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Abstract
People express their opinions and views in different and often ambiguous ways, hence
the meaning of their words is often not explicitly stated and frequently depends on the
context. Therefore, it is difficult for machines to process and understand the information
conveyed in human languages. This work addresses the problem of sentiment analysis (SA).
We propose a simple yet comprehensive method which uses contextual embeddings and
a self-attention mechanism to detect and classify sentiment. We perform experiments on
reviews from different domains, as well as on languages from three different language
families, including morphologically rich Polish and German. We show that our approach
is on a par with state-of-the-art models or even outperforms them in several cases. Our
work also demonstrates the superiority of models leveraging contextual embeddings. In
sum, in this paper we make a step towards building a universal, multilingual sentiment
classifier.
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1 Introduction

All areas of human life are affected by people’s opinions and views, and thus the adage
“opinions create preferences” turns out to be very true in the Internet era. The user gen-
erated content – often based on someone’s personal experience or preferences rather than
on facts – constantly grows in volume thanks to the increasing popularity of online review
sites, social media, discussion groups, or blogs available on the Internet. Nowadays, people
actively use information technologies to understand the opinions of others on a global scale,
rather than limit themselves to seek out advice or recommendations only in their circle of
family and friends, or rely only on television commercials and other media advertisements
before purchasing a product. With the sheer amount of reviews and other opinions over the
web, there is a need for automating the process of extracting relevant information. Sentiment
analysis (SA) is a fascinating and a very practical task, not only from the research perspec-
tive but also business-wise. Companies strive to understand their customers – by analyzing
how company’s products or services are perceived, firms are able to improve their offer to
better respond to customers’ needs, and in result boost their sales. Therefore, research in
sentiment analysis and its fast development in recent years is strongly correlated with the
rapid growth of social media.

Natural language can be very subtle in its meaning. A single word can hardly convey
the whole meaning of a statement – in natural languages the intended meaning is often
implicit and depends on the context. Hence, understanding and representing the meaning of
language is a really complex task, as language is highly symbolic, discrete and atomic in its
nature. People share not only fact-based information, but also experience-based information,
which is more subjective and emotional in nature. Complex linguistic phenomena – such
as: sarcasm, humor, or bias, among others – can be manifested in many different ways;
however, they are usually quite clear for humans and can be recognized by them without
great difficulties or hardships. As opposed to machines, which often do not distinguish
literal from figurative meaning, and thus can misinterpret statements.

This paper is an extended version of our conference paper (Biesialska et al., 2020). It
contains elaborated description of the proposed method as well as in-depth quantitative
and qualitative analysis. In addition, the paper is complemented with more thorough dis-
cussion and additional findings. We propose a novel approach to SA that builds on recent
advances in deep neural networks and distributed word representations, i.e. self-attention
and bi-attention mechanisms as well as contextual embeddings. Therefore, our model has a
clear advantage over more traditional approaches as it requires no manual preprocessing or
feature selection. Moreover, it achieves similar performance, both in accuracy and speed, as
compared to the current state-of-the-art approaches. Our contribution can be summarized as
follows:

– a sentiment classifier model achieving very good results comparable to state-of-the-art
– a novel architecture based on the transformer encoder with relative position representa-

tions
– unlike existing models, this work proposes a model relying solely on a self-attention

mechanism and bi-attention

The paper is organized as follows: Section 2 introduces fundamental notions and concepts
referring to the proposed method; Section 3 describes our approach; Section 4 discusses
experimental setup and characteristics of particular datasets; Section 5 provides in-depth
analysis of the results. Finally, Section 6 concludes this paper and outlines the future work.
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2 Background and related work

2.1 The problem of sentiment analysis

Sentiment classification has been one of the most active research areas in natural language
processing (NLP) and has become one of the most popular downstream tasks to evaluate
performance of neural network (NN) based models. The task itself encompasses several
different opinion related tasks, hence it tackles many challenging NLP problems (see e.g.
Liu, 2012; Mohammad, 2016) such as detecting sentiment at various levels of text granular-
ities, of the writer, reader or other entities mentioned or not explicitly mentioned in the text,
distinguishing objective from subjective statements, detecting sarcasm, resolving anaphora,
handling negation, word similarity, Named Entity Recognition (NER), Word Sense Disam-
biguation, to mention the most popular. The availability of standard benchmarks, such as
well-known datasets of movie reviews (e.g. Pang & Lee, 2004; Maas et al., 2011), has sig-
nificantly stimulated research in the area, so that opinion mining is nowadays one of the
most popular NLP research topics.

2.2 Sentiment analysis approaches

The first fully-formed techniques for SA emerged around two decades ago, and continued
to be prevalent for several years, until deep learning methods entered the stage. In this work,
we focus on sentence-level polarity classification. The most straight-forward method, devel-
oped by Turney (2002), is based on the number of positive and negative words in a piece of
text. Specifically, the text is assumed to have positive polarity if it contains more positive
terms than negative ones. Of course, the term-counting method is often insufficient; there-
fore, an improved method was proposed by Kennedy and Inkpen (2006), which combines
counting positive and negative terms with a machine learning (ML) approach (i.e. Support
Vector Machine). A basic approach to deal with negation (e.g. Das & Chen, 2001; Pang
et al., 2002; Potts, 2011) requires adding a “NOT ” prefix or a “ NEG” suffix to every term
between a negator word and the first punctuation mark that appears after the negation word.

