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Abstract  

Data smoothing algorithms are commonly applied to reduce the level of noise and eliminate the weak 

textures contained in digital images. Anisotropic diffusion algorithms form a distinct category of noise 

removal approaches that implement the smoothing process locally in agreement with image features such 

as edges that are typically determined by applying diverse partial differential equation (PDE) models. 

While this approach is opportune since it allows the implementation of feature-preserving data smoothing 

strategies, the inclusion of the PDE models in the formulation of the data smoothing process compromises 

the performance of the anisotropic diffusion schemes when applied to data corrupted by non-Gaussian and 

multimodal image noise. 

In this paper we first evaluate the positive aspects related to the inclusion of a multi-scale edge detector 

based on the generalisation of the Di Zenzo operator into the formulation of the anisotropic diffusion 

process. Then, we introduce a new approach that embeds the vector median filtering into the discrete 

implementation of the anisotropic diffusion in order to improve the performance of the noise removal 

algorithm when applied to multimodal noise suppression. To evaluate the performance of the proposed 

data smoothing strategy, a large number of experiments on various types of digital images corrupted by 

multimodal noise were conducted. 

 

Keywords — Anisotropic diffusion, vector median filtering, feature preservation, multimodal noise, noise 

removal.  



 

1. Introduction 

     Noise reduction algorithms are widely accepted as fundamental precursors to early computer vision 

tasks such as edge detection, data clustering and image segmentation. Over the past few decades numerous 

approaches have been proposed where the main objective was the implementation of feature preserving 

noise removal strategies. In the development of noise removal algorithms the prior knowledge about the 

noise distribution is essential (where the most common are the Gaussian distributed and the impulse noise 

[1,2]) and the main efforts were focused on the development of optimal strategies that addressed the 

accurate image restoration for one particular noise model. For instance, when dealing with Gaussian 

distributed noise, the image restoration process can be achieved by applying local averaging operators 

such as Gaussian filtering [2], but it is useful to note that the noise removal is obtained at the cost of 

attenuating contextual features such as edges. To circumvent this undesired effect associated with linear 

smoothing strategies, the noise removal process has been reformulated using non-linear schemes in order 

to achieve the preservation of meaningful contextual features. A characteristic of many feature preserving 

non-linear noise removal techniques is that they incorporate the gradient information into the data 

smoothing process and this leads to a considerable reduction in their performance when applied to data 

corrupted by non-Gaussian distributed noise (and in a more generic case to images corrupted by 

multimodal noise, where at least one component of the multimodal noise has a non-Gaussian probability 

density function). In this paper we focus our attention on noise removal strategies based on anisotropic 

diffusion [3-11] to improve their performance when dealing with non-Gaussian distributed noise. To 

achieve this goal we propose the inclusion of the vector median filtering (VMF) [12-16] approach into the 

formulation of the anisotropic diffusion (AD), where the purpose is the development of an image 

restoration strategy that outperforms both the AD and VMF algorithms when applied to data corrupted by 

multimodal image noise. The main contributions associated with this work are located in the inclusion of a 

multi-scale edge detector into the formulation of the Perona-Malik (PM) anisotropic diffusion scheme [3] 

and in the implementation of a new noise removal framework that is able to restore digital images that are 

corrupted by multimodal noise.  



 

     This paper is organised as follows. In Section 2 the multi-scale anisotropic diffusion algorithm is 

introduced. Section 3 details the VMF denoising technique and the proposed multi-stage image restoration 

scheme. Section 4 presents the experimental results, while Section 5 concludes this paper. 

 
 
2. Anisotropic Diffusion. Problem Formulation 

     The anisotropic diffusion noise removal strategy has been initially proposed by Perona and Malik in [3] 

where the data smoothing has been formulated based on the principles associated with the heat diffusion 

process. Using this concept, data smoothing is performed inside the perceptual coherent image regions and 

suppressed at regions’ boundaries. This feature-preserving noise removal approach can be efficiently 

defined in terms of the derivative of the flux function. If we assume that the image is defined as a discrete 

signal I(x,y):Rm→Rn Γ∈),( yx , Г R⊂ 2 is the image domain and for a standard color image m = 2 and n = 

