
Dissertation

submitted to the Combined Faculty of

Natural Sciences and Mathematics

of Heidelberg University, Germany

for the degree of

Doctor of Natural Sciences

Put forward by

Vitali Karasenko
born in: Kryvyi Rih, Ukraine

Oral examination: 2020 May 27th

Von Neumann bottlenecks

in

non-von Neumann

computing architectures

—
A generic approach

Referees:
Dr. Johannes Schemmel (Heidelberg University)
Prof. Dr. Ulrich Brüning (Heidelberg University)

Neue Blicke durch die alten Löcher.

Georg Christoph Lichtenberg

Abstract

Der Begriff „neuromorphe Hardware“ bezieht sich auf eine breite Klasse von Re-
chenmaschinen, die verschiedene Aspekte von kortikaler Informationsverarbeitung
nachzubilden suchen. Sie instanziieren Neuronen, entweder physikalisch oder virtu-
ell, die über zeit-singuläre Impulse (Spikes) miteinander kommunizieren. Die vor-
liegende Arbeit präsentiert eine generische Implementation eines Punkt-zu-Punkt
(P2P) Kommunikationsprotokolls, welches gut geeignet ist, die besonderen An-
forderungen an die Ein-/Ausgabe von neuromorphen Computern im Bezug auf
spikebasierte Kommunikation zu erfüllen, insbesondere im Kontext von beschleu-
nigten analogen Systemen. Ein solches Protokoll wurde auf dem neuesten Chip der
neuromorphen BrainScaleS-2-Architektur namens HICANN-X implementiert, wo
es ihn mit einem benutzergesteuerten FPGA verbindet. Bidirektionale Spikeraten
von bis zu 250 MHz zusammen mit mehreren datenflussgesicherten Speicher- und
Konfigurationskanälen werden über 8 × 1 Gbit s−1 low voltage differential signa-
ling (LVDS) double-data rate (DDR) Serialisierer ermöglicht. Da die vorgelegte
Protokollfamilie unabhängig von der Implementation der Serialisierer ist, ist sie
auch jenseits von neuromorpher Hardware anwendbar, etwa um die Modularisie-
rung von Zielvorhaben zu unterstützen, oder um die Entwicklung von generischen
Protokollbrücken zu ermöglichen.

The term "neuromorphic" refers to a broad class of computational devices that
mimic various aspects of cortical information processing. In particular, they
instantiate neurons, either physically or virtually, which communicate through
time-singular events called spikes. This thesis presents a generic register-transfer-
level (RTL) implementation of a point-to-point (P2P) chip interconnect proto-
col that is well-suited to accommodate the unique I/O requirements associated
with event-based communication, especially in the case of accelerated mixed-signal
neuromorphic devices. A physical realization of such an interconnect was imple-
mented on the most recent version of the BrainScaleS-2 neuromorphic hardware
architecture—the HICANN-X system—to facilitate a high-speed bi-directional
connection to a host FPGA. Event rates of up to 250 MHz full-duplex as well
as several stream-secured configuration and memory interface channels are trans-
ported via 8 × 1 Gbit s−1 low voltage differential signaling (LVDS) double-data
rate (DDR) serializers. As the presented approach is entirely independent of the se-
rializer implementation, it has applications beyond neuromorphic computing, such
as enabling the separation of concerns and aiding the development of serializer-
independent protocol bridges for system design.

Contents

Page

I Introduction 1

1 Motivation and Outline 3

2 Queues 7
2.1 Protocol tunneling . 14
2.2 Example: OCP tunneling . 15

3 State of the Art 21
3.1 Raw Serialization . 21

3.1.1 Line Codes . 23
3.2 Gigabit Transceivers . 24
3.3 PCI Express . 25

3.3.1 Monolithic Design . 25
3.3.2 User Interface . 26
3.3.3 PHY . 26

3.4 Conclusion . 27

II Implementation 31

4 Generic Hardware 33
4.1 Sum Types . 34

4.1.1 A software example . 34
4.1.2 HDL implementation 35
4.1.3 Sum Type Queues . 38

5 The Universal Translator 43
5.1 Encoding scheme . 43

5.1.1 Encoding sum types 49

CONTENTS

5.1.2 CRC . 50
5.2 UT sender . 51

5.2.1 Client interface . 53
5.2.2 PHY interface . 53
5.2.3 Derived constants . 55
5.2.4 Data path . 57
5.2.5 Control path . 59

5.3 UT receiver . 61
5.3.1 Data path . 65
5.3.2 Control path . 66

5.4 Synthesis Example . 67
5.4.1 Experiment Setup . 68
5.4.2 Results . 71

5.5 Conclusion . 72

6 Stream secure Queues 75
6.1 ARQ revisited . 75
6.2 Dynamic timeouts . 76
6.3 Sum type ARQ . 78

III HICANN-X 81

7 Overview 83
7.1 Continuous-time computing 83
7.2 Configuration . 85
7.3 PPU memory interface . 87

8 PHY 89
8.1 Link initialization . 90
8.2 UT Link Checking . 91
8.3 Channel bonding . 95

8.3.1 Clocking . 98

9 HICANN-X communication infrastructure 101
9.1 Downstream . 101
9.2 Upstream . 103
9.3 Testing and Evaluation . 104

9.3.1 Events . 107
9.3.2 ARQ . 108

10 Conclusion 115

0

Part I

Introduction

1

Chapter 1

Motivation and Outline

The human thirst for knowledge was always accompanied by a desire to
process and store information throughout the ages. From mechanical de-
vices like the Antikythera mechanism (Jian-Liang and Hong-Sen, 2016) or
Charles Babbage’s Difference engine (Swade, 2002), through electromechan-
ical devices, such as the famous Bombe computers (Smith, 2014), to modern
complementary metal-oxide-semiconductor (CMOS) processors, both the ar-
chitecture and realization of computers evolved with our understanding of
the universe, as well as the mathematical grasp of information processing
itself. While the modern computing landscape is dominated by devices that
track their ancestry to the von Neumann architecture (von Neumann, 1993),
the realization that the mammalian brain is both a very powerful computer,
and also works based on entirely different principles, has always fueled re-
search looking to complement or even replace von Neumann machines with
biologically inspired devices.

Attempts to realize neuromorphic computers have increased in recent
years following both the rekindled interest in artificial neural networks (ANN),
as well as the decline of single-threaded performance growth. Starting in the
early 2000’s, the semiconductor industry found itself in an increasingly para-
doxical situation: as Moore’s law steadily provided more and more usable
transistors per area, it became harder and harder to get the same comput-
ing performance boost from them as processor core frequencies peaked at
around 3-4 GHz, mostly due to thermal reasons. While conventional com-
puters marched on to leverage the extremely high transistor counts of modern
CMOS manufacturing technologies for multi-core processors (together with a
paradigm shift towards concurrent programming), neuromorphic devices seek
to build inherently parallel computing architectures based on small building
blocks (neurons) that exchange activation events (spikes) through a routing

3

1 MOTIVATION AND OUTLINE

bus fabric.

The initial vision of Carver Mead (Mead, 1990) was interpreted and im-
plemented in many ways by various research labs that explored the utility,
feasibility and scalability of different approaches to neuromorphic computing.
We could not hope to provide a comprehensive review of the various proposed
architectures, but rather point to literature, such as (Furber, 2016; Indiveri
et al., 2011; Thakur et al., 2018). We will however point out a core challenge
that these devices all have to face, namely the immense amounts of data that
they are capable of producing and consuming, both locally on chip, as well
as externally when connecting to a host computer or forming a larger system.

I/O has always been the Achilles heel in computation regardless of the un-
derlying architecture. The speed at which a computational unit can process
data has significantly outmatched the speeds at which this data can be made
available. This is the von Neumann bottleneck, which has only become more
pronounced since its first observation sometime in the 1970’s, after the speed
increase of transistor logic started to outpace the bandwidth improvements
of chip interconnects. Neuromorphic devices suffer from the von Neumann
bottleneck as well, but we will argue that they require a different way of
addressing it than conventional von Neumann architectures in Chapter 7.
The availability of chip interconnect technology, both commercially and in
literature, is heavily biased by the strong drive to focus on the needs of con-
ventional processor architectures due to their sheer dominance for the last
fifty years.

While neuromorphic computers, as prominent examples of non-von Neu-
mann architectures, are in the exploratory stage of finding optimal imple-
mentations, as well as carving ecosystem niches, now is also a good time
to start thinking about how an optimized communication infrastructure for
neuromorphic hardware might look like, which represents the core topic of
this work. To this end however, we have taken a generic approach and will
first lay the groundwork by discussing how any digital devices exchange data
from a high-level perspective and introduce both the concept of Queues as
well as abstract methods to bundle and transport their data between chips
in Chapter 2.

In Chapter 3 we focus on the state of the art, i.e, various serializer tech-
nologies and their ability to serve as tunnels for Queues. We will see how more
accessible technologies often lack desired features for generic data transport,
while high-end interconnects tend to be monolithic in nature, which makes
them fast and feature-rich, but at the expense of flexibility when used in

4

non-conventional scenarios.
Part II introduces a generic method to tunnel arbitrary bundles of Queues

through virtually any kind of serializer using hardware description language
(HDL) implementations of sum types and the Universal Translator (UT) en-
coding scheme. We discuss not only the method itself, but also motivate the
immense benefits offered by the generic approach as opposed to a monolithic
bespoke solution, as it orthogonalizes many design choices and simplifies
verification, thus freeing development time to add features or fine-tune pa-
rameters. In particular, we describe a generic method to transform almost
any module interface into a bundle of Queues which can then be serialized
via the UT. This opens up the possibility to build serializer-independent
feature-rich bridges for common bus interfaces, which can streamline the
development effort for open-source hardware.

Lastly, Part III describes the communication infrastructure for the current-
generation neuromorphic hardware at the Electronic Vision(s) group in Hei-
delberg, which was successfully manufactured and already used for various
experiments. It uses the concepts and modules introduced previously to cre-
ate a complex bi-directional interconnect between the neuromorphic chip and
a host field programmable gate array (FPGA) using an independently pro-
vided serializer. Here, we leveraged the generic, yet powerful sum type tech-
nique to implement features like link layer channel bonding, link health check-
ing and failure resistant configuration while also providing a bi-directional
high transaction rate event transport channel between the devices.

5

1 MOTIVATION AND OUTLINE

6

Chapter 2

Queues

Like with virtually any system, designing hardware begins at the block di-
agram level. The design is broken down into sub-modules, each performing
some task, which pass information between each other. Information passing
is somewhat ambiguous in this setting, so let us clarify further.

A B

C

Figure 2.1: Example block diagram with three modules. The arrows represent the direction
in which the modules pass information between each other

On one hand, especially in RTL design, we define the direction of infor-
mation flow by which side of a wire the driver is. This is also reflected in RTL
code during module declaration in statements such as ’output logic valid’
where the qualifying statement {input/output} describes whether the mod-
ule is sender or receiver of information on that port. This is, however, not
that simple when attempting to precisely define the direction of information
passing in a more general context.

To illuminate the issue, let us first discuss one of the simplest non-trivial
circuits that has a clear direction of data flow, the first-in-first-out buffer
(FIFO) module. Its main purpose is to provide a blocking interface between
two modules so that data may pass from one to the other. An example block
diagram is shown in Figure 2.2, the declaration of a possible SystemVerilog
interface can be found in Listing 1. We notice that the modports push and
pop are each bi-directional, i.e, they feature both input and output ports in
their declaration. This is of course necessary to provide a blocking interface

7

2 QUEUES

to the FIFO, which requires information exchange from the FIFO to the user
to notify it that it is ready for the next transaction. Still, from a transactional
point of view we define the direction of a FIFO to be from the push modport
to the pop modport.

FIFOA B
push pop

data direction

Figure 2.2: A FIFO connecting modules A and B. Module A connects at the push side
of the FIFO, and module B at the pop side. Hence the data flow is from module A to
module B

Usually, the term FIFO refers to a particular implementation involving
some memory and control logic that stores data from the push modport into
memory and presents data read from memory to the pop modport of the
module. To be able to talk about directional information transfer between
modules in an implementation-free manner, we introduce the following defi-
nition:

Definition 2.0.1. Queues Any pair of interfaces (a, b) that respectively per-
form identical functionality to a push and pop modport of a FIFO interface
belongs to a Queue which we will write as Q(a, b). The following parameters
are associated with any Queue:

• latency as the expected time between a data push into the Queue and
its arrival at the pop interface.

• throughput as the expected number of transactions across the Queue
per unit of time.

• depth as the maximum amount of in-flight transactions within the
Queue.

This definition explicitly includes pairs of interfaces that are not in the
same clock domain or even the same device. It obviously follows that any
FIFO module is an implementation of a Queue that stays within a device1.
We further categorize Queues depending on the admissible transaction pat-
terns between their endpoints.

1But not necessarily in the same clock domain as in the case of asynchronous FIFOs

8

interface fifo_if(
input logic wrclk,
rdclk
);

parameter int WIDTH = 1;

logic full, push, wrinit, empty, pop, rdinit;
logic [WIDTH-1 : 0] wrdata, rdata;

modport push (
input full,
output wrinit, push, wrdata

);

modport pop (
input empty,
output rdinit, pop, rdata

);

modport fifo (
output full, empty, rdata,
input wrinit, rdinit, push, pop, wrdata

);

endinterface;

Listing 1: Example of a parameterized FIFO interface with the modport fifo being
accessed by the FIFO module itself, push by the user on the write side and pop by the user
on the read side. The signals wrinit and rdinit perform the initialization of the FIFO
at its respective side. The behavior is implementation-dependent, but generally defines a
point in time after which transactions at the push modport correlate with transactions at
the pop modport. The WIDTH parameter allows to re-size the FIFO to fit any message in
any format by casting it into a packed bit-array of the appropriate size.

9

2 QUEUES

Definition 2.0.2. Stream-secured Queues A Queue that is guaranteed
to show the same sequence of data at its output as the sequence of data
pushed into it is stream-secure. The following parameters are additionally
associated with any such Queue:

• mean time to failure (MTTF) as the expected time duration at
which the above guarantee will be broken.

This definition seems unnecessary at first glance when coming from the
usual FIFO perspective, as indeed any correctly implemented FIFO will al-
ways fall under this category because we usually operate under the presump-
tion that data can never be corrupted on-chip in RTL design methodologies.
On the other hand, the concept of a Stream-secured Queue appears naturally
in the context of data transfers between devices where it is usually accepted
that a wide range of effects can corrupt transactions and extra care needs
to be taken to ensure that these can be detected, discarded and ultimately
repaired. Stream-secured queues are usually discussed in the context of their
implementation within a Transport Layer of some interconnect, where this
functionality usually resides. The MTTF denotes the expected timescales at
which one of the following error cases may happen:

• The pop interface stops emitting words that are in-flight.

• The push interface is never ready to accept new words.

• Data is re-ordered or otherwise corrupted.

As we will see later when considering implementations of stream secured
Queues, the first case is usually due to an internal breakdown of the transport
mechanism within the Queue. Blocking on the push side can be also either
due to transport issues or because the pop side is never accessed which means
stalls once the Queue depth is reached. Data corruption is the worst case
and usually well guarded against, as for all practical purposes this case must
never happen. In some sense, we much rather prefer for a Queue to stall
than to start emitting wrong data, because while we can establish timeouts
to detect stalls, there is no way to detect data corruption within a presumed
secured Queue except adding meta data which amounts to tunneling a stream
secured Queue through another.

We keep the definition purposefully implementation-free and simply note
that a user does not necessarily need to know the precise implementation
or internal behavior as long as she is provided with the guarantee that all
transactions are appearing in-order at the receiving end.

Relaxing the requirements on data integrity, we introduce the

10

Definition 2.0.3. word-secured Queues A Queue that has a macroscopic
probability to re-order or drop words, but provides a guarantee that individ-
ual words are correctly transported, is called word-secure. The following
parameters are additionally associated with any such Queue:

• mean time to stream corruption (MTTSC) as the expected time
duration at which a word-secured Queue deviates from a stream-secured
Queue.

We point out the obvious implication that any stream-secured Queue is
also word-secure but not necessarily vice versa. Because stream-security is a
combination of two properties, namely that data is neither lost nor permuted,
the loss of any of these automatically downgrades the Queue to be at most
word-secured. We deem it impractical for our purposes to further sub-divide
the classification into cases where messages can be either lost or permuted
because these properties are highly implementation-dependent. Still, any
implementation of a word-secured Queue should be done in awareness of the
distinction.

At last, we define the

Definition 2.0.4. Unsecured Queues A Queue that can neither guarantee
stream-, nor word security is called unsecured.

Example transaction patterns are shown in Figure 2.4.

push
a

pop
b

Figure 2.3: A conceptual diagram of a Queue A(a, b). Data is transported from the push
interface to the pop interface in a blocking manner.

11

2 QUEUES

clock
full

push
wrdata 0 1 2

clock
empty

pop
rdata 2 1

clock
empty

pop
rdata 0 1 2

clock
empty

pop
rdata 1 3

send

receive

strea
m

secure

word
secure

unsecured

Figure 2.4: Example transactions of different types of Queues. The colored regions sep-
arating the send and receive side of the Queue emphasize that the interfaces can reside
in different clock domains or devices. For the word- and unsecured Queues only the best
case scenario is shown where data is fetched out of the pop interface as soon as new data
arrives.

To motivate these definitions, let us now briefly discuss some of their pos-
sible realizations in the context of chip interconnects. As we have mentioned
previously, moving data between chips is considered to be unsecured unless
extra precautions are taken as we will see in Chapter 3. To improve the
security of such a Queue, internal mechanisms like checksumming may be
introduced during data transport. This additional data provides redundant
information that can be used to verify the integrity of the message at the
receiving end which then can filter out messages it deems to be corrupt, mak-
ing the Queue word-secured. Because checksumming can only drop erroneous
data but can neither restore nor correct it by itself, additional measures must
be taken to achieve stream security. Error correction techniques are usually
distinguished into forward error correction (FEC) and backward error cor-
rection (BEC) depending on whether they need additional information by
the sender or can use already received, redundant data for word recovery.

We will further note a few other properties of Queues.

12

If a Queue Q is composed out of a series of Queues QN = [Q0,Q1, . . . ,Qn],
the security of Q is at most the security of the lowest secured Qi in QN (see
Figure 2.5).

0 1 2 3

Figure 2.5: An example of Queue concatenation. Q(0, 1) and Q(2, 3) form together Q(0,3).
Because Q(2, 3) is unsecured, so is Q(0, 3) regardless of the security of Q(0, 1). Interfaces
1 and 2 are directly connected, thus forming a trivially stream secured Queue.

A collection of Queues with endpoints in the same hardware domain can
be tunneled via a single Queue and additional circuitry for encoding and
multiplexing (see Figure 2.6).

0 1+

2

3

-

4

5

Figure 2.6: An example of a Queue sum. Q(2, 4) and Q(3, 5) are formed via Q(0, 1) and
additional logic that merges their data such that it can be distinguished and split after
transport. We call it a sum because the words of Q(0, 1) transport data from either Q(2, 4)
or Q(3, 5).

Finally, it is always possible to increase the security of a Queue by adding

13

2 QUEUES

circuitry at the end points without any further information about the Queue
itself (see Figure 2.7). A common method is to generate metadata from the
outer Queue and then summing it together with the Queue content itself into
a tunnel that is less secure than required.

0 1+2

CRC

CRC 3

Figure 2.7: An example of Queue enhancement. Q(2, 3) is word-secured although Q(0, 1)
is not due to additional logic that derives cyclic redundancy check (CRC) words which
are then added together with the data of Q(2, 3). At the receiving side is then a filter
that filters the incoming data for correct CRC and then passes it to the pop interface after
stripping any checksum information. Note that no interface need to be modified to achieve
this upgrade in transport security.

2.1 Protocol tunneling
Now that the groundwork is laid out we can begin to discuss transporting
higher-level protocols in terms of Queues. Any module provides access to
its inner state via ports that are grouped into interfaces such as the FIFO
interface shown in Listing 1. A module often provides several interfaces which
is a convenient way to achieve separation of concerns, as for example in the
FIFO module case the push interface usually does not need to know about
the empty flag that is exposed on the pop interface. Interfaces can always
be split into a master and a slave side which simply denotes the direction
of transactions passing through them. For example, a FIFO module is the
slave at its push interface as the direction of the transaction is into it, while
the opposite happens at the pop interface, where data is being read out of
the FIFO thereby making it the master.

14

2.2 EXAMPLE: OCP TUNNELING

When we talk about protocol tunneling we mean the case where some
module A tries to access another module B that may reside neither in the
same clock domain nor on the same device altogether. This is achieved by
placing circuitry that accepts the request of A acting as the slave, and trans-
ports it in some way to the target clock domain where it acts as a master
towards B. Any response of B is then transported in the reverse manner
towards A. An interface is called blocking if there are handshake signals that
are not part of the request itself but rather notify the master and slave that
a request has been made. If an interface is not blocking there can be no cer-
tainty that a transaction has been successfully registered by the slave unless
so guaranteed by the specification. It should be clear by now that any inter-
face can be faithfully represented using one or several Queues and hence can
be tunneled as long as the communication infrastructure implements Queue
sums.

A I2Q
IA 0

Q.push
1 Q2I

Q.pop
B

IB

Figure 2.8: Structural view of an interface tunnel between modules A and B. Module A
connects via its interface IA to an adapter interface to queues (I2Q) which translates the
transaction into a series of messages which it puts into the tunneling Queue Q via the push
interface. These messages are then assembled by the queues to interface (Q2I) module
into a request to module B via IB .

2.2 Example: OCP tunneling

The Open Core protocol (OCP) is a popular standardized bus protocol for in-
terconnecting modules on a chip. While more recent protocols like Advanced
eXtensible Interface (AXI) are now more commonly used, it is functionally
very similar and can serve as a fitting example to demonstrate its tunneling
via Queues. The interface is comprised of two sub-interfaces called Bus-
Master, which performs an address-mapped request, and BusSlave which
responds to these requests.

15

2 QUEUES

Figure 2.9: Example OCP transactions.

