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Abstract. Problems of fluid-structure interaction with free surface flow and multi-body 
interactions are highly nonlinear and complex phenomena, which is challenging for 
computational modeling and simulation. In the presence of contact or collision between 
solids, numerical modeling to detect collision and prevent penetration between bodies is 
required. The objective of this work is to study a numerical model for solid-solid contact 
and/or collision, based on contact mechanics theories, to reproduce the macroscopic 
properties of the multi-body interactions in Moving Particle Simulation (MPS) method. MPS 
is a fully Lagrangian meshfree particle-based approach that is suitable for the modeling 
complex geometries with large displacements and deformation, including free surface flow 
with fragmentation and merging and interaction of fluid with multi-bodies. Analytical results 
are used to perform the calibration of the numerical friction coefficient. The model is applied 
to a case of free solid transport in free surface flow, modeled as a 3D experimental dam 
breaking event, in which free solids interact each other and fixed walls. The numerical results 
from MPS are compared with numerical and experimental results. 

1 INTRODUCTION 
Fluid-structure interaction with free surface flow and multi-body interactions, are highly 

nonlinear and complex hydrodynamic phenomena, which is challenging problems for 
computational modeling and simulation. Among the effective numerical methods used to 
simulate these phenomena an important approach is the particle-based method, in which the 
physical domain is represented by a set of points (particles). However, despite the easier 
implementation and flexibility of these methods, one of the relevant topics is concerning the 
numerical treatment of contacts between bodies when contact or collision between solids 
occurs. To date, different techniques have been proposed for particle methods to deal with the 
contact between solids, such as impulse-based repulsion models [1,2] and linear [3,4,5] or 
nonlinear [6] springs and dashpots. Based on contact mechanics theories, the objective of this 
work is to study a nonlinear spring and dashpot model of solid-solid contact and/or collision 
for Moving Particle Simulation (MPS) method [7]. MPS is a fully Lagrangian meshfree 
particle-based approach suitable for the modeling of complex geometries with large 
displacements and deformation, including free surface flow with fragmentation and 
coalescence and interaction of fluid with multi-bodies. The relationship between the 
numerical and analytical friction coefficient is investigated by a case of block’s sliding along 
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a slope, subjected to gravity acceleration. For the validation, a 3D experimental dam breaking 
event, in which free cubic solids interact each other and fixed walls [6], is simulated. 
Numerical results of solid position obtained by the proposed model are compared with 
available numerical and experimental results. 

2 NUMERICAL METHOD 
In MPS method, the differential operators of the governing equations of continuum are 

replaced by operators based on a weight function. For a given particle 𝑖𝑖, the influence of a 
neighbor particle 𝑗𝑗 is defined by weight function 𝜔𝜔𝑖𝑖𝑖𝑖 

𝜔𝜔𝑖𝑖𝑖𝑖 = {
𝑟𝑟𝑒𝑒

‖𝑟𝑟𝑖𝑖𝑖𝑖‖
− 1 ‖𝑟𝑟𝑖𝑖𝑖𝑖‖ ≤ 𝑟𝑟𝑒𝑒

0 ‖𝑟𝑟𝑖𝑖𝑖𝑖‖ > 𝑟𝑟𝑒𝑒
, (1) 

where 𝑟𝑟𝑒𝑒 is the effective radius that limits the range of influence and ‖𝑟𝑟𝑖𝑖𝑖𝑖‖ is the distance 
between 𝑖𝑖 and 𝑗𝑗. In the present work, is used the effective radius 𝑟𝑟𝑒𝑒 = 2.1𝑙𝑙0 , where 𝑙𝑙0 is the 
initial distance between two adjacent particles. 

The summation of the weight of all the particles in the neighborhood of the particle 𝑖𝑖 is 
defined as its particle number density 𝑛𝑛𝑖𝑖, which is proportional to the fluid density 

𝑛𝑛𝑖𝑖 = ∑𝜔𝜔𝑖𝑖𝑖𝑖
𝑗𝑗≠𝑖𝑖

. (2) 

For a scalar function 𝜙𝜙, the gradient and Laplacian operators are defined in Eq. 3 and Eq. 
4, respectively 

∇𝜙𝜙 = 𝑑𝑑
𝑛𝑛0∑

𝜙𝜙𝑗𝑗 − 𝜙𝜙𝑖𝑖

‖𝑟𝑟𝑖𝑖𝑖𝑖‖
2 𝑟𝑟𝑖𝑖𝑖𝑖𝜔𝜔𝑖𝑖𝑖𝑖 ,

𝑗𝑗≠𝑖𝑖
 (3) 

