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Abstract

Graph neural networks (GNNs) are potent methods for graph representation learn-
ing (GRL), which extract knowledge from complicated (graph) structured data in
various real-world scenarios. However, GRL still faces many challenges. Firstly
GNN-based node classification may deteriorate substantially by overlooking the pos-
sibility of noisy data in graph structures, as models wrongly process the relation
among nodes in the input graphs as the ground truth. Secondly, nodes and edges
have different types in the real-world and it is essential to capture this heterogeneity
in graph representation learning. Next, relations among nodes are not restricted to
pairwise relations and it is necessary to capture the complex relations accordingly.
Finally, the absence of structural encodings, such as positional information, deterio-
rates the performance of GNNs. This thesis proposes novel methods to address the
aforementioned problems:

1. Bayesian Graph Attention Network (BGAT): Developed for situations with
scarce data, this method addresses the influence of spurious edges. Incor-
porating Bayesian principles into the graph attention mechanism enhances
robustness, leading to competitive performance against benchmarks (Chapter
3).

2. Neighbour Contrastive Heterogeneous Graph Attention Network (NC-HGAT):
By enhancing a cutting-edge self-supervised heterogeneous graph neural net-
work model (HGAT) with neighbour contrastive learning, this method ad-
dresses heterogeneity and uncertainty simultaneously. Extra attention to edge
relations in heterogeneous graphs also aids in subsequent classification tasks
(Chapter 4).

3. A novel ensemble learning framework is introduced for predicting stock price
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movements. It adeptly captures both group-level and pairwise relations, lead-
ing to notable advancements over the existing state-of-the-art. The integration
of hypergraph and graph models, coupled with the utilisation of auxiliary data
via GNNs before recurrent neural network (RNN), provides a deeper under-
standing of long-term dependencies between similar entities in multivariate
time series analysis (Chapter 5).

4. A novel framework for graph structure learning is introduced, segmenting
graphs into distinct patches. By harnessing the capabilities of transformers
and integrating other position encoding techniques, this approach robustly
capture intricate structural information within a graph. This results in a
more comprehensive understanding of its underlying patterns (Chapter 6).
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CHAPTER 1

Introduction

1.1 Representation Learning on Graphs

Representation learning aims to process and present data in a form that’s more

interpretable for machines, enabling them to better tackle downstream tasks such

as question answering, recommendation systems and knowledge graphs. Previously,

researchers proposed statistical approaches [4] combined with engineering features

of input data for such representation learning tasks. However, engineering features

require domain expertise and hard to generalise. Additionally, this type of manual

rules setting is not cost-efficient. Therefore, automatic feature learning from raw

input is an important topic. Then, representation learning has been further boosted

by advances in deep learning in the multi-layered hierarchy of feature extraction

1



across various domains, including acoustics, natural language processing, and images

[5]. However, the generalisation ability of deep learning in representation learning

relational and complex reasoning still needs to be improved.

The world can be understood and modelled in terms of concepts and rela-

tions. While images can be characterized using localised convolutional filters, graphs

present a more complex scenario. Unlike the structured nature of images, graphs

can be irregular, arbitrary, non-Euclidean in structure and contain rich values [6].

This inherent complexity and richness make graphs particularly adept at represent-

ing knowledge (entities and relationships) in the real world [5], as depicted in Figure

1.1.

Figure 1.1: Image in Euclidean space and graph in non-Euclidean space

A graph is a type of structure defined as G = (V,E) where V is a set of nodes

representing entities and E is a set of edges indicating relationships among entities.

Graph representation learning is usually based on graph topological structures and

graph features. There are several methods for graph representation learning, in-

cluding random walking, deep neural networks, and mtrix factorisation. According

to [6], models like graph neural networks (GNNs) and their variants, including graph

2



convolutional networks (GCNs), message passing neural networks (MPNNs), graph

attention networks (GATs), graph autoencoders (GAEs), graph recurrent neural

networks (GraphRNN), graph adversarial models and graph transformer models are

developed extensively for tasks including node classification, graph classification as

well as link prediction and attract increasing research attention.

Existing graph representation learning models rely on aggregating neighbour-

hood information or convolutional operators to learn the representations of nodes,

which describe the graph’s structure [7]. The information pass, aggregation and

update process is known as message passing, which will be explained in Chapter

2.2.2. Despite the great success of GNNs across different domain tasks, including

natural language processing (NLP), computer vision (CV), social recommendation

and many other applications, some significant challenges remain to be solved as

follows [8–10]:

Robustness This reflects the extent to which generated graphs can withstand

adversarial attacks, which is particularly applicable when graphs are incomplete

or when some properties are missing. According to [9, 11], graph neural networks

are highly sensitive to adversarial attacks. The problem could be integrated with

semi-supervised classification when given information is limited, and researchers are

required to infer the labels of unknown nodes based on existing knowledge.

Heterogeneous Contexts Most existing studies focus on homogeneous rather

than heterogeneous graphs, where nodes and edges are composed of different types

and must be tackled specifically [8]. A typical example of heterogeneous graphs is

social network graphs [12]. In contrast to homogeneous graph neural network meth-

3



ods, the proximity between items in a heterogeneous information network (HIN)

should not just be confined to distance but also semantics.

Structural Learning Structural learning is another important topic for graph

representation learning, which has received increasing focus recently [13, 14]. This

work focuses on capturing relations, geometry and position information compre-

hensively. High-order relations, prevalent in real-world applications such as social

networks, drug discovery, and transport, have been demonstrated to be effective in

graph representation learning [15]. The effectiveness of high-order relation learning

in financial investment is thus investigated.

Recently, without canonical positional information of nodes, the expressive power

of GNNs will decrease [16]. One tendency is to combine transformers with GNNs

to avoid strict structural inductive biases by overcoming the limitation of local

neighborhood aggregation and over-squashing in existing message passing mecha-

nisms [17]. Over-squashing means information is overly compressed due to expo-

nentially increased neighbours of nodes, and standard message passing GNNs do

not benefit from more than a few layers [18]. However, there is no guarantee that

existing transformers in GNNs can distinguish structural similarity between entities

properly [2], and they have quadratic complexity, which is not scalable to massive

graphs. Therefore, it is necessary to develop novel models to consider structural

information comprehensively with less complexity and enhance the representation

power of GNNs.

In this thesis, we are addressing the robustness, heterogeneity and struc-

tural learning problems stated above, and propose corresponding new mod-
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els to tackle them - illustrated in Figure 1.2, which also shows the corresponding

chapters where these problems are addressed.

Figure 1.2: My research in graph representation focuses on 3 key problems

1.2 Research Questions

As stated, this study addresses the problems of robustness, heterogeneity and struc-

tural learning to enhance the models’ learning ability in graph representation learn-

ing. Most existing GNNs are based on iterative message passing to update features

of neighboring nodes. Performance deteriorates when limited training labels are

available, making it challenging to learn discriminative node embeddings [19]. This

issue is referred to as the robustness problem, leading to the first research question:

RQ1 How to increase robustness regarding uncertainty (few labels avail-

able during training or noisy input) in representation learning

based on graph neural networks without negatively affecting the
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performance? (RQ1 is answered in Chapter 3)

We proposed a novel and effective method by extending a GNN method with a

parametric random graph model for this problem on the citation network datasets

in Chapter 3.

However, this chapter mainly focused on the homogeneous graph, in which all

nodes and edges belong to the same type, while in practice, entities primarily in-

teract with other different types of objects in complex systems [20], known as het-

erogeneous graphs. Compared with homogeneous graphs, heterogeneous graphs are

crucial to reflect the actual semantics of complex graphs, and it is necessary to

consider different types of nodes and edges simultaneously [21].

RQ2 How to account for the heterogeneity of graphs, which contain di-

verse types of edges, features and attributes, in graph neural net-

works? (RQ2 is answered in Chapter 4).

We addressed the heterogeneity problem by incorporating contrastive learning

and types of nodes and edges in text classification tasks in Chapter 4. We also look

into heterogeneity from the point of view of its impact on robustness, effectively

combining the first two research questions. This is also addressed in Chapter 4.

However, this study did not consider the structural information of graphs, which

is crucial for guaranteeing the expressive power of GNNs. Therefore, the last re-

search question is to examine how to conduct structural learning by capturing high-

order relations and comprehensive positional information more effectively in graph

representation learning:
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RQ3 How to improve the structural learning ability, e.g. relation ex-

traction and positional encoding for existing graph representation

learning? (RQ3 is answered in Chapters 5 and 6).

Overall we aim to investigate how to improve the expressive power of models

for graph representation learning by answering all three research questions. We

further discuss how these three axes can be combined in section 7.2, starting with

the combination of the first two axes as an illustration in section 4.7.

1.3 Research Contributions

Addressing the above questions, this thesis contributes to the field of graph repre-

sentation learning and the main contributions of this thesis can be summarised as

follows:

Investigating and proposing novel methods to enhance the representation learn-

ing ability of GNNs from three aspects: robustness, heterogeneity and structural

learning. Further we illustrate these advances with specific applications in citation

network, NLP, finance and molecule learning to showcase their diversity of applica-

bility. Specifically, the following contributions have been achieved during my PhD:

1. Demonstrated the benefits of incorporating uncertainty in graph struc-

ture via a parametric random graph model (in Chapter 3) as a solution

to the robustness problem. Unlike existing studies, this work introduced for

the first time attention to capturing the fact that different nodes have different

influences in random graph generation; the proposed novel Bayesian graph
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deep learning model outperformed earlier state-of-the-art. This is the first

research on integrating Bayesian deep learning with the graph at-

tention method to solve the data-scarcity problem.

2. Proposed a novel neighbouring contrastive learning method (see Chap-

ter 4) by identifying the limitations and challenges that need to be solved for

the heterogeneity area. Instead of directly passing a message relying on the

adjacency matrix, this neighbouring contrastive method leverages graph struc-

ture to learn the semantics of the different types of nodes and also improves

the robustness of representation learning. This is the first study on how

contrastive learning can be used with heterogeneous graph neural

networks for text classification tasks.

3. Explored how to leverage graphs to model complex relations in financial in-

vestment stock prediction (Chapter 5). This study validated the merits of

hypergraphs and simple graphs for capturing group-level and pairwise inter-

actions of nodes and is the first one to prove the necessity of considering

them together when complex relations exist. This is also the first study to

demonstrate the effectiveness of integrating auxiliary information

via GNNs before using RNNs for temporal studies - so that the long-

term dependencies of similar entities can be learnt by RNNs later (in this task,

the auxiliary information refers to industry information, and entities refer to

companies).

4. Optimised the strategy of capturing comprehensive structural information of

nodes and alleviated the over-squashing problem in existing message passing
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mechanisms (Chapter 6). This research showed the potential of considering

positional information and geometry information learning by converting graphs

into patches. This is the first study on how Ricci curvature can be

considered in contrastive learning to alleviate the over-squashing

problem in the graph patch learning task.

1.4 Thesis Outline

In Chapter 1, an overview of graph representation learning, its progression, and the

persisting, unresolved challenges are introduced. Then the motivation driving this

thesis, the proposed research questions and the objectives are explained. Moreover,

an outline of this thesis is presented, accompanied by a list of all publications to

date in this chapter.

In Chapter 2, fundamental concepts of GNN (graph neural network), such as the

Laplacian matrix, Fourier transform, and adjacency matrix, are thoroughly detailed

and explained. Additionally, two prevalent GNN architectures - spectral and spatial

methods, which serve as the backbones of the proposed models in this thesis are de-

scribed. Then, a brief overview of contrastive learning is provided. Next, the vanilla

transformer architecture, attention mechanism, and methods of position encoding

in representation learning are introduced. Lastly, the datasets utilised in this thesis

are summarised.

Rather than presenting the literature review as a standalone chapter, this thesis

weaves it throughout each chapter. This structure allows for a closer connection

between the existing literature and the specific research questions addressed in each
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chapter.

We develop a generative graph model in Chapter 3, which is particularly suited

for structured representation under data-scarce situations to solve the robustness

problem in graph representation learning.

Then, we present neighbour contrastive learning with a heterogeneous graph

attention model targeting heterogeneity problems in Chapter 4. In addition to

the published work, we explore the influence of different types of edges in text

classification tasks and also demonstrate that the proposed model performs against

early state-of-the-art with few labels available.

Next, we propose a novel ensemble learning framework consisting of a GCN

to capture pairwise information and a hypergraph convolution network for group-

oriented information with adversarial training for stock price prediction, named

MONEY, in Chapter 5. Further, we demonstrate that pairwise relations should not

be neglected in hypergraph learning and the proposed model outperforms state-of-

the-art and delivers more stable results in a bear market.

In Chapter 6, we present an effective general framework for graph representation

learning. The method improves the expressive power of current graph representation

learning models with comprehensive structural information and alleviates the over-

squashing issues.

This thesis is summarized in Chapter 7 and the contributions made towards

answering the research questions listed in 1.2 are detailed. Additionally, potential

future work, which could extend from these contributions, is proposed.
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1.5 Publications to Date

Note on publications included in this thesis: At the time of submission, four

chapters of this thesis are heavily based on papers submitted for publication or

published in conferences and journals:

• Chapter 3: Sun, Z., Harit, A., Yu, J., Cristea, A. I., Al Moubayed, N.

(2021). A Generative Bayesian Graph Attention Network for Semi-Supervised

Classification on Scarce Data. In 2021 International Joint Conference on Neu-

ral Networks (IJCNN, Core A Ranked Conference). pp. 1-7. IEEE. [22]

• Chapter 4: Sun, Z., Harit, A., Cristea, A. I., Yu, J., Shi, L., Al Moubayed, N.

(2022). Contrastive Learning with Heterogeneous Graph Attention Networks

on Short Text Classification. In 2022 International Joint Conference on Neural

Networks (IJCNN, Core A Ranked Conference). pp. 1-6. IEEE. [23]

• Chapter 5: Sun, Z., Harit, A., Cristea, A. I., Yu, J., Lei, Shi., Al Moubayed,

N. MONEY: A Novel enseMble Learning: cOnvolutional Network with ad-

vErsarial hYpergraph Model for Stock Price Movement Prediction. AI Open

Journal (Impact Score 30). 4, pp. 165-174. [24]

• Chapter 6: Sun, Z., Harit, A., Cristea, A. I, Lio, P and Wang, J. A Ricci

Curvature Contrastive PerformerMixer Framework for Graph Representation

Learning. In 2023 IEEE International Conference on Big Data (Big Data).

Note on publications not included in this thesis: In addition to the above

publications, the following works have been published during the period of research
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for this thesis which enhanced my comprehension of work towards this thesis. How-

ever, these publications do not integrate into the overarching narrative of this thesis

and thus are not included in the text.

• Sun, Z., Cristea, A.I., Lio, P. and Yu, J., 2023. Adaptive Distance Message

Passing From the Multi-Relational Edge View. ICLR Tiny.

• Xiao, C., Ye, Z., Hudson, G.T., Sun, Z., Blunsom, P. and Al Moubayed, N.,

2023. Can Text Encoders be Deceived by Length Attack?. ICLR Tiny.

• Yu, J., Cristea, A.I., Harit, A., Sun, Z., Aduragba, O.T., Shi, L. and Al

Moubayed, N., 2023, May. Language as a latent sequence: Deep latent variable

models for semi-supervised paraphrase generation. AI Open.

• Yu, J., Cristea, A.I., Harit, A., Sun, Z., Aduragba, O.T., Shi, L. and Al

Moubayed, N., 2022, July. Efficient Uncertainty Quantification for Multil-

abel Text Classification. In 2022 International Joint Conference on Neural

Networks (IJCNN) (pp. 1-8). IEEE.

• Yu, J., Cristea, A.I., Harit, A., Sun, Z., Aduragba, O.T., Shi, L. and Al

Moubayed, N., 2022, July. INTERACTION: A Generative XAI Framework

for Natural Language Inference Explanations. In 2022 International Joint

Conference on Neural Networks (IJCNN) (pp. 1-8). IEEE.

• Sun, Z., Harit, A., Cristea, A.I., Yu, J., Al Moubayed, N. and Shi, L., 2022,

December. Is Unimodal Bias Always Bad for Visual Question Answering? A

Medical Domain Study with Dynamic Attention. In 2022 IEEE International

Conference on Big Data (Big Data) (pp. 5352-5360). IEEE.
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• Yu, J., Alrajhi, L., Harit, A., Sun, Z., Cristea, A.I. and Shi, L., 2021. Ex-

ploring bayesian deep learning for urgent instructor intervention need in mooc

forums. In Intelligent Tutoring Systems: 17th International Conference, ITS

2021, Virtual Event, June 7–11, 2021, Proceedings 17 (pp. 78-90). Springer

International Publishing.

• Alamri, A., Sun, Z., Cristea, A. I., Stewart, C., Pereira, F. D. (2021). MOOC

next week dropout prediction: weekly assessing time and learning patterns.

In International Conference on Intelligent Tutoring Systems. pp. 119-130.

Springer, Cham..

• Alamri, A., Sun, Z., Cristea, A. I., Senthilnathan, G., Shi, L., Stewart, C.

(2020). Is MOOC Learning Different for Dropouts? A Visually-Driven, Multi-

granularity Explanatory ML Approach. In International Conference on Intel-

ligent Tutoring Systems. pp. 353-363. Springer, Cham.

• Yu, J., Aduragba, O.T., Sun, Z., Black, S., Stewart, C., Shi, L., Cristea, A.

(2020). Temporal Sentiment Analysis of Learners: Public Versus Private So-

cial Media Communication Channels in a Women-in-Tech Conversion Course.

In International Conference on Computer Science and Education pp. 182-187.

13



CHAPTER 2

Background and Methodology

This chapter dedicated to the background will provide a comprehensive overview of

the foundational method that forms the basis of the graph representation learning

research conducted in this doctoral thesis. The goal of graph representation learning

is to model the features and structures of graphs accurately and there are two types

of methods: traditional graph embedding and graph neural networks (GNNs) [25].

This thesis focuses on GNNs, which are studied in Chapter 3 - 6.

In this chapter, the basic knowledge of graphs is first introduced in section 2.1.

Subsequently, a brief explanation of backbone machine learning methods, includ-

ing graph neural networks (GNNs), is presented in section 2.2. Next, contrastive

learning is discussed in section 2.3, and the concept of transformers is explicated in

section 2.4. Furthermore, an in-depth review of the literature pertinent and actual
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model implementation details to each specific research question will be presented in

the respective Chapters, thereby facilitating a detailed comprehension of the specific

research question associated with each distinct investigation.

GNNs can be categorised into spectra-based and spatial-based, depending on the

function of the graph filter. Contrastive learning is a technology to learn the unique

features of inputs without labels, which is applied in Chapter 4 and 6, addressing

the robustness problem. Transformer is a popular deep learning model based on

self-attention, which can evaluate the importance of each input component and is

investigated in Chapter 6.

2.1 Basics of a Graph

The primary focus of my thesis is Graph Representation Learning, a field that fun-

damentally relies on the concept of a graph. Throughout this thesis, the subsequent

sections and Chapters 3 and 6 will consistently adhere to the following graph defi-

nition. Other types of graphs, including heterogeneous graphs and hypergraphs will

be discussed in Chapter 4 and 5, respectively.

A graph can be denoted as G = (V,E) where V refers to nodes and E represents

edges [26]. Adjacency matrix A represents a graph with a number of N nodes, as

shown in Figure 2.1:

A(i, j) =


1 if node i connects with node j

0 otherwise

Adjacency matrix encodes the relationships between nodes, serving as a founda-
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tional input for propagating node features and learning node embeddings in graph

representation learning [27]. Another important concept in graph representation

learning is degree matrix D, which captures the number of links associated with

each node, and is often utilised in the computation of graph Laplacians and normal-

isation procedures [28].

Figure 2.1: Graph, adjacency and degree matrix

A node can contain qualities like weight, size, position, and other features. An

edge can also have different properties, such as weight denoting the strength of

connection or direction representing relations.

Graphs can have different types: directed, undirected, homogenous, heteroge-

neous, weighted, unweighted, simple and hypergraph [29]. Edges can have direc-

tions in a graph, referred to as a directed graph. Each edge in an undirected graph

can also be considered two directed edges, making it a special instance of a di-

rected graph [26]. As Figure 2.2 shows, a bidirectional graph can be considered an

undirected graph.
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Figure 2.2: Directed and undirected graph

In homogeneous graph, all nodes are of same type and all edges represent the

same types relations [20], such as citation network Cora, Citeseer and PubMed,

explained in Section 2.5. In heterogeneous graphs, nodes and edges have different

properties [30], as illustrated in Figure 2.3, where the homogeneous graph consists

of scientific publications and the heterogeneous graph consists of different persons

with various relations.

Figure 2.3: Homogenous and heterogeneous graph
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2.2 Graph Neural Networks

Deep learning models that act on graph-structured data are known as Graph Neu-

ral Networks (GNNs) [8]. GNNs have attracted much attention in recent years, as

they can accurately depict the intricate connections between objects represented as

nodes in a graph. GNNs are proposed to capture interactions in the form of learned

node representations, which are utilised to represent entities and their relationships

in graphs. Tasks like graph categorisation, node classification, and graph construc-

tion can all be accomplished using these representations. Graph classification is to

classify a graph, considering its structure and node features. Node classification is

to classify the labels of nodes based on their features where each node needs to be

projected into an embedding space while preserving the intrinsic graph structure, as

illustrated in Figure 2.4. Link prediction predicts the existence of edges between a

pair of nodes, which is commonly seen in recommendation systems, drug discovery

and knowledge graph applications.