Conceptually, a module performs a blocking request transaction at the
BusMaster interface into the bus and receives a response at the BusSlave
interface some time later2. Looking at Figure 2.9 it is fairly easy to see
that the BusMaster interface can be thought of in terms of two Queues C
and D, while the BusSlave is represented by one Queue in the opposite
direction. We have a Queue C whose messages contain the combination of
the Fields MCmd and MAddr and a Queue D that contains the MData field. The
response side is modeled by a Queue S that contains the SData field. Because
Queues can be blocking, their interface already contains the handshake of the
OCP interface which is represented by the 'MCmd != IDLE && SCmdAccept'
condition, and even allows us to remove the IDLE symbol from the MCmd field
in C. Similarly, as long as the SResp field only contains the symbols {NULL,
DVA} which simply model a handshake together with the MRespAccept field,
the data in S does not need to contain it because it is already a blocking
interface. While it is also possible to represent the BusMaster interface with
just a single Queue, that approach also misses on the opportunity to realize
that a push into D is only necessary if the command was a write, while a
push into C is always necessary. Two Queues represent the interface more
faithfully, clearly and efficiently and only need trivial logic to model the
transaction besides the Queues themselves as can be seen in Listing 3

2E.g, the master and slave modports respectively in Listing 2

16

2.2 EXAMPLE: OCP TUNNELING

interface Bus_if #(
parameter int addr_width,
parameter int data_width,
parameter int sdata_width

) (input logic Clk);

//Request Phase ports
enum{IDLE, RD, WR} MCmd;
logic[data_width-1:0] MData,
logic[addr_width-1:0] MAddr;
logic SCmdAccept;

//Response Phase ports
enum{NULL, DVA} SResp;
logic [sdata_width-1:0] SData;
logic MRespAccept;

modport master(
input Clk,
output MAddr, MCmd, MData, MRespAccept,
input SCmdAccept, SData, SResp

);
modport slave(

input Clk,
input MAddr, MCmd, MData, MRespAccept, MByteEn,
output SCmdAccept, SData, SResp

);
endinterface

Listing 2: Example OCP interface declaration. The ports are prefixed with either ’M’ or
’S’ to indicate whether they are driven by the master or slave modport.

17

2 QUEUES

//BusMaster logic
assign C.wrdata = '{Bus.MCmd == READ, BusMAddr};
assign D.wrdata = Bus.MData;
assign SCmdAccept = C.push;
always_comb
begin

C.push = 1'b0;
D.push = 1'b0;
if (Bus.MCmd != IDLE && !C.full) begin

if (Bus.MCmd == READ)
C.push = 1'b1;

else if (!D.full) begin
C.push = 1'b1;
D.push = 1'b1;

end if
end if;

end
//BusSlave logic
assign Bus.SResp = !S.empty;
assign Bus.SData = S.rdata;
assign S.pop = MRespAccept;

Listing 3: An example SystemVerilog implementation of a module that acts as a Slave on
an OCP Bus interface and translates the transactions into three Queues C, D and S.

The reverse process, namely the construction of an OCP interface out
of three Queues is entirely symmetric. Listing 4 shows an example HDL
implementation of the necessary control logic. Note how no sequential logic
is needed here either, and yet the interfaces are blocking and will for instance
wait until data in D is available before asserting 'Bus.Mcmd = WR' if data
in the command Queue C has been interpreted as containing a write instead
of a read.

18

2.2 EXAMPLE: OCP TUNNELING

//BusMaster logic
//highest bit encodes read-not-write, the rest is MAddr
assign Bus.MAddr = C.rdata[$high(C.rdata-1):0];
assign Bus.MData = D.wrdata;
assign C.pop = Bus.SCmdAccept && Bus.MCmd != IDLE;
always_comb
begin

Bus.MCmd = IDLE;
D.pop = 1'b0;
if (!C.empty) begin

if (C.rdata[$high(C.rdata)]) begin
Bus.MCmd = RD;

else if (!D.empty) begin
Bus.MCmd = WR;
D.pop = Bus.SCmdAccept;

end
end if;

end
//BusSlave logic
assign S.wrdata = Bus.SData;
assign S.push = !S.full && SResp == DVA;
assign MRespAccept = S.push;

Listing 4: An example SystemVerilog implementation of translating three Queues C, D
and S into an OCP interface Bus.

19

2 QUEUES

TM.push TM.pop+

C.push

D.push

-

C.pop

D.pop

S.pop S.pushTS.pushTS.pop

Bu
s.

Sl
av

e

Bu
s.

Ma
st

er

Figure 2.10: Example Queue diagram of an OCP tunnel. Since data flows in two directions
during the request and response phase, at least one tunnel per direction is needed.
Queues C and D are merged into TM which acts as a tunnel and ensures the necessary
security. Queue TS tunnels the OCP slave responses contained in S and also provides
suitable security.

The point of this exercise is to demonstrate that when it comes to pro-
tocol tunneling a simple yet generic and comprehensive design flow can be
established. The design process must address the following questions:

• How many Queues are needed?

• What security do the Queues require?

• What is the available serialization method?

In this thesis we will demonstrate that it is possible to build a link layer
that efficiently satisfies these design parameters using generic modules. But
first, let us discuss the various techniques for data transport between devices
that are currently in use.

20

Chapter 3

State of the Art

Any information-processing device, be it a brain or a chip, needs a way to
communicate with the outside world to be deemed useful. For chips, this
usually means talking to other devices via some protocol. As we outlined
earlier, an interconnect needs to at least facilitate the tunneling of a Queue
across chip boundaries for a point-to-point connection. Communication usu-
ally implies a bi-directional information exchange, so if the protocol is not
bi-directional by nature, it needs to be instantiated twice on the device, as
a sender and receiver respectively. Here, we will review some common in-
terconnects and technologies that connect chips and compare their strengths
and weaknesses in implementation and performance. We will focus on P2P
connections because as it is the main application we are interested in, and
thus omit discussing protocols like Ethernet which were designed to be easily
routable through anonymous networks.

3.1 Raw Serialization
This technique is probably the simplest way to exchange data between chips.
It consists of a shift register of some width that is continuously shifted out
by the sender. The shifted out bit is then connected to a general purpose
In/Out (GPIO) pin and an internal counter ensures that the next parallel
word is loaded into the shift register when the last bit has been sent. Since
the data does not have any clocking information, the sender and receiver side
of the link must be externally synchronized, which usually means sharing the
clock via a dedicated pin. Adding a bit of complexity, the serializer can be
upgraded to DDR mode by shifting the data on both edges of the clock. And,
of course, the data can be transmitted using the LVDS standard to improve
electrical characteristics.

21

3 STATE OF THE ART

sr_tx

par

Clk_tx sr_rx Clk_rx

parrxv

tx_data

Figure 3.1: Shift register based serializer pair block diagram. Parallel data is loaded
into sr_tx which shifts it bitwise into sr_rx via the tx_data wire. After the appropriate
number of bits is shifted into sr_rx it asserts rxv to notify the user that a word is available.
Clk_tx and Clk_rx must be synchronized to ensure correct data capture.

The obvious upside of raw serializers is their simplicity. They are very
easy to implement, do not require external IP, and are small both in the
gate- and pin count. More complex protocols can build upon raw serializers
and simply use them as their PHY layer. An important advantage is the
arbitrary width of the shift register, which aids the separation of concerns
by not imposing any restrictions on the encoding scheme of the upper layer
protocols.

However, using raw serializers also has quite a few drawbacks.
The speed is limited by the phase alignment between the clock and the

data pins. While internal delays can be in principle compensated for in the
chip, the external wire lengths on the PCB are not known in advance and
impose a mismatch between the clock and data edges. When not compen-
sated for by using programmable delay circuits—which add to the device cost
either because of development effort or IP licensing costs—the serializer will
only reliably work up to bit rates significantly below the worst possible delay
mismatch.

If programmable delays are used, there has to be a way to calibrate the
link by sampling the data until a known pattern is recognized. This in
turn implies that after reset the link is at first in a training phase for some
time until the receiver has calibrated the delays to reliably sample the train-
ing pattern. Only then should the link transmit payload data. A robust
synchronization and transition between these link phases is best achieved
via bi-directional communication between link partners which makes duplex
connections all the more useful. Runtime variations such as temperature and
voltage drifts can also affect the phase relationship between data and clock
significantly, which makes it not only nearly impossible to statically compen-
sate for it at the receiver, but also suggests constant link monitoring and/or
re-training if necessary to ensure the best quality of service (QoS).

Raw serialization is also vulnerable to bit-errors, both on the clock and

22

3.1 RAW SERIALIZATION

data pins. If the data pin is corrupted, i.e, sampled incorrectly at the re-
ceiver, the transmitted word has a bit flip at the respective position after
de-serialization. If however the clock pin is corrupted, the receiver loses the
word synchronization with the sender and de-serializes garbage data until the
link is reset. A related problem is how to find the correct word boundary in
the first place after the link is powered on. Furthermore, the interface that
a raw serializer provides is not automatically blocking, as there is no way to
distinguish between active and idle link states at the reception side. This can
be achieved by e.g turning off the sampling clock (Clk_rx in Figure 3.1) as is
done for instance in the Joint Test Action Group (JTAG), Serial Peripheral
Interface (SPI) and similar interconnects1.

Therefore, while raw serialization is a good technique to build upon more
complex protocols, it is not suitable as a reliable high-speed link by itself
and is the prototype implementation of an unsecured Queue whose MTTF
strongly depends on the data rate.

3.1.1 Line Codes
Line codes are a popular technique to address some of the problems men-
tioned previously. While they represent a large family of different encoding
schemes, we will discuss the 8b/10b (Widmer and Franaszek, 1983) encod-
ing specifically as a commonly used way to imprint higher-level information
onto raw binary data. A review of various line codes can be found in, e.g,
(Schouhamer Immink, 2001).

The 8b/10b encoding takes, as the name suggests, 8b blocks of data and
encodes them into 10b code words. The mapping is chosen such that DC
balance is maintained within two encoded words, and aims to avoid long
runs of ones and zeroes. The encoding also defines several code words that
have no corresponding data words, but still obey the above criteria. These
control symbols can be used to find word boundaries as well as signal the
begin and end of a data transmission. They also allow for a decoupling of
the client interface from the SerDes logic, since the SerDes can autonomously
inject comma symbols that indicate a link idle state when no client data is
available which can then be filtered out by the receiver. This decoupling
also allows for different clock domains for the SerDes and the client, and
consequently also some, albeit limited, choice in data width. The encoding
also helps detect bit errors, as there are many 10 bit sequences that are

1Speaking of these, we will not discuss either protocol further as they are barely a step
up from raw serialization and do very little—if at all—encoding that aids link security.
While they certainly have their use, we will regard them as unsecured Queues at most and
use them as such as building blocks for a more secure and feature rich link.

23

3 STATE OF THE ART

considered illegal by the scheme, so they can be recognized as such at the
receiver. However, many bit errors remain undetected, hence one should not
rely too much on code word security if data integrity is absolutely essential.

The 8b/10b encoding is still widely used in a variety of communication
systems. Still, it is important to understand that it is an encoding for PHY
layer data, and should be used in conjunction with a link layer protocol. The
PHY layer should contain the 8b/10b codecs, and use the control symbols to
perform tasks like word synchronization, idle commas and packet delimiting
upon link layer requests. The link layer uses a suitable interface to transmit
its data serialized to bytes which are encoded as data words at the PHY
layer.

From our perspective, a serializer that employs line coding can be re-
garded as a weakly word-secured Queue. Comma characters provide the
blocking interface regardless of whether the clock is running and the illegal
data characters will catch certain kinds of bit errors.

3.2 Gigabit Transceivers

An evolution from raw serializers, multi-gigabit transceiver (MGT)s are now
the backbone of almost all high-speed serial protocols. The use of clock-data
recovery (CDR) eliminates the need for a dedicated clock pin and thus the
phase alignment problem. Virtually all MGTs employ a scrambling line code,
be it 8b/10b or something more modern like the 64b/66b variant to increase
bit efficiency. This is important to ensure the phase-locked loop (PLL) used
in CDR sees enough transitions to properly lock while also providing the
benefits outlined in Section 3.1.1, such as flow control via comma symbols.

While MGTs are common in most modern FPGAs, where they are widely
used, they appear less frequently in ASICs. This is mostly owed to their
complexity which is necessary to achieve the high bit rate that sets the MGTs
apart from more simple SerDes approaches as discussed e.g in Section 3.1.
Exacerbated by the sorely underdeveloped Open Source space for hardware
design, it is often a rather expensive endeavor for a design team to procure
an MGT macro since they will either have to develop it in-house or purchase
from an IP vendor. Still, MGTs are currently the only feasible choice to
achieve high data rates over a low pin count, and are thus the preferred PHY
layer choice for virtually all modern high-speed communication protocols.

24

3.3 PCI EXPRESS

3.3 PCI Express
Designing and implementing a custom Transport Layer protocol is not al-
ways necessary. There are several suitable standards defining a high-speed
full stack communication protocol between devices using MGTs as PHYs.
Here, we will briefly discuss the perhaps most ubiquitous high-speed device
interconnect, the PCI Express protocol. It will serve as the main point of
comparison to our work, so we must first evaluate Peripheral Component
Interconnect Express (PCIe) from a conceptual point of view.

The design philosophy behind PCIe was to specify a scalable feature-
complete general-purpose interconnect architecture. The user communicates
over the interconnect via transaction layer packets (TLPs) that have a fixed
definition. Additionally defined data link layer packets (DLLPs) transport
protocol-internal information and implement features like flow control, data
integrity and error handling. The Physical Layer then serializes the TLPs and
DLLPs using one or several MGTs which employ 8b/10b encoding and also
handles tasks like link training. The Base Specification Document (Group,
2010) provides an in-depth description of the interconnect.

3.3.1 Monolithic Design
While PCIe aims to provide a general-purpose interconnect, there are still ap-
plications which do not fit well into its design space. PCIe is not intended to
be a customizable protocol apart from offering several backwards-compatible
versions which mostly concern the number of lanes and their speed. There-
fore, all available implementations, both commercial and Open Source2, offer
PCIe as a monolithic block in a take-it-or-leave-it fashion. This is a reason-
able design decision since for instance, if one designs a custom accelerator
that is used by an off-the-shelf desktop computer via its PCIe slot, the PCIe
block instantiated in the accelerator must be fully compatible to the desktop
which is easier to ensure in a monolithic specification. On the other hand,
if, for example, we want to build an ASIC that is connected to an FPGA,
we fully control both sides of the interconnect and are thus free to choose a
protocol that fits our needs best. And while PCIe certainly fulfills its promise
of being a general-purpose interconnect, there may be constraints like power,
area, I/O or latency that make technology desirable which allows for trade-
offs in these areas while still offering a static user interface. It is important
however to not fall into the Not Invented Here mentality and, if possible,

2There are only FPGA-based Open Source PCIe implementations, which instantiate
hard MGTs for the PHY layer.

25

3 STATE OF THE ART

evaluate the desired features compared with their counterpart defined in the
PCIe specification.

3.3.2 User Interface
PCIe is a byte-aligned protocol at all layers, which is not surprising since an
8-bit byte is typically the smallest accessible unit in most CPU architectures
and programming languages. It also naturally follows that the user-side data
path can be somewhat parameterized to a width that is also commonly found
in the microprocessor world as long as it is still byte-aligned. Typical use
cases are 32 or 64 bit wide user data paths which simultaneously fit the
common granularity of most current programming models and keep the user
clock at manageable speeds while still achieving high throughput.

Packet types are encoded via the first byte in a TLP, with currently 20
such types being defined. These packet types facilitate transactions in 4 ad-
dress spaces, Memory, I/O, Configuration and Message. While the packet
types and the corresponding address spaces provide an interface that can
be used to transport almost any kind of data over any network topology,
it comes at a cost of rather high overhead independently of the actual ap-
plication particularly for small transaction sizes. All user packets are also
secured via a replay buffer and a CRC to ensure stream coherence, which is
an important feature but also rather costly in terms of protocol timings, bit
efficiency and hardware usage. If we again evaluate PCIe by its capability
to tunnel Queues, we find that it provides facilities to tunnel many of them
by either distinguishing them via Packet types, or address spaces since any
suitably formatted TLP can be interpreted as a push into the corresponding
Queue. PCIe guarantees stream security without the option of downgrading
in exchange for performance or hardware real-estate, and also forces at least
byte alignment for the Queue width. It is also not suitable for transporting
small transactions due to the high overhead within a TLP.

3.3.3 PHY
As mentioned previously, PCIe relies upon MGT serializers which use scram-
bling3 to transmit and receive Transaction Layer and Link Layer packets.
Their behavior is strictly specified including the link training procedure and
the supported speeds. Channel bonding is also implemented at the PHY
layer, allowing for increased throughput at the cost of higher I/O footprint.
It works by distributing the individual bytes of a TLP in an alternating pat-

3Both the 8b/10b code, as well as its 128b/130b variant in recent versions

26

3.4 CONCLUSION

tern on the available lanes during transmission. The obvious benefit is that
no two TLPs can overtake each other during serialization because only one
TLP is transmitted at a time. Furthermore, adding links not only improves
the throughput, but also the latency of the link. As a drawback however, the
PHY layer needs to make sure that all the individual lanes are delay-aligned
during link training to exclude the possibility of a faulty reconstruction of the
packet at the receiving side. Only 1,2,4,8 and 16 lanes per link are currently
supported since these allow for easy distribution of the TLP and DLLP in a
byte-wise fashion.

3.4 Conclusion
When looking at the individual solutions to transporting data from one chip
to another, we notice two sharp extremes. Those who have the resources,
both financial and in the design space, will often opt for a proven solution and
use one of the common high-speed serial protocols like PCIe, Universal Serial
Bus (USB) or Serial AT Attachment (SATA). These projects often afford a
practical point of view that it is more efficient to adopt an existing ecosystem
even if it does not fit the bill exactly instead of building a custom solution.
This adaptation however makes it hard to build a well parameterized design
because requirements like word alignments and data segmentation are now
an important consideration to make. When the requirements of the core
logic are too much at odds with the interconnect, an intermediate layer is
built which will attempt to translate the interface of the core logic into the
user interface of the interconnect. These adapters are often treated as an
afterthought and are prone to being buggy and inefficient in both chip real-
estate and encoding.

On the other end of the spectrum we find projects that choose to build
a custom interconnect to serve their needs. There are many reasons to do
so, ranging from lacking the means to procure a suitable IP or not being
able to fit the block into the chip real-estate, to determining that the user
interface is too much at odds with that of the core logic. In most of these
cases the design team will start from a bottom-up approach, i.e, they will
pick a suitable serializer and then build the rest of the Link and Transaction
Layer from there to ultimately connect to the core logic. This approach often
runs into the realization that the finished interconnect will have to replicate
many of the core features of, say, PCIe, but still being different enough that
reusing existing modules is impractical or outright impossible in the case of
commercial IP blocks. Since the design and verification of blocks like PCIe
nodes takes many person-years, the design team is then often forced to im-

27

3 STATE OF THE ART

plement a solution that is sub par in both feature scope or even performance.
Thus, these projects often end up with interconnects that are not thoroughly
verified, lack features, extensibility and parametrization, and have their rel-
ative simplicity and thus small chip real-estate footprint as the only upside.

To improve upon this situation where a group is stuck between the choice
of either adopting a big monolithic block that is not parameterizable in any
meaningful way or trying to build something in-house that stands almost no
chance of competing against foreign IP, we can formulate the requirements
for a desirable solution as a consequence of the previous discussion.

Modularity The layers in the interconnect should be clearly separated
and easily modifiable and even exchangeable with minimal changes to the
surrounding layers.

Serializer independence The interconnect should provide a simple and
generic interface towards the PHY layer which enforces minimal requirements
on how data is transported over the air gap. In particular, this interface must
admit free parametrization of the data width that is passed between the
PHY and the link layer to account for any serialization ratio. The link layer
must be able to optionally generate idle characters upon request if the PHY
expects a continuous stream of user data after initialization. The link layer
must also be able to optionally generate and inject CRCs for any subset of
data packets in case the PHY layer does not provide data integrity checking
on its own. It should be possible to go from a simple shift register to an
MGT as a PHY layer via simple parameter adjustments. Together with the
Modularity requirement, this also implies that low level electrical properties
like line emphasis should be encapsulated at this level such that the user side
of the serializer entirely consists of synchronous digital logic.

Channel Bonding The interconnect should be able to take advantage of
multiple links if they cannot be merged already at the PHY layer. This
should be reflected as a simple parameter with a wide range and must be
transparent to the user interface.

User interface The user interface must be able to tunnel any number of
independent Queues of any configuration as described in Chapter 2 in both
directions. It should be trivial to add or delete a Queue, adjust its width or
change the configuration from e.g unsecured to stream-secured independently
from all others.

28

3.4 CONCLUSION

Synthesis-friendliness The design should be easy to pipeline in order to
simplify implementation. Where possible, there should be free parameters
which can gradually trade performance for chip real-estate.

Performance While we obviously desire a high throughput and low la-
tency for our application, we acknowledge that no design with such a high
grade of flexibility can ever hope to achieve the performance of an optimized
monolithic design like PCIe. Therefore, we downgrade performance consid-
erations to best effort for any given parametrization with the expectation
that a well-fitting parametrization will make up for the overhead incurred in
adapting to a better, but worse-fitting interconnect.

29

3 STATE OF THE ART

30

Part II

Implementation

31

Chapter 4

Generic Hardware

For scientific progress to occur, it is not enough to criticize why the state
of the art is lacking and subsequently propose a seemingly superior solution;
One has to actually demonstrate this superiority. We have spent quite some
pages to criticize the current options for device communication while being
purposefully vague about implementation details of how generic Queue tun-
neling can actually be achieved. Such an achievement rests on two legs, RTL
description and simulation and subsequent successful synthesis in either an
FPGA or application-specific integrated circuit (ASIC). Designing hardware
comes with the perhaps peculiar caveat that not everything that should be
in theory possible is actually possible in practice which as we noted before
often impedes scientific progress. There is a plethora of reasons why that
holds true and mundane problems like budgetary and/or timing constraints
during development or tool immaturity are surely a contributing factor to
the reputation of hardware designers being overly conservative in relying on
proven designs instead of innovation.

