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ABSTRACT 

MULTI-SCALE EDGE DETECTION ALGORITHMS AND THEIR 

INFORMATION-THEORETIC ANALYSIS IN THE CONTEXT OF 

VISUAL COMMUNICATION 

Bo Jiang 

Old Dominion University, 2010 

Director: Dr. Zia-ur Rahman 

The unrealistic assumption that noise can be modeled as independent, additive and uni­

form can lead to problems when edge detection methods are applied to low signal-to-noise 

ratio (SNR) images. The main reason for mis is because the filter scale and the threshold for 

the gradient are difficult to determine at a regional or local scale when the noise estimate is 

on a global scale. Therefore, in this dissertation, we attempt to solve these problems by us­

ing more than one filter to detect the edges and discarding the global thresholding method 

in the edge discrimination. The proposed multi-scale edge detection algorithms utilize 

the multi-scale description to detect and localize edges. Furthermore, instead of using the 

single default global threshold, a local dynamic threshold is introduced to discriminate be­

tween edges and non-edges. The proposed algorithms also perform connectivity analysis 

on edge maps to ensure that small, disconnected edges are removed. Experiments where 

the methods are applied to a sequence of images of the same scene with different SNRs 

show the methods to be robust to noise. Additionally, a new noise reduction algorithm 

based on the multi-scale edge analysis is proposed. In general, an edge—high frequency 

information in an image—would be filtered or suppressed after image smoothing. With 

the help of multi-scale edge detection algorithms, the overall edge structure of the original 



image could be preserved when only the isolated edge information that represents noise 

gets filtered out. Experimental results show that this method is robust to high levels of 

noise, correctly preserving the edges. We also propose a new method for evaluating the 

performance of edge detection algorithms. It is based on information-theoretic analysis 

of the edge detection algorithms in the context of an end-to-end visual communication 

channel. We use the information between the scene and the output of the edge-detection 

algorithm, ala Shannon, to evaluate the performance. An edge detection algorithm is con­

sidered to have high performance only if the information rate from the scene to the edge 

approaches the maximum possible. Therefore, this information-theoretic analysis becomes 

a new method to allow comparison between different edge detection operators for a given 

end-to-end image processing system. 
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CHAPTER I 

INTRODUCTION 

1.1 MOTIVATION AND BACKGROUND 

1.1.1 Edge Detection 

Edge detection is an integral part of many digital image processing tasks. In general, 

the edge detection operation has two main steps: filtering and localization. Depending 

upon the final application, different algorithms implement these steps differently. The 

most commonly used edge-detection methods compute edges from the derivative of the 

intensity values. This localizes edges at pixels where intensity transitions occur. Most first 

derivative operators, e.g., Roberts [1], Sobel [2], or Prewitt [3] methods, are isotropic. The 

edges are defined at the point that has the maximum magnitude in the gradient direction. 

A threshold on the gradient magnitude is often used to eliminate weak edges. However, 

finding the optimal threshold is an ill-posed problem, especially when a single—global— 

threshold is used over the entire edge map of a noisy image. Even when the gradient 

threshold is based on noise estimation [4], it may be large in smooth areas or produce low 

contrast edges, due to the noise. Consequently, thresholding the gradient can lead to many 

errors. 

To compensate for the threshold problem, one approach is to suppress the non-

maximum point in the gradient direction [5]. This is equivalent to computing the second 

This dissertation follows the style of IEEE Transactions. 
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derivative in the direction of the gradient and looking for the zero-crossing points that 

correspond to the local maximum point of the first derivative. Haralick [6] was the first 

to use zero-crossing to detect edges. The Laplacian operator [7] is the simplest second 

derivative operator. However, these methods are not always effective for noisy images 

because the derivative approach is very sensitive to noise [7]. Generally, smoothing fil­

ters are used in regularization techniques to make differentiation more immune to noise. 

Marr and Hildreth [8] combined the Gaussian filter and the Laplacian operator to construct 

the Laplacian-of-Gaussian (LoG) operator, which is quite effective. However, the optimal 

width of the Gaussian is hard to find and is image dependent [9]. Canny [5] also utilized 

the Gaussian filter to smooth the image. 

