all size FFTs or can be expressed as a function of M. The expression 
presented is used to predict the execution times for larger size FFTs using a 
greater number of PEs and allows us to extrapolate our results to a full 1024- 
PE PASM system- The values to be used for the terms of the expression were 
obtained from execution time measurements made on the 4-PE 8-point FFT 
program. For the 4-PE case, the expression yields execution times for the 
MIMD, SIMD, and hybrid programs that are within 1% of the measured 
execution times. The expression was also validated for the 8-PE 16-point 
SIMD FFT program. The execution time measured for this program is also 
within 1% of the execution time predicted by the expression.



For M/2 PEs and M data items the execution time of an FFT program 
can be expressed as

Tfft(M/2) = J+R + (A + C)log2 (M/2) + ST (7)

where the component execution times are defined as

jump to and from SIMD instruction space 
data and address register initialization 
a single MIMD test and branch operation 
complex floating-point cube interconnection network transfer 
execution of all FFT butterfly stages

The total time to execute all of the butterfly stages can be expressed as

ST = Si + S2 + (log2M/2—2)Sm + Sf (8)

where the component execution times are defined as

R
A
C

Sf stage 1 (W° )
S2 stage 2 (W° and WM//4 )
Sm intermediate stage (with a multiplication butterfly) 
Sf final stage

The execution time, Tfft(M/2), for an M-point FFT program executing on 
M/2 PASM PEs, M/2 ^ 4, can be projected using the data in Table 3.

The graph shown in Figure 6 illustrates the projected execution times for 
an M-point FFT program on M/2 PEs for M = 4 to M = 1024. The times are 
extrapolated with high confidence since the expression used to generate the 
aggregate times was Verified by comparing the predicted 8-PE aggregate time 
to the actual measured time for an SIMD version of the algorithm. The 
predicted time was derived by using component times from the 4-PE version. 
These same component times were then used to determine the projected times 
shown in Figure 6.

As the number of points in the FFT (and number of PEs) increases, the 
effect of MIMD network operations (the main difference between the Hybrid 
and MIMD versions) causes the gap between the performance of the MIMD 
version and both the SIMD and Hybrid versions to widen. Note the general
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logarithmic growth in execution time (the horizontal axis is a log scale) as the 
number of points in the FFT increases. This was predicted by equations 7 
and 8. ■

7.3. Measurement and Projection of Speedup

In order to analyze further the performance of the MIMD, SIMD, and 
hybrid implementations, a serial FFT executing in a single PASM PE was 
implemented and used to obtain estimates of speedup for the parallel 
programs. The serial version is comparable to the parallel versions except that 
intermediate values are stored in memory instead of in registers. This is more 
realistic for the serial implementation since a single processor will not have 
enough registers to hold these values, whereas the M/2-PE algorithm uses 2 
floating-point registers for storage in each PE, independent of M. The 
resulting speedups for the 4-PE algorithms are 1.87, 2.78, and 3.05 for the 
MIMD, SIMD, and hybrid implementations respectively, corresponding to 
efficiencies of 0.47 (MIMD), 0.70 (SIMD), and 0.76 (hybrid).

Figure 7 illustrates the projected speedups for system sizes up to 1024 
PEs. These figures are based on the extrapolated execution times of the 
parallel algorithms obtained with equations 7 and 8, and comparable analytic 
prediction of the larger serial versions. Note that for 1024-PEs in SIMD and 
hybrid modes, the predicted efficiency is almost 80%. Hence, the overhead of 
communication remains low. This is significant and has even greater positive 
implications for a similar system with a message or packet-switched network: 
the FFT is nearly worst case with respect to network configuration overheads 
in a circuit-switched system.

8. Conclusions
This work focused on obtaining performance measurements for various 

implementations of fast Fourier transform algorithm running on the prototype 
PASM parallel processing system. Detailed measurements allowed evaluation 
of the effects of a number of aspects of the architecture on the performance of 
the FFT programs. Most notable is the significant performance advantage of 
the SIMD implementation over the MIMD implementation, and the even 
further improvement attained with a hybrid implementation. The difference 
between the SIMD and MIMD implementations can be attributed primarily to 
interconnection network time; the improvement gained with the hybrid 
version is principally due to MIMD execution of arithmetic operations
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combined with barrier synchronization at the points at which data transfers 
occur. This constitutes one of the first results of this kind, in which controlled 
experiments on fixed hardware were used to make comparisons of these 
fundamental modes of computing. The results demonstrate the value of the 
multi-mode capability of PASM, and the viability of mode switching to obtain 
“the best of both worlds.”

Also notable are the projections in which the information obtained by 
executing the FFT programs on a small number of processors is used to 
extrapolate performance for larger FFTs on a larger system. Although 8-point 
FFTs are used as the basis for these projections, these algorithms exhibit all of 
the basic parts of larger FFT algorithms. The detailed measurements of the 
components of the implementations allow us to do a very accurate 
construction of the execution times and speedups for larger size problems. 
The projections accurately model interconnection network access, data 
transfers, floating point arithmetic, coprocessor access, use of registers and 
memory, and program control overhead. The extrapolation is verified to 
within 1% by comparing the predicted 16-point 8-PE time to the actual 
measured time for a 16-point 8-PE implementation. The projections indicate 
a widening of the gap between the performance of the MIMD version and the 
SIMD and hybrid implementations due to network operation costs.

All of the programs were written in MC68000 assembly language. Many 
of the interesting comparisons between the various implementations of the 
FFT would not have been observed if the programs had not been written at 
this fine level of detail. The detailed experiments reported here provided 
significant insight into many aspects of the PASM architecture and prototype 
implementation. This knowledge will be useful for optimizing high level 
parallel language compilers designed to produce code for executing on PASM.

The authors would like to thank Sam Fineberg, Wayne Nation, Pierre 
Pero, Tom Schwederski, and H. J. Siegel for their many helpful discussions.
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Figure 1. Simplified MC structure.

Table 1. Raw performance of the PASM prototype.

Register-to-Register

Operation
Mode

Instruction 
Memory 

Wait States

Processing

Rate

16-bit integer 
addition

MIMD
0 Y ■ 25.6 MIPS

v/a'a i 'A" 21.2 MII’S

SIMD 18.3 MIPS

single precision 
floating-point 

addition

MIMD
A A o 4.7 MFLOPS

AAAV-l - 4.3 MFLOPS

SIMD "'AAV'-V 3.9 MFLOPS



stage 1 stage 2 stage 3

cubej
transfer

cubeo
transfer

Signal flow diagram of an 8-point FFT on 4 PEs, 
twiddle factor for each butterfly operation is W' 
number adjacent to each butterfly arrow.

X=A+BW

FFT butterfly operation

The value of the 
where k is the
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Table 2. Complexity of the M-point radix two DIT FFT algorithms.

Multiplication Addition Cube Transfer
Steps Steps Steps

serial 
M/2 PEs

(M/2)(log2M-2) Mlog2 M
log2 M — 2 21og2M log2M/2

MIMD
SIMD
Hybrid

0 200 400
-i

600-
Execution Time (/is)

800

Figure 4. Execution time for 8-point FFT programs on 4 PASM PEs.
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Table 3. Execution time (/is) for components of FFT programs.

J R B V; c Si s2 sm Sf

MIMD 4.000 17.000 5.000 222.000 76.500 52.000 99.500 128.000

SIMD 0.000 13.500 0.000 77.625 90.625 91.500 111.000 139.500

Hybrid 4.000 17.000 5.000 80.750 76.500 52.000 99.500 128.000

MIMD

2.5 -

Execution
2.