Various studies (e.g. Turney & Pantel, 2010) have shown that one can determine the
polarity of an unknown word by calculating co-occurrence statistics of it. For instance,
the Pointwise Mutual Information (PMI) measure can be employed to compute the co-
occurrence of a word with another word. Moreover, there are classical solutions to the SA
problem, which are based on lexicons. Traditional lexicon-based SA approach leverages
word-lists that are pre-annotated with positive and negative sentiment. Therefore, for many
years lexicon-based approaches have been utilized when there was insufficient amount of
labeled data to train a classifier in a fully supervised way.

In general, ML algorithms are popular in determining sentiment polarity. The first ML
model applied to SA has been implemented by Pang et al. (2002). Over the years, various
variants of NN architectures have been introduced. An extensive discussion on several NN-
based approaches for sentiment classification can be found in Wadawadagi and Pagi (2020).
Notably, recursive neural networks, such as recurrent neural networks (RNN) (Socher
et al., 2013; Tai et al., 2015; Kumar et al., 2016), or convolutional neural networks (CNN)
(Kalchbrenner et al., 2014; Kim, 2014) have become the most prevalent choices.

Dynamic Memory Networks (DMN) proposed by Kumar et al. (2016), although intended
to be used primarily for question answering, is a versatile hierarchical recurrent sequence
model achieving state-of-the-art results in sentiment analysis. While a deep recurrent belief
network is proposed by Chaturvedi et al. (2016).
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Paulus et al. (2014) proposed Global Belief-Recursive Neural Network (GB-RNN)
for granular sentiment analysis. In Chen et al. (2016) Adversarial Deep Averaging Net-
work (ADAN) is presented; it leverages adversarial training for cross-lingual sentiment
classification.

2.3 Vector representations of words

The recent success of ML algorithms is largely contingent on data representation (Maas
et al., 2011; Bengio et al., 2013; Zhang & LeCun, 2015). More specifically, such vector
representations are primarily used as features.

One of the principal concepts in linguistics states that related words can be used in sim-
ilar ways (Firth, 1957). Clearly, words may have different meaning in different contexts.
Nevertheless, until recently it has been a dominant approach, e.g. word2vec (Mikolov et al.,
2013), GloVe (Pennington et al., 2014), to learn representations such that each and every
word has to capture all its possible meanings. However, recently a new set of methods
to learn dynamic representations of words has emerged (McCann et al., 2017; Howard &
Ruder, 2018; Peters et al., 2018; Radford et al., 2018; Devlin et al., 2019). These approaches
allow each word representation to capture what a word means in a particular context. While
every word token has its own vector, the vector can depend on a variable-length sequence of
nearby words (i.e. the context). Consequently, a context vector is obtained by feeding a neu-
ral network with these context word vectors, and subsequently encoding them into a single
fixed-length vector.

ULMFiT (Howard & Ruder, 2018) was the very first method to induce contextual word
representations by harnessing the power of language modeling. The authors proposed to
learn contextual embeddings by pre-training the language model, and then performing
task-specific fine-tuning. The ULMFiT architecture is based on a vanilla 3-layer Long
Short-Term Memory neural network without any attention mechanism. The authors pro-
posed discriminative fine-tuning and slanted triangular learning rates for fine-tuning the
model. Specifically, instead of using the same learning rate for all layers of the model, dis-
criminative fine-tuning enables to tune each layer with different learning rates. Finally, a
classifier fine-tuning on downstream task domain data is performed.

The other contextual embedding model introduced recently by Peters et al. (2018), is
called ELMo (Embeddings from Language Models). Similarly to ULMFiT, this model uses
tokens at the word level. However, ELMo additionally benefits from the subword-level
information due to character convolutions. ELMo contextual embeddings are “deep” as they
are a function of all hidden states. Concretely, context-sensitive features are extracted from a
left-to-right and a right-to-left 2-layer bidirectional LSTM language models. Thus, the con-
textual representation of each word is the concatenation of the left-to-right and right-to-left
representations as well as the initial embedding (see Fig. 1).

As the domain of vector representations of words is evolving rapidly, soon after ULMFiT
and ELMo other architectures were introduced. Comparing to ULMFiT and ELMo, newer
models such as e.g. OpenAI GPT (Radford et al., 2018) and BERT (Devlin et al., 2019) use
more sophisticated neural network architectures that rely on self-attention. OpenAI GPT
and BERT models operate at the subword-level, which is in our case not suitable, because
we would not be able to compare such embeddings with other models inducing word vector
representations (i.e. word2vec, GloVe).

In conclusion, we leverage the ELMo model to obtain contextual embeddings. More
specifically, by means of ELMo we are able to feed our classifier model with context-aware
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Fig. 1 The architecture of ELMo

embeddings of an input sequence. Hence, in this setting we do not perform any fine-tuning
of ELMo on a downstream task.