The LoG and Canny operators show that the Gaussian filter is close to the optimal 

pre-filter for edge-detection. The Gaussian filter has been applied in multi-scale im­

age analysis. Based on the research on cat and primate vision systems [10], the multi-

resolution (multi-scale) description has been suggested to process natural images. In 1971, 

the importance of multi-scale description of images was recognized by Rosenfield and 

Thurston [11]. They proposed an edge and curve detection method by using different sizes 

(scales) of Gaussian filters. Then, Witkin [12] proposed scale-space filtering by Gaussian 

filters to smooth an image and detect its edges. This method is used to reduce noise while 

protecting features. The scale of the Gaussian filter could be considered as a continuous 

parameter, thereby generalizing the existing notion of Gaussian pyramids, which has been 

further generalized into scale-space theory [13]. 
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In 1987, multi-resolution theory based on wavelet transform was first shown to be the 

foundation of a powerful new approach to signal processing and analysis [7]. This ap­

proach is concerned with the representation and analysis of signals (or images) at more 

than one resolution. The appeal of such an approach is obvious—features that might go 

undetected at one resolution may be easy to detect at another. Mallat and Zhong [14] ex­

panded the field of multi-scale analysis to edge detection. They related multi-scale edge 

detection with the discrete wavelet transform (DWT). Beltran et al. [15] replaced the DWT 

with Gaussian filters and proved that multi-scale detection can be performed using Gaus­

sian filters if the parameters are properly selected. 

Multi-scale edge processing can avoid many of the problems of the edge-detectors that 

use a single filter. For example, a filter with a single global scale might under-smooth 

areas of high noise but over-smooth less noisy areas, while one with different threshold 

values at different scales may be able to avoid this problem. Additionally, different scales 

represent different details and, hence, different levels of edge significance. Thus, multi-

scale analysis turns out to be a very useful tool for edge-detection and analysis. 

1.1.2 Noise Reduction 

The impact of noise on image quality in scenes acquired under poor visibility condi­

tions is quite significant. Additionally, the presence of noise also significantly restricts 

how the image can be used for computer vision and pattern recognition applications. For 

this reason, noise reduction in digital images has been an active topic of research in re­

cent years. Several different approaches have been used for noise reduction, and they 
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encompass a wide variety of processing methods. Linear filtering methods such as low-

pass (smoothing) filter techniques assume that noise (mostly) is comprised of high spatial-

frequency components in the spatial-frequency representation of an image. However, the 

reduction of noise using such techniques also often leads to the suppression of significant 

edge features. Since the presence of edges is perceptually related to sharpness and, hence, 

contrast [16], these approaches impact image quality significantly. There are smoothing 

methods that can also preserve edges, and Winkler et al. [17] provide a good synopsis of 

such methods. 

Several techniques for noise reduction have been based on the analysis of systems 

used to generate digital images, e.g., scanners and digital cameras. This system analysis 

allows one to develop image restoration filters [18, 19, 20, 21, 22] that take into account 

the different sources of noise and attempt to reduce their impact on the output image. 

Other researchers have used edge-preserving, non-linear filters like the median filter [7, 

pp. 156-157]. While such techniques are quite useful, they have significant shortcomings 

in the presence of a high level of noise due to the static nature of the filter extent. For this 

reason, several adaptive methods for noise reduction that preserve edges have also been de­

veloped in the literature. These are usually variants on the median filter, such as the adap­

tive median filters (AMF) [23,24] and the adaptive threshold median filter (ATMF) [25] for 

speckle and salt and pepper noise reduction, but they do not work as well for additive white 

Gaussian noise. Lian et al. [26] and Smolka et al. [27] have extended the idea of adaptive 

median-like filtering to color images. Hamza and Kim [28] use robust estimation tech­

niques to derive non-linear filters that can be used to denoise both impulse and Gaussian 
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noise. Adelmann [29] presents an algorithm that uses the idea of non-maximal suppres­

sion for edge preservation. Witkin [12] proposed scale-space filtering by Gaussian filters 

for noise reduction and feature preservation. To protect edges during smoothing, Perona 

and Malik [30] extended scale-space filtering by anisotropic diffusion. Lu et al. [31] pro­

posed a new anisotropic diffusion based on proportional-integral-derivative (PDD) control 

law together with a stopping mechanism. There are several wavelet based noise-reduction 

algorithms derived from the work done by Donoho and Johnstone [32]. The algorithm by 

