8 research outputs found

    Moving particle simulation with solid-solid contact

    Get PDF
    Problems of fluid-structure interaction with free surface flow and multi-body interactions are highly nonlinear and complex phenomena, which is challenging for computational modeling and simulation. In the presence of contact or collision between solids, numerical modeling to detect collision and prevent penetration between bodies is required. The objective of this work is to study a numerical model for solid-solid contact and/or collision, based on contact mechanics theories, to reproduce the macroscopic properties of the multi-body interactions in Moving Particle Simulation (MPS) method. MPS is a fully Lagrangian meshfree particle-based approach that is suitable for the modeling complex geometries with large displacements and deformation, including free surface flow with fragmentation and merging and interaction of fluid with multi-bodies. Analytical results are used to perform the calibration of the numerical friction coefficient. The model is applied to a case of free solid transport in free surface flow, modeled as a 3D experimental dam breaking event, in which free solids interact each other and fixed walls. The numerical results from MPS are compared with numerical and experimental results

    Rigid Body Sampling and Individual Time Stepping for Rigid-Fluid Coupling of Fluid Simulation

    Get PDF

    An ODE control system of a rigid body on an ocean wave for a surfer simulation in the SPH method

    Get PDF
    In this work we use a smoothed particle hydrodynamics (SPH) method coupledwith a rigid body simulation to simulate a surfing board on top of an ocean wave. Externalforces are applied to the board to represent a surfer trying to control a surfing board. Anordinary differential equation (ODE) control is used to manipulate the external forces basedon a position, velocity, and an inclination angle of the surfing board. The control systemsuccessfully helps the surfing board to move to and maintain its desired position

    Development of GPU-based SPH Framework for Hydrodynamic Interactions With Non-spherical Solid Debris

    Get PDF
