6,833 research outputs found

    An adaptive noise removal approach for restoration of digital images corrupted by multimodal noise

    Get PDF
    Data smoothing algorithms are commonly applied to reduce the level of noise and eliminate the weak textures contained in digital images. Anisotropic diffusion algorithms form a distinct category of noise removal approaches that implement the smoothing process locally in agreement with image features such as edges that are typically determined by applying diverse partial differential equation (PDE) models. While this approach is opportune since it allows the implementation of feature-preserving data smoothing strategies, the inclusion of the PDE models in the formulation of the data smoothing process compromises the performance of the anisotropic diffusion schemes when applied to data corrupted by non-Gaussian and multimodal image noise. In this paper we first evaluate the positive aspects related to the inclusion of a multi-scale edge detector based on the generalisation of the Di Zenzo operator into the formulation of the anisotropic diffusion process. Then, we introduce a new approach that embeds the vector median filtering into the discrete implementation of the anisotropic diffusion in order to improve the performance of the noise removal algorithm when applied to multimodal noise suppression. To evaluate the performance of the proposed data smoothing strategy, a large number of experiments on various types of digital images corrupted by multimodal noise were conducted.Keywords — Anisotropic diffusion, vector median filtering, feature preservation, multimodal noise, noise removal

    Advanced signal processing methods for plane-wave color Doppler ultrasound imaging

    Get PDF
    Conventional medical ultrasound imaging uses focused beams to scan the imaging scene line-by-line, but recently however, plane-wave imaging, in which plane-waves are used to illuminate the entire imaging scene, has been gaining popularity due its ability to achieve high frame rates, thus allowing the capture of fast dynamic events and producing continuous Doppler data. In most implementations, multiple low-resolution images from different plane wave tilt angles are coherently averaged (compounded) to form a single high-resolution image, albeit with the undesirable side effect of reducing the frame rate, and attenuating signals with high Doppler shifts. This thesis introduces a spread-spectrum color Doppler imaging method that produces high-resolution images without the use of frame compounding, thereby eliminating the tradeoff between beam quality, frame rate and the unaliased Doppler frequency limit. The method uses a Doppler ensemble formed of a long random sequence of transmit tilt angles that randomize the phase of out-of-cell (clutter) echoes, thereby spreading the clutter power in the Doppler spectrum without compounding, while keeping the spectrum of in-cell echoes intact. The spread-spectrum method adequately suppresses out-of-cell blood echoes to achieve high spatial resolution, but spread-spectrum suppression is not adequate for wall clutter which may be 60 dB above blood echoes. We thus implemented a clutter filter that re-arranges the ensemble samples such that they follow a linear tilt angle order, thereby compacting the clutter spectrum and spreading that of the blood Doppler signal, and allowing clutter suppression with frequency domain filters. We later improved this filter with a redesign of the random sweep plan such that each tilt angle is repeated multiple times, allowing, after ensemble re-arrangement, the use of comb filters for improved clutter suppression. Experiments performed using a carotid artery phantom with constant flow demonstrate that the spread-spectrum method more accurately measures the parabolic flow profile of the vessel and outperforms conventional plane-wave Doppler in both contrast resolution and estimation of high flow velocities. To improve velocity estimation in pulsatile flow, we developed a method that uses the chirped Fourier transform to reduce stationarity broadening during the high acceleration phase of pulsatile flow waveforms. Experimental results showed lower standard deviations compared to conventional intensity-weighted-moving-average methods. The methods in this thesis are expected to be valuable for Doppler applications that require measurement of high velocities at high frame rates, with high spatial resolution

    Rank M-type Filters for Image Denoising

    Get PDF

    Multi-Scale Edge Detection Algorithms and Their Information-Theoretic Analysis in the Context of Visual Communication