Zhan and Karam [33] uses correlation analysis on the dyadic wavelet decomposed image 

to form noise and non-noise features and uses this information for noise reduction. Van De 

Ville et al. [34] present a fuzzy image filtering approach that uses the idea of fuzzy deriva­

tives and fuzzy smoothing to reduce the impact of noise. Peters [35] develops an algorithm 

for edge-preserving noise reduction using mathematical morphology. Several researchers 

have shown the importance of using edge primitives as a basis for recognition in visual 

perception [36, 37]. This edge pattern analysis can be used for both automatic assessment 

of spatially variable noise and as a foundation for new noise reduction methods [38]. 

Recently, the trend in edge-detection has been moving away from using neighborhood 

pixel differences to estimate local derivatives for detecting intensity changes, i.e., edges. 

More attention is being paid to edge feature analysis and, based on this, in trying to design 

new and effective noise reduction methods. Edges can be divided into basic categories [39, 

40] such as ramp, step, stair, and pulse: different types have different shapes. These edges 

can be filtered with a Gaussian to estimate their slope [15,41]. Because noise can generally 

be assumed to be independent of signal, have little regional connectivity, and have random 

orientation, its estimate would be small under a Gaussian filter. Furthermore, it has been 
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shown that the Gaussian is close to the optimal operator for different edges [5]. This kind 

of image analysis can be used as the basis of a promising solution for image denoising. If 

we divide an edge image into signal and noise pixels based upon local edge analysis, then 

we can apply different filters to the signal pixels and the noise pixels, reducing the overall 

impact of noise on image quality [42]. 

1.1.3 Edge Detection Evaluation 

Research on edge detection methods has been going on for more than 40 years and 

encompasses everything from well known, traditional methods such as Roberts, Sobel, 

Laplacian-of-Gaussian (LoG), Canny, scale-space, etc., to some of the latest methods 

based on or combining techniques such as nonlinear derivatives [43], fuzzy sets [44], neu­

ral networks [45], wavelets [46], and so on. All of these methods have their pros and 

cons. In many cases the algorithms are designed for some specific application and perform 

extremely well for that particular application. However, their performance is application 

dependent and, hence, not general. Additionally, until now there has not been a common 

quantitative metric that allows one to judge the effectiveness of edge detection methods. 

Generally, qualitative analysis is used. As Pal and Pal [47] point out, people are considered 

to be the ultimate judge in making an evaluation of the edge detection result. However, 

this is not a practical solution for automated systems that rely on edge detection; in those 

cases it is much better to have a universal metric/environment that allows one to measure 

how well an edge detection algorithm performs for a class of images. 

To objectively measure the performance of an edge detection algorithm, several au­

thors [48, 49, 50, 51, 52, 53, 54] have proposed performance measures to evaluate the 
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output of edge detectors. Abdou and Pratt [48] proposed a figure of merit which is a com­

bination of three factors: (i) non-detection of true edges, (ii) detection of false edges, and 

(iii) edge localization error. However, it is hard to measure the error based on this metric 

because complete information about the true edges is required. Also, as pointed out by Peli 

and Malah [55], this figure of merit does not consider the performance of edge detector in 

terms of factors such as edge thickness and edge continuation. Michelli et al. [49] analyzed 

edge detectors based on the accuracy of edge localization and sensitivity to noise, but the 

problem with their approach is that the analysis was performed for the case where the SNR 

is good. Thus, the noise did not impact the performance of the algorithm in a significant 

way. In actuality, the low SNR case must not be neglected. Kitchen and Rosenfeld [51] 

evaluated edge detectors using edge coherence, which measures the continuation and thin­

ness of the detected edges. Fram and Deustch [50] developed a quantitative measure which 

was used to evaluate detected true edges in the presence of noise. Heath et al. [52] pro­

posed an evaluation method by combining subjective and objective evaluations. Humans 

often compare different edge detectors based on the significance of observed differences. 