2.4 Self-attention and bi-attention deep neural networks

Self-attention (or intra-attention) is an attention mechanism that computes a representa-
tion of a sequence by relating different positions of a single sequence. For the first time
the attention mechanism was introduced by Bahdanau et al. (2014), and since then it has
been applied successfully to different computer vision applications (e.g. Mnih et al., 2014;
Stollenga et al., 2014), as well as NLP tasks (e.g. machine translation). The mechanism is
often used as an extra source of information added on top of the CNN or LSTM model to
enhance the extraction of sentence embedding (dos Santos et al., 2016; Lin et al., 2017).
However, as noted by Lin et al. (2017), this scenario is not applicable to sentiment classifi-
cation, since the model only receives a single sentence on input, hence there exist no such
extra information. Nevertheless, some papers have appeared recently (e.g. Ambartsoumian
and Popowich, 2018; Letarte et al., 2018).

3 Proposed approach

In this section, we present our own model, called Transformer-based Sentiment Analy-
sis (TSA), which is depicted in Fig. 2. The model is based on the recently introduced
transformer architecture (Vaswani et al., 2017). Unlike RNN or CNN based models, the
transformer is able to learn dependencies between distant positions. Therefore, in this paper
we show that attention-based models are suitable for other NLP tasks, such as learning dis-
tributed representations and sentiment analysis, and thus are able to improve the overall
accuracy.

The architecture of the TSA model is hierarchical; steps to train it can be summarized as
follows:

– at the very beginning there is a simple text pre-processing method that performs text
clean-up and splits text into tokens;
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Fig. 2 An overview of the TSA model architecture

– we use contextual word representations to represent text as real-valued vectors;
– after embedding the text into real-valued vectors, the transformer network maps the

input sequence into hidden states using self-attention. TSA is composed of two parallel
encoders;

– next, a bi-attention mechanism is utilized to estimate the interdependency between
representations;

– a single layer LSTM together with self-attentive pooling compute the pooled represen-
tations;

– a joint representation for the inputs is later passed to a fully-connected neural network;
– finally, a softmax layer is used to determine sentiment of the text.

In Fig. 3, we present a detailed visualization of the transformer encoder, which is a sole
building block of each encoder in the proposed TSA model.

3.1 Embeddings and positional representations for the transformer encoder

Non-recurrent models, such as deep self-attention NN, do not necessarily process the input
sequence in a sequential manner. Hence, there is no way they can record the position of
each word in a sequence, which is an inherent limitation of every such model. Therefore,
in the case of the transformer, the need has been addressed in the following manner: the
transformer takes into account the order of the words in the input sequence by encoding their
position information in extra vectors dubbed positional encodings (PE). There are many
different approaches to embed position information, such as learned or fixed PEs, or recently
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Fig. 3 The architecture of the transformer encoder

introduced relative position representations (RPR) (Shaw et al., 2018). Whereas (Vaswani
et al., 2017) used sine and cosine functions of different frequencies to obtain embeddings
with time signal, here we explore the effectiveness of applying a modified approach based
on incorporating positional information into the model by using RPR instead of PE.

The input sequence, which is a combination of word embeddings and positional encod-
ings providing time signal, is passed through N identical encoder layers. Each encoder layer
has two sub-layers: multi-head self-attention (see Section 3.2) and a position-wise feed-
forward neural network (FFN). The fully connected FFN consists of two linear layers with
a ReLU (Nair, 2010) activation function between them:

FFN(x) = max (0, xW1 + b1)W2 + b2 (1)

where W1, W2, b1, b2 are learnable weights and biases respectively.
Around each sub-layer a residual connection is used as well as layer normalization is

applied, as shown in Fig. 3.

3.2 Self-attention andmulti-head attention

Multi-head attention allows each position in the encoder to access all positions in the pre-
vious layer of the encoder immediately, and in the first layer all positions in the input
sequence. Multi-head attention employs h parallel self-attention layers (called heads), each
with a triple of different query (Q), key (K) and value (V ) matrices. Hence, three separate
linear layers (as in Fig. 3) use their own weights to produce corresponding parameter matri-
ces that are unique for each layer and attention head. In a nutshell, the attention mechanism
in the transformer architecture relies on a scaled dot-product attention, which is a function
of a query and a set of key-value pairs.
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The computation of self-attention is performed in the following order. First, a multipli-
cation of a query and transposed key is scaled by a factor of 1/

√
dz, as below:

mij = QiK
T
j√

dz

(2)

Next, attention weight coefficient αij is produced using a softmax function over the scaled
inner product:

αij = emij

∑n
k=1 emik

(3)

Finally, the weighted sum of value vectors is calculated as follows:

zi =
n∑

j=1

αijVj (4)

3.3 Bi-attention and pooling

The datasets used for training and evaluation of our models contain sequences of different
length. However, in order to compute the sentiment score, they need to be of fixed size.
Instead of trimming longer sentences or padding those that are shorter than the longest
sentence in the dataset with trailing zeroes, we use masking and self-attentive pooling. Our
approach is inspired by the BCN model proposed by McCann et al. (2017). Thanks to this
mechanism, we are able to fit sequences with irregular sentence lengths into the final fixed-
size vector.