In particular, we observe a lack of the equivalent of what is called generic
programming in the software world, a design philosophy where the RTL de-
scription is so deeply parameterized that a particular parametrization can
result in drastically more different circuitry than one observes by changing
e.g the width or depth of a FIFO. As we will see however, this is a nec-
essary feature of our design because there is otherwise no way to construct
an efficient yet generic Queue tunnel1. When we look at the properties of
Queues described in Chapter 2, most of them correspond to straightforward
well known implementations. The FIFO interface is a very popular archetype
and is widely used in all kinds of module interfaces and of course also in de-

1We have pointed out before how PCIe achieves generic tunneling by having fixed
headers for packet type and address space which are big enough for any application yet
are often wasteful because not all functionality is used in a particular design

33

4 GENERIC HARDWARE

vice interconnects. Really, the only intriguing implementation question is
posed in Figure 2.6: How can we write an RTL description of some number
of queues which can differ both in their widths and security level such that
their data can be tunneled via a single queue and still be distinguishable at
the receiving end?

4.1 Sum Types

4.1.1 A software example
Let us for a moment step back and answer this question from a more abstract
perspective that programming languages can give us, particularly when they
strive for clarity above implementation. FIFO objects are present in most
programming languages, we point to the std::queue in C++ as an obvious
example. They can be used to transport and buffer messages between agents
in different parts of a program. Generic programming in C++ allows us to
create a std::queue of any type we like which gives us freedom of choosing
any fitting data structure to serve as an atomic message between agents and
then simply declare a std::queue on it.

// example message declaration
struct message {int a; double d;};
// declare a queue of messages
std::queue<message> q;

Now let us assume that we actually have two different message types that
we want to transport via a single Queue:

// declare message type A
struct messageA {int a; double d;};
// declare message type B
struct messageB {char a; float d; long c};
// declare a queue of messages A and B
// what do we template on?
std::queue<???> tunnel;

It is obvious that we need a new type in the above code snippet that is
derived from both messageA and messageB in the above example. This type

34

4.1 SUM TYPES

must satisfy two properties: It must be big enough to contain either messageA
or messageB and it must contain additional information that allows us to find
out which type it is currently holding. These derived types are called Sum
Types or tagged unions and are dual to the more commonly known Product
Types such as structs and tuples. Sum Types were added in C++17 under
the name of std::variant<>, which lets us complete the above code snippet:

// declare message type A
struct messageA {int a; double d;};
// declare message type B
struct messageB {char a; float d; long c};
// declare a queue of messages A and B
std::queue<sdt::variant<messageA, messageB>> tunnel;

This code gives us a Queue that contains a sequence of messages which
can each be either messageA or messageB. Trying to add to the Queue a type
that is neither messageA nor messageB will fail to compile which improves
code correctness. C++ Variants can be queried about the type they are
currently containing via the std::visit free function which then provides
the splitting mechanism that allows us to de-multiplex the messages into
individual Queues after tunneling.

4.1.2 HDL implementation

The question now becomes whether it is possible to create the same kind of
Sum Type abstraction as e.g std::variant<> in a synthesizeable HDL. We
will see that this is indeed possible if we are willing to sacrifice some type
safety. Let us begin with a SystemVerilog example:

35

4 GENERIC HARDWARE

// declare message type A
typedef struct packed
{

logic[1:0] a;
logic[3:0] b;

} messageA_t;
// declare message type B
typedef struct packed
{

logic[3:0] a;
messageA_t b;
logic c

} messageB_t;

Recall that the only base type of any synthesizeable HDL is logic which
represents a single bit and hence either a single FlipFlop or wire in hardware.
Any higher order types like arrays, tuples or structs are simply for human
readability and do very rarely bear any real correspondence to the result-
ing circuit after synthesis. Although HDLs like SystemVerilog have types
like int or byte these are nothing more than aliases for logic[31:0] and
logic[7:0] respectively. Ultimately, any synthesizeable HDL data type has
a direct correspondence to a bit vector of the appropriate size which is why
the following can be always done:

// declare messages of type A
messageA_t messageA0, messageA1;
// declare plain bitvectors of the same size as messageA_t
logic [$bits(messageA_t)-1:0] messageA_plain0,

messageA_plain1;

assign messageA0 = messageA_plain0;
assign messageA_plain1 = messageA1;

We can freely assign both a bit vector to a packed struct of arbitrary
field layout and vice versa as long as the total number of bits matches in
both objects. There is no fundamental reason that can prevent us from
doing so because the synthesized logic can only consist of binary functions
and FlipFlops which have no further structure; Any attempt to prevent the

36

4.1 SUM TYPES

designer from doing the above is the result of higher order reasoning about
the design which is for example what code linters try to do. This is ultimately
the reason why FIFO modules or interfaces only have a WIDTH parameter and
are very rarely templated on types, although newer versions of SystemVerilog
offer this feature; While the data_{in,out} port signifies the amount of bits
that are accessed or stored at a time, their higher-level structure is irrelevant
to the implementation and is merely syntax sugar. All of this is to say that
it suffices being able to create Sum Types of bit arrays of variable lengths
because that is the only property that is still present after synthesis.

As noted previously, a sum type needs to be able to hold any of the types
it is derived on together with information on what it currently holds. A
suitable representation is therefore a struct with the fields data and tag. To
be able to construct sum types out of an arbitrary amount of parent types
we can use a list that contains the sizes of the individual parents.

// declare a parameter list that holds the sizes of
both messageA and messageB
localparam int typelistAB [2] = {

$bits(messageA_t),
$bits(messageB_t)

};

Since we are ultimately dealing with bit arrays of varying length, the data
field is again a bit array with the greatest length of the parent types. The
tag field will then simply contain the index of the parent type in the type
list. Thus, we can now finally write down a SystemVerilog implementation
of the sum type for messageA_t and messageA_t as follows:

typedef struct packed
{

logic [$clog2($size(typelistAB))-1:0] tag;
logic [$max(typelistAB)-1:0] data;

} sumAB_t;

Because we derived the sum type from a list it also inherits some very
useful properties which we list here.

37

4 GENERIC HARDWARE

Slicing and Concatenation Two sum types can be merged to form a
new flattened sum type. The type list of the resulting sum type is simply
the concatenation of its parents.

As an example, assume that sumAB_t represents the two message types
that a single client which might be the master side of a bus adapter as
described in Figure 2.10 speaks. We can merge two of these clients into a
single Queue by forming a concatenated sum type like so:

localparam int
twoclientsAB [2*$size(typelistAB)] = '{2{typelistAB}};

After deriving the sum type struct out of the type list in the usual manner
shown above, we now have a framework of creating Queues that can fit an
arbitrary number of clients with an arbitrary number of message types. The
reverse process, namely creating two sum type out of one is also directly
equivalent to slicing the original type list into two children lists. Simple
logic can then be built that assigns the data into the two children and also
appropriately offsets the tag fields for easy and type safe de-multiplexing.

Scalar operations We can also just as easily modify sum types by doing
element-wise operations on the individual elements in the underlying type
list. The most useful of these is element-wise addition which corresponds to
extending the parent types with an extra field.

4.1.3 Sum Type Queues
Because the sum type is again simply a collection of bits we can now trivially
construct a FIFO interface for it using the template introduced in Listing 1:

fifo_if
#(

.width($size(sumAB_t))
) fifoAB (

.wrclk(),

.rdclk()
);

Example pushes into the FIFO may look like this:

38

4.1 SUM TYPES

//write messageA_t into fifo
assign fifo.wrdata = '{ '0, '{2'b01, 4'ha}};
assign fifo.push = ~fifo.full;

Similarly, the de-multiplexing of the FIFO output could look like the
following snippet:

messageA_t messageA;
messageB_t messageB;
logic [$size(typelistAB)-1:0] messages_valid;
sumAB_t message_read;
assign message_read = fifo.rdata;
assign messageA = message_read.data[$bits(messageA_t)-1:0];
assign messageB = message_read.data[$bits(messageB_t)-1:0];
always_comb
begin

messages_valid = '0;
if (~fifo.empty) begin

case (message_read.tag)
0: messages_valid[0] = 1'b1;
1: messages_valid[1] = 1'b1;

endcase
end

end

Listing 5

The above de-multiplexing logic translates into the circuit shown below:

39

4 GENERIC HARDWARE

data<10:0>tag<0:0>

fifo.rdata<11:0>!fifo.empty

valid<0>

valid<1>

messageA<5:0>

messageB<10:0>

Figure 4.1

Comparing the HDL code in Listing 5 with the RTL circuit in Figure 4.1
we can discuss some of the benefits of generic hardware. On one hand,
the RTL code manages to express the de-multiplexing of a sum type into the
individual parent types without loss of generality. Changing the parent types
will correctly propagate through the design after synthesis which is owed
mostly to the fact that a SystemVerilog struct packed keyword provides
us with automatic conversions to and from bit vectors2. Also, in case the sum
type is modified to contain more parent types, adapting the de-multiplexing
is as simple as adding a statement that casts the data into some new parent
type as well as an additional branch in the case statement to generate the
respective valid signal. It is even possible to create a de-multiplexer that
will automatically create additional branches using generate loops, as long
as it is parameterized not on the sum type but rather the underlying type
list since it contains all the necessary information.

All of this is achieved without sacrificing hardware efficiency; The syn-
thesized RTL circuit looks exactly as expected with no resources wasted.
Recall as a contrast the user interface of a PCIe interconnect. As we have
discussed in Section 3.3, it provides fields to distinguish between the payload
data which can be used to implement the tag field of a sum type. However,
both the data type field as well as the payload data itself have a fixed width.
If the actually required tag is smaller than the data type field, resources are
wasted and bits are unnecessarily transported wasting bandwidth. In the
rather unlikely case that the tag field is too small some additional encoding
must be employed to provide the missing information. As we also discussed,

2Languages like VHDL which tend to frown upon such liberal features require a bit
more work in that for every type one must also additionally specify the casting functions
to and from bit vectors.

40

4.1 SUM TYPES

the fixed width of the payload data in PCIe can result in an inefficient bit
usage of the data field of the sum type depending on the parents with po-
tentially some additional encoding logic required.
This leads us to a more general issue; We have now created a hardware do-
main where modules communicate with each other via arbitrary messages
that are passed through FIFO interfaces with a structured way to combine
and split messages where necessary. However, This simple view hinges on
the requirement that each FIFO push or pop transaction produces exactly
one message that can be either a singleton type or some sum type that can
be processed further. As long as we are staying on-chip this is a manageable
albeit somewhat cumbersome restriction. Virtually any synthesis tool flow
provides us with FIFOs with parameterizable data widths of a wide range
that can in principle accommodate almost any use case. To be useful in the
context of chip interconnects, where as we have seen we often do not have
the choice to freely parameterize the user interface, we must find a way to
generically serialize sum types into a stream of words with a wide range of
widths.

41

4 GENERIC HARDWARE

42

Chapter 5

The Universal Translator

We present here an implementation of a generic RTL module pair for the en-
coding and decoding of any sum type into words of any width. Colloquially,
the names UT sender and receiver have been established for them to em-
phasize their truly awesome parameterizeability. Looking again to the soft-
ware world, the UT implements functionality similar to boost::serialize()
which can translate any C++ object into a byte stream and vice versa. This
comparison is however not completely apt because the UT must be able to
deal with blocking as well as non-blocking stream interfaces as well as arbi-
trary data widths and not only bytes.

write sender push pop receive read

Figure 5.1: UT sender connecting to a receiver via a Queue. write and read are
arbitrary sum types as described in Section 4.1, the width of the Queue is a free parameter.

5.1 Encoding scheme
There are indeed many ways to encode information into a stream of symbols.
One such way is for example the 8b10b encoding which we have discussed
earlier. There, 8 bit data words are encoded into 10 bit symbols or code
words. Disregarding the nice electrical properties that the scrambling pro-
vides and the error detection, the encoding also gives us a structure that we
can use to meaningfully encode data. This is because the 8b10b encoding also
defines several special symbols which can be used to denote the BEGIN (B),
END (E) and IDLE (I) phases of a transaction together with DATA (D[])

43

5 THE UNIVERSAL TRANSLATOR

symbols that denote payload. We can then begin to define datagrams which
get encoded as a string of such characters.

As an illustration, we show a timing diagram of a blocking 8b10b encoder
that translates user bytes into code words.

clock

send_valid

send_data[7:0] W0 W1 W2 W3

encoded[9:0] I D[W0] D[W1] I D[W2] I D[W3] I

In this example, we have no way to distinguish whether a higher level
object is constituted of the sequence [W0,W1] or just the single byte [W0].
Because this encoding scheme only cares about the integrity of the individ-
ual code words, any information that lets the user group several bytes into
a larger data structure must be implemented using the payload. Alterna-
tively, we can use the aforementioned BEGIN and END characters to introduce
framing into the coding scheme. We can extend the user send interface to in-
clude start-of-frame (SOF) and end-of-frame (EOF) ports that signal framing
information to the encoder.

clock

send_sof

send_valid

send_data[7:0] W0 W1 W2 W3

send_eof

encoded[9:0] I B D[W0] D[W1] I D[W2] E B D[W3] E I

This interface allows the sender to clearly communicate which data words
form a data structure using the BEGIN and END symbols. It is even possi-
ble to insert IDLE symbols during a frame transition to indicate a pause in
transmission.

Note however, that there isn’t any reason to keep the 8b10b encoding
for the data words during a frame from an encoding point of view since an
individual symbol doesn’t really carry useful meaning anymore by itself. In
fact, the entire scheme seems unnecessarily wasteful in encoded bits since we

44

5.1 ENCODING SCHEME

are expending 3 code words of 10 bit each to transmit 8 bit of payload in the
worst case.1 Often, these overhead concerns are brushed away by the obser-
vation that in the limit of long frames the bit efficiency converges to 80%.
Still, this puts the burden on the user to make sure to create frames that
are big enough which often requires one or several additional protocol lay-
ers that provide the user with a convenient interface while ensuring optimal
packing and data alignment at the lower encoding level. These layers must
be keenly aware of the underlying encoding and are almost always required
to be altered or replaced entirely if the interface changes either at the user or
PHY layer. And, as always, we are left with the problem that the PHY must be
able to coherently transmit the 10 bit code words which can otherwise mean
further bit efficiency losses and additional logic if, for example, the PHY uses
an analog bit encoding that results in 3 bit symbols.

All of this is to say that the 8b10b encoding serves a very specific purpose
and works best when used in certain applications where the payload is usually
large and byte-aligned and the serializer is well-equipped to transmit 10 bit
sized code words. We are however able to learn several lessons for our quest
to find a more generic encoding:

• Framing The encoding scheme must be able to encode payload in such
a way that a single transaction can be longer than a single encoded
symbol and still be discernible at the receiver.

• Commas The encoding scheme must have a way to distinguish payload
from idle transactions on the link that can be discarded by the receiver.

Furthermore, the encoding scheme should not concern itself with “ana-
log” features like scrambling or link initialization but rather only focus on
efficiently implementing the above points. The encoded words can then still
be scrambled in a subsequent step at the PHY if the need arises.

It is useful to look at the minimum required bits when trying to transmit a
single message that is n bits in size. The datagram will simply need to be n+1

1There is however some nuance here: Due to the scrambling and the increased code
space these symbols are unique and can therefore be recovered from an unstructured data
stream without any further information. We acquiesce that this is indeed a very useful
property to have in a link since it is a straightforward method to synchronize sender
and receiver so that data transport can occur. Nevertheless, we posit that a universal
encoding scheme must surrender this property because the underlying Queue may have its
own method for initialization and synchronization which we want to make usage of. We
will discuss how to deal with link synchronization without unique comma characters at a
later time.

45

5 THE UNIVERSAL TRANSLATOR

bits long, because we will need to distinguish payload data from idle commas.
The flattened struct struct packed {logic c; logic [n-1:0] data} will
have the following bit layout:

0 data

n n-1bit
position 0

Figure 5.2

Let us assume that the datagram will need to be serialized into words
of x bits. The natural thing to do would be to introduce padding to align
our datagram of length n+ 1 bits to be divisible by x which makes its total
length L = lcm(n+ 1,x). For comma characters we create a word of length
x where the first bit is set2. In cases where n + 1 < x we simply pad until
the datagram fits in a single code word.

0 pad data

L-1 n-1 0

x0 x1

payload

comma 1

x

x-1 0

Figure 5.3: Padding example with L = 2x. The xi denote the serializer words, lower
subscript is encoded first.

This is the typical approach taken to gearbox data of some width to be
serializable into another together with idle commas because it is both easy to
describe in HDL code and synthesizes very well into small and fast circuits.
Notice the crucial role the padding plays in this encoding: It is on one hand
completely determined by the design parameters n and x, but also ensures
that the resulting serialization circuit is simple at the cost of bit efficiency.
Usually, if one is interested into optimizing the bit efficiency, changes are
made not to the encoder itself but rather in the connecting modules at the

2This is not wasteful because there wasn’t any data that could have been sent instead
anyway

46

5.1 ENCODING SCHEME

client or the serializer side, or both. If it is possible to adjust n, i.e, adding
or cutting useful payload bits per message or adjusting the size of the actual
physical layer x, the size of the padding can be reduced or done away with
completely. However, as we have stressed several times already, this violates
the separation of concerns (SoC) principle during the design process and is
one of the reasons why large designs are so difficult to get right. Very often
the size of x cannot be chosen freely except sometimes in integer multiples,
recall for example the inherent byte alignment of PCIe with possible user side
widths of usually 32 or 64 bits. This usually presents the user with a tough
choice to either segment the messages so that the necessary padding is small
or instead suffer significant bit efficiency losses. It also means that once that
trade-off has been made in a design any changes to either x or n are met with
strong reservations which can stunt design development if for example useful
user extensions are discarded or a switch of serializer technology is burdened
with user interface changes to maintain bit efficiency.

To address this issue we can introduce variable length commas.
Definition 5.1.1. Comma If a comma bit is encountered during decoding
in a serialized word X, the rest of the word is a comma.

For illustration, let us look at how the serialization of the datagram shown
in Figure 5.2 into words of x bits would have to look like without padding.

0 data 0 data

x0 x1 x2

In this example two user datagrams can fit in three serializer words with
100% bit efficiency. However, this case is not guaranteed to always happen
because there might not be two user datagrams available back to back, so
we must insert a comma character to mark the rest of the word as invalid if
there is only one word available:

0 data 1

x0 x1

We will call commas that need to be inserted within a serializer word EOF
commas as opposed to idle commas which fill a complete serializer word as

47

5 THE UNIVERSAL TRANSLATOR

Figure 5.4: Algorithmic complexity of encoding n bit payload into x bit wide code words
when using EOF commas and no padding.

shown in Figure 5.3. Notice how there are cases where only a single bit is
left over and must be marked as a EOF comma, which is why we cannot use
more than a single bit to distinguish between commas and payload. This
encoding ensures optimal bit efficiency regardless of the choice of n and x,
but is likely to synthesize into very large circuits due to the combinatorial
complexity. N = lcm(n+1,x)

n+1 consecutive messages of n bit payload are needed
to be aligned in x bit wide serializer words without the need of EOF commas.
It follows that in all other cases where fewer messages are sent there needs
to be a distinct EOF comma. This means that there are N distinct positions
a data word must be shifted within the serializer word depending on the
state of the encoder. The decision tree of the corresponding state machine
therefore consists of N + 1 states3 each having a choice to either insert a
shifted datagram into the current serializer word or write a comma and flush
the word.

Note the pattern in Figure 5.4: If n + 1 and x are co-prime, the re-
quired number of states grows linearly with the serializer width x. However,
there are always neighboring combinations that produce small decision trees.
We can reach these parameters by re-introducing padding into the encoding

3Including the idle state

48

5.1 ENCODING SCHEME

scheme. This time however, the amount of padding is controlled by an ad-
ditional free parameter C that now represents a smooth trade-off between
bit efficiency and encoding complexity. C generates a padding p such that
(n+ 1 + p) == 0 mod C.

0 pad data

c c

x0 x1 x2

Figure 5.5: Padding example with C = 3
2 x. The datagram is now aligned such that it can

fit into 3 code symbols without remainder.

Changing C effectively shifts the point (n,x) in Figure 5.4 to the right
which can now be used to hit a low complexity point at minimal bit efficiency
penalty. Even more importantly, it can both be used to freely adjust n or x
without exploding the encoding complexity or in the opposite, improving bit
efficiency of the encoding without the need to adjust the interfaces.

5.1.1 Encoding sum types

When encoding sum types, the enormous opportunity presents itself to be
aware what the size of the current payload is and use that information to
emit fewer code words if possible. We extend the encoding scheme to contain
the tag information of the sum type immediately after the comma bit and
insert the padding between the tag and the payload. We also support the
edge case of zero width payload, where the payload is omitted and only the
corresponding tag is serialized.

49

5 THE UNIVERSAL TRANSLATOR

0 tag=0 pad D0

x0 x1

0 tag=1 pad D1

x0 x1 x2

Figure 5.6: Sum type encoding example. The header, consisting of the tag field together
with the comma bit has a fixed width, but the padding changes depending on the tag.
Here, data D0 with tag 0 can fit into two code words xi, while D1 has a larger size and
needs three code words for encoding.

As before, the size of the padding depends on the common alignment
parameter C. It is now even more crucial because the algorithmic complexity
now scales with the co-primality of all the individual member type sizes ni.
A common and rather efficient choice of C would be to force alignment to x
of all the sum type members. The trivial and potentially very wasteful choice
would be to set C to be the least common multiple of all the ni as well as x.
This results in simple logic because all the members will get encoded exactly
the same number of code words regardless of their size.