∇2𝜙𝜙 = 2𝑑𝑑
𝜆𝜆𝑖𝑖𝑛𝑛0

∑(𝜙𝜙𝑗𝑗 − 𝜙𝜙𝑖𝑖)𝜔𝜔𝑖𝑖𝑖𝑖
𝑗𝑗≠𝑖𝑖

, (4) 

where 𝑑𝑑 is the number of spatial dimensions and 𝑛𝑛0 is the initial value of 𝑛𝑛𝑖𝑖. Finally, 𝜆𝜆𝑖𝑖 is 
a correction parameter so that the variance increase is equal to that of the analytical solution, 
and is calculated by 

𝜆𝜆𝑖𝑖 =
∑ 𝜔𝜔𝑖𝑖𝑖𝑖‖𝑟𝑟𝑖𝑖𝑖𝑖‖

2
𝑗𝑗≠𝑖𝑖
∑ 𝜔𝜔𝑖𝑖𝑖𝑖𝑗𝑗≠𝑖𝑖

. (5) 

2.1 Fluid dynamics 
The governing equations of incompressible viscous flow are expressed by the conservation 

laws of mass and momentum: 
𝐷𝐷𝐷𝐷
𝐷𝐷𝐷𝐷 = 𝜌𝜌∇ ∙ 𝑢⃗⃗𝑢 = 0, (6) 
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𝐷𝐷𝑢⃗⃗𝑢
𝐷𝐷𝐷𝐷 = −∇𝑃𝑃

𝜌𝜌 + 𝜈𝜈∇2𝑢⃗⃗𝑢 + 𝑓𝑓, (7) 

where 𝜌𝜌 is the fluid density, 𝑢⃗⃗𝑢 is the velocity vector, 𝑃𝑃 is the pressure, 𝜈𝜈 is the kinematic 
viscosity and 𝑓𝑓 is the external force vector. 

To solve the incompressible viscous flow, a semi-implicit algorithm is used in the MPS 
method. At first, predictions of the particle’s velocity and position are carried out explicitly by 
using viscosity and external forces terms of the momentum conservation. Then the pressure of 
all particles is calculated by the Poisson equation for the pressure as follows 

∇2𝑃𝑃𝑖𝑖𝑡𝑡+∆𝑡𝑡 −
𝜌𝜌
∆t2 𝛼𝛼𝑃𝑃𝑖𝑖

𝑡𝑡+∆𝑡𝑡 = −𝛾𝛾 𝜌𝜌
∆t2

𝑛𝑛𝑖𝑖∗ − 𝑛𝑛0
𝑛𝑛0 , (8) 

where Δ𝑡𝑡 is the time step, 𝑛𝑛𝑖𝑖∗ is the particle number density calculated based on the 
displacement of particles obtained in the prediction step, 𝛼𝛼 is the coefficient of artificial 
compressibility and 𝛾𝛾 is the relaxation coefficient. Both 𝛼𝛼 and 𝛾𝛾 are used to improve the 
stability of a computation method. Also, to provide the stabilization of MPS, the pressure 
gradient is modified as [7] 

∇𝑃𝑃 = 𝑑𝑑
𝑛𝑛0∑

𝑃𝑃𝑗𝑗 − 𝑃̂𝑃𝑖𝑖
‖𝑟𝑟𝑖𝑖𝑖𝑖‖

2 𝑟𝑟𝑖𝑖𝑖𝑖𝜔𝜔𝑖𝑖𝑖𝑖
𝑗𝑗≠𝑖𝑖

, (9) 

where 𝑃̂𝑃𝑖𝑖 is the minimum pressure between the neighborhood of the particle 𝑖𝑖. 
Finally, the velocity of the particles is updated by using the pressure gradient term of the 

momentum conservation and the new positions of the particles are obtained. Validations of 
the present numerical method (MPS) can be found in previous works. To mention few, we 
have: The pressure variations inside a tank structure caused by sloshing [8]. Computed 
pressures on the block and free surface elevation of three-dimensional dam break problem [9]. 
Displacement of the elastic plate interacting with dam breaking and sloshing [10]. 

