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In this paper, we propose an efficient and simple rigid-fluid coupling scheme with scientific programming algorithms for particle-
based fluid simulation and three-dimensional visualization. Our approach samples the surface of rigid bodies with boundary
particles that interact with fluids. It contains two procedures, that is, surface sampling and sampling relaxation, which insures
uniform distribution of particles with less iterations. Furthermore, we present a rigid-fluid coupling scheme integrating individual
time stepping to rigid-fluid coupling, which gains an obvious speedup compared to previous method. The experimental results
demonstrate the effectiveness of our approach.

1. Introduction

Physically based fluid simulation is a popular issue in com-
puter graphics and virtual realitywhile having a huge research
and application demand in three-dimensional visualization
and human- computer interactions. More realistic effects
and higher simulation efficiency are the main goals; thus,
reasonable, efficient, and scientific programming algorithms
are needed to design and implement the animation. Two
major schemes are employed for animating fluids: the grid-
based Eulerian approach and particle-based Lagrangian
approach. Eulerian method is particularly suited to simulate
large volumes fluid, while being restricted by time step
and computing time for small scale features. In contrast,
Lagrangian method is suitable for capturing small scale
effects such as spindrift and droplet. Among various particle-
based approaches, Smoothed Particle Hydrodynamics (SPH)
is the most popular method for simulating fluid due to
computational simplicity and efficiency.

In reality, rigid-fluid interaction widely exists in many
scenarios. As a result, the interesting fluid behaviors emerge
once rigid objects are added to fluid simulation. While
interaction between particle-based fluids and rigid objects
seems to be straightforward, there are still several issues not
well resolved. For one thing, rigid bodies must be sampled
to particles in order to interact with particle-based fluids, but

only a few rigid boundary sampling methods can be directly
employed in rigid-fluid coupling simulation. For another
thing, the computational expenses of rigid-fluid coupling are
considerable. To deal with the increasing demands for more
detailed fluids and high efficiency, we present rigid sampling
and individual time stepping for rigid-fluid coupling and
design a practical and easy rigid-fluid animation simulation
scheme with our scientific programming algorithms.

2. Related Work

Desbrun and Gascuel introduced SPH to computer graphics
for simulating deformable objects [1]. SPHbecame popular in
computer graphics for various fluid phenomena. Monaghan
addressed simulating free surface flows with SPH [2] that
serves as a basis for SPH fluid simulation. Muller et al.
[3] proposed using gas state equation with surface tension
and viscosity forces for fluid simulation, which also bring
compressibility issue. Becker and Teschner [4] proposed
WCSPH employing Tait equation to reduce compressibility.
It significantly increased realistic effects but the efficiency is
limited by time step. As incompressibility expenses compu-
tation time, many improved algorithms were addressed to
enhance the efficiency. Solenthaler and Pajarola [5] presented
PCISPH using a prediction-correction scheme to determine
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particle’s pressure and large time steps which significantly
improved efficiency comparing to WCSPH. Another similar
method that ensures incompressibility by iterative process
is LPSPH [6]. Afterwards, Ihmsen et al. addressed a more
efficient approach IISPH [7]. It carefully constructed pressure
Poisson equation and solved the linear system using Relaxed
Jacobi, which has a great improvement in stability as well as
convergence speed and is particularly suitable for large-scale
scene. Recently, a promising approach for impressible SPH
has been proposed by Bender and Koschier [8]. It combines
two pressure solvers which enforce low volume compression
and a divergence-free velocity field and permits large time
steps that yields a considerable performance gain.

Besides, adaptive method, either spatial resolution or
timediscretization, is anotherway to promote efficiency.They
allot computing resources to regions with complex flow
behavior. Space adaptive methods [9–11] adaptively sample
particle and employ less particles to produce similar details.
Large particles are divided into small particles if high reso-
lution is needed, and vice versa. However, difficulties exist in
reproducing quantity when refining particles, and neighbor
searching is usually the bottleneck. As an alternate to adaptive
spatial discretization, the time domain can be adaptively
sampled as well. Globally adaptive time stepping methods
[1, 12, 13] employ a single time step to adjust each step
for all particles in consideration of CFL condition. Though
each particle has the current smallest time step, it is not the
most efficient way. Locally adaptive time stepping methods
[9, 14, 15] use different time steps for particles. Desbrun and
Cani proposed that each particle evaluates forces depending
on its current individual time step [9]. He et al. [16] adopt
this idea and implement stable simulation of stiff fluids. It
updates position, velocity, and density for active particles and
interpolates for inactive particles. In this paper, we integrate
it to rigid-fluid coupling to reduce the computational time.