3, then the anisotropic diffusion can be formulated as follows, 
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where I(x,y) denotes the intensity of the pixel at position (x,y) in the image I, (x,y,t) denotes the 

gradient calculated for the pixel (x,y) at iteration t, div is the divergence operator and D(.) is the diffusion 

function. In equation (1), D(.) is a monotonically decreasing function bounded in the interval (0,1] that 

decays with the increase in the value of the gradient. Typically, the diffusion function is implemented 

using either exponential or reciprocal forms as illustrated in equation (2), 
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where d is the diffusion parameter that controls the strength of the filtering process. While the 

implementation in the discrete domain of the Perona–Malik (PM) anisotropic diffusion shown in equation 



 

(1) involves an iterative scheme, the standard PM formulation generates substantial errors when the 

intensity differences between the pixel of interest (x,y) and its neighboring pixels do not approximate a 

normal distribution. An effective solution to improve the numerical stability of the PM formulation resides 

in the extraction of the gradient information from the image that is convolved with a Gaussian function 

( , where * defines the convolution operator and k is the scale of the 

Gaussian function). To provide more local (contextual) support for true edges during the filtering process, 

in this paper the diffusion functions are calculated in the multi-scale sense as illustrated in equation (3). 
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where Gk is the Gaussian function with standard deviation k, d is the diffusion parameter and s denotes the 

number of scales. As illustrated in equation (1), the stability of the smoothing process is in direct 

relationship with the accuracy in the calculation of the edge information in the image. In the original 

formulation proposed by Perona and Malik [3] the gradient operator is calculated using the four-connected 

neighbourhood differences and this approach proved inefficient when applied to data characterised by 

weak edges and corrupted by noise [17].  To alleviate these problems, in this paper we propose to extract 

the edge information using a multi-scale structure tensor and this procedure will be detailed in the next 

section of the paper. It is useful to mention that other notable improvements to the standard (PM) 

anisotropic diffusion equation are represented by the forward and backward (FAB) anisotropic diffusion 

[7,9,10] and the implementation of time-controlled formulations [21] that prevent the suppression of the 

medium gradients during the iterative noise removal process. We will not discuss these techniques in this 

paper since the numerical stability of the diffusion equation is beyond the scope of this study.  



 

 
2.1. Multi-scale edge detector 

In the context of two-dimensional images, the structure tensor is a matrix representation of the partial 

derivatives calculated in two orthogonal directions [17,18] and it has been widely applied to extract low-

level features in digital images such as edges. To alleviate the sampling problems associated with the 

structure tensor as described by Di Zenzo [19], in this paper we propose to generalise the standard 

formulation in the multi-scale sense. Thus, in our implementation the structure tensor is calculated for 

each pixel at the specified scale k in the image as follows,  
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where n represents the number of color planes and  (for a standard color image n=3, 

i.e. f = [f

),(),( yxIGyxf k ∗=

1, f2, f3]), and ( )yx ∂
∂

∂
∂ ,  are the partial derivatives in the horizontal and vertical directions, 

respectively. The next step involves the eigenvector decomposition of the matrix Mk(x,y) to determine the 

eigenvalues λ1
k
 and λ2

k, λ1
k ≥ λ2

k
 (since matrix Mk(x,y) is symmetric both eigenvalues are real). If λ1

k >> λ2
k
 

and λ1
k>>0, then the pixel is an edge and the multi-scale edge response is calculated as follows, 
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As indicated in equation (5), the edge response calculated for each pixel in the image has only positive 

values that represent the magnitude of the derivative along the principal direction, and this generates a 

problem when the edge response E replaces in the calculation of the derivative of the flux function (see 

equation 1). This is motivated by the fact that the values of the pixels resulting after each iteration would 

follow a monotonic ascent irrespective of the values of the neighboring pixels. 

I∇

 

 



 

Proposition: If the gradient  in equation (1) is replaced with the edge response calculated with 

equation (5), the intensity value of the pixel (x,y) in image I follows a monotonic ascent with the increase 

in the number of iterations. 