1.1.4 Information-theoretic Analysis 

In fact, even today the trend in digital image processing is still to focus on narrowly 

defined tasks. For example, image restoration and enhancement are researched as indepen­

dent processes. While image restoration and enhancement have been shown to improve, 

often dramatically, the quality of degraded images to clearly reveal what could perhaps 

be barely discerned before, experiments show that these processes are not independent of 

the image gathering and display devices. Hence, image processing algorithms should be 
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analyzed in the context of the end-to-end imaging system that takes into account the image 

gathering and display processes as well as the processing algorithms. For example, an 

improperly designed image restoration filter can lead to image artifacts such as enhanced 

aliasing noise caused by the image gathering and display devices. Thus, it is often unclear 

whether the quality of the improved images actually approaches the optimal and, hence, 

what further improvements could be made. 

As Gabor [56] said: "Experiments unguided by theory do not appear very promising." 

Huck, et al. [57] proposed a definitive analysis of visual communication channels, where 

the assumed independent parts such as image gathering, display devices, and the digital 

image processing for image coding and restoration are analyzed and assessed using an inte­

grated platform (Figure 1) by extending Shannon's information theory. They performed an 

end-to-end, information theory based system analysis to assess image restoration methods. 

They evaluated the performance of the different algorithms as a function of the characteris­

tics of the scene, and the parameters, such as inter-sample distance, additive noise etc., that 

define the image gathering system. The image restoration algorithm is regarded to have 

high performance only if the information rate from the scene to the display approaches the 

maximum possible. This goal can be achieved only by jointly optimizing all processes. 

Noise 

Scene 
Gathering Subsampling 

Image 
Restoration 

Interpolation Display 
Observed Image 

FIG. 1: Model of image gathering and display with digital processing and interpolation. 
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The mathematical development of the end-to-end analysis proposed by Huck et 

al. [58, 59] is based on the two classical works that can be considered to be the foun­

dation of modern communication theory. The first, by Claude Shannon [60], introduces 

the concept of the rate of transmission of information in a noisy channel; the second, by 

Norbert Wiener [61 ], introduces the concept of the minimum mean-square error restoration 

of signals corrupted by noise. Huck et al. [57] combine these two concepts and provide 

the mathematical formulations that describe, for a Gaussian signal, the relationships that 

exist among information rate, theoretical minimum data rate and maximum-realizable fi­

delity. In that system analysis, they put the electro-optical design of image gathering and 

the digital processing for image coding, restoration and display devices together. Thus, 

this system or channel would be considered as high quality only if the information rate 

from the scene to the observer approaches the maximum possible and the required data 

rate approaches the minimum possible. Thus, the goal would be only achieved by jointly 

optimizing all those parts. These relationships, which are affected by image gathering and 

display device responses, allow a quantitative assessment of the visual communication 

channel which includes such processes as edge detection. 

1.2 PROPOSED SOLUTIONS 

In the following sections, we describe our approach to solving many of the problems 

that impact edge-detection and noise reduction in the presence of a high degree of noise, 

i.e. for the low SNR case. 
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1.2.1 Multi-scale Edge Detection 

In this dissertation, we present a new approach to edge detection that is based on higher 

derivatives of the intensity image. Compared with the approach that estimates local deriva­

tives by neighboring pixel differences, we modify the edge detection method presented by 

Beltran [15] that uses a multi-scale analysis. Because edge features due to just the signal 

can generally be assumed to have regional connectivity and specific orientations, we can 

separate the signal features from noise by exploiting this idea. Prominent edges should 

have features at all scales while features due to noise should be regional and disappear 

at certain scales. Hence, by analyzing the generated scale-space, the edge features can 

be recovered. Furthermore, in the edge discrimination process, a local dynamic threshold 

generated by estimating local noise is introduced to avoid the under- and over-smoothing 

problems that can occur with global thresholding. In addition to the multi-scale analy­

sis, we also perform connectivity analysis on the edge map to eliminate features that exist 

across scales but are of relatively small extent. These signal features are also associated 

with noise in scenes with heavy noise. The idea of connectivity analysis presented by Rah­

man and Jobson [42] also relies on the connectivity characteristics of noise and features, 

as stated above. Therefore, using the idea of regional connectivity, Rahman and Jobson 

classify pixels on edges that have lengths smaller than a given threshold as "noise." The al­

gorithm proposed in this thesis performs extended connectivity analysis on the edge-map 

to make sure that only features smaller than a predefined edge-length, i.e., features that 

only represent noise, get filtered out. 
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1.2.2 Image Denoising 