For boundary handling in SPHfluid simulation, distance-
based penalty methods were commonly employed [17–19].
Nonetheless, these methods require large penalty forces
which limit the time step and make particles stick to the
boundary on account of lacking fluid neighbors. Frozen or
ghost particles based models are used to solve the problem
of sticking particles [20]. In order to avoid penetration,
more than one layer of frozen particles were used [21], or
the positions of penetrating particles should be corrected
[13]. However, handling two-way interaction is troublesome
since the elevated density near boundary in one phase affects
particles in the other phase. For this reason and for the lack of
fluid neighbors, Ghost SPH [22] solved those problem using
a narrow layer of ghost particles and Akinci et al. employed
boundary particles to correct the calculation of fluid density
[23]. Because Ghost SPH is more time consuming, we use
Akinci’s boundary handlingmethodwhich is simple and easy
to achieve in this paper.

For rigid-fluid coupling, several approaches were pre-
sented up to now. In [24], the fluid is represented as rigid
spheres and switching impulses with rigid bodies. In [25, 26],
the pressure at the boundary is taken into consideration for
two-way fluid-rigid coupling. Then, Oh et al. proposed an
impulse-based scheme for two-way coupling of SPH fluids

with rigid bodies [27]. Becker et al. presented direct forcing
for rigid-fluid coupling [28] which employs a prediction-
correction scheme to enforce particle positions and velocities
to specific values. Akinci et al. presented a momentum-
conserving two-way coupling approach based on hydro-
dynamic forces that use boundary particles to sample the
surface of rigid bodies [23]. We present a rigid-fluid coupling
scheme by integrating individual time stepping to Akinci’s
boundary handling method that gains an obvious speedup
[29].

Rigid bodies sampling includes particle-based methods
and polygonization-based methods. Turk repelled particles
on surfaces to get a uniform sample [30] and also sim-
plified a polygonization through reducing the number of
polygons [31].Witkin andHeckbert employed local repulsion
to make particles spread uniform [32]. Nehab and Shilane
[33] presented algorithm of stratified point sampling. Cook
addressed stochastic sampling of Poisson disk distributions
with blue noise [34]. Blue sampling has the ability to generate
random points and get uniform distribution of sampling
points set.Therefore, the following sampling methods always
have blue noise characteristics. Corsini et al. sampled trian-
gular meshes with blue noise properties [35]. Dunbar and
Humphreys [36]modified Poisson disk sample using a spatial
data structure. Bridson [37] simplified Dunbar’s approach
with rejection sampling and extending it to higher dimen-
sions. Then, Schechter [22] modified Bridson’s approach and
employed it to Ghost SPH. Inspired by Schechter’s approach,
we address sampling method improved by SPH equation that
is more efficient and easy to implement.

3. Particle-Based Fluid Simulation Framework

In particle-based fluid simulation, the forces acting on
particles are derived from the Navier-Stokes equations. The
conservation of mass and momentum are written as𝑑𝜌𝑖𝑑𝑡 = −𝜌𝑖∇ ⋅ k𝑖,

𝜌𝑖𝐷k𝑖𝐷𝑡 = −∇𝑝𝑖 + 𝜌𝑖𝑔 + 𝜇∇2k𝑖,
(1)

where k𝑖 is the velocity, 𝜌𝑖 is the density, 𝑝𝑖 is the pressure, 𝜇
is the viscosity coefficient, and 𝑔 is the external force field.

SPHworks by obtaining approximate numerical solutions
of fluid dynamics equations by expressing fluids with parti-
cles. In SPH, the representation of a field variable𝐴 at location
x𝑖 is defined as

⟨𝐴 (x𝑖)⟩ = ∑
𝑗

𝑚𝑗𝐴𝑗𝜌𝑗 𝑊(x𝑖 − x𝑗, ℎ) , (2)

where𝑚𝑗 and 𝜌𝑗 represent particle mass and density, respec-
tively,𝑊(x𝑖 − x𝑗, ℎ) is smoothing kernel, and ℎ is smoothing
radius.

