2,619 research outputs found

    Leveraging contextual embeddings and self-attention neural networks with bi-attention for sentiment analysis

    Get PDF
    People express their opinions and views in different and often ambiguous ways, hence the meaning of their words is often not explicitly stated and frequently depends on the context. Therefore, it is difficult for machines to process and understand the information conveyed in human languages. This work addresses the problem of sentiment analysis (SA). We propose a simple yet comprehensive method which uses contextual embeddings and a self-attention mechanism to detect and classify sentiment. We perform experiments on reviews from different domains, as well as on languages from three different language families, including morphologically rich Polish and German. We show that our approach is on a par with state-of-the-art models or even outperforms them in several cases. Our work also demonstrates the superiority of models leveraging contextual embeddings. In sum, in this paper we make a step towards building a universal, multilingual sentiment classifier.Peer ReviewedPostprint (published version

    Advanced Deep Learning Methods for Enhancing Information Compliance Checking

    Get PDF
    The study in this thesis enhances information checking algorithm challenges, such as CAD drawings comliance checking which is time-consuming and error-prone, by focusing on the development and refinement of advanced deep learning algorithms, primarily in the Natural Language Processing (NLP) sphere, as innovative methods for higher accuracy and time-saving solution

    Forex Trading Signal Extraction with Deep Learning Models

    Get PDF
    The rise of AI technology has popularized deep learning models for financial trading prediction, promising substantial profits with minimal risk. Institutions like Westpac, Commonwealth Bank of Australia, Macquarie Bank, and Bloomberg invest heavily in this transformative technology. Researchers have also explored AI's potential in the exchange rate market. This thesis focuses on developing advanced deep learning models for accurate forex market prediction and AI-powered trading strategies. Three deep learning models are introduced: an event-driven LSTM model, an Attention-based VGG16 model named MHATTN-VGG16, and a pre-trained model called TradingBERT. These models aim to enhance signal extraction and price forecasting in forex trading, offering valuable insights for decision-making. The first model, an LSTM, predicts retracement points crucial for identifying trend reversals. It outperforms baseline models like GRU and RNN, thanks to noise reduction in the training data. Experiments determine the optimal number of timesteps for trend identification, showing promise for building a robotic trading platform. The second model, MHATTN-VGG16, predicts maximum and minimum price movements in forex chart images. It combines VGG16 with multi-head attention and positional encoding to effectively classify financial chart images. The third model utilizes a pre-trained BERT architecture to transform trading price data into normalized embeddings, enabling meaningful signal extraction from financial data. This study pioneers the use of pre-trained models in financial trading and introduces a method for converting continuous price data into categorized elements, leveraging the success of BERT. This thesis contributes innovative approaches to deep learning in algorithmic trading, offering traders and investors precision and confidence in navigating financial markets

    Automatic information search for countering covid-19 misinformation through semantic similarity

    Full text link
    Trabajo Fin de Máster en Bioinformática y Biología ComputacionalInformation quality in social media is an increasingly important issue and misinformation problem has become even more critical in the current COVID-19 pandemic, leading people exposed to false and potentially harmful claims and rumours. Civil society organizations, such as the World Health Organization, have demanded a global call for action to promote access to health information and mitigate harm from health misinformation. Consequently, this project pursues countering the spread of COVID-19 infodemic and its potential health hazards. In this work, we give an overall view of models and methods that have been employed in the NLP field from its foundations to the latest state-of-the-art approaches. Focusing on deep learning methods, we propose applying multilingual Transformer models based on siamese networks, also called bi-encoders, combined with ensemble and PCA dimensionality reduction techniques. The goal is to counter COVID-19 misinformation by analyzing the semantic similarity between a claim and tweets from a collection gathered from official fact-checkers verified by the International Fact-Checking Network of the Poynter Institute. It is factual that the number of Internet users increases every year and the language spoken determines access to information online. For this reason, we give a special effort in the application of multilingual models to tackle misinformation across the globe. Regarding semantic similarity, we firstly evaluate these multilingual ensemble models and improve the result in the STS-Benchmark compared to monolingual and single models. Secondly, we enhance the interpretability of the models’ performance through the SentEval toolkit. Lastly, we compare these models’ performance against biomedical models in TREC-COVID task round 1 using the BM25 Okapi ranking method as the baseline. Moreover, we are interested in understanding the ins and outs of misinformation. For that purpose, we extend interpretability using machine learning and deep learning approaches for sentiment analysis and topic modelling. Finally, we developed a dashboard to ease visualization of the results. In our view, the results obtained in this project constitute an excellent initial step toward incorporating multilingualism and will assist researchers and people in countering COVID-19 misinformation

    Robustness, Heterogeneity and Structure Capturing for Graph Representation Learning and its Application