The feature matrices X and Y produced by two parallel encoders, as shown in Fig. 2. X

and Y are fed into the bi-attention module (see Fig. 4). Specifically, an affinity matrix of the
encoder outputs A = XY� is computed, on which we perform column-wise normalization
to extract attention weights:

AX = softmax(A) and AY = softmax
(
A�)

(5)

Next, each representation is conditioned on the other through attention context summaries:

CX = AX�X and CY = AY�Y (6)

Once bi-attention obtains the conditional information, a concatenation of the following is
performed: i) the original encoder outputs, ii) differences between the original represen-
tations and context summaries, iii) the Hadamard products (i.e. products of element-wise
multiplication, denoted by the � operator) of the original representations and context sum-
maries. Next, we integrate this conditional information into text representations using two
bi-LSTMs:

X|Y = bi-LSTM
([

X; X − CY ; X � CY
])

(7)

Y |X = bi-LSTM
([

Y ;Y − CX; Y � CX
])

(8)

Outputs of the bi-LSTMs are concatenated, and pooling is performed by means of max, min,
mean, and self-attention. As proposed by McCann et al. (2017), we use the self-attentive
pooling to compute weights and the weighted sum of each sequence. The concatenated
pooled representations give a final representation, which is then passed through a fully-
connected layer and softmax to provide a classification on output (as depicted at the top of
Fig. 2).
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Fig. 4 Bi-attention and pooling

4 Experiments

4.1 Datasets

We evaluate the performance of our model on four annotated datasets containing informa-
tion from various domains and covering three languages. The selected datasets are originally
divided into training, dev and test sets (used to train, validate and evaluate models, respec-
tively). In Table 1 we provide an overview of the benchmark corpora along with their main
characteristics.

Stanford Sentiment Treebank (SST) This dataset (Socher et al., 2013) is a collection of
movie reviews.1 SST is annotated for two sentiment classifications – the binary one (SST-
2) and fine-grained (SST-5). In SST-2 the reviews are divided into two groups: positive
and negative, while in SST-5 one can distinguish 5 different review types: very positive,

1rottentomatoes.com
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Table 1 An overview of the selected sentiment analysis datasets

Dataset # Classes Train Dev Test Domain Language

SST-2 2 6,920 872 1,821 movies English

SST-5 5 8,544 1,101 2,210 movies English

PolEmo 2.0-IN 3 5,783 723 722 medical, hotels Polish

GermEval 3 19,432 2,369 2,566 travel, transport German

positive, neutral, negative, very negative. The dataset consists of 11,855 single sentences
and is widely used in the NLP community. As shown in Fig. 5, a similar distribution of
reviews with respect to their length is preserved for all three dataset splits, with reviews
between 13 and 26 tokens being the most frequent ones.

PolEmo 2.0 This dataset (Kocoń et al., 2019) comprises around 8,200 online reviews
related to education, products, medicine and hotel domains. The vast majority of PolEmo
2.0 reviews (around 85%) come from the medicine and hotel domains. The authors of the
dataset proposed different variants of the dataset to allow for in-domain and out-of-domain
evaluation. Thus, we followed the approach (and the naming convention) of Rybak et al.
(2020) and evaluated our models on the in-domain dataset (PolEmo 2.0-IN) comprising
medicine-related and hotel reviews. Reviews covered in PolEmo 2.0 contain often more than
one sentence. Human evaluators helped in constructing the PolEmo 2.0 dataset. They were
instructed to choose from the following 6 sentiment labels while annotating the dataset:
strong positive (SP), weak positive (WP), neutral (0), weak negative (WN), strong nega-
tive (SN), and ambiguous (AMB). As discrepancies between annotations existed – most of
the mistakes happened for (WP/WN/AMB) tags, the authors decided to eliminate separate
tags for weakly positive and weakly negative reviews, and merge those tags into one (AMB)
tag. Furthermore, Kocoń et al. (2019) indicated that the majority of the errors were related
to the identification of neutral (0) reviews. Hence, we decided to combine (0) and (AMB)
tags together. As a result, we use three classes in this paper: positive, negative, and neu-
tral/ambiguous. The majority of reviews in the PolEmo 2.0-IN dataset are below 250 tokens
and the distribution for all three data splits is similar, as shown in Fig. 6.

Fig. 5 Distribution of the SST dataset reviews for train/dev/test splits
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Fig. 6 Distribution of the PolEmo 2.0-IN dataset reviews for train/dev/test splits

GermEval This dataset (Wojatzki et al., 2017) contains customer reviews of the railway
operator (Deutsche Bahn), published on social media and various web pages. Customers
expressed their feedback regarding the service of the railway company (e.g. travel experi-
ence, timetables, etc.) by rating it as positive, negative, or neutral.

The GermEval dataset is the largest corpus used in our study with a similar distribution
of reviews with respect to their length for all three data splits (see Fig. 7). Reviews in this
dataset are often provided in the form of short posts published on Twitter (i.e. tweets),
containing hashtags or twitter handles.

4.2 Experimental setup

We performed experiments using two models, namely ELMo+GloVe+BCN and
ELMo+TSA. The first one, introduced by Peters et al. (2018), improved previous state-of-
the-art results obtained by McCann et al. (2017), therefore we chose it to be our baseline.
Thanks to this, we were able to reproduce experiments for SST datasets from Peters et al.
(2018) and compare our model (ELMo+TSA) with other state-of-the-art approaches.