    ์ผ๋ณธ์˜ ํ›„์ฟ ์‹œ๋งˆ ์‚ฌ๊ณ  ์ดํ›„ ์›์ž๋กœ ์ค‘๋Œ€ ์‚ฌ๊ณ ์— ๋Œ€ํ•œ ์—ฐ๊ตฌ์˜ ํ•„์š”์„ฑ๊ณผ ๋Œ€์ฒ˜ ๋Šฅ๋ ฅ ํ™•๋ณด์— ๋Œ€ํ•œ ์ค‘์š”์„ฑ์ด ์ ์  ์ฆ๊ฐ€ํ•˜๊ณ  ์žˆ๋‹ค. ์‚ฌ๊ณ  ์‹œ ๋ฐœ์ƒํ•  ์ˆ˜ ์žˆ๋Š” ๋…ธ์‹ฌ ์šฉ์œต๋ฌผ ๊ฑฐ๋™์— ๋Œ€ํ•œ ํ‰๊ฐ€๋Š” ์šฉ์œต๋ฌผ-์ฝ˜ํฌ๋ฆฌํŠธ ์ƒํ˜ธ์ž‘์šฉ(MCCI, Molten Core Concrete Interaction)๊ณผ ์ฆ๊ธฐ ํญ๋ฐœ๋กœ๋ถ€ํ„ฐ์˜ ์›์ž๋กœ ๋…ธ์‹ฌ ๋ƒ‰๊ฐ์„ฑ ๋ฐ ๊ฑด์ „์„ฑ์— ๋”ฐ๋ฅธ ์žฌ์ž„๊ณ„ ์ธก๋ฉด์—์„œ ๋งค์šฐ ์ค‘์š”ํ•˜๋‹ค. ํŠนํžˆ OPR 1000์˜ ๊ฒฝ์šฐ, ์‚ฌ์ „ ์ถฉ์ˆ˜ ์กฐ๊ฑด(Wet cavity condition)์„ ๊ธฐ๋ณธ์ ์ธ ์›์ž๋กœ ์™ธ๋ฒฝ ๋ƒ‰๊ฐ ๋Œ€์‘ ์ „๋žต์œผ๋กœ ์ฑ„ํƒํ•จ์œผ๋กœ์จ ํ•ต์—ฐ๋ฃŒ-๋ƒ‰๊ฐ์žฌ ์ƒํ˜ธ์ž‘์šฉ(FCI, Fuel Coolant Interaction) ๋ฐ˜์‘์ด ํ•„์—ฐ์ ์œผ๋กœ ๋ฐœ์ƒํ•˜๋Š” ๊ฒƒ์œผ๋กœ ์•Œ๋ ค์ ธ ์žˆ๋‹ค. [Jin, 2014] FCI ํ˜„์ƒ์€ ์ž„์˜ ํ˜•ํƒœ์˜ ํ•ต์—ฐ๋ฃŒ ๊ณ ์ฒด ํŒŒํŽธ๋ฌผ๊ณผ ๋ƒ‰๊ฐ์žฌ์˜ ์ƒํ˜ธ์ž‘์šฉ๋ฟ๋งŒ ์•„๋‹ˆ๋ผ, ๋ƒ‰๊ฐ์žฌ ๋น„๋“ฑ ํ˜„์ƒ ๋“ฑ๋„ ํฌํ•จํ•˜๋Š” ๋‹ค์œ ์ฒด, ๋‹ค์ƒ ํ˜„์ƒ์œผ๋กœ ๊ทธ ํ˜„์ƒ์ด ๋งค์šฐ ๋ณต์žกํ•˜๋‹ค. ์ด ๊ณผ์ •์—์„œ ์›์ž๋กœ ๊ฑด๋ฌผ ํ•˜๋ถ€์— ๊ณ ์ฒด ํŒŒํŽธ๋ฌผ์ด ํ‡ด์ ๋˜์–ด ์ž”ํ•ด ์ธต์ด ํ˜•์„ฑ๋˜๊ณ , ๊ทธ ๋ƒ‰๊ฐ์„ฑ์— ๋”ฐ๋ผ ์‚ฌ๊ณ ์˜ ๋‹ค์Œ ์ง„ํ–‰ ์ƒํ™ฉ์— ์˜ํ–ฅ์„ ์ค„ ์ˆ˜ ์žˆ๋‹ค. ์ด๋Ÿฌํ•œ ๋น„๊ตฌํ˜• ๊ณ ์ฒด ํŒŒํŽธ๋ฌผ ๊ฑฐ๋™์— ๋Œ€ํ•œ ์ดํ•ด๋ฅผ ์œ„ํ•ด ๊ฐ•์ฒด ๊ฐœ๋…์„ ์ ์šฉํ•œ ๊ณ ์ฒด ํ•ด์„ ์ฒด๊ณ„๋Š” ์ข‹์€ ์ ‘๊ทผ๋ฒ•์ด ๋  ์ˆ˜ ์žˆ๋‹ค. ๋”ฐ๋ผ์„œ ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” ์œ ์ฒด์™€ ๊ณ ์ฒด ๊ฐ„ ์ˆ˜๋ ฅํ•™์  ์ƒํ˜ธ์ž‘์šฉ ํ•ด์„์„ ์œ„ํ•ด ์ž…์ž์œ ์ฒด๋™์—ญํ•™(SPH, Smoothed Particle Hydrodynamics) ๊ธฐ๋ฒ•๊ณผ ๊ฐ•์ฒด์—ญํ•™(RBD, Rigid Body Dynamics) ๊ธฐ๋ฒ•์„ ์—ฐ๊ณ„ํ•˜์—ฌ ๋ผ๊ทธ๋ž‘์ง€์•ˆ ํ•ด์„ ์ฒด๊ณ„๋ฅผ ๊ตฌ์ถ•ํ•˜์˜€๋‹ค. ์™„ํ™”์ž…์ž์œ ์ฒด๋™์—ญํ•™ ๊ธฐ๋ฒ•์€ ํ•ด์„ ์œ ์ฒด๋ฅผ ์œ ํ•œ๊ฐœ์˜ ์ž…์ž๋กœ ํ‘œํ˜„ํ•จ์œผ๋กœ์จ ์œ ๋™์„ ํ•ด์„ํ•˜๋Š” ๋ผ๊ทธ๋ž‘์ง€์•ˆ ํ•ด์„ ๊ธฐ๋ฒ• ์ค‘ ํ•˜๋‚˜์ด๋‹ค. ๊ฐœ๋ณ„ ์ž…์ž๋“ค์˜ ์›€์ง์ž„์œผ๋กœ ์œ ๋™์„ ํ•ด์„ํ•˜๋ฏ€๋กœ ๋น„์„ ํ˜•์˜ ๋Œ€๋ฅ˜ํ•ญ์— ๋Œ€ํ•œ ๊ณ„์‚ฐ์ด ํ•„์š” ์—†์œผ๋ฉฐ, ์ž…์ž๊ฐ€ ์ถ”๊ฐ€๋˜๊ฑฐ๋‚˜ ์‚ฌ๋ผ์ง€์ง€ ์•Š๋Š” ํ•œ ํ•ด์„ ๊ณ„์˜ ์ „์ฒด ์งˆ๋Ÿ‰์€ ์ž๋™์œผ๋กœ ๋ณด์กด๋œ๋‹ค. ์ด๋Ÿฌํ•œ ๋ผ๊ทธ๋ž‘์ง€์•ˆ ๊ธฐ๋ฒ•์˜ ํŠน์„ฑ์œผ๋กœ SPH ๋ฐฉ๋ฒ•์€ ์ž์œ  ํ‘œ๋ฉด ์œ ๋™, ๋‹ค์œ ์ฒด ์œ ๋™, ๋‹ค์ƒ ์œ ๋™, ํ˜•ํƒœ ๋ณ€ํ™”๊ฐ€ ํฐ ์œ ๋™ ๋“ฑ์— ๋Œ€ํ•ด ํ•ด์„ ์žฅ์ ์„ ๊ฐ–๋Š”๋‹ค. ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” SPH ๊ธฐ๋ฒ•์„ ์ ์šฉํ•œ in-house SOPHIA ์ฝ”๋“œ๋ฅผ ์‚ฌ์šฉํ•˜์—ฌ ๋น„์••์ถ• ๋‹ค์ƒ ์œ ๋™ ํ•ด์„์„ ์ˆ˜ํ–‰ํ•˜์˜€์œผ๋ฉฐ, ๋ฒค์น˜๋งˆํฌ ๋ฐ์ดํ„ฐ์™€์˜ ๋น„๊ต์—์„œ ์ข‹์€ ๊ฒ€์ฆ ํ•ด์„ ๊ฒฐ๊ณผ๋ฅผ ๋ณด์˜€๋‹ค. ๊ฐ•์ฒด์—ญํ•™์€ ์™ธ๋ ฅ์— ์˜ํ•ด ํ˜•ํƒœ๊ฐ€ ๋ณ€ํ•˜์ง€ ์•Š๋Š” ๊ฐ•์ฒด์˜ ๊ฐœ๋…์„ ์ด์šฉํ•˜์—ฌ ๊ณ ์ฒด์˜ ๋ณ‘์ง„ ์šด๋™๊ณผ ํšŒ์ „ ์šด๋™์„ ํ•ด์„ํ•˜๋Š” ์—ฐ๊ตฌ ๋ถ„์•ผ์ด๋‹ค. ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” ์ด์‚ฐ์š”์†Œ๋ฒ•(DEM, Discrete Element Method) ๋ถ„์•ผ์—์„œ ์˜ค๋žœ ์‹œ๊ฐ„ ๋™์•ˆ ๋„๋ฆฌ ์‚ฌ์šฉ๋˜๊ณ  ๊ฒ€์ฆ๋˜์—ˆ๋˜ Hertz-Mindlin ์ถฉ๋Œ ๋ชจ๋ธ์„ ์ ์šฉํ•˜์—ฌ ๊ฐ•์ฒด ๊ฐ„ ์ถฉ๋Œ ํ•ด์„์„ ๊ตฌํ˜„ํ•˜์˜€๋‹ค. ๊ฐ•์ฒด๋Š” ์œ ํ•œ๊ฐœ์˜ ์ž…์ž๋“ค๋กœ ํ‘œํ˜„ํ•  ์ˆ˜ ์žˆ์œผ๋ฉฐ, ๊ฐ•์ฒด ๊ฐ„ ์ถฉ๋Œ์€ ๊ฐ ๊ฐ•์ฒด๋ฅผ ๊ตฌ์„ฑํ•˜๊ณ  ์žˆ๋Š” ์ž…์ž์Œ์˜ ์ž‘์€ ์ค‘์ฒฉ์„ ๊ธฐ๋ฐ˜์œผ๋กœ ๊ณ„์‚ฐ๋œ๋‹ค. ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” ์ž…์ž๊ธฐ๋ฐ˜์˜ ๊ฐ•์ฒด์—ญํ•™ ํ•ด์„ ์ฝ”๋“œ๋ฅผ ์ด์šฉํ•˜์—ฌ ๋‹จ์ผ ๊ฐ•์ฒด ๋ฐ ๋‹ค์ค‘ ๊ฐ•์ฒด ์ถฉ๋Œ์— ๋Œ€ํ•ด ๊ฒ€์ฆ ํ•ด์„์„ ์ˆ˜ํ–‰ํ•˜์˜€์œผ๋ฉฐ, ํ•ด์„ํ•ด ๋ฐ ๋ฒค์น˜๋งˆํฌ ๋ฐ์ดํ„ฐ ๊ฒฐ๊ณผ์™€ ์ž˜ ์ผ์น˜ํ•จ์„ ํ™•์ธํ•˜์˜€๋‹ค. ์›์ž๋ ฅ ๋ถ„์•ผ์—์„œ ๋ฐœ์ƒํ•  ์ˆ˜ ์žˆ๋Š” ๋น„๊ตฌํ˜• ๊ณ ์ฒด์™€ ์œ ์ฒด๊ฐ„ ์ƒํ˜ธ์ž‘์šฉ ํ•ด์„์„ ์œ„ํ•ด ์•ž์„œ ์„ค๋ช…ํ•œ SPH ๊ธฐ๋ฒ•๊ณผ ๊ฐ•์ฒด์—ญํ•™ ์—ฐ๊ณ„ ํ•ด์„ ์ฝ”๋“œ๋ฅผ ๊ฐœ๋ฐœํ•˜์˜€๋‹ค. ๋ณธ ์—ฐ๊ตฌ์—์„œ ์ ์šฉํ•œ ์™„์ „ ํ•ด์ƒ ๋ฐฉ์‹(Fully resolved approach)์€ ์œ ์ฒด-๊ณ ์ฒด์˜ ์ƒ์ด ๋ถ„๋ฆฌ๋˜์–ด ์žˆ๊ณ , ์ œ 1 ์›๋ฆฌ๋ฅผ ๋งŒ์กฑํ•˜๋ฏ€๋กœ ๊ณ ์ฒด์˜ ํ˜•์ƒ์— ๋”ฐ๋ฅธ ์ƒ๊ด€์‹๊ณผ ํ‘œ๋ฉด ์ ๋ถ„์ด ํ•„์š”ํ•˜์ง€ ์•Š๋‹ค๋Š” ์žฅ์ ์ด ์žˆ๋‹ค. ๋˜ํ•œ ๊ณ ์ฒด ๊ฒฝ๊ณ„๋ฉด์—์„œ์˜ ์ •ํ™•ํ•œ ์••๋ ฅ ๊ณ„์‚ฐ์„ ์œ„ํ•ด ์œ ์ฒด ์ž…์ž ์ •๋ณด๋ฅผ ๊ธฐ๋ฐ˜์œผ๋กœ ๋…ธ์ด๋งŒ ์••๋ ฅ ๊ฒฝ๊ณ„ ์กฐ๊ฑด์„ ์ ์šฉํ•˜์˜€๋‹ค. ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” ์ด๋Ÿฌํ•œ ํ•ด์ƒ ๋ฐฉ์‹์˜ ์œ ์ฒด-๊ฐ•์ฒด ์—ฐ๊ณ„ ํ•ด์„ ์ฝ”๋“œ๋ฅผ ์ด์šฉํ•˜์—ฌ ๋น„๊ตฌํ˜• ๊ณ ์ฒด์™€ ์œ ์ฒด์˜ ์ˆ˜๋ ฅํ•™์  ์ƒํ˜ธ์ž‘์šฉ์— ๋Œ€ํ•œ ๊ฒ€์ฆ ํ•ด์„์„ ์ˆ˜ํ–‰ํ•˜์˜€์œผ๋ฉฐ, ์„ ํ–‰๋œ ์‹คํ—˜๊ณผ์˜ ๋น„๊ต์—์„œ ์ข‹์€ ๊ฒฐ๊ณผ๋ฅผ ๋ณด์˜€๋‹ค. ์œ ๋™ ํ•ด์„์„ ์œ„ํ•ด ๋ณธ ์—ฐ๊ตฌ์— ์ ์šฉํ•œ SPH ๋ฐฉ๋ฒ•์—์„œ๋Š” ์ˆ˜์‹๋“ค์ด ๋งค์šฐ ์„ ํ˜•์ ์ด๊ณ  ์™ธ์—ฐ์ (Explicit)์œผ๋กœ ๊ณ„์‚ฐ์„ ์ˆ˜ํ–‰ํ•˜๊ธฐ ๋•Œ๋ฌธ์— ๊ฐ ์ž…์ž์— ๋Œ€ํ•œ ๊ณ„์‚ฐ์ด ๋…๋ฆฝ์ ์œผ๋กœ ์ˆ˜ํ–‰๋˜์–ด๋„ ๋ฌธ์ œ๊ฐ€ ์—†๋‹ค. ๋”ฐ๋ผ์„œ SPH ๋ฐฉ๋ฒ•์€ ๊ณ„์‚ฐ ๋ณ‘๋ ฌํ™”์— ์ตœ์ ํ™”๋œ ๋ฐฉ๋ฒ•์œผ๋กœ ์ž˜ ์•Œ๋ ค์ ธ ์žˆ์œผ๋ฉฐ, ๋Œ€๊ทœ๋ชจ ๊ณ ํ•ด์ƒ๋„ ํ•ด์„์„ ์œ„ํ•ด ์ด๋Š” ํ•„์ˆ˜์ ์ด๋‹ค. ๋˜ํ•œ ์ž…์ž ๊ธฐ๋ฐ˜์˜ ๊ฐ•์ฒด ๊ณ„์‚ฐ์„ ์œ„ํ•ด์„œ๋Š” ํšจ์œจ์ ์ธ ๊ณ„์‚ฐ ์•Œ๊ณ ๋ฆฌ์ฆ˜์ด ํ•„์š”ํ•˜๋‹ค. ๋”ฐ๋ผ์„œ ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” ๋Œ€๊ทœ๋ชจ ๊ณ„์‚ฐ๊ณผ ๋†’์€ ์—ฐ์‚ฐ ํšจ์œจ์„ฑ์„ ์œ„ํ•ด ๊ทธ๋ž˜ํ”ฝ์ฒ˜๋ฆฌ์žฅ์น˜(GPU, Graphic Processing Unit)๋ฅผ ์ด์šฉํ•˜์—ฌ ๊ณ„์‚ฐ ๋ณ‘๋ ฌํ™”๋ฅผ ์ˆ˜ํ–‰ํ•˜์˜€์œผ๋ฉฐ, ์ด๋ฅผ ์ด์šฉํ•œ ๋‹ค์ค‘ ๊ณ ์ฒด์™€ ์œ ์ฒด์˜ ์ƒํ˜ธ์ž‘์šฉ ํ•ด์„์—์„œ ์ข‹์€ ๊ณ„์‚ฐ ์„ฑ๋Šฅ์„ ํ™•์ธํ•˜์˜€๋‹ค. ๋ณธ ์—ฐ๊ตฌ์—์„œ ์ˆ˜ํ–‰ํ•œ ๋น„๊ตฌํ˜• ๊ณ ์ฒด์™€ ์œ ์ฒด์˜ ์ˆ˜๋ ฅํ•™์  ์ƒํ˜ธ์ž‘์šฉ์„ ์œ„ํ•œ GPU ๊ธฐ๋ฐ˜์˜ SPH ํ•ด์„ ์ฝ”๋“œ ๊ฐœ๋ฐœ ์—ฐ๊ตฌ๋ฅผ ํ†ตํ•ด ์›์ž๋กœ ์ค‘๋Œ€์‚ฌ๊ณ  ์‹œ ๋ฐœ์ƒํ•  ์ˆ˜ ์žˆ๋Š” ๋ƒ‰๊ฐ์žฌ์™€ ํ•ต์—ฐ๋ฃŒ ๊ณ ์ฒด ํŒŒํŽธ๋ฌผ์˜ ์ˆ˜๋ ฅํ•™์  ์ƒํ˜ธ์ž‘์šฉ ๋ฟ๋งŒ ์•„๋‹ˆ๋ผ, ๊ณ ์ฒด ํŒŒํŽธ๋ฌผ ๊ฐ„ ์—ญํ•™์  ์ƒํ˜ธ์ž‘์šฉ์— ๋Œ€ํ•ด ํšจ์œจ์ ์ธ ํ•ด์„ ์ฒด๊ณ„๋ฅผ ๊ฐœ๋ฐœํ•˜์˜€๋‹ค. ์ด๋ฅผ ํ†ตํ•ด ์Šต์‹ ๊ณต๋™(wet cavity)์—์„œ ๋ฐœ์ƒํ•˜๋Š” ํ•ต์—ฐ๋ฃŒ ๊ณ ์ฒด ํŒŒํŽธ๋ฌผ์˜ ํ‡ด์  ์ž‘์šฉ, ์“ฐ๋‚˜๋ฏธ ์‚ฌ๊ณ ๋กœ ์ธํ•œ ํ•ด์•ˆ ๊ตฌ์กฐ๋ฌผ์˜ ์ˆ˜๋ ฅํ•™์  ์ƒํ˜ธ์ž‘์šฉ, ๊ทธ๋ฆฌ๊ณ  ์นจ์ˆ˜ ์‚ฌ๊ณ  ์‹œ ์›์ž๋กœ ๊ฑด๋ฌผ ๋‚ด ๋ถ€์œ ๋ฌผ์˜ ๊ฑฐ๋™ ๋“ฑ ์›์ž๋ ฅ ๋ถ„์•ผ์—์„œ ๋ฐœ์ƒํ•  ์ˆ˜ ์žˆ๋Š” ๋‹ค์–‘ํ•œ ๊ณ ์ฒด-์œ ์ฒด์˜ ์ˆ˜๋ ฅํ•™์  ์ƒํ˜ธ์ž‘์šฉ์— ๋Œ€ํ•œ ํ•ด์„์  ์—ฐ๊ตฌ์— ์ ์šฉํ•˜๊ณ  ๊ธฐ์—ฌํ•  ์ˆ˜ ์žˆ์„ ๊ฒƒ์œผ๋กœ ๊ธฐ๋Œ€ํ•œ๋‹ค.Since the Fukushima accident, the necessity for researches on severe accidents and the importance of securing the ability to cope with the accidents have been increasing. The evaluation of the molten core behavior that may occur during the accident is very important in terms of re-criticality according to the coolability and integrity of the reactor core from the MCCI (Molten Core Concrete Interaction) and steam explosion. In the case of OPR 1000, especially, FCI (Fuel Coolant Interaction) is known to occur unconditionally because the wet cavity condition has been adopted as a basic strategy for ex-vessel cooling. [Jin, 2014] FCI is a highly complicated phenomenon, which includes multi-fluid, multi-phase interaction between the arbitrary shape of solid debris and coolant as well as coolant boiling. In this process, the debris bed is formed at the bottom of the containment, and its coolability influences the next phase of the accident. For the understanding on the solid debris behavior, a solid system with a rigid body can be a good approach for the non-spherical solid debris analysis. Therefore, in this study, Smoothed Particle Hydrodynamics (SPH) method and Rigid Body Dynamics (RBD) are coupled in a fully Lagrangian manner for the hydrodynamic interactions between fluid and solid. Smoothed Particle Hydrodynamics (SPH) is one of the Lagrangian-based analysis methods which represents the fluid flow as a finite number of particles. Since the flow is analyzed by the motion of individual particles, there is no need to calculate the