Time SIMD

Hybrid

0.5 -

8 16 32 64 128 256 51210244

Figure 6. Projected execution times for an M-point FFT program on M/2 

PASM PEs, 8 ^ M ^ 2048, where M is a power of 2,
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Figure 7. Projected speedup for an M-point FFT program on M/2 PASM 
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Parallel 2DFFT Implementation

; Eng HwieLoh 

.Abstract!"
As part of a coordinated architecture study of novel machines, 

implementation of 2 Dimension Fast Fourier Transform (2DFFT) on PASM 
has been conducted. FFT is used in many areas such as image processing, 
speech analysis, optics, antennas, and random process. The goal of the project 
is to compare the performance in different modes: SIMD , SIMD/MIMD and 
MIMD for the implementation of 2DFFT on PASM. The implementation of 
decimation in time of serial FFT is used as a baseline algorithm for 
comparison to the parallel version of 2DFFT.

1. Introduction
The PASM prototype was completed in December 1986. There has been 

an effort to develop application programs to utilize the features of PASM. One 
of these applications is the Two Dimensional Fast Fourier Transform (2DFFT) 
which is the main topic of this project report. Discrete Fourier Transform is 
used in wide areas such as optics, antennas, random process, probability, 
image processing, and speech analysis. 2DFFT is used in image processing to 
extract features and improve image quality. The main objective of this 
project is to implement 2DFFT on PASM, and to compare the performance in 
different modes: SIMD, SIMD/MIMD and MIMD.

Section 2 gives the background and references to start the project, 
Section 3 describes the algorithm implemented in this project, Section 4 
describes the specifications of the experiment performed, and results are 
presented in Section 5. In Section 6, discussion and interpretation of results 
are given, Section 7 provides a trail for someone who wants to continue this 
project.
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2.

2.1. Problem-area related references and background
Background on Discrete Fourier Transforms can be found in [Ziemer]. It 

gives a basic understanding about Fourier Transform, and then it discusses 
Discrete Fourier Transform and presents an introduction to Fast Fourier 
Transform. It shows the flow graph of the computation for the FFT; For the 
complete discussion on Cooley-Tukey algorithm used in this project for the 
1DFFT, [Blahut] gives a very detail description of the algorithm.

The reference that explains how to parallelize 2DFFT can be found in 
[Mueller]. It describes how to parallelize both 1DFFT and 2DFFt, and how to 
do the transfer using the PASM interconnection network efficiently.

2.2. Relevant Part of PASM
A 30 processor prototype of the PASM system was completed in 

December 1986, with 16 PEs (PE processors are microprocessors that perform 
the actual SIMD and MIMD operations) and 4 MCs (Micro Controllers are 
processors which act as the control units for PEs in SIMD mode and 
orchestrate the activities of the PEs in MIMD mode. Each MC controls 4
PEs. This system employs Motorola MC68000 processors as PE and MC 
CPUs, with a clock speed of 8 MHz. The interconnection network is a 
circuit-switched Extra-Stage Cube network, which is a fault-tolerant variation 
of the multistage cube network. Since knowledge about the MC and the way 
in which SIMD instructions are implemented with standard MC68000 
microprocessors is essential to the understanding of the behavior that was 
observed in the experiments, the SIMD instruction broadcast mechanism is 
overviewed below. Consider the simplified MC structure shown in Figure 1. 
The MC contains a memory module from which the MC CPU reads 
instructions and data. Whenever the MC needs to broadcast SIMD 
instructions to its associated PEs, it first sets the Mask Register in the Fetch 
Unit, thereby determining which PEs will participate in the following 
instructions. It then writes a control word to the Fetch Unit Controller which
specifies the location and size of a block of SIMD instructions in the Fetch 
Unit RAM. The Fetch Unit Controller automatically moves this block word 
by word into the Fetch Unit Queue. Whenever a instruction word is 
enqueued, the current value of the mask register is enqueued as well. Since
the Fetch Unit enqueues blocks of SIMD instructions automatically, the MC



CPU can proceed with other operations without waiting for all instructions to 
be enqueued.

FIFO

to PEs

Fetch Unit 
RAM

Fetch Unit 
Controller

MC CPU

Memory

Mask
Register

Figure 1: Simplified MC structure.

PEs execute SIMD instructions by performing an instruction fetch from a 
reserved memory area called the SIMD instruction space. Whenever logic in 
the PEs detects an access to this area, a request for an SIMD instruction is 
sent to the Fetch Unit. Only after all PEs that are enabled for the current 
instruction have issued a request is the instruction released by the Fetch Unit 
FIFO, and the enabled PEs receive and execute the instruction. Disabled PEs 
do not participate in the instruction and wait until an instruction is broadcast 
for which they are enabled; This way, switching from SIMD and MIMD mode 
is reduced to executing a jump instruction to the reserved memory space, and 
a switch from MIMD to SIMD mode is performed by sending a jump to the 
appropriate PE MIMD instruction address located in the PE main memory 
space.

The SIMD instruction broadcast mechanism can also be utilized for 
barrier synchronization [Schwed] of MIMD programs. Assume a program uses 
a single MC group, and requires the PEs to synchronize R times. First, the 
MC enables all its PEs by writing an appropriate mask to the Fetch Unit 
Mask register. Then it instructs the Fetch Unit Controller to enqueue R
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arbitrary data words, and starts its PEs which begin to execute their MIMD 
program. If the PEs need to synchronize (e.g., before a network transfer), 
they issue a read instruction to access a location in the SIMD instruction
space. Since the hardware in the PEs treats SIMD instruction fetches and 
data reads the same way, the PEs will be allowed to proceed only after all PEs 
have read from SIMD space. Thus, the PEs are synchronized. The R 
synchronizations require R data fetches from the SIMD space. Thus, the 
Fetch Unit Queue is empty when the MIMD program completes, and 
subsequent SIMD programs are not affected by this use of the SIMD broadcast 
mechanism.

3. Problem Description
To implement 2DFFT algorithm for this project, it is necessary to 

understand how serial 1DFFT works since the parallel version of 2DFFT 
algorithm is based on the serial 1DFFT.

3.1. Cooley-Tukey algorithm for 1DFFT
The definition of the one dimensional Discrete Fourier Transform is

X{»)' Vxllcjw^

where■■■:■

N — the number of input samples x 
k <= {0,1,2, . . . ,N-l}

. ' n < == {0,1,2, . . . ,N-l} x

Multiplication step complexity is N2.

Note that for N a power of 2, the equation may be written as:

N/2 - 1 ' N/2 - 1 . ;
X(n) = S x(2k) wfn 4-W^i x: x(2k+l) w|jk11 

k=0 k=0



where n = 0,1,2,3,. . N/2 - 1

Multiplication step complexity is now N log N
For the details of the derivation refer to [Blahut]. The decimation in time 

FFT or Cooley-Tukey algorithm breaks the input data vector into the set of 
components with odd index and the set with even index. The output vector is 
broken into the set containing the first N/2 components and the set containing 
the second N/2 components.

An example showing the flowgraph for an 8 point (N---8) lDFFT 
Cooley-Tukey algorithm and can be found in Figure 2. Figure 2 shows that 
the x(k) inputs are arranged such to perform a butterfly computation for two 
adjacent inputs; Note that the results of tansformation is in the right order.

Figure 3 shows the implementation of this algorithm in a high-level 
language.