It can be easily derived from the basic SPH equation by
substituting fluid density 𝜌 into (2), that is,

𝜌𝑖 = ∑
𝑗

𝑚𝑗𝑊(x𝑖 − x𝑗, ℎ) . (3)
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Figure 1: Forces between boundary particles and fluid particles.

Therefore, particles’ pressure force f𝑃𝑖 and viscous force f
V
𝑖 can

be written as

f𝑃𝑖 = −∑
𝑗

𝑚𝑗( 𝑃𝑖𝜌2𝑖 +
𝑃𝑗𝜌2𝑗 )∇𝑊𝑖𝑗,

fV𝑖 = 𝜇∑
𝑗

𝑚𝑗 k𝑗𝑖𝜌𝑗 ∇2𝑊𝑖𝑗.
(4)

In this paper, we use Tait equation [4] to calculate the
pressure; that is, 𝑝𝑖 = (𝜌0𝑐2𝑆 /𝛾)((𝜌𝑖/𝜌0)𝛾 − 1), where 𝜌0 = 1000
is the rest density of the fluid, 𝛾 = 7 is stiffness parameter, and𝑐𝑆 is velocity of sound.We use the equation in [23] to compute
viscous force.

4. Boundary Handling for
Particle-Based Fluids

In rigid-fluid interaction, there are three types of forces
among particles: the forces between fluid particles and
boundary particles Forcerigid-fluid, the forces between fluid
particles Forcefluid-fluid, the forces between boundary particles
Forcerigid-rigid, which is shown in Figure 1. In our simulation,
we sample rigid body to obtain boundary particles which is
described in Section 5. Moreover, for the boundary handling
way of rigid-fluid interaction, we implement our simulation
based on thework of [23].The followingwill briefly introduce
boundary handling in this section.

Considering influence of boundary particles, density
formula of fluid particles in (3) needs to introduce weighted
summation influence of boundary particle [23], that is,

𝜌𝑓𝑖 = ∑
𝑗

𝑚𝑓𝑗𝑊𝑖𝑗 +∑
𝑘

𝑚𝑏𝑘𝑊𝑖𝑘, (5)

where 𝑓𝑗 and 𝑏𝑘 denote fluid particle 𝑗 and boundary particle𝑘, respectively. The first summation calculates the affection
of adjacent fluid particles, while the second summation
computes the influence of adjacent boundary particles. This
formula can overcome the problem of boundary defects in
SPH fluid simulation to some extent.

Due to the use of boundary particle mass in (5), the
density of fluid particles is incorrect or unstable when the
boundary particle density is set unreasonably or unevenly
distributed. Hence, consider the contribution of boundary
particles to fluid particle by the volume of boundary particles
is Ψ𝑏𝑖 (𝜌0) = 𝜌0𝑉𝑏𝑖 (6)

where 𝜌0 denotes the remaining density of fluid and𝑉𝑏𝑖 is the
estimation value of boundary area volume of corresponding
boundary particles. ApplyingΨ𝑏𝑖(𝜌0) to replace the boundary
particle mass can guarantee the stability.

Thus, (5) can be rewritten as

𝜌𝑓𝑖 = ∑
𝑗

𝑚𝑓𝑗𝑊𝑖𝑗 +∑
𝑘

Ψ𝑏𝑘 (𝜌0𝑖)𝑊𝑖𝑘. (7)

The most important interaction between fluid particles and
boundary particles is the pressure. The pressure acceleration
generated by boundary particles to fluid particles can be
computed as 𝑑k𝑓𝑖𝑑𝑡 = −𝑘𝑝𝑓𝑖𝜌2

𝑓𝑖

∑
𝑘

Ψ𝑏𝑘 (𝜌0𝑖) ∇𝑊𝑖𝑘, (8)

where 𝑝𝑓𝑖 > 0 takes 𝑘 = 2. When 𝑝𝑓𝑖 < 0, boundary
particles and fluid particles attract each other; then, we can
adjust parameter 𝑘 (0 ≤ 𝑘 ≤ 2) to realize different adsorption
effects, and we choose 𝑘 = 1 in our experiment.