The multi-scale edge detection algorithm allows the edges due to the signal and the 

"non-edges" due to noise, to be differentiated, even when the SNR is very low. This points 

to one possible method for suppressing noise and preserving signal for noise reduction. As 

stated previously, the most common way of dealing with additive white Gaussian noise is 

to apply a low-pass filter to the noisy image. In general, this results in blurring, i.e., sup­

pressing the edge features—high frequency information—in the image, especially when 

SNR is very low. Thus, while the noise is attenuated, the image loses sharpness and, hence, 

contrast and clarity. This trade-off between noise reduction and sharpness retention makes 

making use of the processed image in additional tasks considerably harder. To compensate 

for this drawback Kao and Chen [62], for example, add an edge preserving stage in their 

noise reduction approach. Consequently, in this dissertation, we combine the proposed 

edge detection algorithm with connectivity analysis to detect and mitigate noise. In the 

smoothing process, only the edges that have lengths smaller than a given threshold are 

classified as "noise," and pixels at those locations in the original image are replaced with 

an average of their neighbors. This reduces the impact of noise at that location while pre­

serving the overall edge structure of the original image because only locations with edges 

due to the noise are blurred. 
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1.2.3 Information-theoretic Analysis 

All the methods mentioned in Section 1.1.3 measure edge detector performance with­

out consideration of the properties of the visual communication system, such as the image-

gathering device response, sampling and transmission rates, etc., that affect the input im­

ages. Inspired by Huck et al. [63, 58, 59] we analyze and compare the edge detection 

methods using information-theoretic analysis in the context of the end-to-end imaging 

system. The edge detection process analysis is used within the end-to-end system model 

to allow quantitative analysis of the algorithms. We analyze the performance of the edge 

detectors in terms of the amount of the mutual information between the original scene and 

the edge image. If the image-gathering and the communication environment parameters 

are fixed for all the edge detection operators, then any variation in the amount of infor­

mation being transmitted is directly attributable to the edge-detection algorithm. Hence, 

the performance of the algorithms can be measured for a given set of system parameters. 

In order to use mutual information as a metric for evaluating the performance of differ­

ent edge detection methods, we need their associated power spectral densities (PSDs). 

Therefore, we first derive the PSDs for the traditional edge detection methods, namely 

the Sobel, Prewitt, Roberts, the LoG and the Canny algorithms, and then use them in our 

information-theoretic evaluation. 

1.3 DISSERTATION OUTLINE 

The remaining parts of this dissertation are organized as follows. The multi-scale edge 

detection algorithm design and description is provided in Chapter II. Additionally, the 
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mechanics of the connectivity analysis that is used to perform edge-preservation and non-

edge reduction are described, and the results of the application of the proposed edge de­

tection algorithms on noise reduction are shown. In Chapter III, the fundamentals of an 

end-to-end digital image processing system in the visual communication channel are re­

viewed. Inspired by this system, an information-theoretic analysis based on Shannon's 

information theory is described. Then, the proposed edge detection algorithm evaluation 

mechanism is presented. In Chapter IV, experimental results and analysis of combining 

the various edge-detection algorithms with connectivity analysis for edge detection and 

noise reduction are shown. Test images are drawn from both computer generated images 

and real/natural images. A performance comparison using the image fidelity metric is also 

presented. Chapter V provides the results of the information-theoretic analysis. First, the 

PSDs of traditional edge detectors are derived by theoretical and experimental methods. 