2.2 Boundary conditions 
In order to identify the free-surface boundary, the present work used the particle number 

density condition [7] and the neighborhood particles weighted geometric center deviation 
condition [11]. A particle is defined as free-surface particle and its pressure is set to zero 
when its particle number density particle number density 𝑛𝑛𝑖𝑖 is smaller than 𝛽𝛽1𝑛𝑛0, and the 
magnitude of the weighted average deviation 𝜎𝜎𝑖𝑖 is greater than 𝛿𝛿1𝑙𝑙0. 

Solid wall boundary condition is imposed by using three layers of fixed particles. The 
particles that form the layer in contact to the fluid are denominated wall particles, of which 
the pressure is computed by solving Poisson equation for the pressure (Eq. 8), together with 
the fluid particles. The particles that form two other layers are denominated dummy particles. 
Dummy particles are used to assure the correct calculation of the particle number density of 
the wall particles. Pressure is not calculated in the dummy particles. 
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2.3 Rigid body dynamics 
For the rigid body dynamics, the governing equations of motion are those of translational 

motion and rotational motion expressed as 

𝑚𝑚𝑎⃗𝑎 = ∑𝑓𝑓𝑒𝑒𝑒𝑒𝑒𝑒 , (10) 

𝐼𝐼 ∙ 𝜔̇⃗⃗⃗𝜔 + 𝜔⃗⃗⃗𝜔×(𝐼𝐼 ∙ 𝜔⃗⃗⃗𝜔) = ∑𝑀⃗⃗⃗𝑀𝑒𝑒𝑒𝑒𝑒𝑒 , (11) 

where 𝑚𝑚 is the total mass of the rigid body, 𝑎⃗𝑎 is the acceleration vector at the center of the 
rigid body, 𝑓𝑓𝑒𝑒𝑒𝑒𝑒𝑒 is external forces, 𝐼𝐼 is the inertia matrix, 𝜔⃗⃗⃗𝜔 is the angular velocity about the 
principal axes of the rigid body and 𝑀⃗⃗⃗𝑀𝑒𝑒𝑒𝑒𝑒𝑒 is the external moment. The rigid body is discretized 
by a finite number of particles whose relative positions remain unchanged during the 
simulation. The external forces are calculated considering the effect of gravity 𝑓𝑓𝑔𝑔, 
hydrodynamic forces on the rigid surface 𝑓𝑓ℎ and contact forces between the rigid bodies 𝑓𝑓𝑐𝑐. 
The contribution of hydrodynamic added to gravity force and moment 𝑀⃗⃗⃗𝑀 acting on the rigid 
body are calculated as 

𝑓𝑓ℎ + 𝑓𝑓𝑔𝑔 = −∬ 𝑃𝑃𝑃𝑃𝑠𝑠
𝑆𝑆

+ 𝑚𝑚𝑔⃗𝑔, (12) 

𝑀⃗⃗⃗𝑀 = −∬ 𝑟𝑟×𝑃𝑃𝑃𝑃𝑠𝑠
𝑆𝑆

, (13) 

where the vector 𝑟𝑟 denotes the position vector from the center of the rigid body and 𝑑𝑑𝑠𝑠 is 
the area multiplied by the normal vector on the rigid body surface. Focusing the impulsive 
hydrodynamic loads on the rigid solid, shear forces were neglected in Eq. 12 and only the 
normal force due pressure was considered. 

The contact/collision force between the rigid bodies 𝑓𝑓𝑐𝑐 is decomposed into normal 𝑓𝑓𝑛𝑛 and 
tangential 𝑓𝑓𝑠𝑠 components. Both forces are modeled by using a penalty-based spring dashpot 
model inspired by the Discrete Element Modelling (DEM) formulation [12]. They are 
decomposed into a repulsion force 𝑓𝑓𝑟𝑟, proportional to the penetration between particles, and a 
damping force 𝑓𝑓𝑑𝑑, representing the energy dissipation during the deformation. 