To simulate the friction between fluid and container wall
or the interaction of rigid body and fluid, we have to compute
the friction of boundary particles with fluid particles. The
friction is calculated by the artificial viscosity; that is,𝑑k𝑓𝑖𝑑𝑡 = −∑

𝑘

Ψ𝑏𝑘 (𝜌0𝑖)Π𝑖𝑘∇𝑊𝑖𝑘, (9)

where Π𝑖𝑘 = −](k𝑖𝑘𝑇x𝑖𝑘/(x𝑖𝑘2 + 𝜀ℎ2)), ] = 2𝛼ℎ𝑐𝑠/(𝜌𝑘 + 𝜌𝑗).
On account of (8) and (9) that listed the forces for fluid

particles, we can get the forces of boundary particles using
Newton’s third law. The forces generated by fluid particles to
boundary particles are

F𝑏𝑘 = ∑
𝑖

(𝑘𝑝𝑓𝑖𝜌2
𝑓𝑖

+ Π𝑖𝑘)𝑚𝑓𝑖Ψ𝑏𝑘 (𝜌0𝑖) ∇𝑊𝑖𝑘, (10)

where 𝑖 denotes the fluid neighbors of boundary particle 𝑘. It
is the counteracting force of (8) and (9).

For a rigid body, the total force and torque need to be
calculated. This can be separately written as

Frigid = ∑
𝑘

F𝑏𝑘 ,
𝜏rigid = ∑

𝑘

(x𝑘 − xcmrigid) × F𝑏𝑘 , (11)
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(a) (b)

Figure 2: Surface sampling and relaxation. (a) Surface sampling. (b) Surface relaxation. Black points: newly added sample. Gray points:
surface sampling points. White points: exterior points before being projected to the surface.

Input: Level set 𝜙, radius 𝑟, count 𝑡, constant 𝑒
Output: Sample set 𝑆
(1) for all grid cells 𝐶 that 𝜙 changes sign do
(2) for each 𝑡 do
(3) Generate random point p in 𝐶
(4) Project p to surface of 𝜙
(5) if p satisfies Poisson Disk criterion in 𝑆 then
(6) 𝑆 ← 𝑆 ∪ {p}
(7) Break
(8) if no point was found in 𝐶 then
(9) Continue
(10) while new samples are found do
(11) Generate random tangential direction d of surface at p
(12) q← p + d ⋅ 𝑒 ⋅ 𝑟
(13) Project q to surface of 𝜙
(14) if q satisfies the Poisson Disk criterion in 𝑆 then
(15) 𝑆 ← 𝑆 ∪ {q}
(16) p← q

Algorithm 1: Surface sampling.

where x𝑘 is the location of boundary particle 𝑘 and xcmrigid
denotes the mass center of a rigid body. The total force and
torque will be transmitted to the physics engine to handle the
motion of rigid bodies.

5. Rigid Boundary Sampling

Rigid body sampling is the first issue in rigid-fluid coupling
which we have to handle. We propose a rigid body sampling
algorithm which is an extension of Poisson disk method and
sampling method in [22] for rigid-fluid coupling.

For rigid objects sampling, boundary particles are used
to sample the surface of rigid bodies that has several merits.
For one thing, using particles permits us to get a rigid model
that can handle different shapes even with complex geometry
structure. For another thing, the use of boundary particles
successfully alleviates sticking artifacts and makes sampling
uniform.

There are two components in our sampling: surface sam-
pling and surface relaxation. As shown in Figure 2, it first

samples the surface of rigid object image, and then it
improves initial sampling with surface relaxation. In order to
realize the first procedure, it needs fast projection of points to
the surface. Hence, level set method is employed to express
surface geometry with 𝜙 > 0 and 𝜙 < 0 denoting exterior
and interior of rigid objects, respectively, while 𝜙 = 0 denotes
surface of rigid objects.