Fig. 7 Distribution of the GermEval dataset reviews for train/dev/test splits
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Pre-processing of input datasets in the case of the baseline and our model is kept to
a minimum, as we perform only tokenization when required. Furthermore, even though
some datasets, such as SST or GermEval, provide additional information (i.e. phrase, word
or aspect-level annotations), for each review we only extract text of the review and its
corresponding rating.

Both models, TSA and the baseline, are implemented in the Python programming
language, using PyTorch2 and AllenNLP3 frameworks. Concretely, the bi-attentive
classification network (BCN), which is part of the TSA and the baseline, was adapted
from McCann et al. (2017) using the AllenNLP library. Moreover, we use pre-trained
word-embeddings, such as ELMo (Peters et al., 2018), GloVe (Pennington et al., 2014).
In particular, we use the following ELMo models: Original,4 Polish (Janz & Miłkowski,
2019) and German (May, 2019). In the ELMO+GloVe+BCN model we use the following
300-dimension GloVe embeddings: English,5 Polish (Dadas, 2019) and German6.

In order to simplify our approach when training the sentiment classifier model, we estab-
lish a very similar setting to the vanilla transformer. We use the same optimizer - Adam
(Kingma & Ba, 2015) with its parameters set as follows: β1 = 0.9, β2 = 0.98, and
ε = 10−9. We incorporate four types of regularization during training: dropout probabil-
ity Pdrop = 0.1, embedding dropout probability Pemb = 0.5, residual dropout probability
Pres = 0.2, and attention dropout probability Pattn = 0.1. We use 2 encoder layers. In addi-
tion, we employ label smoothing of value εls = 0.1. In terms of the RPR parameters, we set
clipping distance to k = 10.

To visualize the TSA’s performance beyond quantitative metrics, we also performed qual-
itative analysis of the outputs. To this end, we employed the LIME algorithm7 from the
ELI5 library.8

5 Results and analysis

In this section, we present quantitative and qualitative analysis of the results. For the former
analysis, we measured the accuracy of our model (ELMo+TSA) and compared it with the
baseline (ELMo+GloVe+BCN) as well as with corresponding models found in the literature.
Moreover, to enrich our quantitative analysis, we provide confusion matrices for respective
datasets as well as visualizations of the distribution of correctly and incorrectly predicted
reviews with respect to their length. In order to analyze our results more holistically, we
complement quantitative analysis with a qualitative evaluation. Specifically, the main goal
behind the conducted qualitative analysis is to show how different models deal with complex
linguistic phenomena such as negation, irony, or oxymorons, among others. We discuss the
quality of predictions using representative review examples.

2https://pytorch.org
3https://allennlp.org
4https://allennlp.org/elmo
5http://nlp.stanford.edu/data/glove.840B.300d.zip
6https://wikipedia2vec.github.io/wikipedia2vec/pretrained
7https://github.com/marcotcr/lime
8https://github.com/eli5-org/eli5
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Table 2 Results of TSA compared to the baseline and state-of-the-art systems evaluated on the English
dataset (SST-2)

Work Model Accuracy [%]

Socher et al. (2013) RNTN 85.4

Kalchbrenner et al. (2014) DCNN 86.8

Kim (2014) CNN 88.1

Tai et al. (2015) Constituency Tree-LSTM 88.0

Kumar et al. (2016) DMN 88.6

McCann et al. (2017) CoVe+BCN 90.3

Ambartsoumian and Popowich (2018) SSAN+RPR 84.2

Our baseline ELMo+GloVe+BCN 91.4

Our model ELMo+TSA 89.3

5.1 SST-2 dataset

In Table 2 we summarize the experimental results achieved for the SST-2 dataset by our
model and other state-of-the-art systems reported in the literature. The best results were
achieved by our baseline and the CoVe+BCN model proposed by McCann et al. (2017).

Similar to TSA, SSAN+RPR (Ambartsoumian & Popowich, 2018) also uses the trans-
former encoder for the classifier. As one can see in Table 2, TSA achieved better results than
SSAN+RPR. One of the reasons why we achieve higher score for the SST-2 dataset might be
that the authors of SSAN+RPR used word2vec embeddings (Mikolov et al., 2013), whereas
we employ ELMo contextual embeddings (Peters et al., 2018). Moreover, in our TSA model,
we use not only self-attention (as in SSAN+RPR) but also a bi-attention mechanism, which
presumably also provides performance gains over the standard architectures.

SST-2 provides roughly the same number of positive and negative reviews. Hence, in
principle, the ability of the model to learn to classify reviews is not hindered by non-equally
represented sentiment classes for reviews. The distribution of reviews for each of two classes
is slightly better balanced and closer to ground truth in the case of baseline predictions.

Fig. 8 Review polarity distribution for SST-2
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Fig. 9 Confusion matrices for SST-2

We can observe (see Fig. 9) that the baseline model captures better true negative values
(90.7%) than TSA (86.8%). Overall, TSA classified more reviews as positive than negative
(as depicted by the comparison with ground truth in Fig. 8). As shown in Fig. 9, the number
of misclassified positive labels is significantly greater for TSA (11.3%) than for the baseline
model (7.8%). The misclassification of negative reviews was quite high for both models,
13.2% for TSA and 9.3% for the baseline, respectively.