'3.2. 2DFFT
The definition of 2DFFT is

X(u,v)
N—1 N—1
£ X) x(l,m) W

1—0 m- =0

vm
N

We can see that to do 2DFFT computation, we can perform lDFFT on 
the rows of the N x N matrix and then perform another lDFFT on the 
columns of the matrix of the intermediate results, for two different types of 
instructions.
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for k = 1 to m /* N=2m */ 
begin

■ le = 2k
lei = le/2

u = (1.0,0.0)
W = crap lex (cos(7r/lel), sin((—7r)/lel)) 
for j ■== 1 to lei

for i = j to N step le 
begin

ip == 1 + lei 
t = fa(l,ip) x u 

l,ip)fa(l,i) - t
l,i) = fa(l,i) -i t

end
u === ux W 
end

end

Figure 3: Cooley-Tukey algorithm in a high-level language. 

3.3 Implementation of 2DFFT'on PASM

3.3.1. Procedures
For an N x N input matrix and p PEs, each PE is assigned N/p rows.

N X N inputs matrix 
u,v -- 0,1,2,..., N-l 
l,m = 0,1,2,..., N-l 

f Wn == exp( ^527r/lSr ■'

In the first stage, each PE performs 1DFFT calculations for the rows assigned 
to that PE to produce an intermediate matrix result. Then, the matrix is 
transposed, and assigned N/p rows of the new matrix to each PE, 1DFFT is 
then performed on the rows assigned to that PE. The result of the second 
stage is a transposed matrix of the 2DFFT transformation.
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For a more clear explanation, Figure 4 shows how to parallelize a 2DFFT 
for N x N inputs and N PEs* First, each PE is assigned a row of the matrix. 
Then each PE is to do a serial 1DFFT on each row simultaneously. After 
that, the new matrix is transposed and then each PE is assigned a row of that 
matrix. Each PE then performs, for the second time, a serial 1DFFT on the 
row, (i.e. column of the original matrix) it is assigned.

3.3.2. Transpose alternatives
There are two possible methods to do the transpose using the network 

transfers.
The first is by connecting each PE to its adjacent PE and then to do 

simultaneous transfers N x N times. For each N transfers, each PE takes and 
saves the value needed, after N x N transfers each PE will have all the value 
needed from the transposed matrix (Figure 5).

The second Method is to connect each PE to the PE that has value 
needed and then do the transfers simultaneously, then drop the path, then 
again connect to other PE to get the next needed value. After N transfer, the 
matrix is already transposed (Figure 6).

The second method should take less time to do the transpose since the 
transfers is in O(N) and the first method is in 0(N X N), but the second 
method will have to do the open and drop path N times.

4. Experiments Performed
The experiments that can be performed at this point are 4 x 4 2DFFT 

using 4 PEs in SIMD, S/MIMD, and MIMD modes. All operations were 8 bit 
complex integer operations, and overflow Was ignored. The two method to do 
the transpose are performed to see which one is faster to do the transpose. 
Method one requires 0(N2) transfers and method 2 requires O(N) transfers but 
with additional open and drop path.

The SIMD version of the method 1 is not a pure SIMD version. The 
reason is not possible to write the purl SIMD version is because of the need to 
save the data needed after each N transfers, Each PE has to save the needed 
data from different location, so this part has to be executed in MIMD mode. 
The rest of the program are executed in SIMD mode.

SIMD/MIMD version of method 1 executes the FFT calculations in SIMD 
mode and does the transfers to transpose the intermediate result matrix in
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MIMD mode. The barrier synchronization is used to perform the transfers 
data.

The MIMD version of method 1 executes the FFT calculations and 
performs the transpose in MIMD modes. The barrier synchronization is used 
each time the FFT calculation and the transpose is performed. Clearly the 
MIMD version requires more jump action from SIMD mode to MIMD mode.

For the method one, the SIMD, S/MIMD, MIMD methods are all 
performed , but for the method 2 only the SIMD is performed since the correct 
results could not be obtained (the fault might be in the network transfer 
though the time will be the same).

The data sets for the experiments in this case will not make any 
difference, so only one data set was used.

5. Data Measurements Taken 
... Method 1

SIMD ;+../:'-'.0.78 milliseconds.
S/MIMD 0.842 milliseconds
MIMD 0.888 milliseconds

Method 2

S IMD 1.04 milliseconds

6. Discussion and Interpretation of Results
SIMD version of the program is the fastest among other modes in method 

1. The main reason is that this version requires the least overhead to jump 
from SIMD mode to MIMD mode since the frequency to jump to MIMD mode 
is also the least. Note that the programs for all three modes are basically the 
same, only the frequency of jumping from SIMD to MIMD mode makes one 
mode faster than the others. With that reason in mind, it could be 
understood that SIMD/MIMD mode is the second fastest since it has more 
frequency than SIMD but less frequency than MIMD version to jump from 
SIMD mode to MIMD mode. And the the slower is the MIMD mode with the 
same reason above.



The result of method 2 is very surprising since it takes longer to the 
finish executing the program compare to the SIMD version of the method 1. 
Once again, method 2 only has transfers in O(N) compare to method 2 which 
is 0(N2), but method 2 has has to open and drop path O(N) compare to 1 

time for method 1. From the result, we can conclude that the overhead to do 
the open and drop path is very high.
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7. Future Work
Much further effort is needed in order to utilize this program. One 

possibility is to expand the program to be able to execute larger input matrix 
(i.e 1024 x 1024 matrix). To do that, one must write a general program which 
is able to perform transformations for any input matrix and for any number 
of PEs. The 2DFFT calculations need to use floating point computations since 
the results are generally noninteger complex numbers.

8. Conclusions
For the 4 x 4 matrix inputs, method 1 gives a faster speed than the 

method 2, and for the method 1 the SIMD is the faster, followed by the 
S/MIMD than MIMD.

The fact that the method 2 is slower though it requires less transfers 
means that the overhead to do the open and drop path is very significant.
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Abstract
Experimental analyses of an implementation of an SIMD algorithm for 

recursive digital filtering using the PASM parallel processing system prototype 
at Purdue are presented. The algorithm used easily generalizes to use N PEs 
(processing elements). Timing-based analyses are made based on a four PE 
version by examining the following constituent execution times: micro
controller execution time, PE execution time, broadcast communication time, 
and the execution time of five additional phases in the recursive digital 
filtering summation calculation. Broadcast execution time was found to 
account for roughly 44% of the total execution time and the implication of 
this is discussed for larger problem sizes and machine sizes. The total 
measured execution time is verified through summation of execution times for 
the various components of the algorithm.

1. Introduction
This paper reports on experimental measurements of an SIMD recursive 

digital filtering algorithm implemented on the PASM (PArtitionable 
S1MJ)/MIMD) parallel processing system prototype at Purdue [S5S81, SiS87j. 
An SIMD algorithm Was chosen to perform recursive digital filtering because 
SIMD structures most naturally allow for exploitation of the parallelism found 
in this application [YoS81]. The main purpose of this research project was to 
provide information for an Application-Driven Architecture Study, in which 
easily understood algorithms are implemented as programs, and controlled 
experimentation is done with respect to execution time of the algorithm in 
order to evaluate particular architecture features. This phase of architecture 
evaluation research represents some of the first experimentation with the 
broadcasting feature of the PASM Extra-Stage Cube interconnection network 
[AdS82]. Finally, this work is useful in gaming insight into the potential use 
of PASM for this type of application. The results reported are focused on 
showing the difference in execution times among the various phases of the 
algorithm implementation. For example, when the algorithm is mapped to 
the machine such that one input sample is assigned to each PE, and one
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output is generated per PE, the broadcast execution time was found to be 
44.59% of the total execution time, while the partial summation calculation 
was 12.33%.

Section 2 provides background information and related work while 
Section 3 gives an overview of PASM and its prototype. Section 4 reviews the 
basic operations of digital filtering and describes the algorithm that was used. 
The experiments performed, the results, and a general discussion of results 
and their implication are presented in Sections 5 through 8.

2. Background and Related Work
Related experimental research has been carried out on several machines 

through the use of both simulation and experimental techniques. Simulation- 
based analysis was performed by Yoder and Siegel [YoS8l] for the PASM 
system, and by Su and Thakore for the SM3 system and a hypercube 
architecture [SuT87]. Experimental work involving measurements on working 
machines has also been performed. Examples include work involving several 
machines: the BBN Butterfly [CrG85], Cm* [GeS87], the Encore Multimax 
[Hud88], the Intel Ilypercube [Hud88j, PASM [FiC88j, and the Warp system 
[AnA87]. In these efforts, matrix multiplication was normally employed as an 
example algorithm. Other reported work involving efficiency measurements 
and algorithm optimization on parallel machines includes work done on an 
Affiant FX/8 [JaM86, Iian88], a CRAY XMP [Cal84], and a combination of 
Apollo work-stations and an Affiant FX/8 [KuN88].

Research involving digital filtering algorithm implementation has been 
examined by Hodges et al [HoB80j. This work examined the use of skewed 
SIMD-mode parallel digital filtering. Using this approach, all PEs execute the 
same instruction stream, but the execution of given instructions are skewed in 
time. Work done by Yoder and Siegel examined different strategies for 
recursive digital filtering computations. Their work compares the use of a 
systolic array and SIMD algorithms and performs simulation-based analyses of 
the SIMD versions for PASM [YoS8l].

3. Overview of PASM and the PASM Prototype
PASM is a dynamically reconfigurable architecture in which the 

processors may be partitioned to form independent virtual SIMD and/or 
MIMD machines of various sizes [S5S81]. A 30-processor (16 in the 
computation unit) prototype has been completed and was used in the



experiments described in Section 5, This section discusses the PASM 
architecture characteristics which are most relevant to the reported 
experimentation. For a more general description of the architecture and 
prototype, see [SiS87].

The Parallel Computation Unit of PASM contains N PEs where N is a 
power of 2 (numbered from 0 to N—1), and an interconnection network. Each 
PE (processing element) is a processor/memory pair. The PE processors are 
sophisticated microprocessors that perform the actual SIMD and MIMD 
operations. The PE memory modules are used by the processors for data 
storage in SIMD mode and both data and instruction storage in MIMD mode. 
The Micro Controllers (MCs) are a set of Q==2q processors, numbered from 0 

to Q—l, which act as the control units for the PEs in SIMD mode and 
orchestrate the activities of the PEs in MIMD mode. Each MC controls N/Q 
PEs. PASM has been designed for N -1024 and Q --32 (N—16 and Q---4 in 
the prototype). A set of MCs and their associated PEs form a virtual 
machine. In SIMD mode, each MC fetches instructions and common data 
from its associated memory module, executes the control flow instructions (i.e., 
branches), and broadcasts the data processing instructions to its PEs. In 
MIMD mode, each MC gets instructions and common data for coordinating its 
PEs from its memory.

The PASM prototype system, completed in December 1986, was built for 
N—16 and Q=4. This system employs Motorola MC68000 processors as PE 
and MC CPUs, with a clock speed of 8 MHz. The interconnection network is 
a circuit-switched Extra-Stage Cube network, which is a fault-tolerant 
variation of the multistage cube network.

The PASM network is capable of operating in both point-to-point and 
broadcast modes. The recursive filtering application described in this work 
makes use of the broadcast facilities. In order to establish a broadcast 
communication session, the sending node first must set up a path through the 
network. This path is established by the execution of PE code which writes a 
routing tag (for broadcasting, this value is $F0FC) into the DTR (Data 
Transfer Register). The PE then sets a bit in a second control register to 
instruct the network interface to interpret the value in the DTE as a routing 
tag for setting up the network. Once the routing tag has been written to the 
DTR each PE (sending and receiving) must poll a third control register to 
verify that the path was actually set up. This polling will place the used 
routing tag in a PE data register for each PE to verify. Byte data values are 
then written to the DTR and automatically sent through the network. The
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Figure 1: Simplified MC structure

receiving PEs then initiate a read from the DTR to obtain the sent data value 
which again is put in a PE data register. To conclude the broadcast session, 
the sending PE code then initiates a drop path request that will free the 
network by closing the established network path.

Consider the simplified MC structure shown in Figure 1. The MC 
contains a memory module from which the MC CPU reads instructions and 
data. Whenever the MC needs to broadcast SIMD instructions to its 
associated PEs, it first sets the Mask Register in the Fetch Unit, thereby 
determining which PEs will participate in the following instructions. It then 
writes a control word to the Fetch Unit Controller which specifies: the location 
and size of a block of SIMD instructions in the Fetch Unit RAM. The Fetch 
Unit Controller automatically moves this block word by Word into the Fetch 
Unit Queue. Whenever an instruction word is enqueued, the current value of 
the Mask Register is enqueued as well. Because the Fetch Unit enqueues 
blocks of SIMD instructions automatically, the MC CPU can proceed with 
other operations without waiting for all instructions to be enqueued.

PEs execute SIMD instructions by performing an instruction fetch from a 
reserved memory area called the SIMD instruction space. Whenever logic in 
the PEs detects an access to this area, a request for an SIMD instruction is 
sent to the Fetch Unit. Only after all PEs that are enabled for the current
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instruction have issued, a request i$ the instruction released by the Fetch Unit 
FIFO. The enabled PEs then receive and execute the instruction. Disabled 
PEs do not participate in the instruction and wait until an instruction is 
broadcast for which they are enabled. This way, switching from MIMD to 
SIMD mode is reduced to executing a jump instruction to the reserved 
memory space, and a switch from SIMD to MIMD mode is performed by 
sending a jump to the appropriate PE MIMD instruction address located in 
the PE main memory space.

In order to make comparisons of the speed of the PASM prototype 
relative to other machines and to compare the relative speeds of SIMD and 
MIMD instruction fetches, the actual raw performance of PASM in SIMD and 
MIMD mode was measured on the prototype and is illustrated in Table 1 in 
MIPS (millions of integer instructions per second) for two different types of 
instructions.

Mode Operation
Processing

Rate
SIMD
MIMD
SIMD
MIMD

16-bit Reg.-to-Reg. add 
16-bit Reg.-to-Reg. add 

16-bit Reg.-to-Mem. add 
16-bit Reg.-to-Mem. add

22 MIPS
18 MIPS 
6.4 MIPS 
6.0 MIPS

Table 1: Prototype raw performance.

4. The Recursive Digital Filtering Algorithm

4.1. Algorithm Used
The basic operations in digital filtering are the computation of sum of 

products terms, with output ym given by

p q
7m = £ ak y(m_k) + £ bk x(m_k) p,q ^ m ^ M 

k=l k=0

where xm is a sample input to the filter. The ak's and bk's are the filter 
coefficients which define the characteristics of the filter operation to be 
performed, and M is the number of samples in the signal to be filtered



[YoS8l]. The parallel recursive digital filtering algorithm used to compute ym 
is shown in Figure 2.