Then, by setting different parameters of the visual communication channel, such as those 

controlling the mean spatial detail in the scene, the blur of image acquisition device, sys­

tem noise, etc., the performance of various edge detectors are theoretically evaluated and 

compared. Finally, conclusions and future work are given in Chapter VI. 
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CHAPTER II 

MULTI-SCALE EDGE DETECTION ALGORITHMS AND NOISE 

REDUCTION 

In this chapter, we describe the design and assessment of the multi-scale edge detection 

algorithms. We then use these algorithms in conjunction with connectivity analysis to 

devise a noise-reduction process. 

II.l MULTI-SCALE EDGE DETECTION 

The multi-scale edge detection process for low SNR imagery is made up of several 

operations. These include the selection and design of the scale-space (II. 1.1), edge local­

ization (II. 1.2), multi-scale analysis (II. 1.3), local threshold assessment based on a local 

noise estimate (II. 1.4), connectivity analysis for differentiating between edges due to the 

signal and edges due to the noise (reduction II. 1.5), and noise reduction (II. 1.6) based on 

all of these operations. 

II.l.l Scale-space Design 

Once an intensity image has been filtered with a Gaussian, the high frequency 

information—edges and noise—are both attenuated. An important consideration in the 

design of the filter is the scale of the Gaussian: small scales let more noise and edges 

through, while larger scales suppress both noise and edges. This trade-off between noise 

reduction and sharpness retention impacts edge detection and localization. The optimal 
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selection of the scale is still an open question. Jeong and Kim [64] proposed an adaptive 

method to determine the global Gaussian filter scale, but relying on a single global scale 

might lead to errors because it might be large where the intensity changes slowly and small 

at areas of sudden intensity changes. Lindeberg [65] pointed out that the "right scale" does 

indeed seem to be problem dependent. Since multi-scale analysis uses a combination of 

Gaussian filters with differing scales, this can ameliorate the problem, but the selection of 

scales that provide good edge-detection capabilities in the presence of different SNR values 

is still tricky. We conducted a series of experiments to find a set of scales that balances the 

trade-off between noise reduction and feature preservation [66]. 

II. 1.2 Edge Detection and Localization 

In a recent paper [66], we showed that multi-scale analysis is a good and simple method 

to detect edges. However, we used only the gradient and its orientation to classify edge 

and non-edge pixels. Furthermore, in noisy or blurred conditions, the edge detector found 

more than one local maximum gradient along the cross-section of the edge, so it was 

difficult to localize the edge. Thus, we propose a modification of our previous approach 

and additionally use the zero-crossings of the second derivative. The zero-crossings have 

been shown to be a sufficient statistical analysis model to detect and localize edges [4]. 

Thus, in order for a pixel to be classified as an edge, it must meet two criteria: (1) the 

gradient magnitude should be significantly greater than zero, and (2) there should be a 

significant zero-crossing in the second derivative in the direction of the gradient. 

As pointed out by Clark [67], the edges after Gaussian filtering that correspond with 

zero-crossings can be divided into two groups: authentic and phantom. To differentiate 
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between them, we also require that the authentic edge should satisfy the condition that the 

product of its first and third derivatives is negative. Since noise causes zero-crossings to 

occur in locations where edges due to signals do not exist, we still use gradient magnitude 

and orientation to eliminate spurious zero-crossings. 

II. 1.3 Multi-scale Analysis 

There is no standard definition of multi-scale analysis (MSA) for edge-detection, so the 

MSA has been used in myriad ways. Edge focusing [68] uses the notion of coarse-to-fine 

tracking. The premise of this approach is to select the really significant events, i.e., those 

that survive at the largest scales and then track these events through scale-space as the scale 

is decreased. The localization of these events at the smaller scales accurately localizes the 

edges. Estrada [69] also developed a coarse-to-fine method using Bayesian probabilistic 

methods. The candidate contours are extracted at a coarser scale and then used as priors on 

the location of possible contour at finer scale. Aside from the computational complexity of • 

these approaches, it is probably not appropriate to use only the large scale of scale-space 

to judge edge significance. Also, the assumption that optimal localization accuracy can 

be attained at the smallest scale is not rational. For example, if noise is high, localization 

accuracy can be very poor at smaller scales. Instead of using the coarse-to-fine tracking, 

we use the logical AND operation on the derivative images at one or more scales to find the 

edge. 