    Get PDF
    Graph neural networks (GNNs) are potent methods for graph representation learn- ing (GRL), which extract knowledge from complicated (graph) structured data in various real-world scenarios. However, GRL still faces many challenges. Firstly GNN-based node classification may deteriorate substantially by overlooking the pos- sibility of noisy data in graph structures, as models wrongly process the relation among nodes in the input graphs as the ground truth. Secondly, nodes and edges have different types in the real-world and it is essential to capture this heterogeneity in graph representation learning. Next, relations among nodes are not restricted to pairwise relations and it is necessary to capture the complex relations accordingly. Finally, the absence of structural encodings, such as positional information, deterio- rates the performance of GNNs. This thesis proposes novel methods to address the aforementioned problems: 1. Bayesian Graph Attention Network (BGAT): Developed for situations with scarce data, this method addresses the influence of spurious edges. Incor- porating Bayesian principles into the graph attention mechanism enhances robustness, leading to competitive performance against benchmarks (Chapter 3). 2. Neighbour Contrastive Heterogeneous Graph Attention Network (NC-HGAT): By enhancing a cutting-edge self-supervised heterogeneous graph neural net- work model (HGAT) with neighbour contrastive learning, this method ad- dresses heterogeneity and uncertainty simultaneously. Extra attention to edge relations in heterogeneous graphs also aids in subsequent classification tasks (Chapter 4). 3. A novel ensemble learning framework is introduced for predicting stock price movements. It adeptly captures both group-level and pairwise relations, lead- ing to notable advancements over the existing state-of-the-art. The integration of hypergraph and graph models, coupled with the utilisation of auxiliary data via GNNs before recurrent neural network (RNN), provides a deeper under- standing of long-term dependencies between similar entities in multivariate time series analysis (Chapter 5). 4. A novel framework for graph structure learning is introduced, segmenting graphs into distinct patches. By harnessing the capabilities of transformers and integrating other position encoding techniques, this approach robustly capture intricate structural information within a graph. This results in a more comprehensive understanding of its underlying patterns (Chapter 6)

    SentimentGPT: Exploiting GPT for Advanced Sentiment Analysis and its Departure from Current Machine Learning

    Full text link
    This study presents a thorough examination of various Generative Pretrained Transformer (GPT) methodologies in sentiment analysis, specifically in the context of Task 4 on the SemEval 2017 dataset. Three primary strategies are employed: 1) prompt engineering using the advanced GPT-3.5 Turbo, 2) fine-tuning GPT models, and 3) an inventive approach to embedding classification. The research yields detailed comparative insights among these strategies and individual GPT models, revealing their unique strengths and potential limitations. Additionally, the study compares these GPT-based methodologies with other current, high-performing models previously used with the same dataset. The results illustrate the significant superiority of the GPT approaches in terms of predictive performance, more than 22\% in F1-score compared to the state-of-the-art. Further, the paper sheds light on common challenges in sentiment analysis tasks, such as understanding context and detecting sarcasm. It underscores the enhanced capabilities of the GPT models to effectively handle these complexities. Taken together, these findings highlight the promising potential of GPT models in sentiment analysis, setting the stage for future research in this field. The code can be found at https://github.com/DSAatUSU/SentimentGP

    Knowledge Infused Learning (K-IL): Towards Deep Incorporation of Knowledge in Deep Learning

    Get PDF
    Learning the underlying patterns in data goes beyond instance-based generalization to external knowledge represented in structured graphs or networks. Deep learning that primarily constitutes neural computing stream in AI has shown significant advances in probabilistically learning latent patterns using a multi-layered network of computational nodes (i.e., neurons/hidden units). Structured knowledge that underlies symbolic computing approaches and often supports reasoning, has also seen significant growth in recent years, in the form of broad-based (e.g., DBPedia, Yago) and domain, industry or application specific knowledge graphs. A common substrate with careful integration of the two will raise opportunities to develop neuro-symbolic learning approaches for AI, where conceptual and probabilistic representations are combined. As the incorporation of external knowledge will aid in supervising the learning of features for the model, deep infusion of representational knowledge from knowledge graphs within hidden layers will further enhance the learning process. Although much work remains, we believe that knowledge graphs will play an increasing role in developing hybrid neuro-symbolic intelligent systems (bottom-up deep learning with top-down symbolic computing) as well as in building explainable AI systems for which knowledge graphs will provide scaffolding for punctuating neural computing. In this position paper, we describe our motivation for such a neuro-symbolic approach and framework that combines knowledge graph and neural networks

    Applications of Artificial Intelligence and Graphy Theory to Cyberbullying

    Get PDF
    Cyberbullying is an ongoing and devastating issue in today\u27s online social media. Abusive users engage in cyber-harassment by utilizing social media to send posts, private messages, tweets, or pictures to innocent social media users. Detecting and preventing cases of cyberbullying is crucial. In this work, I analyze multiple machine learning, deep learning, and graph analysis algorithms and explore their applicability and performance in pursuit of a robust system for detecting cyberbullying. First, I evaluate the performance of the machine learning algorithms Support Vector Machine, Naïve Bayes, Random Forest, Decision Tree, and Logistic Regression. This yielded positive results and obtained upwards of 86% accuracy. Further enhancements were achieved using Evolutionary Algorithms, improving the overall results of the machine learning models. Deep Learning algorithms was the next experiment in which efficiency was monitored in terms of training time and performance. Next, analysis of Recurrent Neural Networks and Hierarchical Attention Networks was conducted, achieving 82% accuracy. The final research project used graph analysis to explore the relation among different social media users, and analyze the connectivity and communities of users who were discovered to have posted offensive messages
    corecore