ADDR — Address of PE (e.g., ADDR = 0 in PE 0)
DTRin — Data Transfer Register input to the PE 
DTRout — Data Transfer Register output from the PE 
COEF[] — Vector of coefficients 
FLAG[i] Equals 1 if COEF[i] is an “a” coefficient 
SUM = Contains partially computed ym

for j := 0 to M-fp-fq-1 do
where ADDR = j mod (p+q-KL) do /* Select PE containing

DTRout := SUM; * new y value yj_(q+i)
■/; : ; ;.;V [AV '-V. y ■ ; ^ ■

SUM := 0; /* Broadcast that y and
broadcast; * start new sum there

■-"v7- -■

where FLAG [j mod (p-fq+1)] ==■ 1 do /* In each PE, select 
TMP :== DTRin; * either broadcast y

elsewhere do
TMP := Xj; /* or the new x value

v 77 '*f\ : -V:V / ■■ '

SUM SUM + TMP *
. COEF [j mod (p+q l l)];

Figure 2: General SIMD Digital Filtering Algorithm.

The first step in the high level algorithm is to select which PE contains the 
Uewly computed ym value based on the loop index, j, and number of summation 
terms, p+q+1. The selected PE will then be enabled and the SUM (i.e., ym) will 
be broadcast to all PEs, including itself, and then reset to zero to begin 
calculating a new ym. In the second step, using the FLAG matrix, each PE must 
determine which data value to use in the running sum calculation and store it in 
TMP. This value stored in TMP may be either the broadcast ym output value 
or the new xm filter input value. In the third step, because each PE holds a copy 
of the filter coefficients, the algorithm makes use of the loop index and number 
of summation terms, to determine which coefficient to use in a given step of the 
algorithm. The third step also involves computing the partial running sum
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within each PE using one multiplication and one addition.
The broadcast flow for the ym calculation is illustrated in Figure 3 where 

the double boxes indicate the start of a, new ym computation.

Figure 3: Data Flow Diagram for p = 2 and q

The operations executed during one stage (i.e., one loop iteration) include one 
selection of a filter coefficient, two broadcasts, one addition, one multiplication, 
and one scalar assignment. Therefore, because all PEs are effectively active 
computing one part of ym, one output (ym) is completed at each stage.

4.2. Implementation Discussion
The algorithm of Figure 2 was implemented in 68000 assembly language on 

the PASM system prototype. The “where...do” and “where...elsewhere” 
statements are used to indicate the setting of the Mask Register in the Fetch 
Unit. This conditional evaluation for the “where” is done in the MC in order to 
determine which PE or sets of PEs are to be activated for the set of SIMD 
instruction(s) following the “do”. In the “where...elsewhere” statement, the 
conditional “where” is also evaluated in the MC. The PEs for which the 
condition holds are enabled and execute the SIMD instruction(s) following the 
“do”, while the remaining PEs execute the SIMD instruction(s) following the 
“elsewhere do”. The FLAG matrix is also evaluated in the MC. When FLAGfi]
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is 1, then the associated filter coefficient in CGEF is an “a” coefficient which 
would indicate that a PE should use the broadcasted ym value, otherwise (i.e., 
when FLAG[i] — 0) a new xm filter input value should be used. Finally, the 
coefficient matrix is set up such that each PE only needs a single row of the 
matrix to compute ym as shown in Figure 4.

PE COEFIO] COEF[1] COEF[2]. . . .C0EF[p+q~-l]COEF[p-Fqj

0 kq bq-1 bq-2 . .a2 al
1 ai bq bq—1 a3 a2
2 a>2 al bq a3

P ap ap—1 ap-2 bl bo

P+1 bo aP ap—1 b2 bi

p+q-1 bq-2 fiq-3 bq—4 • • ••bq bq—1

p+q bq—1 bq-2 bq—3 • • . ,ai bq

Figure 4: Skewed Coefficient Storage.

4.3. SIMD vs. Systolic
Both systolic array and SIMD structures are well suited for exploiting the 

parallelism inherent in certain tasks performed on vectors and arrays [YoS81]. 
There are two potential advantages of choosing an SIMD implementation. First, 
an SIMD machine supporting dynamic broadcast reconfiguration allows for a 
value of ym to be computed every time unit, whereas a systolic implementation 
would require two time units. The systolic implementation allows flow between 
cells in a pipelined fashion such that communication with the outside world can 
only occur at the “boundary cells” [Kun82]. For a systolic implementation the 
xm values flowing “up” the pipeline must be synchronized with the ym values 
flowing “down” the pipeline so that they meet in the correct PE with the correct 
coefficient [YoS81]. Therefore, valid data only exists in the even numbered PEs 
during odd numbered cycles and in odd numbered PEs during even numbered 
cycles, hence effectively requiring two time units for each ym computation. The 
broadcast for an SIMD implementation can be handled by using the
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interconnection network to transfer the data item to the set of desired PEs (as 
done on PASM), hence effectively requiring only one time unit for each ym 
computation. Second, an SIMD implementation easily allows for strip-mine 
mapping of larger problem sizes to smaller machines when the problem size 
increases beyond the number of PEs available,

5. Experiments Performed
Timing measurements were made for eight separate phases of this SIMD 

implementation of recursive digital filtering. All operations were performed 
with integer byte-operands (8-bit), and overflow was ignored. The experimental 
results were obtained from the calculation of 52 ym values where the 52 xm 
inputs were unity and the filter coefficients % and were also set to unity. 
This choice of input data simplified debugging, but also permitted gathering of 
the needed timing measurements.

The following eight time measurements were made using the system’s 
internal timers (Motorola 68230) and were repeated five times. The five trials 
were used to reduce anomalous data resulting from asynchronous hardware 
behavior1. The timer clock period was four microseconds, therefore, five 
decimal places to the right of the decimal point were significant.
1. MC execution time for computing ym. This is the aggregate algorithm 

time to compute a single ym value as measured in the MC. It is the total 
measured MC time divided by 52 to obtain the average MC execution time 
for computing ym. The timer chip on the MC board was used.

2. PE execution time for computing ym, This is the aggregate algorithm time 
to compute a single ym value as measured in the PE. It is the total 
measured PE time divided by 52 to obtain the average PE execution time 
for computing ym. The PE timers were Used and the largest single PE 
time of the four PEs was reported.

3. Broadcast communication time. This is the time needed to establish the 
communication path from one PE to the other PEs and itself, send and 
receive data, and then to drop the communication path so that a new path 
may be established in the next stage.

1 The PEs in SIMD mode operate on separate clocks, however hardware synchronization 
is done on word fetches. Thus, some PEs may take more time to fetch complete 
instructions than others.



4. Path acknowledge time. This is the time needed for each PE to 
acknowledge receipt of a routing tag. This is a direct measure of the 
amount of serialization caused by SIMD execution of the broadcast.

5. Summation calculation execution time. This is the time needed to compute 
one stage of the summation. This is dominated by the coefficient 
multiplication time and the time required to add this product to the 
partial running sum in each PE.

6. Execution time for choosing ym after broadcast. This is the time needed to 
determine if ym should be used for the ym calculation in the current stage 
based on the FLAG matrix. Choosing ym involves requesting a network 
read and storing the read ym value in TMP.

7. Execution time for choosing xm. This is the time needed to determine if xm 
should be used for the ym calculation in this given stage based on the 
FLAG matrix. Choosing xm involves indexing into the data array of x 
values using the loop index and then storing it in TMP.

8. Execution time to increment mod 4 stage counter. This is the time needed 
to increment the stage counter by one or reset it to zero when the fourth 
stage has been reached. There are four stages because there are four terms 
in the ym calculation.