The multi-scale edge detection method described in Section II.2.1 uses six scales where 

each scale is double the size of the previous scale. Using images from all six scales typi­

cally results in very thick edges because of the heavy blurring associated with large values 
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of j in Eq. 5. Experimental results led to the development of a 3-of-6 rule in which we 

use a combination of any three out of the six possible scales to generate the output image. 

Different results can be obtained depending upon which three scales are used. Small scales 

give finer edges but are more prone to letting noise through. Larger scales eliminate the 

noise but produce thick edges. Once the three optimal scales have been determined, a sec­

ond variation results in producing more robust edge results. In this variation, we accept a 

pixel to be an edge pixel if there is a sufficiently large value at that location in at least two 

of the three scales. We call this the 2-of-3 rule. The idea of "sufficiently large" is related 

to the threshold of the magnitude which is described in a later section. 

One important reason to utilize the logical AND operation is that the signal is assumed 

to be strong enough to exist over all scales, but the edge can't always be assumed to have 

high contrast and sharpness. Some long edges may be blurrier and of lower contrast than 

relatively short edges. The goal of edge detection should be to detect all edges in the 

image, over the broad range of contrasts and blur scales with which they occur [9]. This is 

one of the reasons for the 2-of-3 rule. When the signal is strong enough, such as that due 

to the main structures, it would survive at almost all scales and would be easily be detected 

with the logical AND. However, weak signals, such as minor details, do not survive across 

the whole scale-space: they probably only survive at some scales. Hence, by using the 

2-of-3 rule, we can take advantage of the characteristics of small and large scales. 

II.1.4 Local Noise Estimate 

Although we found the regularity of threshold for edge detection corresponding to its 

specific SNR [66], the threshold set as global one for a whole image is still an ill-posed 
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problem. It means that the details such as edges and noise are uniformly distributed across 

the whole image. For real images, however, both the signal and the noise can vary from 

area to area, even from pixel to pixel. Thus, using a local, dynamic threshold might be a 

better solution. 

Elder and Zucker [9] proved the threshold for asserting a non-zero gradient to be 

J I ( O I ) = 3O„/>/SKJ?, (1) 

where on is the standard deviation of the noise, and C\ is the scale of the Gaussian first 

derivative filter. The prior computation of a significance function s\, which determines the 

lower bound on the smoothing kernel, needed to reliably assert a non-zero gradient. Thus, 

the pixel would be assigned as an edge if its gradient is larger than s\ (G\ ). 

Elder and Zucker [9] use the significance function to estimate the minimum reliable 

scale for asserting a non-zero gradient. In other words, the significant function can be 

used as a guide for finding a reliable gradient which can differentiate between edges and 

non-edges. While Elder and Zucker use Eq. 1 to determine a global threshold based on 

image characteristics, we extended this idea to compute the local dynamic threshold. Since 

we know the scales of the Gaussian filters that are used in the multi-scale edge detection 

algorithm, the standard deviation of the local noise can be estimated. 

One potential problem in the local scale control presented by Elder and Zucker as 

pointed out by Liang and Wang [70] is that the noise is assumed as uniformly distributed 

in the whole area and uncorrelated with the image signal. Thus, the same noise variance c„ 

would be utilized for the entire image. If a global noise variance is used in the local area, 

the area with less noise would be over-smoothed, while the area with more noise would be 
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under-smoothed. Also, for 2D images, the noise could possibly vary between neighboring 

pixels at different orientations. 

To compensate for this problem and to make the threshold adaptive to the amount of 

noise instead of being fixed, it is necessary to estimate the noise for each pixel in every di­

rection. Olsen [71] gave a complete description and comparison of some earlier estimation 

algorithms. They are classified into two different approaches: filter-based (or smoothing 

based) and block-based. Some recent methods are proposed by Tai and Yang [72], Shin 

et al. [73], and Liu et al. [74]. However, these more recent algorithms can also be catego­

rized as filter-based, block-based, or a combination of the two. Compared to global noise 

estimation, local noise estimation has not so far been researched extensively. 