5.1.2 CRC

A convenient feature of the UT encoding scheme is the option to selectively
append CRC data to a serialized datagram. For each member of a sum type
we can decide at compile-time whether a CRC should be appended. In the
current version we force certain alignment on datagrams with a CRC. The
datagram must always start at a code word boundary which possibly forces
EOF commas in the previous code word. The padding of the datagram must
be such that it is aligned to x while also keeping the alignment to C that
is mandatory for all datagrams. The CRC is then appended directly after
the last code word and also begins at a code word boundary due to the
previously mentioned alignment. It is itself also aligned to x which forces
some restriction on the available polynomials. For example, one can only
choose the CRC-8-Dallas/Maxim polynomial which has rank 8 in the case
where x is either 1,2,4 or 8.

50

5.2 UT SENDER

0 i D0 1 0 j D1 C0 C1

x0 x1 x2 x3 x4 x5 x6

W0 W1

Figure 5.7: Example datagram layout for back-to-back transmissions of an unsecured
datagram W0 = (i, D0) which is encoded in the code words x0 through x2, directly followed
by a secured datagram W1 = (j, D1) encoded in [x3, x4] with appended CRC in code words
[x5, x6]. An EOF comma is inserted at the end of W0 because the encoding of W1 must
begin at a code word boundary. The CRC is only computed on the two code words [x3, x4]
and streamed out immediately after.

Usually, the CRC is used in conjunction with rather large payload frames
like the 1500 Byte Ethernet packets to minimize the overhead. The downside
of this approach is that this immediately necessitates large sending and re-
ceiving buffers and also negatively impacts latency because we need to block
the decoded data until the CRC check has been passed for the whole frame.
The UT encoding scheme employs the CRC as an optional feature that can
be used to selectively upgrade the security of certain datagrams while not
affecting the bit efficiency of datagrams the user chose not to secure. There
are many cases where data does not actually need to be secured as long as
the link is stable enough that most of the transmissions are not corrupted.
Furthermore, it might be the case that the used serializer actually does some
framing of its own internally, in which case it is very useful to easily disable
the UT CRC altogether, again without any changes to the interfaces.

Now that we have introduced the encoding scheme, we will discuss its
HDL implementation.

5.2 UT sender
The UT sender is the encoder module of the UT encoding scheme. It is
currently implemented in Very High Speed Integrated Circuit Hardware De-
scription Language (VHDL) due to a better support of functions that can
operate on unconstrained arrays, as well as stronger type checking than Sys-
temVerilog. Nevertheless, most modern synthesis tools have good support
for cross-instantiation of VHDL modules in SystemVerilog and vice versa as
long as certain requirements on the interfaces are fulfilled. The UT sender
is no exception and thus can be—and in fact has been—synthesized in both

51

5 THE UNIVERSAL TRANSLATOR

VHDL as well as SystemVerilog environments. Let us first quote the com-
plete module declaration and then move through the individual interfaces
and parameters. Some of the types and methods we will encounter are im-
ported from an accompanying utility library; We will quote their definition
where necessary.

entity ut_send is
generic(

TYPELIST : ut_entry_arr_t;
PHY_WIDTH : positive;
CRC_POLY : pos_arr_t;
COMMON_DIV : positive := 1

);
port(

clock : in std_logic;

reset : in std_logic;

phy_data : out std_logic_vector(
PHY_WIDTH - 1 downto 0

);
phy_next : in std_logic;

has_data : out std_logic;

link_valid : in std_logic;
link_data : in std_logic_vector(

max(
1,max(get_widths(TYPELIST))
) - 1 downto 0

);
link_data_idx : in integer range

0 to
get_widths(TYPELIST)'high

;
link_next : out std_logic
);

end;

52

5.2 UT SENDER

5.2.1 Client interface
The definition of the ut_entry_arr_t is as follows:

type ut_entry_t is record
-- size of the type in bits
width : natural;
-- if true, append CRC
secured : boolean;

end record;

type ut_entry_arr_t is array(natural range <>) of ut_entry_t;

As we have promised, there are no inherent restrictions neither on the
sizes of the individual types nor the length of the type list, the usability
of the module is bound by the synthesis process only. Using the TYPELIST
parameter, we define the client interface consisting of the ports link_valid,
link_data, link_data_idx, link_next. Note also that TYPELIST does
not have a default value assigned which causes compiler errors if not set
during instantiation. This avoids bugs because there is no useful default
value for TYPELIST so that the UT could still be used in an arbitrary context.
Together they represent the blocking push interface of a Queue that accepts
sum types as payload consisting of the tuple (link_idx, link_data). The
somewhat unwieldy calculation of the size of link_data is needed in case all
entries in TYPELIST have size 0, in which case link_data becomes 1 bit wide
but will never carry any information. The declaration of link_data_idx
as a ranged integer is useful because it offers simulation and compile time
constraints on the accessed values4 yet is still compatible with SystemVerilog
instantiations.

5.2.2 PHY interface
The PHY interface is the side of the UT sender that emits the code words
as described in Section 5.1. Three parameters govern it:

PHY_WIDTH This sets the width of the code words and is equivalent to the
parameter x we introduced in Section 5.1. It can be chosen freely, although

4An example is the case where the type list has 5 entries. Synthesis will infer a 4 bit
wide port, yet the ranged integer declaration can check that the values [5,6,7] are not
written in simulation.

53

5 THE UNIVERSAL TRANSLATOR

in practice values larger than 64 are rarely encountered for reasons we will
discuss later.

COMMON_DIV This parameter was introduced as C in Section 5.1 and is used
to calculate the required padding for the individual entries. As discussed
earlier, it is a very important parameter because it governs the trade-off
between hardware complexity and bit efficiency in a completely independent
manner from both PHY_WIDTH and TYPELIST parameters. It also has a useful
default value at 1 which means that no padding is inserted unless forced by
the CRC. This also gives the upper bound on the circuit area for a particular
instance.

CRC_POLY The CRC polynomial can be set using this parameter in form of
a list of positive integers. For example, the CRC-8-Dallas/Maxim polynomial
x8 +x5 +x4 +1 can be selected using the value (8,5,4) omitting the x0 == 1
term by convention. It does not have a default value to avoid unintended
behavior but is of course not used in cases where no entry in TYPELIST has
the secured flag set.

The PHY interface is formed with the ports has_data, phy_data and
phy_next. While it may resemble a blocking interface like the client interface,
the PHY interface is optionally blocking. This means that asserting phy_next
will always produce legal data at the phy_data port regardless of the state
of the has_data port which signifies whether the UT sender is currently
in the process of datagram transmission or there is data available at the
client interface. This is of course only possible due to idle commas that
can be sent in cases where there is no datagram transmission in progress
or the client interface has no data available. The reason for this somewhat
ambivalent interface choice is that the UT sender must be compatible with
both blocking and non-blocking PHYs.

As we discussed earlier, the PHY does not necessarily have a concept of
an idle state by itself, especially in the more simple incarnations like raw
serializers without encoding. These PHYs can simply perform their initial-
ization routine and then start asserting phy_next at the appropriate symbol
rate that they can process. The UT sender then ensures encoding synchro-
nization by transmitting idle commas until payload is available at the client
interface.

On the other hand, more complex interconnects like PCIe do have their
own mechanism to insert idle commas during transition and can thus offer a
blocking interface to the UT which can then be used together with the has_-

54

5.2 UT SENDER

data port to only transmit code words that carry payload. The blocking UT
PHY interface can also be used to encode data into memory buffers of some
arbitrary alignment which avoids filling it with superfluous commas.

5.2.3 Derived constants

Several parameters like various offsets are computed at compile time and can
be used at runtime by the control logic of the module. One such parameter is
HEADER_LENGTH which determines the length of the header at the beginning
of a datagram:

constant HEADER_LENGTH : positive
:= clog2(TYPELIST'length) + 1;

Another important parameter is the PADS list that contains the individual
padding offsets between each datagram. Its declaration is

constant PADS : nat_arr_t(TYPELIST'range)
:= calc_pads(

TYPELIST,
COMMON_DIV,
PHY_WIDTH,
HEADER_LENGTH);

together with the function calc_pads() defined as

55

5 THE UNIVERSAL TRANSLATOR

function calc_pads(
typelist : ut_entry_arr_t;
common_div, phy_width, header_len : positive
) return nat_arr_t is
--return value is a list of naturals
--with the same size as the typelist
variable pads : nat_arr_t(typelist'range)

:= (others => 0);
begin

for i in pads'range loop
--pad everything to be at least one PHY_WIDTH long
if header_len + typelist(i).width < phy_width then

pads(i) := phy_width - header_len - typelist(i).width;
end if;
--additionally pad secured lengths to be PHY_WIDTH aligned
if typelist(i).secured then

pads(i) := pads(i) +
pad_to(

header_len + pads(i) + typelist(i).width,
phy_width);

--otherwise align to COMMON_DIV
else

pads(i) := pads(i) +
pad_to(

header_len + pads(i) + typelist(i).width,
common_div);

end if;
end loop;
return pads;

end function;

and an auxiliary function pad_to(len, align_to) that calculates the
offset needed to make len a multiple of align_to:

function pad_to(len : natural; align_to : positive)
return natural is begin
return ((align_to - (len mod align_to)) mod align_to);

end function;

56

5.2 UT SENDER

The PADS parameter now finally allows us to find the longest datagram
in the encoding:

constant WORK_LEN : natural
:= HEADER_LENGTH + max(get_widths(TYPELIST) + PADS);

with the + operator being overloaded to allow element wise addition of
the arrays get_widthsTYPELIST and PADS. We show these parameters and
their calculations partly because we observe a certain reservation within the
hardware design community to use complex compile time calculations, which
can drastically limit the achievable complexity of designs, for fear of intro-
ducing too much complexity for a module to be verifiable. Another common
hindrance is the lacking tool support for complex expressions that are still rec-
ognized as being synthesizeable because they are compile time only. Instead,
the trend seems to go towards code generation where high level languages
are used to emit simplified verilog code that is guaranteed to be synthesize-
able by the usual tools. We take the opportunity here to demonstrate how
complex parametrizations can be achieved in plain HDLs like VHDL5 and
still be synthesizeable with the usual tools as we will see later.

5.2.4 Data path
The UT encoding process can be split up into several stages that the data
passed into the user interface has to traverse before it appears at the PHY
interface. Due to the polymorphic nature of the UT these stages can result
in a wide range of RTL circuits, hence we will attempt to describe them in a
general manner and note the influence of certain parameters on the individual
stages.

shift stage The shift stage is, as the name suggests, a shift register that
shifts its contents by PHY_WIDTH bit thereby generating both the code words
phy_data as well as the input for the CRC module. Its size is the same as
the largest datagram in the encoding scheme depending on the type list and
the COMMON_DIV parameter, which we will call WORK_LEN.

mask stage The mask stage is a purely combinatorial circuit that can load
individual regions of the shift stage. A new datagram is only loaded if the

5And to a somewhat lesser degree SystemVerilog if one is unwilling to use macros as
they are not type safe.

57

5 THE UNIVERSAL TRANSLATOR

{link_data_idx, link_data}

align

mask

shift CRC
phy_data

combinatorial

stateful

Figure 5.8: Block diagram of the UT sender module data path. Stateful stages like shift
registers have internal state as opposed to combinatorial stages which do not. Regardless,
it is always possible to insert delay stages between two processing stages to improve the
critical path of the circuit although they are omitted in this diagram.

shift stage has less than a full PHY_WIDTH word in it left. Its computational
complexity is rather low because there are only as many different masks as
there are EOF commas. At the worst possible case there are PHY_WIDTH - 1
of them if all datagram lengths are co-prime with each other and PHY_WIDTH
itself.

align stage The align stage creates the datagrams out of the tuple link_-
data_idx and link_data from the user interface. Depending on link_-
data_idx and the current state of the shift stage the inputs must be shifted
not only an absolute number of bits but also relative to each other to create
the datagrams as specified by the UT encoding scheme. That shift is how-
ever static and does not require any internal state in the align stage, so it
can be—and currently is—implemented in purely combinatorial logic. This
is currently by far the most expensive part of the UT sender because it de-
pends on PHY_WIDTH, COMMON_DIV as well as both the length of the type list
and its maximum size. Barrel shifters can be used here as they enable shifts
of any bits, but this approach is not without peril since barrel shifters are
usually highly optimized dedicated circuits and are only available for certain
sizes. We freely admit that the current implementation leaves much room
for improvement when it comes to area and maximum frequency since we
focused mainly on the feasibility and correctness of the design, and it shows
most glaringly in the implementation of the align stage.

58

5.2 UT SENDER

CRC stage The CRC stage consumes data in PHY_WIDTH chunks and sub-
sequently shifts out the CRC it calculated on the data since last reset at
its output where it can be switched from the code words themselves by an
output multiplexer. This explains the forced alignment of all datagrams that
require a CRC on PHY_WIDTH because otherwise the CRC might be calcu-
lated not only on the datagram itself but possibly on parts of the previous
or subsequent datagrams.

5.2.5 Control path
The stages shown in Figure 5.8 are controlled by additional logic that is
often called the control path of a module. It also controls the interfaces by
asserting link_next to accept new data from the user, as well as producing
new phy_data when phy_next is asserted. Again, the polymorphic nature
of the UT encoding presents certain challenges because we have to devise a
finite-state machine (FSM) with a variable number of states depending on
the parametrization.

There are two main states the UT sender needs to track, how much data
is left in the shift stage as well as the state of the CRC stage. For the shift
stage we use a pointer approach and instantiate an integer workidx that
points to the first unoccupied bit position in the shift register work. Their
VHDL declaration are as follows:

signal work is std_logic_vector(WORK_LEN-1 downto 0);
signal workidx is integer range -1 to WORK_LEN - 1;

The workidx register is used both to track if there is enough space in work
for a new datagram as well as where new data needs to be loaded within the
shift stage. In VHDL we can define a generic procedure write declared as
follows:

procedure write(
work : inout std_logic_vector;
idx : in natural;
payload : in std_logic_vector
);

Listing 6

59

5 THE UNIVERSAL TRANSLATOR

It allows us to write some bit vector payload into a bit vector work
starting from the bit position idx. Effectively, the align and mask stages
accomplish the write of a new datagram into the work register at various bit
positions workidx. The algorithmic complexity of the UT encoding and thus
the required circuit area is mostly dependent on how many different write()
calls must be supported, i.e, how large are the various payload vectors and
at which different workidx positions must they be written. This is also why
the COMMON_DIV parameter is so helpful to contain the area usage because
it homogenizes both the length of the various payload datagrams as well as
their loading locations thereby reducing the logic tree.

WORK_LE
N-1

bit
position

work

0 -1i

workidx = i

Figure 5.9: Diagram of the UT sender shift stage. Showed is the work register partially
loaded with payload from its high bit position WORK_LEN - 1 until bit position i+1 marked
in green. The control path register workidx contains the address of the first unoccupied
bit position in work i. The edge values workidx == WORK_LEN-1 and workidx == -1
mean that the work register is empty or full respectively.

The CRC stage is managed by a simple state machine that tracks whether
the current datagram has to be checksummed and then activates the CRC
stream out by switching the multiplexer towards phy_data (see Figure 5.8).
The required state registers are

type crc_state_t is (idle, active, draining);
subtype crc_cnt_t is integer range 0 to POLY_SIZE/PHY_WIDTH - 1;

where POLY_SIZE is the degree of the selected CRC polynomial. The
crc_cnt register is needed during the draining stage to track the amount
of PHY_WORD units that are being streamed out by the CRC stage. The
CRC stage itself is essentially an instance of the DW_crc_s module from the
Synopsys DesignWare® library (Syn). While we would prefer to use an open
implementation we are not aware of any such modules that are silicon proven
and support various polynomials. Nonetheless, we encourage the community

60

5.3 UT RECEIVER

to develop such a design so that it may be used in a future version of the
UT6.

5.3 UT receiver

This module performs the inverse operation to the UT sender introduced
above; It consumes a stream of PHY_WORD sized code words and parses them
into valid datagrams while discarding comma characters. In an attempt to
avoid repeating ourselves, we will only discuss here the particularities of the
receiver since the strong symmetry to the receiver is reflected not only
in the functionality but also in the structure and features. Nevertheless we
will also provide a full module declaration first:

6Another reason why we opted for a closed intellectual property (IP) is a currently
unanswered question whether the CRC even should be the preferred method to secure UT
datagrams. As we discussed previously there are many ways to ensure datagram integrity
and the CRC mechanism may ultimately prove a sub-optimal solution. As long as this
topic has not been finally addressed we feel justified to pick an off-the-shelf solution to
accelerate implementation

61

5 THE UNIVERSAL TRANSLATOR

entity ut_recv_base is
generic(

TYPELIST : ut_entry_arr_t;
CRC_POLY : pos_arr_t;
PHY_WIDTH : positive;
COMMON_DIV : positive := 1;

);
port(

clock : in std_logic;
reset : in std_logic;
phy_valid : in std_logic;
phy_data : in std_logic_vector(

PHY_WIDTH - 1 downto 0);
link_valid : out std_logic;
link_next : in std_logic;
link_drop : out std_logic;
link_data : out std_logic_vector(

max(
1,
max(get_widths(TYPELIST))
) - 1 downto 0);

link_data_idx : out integer
range 0 to get_widths(TYPELIST)'high;

crc_failed : out std_logic;
decoding_err : out std_logic

);

Recall our discussion of the PHY interface of the UT sender in Section
5.2.2; We have emphasized that the sender must be able to create sensible
phy_data regardless of the assertion pattern of phy_next because it is oth-
erwise not universally usable with all possible serialization techniques such
as described in Chapter 3. The inverse problem for the UT receiver is
that it cannot anticipate the PHY input pattern in all cases and still be
generic. At the same time, losing code words because of bottlenecks will
immediately disrupt the decoding process which would require a wasteful
link re-initialization. The most important design requirement for the UT
receiver is thus that it must never be a bottleneck between the PHY and
the user. The receiver must thus be able to process code words with a
throughput of at most PHY_WIDTH bits per clock cycle, but also any rate or

62

5.3 UT RECEIVER

pattern below that maximum.

This also means that the receiver is weakly blocking at the user inter-
face; It is able to hold an assembled datagram and assert link_valid until
link_next acknowledgment, but will discard it if new phy_data is available
before link_next was asserted as it is more important to preserve the parsing
synchronicity than losing a single datagram.

Furthermore, since the UT receiver may be getting the phy_data from
an unsecured Queue, there is always the possibility that code words were
corrupted, are missing or reordered, which almost surely will disrupt the
decoding process. As we have discussed earlier, the UT encoding scheme
lacks uniquely identifiable commas that can be detected in an unstructured
code word stream. Instead, the UT module rely on a synchronized state that
is implicitly modified every time a code word is sent or received. If that
state is de-synchronized because the receiver receives the wrong code word
sequence it may very well happen that an incorrect header is decoded either
from the wrong code words or from a corrupted code word which can lead to
various scenarios.

The receiver may decode a header it recognizes and start collecting
additional code words to assemble the datagram since the tag inside the
header tells it how long the datagram must be. Then, in case that particular
tag was secured via a CRC there is a very high probability that the check will
fail so the receiver can discard the datagram, pulse crc_failed to notify
the user, and start parsing anew. If however the tag was not secured it will
present potentially completely wrong data—both in the tag as well as the
payload—to the user. Recall however, that SUMTYPE is not required to have
a power-of-two size but the tag is encoded within $clog2($size(SUMTYPE))
bits. If the receiver attempts to decode the wrong bits into a tag it might
decode a header that does not correspond to a valid tag of the sum type
with no associated type length. This is an illegal state that the UT encoding
cannot recover from by itself, so the only option for the receiver is to assert
the decoding_err port and stop further parsing.

The following timing diagrams show the various scenarios that may occur
and what the expected behavior is. We omit all payload ports for the sake
of clarity, and focus instead on the control flow of the interfaces.

63

5 THE UNIVERSAL TRANSLATOR

clock

phy_valid

link_valid

link_drop

link_next
Figure 5.10: Example transactions demonstrating the blocking interface of the UT
receiver. Assume an encoding where every code word contains exactly one datagram.
link_valid is asserted delayed by one cycle with respect to phy_valid to announce new
user data. Matching phy_valid and link_valid colors indicate which datagram the
link_valid refers to. The first transaction is the fast case; link_next is asserted in the
same clock as link_valid. The second transaction is the slow case; link_next is asserted
one clock later than link_valid. Since there is already new phy_data available, as in-
dicated by the assertion of phy_valid, link_drop is asserted to signal that this is the
last chance for the user to capture the second transaction. The third datagram was lost
because link_next was not asserted quickly enough. Unless new phy_data is arriving,
the receiver will hold a valid datagram until acknowledged by the user via link_next.

clock

phy_valid

link_valid

link_drop

link_next

crc_failed

decoding_err
Figure 5.11: Examples of processing corrupt code word streams. The first transaction
was decoded as a legal datagram, albeit with a broken CRC. Note that the receiver
cannot determine whether the header was correct and there was a bit flip somewhere in
the payload or if instead a wrong header was decoded into a legal tag but non-matching
CRC. The second transaction could not be decoded into a valid header, so the receiver
simply raises the decoding_err flag until reset. Any subsequent incoming code words are
ignored.

64

5.3 UT RECEIVER

{link_data_idx, link_data}

align

shift

write CRC

phy_data

combinatorial

stateful

Figure 5.12: Block diagram of the UT receiver module data path. The CRC module is
only used for data checks and has no data path relevant outputs.