The normal forces between a pair of particles 𝑖𝑖𝑖𝑖 are described following a non-linear 
Hertz’s elastic contact theory [13]: 

𝑓𝑓𝑛𝑛,𝑖𝑖𝑖𝑖 = 𝑓𝑓𝑛𝑛,𝑖𝑖𝑖𝑖
𝑟𝑟 + 𝑓𝑓𝑛𝑛,𝑖𝑖𝑖𝑖

𝑑𝑑 = 𝑘𝑘𝑛𝑛,𝑖𝑖𝑖𝑖𝛿𝛿𝑖𝑖𝑖𝑖
3/2𝑛⃗⃗𝑛𝑐𝑐 − 𝑐𝑐𝑛𝑛,𝑖𝑖𝑖𝑖𝛿𝛿𝑖𝑖𝑖𝑖

1/4𝛿̇𝛿𝑖𝑖𝑖𝑖𝑛⃗⃗𝑛𝑐𝑐 , (14) 

where 𝑘𝑘𝑛𝑛,𝑖𝑖𝑖𝑖 is the stiffness constant of pair 𝑖𝑖𝑖𝑖, 𝛿𝛿𝑖𝑖𝑖𝑖 = 𝑙𝑙0 − ‖𝑟𝑟𝑖𝑖𝑖𝑖‖ is the particle overlap 
(penetration), 𝛿̇𝛿𝑖𝑖𝑖𝑖 = (𝑢⃗⃗𝑢𝑗𝑗 − 𝑢⃗⃗𝑢𝑖𝑖) ∙ 𝑛⃗⃗𝑛𝑐𝑐 is the rate of penetration, 𝑐𝑐𝑛𝑛,𝑖𝑖𝑖𝑖 is the damping constant and 
𝑛⃗⃗𝑛𝑐𝑐 is the contact/collision normal vector.  

The stiffness constant and damping constant are given by 
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𝑘𝑘𝑛𝑛,𝑖𝑖𝑖𝑖 = 4
3𝐸𝐸𝑖𝑖𝑖𝑖√𝑙𝑙0,𝑖𝑖𝑖𝑖 , 𝑐𝑐𝑛𝑛,𝑖𝑖𝑖𝑖 = 𝐶𝐶𝑛𝑛√6𝑚𝑚𝑖𝑖𝑖𝑖𝐸𝐸𝑖𝑖𝑖𝑖√𝑙𝑙0,𝑖𝑖𝑖𝑖 , (15) 

where 𝐶𝐶𝑛𝑛 is the ratio of the collision (which must be specified) and 𝐸𝐸𝑖𝑖𝑖𝑖, 𝑚𝑚𝑖𝑖𝑖𝑖 and 𝑙𝑙0,𝑖𝑖𝑖𝑖 are 
obtained as 

𝐸𝐸𝑖𝑖𝑖𝑖 =
𝐸𝐸𝑖𝑖𝐸𝐸𝑗𝑗

(1 − 𝜈𝜈𝑗𝑗)𝐸𝐸𝑖𝑖 + (1 − 𝜈𝜈𝑖𝑖)𝐸𝐸𝑗𝑗
, 𝑚𝑚𝑖𝑖𝑖𝑖 =

𝑚𝑚𝑖𝑖𝑚𝑚𝑗𝑗
𝑚𝑚𝑖𝑖 + 𝑚𝑚𝑗𝑗

, 𝑙𝑙0,𝑖𝑖𝑖𝑖 =
𝑙𝑙0,𝑖𝑖𝑙𝑙0,𝑗𝑗
𝑙𝑙0,𝑖𝑖 + 𝑙𝑙0,𝑗𝑗

, (16) 

with 𝐸𝐸𝑖𝑖, 𝐸𝐸𝑗𝑗; and 𝜈𝜈𝑖𝑖, 𝜈𝜈𝑗𝑗 as the Young’s modulus and the Poisson’s ratio of particles 𝑖𝑖 and 𝑗𝑗, 
respectively. In the present work, only one resolution 𝑙𝑙0 is used for all domain, thus leading to 
𝑙𝑙0,𝑖𝑖𝑖𝑖 = 𝑙𝑙0/2. In case 𝑗𝑗 is a particle belonging to a fixed rigid wall, 𝑚𝑚𝑗𝑗  →  ∞, implying that 
𝑚𝑚𝑖𝑖𝑖𝑖 = 𝑚𝑚𝑖𝑖. 