Figure 2.4: Node classification in graph representation learning

Researchers began investigating how to analyse graph-structured data using neu-

ral networks in the early 2000s when GNNs first emerged. [31] initially formulated
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GNNs to update nodes’ states iteratively, until reaching stable states. They repre-

sented each node in a graph as a vector of features and computed the output state by

propagating discrete features from neighbouring nodes for pattern recognition. [32]

elaborated it further by extending recurrent models to deal with graphs, includ-

ing directed, cyclic, or mixed graphs based on information diffusion and relaxation

methods [8]. However, the complicated relationships between nodes in a graph can

only be partially captured by the early GNNs. Since then, GNNs have grown to

various architectures and training methods. Wu et al. [33] categorised the recent

models into four types based on the information propagation mechanism: spectral-

based, spatial-based, attention-based and recurrent-based graph filters. This section

mainly introduces the first two mechanisms. More related work and the attention-

based graph filters are explained in Chapter 3 and 4. In this thesis, models grounded

in recurrent-based graph filters are not developed, given that primary research focus

is not dynamic graph scenarios, where such filters are predominantly applied [34].

2.2.1 Spectral-based Graph Filters

Spectral approaches are inspired by graph signal processing, which defines the con-

volution operator using the Fourier transform from the spectral domain. One sem-

inal work is graph convolution network (GCN), proposed by [35], which utilised a

first-order Chebyshev approximation on spectral convolutions for graphical repre-

sentation learning. They stacked multi-convolutional layers to extract hierarchical

features of spectral-represented graphs, and the design of filter kernels is based on

the eigendecomposition of the graph Laplacian matrix.
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A Graph Laplacian is defined as a diagonal degree matrix D ∈ RN×N minus the

adjacency matrix A:

L = D − A, Lnorm = I −D−1/2AD−1/2 (2.1)

Where Lnorm denotes the normalised graph Laplacian. N is the number of nodes

and I is the identity matrix. The eigendecomposition of L is L = U
∑

UT , where L

is the Laplacian matrix, U is the eigenvectors matrix and
∑

= diag(λ) represents

the diagonal eigenvalues matrix.

Kipf and Welling [35] defined layer-wise propagation of GCN as:

Hl+1 = σ(D−1/2ÂD−1/2HlWl) (2.2)

where H0 = x (initial feature of node i), Wl is trainable layer wised weight

matrix and σ is an activation function. Â denotes the new adjacency matrix, which

considers self-connections of nodes by adding the identity matrix I:

Â = A + I (2.3)

Due to the excellent performance of GCNs on node classification tasks, the con-

volution neural networks on graph-structured data have received extensive atten-

tion [36]. As a seminal graph representation learning method, GCN has been de-

ployed as baseline models in all four Chapters 3, 4, 5 and 6, and is directly integrated

into my proposed model in Chapter 5 to explore the pairwise relationships among

companies for stock prediction task.
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2.2.2 Spatial-based Graph Filters

Spatial methods create convolution operators based on graph topology, which satisfy

the following rules [6]:

• The feature vectors of nodes are transformed by projection.

• The information aggregation function is permutation-invariant.

• The update procedure is to consider the current values of nodes and their

aggregated neighbourhood representation.

Permutation-invariant means the functions can produce the same output re-

gardless of the input order, such as sum and mean calculation. Gilmer et al. [37]

summarise this procedure as a general message passing neural network (MPNN),

illustrated in Figure 2.5 as:

Figure 2.5: Message passing example

Initialisation The initial node features are translated into a hidden space from

the feature space using a neural network Φ (in most cases, a fully-connected linear
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layer):

H1 = Φ(X) = (H
(1)
1 , ...H(1)

n ) (2.4)

H1
i denotes the hidden representation of node i and is utilised as the initial

features in subsequent iterations. Edge features can also be formulated in a similar

way for later operation.

Aggregation and Update Information is passed from nodes’ neighbourhoods

and edges to the target node. Then the representations of a node are updated based

on the passed information and its previous state:

H l+1
i = fU(H l

i ,
∑

j∈N(i)

fA(H l
j, ei,j)) (2.5)

Where H l+1
i is the updated embedding of node i at layer l + 1. j ∈ N(i) is

neighbors of node i and eij denotes the edge between node i and j. The choice of

aggregate fA and update fU functions in GNNs is various in different models.

Readout After aggregation and update, one optional process is readout, which

refers to a function that generates a fixed-size representation of the complete graph

G based on the input node, edge attributes and graph topology:

ŷ = FR(HT
i |i ∈ G) (2.6)

Where FR denotes the readout function, which must be permutation-invariant.

Downstream tasks such as graph classification, regression, or clustering can be per-

formed using the readout function’s output. Among various GNNs, MPNN is con-

sidered a leading prominent paradigm for performing deep learning tasks on graphs.
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However, to sustain performance, MPNN must be able to communicate across long

distances (high-order interaction) by stacking more layers, which leads to the over-

squashing phenomena. MPNN is deployed in Chapter 4 and 6 to investigate the effec-

tiveness of position information learning for when partitioning graphs into patches.

The MPNNs have a limitation in their capacity to distinguish non-isomorphic

graphs, which has been examined through the Weisfeiler-Leman graph isomorphism

test [38] based on colour refinement. In response to this, [39] then propose a gen-

eral class of k-WL-GNNs which are able to universally represent any class of k-WL

graphs. However, these models come with memory and speed complexities of O(Nk),

where N represents the number of nodes. This k-WL test is widely employed to eval-

uate the expressive power of GNNs [40]. However, directly comparing the proposed

neural network with the Weisfeiler-Lehman test is challenging due to the nonlocal

manner in which information is transferred between layers [3]. In Chapter 6, a com-

parative analysis is conducted with other existing methods that were unable to pass

the k-WL test to demonstrate the effectiveness of proposed approach.

2.3 Contrastive Learning

Contrastive learning is a powerful training strategy to learn discriminative represen-

tation to maximise the agreement between representations of similar samples from

dissimilar ones without the requirement of labels [41]. One seminal work is Sim-

CLR [42], which significantly outperformed state-of-the-art at the proposed time for

self-supervised and semi-supervised learning in visual learning. SimCLR followed

the steps:
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1. Obtain a set of augmented data by pre-processing.

2. Apply a deep neural network to extract feature representations from aug-

mented data.

3. Train the model using a contrastive loss function in a self-supervised fashion.

The key idea is that if the representations of a sample’s augmented views are

not similar, then the contrastive loss function will penalise the model. For a batch

of N samples, the contrastive loss function L can be generalised as [42]:

L = −log
exp(sim(zi, z

′
i/)τ)∑N

j=1 exp(sim(zi, zj)/τ)
(2.7)

Where sim(zi, z
′
i) is the cosine similarity between two feature representations

from two augmented versions for the same sample input i, referred to as a positive

sample. zj is the feature representation of an augmented view of another input j,

known as a negative sample, and N denotes the number of examples in the batch.

τ is a temperature hyperparameter to control the scale of the product.

In conclusion, contrastive learning is popular and effective at learning robust in-

put representations, even without labels. Inspired by its outstanding performance,

there is increasing interest in applying it to different learning tasks. The appli-

cation of contrastive learning is extensively discussed in Chapters 4 and 6. For a

comprehensive review of the relevant literature and a detailed exploration of the

implementation process please refer to the two Chapters.
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2.4 Transformer

The vanilla transformer [43] consists of an encoder and a decoder, as illustrated in

Figure 2.6:

Figure 2.6: Overview of vanilla transformer, cited from [1]

The encoder comprises a feed-forward network (FFN) with position encoding

and a multi-head self-attention module. It can also be extended with a residual

connection [44] and layer normalisation [45]. Decoder is primarily the same as the

encoder, except for a cross-attention component to consider the attention over the

output of the encoder, followed by the FFN. Additionally, the self-attention layer

is adjusted to rule out the later positions from the current computation so that the

prediction for position i is not dependent on positions more than i. The attention

score can be calculated as follows:
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Attention(Q,K, V ) = softmax(
QKT

√
dk

)V (2.8)

Where Q, K, and V represent query, key and value. dk refers to the dimensions

of keys. The dot-product QKT is divided by
√
dk to alleviate the gradient vanish-

ing issue of the softmax operation. This attention mechanism is critical for graph

representation learning and has been applied in all four Chapters 3 - 6.

The equation in 2.8 is for single head attention, and one improvement is multi-

head attention, which concatenates all the output from equation 2.8 to weigh infor-

mation at different positions from various embedding spaces jointly:

MultiHead(Q,K, V ) = Concat(head1, ...., headn)W o,

whereheadn = Attention(QWQ
n , KWK

n , V W V
n ).

(2.9)

This formulation increases the expressive power of the attention model [43].

Apart from the attention mechanism, another vital component for a Transformer is

Position-wise feed-forward network FFN [1]. It consists of two layers and is applied

to each position identically and separately [43]:

FFN(x) = max(0, xW1 + b1)W2 + b2 (2.10)

Where W1, W2, b1 and b2 are trainable parameters, a ReLU activation function

exists in between. For each position pos, positional information is calculated using
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sin and cos function:

PE(pos)i =


cos(wipos) if i is odd

sin(wipos) if i is even

Where wi is the frequency of dimension i, and this position encoding will be

incorporated into token embeddings. The position representation can be added to

each transformer layer’s input to avoid information loss during message propagation,

[46,47]. For graphs, position information can be calculated in different methods, such

as Laplacian eigenvectors [48] and k-step random walk [49].

Laplacian eigenvectors in Graph Transformer [50] are calculated by the factor-

ization of the graph Laplacian matrix:

L = I −D−1/2AD−1/2 = Udiag(λ)UT (2.11)

Where U and diag(λ) are eigenvectors matrix and diagonal eigenvalues matrix.

k smallest eigenvectors are picked as the unique positional encoding for nodes. This

position embedding can be directly added to node features and passed to the input

for the transformer in Figure 2.6.

The details of the Laplacian matrix and related operation have been discussed

before. Laplacian eigenvectors represent a valid local coordinate and encode graph

structure information [51] and have recently been deployed to improve the expressive

power of GNNs [48,52], defined as:

plapi = [Ui1, Ui2, ..., Uik] ∈ Rk (2.12)
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Where plapi is Laplacian position encoding and U is the eigenvector. However,

the sign of the eigenvector U is ambiguous and requires further sign flipping during

training, normally random sampled between 2k possibilities when selecting k eigen-

vectors [49]. Another method is the k-steps random walk, which has been proven

to be more effective [16]:

pi = [RWii, RW 2
ii, ..., RW k

ii ] ∈ Rk (2.13)

Where pi is the position encoding and RW = AD−1 denotes the operator for a

random walk (RW). This method only considers the probability of a node i to itself

to reduce complexity. This random work can offer a distinctive node representation

by ensuring that each node possesses a unique k-hop topological neighborhood, when

k is sufficiently large [16]. Both position encoding methods are deployed in Chapter

6 to capture more structural information about graph patches.

2.5 Overview of Datasets

To provide clarity on the datasets used in this thesis, the table below presents

an overview of the prominent datasets leveraged in prior research. It details their

contextual applications and reference studies where they have been employed. By

presenting this, we aim to underscore the rationale behind selecting specific datasets

for the various research question tackled in this thesis.
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Table 2.1: Overview of Datasets in Prior Research
Datasets Study Domain Task

Cora [35,53,54] Citation Network Node Classification

CiteSeer [35,53,54] Citation Network Node Classification

Pubmed [35,53,54] Citation Network Node Classification

MR [55–58] Heterogeneous graph neural network Node Classification (Sentiment Analysis)

Twitter [56–58] Heterogeneous graph neural network Node Classification (Sentiment Analysis)

AGNews [56,57] Heterogeneous graph neural network Node Classification (Text Classification)

Ohsumed [55–58] Heterogeneous graph neural network Node Classification (Text Classification)

China A Share [59] Hypergraph graph neural network Node Classification (Price Movement Prediction)

ZINC [3,48,60] Molecule Graphs Graph Regression

Peptides-func [3, 61,62] Molecule Graphs Graph Classification

MolHIV [3,63,64] Molecule Graphs Graph Classification

CIFAR 10 [3,48] Images Graph Classification

CSL [3,48,64,65] Synthetic Dataset Test expressivity of GNNS

SR25 [3,66] Synthetic Dataset Test Expressivity of GNNS

EXP [3,66] Synthetic Dataset Test expressivity of GNNS

There are five types of datasets used to answer the three research questions,

accordingly, which were posed in Chapter 1.2 in this thesis:

• Citation networks datasets including Cora, CiteSeer and Pubmed [67] in Chap-

ter 3 for addressing the robustness problem in node classification, with only a

small portion available labelled data.

• Short text datasets to study the issue of heterogeneity and robustness in Chap-

ter4, including AGNews [68], Ohsumed [55], where labels are the topic of the

news or bibliographic document, MR [69] and Twitter (both are for sentiment

classification) provided by NLTK1.

• Finance dataset (China A-share market stock price from 2013 to 2019), pro-

vided by [36] to capture more complex relations among companies in different

industries and held by various shareholders in Chapter 5. Each node repre-

1https://www.nltk.org/
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sents a company and two nodes are connected if they are in the same industry

or invested by the same shareholders.

• Molecule/Chemistry datasets including Zinc [48], Molhiv [70], Peptides-func

[62] and image dataset CIFAR10 [48] for graph structure learning (positional

information, long-range dependencies, over-squash) in Chapter 6.

• Simulated/synthetic datasets including CSL [71], SR25 [72] and EXP [73] to

demonstrate the enhance expressive power of my proposed framework in Chap-

ter 6.

2.6 Summary

This chapter presents the core concepts of graph representation learning that un-

derpin our advanced methods. We discuss essential graph theories, the central role

of message passing mechanism in graph neural networks and the potential of trans-

formers and contrastive learning. Additionally, we provide a succinct overview of

datasets employed to tackle specific research questions. The next chapter will ad-

dress the first research question, regarding robustness in data-scarce scenarios.

30



CHAPTER 3

Robustness problem with graph representation learning

In this chapter, we introduce a novel graph generative model, named Bayesian Graph

Attention Network (BGAT) to solve the first research question mentioned in Section

1.2:

How to increase robustness regarding uncertainty (few labels available during

training or noisy input) in representation learning based on graph neural networks,

without inferior performance?

We apply the proposed BGAT model for node classification tasks under data-

scarce contexts. Our model performs against earlier state-of-the-art and can be

used as a future baseline for graph generative models. This chapter is based on the

following publication as listed in Chapter 1.5:

Sun, Z., Harit, A., Yu, J., Cristea, A. I., Al Moubayed, N. (2021). A Genera-
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tive Bayesian Graph Attention Network for Semi-Supervised Classification on Scarce

Data. In 2021 International Joint Conference on Neural Networks (IJCNN, Core

A Ranked Conference). pp. 1-7. IEEE.

3.1 Introduction

Graph representation learning has recently drawn the attention of researchers from

across various domains, including computer vision, natural language processing,

knowledge graphs, and social networks [5], as discussed in Chapter 2. Despite the

proven learning abilities of existing GNN models, their inference performance is

compromised for semi-supervised tasks when only limited labelled data is available

[54]. Additionally, most existing studies [35, 74, 75] process input graphs as the

ground truth but neglect the fact that noise or spurious edges generated from model

assumptions may be included and thus lack robustness.

Addressing the above problems, [54] proposed a generative graph model to infer

the joint posterior distribution of weights of a Graph Convolutional Network (GCN)

and the graph structure of the input. However, their posterior inference of the

graph is mainly conditioned on the structure of the observed graph and neglects the

information from the node features. As the data may be correlated with the actual

graph structure, the information of features is missing which resulted in a moderate

performance [76], particularly under data-scarce situations.

In this chapter, we introduce a generative model that considers the neighboring

nodes’ features and labels using an attention mechanism. We propose a Bayesian

graph attention network (BGAT) model, to simultaneously boost the model’s per-
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formance and robustness when solving semi-supervised classification.

In summary, the main contributions of this work are:

1. We propose a novel BGAT model combining GAT and the Bayesian method,

which allows accounting for uncertain information, such as spurious and miss-

ing edges between nodes in a graph, by viewing the observed graphs, as gen-

erated from a parametric random graph family.

2. We demonstrate our model’s improved performance in classification tasks un-

der data-scarce (under-labeled data) situations.

3.2 Related Work

As addressed in Chapter 2, graph neural network (GNN) was initially introduced

by [31] as updating nodes’ states iteratively, until reaching stable states, by prop-

agating discrete features from neighboring nodes. Scarselli et al. [32] elaborated

it further, by extending recurrent models to deal with graphs, including directed,

cyclic, or mixed graphs based on information diffusion and relaxation methods [8].

Later, [37] developed a new framework for GNNs, which contained a message passing

and readout phases. It improved the performance at learning hierarchical graphical

representations by using sub-graphs. GNNs are effective at learning node represen-

tations via feature propagation but generally struggle to model the dependencies

between various node labels. These methods usually assume a central node clas-

sification is conditionally independent of the features, but seldomly [76] model the

joint distribution of the node labels and graph to extract more relationships among

nodes.
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Most existing studies consider the input graph a fixed observation and assume it

represents ground-truth information. In such cases, neural networks do not consider

the uncertainty of information, including spurious edges and missing edges in graphs.

A few studies [54, 76, 77] have understood the problem and proposed to solve it

by using generative models. Ng et al. [77] introduced a Gaussian process-based

approach in semi-supervised learning and [54] incorporated the stochastic block

model and used Monte Carlo dropout [78] to represent model uncertainty in deep

learning. Recently, [76] introduced a graph-based generative framework for semi-

supervised learning, but they did not consider the data-scarce situations in active

learning, which is the problem of interest in this Chapter.

Our study builds on the work by [54], as their idea of considering the uncertain

graph information based on GCN is practical and effective for semi-supervised learn-

ing, particularly under data-scarce situations. However, as addressed above, they

did not consider the specific weights of highly correlated features and the interac-

tion between those features and graph structures. By learning the influence among

nodes, the attention mechanism could mitigate the problem of including spurious

edges as addressed by [53]. We are interested in combining Bayesian methods with

GAT to learn the joint distribution of labels, features and graphs under data-scarce

situations for semi-supervised node classification tasks.
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3.3 Model Building - Preliminaries

3.3.1 Graph Attention Mechanism

The Graph Attention Network (GAT) was proposed by [53] and its power consisted

in it considering the relative influence between neighboring nodes and central nodes,

instead of the fixed weights used in GCN, based on attention mechanisms. It can

be outlined as:

hl
i = σ(

∑
αl
ijW

thl−1
j ) (3.1)

Where αt
ij is the attention score between node i and j and can be calculated as:

αt
ij = softmax(σ(a[Whl−1

i ||Whl−1
j ])) (3.2)

σ is the LeakyReLU activation, Wh are the weights of node i and j in layer l − 1.

Operation || is a concatenation and the softmax function is used to sum up all

neighbors of node i.

Using multiple attention layers enables a model to attend to information differ-

ently, yet it is often assumed that each attention head has equal importance [53].

More recently, [79] proposed a Gated Attention Network (GaAN) model, to fur-

ther take into account the importance of each attention head, separately. The model

performed well for both inductive node classification and traffic speed forecasting

tasks, and the authors argued that it could also be possibly extended to integrate

edge features for massive graphs.
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3.3.2 Bayesian Neural Network

According to Seedat and Kanan [80], Bayesian neural networks represent uncertainty

by formulating a network’s parameters in the manner of a probabilistic distribution.

The weight matrix can be modelled as random variables that p(Wl) in layer l can

be defined as Wl ∼ N (0, I), by introducing the standard matrix Gaussian prior

distribution with bias vector bl.

Considering the posterior distribution of the weight matrix W , the predictive

function for a new point x* with training data X and training label Y can be

formulated as:

p(y|x∗, X, Y ) =

∫
p (y|x∗, w) p(w|X, Y )dw (3.3)

As the functional form of a neural network is difficult to integrate, the exact

calculation of the model posterior p(w|X, Y ) is generally intractable [81] and cannot

usually be analysed in a close form. Therefore, we use the Monte Carlo dropout

method [78] to approximate it, which accounts for model uncertainty in deep learn-

ing. We can draw samples from the approximate posterior and average the weight

matrix W of the network with T stochastic forward passes:

p(y|x∗, X, Y ) ≈ 1

T

T∑
t=1

p(y|x∗,W t
1, ...,W

t
l ) (3.4)

3.3.3 Mixed Membership Stochastic Block Model

The mixed membership stochastic block model (MMSBM) [82] is a popular frame-

work for community detection [83], which considers a graph G(V,E) and the asso-
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ciated adjacency matrix A. There are n nodes in the graph, denoted by x1, . . . , xn.

An adjacency matrix A for this graph is an n by n dimensional matrix as explained

in chapter 2. If there is no connection between node xp and node xq, A(p, q) = 0,

otherwise A(p, q) = 1. The MMSBM models the adjacency matrix A in a Bayesian

hierarchical framework. According to a very recent work of [84], the absence or

presence of a link between any pair of nodes (xp, xq) is described by a Bernoulli

distribution B with a latent group membership zp,q,1 zp,q,2:

A(p, q) | zp,q,1, zp,q,2, B ∼ Bernoulli
(
zTp,q,1Bzp,q,2

)
(3.5)

The Bernoulli probability matrix B has a K by K dimension, which, for commu-

nity detection, represents the number of communities in the data. As we focus on

undirected graphs, zp,q,1 means the distribution of node xp is interacting with xq in

community 1 where both nodes are K-dimensional vectors, where only one element

equals to one. It can be denoted as z = [z1, ...zK ]T , indicating the corresponding

community the node belongs to (the rest being zero). According to [84], the joint

distribution of latent group memberships of nodes Z and data X is:

p (X,Z1, Z2, π |α,B)=
∏
p,q

p1 (X(p, q) | zp,q,1,zp,q,2, B)

p2 (zp,q,1 |πp) p2 (zp,q,2 | πq)
∏
p

p3 (πp | α)

(3.6)

p1 is the Bernoulli distribution (β) which refers to the possibility of a link between

two nodes. p2, p3 are prior of latent group membership and the prior of the former

one, with Beta and Dirichlet distributions, respectively.
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3.4 Methodology

3.4.1 Learning Attention Using the Bayesian Framework

We consider a semi-supervised learning problem leverage the graph attention net-

work method. The deterministic attention weights are transformed into a distri-

bution, making it straightforward and requiring minimal changes to the standard

attention model. We can adapt a pre-trained standard attention model for varia-

tional fine-tuning. The graph structure is encoded in the attention masks so that

nodes can only attend to the neighborhood’s features in the graph.