5.3.1 Data path
The data path is naturally reminiscent of the UT sender. The shift stage
is where the datagram is assembled, and is a register large enough to accom-
modate the amount of code words needed to construct the largest datagram.
The work register of the UT receiver has the following declaration:

signal work : std_logic_vector(
WORK_LENGTH + pad_to(WORK_LENGTH, PHY_WIDTH)
- 1 downto 0);

We re-use the WORK_LENGTH parameter from the UT sender as well as the
pad_to() function which were both introduced in Section 5.2.3. It is loaded
via the write stage that can set any contiguous PHY_WIDTH bit within the
work register with the incoming phy_data. The datagram is left-aligned such
that bit work’high coincides with the Most Significant Bit (MSB) of the
header. Using a counter workidx to store the current load state of the work
register as described in Figure 5.9 as well as the work() procedure defined
in Listing 6, the write stage performs an access of the form write(work,
workidx, phy_data). Once enough data has been collected, the align stage

65

5 THE UNIVERSAL TRANSLATOR

extracts the payload and tag out of the datagram and moves them to the
output ports. In case the datagram was not aligned a check must be per-
formed to determine whether the rest of the code word contained an EOF
comma or the beginning of a new datagram. Should there be valid data left
over, a shift is performed that aligns it to the left. At most PHY_WIDTH-1
bits must be copied from various bit positions within work to realize this
data shift, which subsequently also can mis-align the write() position dur-
ing code word reception. All in all, the receiver can turn into a full-blown
barrel shifter depending on the TYPE_LIST and the COMMON_DIV parameters,
so great care should be taken in evaluating its operating characteristics.

h

WORK_LE
N-1

Hbit
position

work

0 -1i

workidx = i
x

h

WORK_LE
N-1

H

x

j

workidx = j

Figure 5.13: Example of unaligned datagram decoding. Shown is the work register par-
tially loaded with code words x. Bit positions [WORK_LEN-1:H] comprise the header and
are used to decode the datagram. The header can be larger than a single code word.
Code words are appended to the right starting at the first unoccupied position denoted
by the workidx which is then subsequently moved. The first datagram marked in green is
smaller than four full code words and the last code word already carries a part of the sec-
ond datagram marked in yellow. After the first datagram has been assembled and moved
to the user output, the overhanging part of the second transaction is copied to bit position
WORK_LEN-1 of the work register. Three more full code words are needed to complete the
datagram.

5.3.2 Control path
There are three principal components that determine the state of the UT
receiver: the fill state of the work register, the CRC state as well as the
state of the header, i.e, the value of the first HEADER_LENGTH bits of work.

The workidx, like in the UT sender, is a pointer towards the first un-
occupied bit position within the work register. It serves both to track the oc-
cupancy of the work register as well as the position that a new code word can
be written to. When work is empty, i.e, the condition workidx == WORK_-
LEN-1 holds, the next code word contains either the beginning of an aligned
datagram, or an idle comma which can be recognized by its MSB being set.
In this case the workidx does not move which discards the idle comma.

66

5.4 SYNTHESIS EXAMPLE

The header field are the left most HEADER_LEN bits of the work register.
The header is valid only after the workidx has moved past it and is used
to determine whether it contains a legal value as well as the length of the
datagram.

Code words are continuously fed into the crc stage (see Figure 5.12) upon
reception. Its only output is the crc_ok flag that is raised only7 if all the code
words of a datagram including the CRC have been passed into it. Since all
secured datagrams must be aligned to PHY_WIDTH, the receiver can simply
re-set the crc stage whenever an aligned code word is received. If the header
indicates that the datagram carries a CRC, the crc state, which is simply
a counter, is used to prevent writes of the code words containing the CRC.
A secured datagram is only presented at the user output if, and only if, the
value of workidx matches the datagram length decoded via the header, the
crc counter indicates a completed reception, and crc_ok is raised.

5.4 Synthesis Example
To demonstrate the flexibility that the UT codec modules provide, we will
discuss the serialization of a specific real-world sum type. It contains the
types required for the communication with the current-generation neuro-
morphic hardware of the Electronic Vision(s) Group at the Heidelberg Uni-
versity, the High Input Count Analog Neural Network with HAGEN Exten-
sions (HICANN-X) chip, which we will discuss in more detail in the next
chapter. In particular, we will discuss the sum type in the to-chip direction,
which we will denote by −→Sx. For now, it is sufficient to understand that this
benchmark is not artificial but rather an example of the decisions a design
team may make when offered a new paradigm where universality and clarity
are paramount.−→

Sx is a sum of thirteen types which were mostly chosen independently
from the underlying serialization but instead mainly represent the data units
the individual modules within the HICANN-X natively consume. The sizes
of the individual types are not fixed, but rather derived from parameters and
are thus dependent on the particular incarnation of the chip. In the current
versions, the sizes of the types within −→Sx are in bits: [24, 48, 72, 41, 40,
72, 40, 72, 40, 64, 8, 1, 0]. The entries are not unique because two
different types can have the same size, and vice versa, since if the same type
belongs to different Queues it must also have multiple entries to distinguish
it via the tag.

7Disregarding false positives that are mostly dependent on the size of the CRC poly-
nomial

67

5 THE UNIVERSAL TRANSLATOR

One detail we will omit for clarity in this discussion is the CRC scheme
for −→Sx. As we previously noted, the UT encoding scheme allows us to se-
lectively secure individual types within a sum type, and this is utilized for−→
Sx as indeed not all of these types are secured for HICANN-X. However,
the choice of the CRC polynomial does depend on a specific PHY_WIDTH
parameter and is furthermore dependent on the implementation, which we
previously acknowledged to be commercially available IP. We will instead
focus on the gearboxing and encoding part of the UT itself, and will thus
synthesize modules that serialize −→Sx for various values of PHY_WIDTH and
COMMON_DIV respectively but do not apply a CRC anywhere8.

5.4.1 Experiment Setup
We synthesize a UT codec pair consisting of each an sender and receiver
module using the Synopsys™ Design Compiler® Graphical tool in the version
2018.06-SP3 for linux64 for the tsmc65lp technology node. We choose an
ASIC synthesis in favor of an FPGA implementation because the architecture
of an FPGA will obfuscate the effect we want to demonstrate, namely how
the choice of (PHY_WIDTH, COMMON_DIV) affects the resulting area, because
there is now the additional effect how well the design fits in the particular
look-up table (LUT) network. We synthesize for a rather low clock frequency
of 100 MHz which however still yields code word rates up to several hundred
Mega Bytes for large values of PHY_WIDTH. We choose PHY_WIDTH = {1, 8,
32, 64}, since as we noted before, these are the common widths of serializer
user interfaces. For each PHY_WIDTH, we sweep COMMON_DIV from 1 to Cmax,
which is calculated as follows:

def Cmax(S, phy_width):
#calculate length of header
#log2(S) + 1 comma bit
header_length = len(S - 1).bit_length() + 1
return _align(header_length + max(S), phy_width)

For each PHY_WIDTH and sum type S, Cmax calculates the padding such
that all the datagrams are of the same length and also a multiple of PHY_-
WIDTH. This results in the simplest encoding logic but also large unused data
fields that are only used for padding (see Figure 5.14).

8Note that we may forego using a CRC at the link level in a future version of HICANN-X
simply because the PHY might be word secure by itself.

68

5.4 SYNTHESIS EXAMPLE

h A

x0 x1 x2

C = 1 h B

x0 x1 x2 x3

h A

x0 x1 x2

C = X h B

x0 x1 x2 x3

h A

x0 x1 x2 x3

C = Cmax h B

x0 x1 x2 x3

Figure 5.14: Various alignments COMMON_DIV = C of two datagrams for a certain PHY_-
WIDTH size X. The case C = 1 preserves the individual sizes of the types and has the
highest bit efficiency for the UT encoding scheme because no padding is used. When
C = X, padding is added such that every datagram is aligned to PHY_WIDTH, which
eliminates the need of EOF commas and greatly reduces the logic complexity of the codec.
When C = Cmax, padding is such that all datagrams are the size of the largest datagram
in the case of C = X. This produces the simplest logic but results in the lowest bit
efficiency as entire code words may contain only padding data.

As we have mentioned previously, the COMMON_DIV parameter represents
a trade-off between logic complexity and bit efficiency. The average bit ef-
ficiency for S depends on the average pad size for a particular tuple COM-
MON_DIV, PHY_WIDTH as well as the length of the header. It can be calcu-
lated via the function calc_biteff(S, phy_width, common_div), declared
as follows:

69

5 THE UNIVERSAL TRANSLATOR

returns the datagram sizes
for a sum type S
def calc_datagrams(S, phy_width, common_div):

headerlen = (len(S)-1).bit_length() + 1
retval = []
for width in S

val = width + headerlen
evey datagram must be at least
phy_width bits large
if val < phy_width:

val = phy_width
retval.append(_align(val,common_div))

return retval

average bit efficiency for S
returns an averaged a_i/d_i
where a_i is the individual size in S
and d_i is the datagram size for a_i
depending on phy_width, common_div
def calc_biteff(S, phy_width, common_div):

return sum(\
element wise division
np.divide(\

S, calc_datagrams(S, phywidth, common_div))\
)/len(S)

In practice, the bit efficiency will also depend on the actual transmission
pattern, i.e the subset of −→Sx that is used the most during operation. How-
ever, it will still follow the general trend of the full average, i.e an—albeit
somewhat artificial—scenario, where all of −→Sx is used evenly.

A related measure is the amount of code words needed to transmit a
type in −→Sx for a particular parametrization COMMON_DIV, PHY_WIDTH. It is
a measure of encoding latency, since the UT codec can at most consume or
produce one code word per clock cycle. We can again construct an average
latency for −→Sx via avg_latency(S, phy_width, common_div), declared as
follows:

70

5.4 SYNTHESIS EXAMPLE

def calc_wordeff(widths, cd, phy_width):
average element-wise division
of calc_datagrams(widths, cd, phywidth)/phy_width
return sum(\

np.divide(\
calc_datagrams(widths, cd, phywidth),\
phywidth)\
)/len(widths)

5.4.2 Results
Figure 5.15 shows the results of the synthesis sweep together with the bit
efficiency and code word sizes. As we expected, the choice of COMMON_DIV
has a significant impact on the synthesized chip area. This is due to the
varying combinatorial complexity which is proportional to the number of
different sized datagrams as well as EOF commas as discussed previously in
Section 5.1.

The bit efficiency predictably shows a general trend downwards, since
the pads of the datagrams tend to grow with a larger COMMON_DIV. It jumps
upwards whenever COMMON_DIV divides into one or several datagrams which
then reduces padding. As intended, it is possible to very favorably trade chip
area for bit efficiency for any PHY_WIDTH X.

To show a particular example, the HICANN-X employs UT codecs with
PHY_WIDTH = 8. In the first version, a COMMON_DIV of 1 was chosen for maxi-
mum throughput. Later versions of HICANN-X increased that parameter to
8 which sacrificed about 6% average bit efficiency and latency for over 30%
area decrease (see Listing 7).

Version COMMON_DIV Area [µm2] avg. bit eff. [%] avg. latency
1 1 6855.48 75 5.69
2 8 4671.72 71 6

Listing 7: UT codec differences between HICANN-X version 1 and 2.

Still, the most attractive feature of the UT codec remains the fact that
these trade-offs are possible while remaining agnostic to the user interface.
There is no need to artificially change type sizes within −→Sx to try and im-
prove alignment, and it is also possible to encode sum types into any code
word sizes without affecting the user interface. The UT encoding achieves

71

5 THE UNIVERSAL TRANSLATOR

true separation of concerns for a link layer which we so sorely missed in
contemporary architectures.

5.5 Conclusion
After introducing the UT encoding scheme and the corresponding RTL im-
plementation of the codec, we now have a way to tunnel arbitrary sum types
S through a tunneling Queue Q of any width. If Q is stream secure, the
UT codec will simply facilitate the gearboxing of the datagrams as well as
provide flow control via commas regardless if the Queue is blocking by itself.
Should Q however be unsecured, the UT codec can selectively upgrade any
entries of S to be word secure via CRC that are calculated and appended
during the encoding process. The receiver provides a link status interface
that can notify the user that corrupt data has been received which then can
prompt her to re-initialize Q in case of unrecoverable decoding errors. A free
alignment parameter can be used to trade bit efficiency for chip area without
the need to modify either S or Q.

72

5.5 CONCLUSION

Figure 5.15: Synthesis sweep for the UT codec of −→Sx for various parameters (PHY_WIDTH,
COMMON_DIV) = (X, C). Figures in the same row share the same value for X and the same
range for C = [1, Cmax(−→Sx, X)] The leftmost column shows the total synthesized areas of
the encoder and decoder. Center column shows the averaged bit efficiency as a function
of C. Right most column shows the average code word length for −→Sx.

73

5 THE UNIVERSAL TRANSLATOR

74

Chapter 6

Stream secure Queues

Whereas the UT codec gives us word secured Queues, we are still missing the
highly desirable stream security feature for Queue tunneling. Following the
spirit of the UT, a potential solution should not only be parameterizable on
any sum type, but also provide parameters that allow us to tune the protocol
to a wide range of application scenarios.

6.1 ARQ revisited
The Automatic Repeat-Request (ARQ) sliding window protocol is success-
fully used in the Electronic Vision(s) group in several projects since at least
2008 (Karasenko, 2011, 2014; Philipp, 2008). It employs backward error cor-
rection by storing data in a replay buffer and implementing a sliding window
protocol using sequence numbers (SEQs) as additional meta data. It is flex-
ible enough to be used as a transport layer both for Host communication as
well as in custom chip-to-chip links (Karasenko, 2014). The latter incarna-
tion implements a tinypacket version of the ARQ that appends a SEQ to the
individual words pushed into it instead of collecting several words into larger
packets that carry a single SEQ. This structure already looks promising,
since it not only provides the FIFO interfaces of a parameterizable Queue,
but is also very easy to tunnel through another Queue of an appropriate
width because individual user words are also individual TLPs. In case the
tunneling Queue is at least word secured this immediately creates a stream
secure Queue.

A slightly awkward property of the ARQ, and indeed any error correc-
tion mechanism, is the need of a back-channel over which the receiver trans-
mits acknowledgment numbers (ACKs) to the sender upon successful recep-
tion. This back-channel has far lower bandwidth requirements, because it

75

6 STREAM SECURE QUEUES

only transports ACK information back to the sender, which is at least two
ACKs per transmit window. The tinypacket ARQ implementation within
the BrainScaleS neuromorphic hardware (BSS) system symmetrized this by
piggy-backing the ACKs on top of normal payload datagrams and adding
a header bit that signified whether the payload is valid. While this was a
reasonable design choice because one typically wants a duplex connection
between chips anyway1, it also creates potentially wasteful serializations be-
cause the data and SEQ fields are transmitted even if they are not valid.
Even if one devises a serialization technique that partially decodes the TLP
and only serializes the actual data that is needed, this link layer stands little
hope to be in any way generic.

typedef struct packed
{

logic [DATA_WIDTH-1:0] data;
logic seqv;
logic [SEQ_WIDTH -1:0] seq,

ack;
} tinypacket_t;

Listing 8: Parameterized TLP declaration of the tinypacket_duplex ARQ module.
DATA_WIDTH is the size of the FIFO interfaces at the client side, SEQ_WIDTH is dependent on
the Bandwidth-Delay Product (BDP) of the interconnect. The ack field is piggy-backed
from the back-channel. A seqv bit is needed to distinguish between valid payload and
ACK-only packets since ACKs are always valid.

6.2 Dynamic timeouts
The latest significant feature introduced to the ARQ implementation are
dynamic timeouts. Two timers are active during operation: The SEQ timeout
in the master, and the ACK timeout in the corresponding target.

SEQ timeout Also called the resend timeout, is the time the ARQ master
waits until the first outstanding SEQ is re-sent. If it is too short, the master
will re-sent data that was never lost but whose ACKs simply have not reached
the master yet thereby congesting the link. If it is too large, the master will
not start re-sending lost data quickly enough which wastes bandwidth.

1The two data channels are otherwise logically completely independent

76

6.2 DYNAMIC TIMEOUTS

Client

Network

write_data

txbuf
ARQ

master

tx_data tx_SEQ tx_ACK

ARQ
target rxbuf

waddr

txaddr

raddr

rxaddr

rx_datarx_SEQrx_ACK

read_data

tinypacket_duplex_arq

Figure 6.1: Block diagram of the tinypacket_duplex ARQ module. It is connected via
blocking FIFO-like interfaces to the Client and Network layers (handshake ports omitted
for simplicity). Every word at the Client layer is treated as an atomic network packet by
the ARQ and transported on the Network layer with additional SEQ and ACK fields used
for data recovery.

ACK timeout This is the time that the ARQ target waits after deter-
mining that an ACK needs to be sent to further accumulate ACKs before
triggering the transmission of an ACK-only packet. To maintain through-
put, the ACK timeout should be such that the master receives at least the
ACKs for half of its window when it is just about done with sending the full
window. Again, if the timeout is to short, the target will waste bandwidth
in the back-channel by congesting the link with unnecessary ACKs.

Both of these timeouts used to be static, i.e they could be manually set
by the user but did not change afterwards. This posed a problem since the
optimal value of the timeouts is heavily dependent on the state of the link
at runtime. The link could be congested, thereby increasing the delay and
decreasing the throughput, or the client at the receiving end point could be
blocking which causes a stall of the protocol.

These issues were addressed by Gaëtan Delétoille (Deletoille, 2016), who
replaced both static timeouts with dynamic versions that probe the link state
and set the timeout counters accordingly.

For the resend timeout, the master now maintains running averages of

77

6 STREAM SECURE QUEUES

measured round-trip times (RTTs) and ACK frequency and sets the timeout
to be a weighted sum of the latest values. We also now employ a variant of
the Slow Start mechanism described in (Allman et al., 2009): Each time a
packet loss is detected, the current window is halved until new ACKs start
flowing in where the window is subsequently reset to the maximum value.

As for the ACK timeout, the target now maintains a running average of
the incoming packet rate to get an estimation of the current link throughput
at the receiving end. It then sets the timeout to be

timeout_cnt <= WINDOW_SIZE/MAX_ACKS_PER_WINDOW*estimation;

using the parameter MAX_ACKS_PER_WINDOW, which rather self-explanatory
determines the target ACK rate at runtime conditions.

6.3 Sum type ARQ
The concept of sum types very naturally carries over to the ARQ tinypacket
implementation. Since the dynamic ACK timings now make sure that the
throughput is optimized at runtime with as few ACKs as possible, the inclu-
sion of a mandatory ACK field in the network datagram seems to be rather
inefficient. Instead, we can create a sum type that either carries user data or
an ACK.

Going even further, we can also introduce sum types at the client layer
simply by reinterpreting the flat bit arrays write_data, read_data as packed
structs containing the tag and data of the sum type as described in Section
4.1. A sum type S at the client layer now generates a derived sum type
S ′(SEQ_WIDTH), where every entry in S is now appended by a SEQ field
of size SEQ_WIDTH. In a duplex configuration, S ′ is then further merged with
an ACK-only type that carries the back-channel ACKs for the other direc-
tion.

This gives us now a generic building block for tunneling arbitrary sum
types, and therefore an arbitrary amount of arbitrarily sized Queues, with
stream security as long as the network side of the ARQ module is at least
word secure. This obviously fits very well together with the UT modules and
now gives us the core functionality of a generic link layer which can be used
to transport any protocol using any serializer.

To demonstrate this generic behavior, we will now proceed with the dis-
cussion of the HICANN-X communication infrastructure.

78

6.3 SUM TYPE ARQ

Client

Network

{tag, data}

−→
S

txbuf

−−−→
ARQ
master

{tag, data, SEQ}

+

−→S ′

−→
Sd

←−−−
ARQ
target rxbuf

waddr

txaddr

raddr

rxaddr

{
←−
−−

A
C
K

}

{tag, data, SEQ}

-

←−S
′

←−
Sd

{ −−−→
A
C
K

}

{tag, data}

←−
S

sum_duplex_arq

Figure 6.2: Block diagram of the sum_duplex ARQ module. The client and network layer
ports now represent sum types instead of raw bit strings. The client sum types −→S and ←−S
can be entirely independent, as well as the parametrization of the two ARQ channels. The
outgoing duplex network sum type

−→
Sd is a sum of −→S′ and the back-channel type containing

the ←−−−ACK, the inverse is true for the incoming network sum type
←−
Sd.

79

6 STREAM SECURE QUEUES

80

Part III

HICANN-X

81

Chapter 7

Overview

The HICANN-X is the latest incarnation of the accelerated mixed-signal neu-
romorphic devices build by the Electronic Vision(s) group at the Heidelberg
University. It is part of the BrainScaleS-2 neuromorphic hardware (BSS-2)
family of these devices, manufactured in the 65 nm TSMC process and its
most advanced member to date. The BSS-2 devices pair asynchronous ana-
log continuous-time neuron circuits connected by a programmable synapse
memory crossbar with a Plasticity Processing Unit (PPU) (Friedmann et al.,
2013) that can access them to employ various plasticity algorithms, but also
perform general-purpose tasks like device configuration and monitoring as
needed. The HICANN-X embeds two PPUs, each controlling two quadrants
each consisting of 128 neuron circuits and 128× 256 synapses containing the
weight storage and correlation measurement circuitry.

Substantial literature has been published on the principles of the BSS
approach (Brüderle et al., 2011; Schemmel et al., 2010; Schmitt et al., 2017),
and in particular the BSS-2 architecture (Aamir et al., 2017; Billaudelle et al.,
2019; Friedmann et al., 2017; Schemmel et al., 2017) as well as their prede-
cessor called Spikey (Pfeil et al., 2013). Furthermore, a growing number of
manuscripts is available on the HICANN-X, both from an experimental as
well as architectural perspective which we will make heavy use of when re-
ferring to specific parts of the device that are already documented. We will
focus mainly on the particular I/O requirements these devices exhibit and
our way to address them.

7.1 Continuous-time computing
Broadly speaking, the von Neumann bottleneck is addressed in two ways by
conventional von Neumann architectures;

83

7 OVERVIEW

Figure 7.1: The HICANN-X. With kind permission from Andreas Grübl.

Data locality Also called caching is the technique to use small but fast
local memories and use various algorithms to fetch data from the large but
slow main storage, ideally just before that data is actually needed. This
technique relies on the fact that all modern computers can freeze their state
while waiting for data, even if the latency jumps due to cache misses.

Packet Serialization The various data consumers in a device are usually
connected over a Bus that can span both on- and off-chip nodes. To avoid
clogging the bus with high request rates which can easily overwhelm the
arbitration logic, virtually all modern bus systems are designed to operate
on large chunks of data that are moved in bursts between nodes. When
moving off-chip, packets are used to minimize overhead on the link and thus
maximize data throughput. For example, a typical cache line size in proces-
sors is 64 Bytes, even when the processor itself is scalar and in-order, thus
consuming much less than that per clock cycle. Similarly, PCIe typically
implements maximum TLP sizes of 4 KiB which is the typical page size in
memory management schemes. As a consequence, modern bus networks and

84

7.2 CONFIGURATION

chip interconnects support rather low transaction frequencies relative to their
data frequency.