Tangential forces are given by a linear dash-pot following by the Coulomb friction law or 
repulsive and damped forces by assuming a linear model. The Coulomb law is modified with 
a sigmoidal function in order to make it continuous at the origin regarding the tangential 
velocity [14]: 

𝑓𝑓𝑡𝑡,𝑖𝑖𝑖𝑖 = min(𝜇𝜇𝑗𝑗‖𝑓𝑓𝑛𝑛‖ tanh(8𝛿̇𝛿𝑖𝑖𝑖𝑖𝑡𝑡 ) 𝑡𝑡𝑐𝑐, 𝑘𝑘𝑡𝑡,𝑖𝑖𝑖𝑖𝛿𝛿𝑖𝑖𝑖𝑖𝑡𝑡 𝑡𝑡𝑐𝑐 − 𝑐𝑐𝑡𝑡,𝑖𝑖𝑖𝑖𝛿̇𝛿𝑖𝑖𝑖𝑖𝑡𝑡 𝑡𝑡𝑐𝑐 , ). (17) 

Here, 𝜇𝜇𝑗𝑗 is the kinetic friction coefficient for the pair of particles 𝑖𝑖 and 𝑗𝑗, 𝛿𝛿𝑖𝑖𝑖𝑖𝑡𝑡  is the 
tangential deformation, 𝛿̇𝛿𝑖𝑖𝑖𝑖𝑡𝑡  is the rate of tangential deformation, 𝑡𝑡𝑐𝑐 is the tangential 
contact/collision vector and 𝑘𝑘𝑡𝑡,𝑖𝑖𝑖𝑖 stiffness and 𝑐𝑐𝑡𝑡,𝑖𝑖𝑖𝑖 damping constants [15].  

After calculation all contacts between particles, the contact forces for each rigid body is 
given by 

𝑓𝑓𝑛𝑛 = 1
𝑁𝑁𝑁𝑁∑𝑓𝑓𝑛𝑛,𝑖𝑖𝑖𝑖

𝑟𝑟 + 𝑓𝑓𝑛𝑛,𝑖𝑖𝑖𝑖
𝑑𝑑

𝑁𝑁𝑁𝑁

𝑗𝑗=1
, 𝑓𝑓𝑡𝑡 = 1

𝑁𝑁𝑁𝑁∑𝑓𝑓𝑡𝑡,𝑖𝑖𝑖𝑖

𝑁𝑁𝑁𝑁

𝑗𝑗=1
 (18) 

where 𝑁𝑁𝑐𝑐 is the number of particles that are in contact with particle 𝑖𝑖. 

2.4 Contact/collision normal vector 

The contact/collision normal vector 𝑛⃗⃗𝑛𝑐𝑐 is computed from the particle features at the 
moment just before the collision. A feature can be a vertex, an edge or a face of the rigid 
body. In the present work, the geometry of rectangular parallelepiped is enough to model all 
rigid bodies, therefore the number of neighbor particles are used to identify the features of a 
particle 𝑖𝑖. 

During the simulations, the contact/collision normal vector between a pair of particles 𝑖𝑖 
and 𝑗𝑗 is defined by: 

1. Particle 𝑖𝑖 or 𝑗𝑗 is face, the unit vector parallel to the face normal is used as 𝑛⃗⃗𝑛𝑐𝑐. 
2. Neither particles are face, the unit vector distance between particles is used as 𝑛⃗⃗𝑛𝑐𝑐. 

The direction of 𝑛⃗⃗𝑛𝑐𝑐 is chosen such that the relative velocity of the rigid bodies at the 
collision point along the collision normal is negative, indicating that the bodies are moving 
towards each other [16]. 
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3 RESULTS AND DISCUSSIONS 

3.1 Contact friction model 
In order to verify the present friction model, a simple case of a free solid sliding on a 

sloped surface was simulated. The free solid is modeled as a rectangular cuboid with a 
squared base (0.2 x 0.2 x 0.1 m³) and the surface is modeled as an inclined plane of length 
10.2 m and the angle of 30 degrees with horizontal, as shown in Figure 1. The free solid has 
no initial velocity and only gravitational and friction forces act on its motion. The numerical 
parameters and material properties are given in Table 1. 

 
Figure 1: Main dimensions of the sloped surface and the sliding body. 

Table 1: Sliding body. Numerical parameters and material properties. 

Solid lo (m) L/lo ρ (kg/m3) m (kg) ν E (MPa) Cn (kg/s) 
Body 0.025 8 780 3.12 0.3 50 1 
Plane - ∞ ∞ 0.3 50 -/- 

 
Four cases with different numerical friction coefficients (𝜇𝜇𝑛𝑛𝑛𝑛𝑛𝑛 = 0.15, 0.25, 0.35, 0.45) 

were simulated and the equivalent analytical friction coefficient 𝜇𝜇𝑎𝑎𝑎𝑎𝑎𝑎 were obtained by the 
computed accelerations of the free solid. The evolution of the body’s position for both 
analytical and numerical results and the relation between the numerical and analytical friction 
coefficients are illustrated in Figure 2 (a) and Figure 2 (b), respectively. The computed 
positions of the free solid are very close to the analytical ones, although the numerical friction 
coefficients are related to the analytical ones by a factor of 1.22. 
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(a) 

 

(b) 

Figure 2: (a) Position of the free solid. (b) Numerical and analytical friction coefficient relation. 