3.4.2 BGAT

The inspiration for the Bayesian Graph Attention model comes from the Bayesian

Graph Convolutional Neural Network (BGCN) model [54]. While the founda-

tional Bayesian approach and the usage of the mixed membership stochastic block

(MMSBM) model to generate random graphs is similar to BGCN, the key distinc-

tion lies in the application of the graph attention network (GAT) to our model, as

apposed to the graph convolution network (GCN) employed in BGCN. In our design,

we utilise a building block layer to construct an arbitrary graph attention network by

stacking this layer, further integrating a Bayesian methodology, especially beneficial

for classification in data-scarce situations.

In this chapter, the Bayesian approach views a graph as a realisation from a

parametric family of random graphs based on the known labels of nodes, Y and

structures from observed graphs. The joint posterior of the weights in GAT, the
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parameters of the random graph and the remaining unknown node labels are the

target inference. By marginalisation, the graph parameters, and posterior estimation

of the labels could be inferred and obtained. Then we combine the posterior of labels

and attention of nodes and implement a softmax function to obtain the final output.

The posterior probability of labels is formulated as:

p (Z | Gobs,X,Y) =

∫
p(Z | W,Gr,X)p (W | Y,X, Gr)

p(Gr | ζ)p (ζ | Gobs) dWdGrdζ

(3.7)

ζ is the parameter that describes a family of random graphs Gr, which can be

derived from the observed graph Gobs using the MMSBM random graph model.

W is the sampled weights of BGAT over the random graphs Gr by approximating

variational inference via Monte Carlo dropout as aforementioned in 3.3.2. Y is the

known label of nodes and later GAT will take (X,G) as input to infer the unknown

labels of nodes. A softmax function will be added to the output of GAT to model

p(Z|X, Y,Gobs) in a categorical distribution. Figure 3.1 provides a detailed schematic

of our Bayesian GAT model.
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Figure 3.1: Overview of BGAT

Since the highly non-linear nature of likelihood leads to intractable computa-

tion of posterior in the equation (3.7), we can use variational inference [78, 85, 86]

or MCMC [87, 88] to approximate the posterior of p(W |Y,X,Gr). According to

[89], averaging the weights of the network is an approximate way of Monte Carlo

dropout. The weight metrices W can then be sampled from p (W | Y,X, Gr) us-

ing Monte Carlo dropout given the sampled graphs generated from p(Gr|ζ). To

model p(ζ|Gobs), parametric random graph generation models, such as degree cor-

rected block model [90] and mixed membership stochastic block model [82] could be

considered. In summary, the Monte Carlo approximation of equation (3.7) is:

p (Z | Y,X, Gobs) ≈

1
V

∑V
v

1
NGS

∑NC

a=1

∑S
s=1 p (Z | Ws,a, Ga,X)

(3.8)

Ga is the graph sampled from the random graphs Gr and the weight matrix
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Ws,a is sampled from p (W | Y,X, Gr) based on Ga. For the Bayesian GAT, we

use a similar Mixed Membership Stochastic Block Model (MMSBM) setting used in

Bayesian GCN [54] for the graph and learn its parameter ζ = {β, z} using stochastic

optimization to maximize the posterior of β and z based on the observed graph Gobs.

As addressed in section 3.3.3, the MMSBM model is used to model the random

graph based on the observed graphs, which helps us establish a strong community

structure between nodes and determine which community node may belong to. If

any two nodes belong to the same community, meaning they have the same label,

and it is highly likely to have a link between them, compared to when the two nodes

belong to different communities [82]. β is to denote the possibility that there is a

link between any two nodes and z is the parameter for the community membership

probability distribution of nodes, and the priors of them are Beta and Dirichlet

distribution, respectively.

The posterior probability of labels p(Z|Y,X,Gobs) is modelled as a K-dimensional

categorical distribution, where K is the number of classes/communities of the data.

In GAT, a weight matrix W containing the F dimensions of features of the nodes is

introduced as an initial linear transformation, and then self-attention will be applied,

to compute attention coefficients, as the relative influence of node j’s features on

node i, defined by [53]:

eij = a
(
Wh⃗i,Wh⃗j

)
(3.9)

Then we can use equation 3.8, the Monte Carlo dropout method to approximate

the posterior of labels and model the posterior using a categorical distribution to
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establish the community membership among nodes. We then model the posterior of

labels and learned attention of nodes by applying the softmax function to the output

of GAT. The attention improves the model’s expressiveness and the Bayesian GAT

model leverages deterministic self-attention layers to process node features for graph

node classification. The graph structure is encoded in adjacency matrix, and nodes

can only attend to their neighborhoods’ features in the graph.

3.5 Experiments

Experiments implemented to demonstrate the effectiveness of our model are de-

scribed in this section.

3.5.1 Datasets

As mentioned, we perform a semi-supervised node classification task on three cita-

tion datasets: Cora, CiteSeer, and Pubmed [91] follow a random split. The details of

each dataset are summarised in Table 3.1. In these datasets, each node represents a

scientific document and if one paper cites another, there will be an undirected edge

between them, shown in Figure 3.3 and 3.4, where Citeseer is more decentralised,

compared with Cora. The decision to disregard the direction of citation aligns with

the approach taken by the baselines GCN, GAT and BGCN models, and was made

to simplify the network structure. In the context of node classification, our pri-

mary aim is to understand the relations between documents to derive meaningful

node representation. By emphasising the mere presence of relations, instead of di-

rectionality, we reduce the potential complexities. Although it is to be noted that
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considering the direction of citations might offer insights into the flow of information

among documents. Each node has a sparse feature vector (keywords of the docu-

ment) and the label describes the topic of the document. For instance, each node

has 1433 dimensions of features attached to it, represented as 0 or 1 in Cora and the

node label in the last column represents the topic/community that the document

belongs to, as shown in Figure 3.2. Please note that we only have access to a few

nodes per class during training to infer labels for other nodes.

A distinguishing factor is that the Pubmed dataset uses TF-IDF (Term Frequency-

Inverse Document Frequency) features. In contrast, Cora and CiteSeer use binary

vectors, indicating the presence or absence of terms. This differentiation in feature

choice is not arbitrary, but is intrinsic to the datasets. It is crucial to note that this

particular choice of features, TF-IDF for Pubmed and binary indicators for Cora and

CiteSeer was preordained by the dataset curators [91]. This has been consistently

adhered to by other baselines in the field, ensuring uniformity and comparability in

experimental results.
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Table 3.1: Dataset summary

Datasets Cora Citeseer Pubmed

Nodes 2708 3327 19717

Edges 5429 4732 44338

Communities 7 6 3

Features 1433 3703 500

Features Type Binary Binary TF/IDF

Average Degree 4 2 3

Figure 3.2: Layout of the Cora Dataset
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Figure 3.3: Visualisation of the Cora Dataset

Figure 3.4: Visualisation of the Citeseer Dataset

3.5.2 Experimental Setup

Our model is implemented with Pytorch 1.4.0 with Cuda 10.2. The hyper-parameters

of BGAT are borrowed from the experiments of GAT [53] and BGCN [54]. We use
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two layers and the number of hidden units is 16, with a 50 percent dropout rate at

each layer. The learning rate is 0.01 and the L2 regularisation parameter is 0.0005.

In addition, the hyper-parameters associated with the Mixed Membership Stochas-

tic Block Model (MMSBM) inference are: n =500, ε0 = 1, τ = 1024, η = 1 and α

= 1.

Three different experimental settings for a semi-supervised classification task

have been considered, where 5, 10 and 20 labels per class are available in the training

set, to infer labels for the others. The partitioning of the data into 20 labels per

class is set the same as in [54], whereas in the other two cases, the training sets are

constructed by considering the first 5 or 10 labels from the previous partition.

3.5.3 Baselines

We consider three widely applied graph learning models and one previous work on

semi-supervised learning under data-scarce situations as baselines: ChebyNet, GCN,

GAT and BGCN.

• ChebyNet A spectral CNN-based model uses Chebyshev polynomials to ap-

proximate and localize filters of graphs [92].

• GCN A spectral CNN-based method that deploys the first-order approxi-

mation of ChebNet and assigns a non-parametric weight of neighborhood to

central nodes [35].

• GAT An attention mechanism-based neural network method that considers

the weight of neighbor information to central nodes [53].
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• BGCN A Bayesian GCNN framework that considers the randomness of input

graphs by incorporating the Bayesian method with GCN [54].

3.6 Results and Discussion

We compare the performance of various models, including the proposed model,

across different datasets. The mean and standard deviation of the proposed method’s

test accuracy versus the baselines are presented in the table below:

Table 3.2: Average Prediction Accuracy of Models in Datasets

Cora CiteSeer Pubmed

Model 5 labels 10 labels 20 labels 5 labels 10 labels 20 labels 5 labels 10 labels 20 labels

ChebyNet 61.7±6.8 72.5±3.4 78.8±1.6 58.5±4.8 65.8±2.8 67.5±1.9 62.7±6.9 68.6±5.0 74.3±3.0

GCN 70.0±3.7 76.0±2.2 79.8±1.8 58.5±4.7 65.4±2.6 67.8±2.3 69.7±4.5 73.9± 3.4 77.5± 2.5

GAT 70.4±3.7 76.6±2.8 79.9±1.8 56.7±5.1 64.1±3.3 67.6±2.3 68.0±4.8 72.6±3.6 76.4±3.0

BGCN 74.6±2.8 77.5±2.6 80.2±1.5 63.0±4.8 69.9±2.3 71.1±1.8 70.2±4.5 73.3±3.1 76.0±2.6

BGAT 74.8± 4.5 78.8± 2.8 84.3± 1.8 68.6± 4.6 71.4± 2.6 74.2± 1.6 71.4± 4.7 72.3±3.4 74.5±2.4

Our proposed model achieves a better performance in all bar 2 cases. For in-

stance, the proposed model improves more than 4% and 5% of the test set accuracy

in the Cora and CiteSeer data sets, when there are 20 and 5 labels available, respec-

tively. A paired t-test is conducted to compare the mean performance of our method

and BGCN on the same datasets (Cora and CiteSeer) over 4 runs. The results of

the paired t-test confirm that the improvements introduced by our model for clas-

sification tasks under data-scarce situations are statistically significant (p-value ≤

0.05). Nevertheless, the proposed model does not reach the highest accuracy in the

Pubmed dataset, for the cases of 10 and 20 labels per community. GCN presents
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the most expressive power for the Pubmed dataset. One possible explanation is that

there are more low-pass subgraphs in Pubmed and repeated graph propagation is

the primary source of the expressive power of GCN [93]. Another determinant of

this performance variation is the TF-IDF feature in Pubmed, which contrasts with

the binary features in the other datasets. The inherent nature of these TF-IDF fea-

tures might align more harmoniously with the GCN’s low pass filtering mechanism.

Additionally, while GAT model offers a fine-grained approach by considering influ-

ences of different nodes, its performance may be compromised when paired with the

random input graphs generated by the MMSBM method, underscoring a potential

trade-off between granularity and stability.

3.7 Potential Future Work

There are several potential extensions to our work that could be addressed as a

future study. One is to investigate how to extend the generative models, by ac-

counting for more graph structure information to other graph-based learning tasks.

For instance, the direction of the citation could be considered and modelled in the

graph generation process. Moreover, extending the method’s expressive power with

sub-structure counting could also be insightful, from the application perspective. Fi-

nally, extending the model with more scalable techniques would allow us to perform

practical inference over large-scale graphs under data-scarce situations.
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3.8 Summary

This work introduces a novel method for graph-based semi-supervised learning,

which allows for considering uncertainty in the graph generation process. We present

how to incorporate MMSBM with a graph attention mechanism and examine our

model on three graph-based deep learning benchmark datasets. The results demon-

strate that the proposed model outperforms other graph-based semi-supervised

learning methods when there are only a few labels of the nodes known for clas-

sification tasks in most settings. Given the robustness and performance of BGAT,

it could be used as a new baseline in future generative graph learning. However, a

limitation of this study is that it solely focuses on homogeneous graphs. In reality,

graphs often comprise various types of nodes and edges. Consequently, the subse-

quent chapter will delve into exploring the challenges posed by heterogeneity and

robustness in heterogeneous graph representation learning.
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CHAPTER 4

Heterogeneity problem with graph representation learning

In this chapter, we develop a novel contrastive graph learning model based on exist-

ing state-of-the-art, named Neighbour Contrastive Heterogeneous Graph Attention

Network (NC-HGAT) to solve the second research question we mentioned in Chapter

1.2:

How to account for the heterogeneity of graphs, which contain diverse types of

edges, features and attributes, in graph neural networks?

We apply the proposed NC-HGAT model for short text classification tasks with

limited available labels. Entities, sentences and topics are represented in different

types of nodes, connected by different types of relations. Our model performs against

state-of-the-art and provides a new perspective for the message passing mechanism

in graph representation learning. This chapter is not only based on the following
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publication as listed in Chapter 1.5:

Sun, Z., Harit, A., Cristea, A. I., Yu, J., Shi, L., Al Moubayed, N. (2022).

Contrastive Learning with Heterogeneous Graph Attention Networks on Short Text

Classification. In 2022 International Joint Conference on Neural Networks (IJCNN,

Core A Ranked Conference). pp. 1-6. IEEE.

but also extends the work with edge-level attention consideration and demon-

strates the improved performance of taking into account edge relations in text clas-

sification tasks in section 4.3.3 and improved robustness by contrastive learning, in

section 4.7.

4.1 Introduction

Text classification is a fundamental task in natural language processing (NLP),

which can be applied to various downstream tasks, such as question answering, ma-

chine translation and sentiment analysis [94]. The representation learning ability of

textual features is a leading cause of the high performance of text classification mod-

els. Consequently, it is a pressing need to study how to extract textual features more

effectively. Recently, graph neural networks (GNNs) have been increasingly applied

to text classification tasks, due to their advantages of dealing with complex seman-

tics and topological information, by modelling texts as graph structure [8]. Graphs

in such studies [95, 96] usually consist of different types of nodes, which represent

words or documents, and edges, to indicate relations. These graphs are known as

heterogeneous information networks (HIN) or heterogeneous graphs. Different from

most existing studies that focus on long text classification, we mainly focus on short
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text classification, as our daily communication is increasingly completed via short

texts, such as tweets, messenger and online comments. Thus it has become more

important to study this field.

Most existing GNN studies focused on text classification tasks are trained in a

semi-supervised manner, similar to the vanilla Graph Convolution Network (GCN)

[35]. Such methods require a large set of labelled data, which is often unattainable

in many real-life scenarios. Therefore, the shortage of labelled data may undermine

the performances of graph neural network models on classification tasks, particularly

with large-scale data [22,56].

On the other hand, although a GCN can encode local topological properties, it

may fail to capture the global structural information fully [97]. To be more specific,

existing methods for text classification mainly learn direct neighbourhoods and the

associated textual features by supervised information aggregation. They may not

be able to incorporate the high-order, rich relations among texts [98], and thus

undermine the ability to capture inherent heterogeneity in texts, particularly when

the connections among nodes are noisy or missing [99], as is the case with the data

considering only 40 labels known per class for training in this chapter.

To address the above problems, we propose integrating neighbouring contrastive

learning (NC) with the heterogeneous graph attention network (HGAT), forming

NC-HGAT. HGAT is the state-of-the-art work for text classification tasks, pro-

posed by [56] to embed HIN with a dual-level attention mechanism for both nodes

and relations. However, HGAT mostly focuses on the node influence and neglects

the impacts of edges, where the relationships between words (nodes) can provide
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crucial context that aids in understanding the meaning of the text. After the base

paper was published, this chapter addressed the problem by adding an edge-level at-

tention module in section 4.3.3 in this thesis. Contrastive learning can learn intrinsic

and transferable topological information, enhance the performance of graph neural

networks [100], and is widely applied in NLP tasks for pre-training [101]. NC learn-

ing enables our proposed model to transform kth structural-aware features without

using direct message-passing modules, and hence improve the ability to capture the

nuanced differences between different types of entities, despite missing connections

between words during inference [99], when labelled data is limited.

The contributions of this Chapter are summarised as follows:

• To the best of our knowledge, this study is the first attempt to apply contrastive

learning with a heterogeneous graph neural network to text classification tasks.

• We propose to use a simple MLP to learn the neighbouring information without

direct message-passing, which can be easily applied to existing graph neural

network models [99] to text classification.

• Experimental results on three of the four datasets analysed show NC-HGAT

outperforming the state-of-the-art on short text classification with limited la-

belled data, and it also delivers a competitive result on the fourth dataset.
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4.2 Related Work

4.2.1 Text Classification

Extensive studies have been conducted on text classification, such as traditional

machine learning using manually designed features [102], convolutional neural net-

works [103], and recurrent neural networks [104]. Recently, graph neural networks

(GNNs) have shown promising performance in text classification, as text can be

modelled as edges and nodes in a graph structure. For example, TextGCN [105]

applied the vanilla GCN to heterogeneous graphs on graphs built from a text corpus

and gained improved results.

Hu et al. [56] proposed a novel heterogeneous graph attention networks model

(HGAT) with a dual attention mechanism to consider more relations between dif-

ferent nodes. Recently, [57] introduced an orphan category to HGAT to remove

unrelated stop-words, which improves classification accuracy. Liu et al. [98] also in-

corporated the attention mechanism with deep diffusion layers to enrich the context

information of texts.

Ding et al. [106] constructed hypergraphs for text classification to capture high-

order interaction between words. However, these methods all relied heavily on the

direct message-passing function to learn node-wise feature transformation, and the

performance decreased when labelled training data was limited. We thus propose,

for the first time, to the best of our knowledge, to solve the problem by applying

contrastive learning of graph structure in text classification tasks.

54



4.2.2 Contrastive Learning

Contrastive learning is a discriminative approach which aims to learn embeddings of

objects, shorten the distance between similar entities, and lengthen the gap among

dissimilar entities [107]. It aligns with the classification objective [108] and has

increasingly been applied to computer vision and NLP tasks. Contrastive learning

can be used in both self-supervised representation learning [109–111] and supervised

learning [101, 112, 113]. In NLP tasks, [114] performed contrastive learning on ad-

versarial samples to improve text classification, and [115] applied it to obtain more

effective embeddings of words to mitigate the problem of data scarcity.

For graph learning, contrastive learning between global and local objects can

better capture structural information [116,117]. For instance, [118,119] proposed to

implement contrastive learning by maximising the mutual information between rep-

resentations of substructures (e.g. triangles) and graph-level representation. Peng

et al. [120] explored natural supervision signals from a global context to learn useful

individual node representations. However, these methods mostly focused on graph-

level rather than node-level tasks. [121–125] built contrastive multi-structural views

between either node or subgraphs and transformed graphs for node classification

tasks. However, [126] pointed out that increasing the number of views does not

improve representation learning performance for graph-structured data. The num-

ber of contrastive views needs to be confirmed before training and hand-picking

of the suitable views will reduce the generalisation capability [127]. Although few

works explored how to build the optimal views [128, 129], it is task-dependent and

impractical when we have no prior knowledge. Moreover, these studies did not con-
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sider the heterogeneity of different types of information (e.g., entities, topics in this

study). Therefore, we do not construct different views of graphs but mainly consider

the effectiveness of contrastive learning in capturing the heterogeneity on the text

classification task.

4.3 Methods

In this section, we will introduce our NC-HGAT model, a merger of the HGAT

model [56] and neighboring contrastive (NC) learning adapted from the Graph-MLP

model [99].

4.3.1 Construct Heterogeneous Graph from Data

Here we apply the same approach as in [56] to construct heterogeneous graphs from

texts. This is briefly illustrated below, for clarity. Specifically, a heterogeneous

graph can be denoted as G = (V, E), where V is the union of entities E, topics T ,

and short texts S; and E = E1, E2, ... is the set of edges representing the relations

between them, as shown in Figure 4.1.

Each short text (document) is assigned to a number of top M possible top-

ics (t1, t2...tM) using LDA [102] and the entities E are mapped to Wikipedia via

TagME1, an entity linking tool. Edges will be created if an entity e is contained

in a document s or the document is assigned to a topic with a threshold of 0.5. If

the cosine similarity between entity embeddings calculated by word2vec based on

1https://sobigdata.d4science.org/web/tagme/tagme-help
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Figure 4.1: Example Snippet from a Heterogeneous Graph Structure

the Wikipedia corpus 2 is higher than a threshold 0.5, then an edge will connect the

two entities. This threshold choice is consistent with the setup employed by [56].

We chose to adhere to this established threshold, to maintain consistency with prior

work, and to ensure a fair comparison. The rationale behind using a positive value

for the threshold is to ensure a reasonably strong semantic similarity between enti-

ties. Considering entities, short texts and topics in Figure 4.1, it is highly likely that

the documents in the figure would be classified with their correct label as “Busi-

ness”. Therefore, the task can be described by Figure 4.2, which is to predict the

label for the new document.