However, devices like the HICANN-X struggle to fit into this design space.
Because the neuron circuits are analog and asynchronous, their stimulation
with spike events must be precisely controlled. This can be done by syn-
chronizing the input interface—not the neurons themselves—with the user
and then inject events via timed release into the device. While latency is
somewhat less of a concern, the jitter, i.e the latency variation, is much more
so, since the timing of a spike is the only information it carries and thus must
be precise with respect to the intrinsic neuron time scales. Furthermore, the
maximum link transaction rate determines the minimal temporal distance
between events, which is also an important metric for the system. There is
also no use for flow control with event data, since events that must be delayed
due to congestion can usually be dropped entirely due to the abnormally high
jitter they may have incurred during transport. Finally, as long as link error
rates stay reasonably low, we can even do away with a guarantee for data
integrity if it suits us, because corrupt event data may result in the wrong
neuron being stimulated once in a while which introduces additional noise
and does not pose a problem in most cases.

These are all properties of an unsecured Queue with a moderate word
size where individual words contain the tuple {address, timestamp}, where
address contains the target synapse address and timestamp contains the in-
tended time of delivery. In the from-chip direction, the address field contains
the source neuron and the timestamp field the time of recording at the in-
terface. Note that the size of the address field is a matter of the ANN block
size for a particular architecture, but the timestamp field size is dependent
on the link latency which it needs to be able to compensate for. Separation
of concerns dictates that these fields must be able to be sized independently
from each other while maintaining bit efficiency which directly influences the
achievable transaction rate. The method of synchronization is irrelevant and
can be as simple as a RTT measurement in case both link partners share the
same clock source as is the case with the HICANN-X.

7.2 Configuration
The HICANN-X has a large configuration space that needs to be set before
running an experiment. This includes the PPU memories that need to be
initialized as well as the configuration of various neuron parameters, synapse

85

7 OVERVIEW

tx rx

t0

append

addr

t0 + ∆

delay

addr
{addr,t0}

synced
async

Figure 7.2: Tunneling of real-time data via a Queue. An event with an address label addr
is appended at the append stage with a time stamp at time t0 when it is pushed into the
Queue. After appearing at the rx side of the Queue, it is held back at the delay stage
until at least t0 + ∆ has been reached where it gets released. The append and delay
stages must be synced via some implementation-dependent mechanism. The choice of ∆
is crucial, as it depends on the delay and jitter of the tunneling Queue. See (Rettig, 2019)
and (Schmidt, 2017) for more details.

crossbars and weights. Due to the accelerated neuron dynamics and thus rel-
atively low execution times, this setup phase can be a significant proportion
of the total runtime and thus limit the achievable experiment rates. This
configuration data is loaded via the main on-chip bus, which is an imple-
mentation of the OCP bus specification called Omnibus developed by Simon
Friedmann (Friedmann, 2013).

The main HICANN-X Omnibus (HX-Om) tree is multi-master, multi-
slave interconnect clocked at 125 MHz with 32 bits address space and 32 bits
payload size. It has a burst size of one, i.e, a single transaction contains only
a single data word for reads or writes. The maximum transaction rate in the
HX-Om is determined both by the RTT to a particular node as well as the
maximum allowed in-flight transactions within the sub-tree.

The masters acting on the HX-Om are:

JTAG This master is tunneled via JTAG from the host FPGA as a side
channel for debugging and startup purposes. It is unused during normal
operation and has a very low bandwidth.

Highspeed This is the main entry point for off-chip configuration into the
HICANN-X. It should be fast enough to support the maximum transaction
rates in the bus without bottlenecking.

86

7.3 PPU MEMORY INTERFACE

PPUs top and bottom While the main task of the PPUs is modifying
synapse weights in their ANN block via a dedicated vector unit, they can also
be used to configure the chip, as we have mentioned previously, and can thus
act as a master on the HX-Om. In software, these transactions are memory
mapped to a high bit offset.

For each master, the ordering of the transactions is guaranteed, i.e all
responses return in the same order as the corresponding requests even if sev-
eral masters are active at the same time. However, there is no concept of
locking the bus for exclusive usage which can result in data hazards if more
than one master is operating on the same address range. This is in practice
not a problem since there are currently no use cases where two masters need
to access the HX-Om at the same time, but it is a good reason to make
sure that the JTAG master is used as little as possible and ideally not at all
during operation.

The main slave subtrees, which are accessed most during the setup phase,
are

PPUs top and bottom These nodes are each further subdivided to access
the static random-access memory (SRAM) main memory of the processors
as well as the respective synapse memory.

ANNcore This node provides access to the neuron parameters in the four
quadrants as well as the configuration of the event merger that can route
events between quadrants and off-chip.

7.3 PPU memory interface
The PPUs have a rather small local memory of 16 KiB for running programs,
which can somewhat limit their usage in certain use cases. The HICANN-X
does not have a dedicated external memory interface such as double-data
rate synchronous dynamic random-access memory (DDR-SDRAM), but it is
connected to a host FPGA via high-speed serial links that does have ample
storage both in on-board SRAM cells and external DDR-SDRAM chips. An
external memory interface for the PPU has been developed by Christian
Pehle that allows it to access memory on the host FPGA. There are two
logical channels per PPU:

87

7 OVERVIEW

Data The PPU uses an Omnibus variant that acts on 64 bit wide data with
a burst length of two to store and read data from external memory. The num-
ber of in-flight transactions is determined by the prefetch size the memory
controller of the PPU can handle, which is currently at most 128 B. Because
Omnibus supports byte enables, data can be accessed in byte granularity,
although this is mostly useful for writes as the whole 128 bit per transaction
are still transported.

Instructions The PPU also has a separate channel that can request in-
structions from the external memory. The PPU issues 32 bit wide addresses,
which return 32 bit wide instructions per request. The in-flight parameter is
determined by the cache eviction policy and is currently set at 16 instructions.

Both the PPU memory interfaces and the HX-Om access must be stream
secure because they are not designed to work with out-of-order or malformed
transactions. They are also asymmetric both in data width and direction,
since the HICANN-X acts as the master on the memory interface but is a
slave for configuration. Still, both protocols can be split into Queues in the
same manner as described in Section 2.2. For the HX-Om and PPU data
interfaces three Queues are needed, two in the master direction containing
data and commands respectively and a single Queue in the slave direction
containing the slave responses. The PPU instruction interface only needs
a single queue each in master and slave directions because it is a read-only
channel.

88

Chapter 8

PHY

The HICANN-X employs the 65 nm version of the LVDS serializers used for
the BSS chips (Scholze et al., 2012). In contrast to the interconnect described
in (Scholze et al., 2012) we use only the raw serializer full-custom macros
without the link layer designed for the BSS system. It establishes a byte
aligned full-duplex link using one differential data pin and one differential
clock pin per direction. Data is transmitted in a DDR scheme, which gives
the parallel side to serial side clock ratio at four-to-one. Because the link is
capable of data rates of 2 Gbit s−1 at a serial clock frequency of 1 GHz, the
parallel side of the PHY is clocked with up to 250 MHz. We will however limit
ourselves to 1 Gbit s−1 at 500 MHz serial clock frequency, since the Kintex-7
host FPGA can only support LVDS DDR bitrates up to about 1.2 Gbit s−1

at the GPIO pins (Sawyer, 2018). The PHY implements a link training
command during which the link partners transmit a known data pattern
and simultaneously adjust programmable delays trying to detect the training
pattern at the receiving end. After both PHYs found alignment the control
is then passed to the user interface which can then send and receive bytes.

The PHY does not support flow control and will serialize whatever data is
at the tx_par_data port during a par_clk period. Conversely, every par_-
clk period a byte is present at the rx_data_par port if rx_par_valid is
raised.

Besides the full-custom ASIC implementation, there also exists an FPGA
implementation for Xilinx devices that uses the ISERDESE2 and OSERDESE2
primitives for DDR serialization and IDELAY programmable delays for the
link startup phase (Xil, 2018).

89

8 PHY

interface phy_if();
parameter int PHY_WIDTH = 8;

logic tx_next,
rx_valid,
start_link;

logic [PHY_WIDTH-1:0] rx_data,
tx_data;

modport client (
input tx_next,

rx_valid,
rx_data,

output tx_data,
start_link

);

modport phy (
output tx_next,

rx_valid,
rx_data,

input tx_data,
start_link

);
endinterface

Listing 9: SystemVerilog interface encapsulating the client side of the PHY. It is syn-
chronous to the client byte clock par_clk that is divided by four from the serializer bit
clock ser_clock.

This serializer is very well suited to be used in conjunction with a UT
codec. Using the UT enhances the PHY from a non-blocking unsecured
Queue to a blocking tunnel capable of transporting any number of Queues
with varying security levels.

8.1 Link initialization
The PHY start-up procedure is very simple, yet reliable. Each of the link
partners can be configured to act as the init-master or init-slave. To
initialize the link, both start_link ports are raised one after the other start-

90

8.2 UT LINK CHECKING

par_clk

start_link

tx_data<7:0>

tx_next

rx_data<7:0>

rx_valid

PHY_FPGA
par_clk

start_link

rx_data<7:0>

rx_valid

tx_data<7:0>

tx_next

PHY_ASIC

ser_clk

data

ser_clk

data

Figure 8.1: Block schematic of a duplex serializer-deserializer (SerDes) module pair. Each
partner sends its serial data synchronous to the ser_clk, whose period is a quarter of
the corresponding par_clk that clocks the user interface. Because the two par_clk clock
domains should have the same period to avoid over- or underruns, but are not necessarily
phase aligned, some clock domain crossing circuitry is needed to transport the received
bytes to the user side.

ing with the init-master side. After some time (O(µs)) the link training
is completed and both link partners will raise their tx_next and rx_valid
ports to begin client data transfers starting with the init-slave.

To avoid synchronization issues it is prudent to flush the link with commas
for some time of the order of the RTT after link startup. This can be achieved
via valves at the client side of the UT modules that are released after link
training is completed. The PHYs can be re-trained by pulsing start_link on
both sides low, which subsequently puts them into the training state and de-
asserts rx_valid and tx_next until alignment is found again. The decision
when the link needs to be re-trained must be made by the client, since the
serializers do not have a method to track the link health state.

8.2 UT Link Checking
As we discussed previously, the UT decoder is able to detect link errors by
checking the CRC and validating the datagram headers. We can use this
to implement an automatic link health check mechanism that continuously
monitors the data moving through the PHY and restarts the link training

91

8 PHY

FPGA

ASIC

t0 t1 t2 t3

start_link
rx_valid
tx_next

start_link
rx_valid
tx_next

Figure 8.2: Timing diagram of the PHY start-up procedure. At t0 the FPGA side raises
its start_link flag as the init-master. After the ASIC side raises its start_link flag
at t1, both link partners are sending the training pattern and sweep the data eye via
programmable delays. At t2 the ASIC side raises its client side data accept flags after
successfully completing the training. The FPGA side follows suit at t3. Times are not to
scale in this figure. Simulations indicate t3 − t1 ≈ 8.5 µs for the complete training phase
as well as t3 − t2 = 88 ns, which is the client latency in the init-slave→init-master
direction for the 1 Gbit s−1 bit rate.

routine as needed. The link error detection is further improved by imposing
a minimum rate requirement for CRC carrying data, i.e the receiver also
makes sure that a checksummed word is successfully decoded within a certain
maximum time frame. In situations where the link is only carrying idle
commas or unsecured datagrams, artificial CRC traffic should be generated
and filtered at the decoder since it does not carry any information besides
the CRC itself.

The module ut_duplex wraps a UT codec pair together with the link
check functionality and can be used to connect to a PHY such as the one
we have available for the HICANN-X. We will again first provide the VHDL
module declaration:

92

8.2 UT LINK CHECKING

entity ut_duplex is
generic(

WRITE_TYPELIST : ut_entry_arr_t;
READ_TYPELIST : ut_entry_arr_t;
CRC_POLY : pos_arr_t;
COMMON_DIV : positive := 1;
PHY_WIDTH : integer range 2 to 64

);
port(

clock : in std_logic;
reset : in std_logic;
link_enable : in std_logic;
link_check_period : in integer;
crc_err_cnt : out integer;
decode_err : out std_logic;
write_valid : in std_logic;
write_data : in std_logic_vector(

max(get_widths(WRITE_TYPELIST))
- 1 downto 0);

write_idx : in integer range
0 to WRITE_TYPELIST'high;

write_next : out std_logic;
read_valid : out std_logic;
read_data : out std_logic_vector(

max(get_widths(READ_TYPELIST))
- 1 downto 0);

read_idx : out integer range
0 to READ_TYPELIST'high;

start_link : out std_logic;
tx_data : out std_logic_vector(

PHY_WIDTH-1 downto 0);
tx_next : in std_logic;
rx_valid : in std_logic;
rx_data : in std_logic_vector(

PHY_WIDTH-1 downto 0)
);

end;

Again, we see that the user sum types −→S and←−S encoded by the WRITE_-

93

8 PHY

TYPELIST and READ_TYPELIST respectively can be entirely independent from
each other. Internally, −→Sl and

←−
Sl are derived by appending a link check type:

constant LINK_CHK_ENTRY : ut_entry_t := (0, true);

constant SEND_TYPELIST : ut_entry_arr_t
(0 to WRITE_TYPELIST'length)
:= WRITE_TYPELIST & LINK_CHK_ENTRY;

constant RECV_TYPELIST : ut_entry_arr_t
(0 to READ_TYPELIST'length)
:= READ_TYPELIST & LINK_CHK_ENTRY;

As we noted earlier, this type does not have a payload since its only
purpose is to create intermittent CRC traffic during long idle or unsecured
transmissions. Figure 8.3 shows a block schematic of the ut_duplex module.

UT
send

UT
recv

chk

−→
Sl

←−
Sl

err

reset

ut_duplex
phy_if

st
ar

t_
li

nk

USER
−→
S en

ab
le

←−
S

tx tx

Figure 8.3: Block schematic of a duplex UT module pair including a PHY link checking
mechanism.

On the sender side, the link checker chk counts the cycles since last push
of a secured word. If a maximum amount of cycles is reached it temporarily
blocks the client interface and injects the LINK_CHK_ENTRY of the SEND_-
TYPELIST instead. On the recv side, any decoded LINK_CHK_ENTRY words
are filtered from the stream and not passed to the client. Simultaneously, the

94

8.3 CHANNEL BONDING

period between two successfully decoded and CRC secured words is tracked.
Link re-training is initialized if either one of the following conditions is met:

• Two consecutive datagrams with CRC errors are reported.

• The UT receiver cannot validate the datagram header.

• It has been too long since the last successful CRC reception.

Interestingly, this procedure is enough to trigger a re-training of the PHY
even if there were only errors in one direction. If one of the link partners
issued the re-training routine, its PHY will cease to accept data from the UT
sender and start transmitting the training pattern instead. Since the PHY
on the other side is not yet aware of anything abnormal, it will pass this
training pattern to the UT receiver which practically guarantees that one
of the previously mentioned error criteria is soon met because it is effectively
trying to decode garbage data. This will then trigger the re-training routine
on this side of the PHY as well until both link partners are re-aligned again.

The link training will not complete in case there is a bit error on the clock
line during the alignment phase, since that effectively shifts the data a full
clock cycle which currently cannot be compensated for. While this behavior
can be observed in simulation by corrupting the clock pin, the probability
for such event is very low at the usual bit error rates of < 10−9. The default
link check frequency is currently set at 2048 ns, or 256 link layer clock cycles.

8.3 Channel bonding
The data requirements of the HICANN-X can easily saturate a single 1 Gbit s−1

PHY. Increasing the throughput by using several PHYs could be a feasible
solution to this problem. This channel bonding is usually implemented such
that the link layer sees a single PHY interface of N*PHY_WIDTH bits using
N PHYs. The main benefit is that there is no hardware duplication on any
higher layer and data ordering is not affected since single DLLPs are serial-
ized over several PHYs simultaneously.

There is however significant complexity added at the PHY layer to im-
plement channel bonding which is why it is usually only seen on high-end
interconnects like PCIe or Intel® QuickPath inteconnect (QPI) (Corporation,
2009). The lanes must train not only their own data delays but also align
their de-serialized data to the others. Furthermore, several fall-back possi-
bilities should exist in case not all PHYs are connected or were not able to
complete their training for any reason. Finally, these schemes usually admit

95

8 PHY

only a few possible lane amounts, e.g, N ∈ {1, 2, 4, 8, 12, 16, 32} for PCIe or
N ∈ {5, 10, 20} in the case of QPI.

In contrast, we implement channel bonding above the link layer. Since the
link layer operates on sum types of small- to moderate sizes that represent
individual Queue words, it is very easy to distribute them between various
ut_duplex modules, each connected to its own PHY. All that is needed in
the off-chip direction is a switching layer that distributes data from n in-
puts of the same sum type to m outputs each connecting to a ut_duplex
write port in a load distributing manner. In the to-chip direction, the dis-
tribution logic connecting the links to the clients must also contain some
routing mechanism that determines which client should receive a particular
data word. Various such schemes are possible, and their impact on overall
performance can be quite significant. The current implementation of UT-to-
client routing is reminiscent of the Token Ring topology (IEEE),(Bux, 1989).
Data is committed into the router where it moves past all outputs until a
client accepts it. See (Kanzleiter, 2018) for a detailed report on the link data
distribution for the HICANN-X.

switch

S S S

UT
duplex

S

PHY

UT
duplex

S

PHY

UT
duplex

S

PHY

UT
duplex

S

PHY

Figure 8.4: Block schematic of link layer-based channel bonding. Shown is the off-chip
data flow from 3 clients through a load balancing switch that distributes the individual
words to 4 ut_duplex modules each connecting to an individual PHY.

There are several disadvantages to channel bonding above the link layer.
Firstly, and somewhat less importantly, duplicating the link layer, i.e, the
ut_duplex modules imposes a significant area cost on the scheme. While
channel bonding at the PHY layer would also require some additional align-

96

8.3 CHANNEL BONDING

ment logic it would not depend on the encoding complexity of the link layer,
which can be significant as we have previously discussed.

More troublesome however is the link data distribution problem outlined
earlier, especially in the to-chip direction which often requires some direc-
tional routing as opposed to simple pressure-based load balancing in off-chip
direction. Not only can the area cost become significant, there is also a
very real risk of reordering the link data words during distribution or rout-
ing. This does not concern any clients that were stream-secured via a ARQ
sum_duplex module that would connect to the link layer via the switch, be-
cause the SEQ fields are used to guarantee ordering on the client side of
the ARQ modules. Queues that are not stream-secured will likely experience
some reordering depending on the architecture and link activity. This is how-
ever a manageable drawback for Queues carrying real-time events, since they
carry time stamps and are also often tolerant against reordering on small
timescales compared to the neuron dynamics. We point again to (Schmidt,
2017), (Rettig, 2019) and (Kanzleiter, 2018) for studies that investigated the
feasibility of this approach for event data in neuromorphic hardware.

While the overall throughput increases, latency tends to stagnate or in-
crease when using several PHYs. This is due to the fact that each data word
is serialized independently from others within its respective UT node. Thus,
while the total amount of data words that are simultaneously serialized in-
creases with the number of PHYs, the individual latency stays the same,
which puts it at a disadvantage compared to PCIe where latency indeed im-
proves with the number of lanes. Additional latency can arise from the link
distribution circuitry and is strongly dependent on the individual intercon-
nect requirements.

There are however significant advantages as well, most important of which
is simplicity. We have increased throughput just by duplicating some mod-
ules and employing an additional distribution layer. This can obviously be
done in a generic manner using generate statements and introducing a free
parameter NUM_PHYS. It also greatly aids the separation of concerns, since
this parameter can be chosen such that it fits into the available area and/or
pin count while studying marginal gains using benchmark simulation sweeps.

Additionally, each of the PHYs operates entirely self-contained which
gives the scheme great flexibility. There are no additional alignment issues
due to the number of lanes that for example PCIe experiences which limit it to
only certain combinations of PHYs. It is also trivial to shut down any subset
of available PHYs without issues besides possibly dropping any in-flight data-
grams traversing the affected lanes. Even mixing different PHYs is feasible
which can for instance greatly aid reliability of the design, since slow but sim-

97

8 PHY

ple serializers like universal asynchronous receiver-transmitter (UART) (Fang
and Chen, 2011) can be used as an additional fall-back PHY in case the main
high-speed connection breaks down. This would avoid side-channel issues
because the data words would still arrive at the same Queue interfaces, and
ordering can be again guaranteed if the Queue was tunneled through an ARQ
session.

8.3.1 Clocking
As we mentioned, the PHY does not employ clock-data recovery methods,
but instead has a dedicated clock pin per direction. We can save on redundant
clock pins by only propagating a single clock pin per direction regardless of
NUM_PHY. This scheme distinguishes a single PHY as the clk_master which
receives the rx_clk pin and is responsible to distribute it locally to the other
PHYs. The link training routine needs no modifications since each PHY
aligns its data pins individually, hence any phase shifts of the capture clocks
between PHYs are automatically compensated for. A similar technique is
used in QPI, which combines 20 serial data pins with a dedicated clock
pin. One drawback in this scheme is a slight loss of redundancy, since the
clk_master PHY must always be functioning and online to generate and
propagate the clocks.

98

8.3 CHANNEL BONDING

PHY[1]

TX
D[

1]

RX
D[

1]

PHY[2]
clk master

TX
D[

2]

RX
D[

2]

TX
C

RX
C

PHY[3]

TX
D[

3]

RX
D[

3]
PHY[4]

TX
D[

4]

RX
D[

4]

tx_clk

phy_if[1] phy_if[2] phy_if[3] phy_if[4]

rx_clk rx_clk rx_clk

Figure 8.5: Clock distribution in the HICANN-X channel bonded PHY scheme. The client
interface phy_if[i] of each PHY[i] and the outgoing LVDS data (TXD[i]) and clock (TXC)
pins are synchronous to the internal clock tx_clk. Incoming LVDS data pins RXD[i] are
synchronous to the incoming clock at the RXC LVDS pin. The clock master PHY is in
the middle of the array (in this example PHY[2]), and is the source of two feed-forward
rx_clk chains to its left and right which reach all other PHYs that use it to align their
respective serial data.