6. Data Measurements 
The data measurements appear in Table 2.
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Measurement Time Percent of 
Total Time

MC execution time 0.4281 100%
PE execution time 0.4311 * 100%

Broadcast execution time (B) 0.1880 44.59%
Path acknowledge time (A) 0.0520 12.33%
Summation calculation (S) 

execution time 0.0520 12.33%

Execution time for ym (CY) 0.0632 7.50%
Execution time for xm (CX) 0.0680 8.06%

Execution time for (X) 
counter increment 0.0640 15.18%

*greater than MC execution time due to MC overhead to start and 
stop tinier in PEs.

Table 2: Experimental Measurements 
(All times in milliseconds.)

Note, one can verify the total time to calculate four ym values based on 
Equation 1.

4 ym= 4 B + 4 A + 4 S + 2 CY + 2 CX + 4 I (l)

To verify the data values obtained, note that the left side of this equation is 
equal to four times the PE execution time. The measured PE time was 
1.7244ms, and the right hand side is equal to 1.6864ms, This represents 
approximately a 2.20% error which is insignificant relative to other differences 
noted. This 2.20% error occurred for primarily two reasons. First, the PE 
execution time includes the overhead time for manipulating the timers in each 
PE which would account for the higher left-hand side of the equation. Second, 
the measured time for each phase is an average of five trials which would reduce 
the effects of extreme data measurements on the right side.

The percentages in Table 2 are expressed relative to the right hand side of 
Equation 1. For example, the broadcast execution time percentage of 44.59% is 
calculated by dividing four times the broadcast execution time (0.7420ms) by 
the total execution time (l.6864ms).
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7. Discussion and Interpretation
As seen from Table 2, the execution time for the calculation of ym consists 

of 44.59% broadcast time. This means that over 40% of the total calculation 
time is spent sending previous values of ym to the other PEs. The PE that has 
completed its ym calculation must set up the network for the broadcast, 
broadcast ym, and drop the network broadcast path, thus causing a long 
serialization which has great negative potential impact for larger numbers of 
processors due to effects of Amdahl’s Law.

The actual summation time (multiplication and addition) for this mapping 
is only 12.33% of the ym calculation time. Each PE needs to compute the 
partial running sum by multiplying either ym or xm by a filter coefficient and 
then adding it to the previous partial sum. The coefficient and previous partial 
sum stored in each PE memory allows them to be accessed locally. This fact 
accounts for this relatively small time contribution.

From these two measurements, it may be concluded that the present 
mapping of one xm and ym value per PE results in very inefficient use of 
processing resources. If the number of samples per PE increased, the broadcast 
time would remain constant while the percentage of time required for carrying 
out the summation will increase. At the point where the parallelism benefit 
derived from dividing the problem across PEs increases past the overhead from 
broadcasting, a point of marginal efficiency may be defined. Beyond this point 
the parallel version is justified with respect to its SISD (serial) counterpart. 
Below this point, the communication overhead causes the execution time to be 
worse then it would be for a serial implementation. The major implication is 
that for realistic problem sizes (e.g., N ± 64) that a relatively modest number 
of PEs (e.g-, 4-16) would provide tangible improvement over serial execution 
and for large numbers of PEs, such resources could likely not be well-utilized.

The percentage of time spent choosing ym and xm are 7.50% and 8.06%, 
respectively. The time for choosing ym is relatively low because it is in a data 
register after a network read is initiated. The time for choosing xm is also 
relatively low, compared to other contributions, because it is accessed locally 
from each PE memory, yet slightly larger than ym because the access is to 
memory versus a data register.

Finally, the ym calculation includes some pure overhead. This overhead 
includes the counter increment time used to index into the coefficient array 
stored in each PE. Also, the path acknowledge time is overhead in that a 
network read is required to flush the routing tag from the network.
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8. Future Implications and Extensions
The reported work represents early findings from the past 6-8 months. 

While the results offered here are quite useful, one of the greatest uses is toward 
guiding future work. First, this implementation was for byte data which quickly 
becomes insufficient to store the running sum. Therefore, versions are being 
written for word and floating point data. Second, the problem size can be 
increased such that the implementation would require more PEs (i.e., 8 or 16). 
The problem size in this case is increased by increasing the number of terms in 
the ym calculation to fit the number of PEs available. Finally, the problem size 
can be increased again, but this time the number of PEs would be less than the 
number of terms in the ym calculation. Therefore the efficiency-related 
hypothesis of the previous section may be verified.

This future work would focus on the broadcast feature of PASM. In 
particular, the point where the negative effects of the broadcast communication 
time are overcome by the positive effects of parallelism (i.e., the marginal 
efficiency point) can be achieved when the problem size is greater than the 
number of PEs. From the current results, we anticipate that this point would 
occur when the ratio of problem size to the number of PEs is equal to four. 
However, when increasing the problem size beyond the number of available PEs, 
a new approach to the algorithm implementation also needs to be examined.

Another area of experimentation would be to analyze possible data 
dependencies by examining the impact that word data has on the execution 
times. In this case, the broadcast time would most likely increase while the other 
times would remain relatively constant. These results will indicate the 
importance of large bandwidth systems and also allow prediction of execution 
times for floating point data.

Aside from the possibilities for future work, having coded the given 
algorithm in assembly language pointed out an additional implication of this 
work. When compared to programming in a HLL (High Level Language), 
programming in assembly language is arguably more difficult. This relative 
difficulty of assembly language programming would make large application 
programs rather burdensome to code, thus there is a need for more abstract 
programming support on PASM. However, our purpose has been to examine the 
characteristics of an experimental architecture. In doing so, assembly language 
was used by necessity. As a result two unexpected observations resulted.

First, because there is some overhead associated with using a HLL, it is not 
possible to fully achieve the performance benefits as seen with low level assembly
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language programming. Assembly language allows for more efficient coding of 
loops, array access, and access to the network for interprocessor communication 
which can not be provided with a HLL because of its higher level of abstraction. 
Second, having an operating system on PASM would again not typically allow 
for the writing of efficient code as seen here because of the overhead associated 
with an operating system. An operating system, in general, would decrease the 
overall performance of most programs because of its underlying purpose to 
control and manage the security and integrity of the whole system environment. 
Program performance would be inhibited because the operating system Controls 
parts of the system in a way more general than that needed depending on the 
specific application. Thus, these services would be considered overhead. These 
observations will help in determining which characteristics would be needed in a 
HLL in order to maintain comparable speed-up gains as seen with assembly 
language programming with no resident OS.

9. Summary
Experiments designed to measure execution times of the various phases in 

SIMD recursive digital filter calculation of ym on PASM were described. An 
equation was given that verified the total ym calculation time with respect to the 
various phases in the summation calculation. The results reported show the 
difference in execution times among the various phases of the implementation. 
In particular, the broadcast execution time was found to be 44.59% of the total 
execution time while the partial summation calculation was only 12.33% of the 
total execution time.

The experiments presented used an actual parallel machine (the PASM 
system prototype) and showed that broadcast communication time is a 
significant part of SIMD recursive digital filtering algorithms.
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AI Graph Searching and Parallel N-Min-Finding

Carol Ringer

Abstract
This work focuses on ways of parallelizing a searching procedure that could 

be implemented on PASM. In particular it focuses on the problem of finding N 
minimum values in N processing elements (PE’s), which is a subproblem that 
evolves from a larger searching problem. Given a sorted list of Values in each PE 
memory find the N minimum values of the combined lists. A four PE SIMD 
version of the N-MIN-FINDING algorithm has been implemented.

The choice of an all SIMD version of the program is based on the importance of 
having the PE’s easily synchronized to facilitate the network transfers as fast as 
possible; Forcing the smallest value array to have identical data in all PE’s 
allows the sorting to be very efficient in SIMD mode. In this mode, branching 
overheads are incurred in the MC’s and can be overlapped with the actual 
comparison and movement of data in the PE’s.