2https://code.google.com/archive/p/word2vec/
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Figure 4.2: Illustration of text classification task

The overall structure of our model is shown in Figure 4.3, where we apply the

HGAT model (circled by the orange colour dash line) to construct text graphs and

utilise an MLP-based model to update features, then calculate the similarity among

nodes within the same input batch, based on an adjacency matrix. The details are

explained in the later subsections 4.3.2, 4.3.4 and 4.3.5.

Figure 4.3: Illustration of our NC-HGAT model
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It should be noted that there is no edge/relation consideration in the base HGAT

model while the syntactic relationships between nodes (such as “subject of ”, and

“object of ”) may provide additional semantic information for understanding the

roles of different nodes in text graphs. In this text classification application, three

semantic relations for edges connecting with different types of nodes are defined:

Figure 4.4: Relations between different types of nodes

Relations are ‘similar word ’ between entities, ‘key word ’ between documents and

entities and ‘potential topic is ’ between documents and topics.

4.3.2 HGAT

Compared with TextGCN [105], which directly applies GCN to different subgraphs,

HGAT introduces a dual attention mechanism: type-level attention and node-level

attention, to learn the relative influence of the different types and neighbouring nodes

on the target node during information aggregation [56]. The type-level attention at

is calculated as:

at = σ(µt · [hi||ht]) (4.1)

Where σ is a LeakyReLU activation, µt denotes the attention of the type t of
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the node, and operation || is a concatenation. hi and ht are specific node and type

embedding, respectively. Then, a softmax function is applied, to normalise all types

of neighbours of node i as

at =
exp(at)∑

t′∈T exp(at′)
(4.2)

Where T denotes the set of all node types. The node level attention an is

formulated based on the type level attention at from Equation (4.1):

an = σ(vT · at[hi||hj′ ]) (4.3)

where v denotes the attention vector, and hj′ is the neighbour embedding of node

i with type t, is further concatenated with the central node hi. The type attention

weight at is obtained from 4.1. The two attention mechanisms are then integrated

into the heterogeneous graph convolution, to update the embedding of nodes in the

next layer:

H l+1 = σ

(∑
t∈T

at
∑
j∈Nt

ajnÂt ·H l
t ·W l

t

)
(4.4)

Where at derived from equation 4.1, signifies the relevance of node type t to the

target node. ajn caputres the importance of a neighboring node j of tyep t to the

target node, with N representing its set of neighbors. For nodes of type t, Â is the

adjacency matrix, H l
t represent their feature representations in the l-th layer, and

W l
t is the corresponding weight matrix.
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4.3.3 Edge-Level Attention

The above section explains the dual attention (node and type level) architecture

of baseline HGAT [56]. As previously discussed, the edges among nodes can be

categorized into three types of relations: ‘potential topic is ’ between documents

and topics, ‘key word ’ between documents and entities, and ‘similar word ’ between

entities. These relations can provide a nuanced semantic understanding of the inter-

connections within the texts, which is investigated in addition to the based published

paper here. The initial edge attribute eij, between node i and j, is assigned as val-

ues 1, 2 or 3, corresponding to the relations ‘similar word ’, ‘key word ’ and ‘potential

topic is ’, respectively. These values are then processed by a Multi-Layer Perceptron

(MLP) to create a richer representation of edge embeddings eij:

e′ij = Feij + f,

ae = softmax(W · ([hi||e′ij]) + b),

hl+1 =
∑

(hl
i · ae).

(4.5)

Where e′ij is the updated edge features projected from the raw edge features eij.

F , f , W and b are learnable parameters and hi is the updated node embeddings

in equation 4.4. The edge attention addition to my NC-HGAT model is named

as neighboring contrastive with heterogeneous graph edge attention network (NC-

HGEAT) and the results are presented in Table 4.2 and 4.3
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4.3.4 Neighbouring Contrastive Learning

The neighbouring contrastive learning is implemented by calculating the contrastive

loss for node i. The idea behind it is that neighbouring documents are more likely

to have the same class label. The node features X will pass two linear layers with

activation σ and layer normalisation LN , and a dropout in between to avoid over-

fitting, as in [99]:

Z = W 1[Dropout(LN(σ(XW 0)))] (4.6)

where W 1 and W 0 are the weight matrices of two layers. The number of linear layers

could be set differently (from 1-7) as analysed in 4.6. Next, the embedding Z will

be used to calculate the neighbouring contrastive loss :

lossNC = −log

∑
i λi,jexp(sim(zi, zj)/η)∑
k exp(sim(zi, zk)/η)

(4.7)

where λ is a connection measure of node j and i and is non-zero only when the node

j is within the k-hop neighbourhood of node i; sim is the cosine similarity, and η is

the learning ‘temperature’ parameter. The purpose of this contrastive loss function

is to pull the embeddings of related nodes closer (nodes within k-hop) and push

non-related nodes apart.

4.3.5 Model Training

Considering the limited labelled data provided, we only use 40 labelled documents

per class as training data which is split evenly, with one half used for training and
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the remaining half allocated for validation, in line with previous work [56, 57]. All

the remaining documents are considered unlabeled for test during model training.

We first use the HGAT model to build graphs from the text corpus and learn the

representation of nodes with the dual-level attention mechanism. At the same time,

we use the MLP-based model to learn more graph structure information, without

an explicit message-passing function. To be more specific, the k-hop neighbours are

considered more similar to the target node, where this kth power of the neighbouring

information is in the range of [1,2,3,4,5,6,7]. If the neighbouring node is not a k-

hop of the target node, the neighbours’ information is considered zero. Then, we

calculate the neighbouring contrastive loss, lossNC .

losstotal = lossNLL + β ∗ lossNC (4.8)

The overall loss function in our model, as shown in equation 4.8, comprises two

distinct components: the HGAT negative log-likelihood loss, denoted as lossNLL,

and the contrastive loss, represented as lossNC . To control the trade-off between

these components, we introduce a coefficient parameter β. It should be noted that

the calculation of contrastive loss lossNC and the original losslossNLL is separate.

Specifically, the updated node features Z obtained from equation 4.6, are exclusively

utilised in the computation of the contrastive loss and do not impact the original

HGAT loss. The gradient descent algorithm is applied to optimise this total loss.
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4.4 Experiments

4.4.1 Datasets

We use the same four benchmark short text datasets as in [56], for a fair comparison

to prior work. All datasets have been preprocessed by eliminating non-English

characters, stop words and words that appear fewer than five times. The movie

review dataset (MR) [69] has 5,331 positive and 5,331 negative reviews, each of

which is one sentence. Twitter, a sentiment classification dataset provided by the

NLTK library of Python, contains 5,000 positive and negative tweets, respectively.

Ohsumed is a bibliographic database provided by [55] where a graph convolution

network model is applied for text classification. Each of 7,000 documents is labelled

with 23 types of diseases. We use 3,357 documents in the training set and the

remaining documents in the test set. AGNews randomly selected 6,000 news items

from [68], which are classified into four classes: world, sports, business and sci/tech.

Table 4.1: Dataset summary

Datasets Docs Token Entities Classes

MR 10662 7.6 1.8(76%) 2

Twitter 10000 3.5 1.1(63%) 2

AGNews 6000 18.4 0.9(72%) 4

Ohsumed 7400 6.8 3.1(96%) 23
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4.4.2 Experimental Setup

We implement our model with Pytorch 1.10.2 and CUDA 10.2. The hyper-parameters

of NC-HGAT are mainly borrowed from the experiments of HGAT [56] and Graph-

MLP [99]. 40 labelled documents per class are randomly selected and split equally

into training and validation sets. We use two layers and the number of hidden units

is 512, learning rate 0.005, with an 80% dropout rate at each layer. The dimension of

pre-trained word embeddings is set to 100. The kth power of the adjacency matrix,

the temperature parameter η and the coefficient balance parameter β are set using

grid search. The range of η and β are [0,1,2] and [0.5, 1.0, 2.0, 3.0], respectively.

4.4.3 Baselines

We consider three widely applied NLP models and three graph neural network mod-

els, applied as baselines for text classification. The parameter settings of all baseline

models are the same as in [56,57].

• SVM + TFIDF and SVM + LDA are conventional machine learning classifiers,

using classic features, including TF-IDF and LDA features [102,130].

• BERT, deploying a bidirectional Transformer encoder [131], is a widely-applied

model in NLP. Due to the design of BERT’s tokenizer for raw corpus, datasets

are not pre-processed like other baselines and the model (Bert-base) has been

fine-tuned as in [57].

• TextGCN is the first study that applies GCN to text by building heterogeneous

graphs from a text corpus [55].
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• HAN considers the importance of both node and meta-path, by introducing

an attention mechanism into the heterogeneous graph neural network [105].

• HGAT integrates a dual attention mechanism into a heterogeneous informa-

tion network [56, 57], representing the current state-of-the-art on short text

classification tasks.

4.5 Results and Discussion

Table 4.2 and Table 4.3 show the average classification performance of different mod-

els on the four benchmark datasets. The proposed model NC-HGAT outperforms

all baselines on three datasets, demonstrating the effectiveness of the neighbouring

contrastive learning with the heterogeneous graph attention network on short text

classification. The improvement made by our proposed model with respect to the

Ohsumed dataset in terms of the F1 score is statistically significant, based on the

t-test (t = −9.738 and p-value ≤ 0.001). With edge attention consideration, the

NC-HGEAT model demonstrates superior performance, compared to all baseline

models, as well as our prior model, the NC-HGAT, except for a minor decrement

in the F1 score on the Ohusmed dataset. This highest accuracy and F1 score per-

formance indicate that, with edge consideration, the model can capture essential

patterns and relationships within the data, more effectively.

66



Table 4.2: Model Accuracy on Datasets

Dataset AGNews MR Ohusmed Twitter

SVM+TFIDF 59.45% 54.29% 39.02% 53.69%

SVM+LDA 65.16% 54.40% 38.61% 54.34%

Bert 69.45% 53.48% 21.76% 52.00%

Text-GCN 67.61% 59.12% 41.56% 60.15%

HAN 62.64% 57.11% 36.97% 53.75%

HGAT 72.10% 62.75% 42.68% 63.21%

NC-HGAT 73.15% 62.46% 43.27% 63.76%

NC-HGEAT 73.50% 63.32% 43.33% 64.24%

Table 4.3: Model F1-score on Datasets

Dataset AGNews MR Ohusmed Twitter

SVM+TFIDF 59.79% 48.13% 24.78% 52.45%

SVM+LDA 64.79% 48.39% 25.03% 53.97%

Bert 69.31% 46.99% 4.81% 43.34%

Text-GCN 67.12% 58.98% 27.43% 59.82%

HAN 61.23% 56.46% 26.88% 53.09%

HGAT 71.61% 62.36% 24.82% 62.48%

NC-HGAT 72.06% 62.14% 27.98% 62.94%

NC-HGEAT 72.40% 63.32% 27.67% 63.99%

However, when focusing on the Ohsumed dataset, where the accuracy is 43.3%,

it is essential to consider the dataset’s inherent challenges. A closer examination
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reveals that Ohsumed has the most classes from our four considered datasets (see

Fig. 4.5), where Y-axis denotes the label of each document and X-axis represents

the number of documents classified with that label. It is clear that the Ohsumed

dataset is not uniformly distributed. It is also not a uniform distribution, while the

classes are equally distributed in the MR, Twitter and AGNews datasets. Given the

inherent complexities of the Ohsumed dataset, achieving a 43.3% accuracy demon-

strates the resilience of the NC-HGEAT model, particularly with only 20 labels per

class available. Moreover, the introduction of edge consideration in NC-HGEAT,

compared to NC-HGAT, underscores its enhanced capabilities. This also shows

that contrastive learning can enhance the ability to learn the structural node dis-

tribution and thus improve the classification accuracy, particularly when there are

multi-classes.

Figure 4.5: Label distribution of the Ohsumed Dataset
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The minor under-performance of NC-HGAT on the MR dataset may be due

to the fact that it captures more background information or stop-words, which

are unrelated to a specific class, thus diminishing the result. Another reason sug-

gested by [55], who also found the under-performance of TextGCN model on the MR

dataset, is that edges in the constructed text graphs of MR are fewer than other

datasets, as the documents are very short and thus limit the embedding learning

ability.

4.6 Impact of Layer Numbers of MLP

To investigate the impact of the MLP layer number deployed in section 4.3.4, we

evaluate our NC-HGAT model with 1-7 layers, inspired by [132], on the Twitter

(very short sentence with fewer tokens seen in the Table 4.1) and AGNews (rela-

tively long sentence with more tokens) datasets as examples. As shown in Table 4.4,

the model with two layers performs better on the AGNews dataset; for the Twitter

dataset, six layers perform the best. As for the AGNews dataset, the vanishing gra-

dient and over-processed information will lead to an unstable model if the number

of layers is excessive. The node representations may also become indistinguishable,

known as the oversmoothing problem [133]. For the Twitter dataset, however, dis-

tant words may still be able to classify the document, and six layers can capture

sufficient structural information.
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Table 4.4: Model Performance with Different Layers on Twitter and AGNews

Dataset

Twitter AGNews

Number of Layers Accuracy F1 Accuracy F1

1 63.04% 62.99% 73.00% 71.72%

2 61.86% 61.22% 73.15% 72.06%

3 61.05% 60.93% 72.50% 71.81%

4 63.66% 62.50% 72.85% 71.61%

5 63.28% 62.63% 72.50% 71.03%

6 63.76% 62.92% 72.60% 71.16%

7 62.79% 62.28% 72.30% 71.45%

4.7 Robustness of Neighbouring Contrastive Learn-

ing

The outperformed experimental results above also show that contrastive learning

can enhance the robustness of graph representation learning when there are limited

labelled data. Consequently, the effectiveness of the neighbouring contrastive learn-

ing method is investigated and compared with the proposed BGAT model, which

incorporates a parametric random graph model to account for uncertainty in the

graph structure. This comparison is presented in Chapter 3. Because nodes in

these datasets are not heterogeneous (all nodes refer to academic papers), the GAT

model is implemented as a replacement for the HGAT model, with the neighbouring
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contrastive learning techniques. The results compared with BGAT in chapter 3 are

summarised in Table 4.5

Table 4.5: Average Prediction Accuracy of Models in Datasets

Cora CiteSeer Pubmed

Model 5 labels 10 labels 20 labels 5 labels 10 labels 20 labels 5 labels 10 labels 20 labels

ChebyNet 61.7±6.8 72.5±3.4 78.8±1.6 58.5±4.8 65.8±2.8 67.5±1.9 62.7±6.9 68.6±5.0 74.3±3.0

GCN 70.0±3.7 76.0±2.2 79.8±1.8 58.5±4.7 65.4±2.6 67.8±2.3 69.7±4.5 73.9 ± 3.4 77.5± 2.5

GAT 70.4±3.7 76.6±2.8 79.9±1.8 56.7±5.1 64.1±3.3 67.6±2.3 68.0±4.8 72.6±3.6 76.4±3.0

BGCN 74.6±2.8 77.5±2.6 80.2±1.5 63.0±4.8 69.9±2.3 71.1±1.8 70.2±4.5 73.3±3.1 76.0±2.6

BGAT 74.8 ± 4.5 78.8 ± 2.8 84.3± 1.8 68.6± 4.6 71.4± 2.6 74.2± 1.6 71.4 ± 4.7 72.3±3.4 74.5±2.4

GAT-NC 67.5±0.1 74.7±0.6 76.5±0.3 63.2±0.2 64.7±0.6 71.1±0.2 72.2± 0.002 74.8± 0.01 76.6±0.003

For text classification, especially with extremely imbalanced datasets, like Ohsumed,

relying solely on accuracy can be misleading. Thus we incorporate the F1 score, as

an additional metric. For citation networks, on Cora, CiteSeer and Pubmed, where

class distributions are more balanced, accuracy alone provides a clear measure of

model effectiveness.

Compared with the vanilla GAT, GAT with neighbour contrastive learning per-

forms better in Pubmed datasets, but with lower accuracy in the Cora and CiteSeer

dataset. A plausible reason for this is the nature of the features: Pubmed employs

TF-IDF features, which capture richer contextual information, allowing nodes to

have more distinctive representations. In contrast, Cora and CiteSeer use binary

features, indicating the absence or presence of a word from a dictionary, as dis-

cussed in the previous chapter. This binary representation makes it challenging for

nodes to have unique information, which diminishes the effectiveness of neighbour-

ing contrastive learning, which works by distinguishing nodes from their neighbours.
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In all three datasets, GAT-NC shows a much smaller standard deviation compared

with all other models. It achieves the highest accuracy in Pubmed when only 5 and

10 labels are available per class, which proves the robustness of this neighbouring

contrastive learning method.

4.8 Potential Future Work

Several potential extensions to our work could be addressed in future studies:

1. First is to investigate how to augment both feature and topology levels to

improve the performance of graph learning models. For example, the links

among documents could be directed; thus, hypergraphs which allow one edge

to link to more than two vertices can be applied to capture more complex

group-wise relationships.

2. Another research direction is to investigate how to extend graph learning

methods with pretrained large language models (LLMs) such as Bidirectional

Encoder Representations from Transformers (BERT) [131], Generative Pre-

trained Transformer (GPT) [134], Text-to-Text Transfer Transformer (T5)

[135], Pathways Language Model (PaLM) [136], Large Langeuage Model Meta

AI (LLaMA) [137] and many other advanced models. Existing studies [138,

139] demonstrated that pretrained models capture certain types of semantic

and syntactic relationships in language. Building on this, [140] present an

efficient method to learn on text-attributed graphs (TAGs), by alternating

updates between LLMs and GNNs, which indicates that LLMs have the po-
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tential to serve as a valuable adjunct to our graph learning strategies within

NLP.

4.9 Summary

In this chapter, we propose, for the first time, to use contrastive learning to capture

the topological information with HGAT on short text classification tasks. Extensive

experiments on different datasets with different numbers of target classes illustrate

that neighbour contrastive learning studies the contrast between neighbouring data

points. It can effectively distinguish between different types of entities, thereby im-

proving the accuracy of classification results, particularly when there are limited

labelled data. This chapter investigates the heterogeneity problem by leveraging

heterogeneous graph neural networks and contrastive learning to capture rich se-

mantic relationships and contextual information with textual data. Additionally,

the study demonstrates that contrastive learning enhances the robustness of mod-

els, as evidenced by a comparison with the proposed BGAT method discussed in

Chapter 3. In the next chapter, we will illustrate how to capture higher-order re-

lationships by answering the third research question for graphs with more complex

relations.
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CHAPTER 5

Hypergraph learning for complex relations

In this chapter, we propose a novel ensemble learning framework, shortened as

’MONEY’, to capture the complex group-level and pairwise relations, answering

the third research question regarding relation extraction in Chapter 1.2:

How to improve the structural learning ability, e.g. relation extraction and posi-

tional encoding for existing graph representation learning?

We apply the proposed model for stock price prediction tasks and demonstrate

the effectiveness of the model as it outperforms the state-of-the-art in extensive

experiments. We also prove that for such a multivariate time series prediction task, a

sequence model like LSTM should be applied after considering the influence of other

relevant factors (in this case, industry and shareholder). Otherwise, the performance

will be impaired by first assuming historical information is linear or stationary when
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using RNN models.

This Chapter is based on the following manuscript, which has been accepted as

listed in Chapter 1.5:

Sun, Z., Harit, A., Cristea, A. I., Yu, J., Lei, Shi., Al Moubayed, N. MONEY:

A Novel enseMble Learning: cOnvolutional Network with advErsarial hYpergraph

Model for Stock Price Movement Prediction. AI Open Journal

5.1 Introduction

Stock prediction has been a crucial research topic for a long time, and investors

are always interested in having a higher predictive accuracy model to gain profit.

Whilst it is notoriously difficult to predict stock price movements when extensive

uncertainty factors, such as policies or social conditions, like pandemics, can influ-

ence the financial market [141], evidence shows that certain factors, like returns of

industry portfolios, can forecast the entire stock market by up to two months [142].

Moreover, stocks in a similar industry will behave differently from the ones outside

that industry [143]. These are thus relevant relational factors necessary to integrate

in a comprehensive manner. Graph neural networks (GNNs) are a powerful technol-

ogy leveraging the advantage of network structure [144], thus promisingly suitable

for such a task. Indeed, some initial solutions have been proposed [59], but are

limited. Existing GNNs usually model pairwise relations of stocks and other infor-

mation as simple graphs to predict if the price will rise or fall on the next trading

day. However, stock prices are more likely to co-move for similar companies and

for such complex behaviour [145], more advanced models are required to capture it.
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Therefore, we propose to build hypergraphs1, which allow modelling group-level re-

lations among stocks from industry and fund-holding (mutual fund as shareholders)

aspects [59].

Despite the success of GNNs on simple graphs, the study of deep learning on hy-

pergraphs is still at an early stage, and most existing GNNs cannot exploit the high-

order structure encoded by hyperedges [147]. Few studies explored the area: [148]

proposed a gated temporal convolution over hypergraphs to capture stock trends

and [59] applied hypergraph attention networks to predict stock price movement

and validated the effectiveness of using hypergraphs to capture similar patterns of

stocks in the same group. However, they mainly focused on the group-level analysis

and neglected the pairwise correlations between two similar companies, which exist

in financial markets [149].

For instance, stocks in the same industry2 display similar volatility patterns [145],

which is illustrated in Figure 5.1, with stocks from Ningbo Bank (NB), China Mer-

chants Bank (CMB) and Bank of China (BOC). The correlation coefficient between

two stocks can be calculated as:

Rxy =

∑n
k=1(xi − x̄)(yi − ȳ)√∑n

k=1(xi − x̄)2
∑n

k=1(yi − ȳ)2
(5.1)

The correlation coefficient Rxy between stock prices of NB (x) and CMB (y) is

0.72, while the correlation coefficient between NB and BOC is 0.64. The strong

correlation between these two pairs can be partially attributed to them being held

1The hypergraph is a special graph, where hyperedges can connect multiple vertices at the same
time [146], and the effectiveness of convolution on hypergraphs has been demonstrated [147].