In Fig. 10, we present the distribution of correctly and incorrectly predicted labels for the
SST-2 reviews with respect to their length. The green area in the plot represents an overlap
between TSA and the baseline. For instance, short reviews with less than 8 tokens were
classified (and misclassified) exactly with the same accuracy by the two models. For mid-
range reviews in terms of length, the baseline model showed its superiority. It is noteworthy
that reviews having between 13 and 17 tokens occurred most frequently in the dataset,
followed by reviews in the 21-26 token range (see Fig. 5). Our algorithm (TSA) performed
slightly better for the longest reviews in the reviews (i.e. containing more than 40 tokens), as
shown in Fig. 10a. Hence, we conclude, that TSA yielded very similar results or performed

Fig. 10 Distribution of review predictions for SST-2 w.r.t. review length
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Table 3 Example reviews with corresponding sentiment weights for SST-2

better than the baseline for less represented review lengths, i.e. those reviews located at both
ends of the length spectrum.

Table 3 shows the results of the qualitative analysis of the example SST-2 reviews. We
observe that the TSA model performs quite similar to the baseline. The majority of reviews
were assigned the same classification labels. For instance, in the first review, which both
TSA and the baseline classified correctly, the former managed to better capture the senti-
ment polarity of particular words than the latter one. The third review was one of the most
challenging, as it consists of a group of negative words, yet the overall meaning is posi-
tive. Both models misclassified the review, however, TSA correctly identified that the word
“unassuming” carries a slightly positive meaning. Importantly, TSA was also able to prop-
erly classify the sixth review, while the baseline stumbled. This may account to the fact that
TSA better dealt with a determiner before a noun, in this case “more disturbing”, which is
important for sentiment classification as the word “more” acts here as an opinion intensifier.
Overall, the baseline model as well as TSA were quite accurate in determining the polarity
of adjectives. However, they grappled more with nouns and verbs.

5.2 SST-5 dataset

The results for the SST-5 dataset are summarized in Table 4. The best results were achieved
by the model proposed by McCann et al. (2017), which bears close resemblance in terms
of the architecture to our baseline (which is the second best). Again, for the two models
that use self-attention, namely TSA and SSAN+RPR (Ambartsoumian & Popowich, 2018),
TSA achieves better results, similarly as for the SST-2 dataset.

A relatively low number of very negative reviews in the SST-5 dataset (see Fig. 11) can
partially explain why our model was not able to learn to properly classify such reviews,
and classified them as negative reviews instead. In the case of TSA, 73.1% of very nega-
tive reviews were labeled as negative, while just 16.5% of them were classified correctly, as
shown in Fig. 12b. Similarly, but to a lesser degree, positive reviews were over-represented
in TSA in comparison with very positive ones. Again, the ratio of very positive reviews
labeled as positive was greater (47.1%) than a ratio of very positive reviews classified cor-
rectly (44.4%). Interestingly, neutral reviews were more often classified either as negative
(45.5%) or positive (30.1%) than neutral (19.0%). We can observe that our model identified
more accurately negative values (75.5%) than the baseline model (63.0%). In the case of true
positive labels, both the baseline and TSA achieved similar performance, 66.3% and 63.7%
respectively. All in all, the highest accuracy in predicting correct sentiment polarity was
reached for negative (75.5%) followed by positive (63.7%) labels. Importantly, reviews with
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Table 4 Results of TSA compared to the baseline and state-of-the-art systems evaluated on the English
dataset (SST-5)

Work Model Accuracy [%]

Socher et al. (2013) RNTN 45.7

Kalchbrenner et al. (2014) DCNN 48.5

Kim (2014) CNN 48.0

Tai et al. (2015) Constituency Tree-LSTM 51.0

Kumar et al. (2016) DMN 52.1

McCann et al. (2017) CoVe+BCN 53.7

Ambartsoumian and Popowich (2018) SSAN+RPR 48.1

Our baseline ELMo+GloVe+BCN 53.5

Our model ELMo+TSA 50.6

these two labels appear most frequently in the dataset. Hence, we may conclude, that the
TSA model dealt better with less extreme reviews in terms of sentiment polarity. Whereas,
the baseline model yielded more balanced results, in particular it classified very negative
reviews more accurately (40.5%) than TSA.

Figure 13 demonstrates more accurate predictions obtained by the baseline than TSA
when classifying reviews of various length. Frequent misses, especially in the case of TSA
(as depicted in Fig. 13b), can be explained by a considerable difficulty in precise label
prediction for a 5-class sentiment classification task.

However, such quantitative analysis presents the results of the models only from one
angle. Table 5 contains a sample of five exemplary reviews selected for qualitative analysis.
As such, it does not represent only the ratio of correctly and incorrectly classified reviews
from the SST 5 dataset by each model, but provides a more holistic view on the perfor-
mance of the models. Although qualitative analysis of sample reviews further confirms that
TSA was slightly more prone to misclassify reviews contained in the SST-5 dataset, we con-
clude that the fine-grained scenario proves to be challenging for all models (see Table 4).

Fig. 11 Review polarity distribution for SST-5
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Fig. 12 Confusion matrices for SST-5

One can observe here that TSA turned out to be more accurate when the degree of posi-
tivity or negativity varied due to complex linguistic phenomena, such as negation, irony, or
oxymorons.