99

8 PHY

100

Chapter 9

HICANN-X communication
infrastructure

The high-speed host communication interface of the HICANN-X is also called
Layer 2 Communication (L2) for historical reasons to distinguish it from the
Layer 1 communication that connects neighboring chips for event transmis-
sion. Its purpose is to tunnel the various interfaces of the core logic in the
HICANN-X as described in the previous chapter to a host FPGA to perform
experiments. The tunneling is bi-directional, not only because protocols like
OCP or ARQ require it, but because the HICANN-X acts like a master and
slave simultaneously on different channels including external events.

As serializers, we employ 8 instances of the PHY discussed in the pre-
vious chapter which are combined using the channel bonding method in-
troduced there. They provide an aggregated bandwidth of 8 Gbit s−1 per
direction and can be individually brought online using a JTAG side chan-
nel. Consequently, the ut_duplex modules run at the PHY client clock
frequency of 125 MHz and have the parameters PHY_WIDTH = 8, COMMON_DIV
= 1 and CRC_POLY = [16, 13, 11, 10, 9, 8, 4, 2], which is the 16 bit
wide CRC-16-Chakravarty polynomial (Chakravarty, 2001), and particularly
suitable for smaller payloads of 64 bit or smaller.

We will begin by translating these client interfaces into Queues that are
present at the client side of the L2.

9.1 Downstream
The to-chip or downstream direction transports the various Queues into the
HICANN-X. There are four unsecured event interfaces, each containing a
14 bit address label, that connect to an event merger that routes the events

101

9 HICANN-X COMMUNICATION INFRASTRUCTURE

within the ANN core logic. Two secured Queues are needed to tunnel the
request side of the HX-Om, and another two Queues are needed per PPU
which contain the instruction and data responses from the memory interface.
Recall that all of these Queues are tunneled entirely independently from each
other, as no ordering is guaranteed between any of them. Any synchroniza-
tion happens at the consumer side within the core logic, as for example is
the case for the two HX-Om Queues.

ins_resp<31:0>

data_resp<63:0>

om_data<31:0>

om_cmd<32:0>

event<13:0>

event<13:0>

event<13:0>

event<13:0>

data_resp<63:0>

ins_resp<31:0>

L2 Core logic

mem_if
top slave

mem_if
bot slave

HX-Om
master

event
merger

stream sec.

unsec.

250 MHz

Figure 9.1: Downstream Client interfaces at the L2-Core logic boundary.

None of the types shown in Figure 9.1 are transported as-is, but are
instead passed through some auxiliary logic.

ARQ data All Queues that require stream security form the sum type −→S
which is the client side read sum type for an ARQ sum_duplex module. As
we explained in Chapter 6, the network sum type

−→
Sd is derived from −→S using

SEQ_SIZE = 8 for both directions.
−→
Sd is forwarded from the 8 ut_duplex

modules to the sum_duplex via a token-ring-style router. Splitting of −→S into

102

9.2 UPSTREAM

the individual client side Queues is done via a multiplexer that gets data
from the sum_duplex read port and routes the payload to the appropriate
client via the tag field.

Events Event data is transported through the links with an additional
time stamp field attached, denoted by −→Se. It then enters an l2 event router
module developed by Alexander Schmidt (Schmidt, 2017) where events are
delayed and routed to one of the 4 l2 event interfaces.

read switch

event
router

sum_duplex
ARQ

−→
Sd

8×−→Sx

−→
S .data

−→
S .tag

8×
−→
Sd 8×−→Se

4
×

ev
en

t

2
×

me
m_

if
HX

-O
m

unsec.
word sec.

stream sec.

Figure 9.2: Block schematic of the l2 downstream modules. The from PHY side consists of
8 sum type interfaces −→Sx that are first split into the timestamped and unsecured event data
−→
Se and word secured ARQ data

−→
Sd. The ARQ data is routed to a sum_duplex module that

constructs the stream secure sum type −→S which is then split into the client side Queues.−→
Se is passed through an event router that strips the time stamp after synchronization and
routes the address to the unsecured client side event Queues.

9.2 Upstream
The from-chip or upstream direction of the L2 at the client level is dual to
the downstream direction. The two PPU Queue collections now consist of
the instruction request addresses as well as the data command and payload
Queues since these belong to the master side of the memory interface. Con-
versely, there is now only one Queue containing the slave response data from

103

9 HICANN-X COMMUNICATION INFRASTRUCTURE

the HX-Om. Besides these stream secured Queues, there are again four unse-
cured event Queues connecting to the event merger that are used to transport
events off-chip.

M-ADC Additionally, another unsecured Queue is used to transport membrane
analog-to-digital converter (M-ADC) samples. This analog-to-digital con-
verter (ADC) can be configured via HX-Om and is used to monitor analog
membrane voltages of selected neuron circuits. We choose an unsecured
Queue here to attain a high throughput on the link because the M-ADC
can produce data at rather high rates. However, because the samples are
independent from each other, it is not critical to guarantee transport of all
samples as missing or corrupt data would simply make the membrane trace
noisy.

Figure 9.3 shows the upstream client Queues and their respective sizes.
The internal structure of the L2 is dual to the downstream direction.

ARQ data All stream secured Queues are first collected into the write
port of the sum_duplex ARQ module where they form the sum type←−S . The
network side of the sum_duplex inserts the derived sum type

←−
Sd into a load

balancing switch that distributes the data to the available links.

Events Both neuron events and M-ADC data first pass through a time
stamping module within the L2 that attaches a field containing time infor-
mation on reception. The timestamped events ←−Se are then mixed together
with

←−
Sd to form ←−Sx at the link layer which is then serialized by the UT

modules.
The host FPGA side of the L2 is entirely complementary to the chip side.

On the client side, it contains the same Queue endpoints, but simply switches
the push with the pop side of each Queue and vice versa. On the PHY side,
it still consists of eight sum type interfaces per direction, each connecting
to a single ut_duplex instance. Here, the sum types are swapped, since the
to-chip sum type ←−S on the HICANN-X is now the off-chip sum type for the
FPGA.

9.3 Testing and Evaluation
It is precisely the highly generic nature of our interconnect framework, which
the HICANN-X L2 is an incarnation of, that greatly simplifies the testing
which in turn gives a high confidence of a bug-free design. Unit testing the

104

9.3 TESTING AND EVALUATION

ins_req<31:0>

data<63:0>

cmd<48:0>

om_resp<31:0>

event<13:0>

event<13:0>

event<13:0>

event<13:0>

madc<13:0>

ins_req<31:0>

data<63:0>

cmd<48:0>

L2 Core logic

mem_if
top master

mem_if
bot master

HX-Om
slave

event
merger

MADC

stream sec.

unsec.

250 MHz

Figure 9.3: Upstream Client interfaces at the L2-Core logic boundary.

UT codec by first mocking a simple PHY and then using the HICANN-X
serializer ensures that the link layer works correctly for any client sum type
parametrization with simple tests that pass random payload to the codec and
check for equality at the receiving side. Randomly corrupting the serial pins
of the PHY then ensures that the link checking mechanism works correctly.

The sum_duplex ARQ modules also can be stand-alone unit tested by
connecting two of them together with randomly picked client sum types and
passing a random sequence of payload data while randomly dropping net-
work words. Attaching a sum_duplex module as a client to the PHY and
ut_duplex modules with corruption gives us a unit test that makes sure
we can securely tunnel any sum type even if the network is unreliable. Fi-
nally, the switch and event router modules have been independently verified

105

9 HICANN-X COMMUNICATION INFRASTRUCTURE

8×←−Sx unsec.
word sec.

stream sec.

switch

sum_duplex
ARQ

←−
Sd

sync
×4

←−
Se

sync

←−
SM

switch

2
×

me
m_

if

HX
-O

m

4
×

ev
en

t

MA
DC

←−
S

Figure 9.4: Block schematic of the l2 upstream modules.

in (Kanzleiter, 2018) and (Schmidt, 2017) respectively.
Having gained a high confidence in the building blocks of the L2, we

can move on to integration tests. Because of the clear separation of the
HICANN-X into core logic consisting of complex interfaces and the L2 which
translates them into Queues and then tunnels them, integration testing is
simply done by running the test suite for the core logic interfaces through
the L2.

After successful manufacturing in the beginning of 2019, extensive stress
tests were conducted in hardware by using the same integration tests as for
simulation. We were pleased to observe that the L2 seems to performs ex-
actly to specification as far as the testing can tell. No unexplained systematic
data losses are observed during transport, in particular, all stream secured
Queues are in fact so, with neither data corruption nor reordering issues. The
HICANN-X is in productive usage since the summer of 2019 and already has
sparked active usage within the Electronic Vision(s) group with some first
experimental results published in (Göltz et al., 2019) and (Vision, s)

106

9.3 TESTING AND EVALUATION

We will note here some more technical characteristics for the L2 not
published elsewhere.

9.3.1 Events

One asymmetry between the host FPGA and the HICANN-X itself is the
way events are handled. On the HICANN-X we have four independent event
ports that can send and accept event data from the L2. At 250 MHz, the
event Queues on the HICANN-X support a total bandwidth of 1 GHz event
rate, which translates to 14 Gbit s−1 of net event throughput in both direc-
tions. Since the total available PHY bandwidth is slightly shy of 8 Gbit s−1

at the link layer due to the link check mechanism, it is not enough to trans-
port the full event throughput even if there were no further overheads. The
timestamped link layer events have the form

typedef struct packed{
logic [13:0] addr;
logic [1:0] channel;
logic [7:0] timestamp;

} timestamped_event_t;

where channel denotes the origin and the source L2 event port respec-
tively. Due to the COMMON_DIV layer and the total size of the sum type be-
ing len(−→Sx) = 17 and len(−→Sx) = 13, this results in UT datagrams slightly
smaller than 4 bytes. Thus, the theoretical event throughput maximum
should be about 250 MHz.

However, the current host FPGA design has only a single port for events,
both from and to the HICANN-X each operating at the FPGA L2 frequency
of 125 MHz. Since the FPGA can only process a single word per cycle at
most, this would effectively bottleneck the event throughput to 125 MHz.
To counteract this, we have introduced a simple, yet generic event packing
scheme to increase the event throughput at the FPGA side at constant fre-
quency. The sum types −→Se and←−Se which contain link layer events have three
entries each with the type sizes being

107

9 HICANN-X COMMUNICATION INFRASTRUCTURE

int packed_events[3]
= {

$bits{timestamped_event_t},
2*$bits{timestamped_event_t},
3*$bits{timestamped_event_t}

};

This allows us to aggregate events into double or triple events using a
simple shift register and transport them in parallel to the link layer which
will then only serialize the valid number of events since it is type aware.
This way we can now send and receive events at the FPGA L2 client side
of more than 125 MHz because we can process a variable number of events
per cycle. We point again to (Rettig, 2019) for a detailed explanation of the
mechanism, and the overall performance characteristics of the HICANN-X
L2 event transport mechanism.

The studies done in (Rettig, 2019) showed how sensitive the event traffic is
towards the channel bonding and the distribution circuitry associated with it
at the link layer. Experiments showed lossless data streams only up to about
125 MHz in event loopback tests which is only about half of the aggregated
link layer maximum. Higher data rates experienced significant drops, which
could be localized to the off-chip direction, both within the chip as well as
FPGA L2 layers. Marco Rettig proposed in (Rettig, 2019) a mechanism to
improve the drop rates on the FPGA which were subsequently implemented.

By exploiting the nature of the event packing we were able to insert
compressors in the event routing logic towards the client side on the FPGA
that collapsed subsequent events into larger packed ones in case the client
layer that records the off-chip events is stalling. This pushes the lossless event
off-chip traffic to about 200 MHz until the routing layer starts experiencing
congestion and subsequent drops. This situation dramatically improves if
one uses the switch proposed by Lea Kanzleiter in (Kanzleiter, 2018) for the
distribution of L2 data towards the links, as well as investing more resources
into the link-to-client event routing on the FPGA. The to-chip throughput
indeed shows lossless event traffic up to the theoretical maximum of 250 MHz
in simulation with the expectation that this also holds in hardware.

9.3.2 ARQ
Looking at the stream secured Queues tunneled via the L2 ARQ modules,
both to- and from-HICANN-X, we encounter a slightly different picture. In

108

9.3 TESTING AND EVALUATION

120 140 160 180 200 220
bio rate [kHz]

0

2

4

6

8

10

dr
op

s [
%

]

Figure 9.5: Event loopback hardware experiments on HICANN-X. 2000 spikes of varying
rates are tunneled through the L2 starting at the host FPGA. They then enter the event
merger logic on the HICANN-X where they are immediately looped back towards the
FPGA. Pictured is the drop rate as the ratio between sent and received events at the
biological time scale which is a factor of 1000 slower than wall clock time.

all cases, the client throughput is limited by the client itself rather than the
interconnect. This is little surprising since the L2 was designed to handle
the high event throughput in the first place. Still, there are some interesting
details worth noting.

The discussion of ARQ performance inevitably involves the investigation
of the BDP within the interconnect.

The transmission delay of the data is variable, since it depends on the
size of the type being transmitted. This is naturally due to the fact that the
UT is type aware and thus takes a varying amount of cycles to serialize data.
Since the sizes of the stream secured client Queues range from 32 to 64 bit
this incurs some non-negligible delay variation depending on the transmission
profile. Additionally, there is total overhead of four byte per word, two for
the CRC, and one for the tag and seq fields each. This puts the payload
efficiency at between 50 to 66% depending on the word with serialization

109

9 HICANN-X COMMUNICATION INFRASTRUCTURE

delays of 8 to 12 cycles, or 64 to 96 ns at 1 Gbit s−1 PHY bandwidth.

Client PHY_tx PHY_rx Client

Client PHY_rx PHY_tx Client

−→
T

L

F P GA

−→
T

P −→
T

L

ASIC

←−
T

L

ASIC

←−
T

P←−
T

L

F P GA

FPGA ASIC

Figure 9.6: Delay diagram for the L2 ARQ traffic.

Figure 9.6 shows the various delays involved in the transport of stream
secured data to and from the HICANN-X.−→

T
L

F P GA is the delay starting from the ARQ client write side until the
input of the PHY client side on the FPGA. It does not depend on the size
of the word because the transport happens on a per-word basis within a
sum type. However, there is some variation due to the link data distribution
scheme since it takes longer to reach PHYs that are further away.−→

T P is the PHY transport delay in the to-chip direction. It is separate
from the serialization delay mentioned previously and acts as an offset for
the total serialization time between the PHY parallel interfaces.
−→
T

L

ASIC is then the time from the link layer to the ARQ rx network side. It
again varies because the individual link layers have a different routing delay.
←−
T

L

ASIC ,
←−
T P ,

←−
T

L

F P GA are the analogous transport delays for the off-chip
ARQ data transport. Listing 9.1 shows the values for all of the delays in
both directions.

[ns]
−→
T

L

F P GA 64-120
−→
T P 88
−→
T

L

ASIC 52-208

[ns]
←−
T

L

ASIC 36-60
←−
T P 80
←−
T

L

F P GA 88-120

Table 9.1: Ranges for delays to and from HICANN-X for ARQ data.

In total, the delays show a rather high spread between 268 ns to 512 ns in
the to-chip direction, and 268 ns to 356 ns in the off-chip direction depending
on the word size and PHY utilization.

110

9.3 TESTING AND EVALUATION

Calculating the bandwidth is more straightforward, as it is just the ag-
gregated 8 Gbit s−1 of the PHYs per direction. In contrast to the unsecured
traffic there is no reduced bandwidth due to link check traffic since all the
ARQ data has a CRC and thus automatically triggers the link check mech-
anism.

We can write the BDP as

D ×B = P ×W(9.1)

with the delay D, bandwidth B, packet size P and window size W . Since
everything else is now fixed, we can find the optimal window size for the ARQ,
i.e the size of the replay buffer to be able to saturate the SerDes connection.
While P is fixed by the client Queues, it also has a certain range. To be able
to saturate the PHYs using any data make-up, we assume the worst case
delays and smallest available payloads of 32 bit (plus 32 bit overhead):

512 ns× 8 Gbit s−1 = 64 bit×−→W(9.2)

⇒ −→
W = 512 bit

64 bit × 8 = 64(9.3)

356 ns× 8 Gbit s−1 = 64 bit×←−W(9.4)

⇒ ←−
W = 356 bit

64 bit × 8 = 44(9.5)

Since the current ARQ implementation requires W to be a power of two
we set both the −→W and ←−W parameters of the sum_duplex ARQ modules at
64 words.

We can test the ARQ performance independently from the client Queues
by measuring the bandwidth of an internal loopback Queue that connects
the to-chip and from-chip sides of the L2. It is 59 bit wide a value chosen
such that no further padding is required at the link layer which represents
optimal bit efficiency for the UT encoding. This perftest testing method
is identical to methods used for BSS chips (Debus, 2015): An FSM can
be programmed to generate loopback data with increasing payload on the
FPGA at full throughput for some duration. Looped data is checked for
increasing payload as well to verify stream security. Packet counters are
used to determine the macroscopic loopback bandwidth for the ARQ.

111

9 HICANN-X COMMUNICATION INFRASTRUCTURE

Figure 9.7: ARQ loopback throughput sweeps for various PHY constellations.

Figure 9.7 shows the results of hardware perftest experiments. There
are 8 PHYs in total, but as we mentioned in Chapter 8 the middle clk_mas-
ter PHY must be always enabled which results in 128 combinations that are
grouped by the total number of active PHYs. The top figure shows that we
can achieve throughput of over 60 MTA/s when using all PHYs, or slightly
below 4 Gbit s−1 net bandwidth excluding overhead, which is about half of
the total available bandwidth. We can however see that the marginal gains
per PHY diminish after using 4 PHYs, which is shown more clearly in the
bottom figure where the gross ARQ bandwidth including overhead is shown
as a percentage of the total available bandwidth. Not only does the Band-
width usage drop from around 88% to 71%, the spread between the various
configurations is also quite substantial. All these effects are due to the lack-
ing link distribution scheme which incur significant delay fluctuations. We
expect significant improvements in future chip versions, where the switching
scheme presented in (Kanzleiter, 2018) will be used.

Nonetheless, the perftest experiments only show a synthetic perfor-

112

9.3 TESTING AND EVALUATION

mance that is not influenced by the client layers. When measuring the PPU
memory interface as well as HX-Om throughput, we find that they all fail to
saturate the available ARQ bandwidth with the notable exception of PPU
data write transactions which can indeed saturate the off-chip ARQ band-
width.

For the HX-Om it is because the bus fabric supports only four transactions
in flight in the latest HICANN-X incarnation to save on pipelining logic. The
HX-Om transactions complete on average in 10 cycles, which, at the HX-Om
operating frequency of 125 MHz and 65 bit per write transaction only requires

B = 4
10 × 65 bit× 125 MHz = 3.25 Gbit s−1(9.6)

which can be comfortably achieved using 5 or more PHYs. A pre-fetching
scheme compensates for the ARQ tunneling delay by allowing 48 transactions
in flight across the L2 tunnel between FPGA and HICANN-X.

In contrast, the PPU memory interface is not well equipped to deal with
a tunneling RTT approaching 1 µs because its in-flight window is too small.
For instance, the longest burst that the PPU data interface can handle is the
width of the PPU vector register (Friedmann, 2013) which is 128 B. Com-
mitting the content of the vector register into the external memory can be
done in a fire-and-forget fashion because the ARQ guarantees transport and
no acknowledgment is needed apart from the usual blocking interface to-
wards the ARQ. This 128 B burst is serialized into 16 64 bit wide words that
are tunneled through a stream secured Queue to the FPGA. At 250 MHz
HICANN-X L2 operating frequency, this creates traffic of

B = 64 bit
4 ns = 16 Gbit s−1(9.7)

over a 64 ns time frame which is vastly more than the sustained ARQ
throughput. Thus, the PPU can saturate the L2 if it can issue bursts at a
faster rate than the L2 is able to tunnel them, which strongly depends on
the workload scenario and the PPU frequency itself.

Loading data from external memory is however far slower because the
PPU can only issue reads of the vector register size and then has to block
until the data arrives to issue a subsequent read burst. Simulations indicate
RTTs of about 950 ns at the PPU vector register for external loads, which

113

9 HICANN-X COMMUNICATION INFRASTRUCTURE

limits the bandwidth to 1024 bit
950 ns = 1.08 Gbit s−1 This can be comfortably sup-

ported by the L2, even if both PPUs perform external data loads at the same
time.

External instruction fetches suffer from a similar problem, where the in-
flight data size is 16 instructions of 32 bit. This is only half of the in-flight
data packet for the memory interface, and thus also only requires only about
500 Mbit s−1 per PPU due to the almost identical RTT. Due to instruction
caching there is however rarely the need to fetch large amounts of instruc-
tions at a time, and increasing the fetch size will almost certainly increase
the probability of premature eviction within the cache in typical workloads
which would hurt the performance (Smith, 1987)

Note how in both the memory load and instruction fetch scenarios, the
performance issues are still separated from the implementation of the L2. We
can try to improve performance by decreasing the RTT, or we can instantiate
a bigger cache and fetch larger amounts of data at a time, or both. The
individual design decisions influence each other across module boundaries,
but do not enforce hard architectural dependencies, but instead admitting
parametrizable solutions that can be tuned in the design exploration phase.

114

Chapter 10

Conclusion

We conclude this work by summarizing the key points of the generic ap-
proach we have taken to implement a scalable chip-to-chip interconnect for
the HICANN-X. Introducing the concept of sum types to HDL design gives
us the ability to reason about communication protocols as a collection of
Queues that are processed and tunneled between endpoints. We also have a
very natural way to increase the transport security of a Queue by composing
it with another derived Queue containing metadata such as sequence num-
bers or CRC, while still being entirely generic.