2https://uqer.datayes.com/
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Figure 5.1: Price Movement of Three Stocks

by the same mutual fund between 30/09/2020 and 31/12/2020. Thus, we expect

other stocks in the same industry and held by the same fund to also display pairwise

relations.

Unlike prior works [36, 59, 148, 150], we consider not only price information but

also industry information via a graph convolution network (GCN) to augment the

pairwise behaviour of similar companies, before using recurrent neural networks

(RNNs). Different from other studies using RNNs and GCN with historical price

features [151], we apply GCN first so that the long-term dependencies of pairwise

companies can be captured by RNNs later and avoid assuming price movement to

be linear or stationary, as [145] suggested.

We do not process fund-holding information via the GCN at this stage, as it is

included in the later hypergraph convolution. Moreover, compared to the indus-

try information, fund-holding information is less influential for single stock due to
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the diversification investment strategy, which requires mutual funds to hold widely

spread portfolios across different types of securities [152], but can be a good signal

of market trend. To sum up, our method, MONEY, can consider both pairwise and

group-level relations between companies in the same industry and held by the same

fund, capturing dynamic historical price information.

Moreover, as the financial market is volatile and the price movement is stochastic,

standard training may cause overfitting. Therefore, the resulting (sub-) research

questions are:

1. Can stock price movement prediction be improved by capturing complex rela-

tional industry information?

2. How to enhance the robustness of model while not compromising its predictive

performance?

As explained in the introduction and addressing the research questions above, we

utilise hypergraph convolution, to adeptly capture group-level interactions among

stocks. Complementing this, adversarial training is employed to enhance the model’s

robustness, by considering perturbed features. This results in an adversarial pre-

diction whose associated adversarial loss is incorporated into the total loss calcula-

tion, fortifying the model against market volatility. Additionally, we use the voting

ensemble learning method to classify the predicted classes yielded from standard

training and adversarial training, together with the highest number of votes. The

contributions of the chapter are summarised as follows:

• This is a novel ensemble learning framework that firstly applies both hyper-

graph convolution and simple graph learning to capture complex relations
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among similar stocks and address the stochasticity of stocks by adversarial

training, which can be used as a solid baseline for future research.

• To the best of our knowledge, this is the first attempt to demonstrate the ef-

fectiveness of integrating auxiliary information (e.g. industry) via GCN before

using RNNs so that the long-term dependencies of pairwise relations of similar

companies can be learnt by RNNs later, unlike prior approaches, which deploy

RNNs first.

• Experimental results on a real-world dataset prove that our proposed model,

MONEY, significantly outperforms the state-of-the-art on stock price move-

ment prediction for most indicators (accuracy, precision, recall and F1 score)

and has more stable performance.

5.2 Related Work

5.2.1 GNN for Price Prediction

Researchers have attempted to apply GNNs to learn stock representations by mod-

elling stock relations as graphs. For instance, [153] combined a Long Short-Term

Memory (LSTM) with GCN to learn shareholding information. Later, [36] applied a

multi-graph convolution network to predict stock movement, treating the embedding

of shareholding, industry and news relation graphs equally in the prediction.

Recently, researchers also proposed to construct different types of graphs to

model the relationships between stock prices and other relevant information. Xiong

et al. [154] built a heterogeneous graph for stock prediction by aggregating event
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level and contextual information. Cui et al. [59] deployed a hypergraph convolutional

network to represent the impact of industry and fund-holding on stock movements,

showcasing the ability of hypergraphs to capture complex group-level relationships

among stocks. It is noteworthy to mention that the prowess of hypergraph neural

networks is not limited to the finance sector. Recent literature, like [155–158], indi-

cated their success in recommendation and learning analytics domains. For readers

interested in a broader view of hypergraph modeling application across diverse fields,

these studies provide valuable insights.

Despite the success of the aforementioned financial prediction methods, most of

them first fed only historical price features of stocks into RNN models to obtain new

price embeddings. Then, the updated embedding could be processed with the other

factors, such as similar corporations [153], news [154], industry [159] or shareholding

information [36,150], by using GCN or other graph neural networks. However, this

post-processing came too late. This chapter proves that incorporating auxiliary

information through GNNs before using RNNs in multivariate time series analysis

enhances the understanding of long-term dependencies between similar companies.

Additionally, existing hypergraph models overly emphasize group-level relations,

neglecting the equally important pairwise interactions among stocks. Moreover,

none of these studies dealt appropriately with overfitting (here, due to continuous

market fluctuations).
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5.2.2 Adversarial Training

Arguably the most effective method to enhance the generalisation of models, by ’de-

fending’ against perturbed examples, it received considerable recent attention [160].

The main purpose of adversarial training is to augment clean data with adversarial

examples, so that models can still deliver consistent results when facing adversarial

attacks. For stock movement prediction, their stochastic and dynamic characteris-

tics require dealing with overfitting. Addressing the problem, [161] applied adver-

sarial training to financial time-series analytics and validated the effectiveness of

simulating the stochasticity of stock features. Recently, [162] proposed a sentiment-

guided generative adversarial network, to explore the stock prediction problem. Li

et al. [163] then combined adversarial training with transfer learning and obtained

competitive results.

5.2.3 Ensemble Learning for Price Prediction

Ensemble learning is a machine-learning technique for improving classification or re-

gression performance by considering multiple algorithms [164]. It has achieved great

success in many applications and has been increasingly integrated with deep neural

networks (ensemble deep learning) [165]. A few studies have applied ensemble deep

learning to price forecasting and showed that it outperformed the single models on

financial time series [166]. For instance, [167] proposed a denoising autoencoders

(SDAE) method with bootstrap aggregation (bagging) to model complex relation-

ships of oil prices with its factors. Li and Pan [168] utilised a blending ensemble

learning method, consisting of two RNNs, to predict the S&P 500 Index. Jiang et
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al. [166] incorporated four types of tree-based ensemble algorithms: random forest,

extremely randomised trees, XGBoost and LightGBM, with four types of RNNs:

vanilla RNN, Bidirectional RNN, LSTM and gated recurrent unit (GRU), into a

stacking framework for stock index prediction. Different from previous studies, we

incorporate GNN to model the relation of the stock price with industry and fund-

holding factors and consider the stochasticity by introducing adversarial training

into a max-voting ensemble learning framework.

5.3 Methods

5.3.1 Problem Formulation

The goal of this research is to predict the movement direction of the stock for the

following trading day. Given different lengths (5, 10, 20 trading days [59]) of past

daily transaction Xs and industry features Is, as well as fund-holding information Fs,

we consider three movement directions of stock prices compared with the price P on

the previous trading day t−1: rise, steady, fall. In line with previous work [59], rise

(1) means the closing price of a stock on the next trading day Pt is over 0.55% higher

than the closing price before Pt−1. If Pt is more than 0.50% lower than Pt−1, then the

price movement is considered as fall (-1); otherwise, steady (0). These 0.55% and

0.50% settings consider the transaction costs such as tax and also balance different

types of samples. The cross-entropy loss function of stock price movement prediction

can be defined as:

losshinge = −
C∑
c=0

yo,clog(po,c) (5.2)
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where C is the number of classes, which, in our work, is 3 (rise, steady, fall); y is the

binary indicator, showing if the prediction of observation o is correctly classified, and

p is the predicted probability of observation o as c class. If we consider adversarial

training, then the total loss becomes:

losstotal = −
C∑
c=0

yo,clog(po,c) − β
C∑
c=0

yo,clog(pa,c) (5.3)

Where the addition term is the adversarial loss and pa,c is the predicted probability

of a perturbed observation o classified correctly as c class; β is a hyperparameter

balancing the two types of loss, so that the model is encouraged to classify both orig-

inal objects and perturbed samples, correctly. In essence, this adversarial training

aims to make the model resilient to small perturbations, ensuring that such minor

changes do not alter the predicted class label, thus enhancing its robustness against

adversarial attacks and potential noise in the input data.

The overall structure of our proposed framework is shown in Figure 5.2. It

consists of two models;

model A: industry information first passes stock price (a) through a GCN (b);

then a GRU and temporal attention layer (c) are applied to capture the time-series

characteristics of stocks, followed by a hypergraph construct (d); then separate

convolution networks (e) for industry and fund-holding information; and, finally, a

linear classification neural network (f);

model B : As we have considered the pairwise industry information via GCN in

model A, model B starts with a GRU, to capture price-time dependency, follow-

ing existing research, and without the GCN (b), to process industry information
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at the beginning; it includes instead an extra input of adversarial samples to the

classification layer (g).

The predictions yielded by Models A and B, which comprise modules a,b,c,d,e,f

and a,c,d,e,f,g, respectively, will be integrated into a new embedding, denoted as ŷs.

Model B is also designed to handle adversarial examples, producing an adversarial

prediction, represented by ŷadv. ŷf is the final prediction, derived by voting between

the concatenated prediction ŷs and adversarial prediction ŷadv. During loss compu-

tation (equation 5.3), ŷadv is weighted by β, to enhance model robustness against

adversarial attacks.

The differences between our MONEY model and the state of the art, HGTAN [59]

are threefold: 1) we use GCN first to augment the pairwise industry relation before

using RNN to capture the long-term dependency of price and demonstrating the ef-

fectiveness of using GCN first; 2) we acknowledge the inherent random movements

of stock market and employ adversarial training to enhances our models’ generali-

sation, by simulating potential market fluctuations through input perturbations; 3)

we do not use triple attention mechanisms among hyperedges and hypergraphs, but

still outperform the HGTAN as shown in Table 5.2. Details are explained in the

following subsections, and we will explain how to construct hypergraphs first.
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Figure 5.2: Illustration of our MONEY model

5.3.2 Hypergraphs Construction

Definition 1. Hypergraph An undirected hypergraph can be denoted as

G = (V,E) where V is the set of N nodes and E is the set of M hyperedges.

In a hypergraph, any of the edges e can join any number of vertices v

to describe more complex relationships between entities, shown as (b) in

Figure 5.3; while in simple graphs, one edge can only link two vertices, representing

a pairwise relation between nodes as (a) in Figure 5.3. A hypergraph is often denoted

as an incidence matrix H ∈ RN×M :

H(i, j) =


1 if node i is included in hyperedge j

0 otherwise

Same as [59], we construct two hypergraphs to model the industry and fund-

holding relations among stocks separately. In the industry hypergraph, all the com-
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Figure 5.3: Simple Graph and Hypergraph

panies in the same industry are connected by one hyperedge and each node v ∈ V

has features with ten dimensions; this is similar to the fund-holding hypergraph.

We apply graph convolutions to the two hypergraphs to update embeddings of each

stock (node) to be later used in the price movement classification.

5.3.3 GCN for Industry Information

For each trading day t, we input the price attributes xs,t of stock s and its associated

industry information Is into a GCN model f(θ). This helps us capture the pairwise

patterns among similar companies. Consequently, this process yields an updated

industry-specific embedding for the stock, denoted as xt
s,i:

xt
s,i = f(θ)(xt

s, Is) (5.4)
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Figure 5.4: Overview of GCN

We build undirected edges between stocks that are in the same industry and use

two layers of convolution, as shown in Figure 5.4. We did not use GCN to process

fund-holding information, which is considered at a later stage. Moreover, compared

to the industry information, fund-holding information is less influential for single

stock due to the diversification investment strategy, which requires mutual funds to

hold widely spread portfolios across different types of securities [152], but can be a

good signal of market trend. After the GCN layer, the new embedding xt
i will be

passed to GRU to capture the time-series information.

5.3.4 Gated Recurrent Unit for Long Term Dependency

Following [59], we use a gated recurrent unit neural network (GRU) model [169] to

learn the embedding of stock features due to its ability to capture long-term depen-

dency for sequential data. Note that the input stock feature has been augmented

by considering the influence of industry. The main purpose of GRU is to deploy a
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gated process, to manage and update the flow of information between cells of neural

network units, which can be formulated as:

zts,i = σ(Wz · xt
s,i + Uz · ht−1

s,i + bz),

rts,i = σ(Wr · xt
s,i + Ur · ht−1

s,i + br),

ĥt
s,i = tanh(Wh · xt

s,i + rts,i ∗ Uh · ht−1
s,i + bz),

ht
s,i = zts,i ∗ ht−1

s,i + (1 − zts,i) ∗ ĥt
s,i.

(5.5)

where xt
s,i is obtained from equation (5.4) and Wz, Wr, Wh are trainable weight

matrices. ht−1
s,i is the hidden state, which includes historical information from the

previous trading day for stock s in industry i. The matrices Uz,Ur, and Uh are also

trainable parameters. On trading day t for stock s in i industry:

• zts,i serves as the reset gate to decide how much historical information should

be disregarded.

• rts,i is the update gate to decide how much of the past information should be

forwarded for future considerations. The update and reset gates could alleviate

the vanishing gradient problem during the backpropagation of time-series data.

• ĥt
s,i represents the current information intended for the hidden state ht

s,i. This

updated embedding is subsequently directed to the temporal attention layer.

5.3.5 Temporal Attention

The attention mechanism has been increasingly applied to predict stock price trends

[59,170–173]. Attention can capture the different influences of the hidden represen-
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tations on the overall learned embedding at different time steps [161]. Due to the

recency bias hypothesis [174], stating that the most recent price has a stronger cor-

relation with the future movement, it is reasonable to use a temporal attention layer

to yield the aggregated temporal dynamics representations of stocks sd in industry

i:

sd,i =
T∑
t=1

αt
s,ih

t
s,i

αt
s,i =

expα̂
t
s,i∑T

t=1 exp
α̂t
s,i

α̂t
s,i = tanh(Wαh

t
s,i + bα)UT

α

(5.6)

where αt
s,i is the weight of the hidden state at time t of stock s. Wαh

t
s, bα and UT

α

are parameters need to be learned. The aggregated temporal representation sd,i will

then feed into the hypergraph convolution layer, explained in section 5.3.6.

5.3.6 Hypergraph Convolution with Adversarial Training

To model the group-level relationships among stocks, we apply hypergraph convo-

lution to both the industry graph Gi and the fund-holding hypergraph Gf . For

instance, in the industry graph Gi, each stock connects via the same edge ei and

will aggregate messages passed from its neighbours. One step of convolution on the

hypergraph can be formulated as:

hl+1
s = σ(

M∑
j=1

N∑
i=1

hlF ) (5.7)
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where hl+1 is the feature matrix of stock s at the next layer and σ is a nonlinear

activation LeakyReLU. The terms
∑M

j=1 and
∑N

i=1 iterate over all hyperedges and

nodes, respectively. Within each hyperedge j, each node updates its features using

local neighbors, and this process is repeated for every node starting from i. F is a

weight matrix to be learnt between the l and l + 1 layers. After the convolution,

we have updated the industry embedding hi and the fund-holding embedding hf ,

which will be concatenated, to obtain a new embedding hm
s for the prediction layer

and further adversarial training in equation 5.8.

Adversarial Training is to augment each minibatch of clean data with adversarial

examples (AEs), which are generated by adding adversarial perturbation [175]. Feng

et al. [161], validated the effectiveness of adversarial training to address the stochas-

tic property of stock price. Therefore, we add adversarial perturbation to stock

embedding at a higher level after the temporal attention layer before the prediction

layer.

hadv
s = hs + padvs , padvs = argmaxps,∥ps∥≤ε lossadv(y, y

adv)) (5.8)

padvs = ϵ
Gs

||Gs||2
, Gs =

∂l(y, yadv)

∂hs

(5.9)

where hs
adv denotes the latent representation of an adversarial example and hs

is the concatenated embedding obtained from the hypergraph convolution above.

padvs is the adversarial perturbation that maximises the loss, but with a constraint

on its magnitude to be less than or equal to a small value ε. This perturbation is
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updated by the fast gradient approximation method [176] in equation 5.9, where G

is the gradient of the adversarial loss with L2 norm constraint of stock s and ϵ is to

change the scale of perturbation. y represents the true labels and yadv denotes the

adversarial predictions. Feng et al. [161] empirically demonstrated that adversarial

training enforced the decision boundary to be close to original objects so that the

model is able to capture stochasticity and classify the perturbed samples correctly.

Figure 5.5: Hypergraph Convolution with Adversarial Training

Figure 5.5 describes the process of using a hypergraph convolution network for

the industry and fund-holding hypergraphs and the hs and its adversarial example

hs
adv will be fed into a linear prediction layer for classification. ŷ1s and ŷ2s is the

prediction generated by the two base models, also illustrated in Figure 5.2 which

will be explained in section 5.3.7.
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5.3.7 Ensemble Learning

Various ensemble strategies can be utilised, including bagging, boosting, stacking,

blending, averaging, weighted average, AdaBoost and so on [177]. In this Chapter,

we propose two base models, as shown in Figure 5.2: A) The stock price informa-

tion will be processed with industry information via GCN and then the updated

embeddings of the stock will be fed into a GRU with a temporal attention layer, a

hypergraph convolution network and a linear neural network, to obtain a prediction.

B) Stock features will directly pass through a GRU, temporal attention layer and

hypergraph convolution network in order to obtain another prediction, which will

be concatenated with the one generated by model A as ŷs. Additionally, adversar-

ial examples after the hypergraph convolution will be fed into the linear prediction

layer, yielding a ŷadv. We use the max voting here to classify the sample as the class

ŷs and ŷadv with the highest votes. The rationale behind it is multi-fold:

• Consensus decision making: max voting leverages the collective decision power

of both ŷadv and ŷs. When both models agree on the classification, it increases

our confidence in the decision.

• Robustness: in situations where one model may be misled by certain features

or noise, the other model can potentially correct this, leading to a more reliable

classification.
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5.4 Experiments

5.4.1 Datasets

In this Chapter, we utilise the dataset from [59], containing 758 frequently traded

stocks collected from the A-share market in China between 01/04/2013 and 12/31/2019,

to be fairly compared with [59]. While this dataset provides valuable insights, we

acknowledge that our findings might be influenced by the specific characteristics

of this particular dataset. To ensure broader applicability and to address poten-

tial dataset-specific biases, future work will involve collecting and analysing data

from other markets such as US or Europe. This will allow for a more comprehensive

validation of our framework and its generalisability across diverse market conditions.

Each stock in the dataset has six attributes: the opening price, high price, low

price, close price, trading amount, and value. All the input features of stocks have

been min-max normalised. If some stocks lack trading data during a temporary

suspension period, the price attributes of the most recent day before the suspension

will be used. Following the approach in [59], we partition the dataset chronologically:

the initial 60% spanning the early years serves as training set, the subsequent 20%

for validation, and final 20% for testing. The validation set is utilised to optimise

the hyperparameters of our model. The industry information groups stocks into

104 industry categories, defined by the Shenwan Industry Classification Standard1,

and ‘fund-holding’ information is learnt from quarterly portfolio reports of the 61

mutual funds established before 2013 in the A-share market, similar as [59]. Details

1http://www.swsindex.com/idx0530.aspx
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of the dataset are shown in Table 5.1 below.

Table 5.1: Dataset summary

Data Number

Node (Stock) 758

Attributes 6

Industry-belonging relationships 104

Fund-holding relationships 61

Percentage of steady 24.7%

Percentage of rising 38%

Percentage of dropping 37.3%

5.4.2 Experimental Setup

We implement the proposed ensemble learning framework with PyTorch 1.10.2 and

CUDA 10.2. According to [36], the length of historical information impacts model

performance; here, we thus test the model with different lengths of trading informa-

tion: the past 5, 10 and 20 trading days. Hyperparameters are borrowed from [59],

optimised with the same validation set, for a fair comparison: the feature dimension

of a stock is set as 16 and batch size as 32; the hidden units’ size of GRU is 32

and the dimensions of dk and dv in the temporal attention mechanism are both 8.

The maximum number of epochs is 600 and the dropout rate is 0.5. β in the loss

function 5.3 is set as 1e − 2, as in [161]. We use the same settings for the baseline

models as their public implementations.
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5.4.3 Baselines

We compare against prior works, from one trading method, mean reversion (MR),

one conventional LSTM model, one dual attention LSTM and five recently proposed

graph neural network algorithms as baselines for stock movement prediction.

• MR: the model applied a mean reversion indicator to predict the local trend

reversion by assuming extreme changes in the price will revert back to its

previous state [178].

• LSTM: the model applied LSTM to predict future movements of stock prices

[179].

• DARNN: the model proposed a dual stage attention with recurrent neural

network, to selectively harness relevant features for efficient prediction [180].

• GCN+LSTM: the model applied GCN to learn relationships among stocks via

feeding embeddings of stocks to an LSTM network [153].

• HATS: the model used a hierarchical attention network to adaptively learn

the importance of different relation types for stock prediction [150].

• TGC: applied a novel temporal graph convolution to model the temporal evo-

lution jointly and relational embeddings of stocks for prediction [143].

• STHGCN: proposed a novel Spatio-Temporal Hypergraph Convolution Net-

work to learn stock price evolution over stock industry relations [148].

• HGTAN: proposed a novel hypergraph tri-attention network to predict the

stock price movement and considered both industry-belonging and fund-holding
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information [59]. This represents the current state of the art.