nonlinear convective term, and the total mass of the system is automatically conserved as long as particles are not added or removed. Through these Lagrangian nature, it is well known that the SPH method is effective for the free surface flow, multi-fluid and multi-phase flow, and highly deformable flow. In this study, the incompressible multi-phase flow analysis has been performed using the in-house SPH code, SOPHIA code, and V&V simulation results showed good agreement with the benchmark data. Rigid Body Dynamics (RBD) is a research field that analyses the translation and rotation of a solid body by using the concept that a rigid body doesnโ€™t change its shape by external forces. In this study, the collision calculation between rigid bodies is implemented by applying the Hertz-Mindlin contact force model commonly used and verified for a long time in the Discrete Element Method (DEM) field. A rigid body can be expressed as a group of finite particles, and the contact forces between solid bodies are calculated based on the small overlap of the particle pairs. Using the particle-based RBD analysis code implemented in this study, V&V simulations on single- and multi- rigid body collisions have been performed and showed good agreement with the analytical solution and the benchmark data. To analyze the hydrodynamic interactions between non-spherical solids and fluids that can occur in the nuclear field, the integrated code has been developed by coupling RBD with SPH code. Since a fully resolved approach adopted in this study as a phase coupling method satisfies the 1st principle and the fluid-solid phase is entirely separated from each other, there is no need for the surface integral and empirical correlations depending on the solid geometry. In addition, the Neumann pressure boundary condition is implemented for accurate pressure estimation at the solid interface using the fluid particle properties. By applying the resolved SPH-RBD coupled code, V&V simulations were carried out on the hydrodynamic interactions of non-spherical solid-fluid and showed good agreement with the experimental data. In the SPH method, since the numerical expression are highly linear and the calculations are performed explicitly, there is no problem even if the calculations for each particle are