1. Introduction
Current work being done in the area of artificial intelligence often deals 

with problems that have a combinatorially large problem space. Searching a 
large problem space exhaustively is inefficient and usually impractical. Finding 
ways to speed-up and optimize a searching procedure is of major 
importance. [L1W84]

Research has been done on ways to optimize the solution search procedure 
by making intelligent guesses about the best path to take [Nil80]. Another 
approach for speeding up the search is parallelizing it so that more than ope 
path is explored at a time.

This paper focuses on ways of parallelizing a searching procedure that 
could be implemented on PASM.[Sis87] In particular it focuses on the problem 
of finding N minimum values in N processing elements (PE’s), which is a
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subproblem that evolved from the larger searching problem.

2. Background

2.1. Problem-area related references and background
Search problems can usually be represented as an acyclic graph or tree. 

[WaL85] One general technique for searching a graph or tree is a branch-and- 
bound algorithm. A b ranch-and-bound algorithm decomposes a problem into 
smaller subproblems and keeps decomposing it until a solution is found or the 
problem is determined to be unsolvable. The decomposition of the problem is 
achieved by using branching and selection rules. Elimination rules can be used 
to reduce the search space, and a termination rule is used to check for the goal 
state or solution.[LiW84]

GRAPHSEARCH is a branch-and-bound algorithm described in [Nil80] 
that keeps a record of the rule applications to a problem space which preserves 
the shortest path to the goal or subgoals. The general graph search algorithm as 
taken from [Nil80] is given below.

Procedure GRAPHSEARCH

1 Create a search graph, G, consisting solely of the start node, s. Put s on 
a list called OPEN.

2 Create a list called CLOSED that is initially empty.

3 LOOP: if OPEN is empty, exit with failure.

4 Select the first node on OPEN, remove it from OPEN, and put it on 
CLOSED. Call this node n.

5 If n is a goal node, exit successfully with the solution obtained by 
tracing a path along the pointers from n to s in G. (Pointers established 
in step 7)

6 Expand node n, generating the set, M, of its successors and install them 
as successors of n in G.
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7 Establish a pointer to n from those members of M that were not 
already in G (i.e., not already on either OPEN or CLOSED). Add these 
members of M to OPEN. For each member of M that was already on 
OPEN or CLOSED, decide whether or not to redirect its pointer to n. 
For each member of M already on CLOSED, decide for each of its 
descendants in G whether or not to redirect its pointer,

8 Reorder the list OPEN, either according to some arbitrary scheme or 
according to heuristic merit.

0 Go to LOOP

Step 8 refers to ordering the list OPEN according to heuristic merit. The 
heuristic merit is some estimation of the promise of a node in the graph with 
respect to achieving the goal. A node has more promise if it is on the shortest 
path to the goal. The expansion in step 6 includes calculating this promise 
value. Nilsson claims that if a heuristic function calculated on a node n, is a 
lower bound on the actual cost of going from node n to the goal then 
GRAPHSEARCH is admissible. An admissible search algorithm always 
terminates in an optimal path from the start node to the goal node.

2.2. PASM Overview
Heuristic estimation is one way to optimize the GRAPHSEARCH 

algorithm. A way to speed-up the process is by parallelizing the node expansion 
process. The PASM architecture can be used to parallelize the 
GRAPHSEARCH algorithm by using one micro controller (MC) to keep track of 
the graph search path and use the PE’s for expanding and sorting the nodes. A 
"parallelized for PASM" graphsearch algorithm is given below. This algorithm 
also incorporates the idea of heuristic estimation.

Procedure PARALLEL GRAPHSEARCH

1 In 1 PE create a search graph G consisting solely of the start node, s, 
put s on a list called OPEN

2 In 1 MC create a list called CLOSED that is initially empty
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3 LOOP: Check the size of OPEN if it is 0, exit with failure.

4 IF the size of OPEN is less than the number of PE’s (N)
THEN distribute those nodes to the PE’s
ELSE pick the N minimum values from OPEN and distribute 
them among the PE’s

Send and identifier for each node back to MC that will be put on 
CLOSED. MC then must send parent address back to the nodes that 
will be expanded in PE’s.

5 In MC check the node identifiers sent back and see if the goal state has 
been reached if so exit successfully with a path to the goal.

6 Expand the nodes in the PE’s and insert sort them according to 
heuristic merit into the OPEN lists of the PE’s.

7 For simplicity assume the problem space can be represented as a tree, 
which implies that a node can only be generated once when its unique 
parent is expanded. In this case no redirecting of pointers is involved. 
If this is not the case each new node must be checked against all other 
nodes on OPEN and CLOSED to see if a shorter path is found, this 
could be a very cumbersome task. In this simplier case this step is 
inherent because each node will have as part of its record the address of 
the parent node in MC* sent in step 4.

8 This step is taken care of in step 6 when the new nodes are merged into 
■' the OPEN lists.

'; 9 Go to LOOP ■■ .

One major overhead in the parallel graphsearch algorithm that is not found 
in the serial algorithm is the cost of finding N nodes with the smallest promise 
values such that the most promising nodes will be expanded next. The 
distributed architecture of PASM is good for node expansion but the non-shared 
memory of the PE’s makes finding the N-minimum promise values a non-trivial 
task. Section 3 describes how this task of "N min finding" is accomplished on 
PASM.
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3. Project Description

3.1. Problem
The problem as described in section 2 can be summarized as follows:

Given a sorted list of values in each PE memory find the N minimum 
Values of the combined lists.

Since the records associated with each node could be rather large it would 
be impractical to try to combine the lists in some way to discover the smallest 
nodes. A smarter approach is to utilize the network of PASM to sort according 
the promise value such that in the end each PE knows where the smallest nodes 
are located and passing records is done only if necessary.

3.2. Algorithms
A high level language algorithm for N-MIN-FINDING on PASM is given 

below:

Assumption: Each PE has a list of values sorted from smallest to largest.

Procedure N-MIN-FINDING

arrat/[PEi] <-- list-,value 
passregr(PEi) <— list— value 
list <-- list—next

while (count!“ 0)

for j — 1 to N-l

passrefif(PEi) <— passreg'fPEi+l) 
arrat/[(PEi-|-j) mod N] <-- passre^(PEi)

bubblesort (array)

if (list— value < array[N-l])

then passrey(PEi) <— lisE.vatue 
else passrey(PEi) <~MAX

count <— //PE‘s that have smaller values

for k = 1 to Q-l

passreg(PEi) <-- count
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passre</(PEi) <—passreg(PEi+1) 
count <-- passreg(PEi) + count

where,

N — number of PE’s being used 

Q = number of MC’s being used

hst-is the sorted list (OPEN in GRAPHSEARCH) of the node records.

list—value - is the promise value field of each node record.

array - is the space for the promise values appended with their PE number 
to be stored. At the end of the process it will contain the N-minimum values.

passrej(PEi) - is the register in PEi used for passing the values through the network.

count- is the number of PE’s that have a smaller value on their list than the last 
value in array.

Notice that during the network transfer the passed values are put into the 
array according to their original PE number. This results in all PE’s having 
identical arrays to sort and thus the bubblesort can be carried out in SIMD mode 
with the MC’s controlling the looping and allowing all PE’s to be enabled 
throughout the sort.