I∇

 

Proof:  The Perona-Malik equation shown in (1) can be implemented in the two-dimensional (2D) discrete 

domain as follows,  
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where  is the time step, are the discrete spatial distances of the two-dimensional 

image grid, t is the iteration index, 
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function and defines the four connected neighborhood of the pixel (x,y). If we replace the gradient 
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1,0((.)∈D

), yx(Φ

), yx(Im∇ m(x,y) in equation (6) and , then,  

 
),,()1,,( tyxItyxI ≥+                                                                       (7) 

 
 
To address the inconvenience that is associated with the calculation of the multi-scale edge response 

Em(x,y), in our approach the value of the edge response Em is multiplied by the sign of the gradient to 

locally preserve the direction of variation in the image intensity data. This is implemented using the 

following expression,  
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                     (a)                                        (b)                                        (c)                            (d)                   (e) 
 

Fig. 1. The results returned by the standard (PM) algorithm and the proposed multi-scale anisotropic diffusion 

(MS-AD) when applied to standard test images. (a) Original images [20]. (b) Standard PM anisotropic diffusion 

results [3]. (c) Multi-scale anisotropic diffusion results. (d) Close-up details from (b). (e) Close-up details from 

(c).  

 
 

Fig. 1 depicts the results obtained when the original anisotropic diffusion (AD), as implemented by 

Perona and Malik [3], and the proposed multi-scale AD are applied to standard test images [20]. The 

experimental results indicate that the proposed multi-scale AD formulation outperforms the original PM-

AD and the advantage associated with our implementation is especially noticeable in areas adjacent to 

medium gradients. In all experiments the diffusion parameter d has been set to 10.0 and the algorithms 

were iterated 50 times. The multi-scale edge detector and the multi-scale diffusion function have been 

calculated for scales in the interval [0, 3.0] where the difference between two consecutive scales is 0.5.  In 

our experiments we have restricted the range of scales in the interval [0, 3.0] since the gradient 

information extracted from images that are convolved with a Gaussian function whose scale is set above 



 

3.0 has a negligible effect in the calculation of the multi-scale edge detector that is detailed in Section 2.1. 

This is motivated by the fact that at high-blurring scales the gradient information present in the image is 

substantially attenuated and it has no tangible effects in the preservation of the image features that are 

generated by medium gradients.  

 
 

   
                                       (a)                                        (b)                                       (c) 
 

   
                                       (d)                                       (e)                                        (f) 
 

Fig. 2. The results returned by well-known feature-preserving noise removal strategies when applied to the 

image shown in (f). (a) PM anisotropic diffusion (d=10) [3]. (b) Total variation flow (∆t = 0.1, β=0.1) 

[21]. (c) Bilateral filtering (σd = 0.5, σr = 30) [22]. (d) Non-Local Means (t=7, f=1, h=30) [23]. (e) Mean 

shift filtering (σs = 8, σr = 4) [24]. (f) Original image corrupted by impulse noise (probability = 0.2).   

 

While the inclusion of the gradient information in the formulation of the anisotropic diffusion process is 

desirable as it allows the implementation of feature-preserving noise removal schemes, on the other hand 

is detrimental, as it introduces instabilities around pixels that are generated by impulse noise. This 



 

problem forms one of the major drawbacks associated with all feature-preserving noise removal 

algorithms that incorporate either partial differential equation (PDE) models or pixel similarity constraints 

in the data smoothing process and is not restricted only to anisotropic diffusion schemes. This is 

demonstrated in Fig. 2 where experimental results returned by a number of feature preserving noise 

removal techniques (when applied to an image corrupted by impulse noise) are illustrated.  

 

3. Proposed Method 

     Based on the observation that the noise removal techniques that incorporate PDE models in the data 

smoothing process produce inaccurate results when applied to data corrupted by impulse noise, in this 

paper we propose the implementation of a multi-phase smoothing algorithm where the key issue is the 

identification of the pixels that are generated by non-Gaussian distributed noise.  

      In this regard, we attempt to combine two different noise removal strategies in order to implement a 

data smoothing scheme that exploits the advantages associated with each smoothing strategy. To this end, 

the anisotropic diffusion filtering and the Vector Median Filtering (VMF) are adaptively combined in 

order to produce a robust filtering algorithm that is able to return improved performance when applied to 

data corrupted by multimodal noise.  

 
 
3.1. Multimodal noise model 
 
The overall image distortions can be mathematically expressed by the following formulation,  
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where I is the observed image, F denotes the noiseless image, h defines the function that implements the 

optical distortions and out of focus effects, η(x,y) is the noise function and * is the convolution operator. 