For instance, in one of the selected reviews, TSA was able to detect sarcasm (review 2),
which remained undetectable for the baseline model. In a similar vein, baseline’s wrong
classification of a very positive review as a very negative one is another example of its
difficulty in distinguishing literal from figurative meaning. In the first review, while TSA
correctly detected positive sentiment in almost all words, it assigned a negative meaning
to the quantitative pronoun “one” and this resulted in the misclassification of the entire
review. In the same vein, the quantitative pronoun “some” in the second review was also
considered by TSA a negative word. In reality, both these pronouns should be considered
neutral. While the baseline model wrongly classified “one” as a positive word, it managed
to treat the pronoun “some” as neutral. We hypothesize that such errors may be specific
to the dataset and not necessarily represent systematic biases in the models. The second
review is an interesting case, because the phrase “to listen to them reading the phone book”

Fig. 13 Distribution of review predictions for SST-5 w.r.t. review length
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Table 5 Example reviews with corresponding sentiment weights for SST-5

is a sarcastic expression with a negative meaning, although it contains only neutral words.
The TSA model was able to detect mildly negative undertones, while the baseline model
claimed it is a positive phrase. In fact, even though this review was assigned a positive
ground truth label, it may be disputable if it is not a neutral or even a negative one in some
contexts. The fourth review was misclassified by the baseline model, while TSA evaluated
the review correctly. Noteworthy, the baseline considered (incorrectly) the linking word
“but” to be very negative, increasing negative activation in the sentiment and reversing the
positive polarity of the first clause and the whole review in result. While for TSA, the
contrasting clause starting with “but” had a more nuanced polarity. Indeed, the baseline in
general leaned towards classifying reviews with extreme labels (i.e. very negative or very
positive).

5.3 PolEmo 2.0-IN dataset

In Table 6, we report experimental results for the PolEmo 2.0-IN dataset. Apart from TSA,
another model that uses some variant of the transformer architecture is HerBERT (Rybak
et al., 2020), based on BERT (introduced in Devlin et al., 2019), and optimized specifically
for Polish. As one can see, the TSA model outperforms both, the baseline and the HerBERT
model.

The PolEmo 2.0-IN dataset contains many more negative reviews than positive ones,
as shown in Fig. 14. TSA achieved the best results in classifying positive reviews, correct
labels were assigned with 91.9% accuracy (see Fig. 15). For negative reviews, correct label
assignment was achieved in 89.3% cases. Neutral/ambiguous labels were more often mis-
classified, their sentiment polarity was more often confused with negative sentiment (9.8%)
than the positive one (6.7%). However, due to the merge of (AMB/WN/WP/0) labels into the
neutral/ambiguous group, the number of reviews with such a sentiment polarity is slightly

Table 6 Results of TSA compared to the baseline and state-of-the-art systems evaluated on the Polish dataset
(PolEmo 2.0-IN)

Work Model Accuracy [%]

Rybak et al. (2020) HerBERT 89.2

Our baseline ELMo+GloVe+BCN 88.9

Our model ELMo+TSA 89.8
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Fig. 14 Review polarity distribution for PolEmo 2.0-IN

higher than the number of positive reviews, and smaller than negative reviews, so we assume
that the training dataset was well-balanced.

In terms of the correctness of predictions with respect to the review length (see Fig. 16),
TSA again showed its slight superiority in classifying the long-tail reviews. In particu-
lar, for reviews over 240 tokens, the baseline performed at the similar level or worse than
TSA. Also for mid-range review lengths, the baseline misclassified considerable number
of reviews, while TSA yielded better results for reviews having 70 to 140 tokens. This is
perhaps attributed to the fact that TSA is based on the transformer architecture, which is
capable of learning dependencies between distant positions.

Our findings from the previous sections are also confirmed in the qualitative analysis of
TSA’s performance on the PolEmo 2.0-IN dataset. As one can see in Table 7, the baseline

Fig. 15 Confusion matrices for PolEmo 2.0-IN
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Fig. 16 Distribution of review predictions for PolEmo 2.0-IN w.r.t. review length

and TSA models produce similar results. The first review was not classified correctly by
both models; however, it is not that surprising given that the third sentence has a positive
meaning and constitutes a substantial portion of the whole review. TSA was more suc-
cessful at detecting negative phrases (e.g. “pomimo umówionych”, “wciskając”, “niezbyt
miła”, “próbuje na siłę”) as well as positive ones (e.g. “przeprowadziła wszystkie badania”,
“dużym plusem”). This is in accord with the fact that TSA is better at capturing long-range
dependencies. Both models correctly classified the second review. While the phrase “fan-
tastyczny terapeuta” is positive, in this context it is used in a sarcastic way. The baseline
and TSA didn’t manage to capture that. However, we noticed that TSA was much more suc-
cessful in detecting negative sentiment in the phrase “najgorzej wydane pieniądze”. While
the last review is classified as neutral/ambigous both models considered it negative. This
review conveys hardly any positive sentiment, thus not surprisingly the baseline as well as
TSA misclassified it. Both models correctly identified the word “niestety” to be negative. In

Table 7 Example reviews with corresponding sentiment weights for PolEmo 2.0-IN
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Table 8 Results of TSA compared to the baseline and state-of-the-art systems evaluated on the German
dataset (GermEval)

Work Model Accuracy [%]

Wojatzki et al. (2017) SWN2-RNN 74.9

Our baseline ELMo+GloVe+BCN 78.2

Our model ELMo+TSA 78.9

the case of “neutralny” only TSA was correct to classify this as a non-negative word, how-
ever assigning a positive label was not correct either. Overall, both models performed in a
similar manner, but importantly TSA managed to detect a positive sentiment in the phrase
“dobre wrażenie”.