5.4.4 Evaluation

In financial investment, the decision-making process requires more than just over-

all accuracy of predictions. It is critical to minimise false positives (erroneous buy

signals), while ensuring genuine profit opportunities are not missed. Therefore, in

addition to accuracy, we incorporate precision, recall and the F1 score, to evalu-

ate the classification performance of the proposed model, comprehensively. These

metrics are calculated as follows:

Accuracy =
TP + TN

TP + TN + FP + FN

Precision =
TP

TP + FP

Recall =
TP

TP + FN

F1 − score = 2 ∗ Precision ∗Recall

Precision + Recall

(5.10)

Where TP and TN are the correctly predicted positive classes and negative

classes, respectively. FP and FN denote the falsely predicted positive classes and

negative classes, respectively. As we implement multi-label classification (3 move-

ment directions), the metric is calculated in macro-setting using the scikit-learn

library. For instance, precision is calculated as:

Precision = (
TPr

TPr + FPr

+
TPs

TPs + FPs

+
TPf

TPf + FPf

) ∗ 1

3
(5.11)

where r, s and f refers to rise, steady and fall, respectively.

96



5.5 Results and Discussion

5.5.1 Effectiveness Results on the Real World Dataset

Table 5.2 show the future stock price movement prediction performance of different

models on the real-world benchmark datasets, with the past 5, 10 and 20 trading days

as lengths of the look-back window. Compared with the traditional RNN method

(LSTM), the significant improvement of the prediction performance obtained by all

other models demonstrates the effectiveness of using graph neural networks for stock

price trend prediction.

The state-of-the-art method, HGTAN, boasts a lightly superior accuracy com-

pared to MONEY, when using the past 5 or 20 days of price records for prediction.

However, accuracy is not the sole determinant in assessing the efficacy of stock

movement classification. MONEY mostly significantly outperforms all baselines in

precision, recall and F1 score metrics, where it exceeds the second best by an average

of 1.14%, 3.63% and 2.45% for three trading lengths.

In the context of stock investment, precision corresponds to the model’s capa-

bility to correctly predict a stock’s upward movement, thereby minimising ’false

buy’ signals or false alarms. Concurrently, recall measures the model’s sensitiv-

ity, ensuring no profit opportunities are overlooked. F1 score, a harmonic mean

of precision and recall, can enhance a model’s sensitivity and generalisation ability

for performance evaluation [181]. It encapsulates the model’s prowess in mitigat-

ing false buys, while maximising genuine profit opportunities. While accuracy is an

important metric, it can be disproportionately influenced by the most common cate-

gories. In a high-stakes domain, like finance, where balancing risk with opportunity
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is paramount, the F1 score offers a more comprehensive and nuanced evaluation.

Therefore, we advocate that F1 score stands out as the most critical metric among

the ones considered.

In our evaluation across 5, 10 and 20 trading days as record, the proposed

MONEY model cumulatively enhanced the F1 score by 7.34% compared to the

state-of-the-art HGTAN. We use the Wilcoxon signed-rank test for this comparison,

due to the fact that it is suitable for non-parametric data and for comparing two

related samples. Over six runs, the test yielded a W value of 0, which matches

the critical value for N = 6 at p ≤ 0.05, thus indicating a statistically significant

improvement by the MONEY model at the 0.05 significance level. Follow-up ab-

lation studies demonstrate the effectiveness of capturing group-level and pairwise

information via hypergraph convolution and GCN on stock price movement. Our

model obtains the highest value for the ten trading days window for the accuracy

metric and performs relatively competitively with knowledge of the past 20 and 5

trading days.
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Table 5.2: Performance of baselines versus MONEY over 5, 10, 20 trading days

Method Trading Days Accuracy Precision Recall F1

MR

5 35.59% 39.37% 33.77% 36.36%

10 34.73% 29.34% 31.79% 30.52%

20 35.32% 38.03% 33.60% 35.68%

LSTM

5 34.92% 35.34% 33.91% 34.27%

10 35.09% 38.09% 34.37% 35.90%

20 35.03% 36.43% 34.23% 35.20%

DARNN

5 37.68% 37.81% 35.17% 36.43%

10 38.89% 38.59% 35.22% 36.82%

20 38.41% 37.99% 39.24% 38.60%

GCN+LSTM

5 37.24% 37.23% 33.54% 35.22%

10 37.44% 39.07% 34.49% 36.62%

20 37.30% 39.28% 34.16% 36.54%

HATS

5 38.74% 36.92% 34.29% 35.52%

10 38.05% 39.23% 34.52% 36.67%

20 38.85% 38.70% 35.06% 36.78%

TGC

5 37.43% 38.28% 34.05% 36.01%

10 38.42% 39.35% 35.72% 37.44%

20 37.81% 36.96% 34.49% 35.67%

STHGCN

5 38.53% 37.35% 34.65% 35.89%

10 38.81% 36.57% 35.11% 35.75%

20 38.45% 37.22% 32.82% 34.87%

HGTAN

5 39.51% 38.90% 36.96% 37.89%

10 39.83% 41.72% 37.32% 39.37%

20 40.02% 41.77% 39.03% 40.32%

MONEY

5 38.67% 42.06% 41.80% 41.93%

10 41.04% 39.83% 41.79% 40.79%

20 39.90% 43.92% 40.61% 42.20%
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5.5.2 Investment Simulation and Profitability

We assess our MONEY model from 04/23/2019 to 05/09/2019, a 10 trading day

span, in line with the benchmark set by [59]. This time frame was chosen based on

the baseline study’s emphasis on HGTAN’s performance during this period when

most stock prices fell. As depicted in Table 5.3, MONEY outperforms by achieving

the highest accuracy over 5 days, emphasizing its reliability even in challenging

market condition.

Table 5.3: Accuracy of stock movement prediction between 04/23/2019 and

05/09/2019

Date MR GCN+LSTM HATS TGC STHGCN HGTAN MONEY

04/23 16.23% 22.43% 37.86% 69.39% 21.24% 57.78% 71.37%

04/24 52.77% 48.02% 38.26% 21.24% 27.44% 22.03% 28.76%

04/25 9.76% 15.44% 31.40% 77.97% 15.04% 88.26% 70.84%

04/26 17.68% 21.50% 38.13% 43.40% 23.88% 60.16% 72.03%

04/29 19.31% 23.22% 43.67% 65.57% 14.78% 72.43% 27.18%

04/30 64.78% 63.72% 50.53% 65.44% 66.62% 16.62% 71.90%

05/06 7.12% 11.35% 48.55% 15.17% 12.67% 76.52% 71.77%

05/07 73.48% 71.11% 50.26% 15.30% 75.20% 31.27% 27.84%

05/08 25.33% 28.36% 44.59% 48.15% 26.65% 44.99% 70.84%

05/09 17.81% 18.73% 33.25% 22.69% 19.26% 56.07% 71.77%

MONEY achieves over 70% accuracy (all accuracies higher than 70% underlined)

in seven days, while state of the art, HGTAN only has such performance in three

days, and the remaining models mostly have accuracy higher than 70% in one of

the ten trading days. We normalised four important market indexes: Hushen 300,
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Shenzheng Zongzhi, Shangzheng 50 and Zhongxiao 300 to visualise in Figure 5.6, and

they all plummeted into a so-called ’bear market’ during the ten trading days. While

it is conceivable that the relative performance of different methods may vary under

different market conditions, we can evaluate their robustness during challenging

market dynamics. Moreover, the bear market presents critical scenarios, where

consistent accurate prediction can be particularly valuable to investors.

More specifically, the most representative index Hushen 300, consisting of the 300

largest market capitalization and most liquid stocks, fell from 4019 on 04/23/2019

to 3599.7 on 05/09/2019 rapidly, and the investors all panicked. Figure 5.7 shows

falling stocks are the majority for seven days (04/23, 04/25, 04/26, 04/29, 05/06,

05/08, 05/09), and our method constantly obtains over 70% accuracy except for one

day, which distinct the effectiveness of our method with other models to avoid loss.

However, it is important to note that this evaluation is based on a specific time

window, and that broader and varied time-frames might yield different insights into

the model’s performance. Therefore, we further compare the profitability of different

models from 08/31/2018 to 10/31/2019, similarly to [59], as shown in Table 5.4.

Table 5.4: Profitability of different models during back test

Method CR SR
MR 4.89% 0.123

LSTM 4.73% 0.147
DARNN 3.23% 0.083

GCN+LSTM 6.51% 0.217
HATS 11.55% 0.697
TGC 8.23% 0.513

STHGCN 6.23% 0.248
HGTAN 19.78% 0.699
MONEY 22.33% 0.775

The cumulative return rate, CR, aggregates the return rates of all stocks and is
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frequently used in profitability analysis [182]. SR denotes the Sharpe ratio, which

measures investment return with the associated risk [183,184]:

SharpeRatio =
E(Rs) −Rf

σs

(5.12)

where E is the expected value, Rs is the return rate of stock s and Rf is the

risk-free rate (1.5% as one-year deposite interest rate in 2019), and σs denotes the

standard deviation of the stock excess return. Our method reaches the highest cumu-

lative return rate, 22.33%, with competitive performance at risk management with

the highest Sharpe ratio of 0.775, which indicates it returns more profit compared

with other models under the same risk situation.

Figure 5.6: China A Share Market Index Trend
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Figure 5.7: Different Movement of Stocks

5.5.3 Ablation Study

We compare the classification performance of our MONEY framework, its separate

components and the second best model HGTAN, in Table 5.5, on the dataset with

knowledge of the 10 past trading days. We thus demonstrate the improvement

brought by each module, first separately, and then as a whole, via our MONEY

framework:

• GCN+GRU+TA+HGCN (Module A): GCN is firstly applied to process his-

torical price features with industry information augmenting the pairwise rela-

tions, followed by a GRU network with a temporal attention layer (TA) and

the generated embedding is then fed into a hypergraph convolution network

(HGCN) to learn the industry and fund-holding group-level relations of stocks.

• GRU+TA+HGCN (Module B): a variant without pairwise relations using

GCN; otherwise it is the same as variant A.
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• GRU+TA+HGCN+Adv (Module C): this variant does not consider pairwise

relations using GCN but extends HGCN with adversarial training to enhance

the generalisation ability to deal with the stochasticity of stock features, as

[161] suggested, compared with variant A.

• GRU+TA (Module D): this is the base component, which solely considers

historical price information.

• GRU+TA+GCN+HGCN (Module E): this is to compare with Module A and

demonstrates the effectiveness of applying GCN to capture pairwise relations

before RNN models.

• GCN + GRU + TA + Adv (Module F): this variant contrasts with the

MONEY method to validate the value of HGCN.

Table 5.5: An ablation study of MONEY on dataset with 10 trading days as record

Method Accuracy Precision Recall F1

Module A 41.38% 42.07% 39.35% 40.66%

Module B 41.28% 41.29% 38.11% 39.64%

Module C 40.01% 42.87% 38.56% 40.60%

Module D 38.86% 39.02% 38.20% 38.61%

Module E 40.37% 42.39% 36.42% 39.18%

Module F 39.38% 40.04% 37.34% 38.66%

HGTAN 39.83% 41.72% 37.32% 39.37%

MONEY 41.04% 39.83% 41.79% 40.79%
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Overall, each module improves the performance compared to the baseline (Mod-

ule D) and our model outperforms all variants in terms of recall and F1 score by

using the synergistic power of all the modules together. MONEY also significantly

outperforms the state-of-the-art competitor, HGTAN, in terms of accuracy, recall

and F1 score and delivers significantly stable performance in a bear market, as ad-

dressed in section 5.5.2. To be specific, when comparing modules A and B, GCN

improves all four metrics in total 3.14%, particularly 1.03% in the most critical met-

ric, F1 value, as discussed before. This validates our point that pairwise relations

should not be neglected, even if we have already considered group-level information.

Compared with Module E, Module A significantly improves three measurements in

total 5.11% (1.49% in F1 value) and performs competitively in terms of precision.

The result illustrates that price movement can be learnt more effectively by using

GCN before RNNs. GCN will first capture similar volatility patterns of stocks in

the same industry, enhancing the prediction ability of the following RNN models.

Moreover, adversarial training can significantly enhance the model’s robustness by

considering the stock price’s random movements, as the precision, recall and F1

score of module C are all improved, compared with module B, at a reasonable

cost of downgrading the accuracy. Adding a hypergraph convolution to module D,

the fundamental function would improve by 2.41 % in terms of accuracy, shown in

module B. The precision and F1 score can also increase by 2.27% and 1.03%. In

addition, the comparison between MONEY and module F also demonstrates the

need to use hypergraphs to deal with the group-level information for stock price

movement prediction.
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5.6 Potential Future Work

In this study, we only test our model in one market, and the time period does not

include Covid-19 to be comparable with [59]. It is a limitation and in future, we

will explore the method in different markets. More advanced deep learning methods,

including graph contrastive learning [23] and graph dynamic attention [185], can also

be applied for stock prediction tasks. There are several promising future research

directions to explore:

• One is the relational structure discovery [186], aiming to learn the optimal

computational graph structure. Such a learning method does not require ex-

plicit supervision and can enhance the interpretability of models.

• The current results can be improved, by considering more demographic infor-

mation, such as the services or products provided by the company, as [150]

suggested, or other information, such as the global market context [187] and

the investor sentiment [188,189].

• Our proposed MONEY framework can be applied to other markets to explore

the price movement prediction of more assets, such as bonds, options and

commodities.

• Develop a fast ensemble deep learning solution to avoid massive computing

time and save space overheads when facing large-scale datasets.
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5.7 Summary

In this Chapter, we point out that existing work for stock movement prediction suf-

fers from insufficiently capturing both group-wise and pairwise relations of relevant

information rather than solely historical price features, leading to a weak generali-

sation ability due to the stochastic characteristics of stocks. We also demonstrate

that pairwise relation learning should be applied before RNN models rather than

later, as stocks display similar volatility patterns and using the GCN model first

to capture the patterns can enhance the prediction ability of the following RNN

models.

Addressing these problems, we propose a novel ensemble learning framework,

MONEY, to better assist investors in predicting future trends of stocks. To ef-

fectively capture pairwise information of industry, a graph convolution network is

applied before RNN models. To capture the group-level information of both indus-

try and fund-holding, a hypergraph convolution network is implemented after the

GRU model with a temporal attention layer. Adversarial training is introduced be-

fore the final prediction layer in the model (B) to simulate the stochastic movement

during training. Ensemble learning allows the two models to complement each other,

keeping their benefits and enhancing learning about these relations and robustness.

All components are jointly trained on real-world stock market datasets. Our model

significantly outperforms the state-of-the-art for most of the indicators without us-

ing complex triple attention mechanisms among hyperedges and hypergraphs and

provides much more stable performance, particularly when facing a bear market.

It is prudent to note that the evaluation is majorly based on a single dataset
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from the A-share market in China. While this dataset offers a wealth of insights,

the findings might carry inherent biases, specific to its unique characteristics. For a

more wholistic understanding of MONEY’s transferability and broader applicability,

future research endeavours should consider engaging with diverse datasets, possibly

from varied markets, like the US or Europe, as discussed in section 5.6.

This Chapter tackles the challenge of graph structure learning by taking a com-

prehensive approach to relation extraction. The next Chapter will delve deeper into

the structure learning problem from position and geometry information learning.
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CHAPTER 6

A novel framework for positional information learning

In this Chapter, we propose an effective framework to enhance the expressive power

of the graph representation learning model to address the third research question in

Chapter 1.2 from a positional information perspective:

How to improve the structural learning ability, e.g. relation extraction and posi-

tional encoding for existing graph representation learning?

We convert graphs into patches with fixed-length vectorial representation and

consider the Ricci curvature and contrastive patch embedding to learn a robust rep-

resentation of nodes without changing the graph structure. Then a standard GNN

model and Performer are implemented to obtain the final graph-level representation.

The effectiveness of the framework has been validated on real-world datasets.

This Chapter is based on the following manuscript, which is accepted as listed
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in Chapter 1.5:

Sun, Z., Harit, A., Cristea, A. I, Lio, P and Wang, J. A Ricci Curvature Con-

trastive PerformerMixer Framework for Graph Representation Learning. In 2023

IEEE International Conference on Big Data (Big Data)

6.1 Introduction

As presented in chapter 2, (GNNs) have become a rapidly growing field, widely stud-

ied in various applications, including natural language processing [23, 56], health-

care [190, 191] and recommendation [33], where data is non-Euclidean [192]. Con-

comitantly, transformers [43] are prevalent in computer vision (CV) [193], natu-

ral language processing (NLP) [131], speech recognition [194], and reinforcement

learning [195], with the advantage of encoding the relative influence of any object

to the target entity. Consequently, researchers became interested in the perfor-

mance of transformers for graph representation learning. Ying et al. [63] proposed

Graphormer, a model directly capturing the structural information (centrality, spa-

tial and edge) of graphs via a standard transformer, and demonstrated the effective-

ness of positional encoding and enhanced the expressive power in the Open Graph

Benchmark Large-Scale Challenge [10]. Others used Laplacian eigenvectors [50, 52]

or relative distance [196], to add positional information to node features.

However, there is no guarantee that such positional encoding captures the in-

tricate structural relations between nodes. Given that transformers generate same

embeddings for nodes, irrespective of their surrounding structures and considering

the inherent permutation invariance of self-attention, there is a potential risk of
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overlooking distinct structural differences between nodes [2], as depicted in Figure

6.1.

Figure 6.1: Position-encoding vs structural encoding. The idea for the figure is

taken from [2, Figure 1]. Shortest path positional encoding will generate the same

representation for nodes I and J in a) and b) because they have identical shortest

paths to other nodes, even though local structures are different.

Moreover, as [61] proposed that for graph representation learning, a competent

position encoding should be: 1) local : nodes should be aware of their role and po-

sition in a local community, 2) global : nodes should know their global position in a

graph, 3) relative: nodes should be clear about the distances between them and other

nodes. However, considering these three types of positional information simultane-

ously in graph representation learning and how to improve it without significantly

increasing the computational complexity is relatively complex.

This Chapter addresses the complex challenge of considering these three types

of positional information together and how to refine this representation further and

proposes a more general and effective framework, the Ricci Curvature Contrastive

PerformerMixer (RCPP) for graph patch learning.
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It is known that position encoding in a transformer would be simple for sequence

learning with inherent ordering [197]. Thus, we aim to convert graphs into sequences

better to capture the structural relations for graph representation learning. However,

graphs can be irregular, and it is a challenge to process various sizes of nodes and

edges into a fixed length of tokens. Google proposed ViT [198], a transformer with

decomposed input images, as different fixed-size patches (see (a) in Figure 6.2),

which performed well, with fewer computational costs than its competitors.

Therefore, we explore a similar method to decompose graphs into patches (al-

ternatively tokens) and apply a transformer for graph representation learning, illus-

trated as (b) in Figure 6.2.

Figure 6.2: Partition images and graphs

In accordance with [61], our framework comprehensively incorporates local, global

and relative structural information. After patch transformation, a linear transfor-

mation aguments node features with local positional information, utilising random-

walk structural encoding [16] as detailed in section 6.3.1. We then incorporate more

topological information (via Ricci curvature), an effective geometrical measure that

enriches both edge and global manifold characteristics in graphs [199, 200]. Rooted
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in the intrinsic curvature properties of manifolds - continuous, smooth spaces [201],

the Ricci curvature serves as a powerful attribute for our framework to mitigate the

over-squash problem that hinders GNNs’ distant information processing capabili-

ties [202]. The consideration of the Ricci curvature amplifies the expressive power

of our framework in capturing nuanced global structures, and more details of the

mathematical definitions and formulas are presented in section 6.3.2. Complemen-

tarily, our PerformerMixer, elaborated in section 6.3.4 also consider global graph

structures. Furthermore, relative positions among patches are incorporated to pre-

serve inter-patch relationships post-graph partition.

Next, we apply message passing based GNNs to the partitioned graph patches to

obtain fixed-length embeddings for arbitrary graphs. However, message passing may

lead to the problem of over-squashing [203]. This pertains to the distortion of infor-

mation passed from distant nodes, especially along edges with negative Ricci curva-

ture values (negatively-curved edges) [199]. One solution is curvature-based graph

rewiring by adding and removing edges [199]. However, this method will change the

graph structure and the graph may become disconnected soon by removing the nega-

tively curved edges [204]. Such edge perturbation will hurt downstream performance

on biochemical molecules [116, 205] when discriminating between molecules of dif-

ferent classes (graph classification tasks). Therefore, instead of explicitly changing

the graph structure, we implicitly consider the impacts of topological information

via Ricci curvature in contrastive learning.

The contrastive learning method is deployed to encode underlying structures, ad-

dress the over-squashing problem implicitly and learn more robustly about variation
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representations, such as rotations and scale changes. It should be noted that conven-

tional contrastive learning assumes all negative samples are equally negative against

positive samples. This leads to the faulty negative problem, where instances similar

to the anchor are treated the same as more negative instances during contrastive

training [206,207]. Addressing the issue, the negative samples here are updated ac-

cording to the pairwise distance between them and the positive ones together. Our

contrastive learning method is the first model to consider the edge Ricci curvature

information in node embedding update.

Next, a standard GNN is implemented for each graph patch independently to

update nodes and edges information, similar to [3]. Thereafter, we implement Per-

former, an efficient computing transformer for long-length sequences, together with

an efficient image patch learning model, MLP-Mixer [208] to value the importance

of patches and obtain a weighted average graph level representation, inspired by the

idea that a comprehensive architecture of transformers is essential for vision task.

Given the above, our main contributions can be summarised as follows:

1. We propose a novel effective general and expressive framework, the Ricci Cur-

vature Contrastive PerformerMixer (RCPP), for graph representation learning

with linear complexity by converting graphs into patches and capturing struc-

tural and positional relations comprehensively.

2. Unlike the base model [3], we are the first to apply contrastive learning to

graph patches, thus removing the faulty negatives problem, to the best of our

knowledge.

3. Additionally, we propose a novel Ricci curvature guided contrastive learning
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method, which alleviates the issue of over-squashing without changing graph

structure.