The count transfer loop at the end of the program is not executed in the 
four PE version because only one MC is used. When more PE’s are used (and 
therefore more MC’s) it only takes Q - 1 transfer and add steps to obtain the 
total count in all PE’s. This is possible because all PE’s in an MC group have 
the same count value and the network is configured such that PE’s in one MC 
group are connected to PE’s in another MC group.[SiS87]

3.3. Programs
The four PE version of the N-MIN-FINDING program written for PASM is 

appended to the end of this report. Notice that the modifications for eight and 
sixteen PE versions are basically changing some program constants, noted in the 
comments, and revising output routines.
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4. Experirrients Performed

4.1. Number of PE’s and modes of parallelism
A four PE version of the N-MIN-FINDING algorithm has been written, 

debugged, and tested. The program is entirely SIMD except for the routine that 
sends the data back to MC for printing. This routine could be SIMD also with 
some modifications.

The choice of an all SIMD version of the program is based on the 
importance of having the PE’s easily synchronized to facilitate the network 
transfers as fast as possible. Forcing the smallest value array to have identical 
data in all PE’s allows the sorting to be very efficient in SIMD mode. In this 
mode the branching overhead is taken care of in the MC’s and can be overlapped 
with the actual comparison and movement of data in the PE’s. The fact that 
the data is the same in this operation implies maximum processor utilization 
throughout the sort.

4.2. Data set characteristics
The data sets used for testing and timing the N-MIN-FINDING program 

were different distributions of the N smallest values throughout the PE’s. The 
inherent best case data for the N-MIN-FINDING algorithm, precluding the 
bubblesort effects, is data that is distributed with one minimum value in each 
PE. Data arranged in this way will cause only one iteration of the while (count 
< > 0) loop. The inherent worst case data set is data that has all N minimum 
values in one PE. This data arrangement causes N iterations of the while loop.

5. Data measurements taken
Sample data and timing measurements are given in the table below. 

Distribution of the N minimum values is shown for each data set. All times are 
in milliseconds.



Data Set Arrangement
PEO PEI PE2 PE3

Total
Time

Transfer
Time

Sort
Time

Overhead
Time

: t/'V 10 11 12 13 2.5 0.152 1.3 v. 0
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17.1 0.256 14.2 1.47

/\5. ./> 10
10
10
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14.28 0.308 10.6 2.20

6'': U.UhA;'-. 03
J, 03 ;

03
03

20.92 0.308 17.2 2.20

Table 1
Overhead is checking the PE’s for smaller values and making other 
adjustments that must happen before the next iteration. Times in

milliseconds.

Notice that there are two best case data sets (l & 2) and two worst case data 
sets (5 & 6). A characteristic of the bubblesort algorithm used is that preordered 
data (as in set -/fl) takes much less time to sort than reversed data (as in set f/2). 
To negate the effects of bubblesort the best and worst case times for N-min- 
iinding are calculated by taking the average of the "bubblesort best and worst" 
for the different data distributions. A summary of the timing measurements are 
given in the table below.
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Best Case Ave. Case Worst Case
3.38 10.85 17.6

Table 2 -.'-./v. ■■ +
The best and worst case times are averages of data sets 1 fe 2 and

5 & 6 respectively.
6. Discussion of interpretation of data 

6.1. Problem related
As can be seen from the tables the execution times are very dependent on 

the data distribution in the PE’s. The fact that the bubblesort algorithm is 
dependent on the ordering of the data in the array is one factor in the time 
discrepancy. The sorting time is between 60% and 80% of the total execution 
time so implementing a faster sorting algorithm might make the total time 
faster and not as data dependent. The fact remains that the cases where the N 
smallest values are in one PE will be about N times slower than the cases where
the minimum values are evenly distributed. The best and worst case times in 
the summary table back up this theory.

6.2. PASM Architecture related
The network transfers only accounted for between 2% and 6% of the total 

execution time. Network overhead is data dependent only in the sense that more 
iterations of the loop and thus more transfers are needed when the minimum 
values are concentrated in one or two PE‘s.

The timings for eight and sixteen PE’s should be proportional to the times 
of four PE’s except for the overhead times. The overhead times in the eight and 
sixteen PE versions will include a recursive doubling procedure that sums the 
total number of PE’s that have a value smaller than the last item in the sorted 
array. This procedure adds Q - 1 (where Q — the number of MC’s being 
used[Sis86]) transfers per iteration of the loop. The four PE version does not 
need to do these transfers because the MC can examine the condition code 
register to see if any PE‘s still need to transfer a value. Another approach to 
determining the termination condition that may not add as much transfer 
overhead when more PE‘s are used is to look at the number of MAX values that 
are passed through the PE‘s so that each PE will know when there are no more
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PE‘s that have a smaller value. The trade off between extra comparison steps 
and more network transfers would have to be examined more closely for larger 
groups of PE‘s.

7. Conclusions
The conclusions that can be drawn from the work done on N-MIN- 

FINDING and PARALLEL GRAPHSEARCH so far are best expressed in terms 
of complexity comparisons.

7.1. Comparing parallel min-finding with serial min-finding
The complexity of straight serial min-finding for n values, which is really 

just sorting, that assumes a faster sorting algorithm could be used 
(Quicksort)[Wir76] is given by:

serial complexity = cj(nlpgn)

The complexity of the N-MIN-FINDING algorithm described in section 3 for n 
values and N PE's, and also assuming a Quicksort algorithm can be used for all 
the sorting, is given by:

parallel complexity = cx [(n/N)log(n/N) + i@(NlogN)j + ic2(N + Q — 1)

where,
;T =

; ci
c2

r:;VA;4
According to the measurements shown in section 5 c2 is small compared to 

cx. If the last term is ignored in parallel expression, then the comparison really 
lies in sorting times of two cases. From these general expressions it seems that 
the parallel algorithm will be most efficient when N is small and n is large.

7.2. Comparing parallel graph search with serial graph search
In the context of graph search the overhead of N-min-finding can be 

counter balanced with speed gained by expanding more than one node at a time.

The serial graph search complexity is estimated by:

mft 4- cj©(n2)]

= expected number of iterations of algorithm 
= sorting complexity constant 
= communications complexity constant 
= number of MG‘s being used



The parallel graph search complexity is estimated by:

(m/N)[t 4- ^©(n2)4-ic2©(NlogN) + ic3(N + Q — 1)] 

where,
m = number of nodes expanded to get to the goal 
t = time to expand the average node 
i — expected number of iterations of algorithm 
c4 == insert sorting complexity constant 
c2 — quick sorting complexity constant 
c3 —communications complexity constant
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If the communications constant can be considered small then the trade-off 
between serial and parallel is based on the size of n and N and also m and t. 
From the estimates it appears that a parallel graph search would be most 
efficient if the problem space is large and the average time to expand a node is 
large.

8. Future work
There are many ways the work on the general searching problem using

P ASM can continue.
The N-MIN-finding algorithm still has other combinations of sorting 

algorithms and transfer procedures that could be combined. For example 
looking at the the trade-offs of the different ways to determine the termination 
condition mentioned in the last section. Also, finding a way to avoid putting the 
MAX values into the array so the number of items to be sorted is less.

The PARALLEL GRAPHSEARCH algorithm described in section 2 has 
other subproblems related to the PASM architecture that need to be solved 
before a parallel graph search can be tested and compared to serial versions. A 
method must be developed to distribute the nodes to be expanded among the 
PE‘s given that N minimum values are found and each PE knows where they are 
located. Different applications of graph search could be studied to discover 
when a parallel version will perform better than a serial version. Other 
searching, sorting, and min/max-finding problems could also be explored and 
hopefully this report will give guidance to someone interested in pursuing them.
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