performed independently. Therefore, the SPH is well known as an optimized method for parallelization, and it is essential for large scale high-resolution simulations. In addition, an efficient computational algorithm is required for particle-based rigid body calculation. In this study, therefore, the parallelization was performed using a Graphical Processing Unit (GPU) for large-scale calculations and high computational efficiency, and it showed a good performance in analyzing the interactions of a large number of solids and fluids particles. Through the researches on the development of a GPU-based SPH framework for the hydrodynamic interaction of non-spherical solids and fluids in this study, an efficient analysis system has been developed for not only the hydrodynamic interaction of solid corium debris with coolant but also the mechanical interaction between solid debris which can occur at the severe accidents in the nuclear reactor. By using this, it is expected that the integrated code will contribute to analytical researches on various accident scenarios that may occur in the nuclear field such as solid fuel debris sedimentation in the wet cavity, hydrodynamic interactions with coastal structures caused by the Tsunami, and the behavior of floating objects in the reactor building at the flooding accident, etc.Chapter 1 Introduction 1 1.1 Background and Motivation 1 1.2 Previous Studies 3 1.2.1 Numerical Studies on FCI Premixing Jet Breakup 3 1.2.2 Numerical Studies on Fluid-Solid Coupling with RBD 4 1.3 Objectives and Scope 5 Chapter 2 Smoothed Particle Hydrodynamics (SPH) 9 2.1 SPH Overview 9 2.1.1 Basic Concept of SPH 9 2.1.2 SPH Particle Approximation 10 2.1.3 SPH Kernel Function 12 2.1.4 SPH Governing Equations 13 2.2 SPH Multi-phase Models 16 2.2.1 Normalized Density Approach 16 2.2.2 Treatments for Multi-phase Flow 17 2.2.3 Surface Tension Force Model 18 2.3 SPH Code Implementation 20 2.3.1 Nearest Neighbor Particle Search (NNPS) 20 2.3.2 Algorithm of SPH Code 21 2.3.3 Time Integration 21 2.3.4 GPU Parallelization 22 Chapter 3 Rigid Body Dynamics (RBD) 30 3.1 RBD Overview 30 3.2 Collision Models of Rigid Body 31 3.2.1 Monaghan Boundary Force (MBF) Model 31 3.2.2 Ideal Plastic Collision Model 33 3.2.3 Impulse-based Boundary Force (IBF) Model 35 3.2.4 Penalty-based Contact