After obtaining the surface geometry of signed distance
function, we use surface sampling method proposed in [22]
(as shown in Algorithm 1), first, searching seed points on
the surface by checking each grid cell intersecting with
the surface; the details are as follows: projecting random
points from the cell to the surface and stopping when the
point satisfies the Poisson disk criterion, which operates 𝑘
attempts in a cell; when obtaining a seed sample, continuing
to sample it and taking a step of size 𝑒 ⋅ 𝑟 from the
previous samples along a random tangential direction d;
then projecting to the surface and checking the Poisson disk
criterion again. Parameters were chosen as 𝑘 = 30 and𝑒 = 1.085.
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Input: sample set 𝑆, Level set 𝜙, radius 𝑟, count 𝑡, constant 𝑓
Output: relaxed sample set 𝑆
(1) for each 𝑡 do
(2) for each 𝑝𝑖 ∈ 𝑆 do
(3) compute density 𝜌𝑖(𝑡), average density 𝜌(𝑡)
(4) compute density gradient ∇𝜌𝑖(𝑡)
(5) 𝑑 ← 𝑟 ⋅ |(𝜌𝑖(𝑡) − 𝜌(𝑡))/𝜌(𝑡)| ⋅ 𝑓
(6) 𝑝new ← 𝑝 + 𝑑 ⋅ ∇𝜌𝑖(𝑡)
(7) if 𝑝new outside 𝜙 or came from surface sample
(8) Project 𝑝new to surface of 𝜙
(9) if 𝑝new satisfies the Poisson Disk criterion in 𝑆
(10) 𝑝 ← 𝑝new

Algorithm 2: Modified surface relaxation.

In order to optimize the position of sample points, reduce
noises, and get a uniform distribution set of sampling points,
we need to further improve sampling set with a surface
relaxation step. Inspired by the relaxation algorithmproposed
in [22] and SPH interpolation method, surface relaxation
algorithm is presented in Algorithm 2. Unlike employing
random testing way in [22], we compel particles to move
according to the density gradient. This ensures that the
particles move to sparse place, so as to insure uniform
distribution of particles.

It starts with the initial particles seed in Algorithm 1 and
attempts to reposition each sample through density gradient.
Next it computes density 𝜌𝑖(𝑡) and density gradient ∇𝜌𝑖(𝑡) of
each surface particles and employs deviation of density 𝜌𝑖(𝑡)
and average density 𝜌𝑖(𝑡) as a coefficient to tune distance 𝑑.
Then, it employs 𝑑 ⋅∇𝜌𝑖(𝑡) to adjust particle locations. Surface
sample candidates are projected to the surface once again and
are reservedwhich satisfies the Poisson disk criterion. Param-
eter t is iterations and f is distance coefficient. According
to SPH gradient formula, particle’s density gradient can be
written as

⟨∇𝜌𝑖⟩ = 𝑁∑
𝑗=1

𝑚𝑗∇𝑊(󵄨󵄨󵄨󵄨󵄨x𝑖 − x𝑗
󵄨󵄨󵄨󵄨󵄨 , ℎ) . (12)

On the basis of signed distance field 𝜙, it is fairly convenient
for calculation of steps (7) and (8). If 𝜙(𝑝new) ̸= 0, it means𝑝new is not on the surface. While for projecting particles to
surface, we compute signed distance field gradient ∇𝜙(𝑝new).
Projection formula is

𝑝new = 𝑝 + 𝑑 ⋅ ∇𝜌𝑖 (𝑡) − ∇𝜙 (𝑝new) . (13)

We have done the experiment in 2 dimensions contrast to
the relaxation algorithm in [22]. We randomly generate 100
points in a 0.1 × 0.1 square shown in Figure 3. The red points
represent that it does not meet the conditions of Poisson disk.

Figure 4 shows the relaxation results of Figure 3; the first
row is our method and the second row is the method in
[22]. The column (a) reveals the distribution of points after
relaxation of two algorithms and the red points mean it does
not satisfy Poisson disk condition. Each algorithm iterates 100
times, respectively, while column (b) illustrates the number
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Figure 3: Initial samples in a 0.1 × 0.1 square.

of points that do not satisfy Poisson disk conditions for each
iteration. It is obvious that our method can get a better effect
with a slight concussion. Compared to the method in [22],
the optimization effect is basically the same after 30 times’
iteration using our method while it is the optimal results
of fast Poisson disk method. In addition, our method is
more efficient. In MATLAB environment, all parameters are
the same as mentioned in [22]; our method takes 2.44691 s
while relaxation method in [22] costs 56.44153 s for 100
iterations.