5.4 GermEval dataset

The experimental results obtained for the GermEval dataset are summarized in Table 8. TSA
achieved the best result, followed by the baseline, while the SWN2-RNN model, based on
a traditional RNN architecture, demonstrated weaker results than the two.

The largest group in the GermEval dataset comprises neutral reviews, followed by neg-
ative ones (Fig. 17). Not surprisingly, TSA and the baseline achieved the best results in
classifying neutral reviews, correct labels were assigned with 88.3% and 94.8% accuracy,
respectively (see Fig. 18). Importantly, the number of reviews identified as neutral by the
baseline, exceeded significantly the actual number of neutral reviews in the dataset (see
Fig. 17). Hence, the ratio of misclassfied neutral reviews is also high for the baseline model:
neutral labels were assigned in 77.1% of cases for positive reviews, and 55.1% for negative
ones. The TSA model dealt better with negative reviews than the baseline, as it managed to
classify them with 64.5% accuracy, as opposed to 42.4%. Furthermore, both models strug-
gled with positive reviews, however, it is understandable as the number of positive reviews
in the dataset was very small (only 105 reviews).

Fig. 17 Review polarity distribution for GermEval
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Fig. 18 Confusion matrices for GermEval

As shown in Fig. 19, TSA was considerably better than the baseline at predicting reviews
with less than 150 tokens. Importantly, reviews in this range constituted the majority of
the GermEval dataset. For reviews between 200 and 500 tokens we observe slightly more
incorrect predictions for TSA than the baseline model, however, due to a limited number of
such reviews this interpretation may not be conclusive.

Table 9 presents a qualitative analysis performed on a sample of the GermEval reviews.
Both models incorrectly predicted sentiment polarity of the first review. However, TSA
seems to be slightly better at capturing actual positive words: “pünktlich” and “gute”. The
baseline model on the other hand showed great variety in identifying positive words, being
clearly not correct. For instance, it assigned almost equal weights to words “Nachtbusse”
and “gute”. In the second review, in fact the only review from the selected ones where
TSA predicted different label from the baseline, we can observe a similar pattern. The third
review, although positive, contains only one adjective that clearly contributes to the senti-
ment of the sentence - the word “pünktlich”, whose polarity and weight were again better

Fig. 19 Distribution of review predictions for GermEval w.r.t. review length
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Table 9 Example reviews with corresponding sentiment weights for GermEval

identified by TSA. Furthermore, none of the two models interpreted non-alphanumeric char-
acters at the end of the review as an emoticon carrying sentiment. The fourth review is a
bit ironic, but both models managed to correctly predict its sentiment. Yet, it is difficult to
explain why the baseline model interpreted “der Hengst” as strongly positive. Finally, the
last review does not reveal much about its sentiment polarity, except the hashtags that pre-
cede the main sentence. Hashtags, popular in social media, were treated here as if they were
normal sentiment-carrying words. Hence, the word indicating a bomb threat was assigned a
very negative sentiment label. Interestingly, in both cases the word “normal” was classified
as negative, even though its meaning is rather reassuring.

6 Conclusion

In this work, we presented TSA - a hierarchical, multi-layer sentiment classification model
based on an architecture of the transformer encoder and a bi-attention mechanism. Hence,
unlike many existing models, this work introduces an approach relying primarily on a self-
attention mechanism and bi-attention. Our analysis shows that models leveraging contextual
embeddings (i.e. TSA, the baseline, SSAN-RPR, CoVe+BCN) demonstrate remarkably bet-
ter results than the rest of the reported models, which use traditional distributional word
vectors (e.g. RNTN, CNN, SWN2-RNN). Moreover, the TSA model proved to be better
at predicting sentiment labels for longer reviews than our baseline, which does not lever-
age self-attention. The ability to handle long-range dependencies by transformer is one of
the key advantages of this architecture. We performed experiments for three languages and
various domains using four benchmark datasets. Our method ELMo+TSA outperformed
state-of-the-art for two languages (Polish and German). We show that our sentiment clas-
sifier achieves very good results, comparable to the state of the art, even though it is
language-agnostic. Hence, this work is a step towards building a universal, multi-lingual
model for sentiment classification. Furthermore, our method addressed the problem of
context-dependent sentiment analysis. So far our model has been tested for three languages,
each from different language family, including morphologically rich Polish and German.
Yet, it is evident that evaluation of TSA using benchmarks also for other languages would
be beneficial. It would be particularly interesting to analyze the behavior of our model
with respect to low-resource languages, similarly to how we evaluated our approach for the
Polish language. Finally, other promising research avenues worth exploring are related to
unsupervised cross-lingual sentiment analysis.
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