Model 37 3.2.5 Determination of Collision Model 40 3.3 Algorithm of RBD 41 3.3.1 Calculation of Rigid Body Information 41 3.3.2 Contact Detection 42 3.3.3 Contact Normal Calculation 42 3.3.4 Contact Force Calculation 45 3.3.5 Summation of Rigid Body Particles 46 3.3.6 Time Integration 47 3.4 GPU Parallelization 48 3.4.1 Algorithm 1: Atomic Operation 49 3.4.2 Algorithm 2: Sorting 50 3.5 Code V&V Simulations 51 3.5.1 Conservation of Momentum & Angular Momentum 51 3.5.2 Conservation of Kinetic Energy in Elastic Collision 52 3.5.3 Bouncing Block 53 3.5.4 Sliding Block on a Slope 55 3.5.5 Collapse of Stacked Multi-body 57 Chapter 4 Two-way Coupling of SPH-RBD 75 4.1 Resolved Approach 75 4.2 Governing Equations 75 4.2.1 Solid Phase 75 4.2.2 Fluid Phase 78 4.3 Algorithm of SPH-RBD Code 78 4.4 Code V&V Simulations 81 4.4.1 Karman Vortex Problem 81 4.4.2 Water Entry 84 4.4.3 Sinking & Rotating Body 85 4.4.4 Floating & Falling Body 85 4.4.5 Collapse of Stacked Multi-body with Fluid 87 4.4.6 Code Application to Non-spherical Debris Sedimentation 89 Chapter 5 Conclusion 110 5.1 Summary 110 5.2 Recommendations 112 Nomenclature 114 Bibliography 117 ๊ตญ๋ฌธ ์ดˆ๋ก 127๋ฐ•

    On a Coupled SPH-Rigid Body Method for the Surfing Problem

    Get PDF
    13301็”ฒ็ฌฌ4816ๅทๅšๅฃซ๏ผˆ็†ๅญฆ๏ผ‰้‡‘ๆฒขๅคงๅญฆๅšๅฃซ่ซ–ๆ–‡ๆœฌๆ–‡Full ไปฅไธ‹ใซๆŽฒ่ผ‰ไบˆๅฎš๏ผšThe Science Reports of Kanazawa University 62 2018. The Institute of Science and Engineering, Kanazawa University. ๅ…ฑ่‘—่€…๏ผšReza Rendian Septiawa

    Example Based Caricature Synthesis

    Get PDF
    The likeness of a caricature to the original face image is an essential and often overlooked part of caricature production. In this paper we present an example based caricature synthesis technique, consisting of shape exaggeration, relationship exaggeration, and optimization for likeness. Rather than relying on a large training set of caricature face pairs, our shape exaggeration step is based on only one or a small number of examples of facial features. The relationship exaggeration step introduces two definitions which facilitate global facial feature synthesis. The first is the T-Shape rule, which describes the relative relationship between the facial elements in an intuitive manner. The second is the so called proportions, which characterizes the