6. Individual Time Stepping for
Rigid-Fluid Coupling

In this section, we propose a rigid-fluid coupling method
employing individual time stepping. As a result, larger time
steps can be used comparing to previous methods and the
overall computation time is reduced. In particle-based fluids,
particles only interact with their neighbors. So permitting
particles to have different time steps is more efficient than
using a global time step for all particles. The individual time
stepping computes time step for each particle and updates
time step asynchronously.
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Figure 4: Relaxation results comparison of our method with fast Poisson disk. (a) Relaxation results. (b) The relationship between iteration
times and points not conforming to the conditions.

6.1. Time Steps. For particle-based fluids, the time step
must satisfies Courant-Friedrich-Levy (CFL) condition for
numerical stability, that is,

Δ𝑡CFL ≤ 𝜆V ( ℎ
Vmax

) , (14)

where Vmax = max𝑖‖k𝑖‖ is the maximum velocity of particles
and coefficient 𝜆V < 1. In addition, it also has to consider
particles’ maximum acceleration. Thus, the time step must
also meet the condition

Δ𝑡𝑓 ≤ 𝜆𝑓 ( ℎ𝑓max
) , (15)

where 𝑓max = max𝑖‖𝑑k𝑖/𝑑𝑡‖ denotes the maximum force per
unit mass of particles and 𝜆𝑓 < 1. In [13], 𝜆V = 0.4 and 𝜆𝑓 =0.25 are used for PCISPH, while we use 𝜆V = 0.1 and 𝜆𝑓 =0.05 for WCSPH. Instead of using a constant time step, we
adjust time step dynamically as

Δ𝑡 ≤ min (Δ𝑡CFL, Δ𝑡𝑓) . (16)

Thus, the time step for each particle 𝑖 is
Δ𝑡𝑖 = min

𝑗
(𝜆V ℎ󵄩󵄩󵄩󵄩󵄩k𝑗󵄩󵄩󵄩󵄩󵄩 , 𝜆𝑓√

ℎ󵄩󵄩󵄩󵄩󵄩𝑑k𝑗/𝑑𝑡󵄩󵄩󵄩󵄩󵄩) , (17)

where 𝑗 denotes that it iterates all the neighbors.
However, the presented algorithm demands small coeffi-

cients for asynchrony, sowe choose𝜆V = 0.05 and𝜆𝑓 = 0.025.
6.2. Asynchronism. Since each particle has individual time
step, we enforce asynchronous time integration for the
update. To save computing resources, the system time step
is chosen as the minimized individual time step:

Δ𝑡 = min
𝑖
(Δ𝑡𝑖) , (18)

where Δ𝑡𝑖 is computed by (17).
The particle 𝑖 will be updated if it satisfies the condition

𝑡last𝑖 + Δ𝑡𝑖 < 𝑡, (19)