Since the errors inserted by optical distortions do not functionally depend on the image acquisition 

process, they are typically compensated for by resorting to image transforms that implement inverse radial 

distortions. Thus, in this paper we aim to correct the errors caused by image noise, while the errors 



 

inserted by the optical equipment are disregarded. The noise model used in this paper assumes that the 

data is corrupted by Gaussian and impulse noise, as this noise model accurately approximates the errors 

generated by the quantum noise in CCD and CMOS sensing elements, the errors that are caused by the 

sensor and lens dust and the errors introduced by the electronic transmission of the image data. It is useful 

to note that the errors inserted by the sensing device are accurately modelled by the Gaussian distributed 

noise, while the latter errors caused by dust or data transmission are well approximated by the impulse 

noise. Based on the fact that the function η(x,y) is defined by two noisy components, namely the Gaussian 

and impulse noise, the image formation process can be expressed as follows,  
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where N (0,σ) is the Gaussian noise with zero mean and standard deviation σ,  α is the probability of the 

impulse noise, sup and inf are the supremum and infimum functions, respectively, and Γ is the R2 image 

domain. As illustrated in equation (10) the strength of the noise component is controlled by two 

uncorrelated parameters, σ and α, and to generate a realistic corruption with multimodal noise, in our work 

each noise component has been independently applied on each color channel of the original image data. In 

the remainder of this section we will introduce the VMF scheme and the discussion will be continued with 

the description of the proposed image restoration technique that integrates the multiscale anisotropic 

diffusion (MS-AD) and the VMF into an adaptive filtering strategy.  

 

3.2. Vector Median Filtering 

     The vector median filtering (VMF) represents a generalisation of the standard median filtering and has 

been initially introduced by Astola et al [12]. VMF attempts to minimise the distances between the 

intensities of the pixels situated within a predefined neighbourhood in order to implement the impulse 



 

noise suppression. Let I(x,y) be the intensity of the pixel at location (x,y) in the image I. The first step of 

the VMF filtering scheme evaluates the distances between the intensity values of the pixels situated in a 

neighborhood Ψ around the central pixel (x,y) as follows, 
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where ||.|| defines the L2 norm. The VMF performs the ordering of the Lpq values and the intensity of the 

central pixel of the neighbourhood Ψ, I(x,y), is replaced by the intensity of the pixel that returns the 

minimum value in the { Ψ∈),( qpLpq } set.  
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3.3. Integration of the MS-AD and VMF noise removal strategies 

     As indicated in Section 1, the AD formulation is able to preserve edges during denoising, but is not 

able to produce accurate results when dealing with images corrupted by impulse noise. Conversely, the 

VMF scheme has been specifically designed to eliminate the impulse noise, but the denoising process is 

achieved at the expense of weak feature preservation. In order to exploit the favourable properties 

associated with both AD and VMF filtering schemes, we propose the development of a switch mechanism 

that is able to adaptively select the noise removal strategy for each pixel in the image. If we examine 

equation (10) in detail, the error between the observed image and the noiseless image can be defined as 

follows,  
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where  denotes the set of extreme values associated with the 

noiseless image F that is defined on the image domain Γ. Since the errors 
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locations where the pixels in the observed image are corrupted by impulse noise, then the switch 

mechanism can be implemented as an operator that responds strongly if the pixels situated in a 

neighbourhood Ω ( Γ⊂Ω ) do not approximate a Gaussian distribution. Based on this observation, in the 

proposed noise removal scheme the impulse noise estimator (Ne) has been implemented as follows, 
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where (xc,yc) defines the coordinate of the centre of the neighborhood Ω and size(Ω) denotes the 

cardinality of the neighborhood Ω. The noise estimator is calculated for each pixel in the image and if the 

value of Ne is higher than a predefined threshold  (ξ ξ≥eN ) then the pixel is assumed to be corrupted by 

non-Gaussian noise. In our algorithm the output of the noise estimator implements the decision rule that 

selects the noise removal technique that is applied to each pixel in the image. In this regard, if the value Ne 

calculated for the pixel (x,y) is higher than the predefined threshold ξ , then the value of the pixel under 

observation will be updated using the VMF filtering scheme. Otherwise it will be updated using the 

proposed multi-scale AD approach that has been detailed in Section 2. Experimentally, we have 

determined that the value of the threshold parameter ξ  should be set in the interval [140, 260]. Within this 

range of values the proposed noise removal strategy returns optimal performance. As illustrated in Fig. 3, 

for values above the specified range, the efficiency of the proposed algorithm in rejecting the impulse 

noise decreases. If the value of the threshold parameter is set to values lower than 140, then the intensity 

value of the majority pixels in the image will be updated using the VMF component of the proposed 

algorithm and the smoothing will be achieved at the expense of weak feature preservation. In our 

implementation the parameter ξ  has been set to 160 and this value has been used in all experiments. Note 