facial features in a proportion form. Finally we introduce a similarity metric as the likeness metric based on the Modified Hausdorff Distance (MHD) which allows us to optimize the configuration of facial elements, maximizing likeness while satisfying a number of constraints. The effectiveness of our algorithm is demonstrated with experimental results

    Partikelbasierte Strรถmungssimulation im Anwendungsbereich granularer Materialien und Fluide

    Get PDF
    Computersimulationen von Strรถmungen spielen als hilfreiches Werkzeug bei der Lรถsung rheologischer Fragestellungen eine immer grรถรŸer werdende Rolle. Ziel ist die Ausarbeitung des Nutzens und der Grenzen von partikelbasierter Strรถmungssimulation anhand zweier Problemstellungen aus unterschiedlichen Fachbereichen. Zum Einen wird das dynamische FlieรŸverhalten von granularem Material innerhalb einer Dosierwaage mit archimedischer Schraube zur Optimierung des Systems simuliert. Die experimentell bestimmte Durchflussrate im realen Aufbau wird bei angepassten Simulationsparametern rechnerisch modelliert. Zum Zweiten wird fรผr eine spezielle Tumorbehandlung das Verhalten von in BlutgefรครŸen mitschwimmenden therapeutisch strahlenwirksamen Mikrosphรคren analysiert. Die entwickelte Methode basiert auf eindimensionalen Volumenstromberechnungen, welche mittels der Ergebnisse einer dreidimensionalen Strรถmungsanalyse adaptiert werden. Die nรถtige BlutgefรครŸgeometrie wird mit angiografischen CT-Aufnahmen und einem zusรคtzlich implementierten Modell zur Generierung von BlutgefรครŸen unterhalb der Bildauflรถsungsgrenze definiert. Die Ergebnisse werden mit experimentellen Daten verglichen. Mittels einer weiteren Analyse wird die Notwendigkeit zur Verbesserung des bildgebenden Systems der BlutgefรครŸe belegt und zu erzielende Bedingungen hierfรผr ermittelt. Die jeweilige Strรถmungssimulation hat sich als nรผtzliches Werkzeug bei der Systemoptimierung erwiesen, welche mit rein experimentellen Methoden oder theoretischen Modellen nicht, oder nur unter deutlich grรถรŸerem Aufwand, erreicht werden kann. AbschlieรŸend werden die beiden verwendeten Ansรคtze vergleichend diskutiert. Die vielseitige Anwendbarkeit von partikelbasierter Strรถmungssimulation bei physikalisch unterschiedlichen Problemstellungen wird aufgezeigt
    corecore