The UT modules enable the tunneling of arbitrary sum types through a
plethora of possible serializer implementations, offering not only the encod-
ing and gearboxing logic, but also the possibility to provide a blocking client
interface via commas and adding checksums to any member type, thereby
guaranteeing word security if needed. A free alignment parameter aids the
separation of concerns by adjusting the encoding scheme while keeping both
the client and serializer interface stable which represents a trade-off between
chip real-estate and bit efficiency of the encoding. A link checking mecha-
nism can be used to monitor the serializer health and re-trigger the available
link training mechanism on both ends without side-band information.

The sum type approach also provides a convenient way of channel-bonding
serializers; even pairing several different architectures is possible due to the
high parametrization of the UT codec. The logic complexity to align several
serializers in parallel to realize channel bonding at PHY level is replaced by
the much better understood mechanism of packet distribution and routing
at the link layer. A hybrid approach is also possible by channel bonding
several serializers at the PHY layer and then also bonding several of these
again at the link layer. The flexibility as well as the largely independent

115

10 CONCLUSION

design choices benefit the development process to efficiently utilize available
resources while staying within a general framework.

The precise control of the data transport through all layers enable the cre-
ation of low-jitter interconnects that transport small packets at high transac-
tion rates, which is a crucial feature for asynchronous computers that cannot
stall for data. These devices, which stream data while continuously evolving,
will often look to combine stream-secure low-frequency configuration traffic
with high-frequency event data that should be as bit-efficient as possible,
even at the cost of spurious data losses. Examples include the Heidelberg
neuromorphic devices, but also various detector chips, found for instance in
high-energy physics such as the Monopix chips (Caicedo et al., 2019) as well
as the medical field (Ritzer et al., 2020). To date, no unifying concept was
established for the stream interconnect due to the large variation in under-
lying serializers and other device constraints. Works like (Gabrielli, 2014)
describe the readout of digital pixel arrays only up to the PHY layer, with-
out guidance on data framing and other encoding issues. Raw streams, while
very popular in these devices, cannot be a reliable solution because they all
suffer from usability issues, and even encoding schemes like scrambling codes
(e.g, 8b10b) are merely a step in the right direction but do not provide a
comprehensive scheme that fits many scenarios.

The interconnect approach we propose is also beneficial for traditional
von-Neumann computers, although fast and finely tuned technologies like
PCIe are already available. Open-source hardware is gaining traction, with
the RiscV (Asanović and Patterson, 2014) architecture at the helm, with the
goal of providing cheap or even free alternatives to conventionally available
microprocessors. RiscV uses TileLink (til) as its bus architecture, which facil-
itates data transfers between clients in a similar manner as our –admittedly
somewhat less sophisticated– solution, HX-Om bus. While bridges for ex-
isting off-chip interconnects such as PCIe, Ethernet, UART and others are
available, they are all tailor-made for that specific technology and often lack
more advanced features like stream security. Using our approach, a generic
TileLink bridge can be developed that can be connected to almost any kind of
serializers just as we have demonstrated for the HICANN-X L2. The design
team can then make the serializer design process completely orthogonal to
the rest of the device, which greatly simplifies the development process. Fur-
thermore, the evolution of the bridge can be concentrated on a single design
instead of spreading development effort across supporting various bridges
with different requirements.

116

118

List of Acronyms

ACK acknowledgment number . 75

ADC analog-to-digital converter . 104

ANN artificial neural network . 3

ARQ Automatic Repeat-Request . 75

ASIC application-specific integrated circuit . 33

AXI Advanced eXtensible Interface . 15

BDP Bandwidth-Delay Product . 76

BEC backward error correction. .12

BSS-2 BrainScaleS-2 neuromorphic hardware. .83

BSS BrainScaleS neuromorphic hardware. .76

CDR clock-data recovery. .24

CMOS complementary metal-oxide-semiconductor . 3

119

CRC cyclic redundancy check . 14

DDR-SDRAM double-data rate synchronous dynamic random-access mem-
ory . 87

DDR double-data rate .

DLLP data link layer packet . 25

EOF end-of-frame . 44

FEC forward error correction. .12

FIFO first-in-first-out buffer . 7

FPGA field programmable gate array . 5

FSM finite-state machine . 59

GPIO general purpose In/Out . 21

HDL hardware description language . 5

HICANN-X High Input Count Analog Neural Network with HAGEN Ex-
tensions . 67

HX-Om HICANN-X Omnibus . 86

I2Q interface to queues .15

IP intellectual property. .61

120

JTAG Joint Test Action Group . 23

L2 Layer 2 Communication. .101

LUT look-up table . 68

LVDS low voltage differential signaling .

M-ADC membrane analog-to-digital converter . 104

MGT multi-gigabit transceiver . 24

MSB Most Significant Bit . 65

MTTF mean time to failure. .10

MTTSC mean time to stream corruption . 11

OCP Open Core protocol . 15

P2P point-to-point .

PCIe Peripheral Component Interconnect Express . 25

PLL phase-locked loop . 24

PPU Plasticity Processing Unit . 83

Q2I queues to interface .15

121

QPI Intel® QuickPath inteconnect . 95

QoS quality of service . 22

RTL register-transfer-level .

RTT round-trip time . 78

SATA Serial AT Attachment . 27

SEQ sequence number . 75

SOF start-of-frame . 44

SPI Serial Peripheral Interface . 23

SRAM static random-access memory . 87

SerDes serializer-deserializer . 91

SoC separation of concerns . 47

TLP transaction layer packet. .25

UART universal asynchronous receiver-transmitter . 98

USB Universal Serial Bus . 27

UT Universal Translator . 5

122

VHDL Very High Speed Integrated Circuit Hardware Description Language
51

123

124

Bibliography

Tilelink. URL https://bar.eecs.berkeley.edu/projects/tilelink.
html.

S. A. Aamir, P. Müller, L. Kriener, G. Kiene, J. Schemmel, and K. Meier.
From lif to adex neuron models: Accelerated analog 65 nm cmos implemen-
tation. In IEEE Biomedical Circuits and Systems Conference (BioCAS),
pages 1–4. IEEE, October 2017.

M. Allman, V. Paxson, ICSI, and E. Blanton. RFC 5681: Tcp congestion
control, 2009. URL https://tools.ietf.org/html/rfc5681.

K. Asanović and D. A. Patterson. Instruction sets should be free: The case
for risc-v. EECS Department, University of California, Berkeley, Tech.
Rep. UCB/EECS-2014-146, 2014.

S. Billaudelle, Y. Stradmann, K. Schreiber, B. Cramer, A. Baumbach,
D. Dold, J. Göltz, A. F. Kungl, T. C. Wunderlich, A. Hartel, et al. Versa-
tile emulation of spiking neural networks on an accelerated neuromorphic
substrate. arXiv preprint arXiv:1912.12980, 2019.

D. Brüderle, M. A. Petrovici, B. Vogginger, M. Ehrlich, T. Pfeil, S. Millner,
A. Grübl, K. Wendt, E. Müller, M.-O. Schwartz, D. de Oliveira, S. Jeltsch,
J. Fieres, M. Schilling, P. Müller, O. Breitwieser, V. Petkov, L. Muller,
A. Davison, P. Krishnamurthy, J. Kremkow, M. Lundqvist, E. Muller,
J. Partzsch, S. Scholze, L. Zühl, C. Mayr, A. Destexhe, M. Diesmann,
T. Potjans, A. Lansner, R. Schüffny, J. Schemmel, and K. Meier. A com-
prehensive workflow for general-purpose neural modeling with highly con-
figurable neuromorphic hardware systems. Biological Cybernetics, 104:
263–296, 2011. ISSN 0340-1200. URL http://dx.doi.org/10.1007/
s00422-011-0435-9.

W. Bux. Token-ring local-area networks and their performance. Proceedings
of the IEEE, 77(2):238–256, Feb 1989. ISSN 1558-2256. doi: 10.1109/5.
18625.

125

https://bar.eecs.berkeley.edu/projects/tilelink.html
https://bar.eecs.berkeley.edu/projects/tilelink.html
https://tools.ietf.org/html/rfc5681
http://dx.doi.org/10.1007/s00422-011-0435-9
http://dx.doi.org/10.1007/s00422-011-0435-9

I. Caicedo, M. Barbero, P. Barrillon, I. Berdalovic, S. Bhat, C. Bespin,
P. Breugnon, R. Cardella, Z. Chen, Y. Degerli, and et al. The monopix
chips: depleted monolithic active pixel sensors with a column-drain read-
out architecture for the atlas inner tracker upgrade. Journal of In-
strumentation, 14(06):C06006–C06006, Jun 2019. ISSN 1748-0221. doi:
10.1088/1748-0221/14/06/c06006. URL http://dx.doi.org/10.1088/
1748-0221/14/06/C06006.

T. Chakravarty. Performance of cyclic redundancy codes for embedded net-
works. Master’s thesis, 2001.

I. Corporation. An Introduction to the Intel® QuickPath Interconnect. 2009.

J. Debus. Configuration performance testing of the Hicann v4, 2015.

G. Deletoille. Arpe report: Data transmission protocol for neuromorphic
hardware, 2016.

Y. Fang and X. Chen. Design and simulation of uart serial communication
module based on vhdl. In 2011 3rd International Workshop on Intelligent
Systems and Applications, pages 1–4, May 2011. doi: 10.1109/ISA.2011.
5873448.

S. Friedmann. A New Approach to Learning in Neuromorphic Hardware.
PhD thesis, Ruprecht-Karls-Universität Heidelberg, 2013.

S. Friedmann, N. Frémaux, J. Schemmel, W. Gerstner, and K. Meier.
Reward-based learning under hardware constraints â€” using a RISC pro-
cessor embedded in a neuromorphic substrate. Frontiers in Neuroscience,
7:160, 2013. ISSN 1662-453X. doi: 10.3389/fnins.2013.00160. URL http:
//journal.frontiersin.org/article/10.3389/fnins.2013.00160.

S. Friedmann, J. Schemmel, A. Grübl, A. Hartel, M. Hock, and K. Meier.
Demonstrating hybrid learning in a flexible neuromorphic hardware sys-
tem. IEEE Transactions on Biomedical Circuits and Systems, 11(1):128–
142, 2017. ISSN 1932-4545. doi: 10.1109/TBCAS.2016.2579164.

S. Furber. Large-scale neuromorphic computing systems. Journal of
Neural Engineering, 13(5):051001, aug 2016. doi: 10.1088/1741-2560/
13/5/051001. URL https://doi.org/10.1088%2F1741-2560%2F13%2F5%
2F051001.

A. Gabrielli. Fast readout architectures for large arrays of digital pixels:
examples and applications. 2014.

126

http://dx.doi.org/10.1088/1748-0221/14/06/C06006
http://dx.doi.org/10.1088/1748-0221/14/06/C06006
http://journal.frontiersin.org/article/10.3389/fnins.2013.00160
http://journal.frontiersin.org/article/10.3389/fnins.2013.00160
https://doi.org/10.1088%2F1741-2560%2F13%2F5%2F051001
https://doi.org/10.1088%2F1741-2560%2F13%2F5%2F051001

P. S. I. Group. PCI Express Base Specification, Revision 3.0, Nov 2010.

J. Göltz, A. Baumbach, S. Billaudelle, O. Breitwieser, D. Dold, L. Kriener,
A. F. Kungl, W. Senn, J. Schemmel, K. Meier, and M. A. Petrovici. Fast
and deep neuromorphic learning with time-to-first-spike coding, 2019.

IEEE. IEEE Token Ring standards. URL http://www.ieee802.org/5/.

G. Indiveri, B. Linares-Barranco, T. J. Hamilton, A. van Schaik, R. Etienne-
Cummings, T. Delbruck, S.-C. Liu, P. Dudek, P. Häfliger, S. Renaud,
J. Schemmel, G. Cauwenberghs, J. Arthur, K. Hynna, F. Folowosele,
S. Saighi, T. Serrano-Gotarredona, J. Wijekoon, Y. Wang, and K. Boa-
hen. Neuromorphic silicon neuron circuits. Frontiers in Neuroscience,
5(0), 2011. ISSN 1662-453X. doi: 10.3389/fnins.2011.00073. URL
http://www.frontiersin.org/Journal/Abstract.aspx?s=755&name=
neuromorphicengineering&ART_DOI=10.3389/fnins.2011.00073.

L. Jian-Liang and Y. Hong-Sen. Decoding the Mechanisms of Antikythera
Astronomical Device. Springer, 2016. ISBN 9783662484456.

L. Kanzleiter. A parametrizable switch for neuromorphic hardware. Bache-
lorarbeit, Universität Heidelberg, 2018.

V. Karasenko. Design, implementation and testing of a high speed reliablelink
over an unreliable medium between a host computer and axilinx virtex5
fpga. Bachelor’s thesis (English), University of Heidelberg, 2011.

V. Karasenko. A communication infrastructure for a neuromorphic system.
Master’s thesis (English), University of Heidelberg, 2014.

C. Mead. Neuromorphic electronic systems. Proceedings of the IEEE, 78(10):
1629–1636, 1990.

T. Pfeil, A. Grübl, S. Jeltsch, E. Müller, P. Müller, M. A. Petro-
vici, M. Schmuker, D. Brüderle, J. Schemmel, and K. Meier. Six
networks on a universal neuromorphic computing substrate. Fron-
tiers in Neuroscience, 7:11, 2013. ISSN 1662-453X. doi: 10.3389/
fnins.2013.00011. URL http://www.frontiersin.org/neuromorphic_
engineering/10.3389/fnins.2013.00011/abstract.

S. Philipp. Generic arq protocol in vhdl. Internal FACETS documentation.,
2008.

M. Rettig. Characterizing the event interface of the hicann-x, 2019.

127

http://www.ieee802.org/5/
http://www.frontiersin.org/Journal/Abstract.aspx?s=755&name=neuromorphic engineering&ART_DOI=10.3389/fnins.2011.00073
http://www.frontiersin.org/Journal/Abstract.aspx?s=755&name=neuromorphic engineering&ART_DOI=10.3389/fnins.2011.00073
http://www.frontiersin.org/neuromorphic_engineering/10.3389/fnins.2013.00011/abstract
http://www.frontiersin.org/neuromorphic_engineering/10.3389/fnins.2013.00011/abstract

C. Ritzer, R. Becker, A. Buck, V. Commichau, J. Debus, L. Djambazov,
A. Eleftheriou, J. Fischer, P. Fischer, M. Ito, P. Khateri, W. Lustermann,
M. Ritzert, U. Röser, M. Rudin, I. Sacco, C. Tsoumpas, G. Warnock,
M. Wyss, A. Zagozdzinska-Bochenek, B. Weber, and G. Dissertori. Initial
characterisation of the SAFIR prototype PET-MR scanner. IEEE Trans-
actions on Radiation and Plasma Medical Sciences, pages 1–1, 2020. ISSN
2469-7303. doi: 10.1109/TRPMS.2020.2980072.

N. Sawyer. LVDS Source Synchronous 7:1 Serialization and Deserialization
Using Clock Multiplication. Xilinx, Inc, 2018.

J. Schemmel, D. Brüderle, A. Grübl, M. Hock, K. Meier, and S. Millner. A
wafer-scale neuromorphic hardware system for large-scale neural modeling.
In Proceedings of the 2010 IEEE International Symposium on Circuits and
Systems (ISCAS), pages 1947–1950, 2010.

J. Schemmel, L. Kriener, P. Müller, and K. Meier. An accelerated analog
neuromorphic hardware system emulating NMDA-and calcium-based non-
linear dendrites. arXiv preprint arXiv:1703.07286, 2017.

A. Schmidt. Design und charakterisierung einer routing-schnittstelle für neu-
romorphe hardware, 2017.

S. Schmitt, J. Klaehn, G. Bellec, A. Grübl, M. Guettler, A. Hartel, S. Hart-
mann, D. H. de Oliveira, K. Husmann, V. Karasenko, M. Kleider, C. Koke,
C. Mauch, E. Müller, P. Müller, J. Partzsch, M. A. Petrovici, S. Schiefer,
S. Scholze, B. Vogginger, R. A. Legenstein, W. Maass, C. Mayr, J. Schem-
mel, and K. Meier. Neuromorphic hardware in the loop: Training a
deep spiking network on the brainscales wafer-scale system. CoRR,
abs/1703.01909, 2017. URL http://arxiv.org/abs/1703.01909.

S. Scholze, H. Eisenreich, S. Höppner, G. Ellguth, S. Henker, M. Ander,
S. Hänzsche, J. Partzsch, C. Mayr, and R. Schüffny. A 32gbit/s com-
munication soc for a waferscale neuromorphic system. Integration, 45(1):
61 – 75, 2012. ISSN 0167-9260. doi: https://doi.org/10.1016/j.vlsi.2011.
05.003. URL http://www.sciencedirect.com/science/article/pii/
S0167926011000538.

K. Schouhamer Immink. A survey of codes for optical disk recording. Selected
Areas in Communications, IEEE Journal on, 19:756 – 764, 05 2001. doi:
10.1109/49.920183.

128

http://arxiv.org/abs/1703.01909
http://www.sciencedirect.com/science/article/pii/S0167926011000538
http://www.sciencedirect.com/science/article/pii/S0167926011000538

A. J. Smith. Design of cpu cache memories. Technical Report UCB/CSD-87-
357, EECS Department, University of California, Berkeley, Jun 1987. URL
http://www2.eecs.berkeley.edu/Pubs/TechRpts/1987/5288.html.

C. Smith. How i learned to stop worrying and love the bombe: Machine
research and development and bletchley park. History of Science, 52(2):
200–222, 2014. doi: 10.1177/0073275314529861. URL https://doi.org/
10.1177/0073275314529861.

D. Swade. The difference engine : Charles Babbage and the quest to build
the first computer. Penguin Books, 2002.

DesignWare Library - Datapath and Building Block IP. Synopsys, Inc., 700
East Middlefield Road, Mountain View, CA 94043.

C. S. Thakur, J. L. Molin, G. Cauwenberghs, G. Indiveri, K. Kumar, N. Qiao,
J. Schemmel, R. Wang, E. Chicca, J. Olson Hasler, et al. Large-scale neu-
romorphic spiking array processors: A quest to mimic the brain. Frontiers
in neuroscience, 12:891, 2018.

E. Vision(s). Hbp sga2 sp9 kpi and student numbers, 2020.

J. von Neumann. First draft of a report on the edvac. IEEE Ann. Hist.
Comput., 15(4):27–75, Oct. 1993. ISSN 1058-6180. doi: 10.1109/85.238389.
URL https://doi.org/10.1109/85.238389.

A. X. Widmer and P. A. Franaszek. A dc-balanced, partitioned-block, 8b/10b
transmission code. IBM Journal of research and development, 27(5):440–
451, 1983.

7 Series FPGAs SelectIO Resources. Xilinx, Inc., 2018. URL
https://www.xilinx.com/support/documentation/user_guides/
ug471_7Series_SelectIO.pdf.

129

http://www2.eecs.berkeley.edu/Pubs/TechRpts/1987/5288.html
https://doi.org/10.1177/0073275314529861
https://doi.org/10.1177/0073275314529861
https://doi.org/10.1109/85.238389
https://www.xilinx.com/support/documentation/user_guides/ug471_7Series_SelectIO.pdf
https://www.xilinx.com/support/documentation/user_guides/ug471_7Series_SelectIO.pdf

130

Acknowledgments

Firstly, I would like to thank Johannes Schemmel, who unwaveringly took
on the burden KM left behind and is pressing to continue the Vision(s) that
connect us all.

Secondly, my gratitude goes to Profs. Brüning, Fischer and Salmhofer,
who all swiftly agreed on very short notice to be part of my examination com-
mittee and also took the time to discuss my work on several occasions.

Thirdly, credit goes to the entire Electronic Vision(s) group, with
whom I spent most of the past ten years partly working, but mostly bbq’ing,
watching NeuroVision(s), having beer tastings for science and arguing about
nothing. Every thesis that is completed within this group is in a sense always
a team effort of the entire Vision(s), and my own time here was certainly no
different. Still, special thanks must be extended to the following people:

Andreas Grübl, for never losing his cool and teaching me when the
right time is to do things Grübl-style.

Eric Müller, for ALWAYS losing his cool when trying to convince people
that the only way is rischdisch mache.

Yannick Stradmann, Mitja Kleider, and Sebastian Billaudelle for
being the core commissioning team of the HICANN-X and setting up so
much of the amazing experiment and testing environment that benefits us
all so greatly. Extra special mention goes to Philipp Spilger, who defines
the term ’above and beyond’.

My students Gaëtan Delétoille, Jan Debus, Alexander Schmidt,
Lea Kanzleiter and Marco Rettig, who eagerly partook in my own small
vision and rose to the challenge to contribute their best work as part of some-
thing greater than a single Bachelor’s project. If you are missing some detail
in this thesis, you will surely find it in one of theirs.

Lastly, I want to thank Elisabeth Wintersteller and Mihai Petrovici
for. . . quite a bit of stuff actually. Thank you.

131

	I Introduction
	Motivation and Outline
	Queues
	Protocol tunneling
	Example: OCP tunneling

	State of the Art
	Raw Serialization
	Line Codes

	Gigabit Transceivers
	PCI Express
	Monolithic Design
	User Interface
	PHY

	Conclusion

	II Implementation
	Generic Hardware
	Sum Types
	A software example
	HDL implementation
	Sum Type Queues

	The Universal Translator
	Encoding scheme
	Encoding sum types
	CRC

	UT sender
	Client interface
	PHY interface
	Derived constants
	Data path
	Control path

	UT receiver
	Data path
	Control path

	Synthesis Example
	Experiment Setup
	Results

	Conclusion

	Stream secure Queues
	ARQ revisited
	Dynamic timeouts
	Sum type ARQ

	III HICANN-X
	Overview
	Continuous-time computing
	Configuration
	PPU memory interface

	PHY
	Link initialization
	UT Link Checking
	Channel bonding
	Clocking

	HICANN-X communication infrastructure
	Downstream
	Upstream
	Testing and Evaluation
	Events
	ARQ

	Conclusion