 

that the threshold parameterξ is not dependent on the probability of the impulse noise, as the noise 

estimator Ne samples the intensity difference between the central pixel of the neighborhood Ω and the 

averaged value of its neighboring pixels (see equation 14). 

 
 

   
                                                (a)                                  (b)                                    (c) 
 

 

19

19.2

19.4

19.6

19.8

20

20.2

20.4

20.6

20.8

21

21.2

80 10
0

12
0

14
0

16
0

18
0

20
0

22
0

24
0

26
0

28
0

30
0

32
0

34
0

36
0

38
0

40
0

42
0

44
0

46
0

Threshold Parameter

PS
N

R
 (d

B
)

 
                      (d)                                    (e)                                                        (f)                
 

Fig. 3. The performance of the algorithm with respect to the variation of the ξ  parameter when applied to 

the image depicted in Fig. 2(f) (PSNR = 11.43 dB). (a) ξ =120. (b) ξ =160. (c) ξ  = 200. (d) ξ =260; (e) 

ξ =400; (f) PSNR values when the parameter ξ  is varied in the interval [80, 460]. 

 
 
 
 

4. Experimental Results 

     In this study we evaluate the performance of the proposed data smoothing technique when applied to 

the task of denoising color images. In order to achieve this goal, the original images were corrupted by 



 

multi-component (multimodal) noise and the performance of the proposed filtering scheme is 

quantitatively evaluated using the peak-signal-to-noise-ratio (PSNR).  
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where Γ R⊂ 2 is the image domain, O(x,y) defines the pixel intensities of the original image O and I(x,y) 

are the pixel intensities resulting after the data smoothing algorithms were applied to the image that was 

corrupted by multimodal noise.  Since the PSNR does not accurately sample the efficiency of the noise 

suppression process with respect to edge preservation, to complement this measure, an additional edge 

preservation index (Epi) that was suggested in [27] was also quantified.  
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where O is the original image, I defines the image resulting from the smoothing process, O  and I  are the 

mean intensity values calculated from images O and I, respectively, and . The 

Epi index is normalised in the interval [0,1] and a value closer to 1 indicate an accurate edge preservation 

attained by the data smoothing algorithm. Additionally, to quantify the perceptual color difference 

between the original image O and the output returned by the data smoothing algorithms I, we have 

calculated the CIEDE2000 (∆E

∑
Γ∈

=Λ
),(

)(),(),(
yx

ryxqrq , yx

00) index that has been detailed in [31,32]. The ∆E00 index has been 

normalised with respect to the image size and a value ∆E00=0 indicates no color difference between 

images O and I. In our experimental tests we have generated results when the performance of the proposed 

algorithm has been compared against those offered by the MS-AD, VMF3 and VMF5 techniques. To 

provide further performance evaluation details, the accuracy attained by the data smoothing strategy 

introduced in this paper has been also benchmarked against those achieved by two recently proposed state 



 

of the art image restoration methods that have been specifically designed to address the noise removal in 

images corrupted by Gaussian and impulse noise. Thus, the method proposed by Yang and Fox [29] 

(denoted as PM-Median) performs a weighted sum between the output generated by the standard PM 

anisotropic function and the median filter, while in the approach proposed by Ghita and Whelan [28], 

INEST_GVF-AM, the Gradient Vector Flow (GVF) Alvarez-Mazora diffusion equation [30] is adaptively 

coupled with the response of the median filter. It is useful to mention that in the implementation of these 

image restoration strategies the anisotropic models are coupled with the median filter and the output will 

always be a combination of these two noise reduction components. Contrary to this approach, in the image 

restoration strategy proposed in this paper a switch mechanism that responds strongly to data corrupted by 

non-Gaussian noise has been implemented to select the appropriate noise reduction technique, a solution 

that we envision has clear advantages in terms of improved feature preservation. One additional 

disadvantage associated with approaches based on coupling the anisotropic models and median filters is 

worth noticing - the intensity shifts that are introduced by the coupling process. In the experimental 

section, for consistency reasons, we will report the PSNR results for the methods proposed in [28, 29] for 

two scenarios, with (PSNR_ISC) and without (PSNR) intensity shifts (offsets) correction.   