where 𝑡last𝑖 denotes the last update time of particle 𝑖 and 𝑡 is
the system time. It means that if system time is larger than
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(1) while animating do
(2) select active
(3) for each active fluid particle 𝑖 do
(4) find fluid and boundary neighbors
(5) for each fluid particle 𝑖 do
(6) if active then
(7) compute 𝜌𝑖(𝑡), 𝑝𝑖(𝑡)
(8) else
(9) interpolate 𝜌𝑖(𝑡), 𝑝𝑖(𝑡) using 𝑑𝜌𝑖(𝑡last𝑖 )/𝑑𝑡
(10) for each active fluid particle 𝑖 do
(11) compute 𝑑k𝑖(𝑡)/𝑑𝑡
(12) compute 𝑑𝜌𝑖(𝑡)/𝑑𝑡
(13) compute time step condition Δ𝑡󸀠𝑖 (Eq. (15))
(14) 𝑡last𝑖 = 𝑡
(15) for each boundary particle 𝑘 do
(16) compute forces (Eq. (10))
(17) for each fluid particle 𝑖 do
(18) compute time step Δ𝑡𝑖 = min𝑗(Δ𝑡󸀠𝑖 )
(19) Δ𝑡 = min𝑖(Δ𝑡𝑖)
(20) for each rigid body do
(21) compute total forces, torques (Eq. (11))
(22) pass forces and torques to physics engine
(23) update rigid body
(24) update boundary particles of rigid body
(25) for each fluid particle 𝑖 do
(26) Δ𝑡󸀠 = 𝑡 + Δ𝑡 − 𝑡last𝑖
(27) k𝑖(𝑡last𝑖 + Δ𝑡󸀠) = k𝑖(𝑡last𝑖 ) + Δ𝑡󸀠(𝑑k𝑖(𝑡last𝑖 )/𝑑𝑡)
(28) x𝑖(𝑡last𝑖 + Δ𝑡󸀠) = x𝑖(𝑡last𝑖 ) + Δ𝑡󸀠k𝑖(𝑡last𝑖 + Δ𝑡󸀠)
(29) 𝑡 = 𝑡 + Δ𝑡

Algorithm 3: Individual time stepping for rigid-fluid coupling.

the individual time step, particle 𝑖will be set as active particle
and be updated.

Semi-implicit Euler integration is generally used in SPH
simulation. To accommodate for asynchronism, the semi-
implicit Euler integrations can be expressed as

k𝑖 (𝑡last𝑖 + Δ𝑡󸀠) = k𝑖 (𝑡last𝑖 ) + Δ𝑡󸀠a𝑖 (𝑡last𝑖 ) ,
x𝑖 (𝑡last𝑖 + Δ𝑡󸀠) = x𝑖 (𝑡last𝑖 ) + Δ𝑡󸀠k𝑖 (𝑡last𝑖 + Δ𝑡󸀠) , (20)

where Δ𝑡󸀠 is an independent integral time step which is
different from the global time step Δ𝑡. For inactive particles,
(20) is equivalent to interpolation, while, for active particles,
they are semi-implicit Euler integration equations.

6.3. Algorithm. The individual time stepping for rigid-fluid
coupling algorithm is shown in Algorithm 3. In this algo-
rithm, particle 𝑖 has several extra variables; that is, 𝑑𝜌𝑖(𝑡)/𝑑𝑡
denotes density derivative, Δ𝑡𝑖 is time step, Δ𝑡󸀠𝑖 is individual
condition time step, and 𝑡last𝑖 is last updated time. In the
algorithm, 𝑡 is the system time and Δ𝑡 is system update time
step. Particle 𝑖 is active if 𝑡last𝑖 + Δ𝑡𝑖 < 𝑡.

In order to analyse the proposed algorithm, we imple-
ment the breaking dam with obstacles experiment. The
setting of this experiment is shown in Table 1.

Table 1: The setting of breaking dam with obstacles.

Item Value
Simulation domain size 12m × 12m × 8m
Fluid particles 153600
Boundary particles 73585
Smoothing kernel function Cubic splines
Smoothing radius 0.2m
Fluid particle width 0.1m

Table 2: Comparison of experimental results of breaking dam with
obstacles.

Method Total comp.
time

Avg. Δ𝑡
(avg. active pct) Speedup

Constant
steps 175min 0.11ms —

Globally
adaptive 41min 0.46ms —

Individual
stepping 27min 0.23ms (31%) 1.5 (6.4)

We compare individual stepping method to adaptive
stepping and constant steppingmethod in breaking damwith
obstacles scene. The rending results are shown in Figure 5
and the time statistics are listed in Table 2. From Figure 5, the
fluid simulation results are almost not different using three
methods, while in Table 2, we can find that our method gains
1.5 and 6.4 times speedup comparing to globally adaptive
steppingmethod and constant steppingmethod, respectively.
In addition, the average active particles percent of individual
stepping method is 31%.

7. Implementation and Results

All the experiments in this paper are implemented on Intel
3.50GHz CPU with 4 cores. The simulation algorithms
(Algorithms 1, 2, and 3) and surface reconstruction [38,
39] are actualized with C++ language and multithreading
technology. Bullet is used to simulate rigid objects while
OpenMP served as parallelization. Images were rendered
with Blender.