4. Finally, our empirical evaluation on real-world datasets demonstrates that

RCPP framework surpasses existing methods and attains 3-WL expressive

power. Furthermore, the modular design of RCPP serves as a robust baseline

for future academic research in graph representation learning.

6.2 Related Work

6.2.1 Contrastive Learning for Molecule

Contrastive learning is becoming prominent for pre-trained methods. As explained

in sections 2.3 and 4.2, it aims to learn embeddings of objects by comparing different

samples instead of learning the mapping function between input and labels [41,209,

210]. Notable models such as Momentum Contrast [211], SimCLR [42] and SimSiam

[212] have been introduced for visual representation learning (images and videos).

This Chapter mainly uses contrastive learning for molecules which has been proven

to be effective at capturing unique cheminformatics and graphical structures [207].

Conventional contrastive learning methods focused on generating diverse views

for the same sample [205], including masking nodes or transforming graph struc-

ture [100,116,213], which will hurt the semantics inside molecules. Wang et al. [214]

introduced MoICLR and proposed augmentation strategies for building contrastive

pairs. Zhang et al. [215] proposed a new sampling strategy by leveraging extracted

motifs to select informative subgraphs for contrastive learning. Li et al. [216] con-
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ducted contrastive learning between 2D and 3D geometric structures to incorporate

3D information. However, as [207] pointed out, all these studies believed that other

molecules are equal negative pairs and thus brought faulty negative problems. Unlike

those studies, we do not assume that all the negative samples are equally dissim-

ilar from the positive sample, and we have further adjusted them by calculating

the pairwise distance between them. Others [205, 217, 218] incorporated external

domain knowledge for graph augmentation and then applied contrastive learning to

maximise the agreement between the augmented and the original molecular graphs.

This domain knowledge enriched with knowledge graphs can be the future extension

of our work.

6.2.2 Transformers with GNN and Variants

Transformer models have been increasingly applied to graph-structured data, as they

can encode the structural information via positional relationships between nodes and

thus avoid structural inductive bias [2]. Zhang e al. [7] introduced Graph-BERT,

which employs self-attention on sampled linkless subgraphs to capture structural

information. Their approach highlights the importance of attention mechanisms

for learning graph structures. Min et al. [219] summarised three typical ways to

combine graph representation learning with a vanilla transformer: 1) Using GNN

as auxiliary modules in a transformer to leverage the advantages of learning local

representation and global reasoning via pairwise interaction, such as GraphTrans

[203]; 2) Improved position embedding from graphs that compresses graph structure

without adjustment of transformer architecture including Laplacian eigenvectors
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in Graph Transformer [50] or random walk [16, 61]; 3) Revised graph attention

matrix based on graph information, e.g. GraphiT [196], which encoded various graph

kernels, by extending the adjacent matrix to a kernel matrix and Structure-Aware

Transformer (SAT) [2] which incorporates subgraph representation as structural

information into self-attention. However, as [3] suggested, those graph transformer

methods significantly increase the computing complexity when addressing the long-

range dependencies and over-squashing problems.

On the other hand, as transformer architectures are indispensable for deep learn-

ing, a number of improvements compared to the original transformers have been pro-

posed [220], including Linear transformer [221], Longformer [222], Performers [223],

Switch Transformer [224] and so on. Most focus on improving the attention mecha-

nism’s memory complexity and computing efficiency. Here we use Performer, which

will be most efficient when L, the sequence length is relatively large (i.e. 4096)

by using random kernels. More comprehensive information regarding the recent

variants of transformers can be found in a recent survey [220].

6.3 Method

In this section, we introduce our Ricci Curvature Contrastive PerformerMixer (RCPP)

framework, which consists of the Ricci curvature consideration of graphs, patch

contrastive learning and Performer [225] with MLP-Mixer [208], based on Graph

MLP-Mixer model [3]. The overall structure of our framework is shown in Figure

6.3.

The general pipeline structure of the RCPP framework means that it and each
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component can be easily integrated with other graph representation learning mod-

els. The patch partition method can be applied to graphs in different domains. The

position information of nodes and patches is also considered and will be explained

later. The message passing mechanism aggregates information from neighbouring

nodes and is particularly suited to capturing local structure (details explained in

Chapter 2.2). In addition, the Ricci curvature, considered later, establishes a con-

nection between geometry and topology by utilizing local information [200]. For

global structural information, we apply a comprehensive transformer, Performer-

Mixer and use an adjacency matrix to encode the relative positional information of

nodes in different patches. We consider Ricci curvature to address the over-squashing

problem faced in most GNN methods and develop a novel Ricci curvature guided

contrastive patch learning to capture unique substructural information and be more

robust simultaneously. PerformerMixer successfully decreases the time complexity

to linear, mainly when input length L is substantial, which can replace a standard

transformer in existing GNN with transformer study.
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Figure 6.3: Proposed RCPP framework

For graph partition, we apply the METIS algorithm [3] to cluster raw graphs

G(V,E) into a number of P patches V1, V2, ...VP . METIS is a multi-level partition-

ing technique, which divides a graph into smaller, balanced subgraphs by iteratively

optimizing the cut size (minimize inter-subgraph connections) and minimizing com-

munication costs (load balance) [226]. This partition is extended to the overlapping

patches, in which case, if the two nodes of an edge belong to different patches, they
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will also be included in both patches. Next, we deploy a linear embedding to the

given raw input nodes and edges in the obtained graph patches separately (see equa-

tion 6.1). Our RCPP framework converts graphs into patches and is followed by:

Ricci curvature consideration, contrastive patch embedding (learn more robust rep-

resentation and address the over-squashing problem simultaneously), GNN Encoder

(updating nodes and edges within patches and transforming them in fixed-length

vectors), PerformerMixer (a comprehensive architecture of linear time complexity

transformer and MLP-Mixer for patch vector) and a MLP (multi-layer perceptron)

for the final prediction/classification task (see Figure 6.3).

6.3.1 Positional Encoding

Node Position Encoding. In section 2.4, we introduce the random walk struc-

tural encoding (RWSE) pi for node i [16]. This encoding captures both local and

global positional information, as detailed in equation 2.13 of Chapter 2.By ensuring

most nodes in real-world graphs receive unique representations, RWSE bolsters the

expressiveness of GNNs. This enhancement is depicted in Figure 6.3 and further

elaborated in equation 6.1:

hi = σ(wn)Tpi + Uαi + u; eij = Fβij + f (6.1)

hi and eij are the updated node and edge features in d dimensions, projected

from the original input node feature and edge feature αi and βij, respectively. T ,

U , F , u and f are parameters to train. Differing from the baseline, we introduce

a parameter wn initialised with a scalar value of 10.0. We then apply a sigmoid
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function σ to the tensor. The purpose of this trainable parameter is to determine

the significance of node position information when it is incorporated into the node

embedding. Essentially, it allows the model to learn the optimal degree of reliance

on position information.

Patch Position Encoding. Additionally, we incorporate the adjacency matrix

A to encode the structural relationships between patches, where the entry at row

i and column j is the number of shared nodes between patch i and j. To capture

the relative positions among patches, we perform eigenvalue decomposition on A′, a

modified version of A to enhance numerical stability and obtain its eigenvectors P :

A′ = A + eps ∗ I, A′ = σ(wp)PΛP−1 (6.2)

Where eps is a small constant and I is an identity matrix. These eigenvectors

P serve as a form of relative positional information and are integrated into the

patch embeddings later. This approach is inspired by the proven ability of eigenvec-

tors to preserve intrinsic graph structures, as evidenced in [227]. To modulate the

significance of this relative positional information, we introduce a learnable param-

eter tensor wp, initialised to a scalar value of 10.0 for patch position information,

mirroring the approach used for node position information.

6.3.2 Ricci Curvature Consideration

As noted, we incorporate the Ricci curvature into our pipeline, to bolster topo-

logical insights, address the ‘over-squashing’ problem in GNNs and enhance our

framework’s capability to discern structural information. This curvature provides a
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more localised perspective and an accurate view of the bottleneck in message passing

from distant nodes (long-range dependencies) [199].

First, we consider the Ricci curvature because we will implement contrastive

patch learning in the next step. Prior works have shown that motif-level contrastive

learning methods [214,215,228] all sample subgraphs within each molecule, leading

to the neglection of unique chemical substructure pattern [207]. Therefore, we con-

sider edges with negative Ricci curvature for each molecule to avoid such information

loss and address the over-squashing problem. The primary purpose is to identify

negatively curved edges, as depicted by the green edge in Figure 6.4 (a), which

contribute to the over-squashing problem [18]. Unlike the conventional rewiring

method [199] to introduces additional edges to alleviate the bottleneck, illustrated

by red dashed lines in Figure 6.4 (b) which alters the inherent structure, we update

the Ricci curvature of edges and subsequently perform contrastive learning in the

next step based on the updated values.

Figure 6.4: Curvatures on graphs
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According to [204], the Ricci curvature κij of edge eij is determined by comparing

the distance traveled from node i’s neighbors to node j’s neighbors (measured by

Wasserstein distance W (mi,mj)), relative to the length of edge d(i, j), formulated

as:

κij = 1 − W (mi,mj)

d(i, j)
(6.3)

and the Wasserstein distance W (mi,mj) can be computed by a linear program-

ming:

min
M

∑
i,j

d(ij)M(ij)s.t.
∑
j

M(ij) = mα(i),
∑
i

M(ij) = mαj(j) (6.4)

Where mα(i) is the probability measure at node i. The universe for this measure

consists of node i, its set of neighboring nodes N and all other nodes in the graph.

It is defined as:

mαi =



1 if at node i

(1 − ω)/k if node i ∈ N

0 otherwise

We utilise a parameter ω that falls within the range of [0,1] in our model. This

parameter is responsible for allocating a specific probability mass at node i while

evenly distributing the remaining probability mass among number of neighbouring

nodes k. For a more detailed explanation, readers can refer to [204].

These Ricci curvatures of edges are precomputed and stored in datasets. During

training, we can load it directly and then use the same GCN [35] implementation

as [199] to update edge features:
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h′
i = ReLU(GCNConv1(hi, eij)),

eija
′ = eija + mean(GCNConv2(h

′
i, eij)).

(6.5)

Where hi and eij are the node and edge features obtained from equation 6.1,

with the Ricci curvature already incorporated into eij. The first GCN convolution

layer GCNConv1 updates the node features to h′
i. The second layer GCNConv2,

uses the updated node feature to update the edge features and calculate their mean.

eija is the attribute information contained in edge ij, and it is updated to be used

as edge information to guide contrastive learning in the next step.

6.3.3 Contrastive Patch Embedding

Different from [3], who directly input token representation into mixed MLP layers

to fuse token and channel information, we utilise contrastive learning for nodes. The

idea is that even if they are overlapping patches, graph information in each patch

will not be similar. The current sample is assumed to be positive and the remaining

are all negative. Unlike most existing contrastive learning methods [228–230] in

graph and molecular representation learning, we do not assume all negative samples

are equally dissimilar from the positive sample. We calculate the pairwise distance

between the current positive sample Sp and other k numbers of negative samples

Sn in the same group and update the embedding of the negative sample based on

the distance by adding a weighting factor proportional to the pairwise distance, as

illustrated in the following equations 6.6:
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Dis(hi, hj) = ||hi − hj||2,

hupdate
i = hi+

∑
j∈k

Wij(1+θMij∗eija′)∗Dis(hi, hj)/η,
(6.6)

Where Dis represents distance, || ||2 denotes the L2 norm, and η is the tempera-

ture factor to control the scale of the negative sample update. hi is the embedding of

node i. Since the pairwise distance computation is done only between positive and

k negative samples in the same group, the overall time complexity of this operation

is linear concerning the size of input samples, which will be explained more in 6.7.

θ is a learned parameter representing the scale of influence of negative edge Ricci

curvatures in message passing. When θ is large, the embeddings of nodes connected

by negatively curved edges will be pushed further away. Mij denotes a binary mask

indicating if the Ricci curvature of edge (eija
′ in equation 6.5) connecting node i

and j is negative or not. This enables the model to focus more on updating negative

samples, which are closer to the positive sample, learn a more robust representation

of the input and address the over-squashing problem simultaneously.

After contrastive learning, a standard GNN, GINE proposed by [121], is imple-

mented to update nodes in each patch and average the overlapping patches for nodes

and edges included in more than one patch, similar to [3]:

hl+1
i,p = fnode((1 + ϵ)hl

i,p +
∑

j∈N(i)

ReLU(hl
j,p + epi,j)) + gp−n(hl

i,p). (6.7)

Where l is the index of the convolution layer, fnode is a neural network function

to update nodes hi,p.Directly adding hi,p serve as an implicit form of residual con-
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nection, allowing the model to preserve original information and aiding in gradient

flow. ϵ denotes a small positive number, acting as a slight bias to prevent nodes from

being overly influenced by their immediate neighbors and the default value is 0 in the

GINE model in the Pytorch Geometric library. i, j are the nodes and p is the index

of graph patches. Node i and edge eij are included in patch c. gp−n(hl
p) is a MLP

function that further acts as an explicit residual connection during the GINE up-

dating process. This explicit residual mechanism ensures that during deeper layers

of convolution, the original node information is not overshadowed by the aggregated

information, providing the model with a balance between local and neighbor infor-

mation. Afterwards, mean pooling is applied to all nodes in each patch to obtain

fixed-length patch embedding, which then passes to the Performer, as explained in

equation 6.8:

hl+1
i,p = Mean(hl+1

i,c ) (6.8)

6.3.4 PerformerMixer

The Performer reduced computation complexity using orthogonal random features

(FAVOR) [225] with random kernels. In the transformer, the time complexity was

O(n2) when the input sentence length was L. However, with the utilization of

orthogonal random features (ORF) and modification of the vanilla attention from

equation 6.9 to equation 6.10, [225] was able to improve the situation.

Att = softmax(QKT/
√
d) ∗ V (6.9)
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Âtt = D̂−1(Q′((K ′)V )), D̂ = diag(Q′((K ′)T )1L) (6.10)

Here, Att is the attention, Q, K V are input matrices and d is the dimension

of the hidden unit, and 1L is a vector of ones with L length. A pivotal aspect of

the Performer’s efficiency comes from the nonlinear projection of queries and keys

into a lower dimensional space of dimension r. This projection achieved through

random orthogonal features, allows for the computation of approximated attention

without evaluating the full QKT product [225]. As a result, the time complexity

becomes O(Lrd). To clarify further, the dimension r of the nonlinear projection

essentially determines the resolution of the approximation. A smaller r results in a

more coarse-grained approximation but is faster. When L is significantly larger than

r and d, the advantage is that the time complexity will be approximately O(L).

After the patch transformation step, token representations are obtained. Then

they will be input into the Performer with MLP-Mixer, which we name as Per-

formerMixer, as illustrated in Figure 6.3.

MLP-Mixer model has the advantage of alternating between channel and token

mixing steps without an attention mechanism, which enhances information fusion

between tokens and channels with outstanding performance for vision tasks [208]:

Token mixer U = X + (W2σ(W1LayerNorm(ÂX)))

Channel mixer Y = U + (W4σ(W3LayerNorm(U))

(6.11)

However, the ability of transformers to capture long-range interactions can cir-
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cumvent the over-squashing problem [231], which should not be neglected. Accord-

ing to [232], a general architecture of the transformers, rather than a particular

component like a specific token mixer plays a more critical role in the model’s effec-

tiveness. Additionally, as explained before, position information is crucial for graph

representation learning and is naturally captured by attention mechanisms. There-

fore, our work aims to build a comprehensive architecture by combining Performer

with MLP-Mixer to leverage linear time complexity of attention in Performer and

efficient information mixing of MLP-Mixer on image patch learning.

This comprehensive PerformerMixer can effectively capture complex dependen-

cies between different parts of the patch and considers the relative positions of

tokens, leading to a better understanding of the graph’s global and local structure.

Before the final prediction layer, it should be noted that small graphs may partition

empty patches, and we should mask them out and average the non-empty patches

to obtain the graph level representation h′
G, similar to [3] using equation 6.12:

h′
G =

∑
pmp · hGp∑

pmp

(6.12)

Where mp is the binary mask for patch p. Lastly, we apply an MLP for the classifi-

cation or regression task output y is given by:

y = MLP (h′
G) (6.13)
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6.4 Experiments

6.4.1 Datasets

We use the same four benchmark datasets as in [3], ZINC, Peptides-func, MolHIV

and CIFAR 10, to fairly evaluate our method. ZINC is a molecular graph dataset

that predicts the constrained solubility (regression task), a molecular property. We

use the 12K molecules subset and follow the same data split as [48]. The peptides-

func dataset is used for long-range interaction graph learning [62]. The MolHIV

dataset is used for molecular property prediction, where nodes denote atoms and

edges represent chemical bonds [70]. The above three datasets are used for graph

classification tasks to differentiate among graphs from various classes. Each sample

is a chemical compound depicted through a graph. The labels for graph classi-

fication tasks can take various forms: binary (as in MolHIV), multiclass (as in

Peptides-func), or continuous values for regression tasks (as in ZINC). For CIFAR

10, an eight nearest-neighbour graph is used to create it from the classical image

classification dataset [48]. Given its origin and structure, applying Ricci curvature,

which is typically suited for smooth manifolds or their discrete approximations, may

not be meaningful or informative for CIFAR10. The result presented in Table 6.2

of CIFAR10 is performed with the entire RCPP framework, except the Ricci curva-

ture consideration and θ is set as zero in equation 6.6. These datasets are chosen

for their diversity in representing various graph-related tasks, including regression,

multiclass classification, binary classification, while ensuring both chemical com-

pounds and image-derived graphs. While the baseline includes additional dataset

such as MNIST, MolTOX21 and Peptides-struct, we believe our dataset choices are
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Table 6.1: Dataset summary

Datasets Graphs Nodes Avg Nodes Class
ZINC 12000 9-37 23.2 Regression (1)

Peptides-func 15535 8-444 150.9 10
MolHIV 41127 2-222 25.5 2

CIFAR 10 60000 85-150 117.6 10
CSL 150 41 41 10
SR25 15 25 25 15
EXP 1200 32-64 44.4 2

sufficiently representative:

• CIFAR10: with its larger graph size, offers a more challenging image-based

evaluation than MNIST.

• MolHIV, sourced from MoleculeNet like MolTOX21, makes MolTOX21’s in-

clusion redundant.

• Both Peptides-func and Peptides-struct datasets are for long-range interactions

tasks and even use same graph set. Therefore we just evaluate on Peptides-func

in this chapter.

We also evaluate the expressive power of RCPP on three simulated datasets: CSL,

SR25 and EXP, which will be presented in section 6.6. The details of all datasets

are illustrated in Table 6.1.

6.4.2 Experimental Setup

Our model is implemented with Pytorch 1.12.1 and CUDA 11.3. The Ricci curvature

is precomputed and stored in datasets using the GraphRicciCurvature library based

on equation 6.3 and 6.4. The hyper-parameters for the METIS partition, patch
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encoder part and training settings are mostly borrowed from Graph MLP-Mixer

[3], including the number of patches 32, Adam optimizer with default setting and

learning rate of 0.001, learning patience 100 for Zinc dataset, 20 for Peptides-func

dataset and 50 for MolHIV and CIFAR 10 dataset. The dropout rate is 0.3, the

number of hidden units d is 128, the number of GNN encoding layers is 4, and L,

the max sequence of length and depth for the Performer, are set as 4096 and 6,

respectively. Temperature η is set as 0.05 followed by [233]. The whole model is

implemented on PyTorch Geometric.

6.4.3 Baselines

Five graph neural network models are evaluated with our method.

• GCN is a seminal and effective graph representation learning model, which

propagates node features through its neighbors using an adjacency matrix to

update vectorial representations for nodes [35].

• GINE proposes pre-training an expressive GNN to learn local and global rep-

resentations [121].

• Graphormer incorporates structural information of graphs into a transformer,

including centrality, edge and spatial information [63].

• Structure-Aware Transformer (SAT) considers structural information in terms

of subgraph and incorporates it into transformer [2].

• Subgraph GNN (SUN) models graphs as a collection of subgraphs and demon-

strates it is as effective as the 3-WL graph isomorphism test and achieves
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better performance on multiple datasets [234].

• GraphTrans utilises a global permutation-invariant transformer to learn long-

range contextual information after standard GNN [203].

• Graph MLP-Mixer, state of the art, proposes to transform graphs into patches

and then apply GNN and transformer for downstream learning tasks [3].

6.4.4 Results and Discussion

We compare in the table the results reported in [3] with our own (average result

out of 4 runs) and demonstrate that our framework outperforms the best results in

baselines in three datasets. Notably, on Peptides-func, a large-scale dataset of more

than 2 million nodes, our proposed method outperforms the state-of-the-art with

an average 0.005 precision improvement. On the MolHIV dataset, our method also

improve 0.01 ROCAUC. Overall, results show that our method either outperforms

the previous state-of-the-art or is competitive, demonstrating its effectiveness.

Overall, results show that our method either outperforms the previous state-of-

the-art or is competitive, demonstrating its effectiveness.
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Table 6.2: Comparison of our Model to Baseline methods

Methods ZINC Peptides-func MolHIV CIFAR 10

Metric MAE Precision ROCAUC Accuracy

GCN [35] 0.1952±0.0057 0.6328±0.0086 0.7813±0.0081 0.5423±0.0056

GINE [121] 0.1072±0.0037 0.6405±0.0077 0.7885±0.0034 0.6131±0.0035

SUN [234] 0.084±0.002 0.6730±0.0078 0.8003±0.0055 -

GraphTrans [203] 0.1230±0.0018 0.6313±0.0039 0.7884±0.0104 0.6809±0.0020

Graphormer [63] 0.122±0.006 - 0.805±0.004 -

K-Subtree SAT [2] 0.102±0.005 - - -

Graph MLP-Mixer [3] 0.0733±0.0014 0.6970±0.0054 0.7997±0.0102 0.7396±0.0033

RCPP 0.0724±0.0009 0.7029±0.0043 0.8121±0.0064 0.7383±0.0027

6.4.5 Ablation Study

We compare the performance of our RCPP framework and its separate compo-

nents in Table 6.3 on the ZINC, Molhiv, Peptides-func and CIFAR 10 datasets.