    Get PDF
    The unrealistic assumption that noise can be modeled as independent, additive and uniform can lead to problems when edge detection methods are applied to low signal-to-noise ratio (SNR) images. The main reason for this is because the filter scale and the threshold for the gradient are difficult to determine at a regional or local scale when the noise estimate is on a global scale. Therefore, in this dissertation, we attempt to solve these problems by using more than one filter to detect the edges and discarding the global thresholding method in the edge discrimination. The proposed multi-scale edge detection algorithms utilize the multi-scale description to detect and localize edges. Furthermore, instead of using the single default global threshold, a local dynamic threshold is introduced to discriminate between edges and non-edges. The proposed algorithms also perform connectivity analysis on edge maps to ensure that small, disconnected edges are removed. Experiments where the methods are applied to a sequence of images of the same scene with different SNRs show the methods to be robust to noise. Additionally, a new noise reduction algorithm based on the multi-scale edge analysis is proposed. In general, an edge—high frequency information in an image—would be filtered or suppressed after image smoothing. With the help of multi-scale edge detection algorithms, the overall edge structure of the original image could be preserved when only the isolated edge information that represents noise gets filtered out. Experimental results show that this method is robust to high levels of noise, correctly preserving the edges. We also propose a new method for evaluating the performance of edge detection algorithms. It is based on information-theoretic analysis of the edge detection algorithms in the context of an end-to-end visual communication channel. We use the information between the scene and the output of the edge-detection algorithm, ala Shannon, to evaluate the performance. An edge detection algorithm is considered to have high performance only if the information rate from the scene to the edge approaches the maximum possible. Therefore, this information-theoretic analysis becomes a new method to allow comparison between different edge detection operators for a given end-to-end image processing system

    An Image Enhancement Approach to Achieve High Speed Using Adaptive Modified Bilateral Filter for Satellite Images Using FPGA

    Get PDF
    For real time application scenarios of image processing, satellite imaginary has grown more interest by researches due to the informative nature of image. Satellite images are captured using high quality cameras. These images are captured from space using on-board cameras. Wrong ISO setting, camera vibrations or wrong sensory setting causes noise. The degraded image can cause less efficient results during visual perception which is a challenging issue for researchers. Another reason is that noise corrupts the image during acquisition, transmission, interference or dust particles on the scanner screen of image from satellite to the earth stations. If quality degraded images are used for further processing then it may result in wrong information extraction. In order to cater this issue, image filtering or denoising approach is required. Since remote sensing images are captured from space using on-board camera which requires high speed operating device which can provide better reconstruction quality by utilizing lesser power consumption. Recently various approaches have been proposed for image filtering. Key challenges with these approaches are reconstruction quality, operating speed, image quality by preserving information at edges on image. Proposed approach is named as modified bilateral filter. In this approach bilateral filter and kernel schemes are combined. In order to overcome the drawbacks, modified bilateral filtering by using FPGA to perform the parallelism process for denoising is implemented

    A Data Cube Extraction Pipeline for a Coronagraphic Integral Field Spectrograph

    Get PDF
    Project 1640 is a high contrast near-infrared instrument probing the vicinities of nearby stars through the unique combination of an integral field spectrograph with a Lyot coronagraph and a high-order adaptive optics system. The extraordinary data reduction demands, similar those which several new exoplanet imaging instruments will face in the near future, have been met by the novel software algorithms described herein. The Project 1640 Data Cube Extraction Pipeline (PCXP) automates the translation of 3.8*10^4 closely packed, coarsely sampled spectra to a data cube. We implement a robust empirical model of the spectrograph focal plane geometry to register the detector image at sub-pixel precision, and map the cube extraction. We demonstrate our ability to accurately retrieve source spectra based on an observation of Saturn's moon Titan.Comment: 35 pages, 15 figures; accepted for publication in PAS

    Synthetic Aperture Radar (SAR) data processing

    Get PDF
    The available and optimal methods for generating SAR imagery for NASA applications were identified. The SAR image quality and data processing requirements associated with these applications were studied. Mathematical operations and algorithms required to process sensor data into SAR imagery were defined. The architecture of SAR image formation processors was discussed, and technology necessary to implement the SAR data processors used in both general purpose and dedicated imaging systems was addressed

    Accurate Permittivity Measurements for Microwave Imaging via Ultra-Wideband Removal of Spurious Reflectors

    Get PDF
    The use of microwave imaging is becoming more prevalent for detection of interior hidden defects in manufactured and packaged materials. In applications for detection of hidden moisture, microwave tomography can be used to image the material and then perform an inverse calculation to derive an estimate of the variability of the hidden material, such internal moisture, thereby alerting personnel to damaging levels of the hidden moisture before material degradation occurs. One impediment to this type of imaging occurs with nearby objects create strong reflections that create destructive and constructive interference, at the receiver, as the material is conveyed past the imaging antenna array. In an effort to remove the influence of the reflectors, such as metal bale ties, research was conducted to develop an algorithm for removal of the influence of the local proximity reflectors from the microwave images. This research effort produced a technique, based upon the use of ultra-wideband signals, for the removal of spurious reflections created by local proximity reflectors. This improvement enables accurate microwave measurements of moisture in such products as cotton bales, as well as other physical properties such as density or material composition. The proposed algorithm was shown to reduce errors by a 4:1 ratio and is an enabling technology for imaging applications in the presence of metal bale ties
    corecore