       The first set of experiments was conducted on test images corrupted by multimodal  noise. In this 

sense, we have generated images that were corrupted by both additive Gaussian and impulse noise and 

experimental results are shown in Figs. 4 to 7. The experimental results depicted in Figs. 4 to 7 indicate 

that the MS-AD and VMF3 algorithms are clearly outperformed by the proposed and the VMF5 algorithm 

and in all experiments the proposed image restoration scheme outperformed the VMF5 algorithm when 

the examined noise removal schemes are evaluated using the PSNR metric. For the sake of completeness, 

additional numerical results including the edge preservation index (Epi) (see Eq. 16) and ∆E00 index are 

included in Tables 1 and 2 to complement the PSNR values.   
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                             (d)                                                           (e)                                                          (f) 

  
                                                               (g)                                                         (h) 
 
Fig. 4. Experimental results in the presence of multimodal noise – Lena image. (a) Test image corrupted 
by Gaussian noise (N (0,20)) and impulse noise – probability 0.1. (b) Vector Median Filter (window Ψ = 
3×3 – VMF3). (c) Vector Median Filter (window Ψ = 5×5 – VMF5). (d) Multi-scale anisotropic diffusion 
(MS-AD). (e) PM-Median. (f) INEST_GVF-AM. (g) Proposed algorithm (MS-AD-VMF, VMF window 
size Ψ = 5×5). (h) Original image. 
 
 



 

   
                            (a)                                                   (b)                                                   (c) 
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                                                        (g)                                                    (h)                                                    
 

Fig. 5. Experimental results in the presence of multimodal noise – Lena image. (a) Test image corrupted 
by Gaussian noise (N (0,30)) and impulse noise – probability 0.2. (b) Vector Median Filter (window Ψ  = 
3×3 – VMF3). (c) Vector Median Filter (window Ψ = 5×5 – VMF5). (d) Multi-scale anisotropic diffusion 
(MS-AD). (e) PM-Median. (f) INEST_GVF-AM. (g) Proposed algorithm (MS-AD-VMF, VMF window Ψ 
= 5×5). (h) Original image. 
 

 
 
 
 
 
 



 

Method  Noise level PSNR PSNR_ISC Epi ∆E00 

VMF3 26.68 - 0.965 3.50 
VMF5 27.28 - 0.966 2.59 
MS-AD 19.66 - 0.832 6.72 
INEST_GVF-AM 20.83 26.36 0.960 3.00 
PM-Median 20.58 26.32 0.959 2.81 
Proposed (MS-AD-VMF) 

 
 
N (0,10), α = 0.1 

27.24 - 0.966 2.66 
VMF3 20.32  0.865 7.85 
VMF5 25.82  0.953 3.90 
MS-AD 15.99 - 0.668 12.05 
INEST_GVF-AM 20.59 25.68 0.951 3.91 
PM-Median 20.48 25.49 0.951 3.71 
Proposed (MS-AD-VMF) 

 
 

N (0,20), α = 0.2 

26.11 - 0.956 3.25 
VMF3 15.90 - 0.705 13.63 
VMF5 23.77 - 0.925 5.76 
MS-AD 13.13 - 0.491 18.48 
INEST_GVF-AM 20.02 24.26 0.930 5.26 
PM-Median 19.91 23.86 0.931 5.12 
Proposed (MS-AD-VMF) 

 
 
N (0,30), α = 0.3 

24.50 - 0.936 4.47 
VMF3 12.91 - 0.547 20.15 
VMF5 21.12 - 0.870 8.50 
MS-AD 11.20 - 0.363 24.26 
INEST_GVF-AM 19.26 22.05 0.891 7.24 
PM-Median 19.16 21.60 0.889 7.32 
Proposed (MS-AD-VMF) 

 
 

N (0,40), α = 0.4 

22.02 - 0.892 6.83 
VMF3 10.65 - 0.407 26.50 
VMF5 17.97 - 0.773 12.59 
MS-AD 9.80 - 0.264 28.81 
INEST_GVF-AM 18.11 20.03 0.826 10.10 
PM-Median 17.88 19.35 0.815 10.51 
Proposed (MS-AD-VMF) 

 
 

N (0,50), α = 0.5 

18.85 - 0.805 10.78 
 

Table 1. Quantitative results reported for all analysed noise removal techniques – Lena image. 
  