3.2 3D dam breaking 
To verify the contact-contact model in a case of high complexity, the model is applied to a 

case of free solid transport in free surface flow, modeled as a 3D experimental dam breaking 
event, which free cubic solids interact each other and fixed walls [6].  

 

 

(a) (b) 
Figure 3: (a) Main dimensions of the 3D dam breaking. (b) Triangular formation of cubes. 

The experiment consists of a very long canal with dimensions 8.0 x 0.7 x 0.7 m³, a squared 
floodgate that holds water to the height of 0.4 m, installed at 4.50 m from the upstream wall, 
and 6 cubes of side 0.15 m arranged in a triangular formation. The cubes are placed 1.7 m 
away from the gate, where each cube is separated from its neighbor by 0.05 m. The central 
cube has its center of mass aligned with the central axis of the canal. Figure 3 shows the main 
dimensions of the geometry. 

The floodgate ascends with a constant velocity of 1.9 m/s, to open completely in 0.21 s. 
The simulation is performed with time step Δ𝑡𝑡 = 5𝑥𝑥10−4𝑠𝑠, the coefficient of artificial 

740



Rubens A. Amaro Junior, Pedro H. S. Osello and Liang-Yee Cheng 
 
 
 

 
 
 
 

8 

compressibility 𝛼𝛼 = 10−8, the relaxation coefficient 𝛾𝛾 = 0.05 and free surface threshold 
values 𝛽𝛽1 = 0.97 and 𝛿𝛿1 = 0.2. The other parameters used can be observed in Table 2. 

Table 2: 3D dam breaking. Numerical and materials properties. 

Solid lo (m) L/lo ρ (kg/m3) m (kg) ν E (GPa) Cn (kg/s) µ 
Cube 0.0125 12 800 2.7 0.3 3 0.1 0.15 
Wall - ∞ ∞ 0.3 210 - 0.25 

 
Figure 4 shows a sequence of frames from the experiment, simulations obtained by SPH 

[6], and the simulation carried in the present study. At the instant 0.95 s, the water front 
begins transporting the cubes downstream. The cubes at the base are transported by the water 
front while the remaining cubes fall at the instant 1.15 s. After this, all the cubes are carried 
by the wave front, although the cubes at the base present a delay in the motion computed by 
the present simulation compared to experimental results and simulation obtained by SPH 
method. 

 

t = 0.95 s 

 

t = 1.15 s 

 

t = 1.45 s 

 

Figure 4: Snapshots of the 3D dam breaking simulation. (top) Experiment, (middle) simulations obtained by 
SPH [6], and (bottom) the simulation carried in the present study. 

The position of the center of mass of the cube at the top obtained by the present simulation, 
and experimental and numerical results are given in Figure 5. After the fluid hits the cubes at 
base, the cube at the top starts the motion along the longitudinal axis at the instant 0.85 s. The 
cube falls and is transported by wave front between the instants 1.07 and 1.40 s. Compared to 
experimental results, the cube presents a lower returning at the instant 1.30 s, and a faster fall 
between the instants 1.22 and 1.36 s. However, both computed motions along the x and z 
directions show a good agreement with experimental ones. 
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(a) 

 
(b) 

Figure 5: Cube at the top. Motion along the (a) longitudinal and (b) vertical directions. 

4 FINAL CONSIDERATIONS 
A nonlinear spring and dashpot model for solid-solid contact and/or collision, based on 

contact mechanics theories, was investigated for Moving Particle Simulation (MPS) method 
in the present work. At first, the computed motion of a solid sliding on a sloped surface was 
compared to analytical motion, providing a linear relation between the numerical and 
analytical friction coefficients. After that, the model was applied to a case of solid transport in 
free surface flow, modeled as a dam breaking event with cubic solids interact each other and 
fixed walls. The positions of the solid obtained by the proposed model were compared with 
available numerical and experimental results. The comparisons of the results showed the 
effectiveness of the present approach to reproduce the main behaviors of free surface flow and 
multi-body interactions. 
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