The presented averaged results over 4 runs demonstrate the improvement of each

module. Specifically, we compare the performance of considering Ricci curvature

in contrastive learning (RCL) or not (CL). In Table 6.3, -CL, -RC, -PE and -

PerformerMixer denote the RCPP framework without contrastive learning, using

contrastive learning without Ricci curvature consideration, without positional en-

coding and PerformerMixer, respectively. The PerformerMixer is the most crucial

module for capturing comprehensive structural information in all four datasets. Po-

sition encoding is also important for graph representation learning performance,

particularly in the ZINC dataset. One possible reason is that most nodes receive a

unique node representation and molecules will have different random walk position
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encodings [16]. Considering Ricci curvature in contrastive learning also improves

an average 0.01 precision, ROCAUC and accuracy on Peptides-func and MolHIV

datasets. As explained in section 6.4.1, we do not consider Ricci curvature informa-

tion for CIFAR 10 dataset, as it is constructed from an image dataset by connecting

eight nearest neighbours, which lacks a manifold structure. However, its competitive

performance still demonstrates the effectiveness of our RCPP framework.

Table 6.3: An ablation study of RCPP on four datasets

Methods ZINC Peptides-func MolHIV CIFAR 10

Metric MAE Precision ROCAUC Accurcay

-CL 0.0771±0.0019 0.6889±0.0073 0.7921±0.0127 0.7015±0.0051

-RC 0.0741±0.0030 0.6978 ±0.0061 0.8084 ±0.0064 -

-PE 0.1129 ±0.0090 0.6885 ±0.0054 0.7916 ±0.0116 0.6919 ±0.0084

-PerformerMixer 0.0971±0.0036 0.6846±0.0111 0.6849±0.0050 0.6672±0.0192

RCPP 0.0724±0.0009 0.7027±0.0043 0.8121±0.0064 0.7383±0.0027

6.5 Position Information Study

We present the importance of assigning node and patch positional encodings in Ta-

bles 6.4 and 6.5. The ratio is calculated by dividing the node pe weight by the patch

pe weight to evaluate the relative importance of node to patch position information.

The optimal position encoding weights are approximately 1 for both node and patch

position encodings for all four datasets. According to the ratio, in real-world graph

datasets, ZINC, Peptides-func and MolHIV, node position encodings are slightly

more important than patch position encodings, while in the image dataset, CIFAR
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10, the patch position encoding has a slightly higher influence compared to the node

pe weight. This observation aligns with the intuition that in graph structured data,

nodes represent individual entities and their positions often carry specific semantic

meanings. In image datasets, the spatial arrangement of patches plays a crucial

role in capturing the global context and preserving the spatial relationships between

different image regions, making patch position encoding slightly more critical for

learning meaningful representations.

Table 6.4: Relative importance of position information

Datasets ZINC Peptides-fun MolHIV CIFAR 10

Node PE 0.9995 0.9999 1.0000 0.9998

Patch PE 0.9990 0.9908 1.0000 1.0000

Ratio 1.0005 1.0092 1.0000 0.9998

Table 6.5: Performance with different position information setting

Metric MAE Precision ROCAUC Accuracy

0.5 PE 0.0738±0.0021 0.6938 ±0.0078 0.7974±0.0084 0.6979±0.0047

1.0 PE 0.0724±0.0009 0.7027±0.0043 0.8121±0.0064 0.7383±0.0027

2.0 PE 0.0817±0.0026 0.6882 ±0.0091 0.7911±0.0091 0.7094±0.0026

We also analyse the performances of RCPP with different weights of position

encoding and find that reducing the weight of position encoding yields better model

performance compared to amplifying its influence in real-world graph datasets.

While in image datasets, the opposite conclusion is once again drawn. However,

the optimal performance is achieved when the weight of position encoding is set to
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1.0, without any reduction or amplification of its influence. This finding suggests

that the inherent position information should not be overly diminished or exagger-

ated in order to attain the best model performance.

6.6 Expressivity Study

The message passing based GNNs have a limitation in their capacity to distinguish

non-isomorphic graphs, which has been examined through the Weisfeiler-Leman

graph isomorphism test [38] based on colour refinement. In response to this, [39]

then propose a general class of k-WL-GNNs which are able to represent any class

of k-WL graphs universally. However, these models come with memory and speed

complexities of O(Nk), where N represents the number of nodes. This k-WL test is

widely employed to evaluate the expressive power of GNNs [40]. However, directly

comparing the proposed neural network with the Weisfeiler-Lehman test is challeng-

ing due to the nonlocal manner in which information is transferred between layers [3].

Therefore we conduct a comparative analysis with other existing methods that are

unable to pass the k-WL test to demonstrate the effectiveness of RCPP. CSL [71]

consists of 150 4-regular graphs, categorised into 10 classes to test GNNs expres-

sivity, which cannot be distinguished by a 1-WL isomorphism test [3]. SR25 [72]

includes 15 strongly regular graphs, and each is a different class with 25 nodes. A 3-

WL test cannot differentiate the 15 graphs. The experimental results demonstrate

that our model enhanced expressive power significantly across all three datasets,

while conventional MP-GNNs methods couldn’t accomplish as evidenced in Table

6.6. EXP [73] has 600 pairs of non-isomorphic graphs that both 1-WL and 2-WL
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tests cannot differentiate [3].

Table 6.6: Average accuracy of expressive power on three simulation datasets. Some

results are taken from [3]

Models CSL SR25 EXP

GCN 10.00±0.00 6.67±0.00 51.90±1.96

GatedGCN 10.00±0.00 6.67±0.00 51.73±1.65

GINE 10.00±0.00 6.67±0.00 50.69±1.39

CraphTrans 10.00±0.00 6.67±0.00 52.35±2.32

RCPP 100.00±0.00 100.00±0.00 100.00±0.00

6.7 Complexity Analysis

For a graph G(V,E) where a number of nodes and edges are V and E, the METIS

operation takes O(E) time complexity. In the Ricci curvature consideration step,

the time complexity is (O(|V | + |E|) in the Ricci curvature computation step. For

contrastive learning, we iterate over the top z groups and calculate the pairwise

distance between positive and number of k negative samples in each group, which

results in a linear time complexity of O (number of groups × group size × num-

ber of negative samples). The number of groups and negative samples are all set

fixed (z = 32, k =3), and when the group size (number of nodes) lies within a

constant range, shown in Table 6.7, it exhibits linear time complexity. The time

complexity in the base GNN is O(|V |+ |E|). In the PerformerMixer, time complex-

ity is O(P )(MLP-Mixer) + O(Lrd)(PerformerMixer) = O(P + Lrd), where P is the
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number of partitioned patches and the time complexity of PerformerMixer has been

explained in the section 6.3.4.

Table 6.7: Statistics of datasets in graph patches, cited from [3]

Datasets Patch Min Max Avg

ZINC 32 2 7 3.15

Peptides-func 32 1 20 7.08

MolHIV 32 1 13 3.27

CIFAR10 32 10 35 17.2

6.8 Potential Future Work

There are several promising future research directions can be investigated:

1. How to further enhance the scalability of graph structural learning for large-

scale graphs, which consists of millions or billions of nodes and edges, instead

of such partition method, in which case global information may be overlooked.

2. How to partition the graph into a flexible number of patches according to

datasets rather than predefined the number of clusters. Additionally, the par-

titioned patch size is also fixed in this study, and the Google research team

recently addressed the limitation by proposing a new flexible ViT model [235],

which can be integrated with our study.

3. The standard message passing mechanism in the GNN encoder pass informa-

tion of different types of edges to nodes at the same distance. However, in

molecule datasets, different types of edges can represent single, double and
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aromatic bonds, and the information should be passed to nodes adaptively

instead of universally to all nodes at the same distance. This limitation of

message passing mechanism may be investigated further [236].

6.9 Summary

This Chapter introduces a more general but effective framework, RCPP, for graph

deep learning. Although we convert graphs into patches similar to [3], the difference

between existing work [3] and the proposed framework RCPP are the following

three components: Ricci Curvature Consideration, Contrastive Patch Embedding

and PerformerMixer, as illustrated in Figure 6.3.

Firstly, we comprehensively consider the position information with random walk

structural node position encoding and relative patch position encoding. Then Ricci

curvature is calculated and updated for encoding the unique geometric structural

knowledge (edge-related information) to avoid the potential information loss in the

subsequent contrastive sampling within each molecule.

Contrastive learning is implemented for different patches and emphasises nega-

tive samples, which are difficult to discriminate from positive samples, by updating

them according to the distance between negative and positive samples. This step

also considers the impacts of negative Ricci curvature in message passing and ad-

dresses the over-squashing problem implicitly without changing the graph structure.

This enables RCPP to learn, we argue, more robust representations than obtained in

prior works and render it able to differentiate based on the differences or similarities

of the underlying structure of patches.
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Our method successfully incorporates comprehensive structural local, global and

relative and unique information with linear complexity, making it more efficient

than previous works that used GNN with standard transformers. We also analyse

the relative importance of node and patch position encoding in different datasets

and explore if the influence of position information should be reduced or amplified

to obtain optimal performance. Experiments on four datasets validate that our

method can enhance the performance of existing GNN models significantly with

linear computation complexity and attain 3-WL expressive power.

Finally, this Chapter also suggests a new perspective on graph patch learning

for broader applications. Graphs in other domains, such as social networks, finance

and NLP can also be studied by a similar method with better positional information

learning and fewer over-squashing problem.
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CHAPTER 7

Conclusion

In this dissertation, we navigate the topic of graph representation learning to chal-

lenges in GNNs and tackle them in different applications. This thesis aims to en-

hance the overall representation learning ability of Graph Neural Networks (GNNs)

by developing methods that are more robust, expressive, effective, and efficient. In

the following sections, the main contributions, which were presented in detail in the

previous chapters, are summarised, and potential directions for future research are

discussed.

7.1 Summary of Contributions

In the realm of graph representation learning, GNNs have emerged as the predomi-

nant standard due to their exceptional performance and flexibility. However, several
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challenges, including robustness, heterogeneity and structural learning (proposed in

Section 1.2) remain to be investigated more. The main contribution of this thesis is

to address the above problems by investigating the effectiveness of GNN models and

extending them with various learning methods in different scenarios (Chapters 3 -

6). This thesis identified the limitations of existing models in graph representation

learning and explored the corresponding solutions for the three research questions,

respectively. Details are summarised as follows:

For research question 1 that when dealing with limited available graph data,

how to enhance the resilience of graph neural networks in representation learning

and consider uncertainties, we propose a Bayesian GAT method by using a non-

parametric graph inference technique in Chapter 3. The initial results proved the

need to consider the uncertainty of input graphic data for representation learning.

The performance demonstrates that the proposed model is competitive when there

are only a few labels of the nodes known. In addition, the construction of the

model is motivated by the Bayesian neural network and can also be viewed under

the framework of probabilistic modelling and variational inference, which offers a

new potential research direction that could be explored in future semi-supervised

learning task with a consideration of uncertainty.

To answer research question 2 that How can we accommodate the diverse na-

ture of graphs, characterized by a variety of edges, features, and attributes, within

graph neural networks, we propose to construct heterogeneous graphs to encode
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various kinds of information on short text classification tasks in Chapter 4, based

on [56]. To enrich the text graph, potential topics are generated by the LDA model

and entities (keywords) are mapped to Wikipedia from short texts respectively. En-

tities, short texts and topics are represented as three types of nodes, and the edge

connected with each two of them also has different properties. A heterogeneous

graph attention model extended with neighbouring contrastive learning is deployed

for the text graphs. In addition to the base method, we consider the impacts of

different edge relations among objects and extensive experiments illustrate that the

proposed method effectively learns rich contextual information among different types

of entities and thus enhances the heterogeneity of the existing model, particularly

when there are limited labelled data. We also validate that neighbouring contrastive

learning can enhance robustness by comparing it with the proposed BGAT method

on citation network datasets, which combines these two research questions as intro-

duced in Chapter 1.2.

Research question 3 is to study how to learn better structural components,

such as extracting relations and understanding position information. Regarding the

relation extraction problem, we propose a novel ensemble learning consisting of hy-

pergraph convolution and adversarial training, which is applied to predict stock

price movement in Chapter 5. We point out that existing work for stock movement

prediction suffers from insufficiently capturing both group-wise and pairwise rela-

tions of relevant information rather than solely historical price features, leading to a

weak generalisation ability due to the stochastic characteristics of stocks. Address-
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ing these problems, we propose a novel ensemble learning framework, MONEY, to

better assist investors in predicting future trends of stocks. To effectively capture

pairwise information of industry, a graph convolution network is applied before RNN

models.

To capture the group level information of both industry and fund-holding, a hy-

pergraph convolution network is implemented after the GRU model with a temporal

attention layer. Adversarial training is introduced before the final prediction layer in

model (B), shown in Figure 5.2, to simulate the stochastic movement during train-

ing. The ensemble learning allows model A and model B model to complement each

other, keeping the benefits of learning better about these relations and being more

robust. All components are jointly trained on real-world stock market datasets. The

model significantly outperforms the state-of-the-art for most indicators and provides

a much more stable performance, particularly when facing a bear market.

Addressing the position information learning problem, we propose a novel and

effective framework, Ricci curvature Contrastive Patch Performer (RCPP) in Chap-

ter 6, to learn more graph structure information. Given the challenge of long-range

dependencies in GNNs with a transformer, we convert the input graph into a prede-

fined n number of patches using the metis algorithm, where nodes in each patch are

closely linked. The position information of nodes and patches is considered compre-

hensively and we analyse the influences of different scales of position encodings. To

avoid information loss during clustering, edges connected with two nodes in differ-

ent patches will be kept in both patches. Addressing the over-squashing problem,

we consider the influence of Ricci curvature that edges with negative curvature in
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different patches without changing graph structure directly using contrastive learn-

ing. Since overlapping edges from the partition process are preserved in patches,

contrastive patch learning implements learn more underlying unique information

about each patch by updating the representation of the negative samples in the

same batch. A standard GNN model is deployed later to generate fixed-length vec-

tors for patches, followed by a Performer module with linear complexity. The RCPP

framework leverages the advantages of GNN, Transformer and contrastive learning

to capture more underlying structural information and alleviate over-squash prob-

lems. Therefore, RCPP enhances the expressive power of the graph representation

learning model and experiments on real-world datasets demonstrate the effective-

ness of the proposed method in graph structure learning.

7.2 Discussion

This thesis aims to enhance the expressive power of Graph Neural Networks (GNNs)

in graph representation learning by addressing three key perspectives: robustness

(Chapter 3), heterogeneity (Chapter 4), and structural learning (Chapters 5 and 6).

The choice of distinct datasets and domains for each research question is deliber-

ate. Each selected dataset is considered a benchmark for its respective application,

be it citation networks, text classification, financial investment or graph structure

learning. More crucially, these datasets exhibit the challenges that the respective

research questions aim to tackle. For instance, citation networks datasets like Cora,

CiteSeer and Pubmed face robustness issues; and text classification datasets, such as
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AGNews, MR, Twitter and Ohsumed, encounter challenges related to heterogeneity.

The China A share market dataset is chosen for financial investment, due to its suit-

ability for exploring complex relation capturing; while the molecule datasets, like

ZINC, MolHIV and Peptides-func, are appropriate for graph structure and position

information learning.

While the diverse dataset selection allowed for a thorough examination of each

solution’s efficacy in its most relevant context, we acknowledge the limitation of not

evaluating all research problems within a single domain, for instance, that of social

recommendations. Although each aspect is individually addressed in this thesis,

it is important to note that combining the proposed solutions when necessary is a

possibility, albeit not explored in this work.

In practical scenarios, multiple challenges may arise simultaneously. For in-

stance, in tasks like social recommendation where graph structures are susceptible

to noise and unnoticed malicious perturbations [237], particularly where only limited

labeled data is available alongside auxiliary data of diverse types. In such cases, the

proposed BGAT method from Chapter 3 and the neighboring contrastive learning

with an extended heterogeneous graph neural network introduced in Chapter 4 can

be leveraged to generate more robust and expressive embeddings. Additionally, the

MONEY model proposed in Chapter 5 can be adapted to capture complex user-

item interactions and evolving preferences within social networks. By combining

these approaches, a more accurate and comprehensive understanding of the social

recommendation problem can be achieved.

Another application domain is drug discovery, such as pharmacological property
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estimation (e.g. toxicity), where the RCPP method developed in Chapter 6 can be

directly applied to explore the subtle patterns about molecular structures. Addi-

tionally, the models proposed in Chapters 4 and 5 allow GNNs to model diverse

molecule types and their interactions, enhancing prediction accuracy by capturing

complex relations and interactions among atoms. The generative BGAT model from

Chapter 3 can also be adapted to improve prediction robustness by accounting for

uncertainties.

7.3 Limitations of Study

This thesis acknowledges certain research limitations influenced by factors such

as time constraints, budgetary limitations, availability of research equipment, and

unanticipated obstacles. These factors will be discussed from both experimental and

application perspectives.

At the experimental level, various methodologies have been proposed to address

the research questions. One restriction within this work is the nature of the datasets

utilized. As discussed in Chapter 2.5, domain-specific datasets with specific settings

have been employed in Chapters 3 to 6 to align with the unique characteristics

of each research question. For example, the investigation of capturing complex

relationships relies on the China A-share market dataset without including data

from other national markets in Chapter 5. Furthermore, while this thesis aims to

enhance the learning ability of Graph Neural Networks (GNNs) in graph learning

tasks, with a focus on aspects including robustness, heterogeneity and structural

learning, other challenges such as dynamicity and scalability have received relatively
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less attention in this study.

From the application level, this thesis addresses three distinct research challenges

and demonstrates the effectiveness of the proposed methodologies through tasks in-

cluding citation networks, natural language processing, finance, and molecule learn-

ing. However, it is important to note that the proposed methods can be applied

to a wide range of other tasks, such as traffic control, recommendation systems, so-

cial network analysis, drug discovery [238], and various computer vision tasks [17].

These areas provide avenues for future investigation and exploration.

By acknowledging these limitations and focusing on specific research perspec-

tives, this PhD thesis makes valuable contributions to graph representation learning

and sets the stage for further study in addressing the broader challenges associated

with GNNs.

7.4 Future Research Directions

There is a keen interest in exploring various exciting facets of graph representation

learning in future work. In addition to the challenges of robustness, heterogeneity

and structure learning addressed in this thesis, there are other significant future

research avenues in graph representation learning. These include the increasingly

crucial issues of fairness and interpretability

Fairness Fairness aims to ensure that protected features like race or gender do

not influence outcomes of models [239]. In graph representation learning, fairness is

a growing concern, as models are prone to inheriting biases from real-world datasets,

model architectures or performance-driven design choices [240]. Achieving fairness
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requires meticulous design of both model and data, and it remains an open problem

in the field.

Interpretability Despite the wide application of GNNs, the lack of interpretabil-

ity hampers trust and limits the potential for further improvement [241]. As ethical

concerns and legal requirements for interpretability rise, researchers are exploring

various approaches from ad-hoc explanations to model architecture design, while a

consensus on best practices is yet to be reached.

Furthermore, graph representation learning serves as a critical stepping stone to-

wards achieving Artificial General Intelligence (AGI). By efficiently capturing com-

plex relationships and knowledge in a machine-understandable format, it paves the

way for advanced reasoning and inference capabilities. This level of intelligence en-

tails understanding or learning tasks akin to human beings, potentially incorporating

a broader range of logic and real-world knowledge. By delving into these areas, re-

searchers will be able to push the boundaries of GNNs capabilities and unlock their

potential for achieving AGI-like capabilities. The aspiration can also extends to

developing scalable novel GNNs across various industries to address practical chal-

lenges. Other key areas for future exploration in improving GNNs encompass the

following aspects.

Neural Logic Neural logic is a framework which combines the strengths of

symbolic logic and neural network to develop more powerful models for artificial

intelligence [242]. Symbolic logic is an application of the formal approach of math-

ematics to logic and is suitable for making inferences and arguments concerning

abstract notions [243]. Additionally, neural logic models can offer more explicit
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and understandable justifications for their judgements and predictions by introduc-

ing symbolic thinking into GNNs, which is essential for vital industries like drug

development and diagnosis.

Knowledge Graph Reasoning Knowledge graphs store complex graph struc-

tured knowledge in an organised manner and thus enable machines to reason and

learn from knowledge [156, 244–246]. Furthermore, knowledge graphs offer a clear

representation of knowledge that is simple for humans to understand, greatly en-

hancing the explainability of predicted outcomes [247–249]. A knowledge network

may also have billions of nodes and edges. Thus, a compelling ambition is to cre-

ate more scalable and effective methods, ones that are capable of not only capturing

intricate, high-order graph structures but also unlocking the potential to apply com-

plex reasoning.

Reinforcement Learning Reinforcement learning allows machines to learn

from experience by receiving rewards or penalties based on actions of agents in

complex and dynamic environments with a giving policy [250,251]. It can solve dif-

ferent tasks without prior knowledge and is regarded as a feasible path to AGI [252].

Owing to its superior ability to generalise without human interference, the fusion of

reinforcement learning with GNNs is seen as a potential game-changer in the realm

of graph representation learning.
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