 
The results depicted in Figs. 4 to 7 and Tables 1 and 2 indicate that the proposed image restoration 

strategy outperforms the VMF and MS-AD noise removal methods due to its ability to locally adapt to the 

characteristics of the image noise. When the performance of the proposed strategy is contrasted to those 

obtained by the multimodal noise reduction methods detailed in [28, 29] we can observe that our method 

also returns improved performance except the situation when the image is corrupted with very high levels 

of impulse noise. Obviously, in this evaluation scenario the advantage of coupling the anisotropic models 

with the median filter becomes apparent, as the impulse component is dominant in the noise model.  
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Fig. 6. Experimental results in the presence of multimodal noise – Kodak image. (a) Test image corrupted 
by Gaussian noise (N (0,20)) and impulse noise – probability 0.1. (b) Vector Median Filter (window Ψ = 
3×3 – VMF3). (c) Vector Median Filter (window Ψ = 5×5 – VMF5). (d) Multi-scale anisotropic diffusion 
(MS-AD). (e) PM-Median. (f) INEST_GVF-AM. (g) Proposed algorithm (MS-AD-VMF, VMF window 
size Ψ = 5×5). (h) Original image. 
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Fig. 7. Experimental results in the presence of multimodal noise – Kodak image. (a) Test image corrupted 
by Gaussian noise (N (0,30)) and impulse noise – probability 0.2. (b) Vector Median Filter (window Ψ  = 
3×3 – VMF3). (c) Vector Median Filter (window Ψ = 5×5 – VMF5). (d) Multi-scale anisotropic diffusion 
(MS-AD). (e) PM-Median. (f) INEST_GVF-AM. (g) Proposed algorithm (MS-AD-VMF, VMF window Ψ 
= 5×5). (h) Original image. 
 
 



 

Method  Noise level PSNR PSNR_ISC Epi ∆E00 

VMF3 26.12 - 0.957 5.05 
VMF5 24.61 - 0.938 3.66 
MS-AD 20.76 - 0.852 6.92 
INEST_GVF-AM 23.36 24.28 0.939 3.71 
PM-Median 23.07 24.16 0.938 3.47 
Proposed (MS-AD-VMF) 

 
 
N (0,10), α = 0.1 

24.99 - 0.943 3.42 
VMF3 20.27  0.854 9.96 
VMF5 23.81  0.924 5.53 
MS-AD 16.81 - 0.678 12.34 
INEST_GVF-AM 22.87 23.72 0.928 5.17 
PM-Median 22.58 23.60 0.928 4.76 
Proposed (MS-AD-VMF) 

 
 

N (0,20), α = 0.2 

24.24 - 0.932 4.31 
VMF3 16.02 - 0.692 15.27 
VMF5 22.47 - 0.897 7.98 
MS-AD 13.72 - 0.494 17.88 
INEST_GVF-AM 21.84 22.59 0.908 7.03 
PM-Median 21.60 22.55 0.909 6.55 
Proposed (MS-AD-VMF) 

 
 
N (0,30), α = 0.3 

23.16 - 0.913 6.05 
VMF3 13.02 - 0.532 20.33 
VMF5 20.33 - 0.841 10.99 
MS-AD 11.76 - 0.363 22.02 
INEST_GVF-AM 20.49 21.08 0.865 9.39 
PM-Median 20.42 21.18 0.866 8.94 
Proposed (MS-AD-VMF) 

 
 

N (0,40), α = 0.4 

21.21 - 0.868 8.99 
VMF3 10.75 - 0.385 24.94 
VMF5 17.36 - 0.728 14.77 
MS-AD 10.47 - 0.262 24.67 
INEST_GVF-AM 18.67 19.16 0.786 12.17 
PM-Median 18.54 19.16 0.778 11.86 
Proposed (MS-AD-VMF) 

 
 

N (0,50), α = 0.5 

18.28 - 0.768 12.95 
 

Table 2. Quantitative results reported for all analysed noise removal techniques – Kodak image. 