To implement fluid-rigid coupling animation efficiently
and scientifically, we design a fluid-rigid coupling pro-
gramming simulation scheme shown in Figure 6. We firstly
initialize rigid and fluid particles configuration. Then, we do
neighbor search using spatial hashing algorithm for each par-
ticle. Next, the governing equations of fluid, rigid boundary
sampling, and boundary handling are solved as described in
the previous sections. Then, total force and torque of rigid
are calculated and provided to Bullet. After total force acting
on particles is computed, particles are integrated to next
time step using asynchronous update scheme introduced in
Section 6.

In order to demonstrate the validity of the entire fluid-
rigid coupling simulation system, we designed a scene of
dropping multiple small squares into water. The setting and
statistics are shown in Table 3, and the experimental results
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(a)

(b)

(c)

Figure 5: Rendering results of breaking dam with obstacles. (a) Individual stepping method. (b) Globally adaptive stepping method. (c)
Constant stepping method.

Fluid particles
configuration

Rigid

rigid interaction

Rigid boundary sampling Calculate fluid

Calculate fluid-

Update rigid Asynchronous
update of particles’

velocity and position

for fluid particles

boundary particles

Neighbor search

forces Fp,,g

Compute FＮＩＮ；Ｆ

Compute FＬＣＡＣ＞ , ＬＣＡＣ＞

Figure 6: Flowchart of the programming scheme.

are displayed in Figure 7. It can be seen from the diagram that
small squares fall into water and splash water while they are

rotated and inclined by water. Finally, small squares are force
balance and floating on the water.

We realize another fluid-rigid coupling experiment dis-
played in Figure 8. Figure 8(a) is the results in particle
view while Figure 8(b) is the rendering results. The setting
and statistics are illustrated in Table 3. In this scenario, the
breaking dam of water hits the sculpture which is knocked
down and pushed for some distances due to kinetic energy of
water. The motions of sculpture are in line with expectations
which proved that the simulation and calculation of fluid-
rigid coupling system accord with physics laws.

This experiment further proved that our method can
implement vivid fluid-rigid coupling animation simulation
system with high realistic effects. It can be expected that this
animation system can be used in virtual reality domain and
special effects in film and game.

8. Conclusion

We proposed an efficient and simple rigid-fluid coupling
scheme for particle-based fluid simulation. It samples rigid
surface with boundary particles which are used to interact
with fluids. It insures uniform distribution of particles which
requires less iterations. In addition, we present an efficient
rigid-fluid coupling approach combining individual time
stepping with rigid-fluid coupling. Neighbors and forces of
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Table 3: The setting and statistics of fluid-rigid coupling.

Item Cubes fall into water Water shock sculpture
Simulation domain size 12m × 12m × 12m 10m × 8m × 5m
Fluid particles 320 k 873K
Boundary particles 47K 156K
Smoothing kernel function Cubic splines Cubic splines
Smoothing radius 0.05 0.1
Artificial viscosity coefficient 0.05 0.05
Surface tension coefficient 0 0
Rigid body mass 65 kg 1100 kg
Rigid body volume 0.125m−3 18.4 (4 × 2 × 2.3)m−3
Fluid rest density 1000 kg⋅m−3 1000 kg⋅m−3
SPH computing time (1 frame) 0.9008min 8.46min
Surface reconstruction time (1 frame) 74.0 s 261 s
Rendering time (1 frame) 13.85min 8.86min

(a)

(b)
Figure 7: 16 cubes fall into water. (a) Simulation in particle view; (b) rendering results.

(a)

(b)
Figure 8: Water shock sculpture. (a) Simulation in particle view; (b) rendering results.
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particles are updated only when needed, while computing
resources are allocated to complex regions. It obtains an
obvious speedup compared to previous methods. Besides,
this scheme was integrated with rigid body coupling simu-
lation with several scenes which has a good sense of visual
reality. Overall, our method is efficient to compute while the
sampling and coupling algorithm can be applied to other
particle-based simulation or relevant approaches. Future
work would be extending the proposed method to IISPH [7]
or DFSPH [8] as well as large-scale scenarios.
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