 

Fig. 8 depicts additional results when the analysed noise removal techniques are applied to strongly 

textured images. To limit the size of the diagram only the results obtained for VMF3, VMF5, INEST_GVF-

AM and proposed image enhancement strategy are presented in Fig. 8, as the performance of the PM-

Median is generally lower than that offered by the INEST_GVF-AM. These experimental results show that 

the proposed strategy returns improved performance when visually assessed and when numerically 

evaluated with respect to PSNR values.  

 
 
 



 

    
 

   
             (a)                                           (b)                                           (c)                                          (d) 
 
Fig. 8. Additional experimental results when the examined noise removal strategies were applied to 
images shown in Fig. 1 that are corrupted by Gaussian (N (0,30)) and impulse noise – probability 0.1. (a) 
Vector Median Filter (window Ψ  = 3×3 – VMF3). PSNR values: 18.60 – top image, 20.51 – bottom 
image.  (b) Vector Median Filter (window Ψ = 5×5 – VMF5). PSNR values: 20.58 – top image, 22.04 – 
bottom image. (c) INEST_GVF-AM. PSNR values: 20.62 - top image, 23.20 – bottom image. (d) Proposed 
algorithm (MS-AD-VMF, VMF window Ψ = 5×5). PSNR values: 20.75 – top image, 23.31 – bottom 
image.  
 
 
 
 
The last set of experiments was conducted to evaluate the performance of the noise removal strategies 

investigated in this paper when applied to the segmentation of medical images that are characterised by 

low contrast and low signal to noise ratio (SNR). In this regard, we have applied an unsupervised K-

Means clustering algorithm (initial number of clusters k = 10) to the image data resulting from the filtering 

process and a number of experimental results are depicted in Figs. 9 and 10. The experimental results 



 

depicted in Figs. 9 and 10 indicate that the proposed algorithm outperforms the VMF3, VMF5 and 

INEST_GVF-AM noise removal strategies when they are analyzed with respect to the efficiency of the 

smoothing process and preservation of contextual features. 
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                                 (c)                                                              (d)                                                             (e) 
            

 
Fig. 9. Experimental results when the data smoothing algorithms have been applied to image segmentation tasks. (a) Original 
magnetic resonance (MR) medical image [25]. (b) VMF3 filtering. (c) VMF5 filtering. (d) INEST_GVF-AM.  (e) Proposed 
algorithm (MS-AD-VMF, VMF window Ψ = 5×5). Note the improved segmentation of the coherent regions that is achieved 
when the original image data shown in (a) has been filtered with the proposed MS-AD-VMF algorithm. 
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Fig. 10. Experimental results when the data smoothing algorithms have been applied to image 
segmentation tasks. (a) Original carotid ultrasound image [26]. (b) VMF3 filtering. (c) VMF5 filtering. (d) 
INEST_GVF-AM. (e) Proposed algorithm (MS-AD-VMF, VMF window Ψ = 5×5). Note the improved 
segmentation of the coherent regions that is achieved when the original image data shown in (a) has been 
filtered with the proposed MS-AD-VMF algorithm. 
 
 

5. Conclusions 

     The aim of this paper was to detail the development of a multi-phase data smoothing scheme that is 

able to restore digital images corrupted by multimodal image noise. The proposed strategy is generic and 

it can be used in conjunction with any noise removal method that incorporates PDE models in order to 

achieve feature preservation. In this paper, we demonstrated that the inclusion of the vector median 



 

filtering (VMF) into the formulation of the anisotropic diffusion produced a more robust noise removal 

scheme that is able to locally adapt to the characteristic of the image noise. The proposed noise removal 

scheme was quantitatively evaluated using standard metrics such as PSNR, edge preservation index (Epi) 

and ∆E00 index and its performance has also been assessed when applied to image segmentation tasks. Our 

future studies will focus on the development of more sophisticated statistical models that can be applied to 

detect the pixels that are corrupted by non-Gaussian distributed noise and additional work will be 

concerned with the optimisation of the proposed noise removal strategy when included in the 

implementation of image analysis algorithms that target the segmentation of low contrast medical data. 
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