Liang and Wang [70] proposed a local noise estimate, but experiments show that it is 

not appropriate for our edge detection algorithm. We developed a local noise estimate by 

experimentation. Unlike Liang and Wang's method, we examine every scale to estimate 

the local noise. Examining each scale is more accurate than analyzing only the original 

image because the image representations generated at each scale using Gaussian filters 

of different extents are not linearly related. Our method is based on the number of zero-

crossings of the second order derivative in a given direction and the absolute sum of the 

first derivative, or the amount of unipolar energy, in the same direction: 

_ _ nZ(m,n,ty,y)S(m,nttyfy) 
CnJ-p (2J+I) ' (2) 

where anj, slightly different from o„, are the standard deviations of the local noise at the 

jth scale, (3 is a predefined positive constant, Z(m, n,§,y) is the number of zero-crossings 

of the second order derivative at (m, n) in the direction <|> over the distance y, from (m,n)—y 
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to (m,n) + y and S(m,n,§,y) is the absolute sum of first derivative at (m,n) in the same 

direction and across the same pixels. Thus, the local threshold would be computed for 

each pixel based on local noise estimate (LNE): 

Tj(Oj,m,n,ty,y) = ani/aj, <> = 0,7c/2,7t,37C/4, (3) 

where Oy = 2-/'-1<Ji, Oi = 2. 

II. 1.5 Connectivity Analysis 

The connectivity analysis algorithm is very useful for images with low SNR. In these 

noisy images, some edges, due to noise, survive the multi-scale analysis and detection. 

Connectivity analysis can be used to preserve the authentic edges in an image by differen­

tiating between edge features due to signal and those due to noise using the connectivity 

of features as the discriminant. The rationale for this is that edges due to noise will usu­

ally be isolated and will form either singular points or very short edges in the edge image. 

This idea expands on the ideas presented by Jiang and Rahman [66] and Rahman and Job-

son [42] by looking at larger connectivities to differentiate between pixels due to noise and 

those due to signal. Consequently, the connectivity analysis step is adopted to make sure 

that edge information that is associated with noise gets filtered out, hence preserving the 

overall edge structure of the original image. 

II. 1.6 Noise Reduction 

In image processing, edges, as one important feature of the image content, would be of 

great value to the post-processing processes, such as pattern recognition, object detection, 
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image registration, etc. As stated in Chapter I, our starting point is the idea that edges in 

an image should be preserved in order to preserve significant detail about the structure and 

the texture in an image. Operations such as image smoothing and median filtering, will 

impact the contrast of an image, and hence the strength of edges. Therefore, to avoid this 

problem, the solution is to perform noise reduction operations only on those pixels that are 

not part of an edge as was proposed by Rahman and Jobson [42]. 

II.2 DESCRIPTION OF THE ALGORITHMS 

In the following sections, we describe our edge detection and noise-reduction algo­

rithms in detail. The multi-scale edge detection algorithms, adapted from Beltran et 

al. [15], are described in Section II.2.1. Connectivity analysis that is used to perform 

edge-preserving noise reduction is described in Section II.2.2. Noise reduction, as one 

application of our proposed edge detection algorithms, is introduced in Section II.2.3. 

II.2.1 Multi-scale edge detection 

The multi-scale edge-detection algorithm proposed by Beltran et al. [15] uses the idea 

of the difference-of-Gaussian operator in a slightly different way. Instead of using the 

difference between two representations of an image obtained by filtering with a Gaussian 

of different scales (widths), the idea here is to use the logical AND operation on the image at 

one or more resolution to find the edge. This process can be described using the following 

steps: 
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1. Generate the multi-resolution image representations: 

Gj(m,n) = G(m,n)*Fj(m,n), j=l,...,6, 

^ i \ f m2 + n2\ „,_i . 
Fj(m,n) = exp =— , c , = 2J oh j = 1,...,6, 

(4) 

(5) 

where G(m,n) are the pixels from the input image, G. Gj represents one image in the 

resolution pyramid of level j . Fj denotes the Gaussian filter with standard deviation 

of <5j. <5\ is the standard deviation of F\ (m, n) and can be varied depending upon the 

image under consideration. 

2. Each image Gj,j = 1,...,6 has associated modulus Mj and phase Pj images. Mj 

and Pj are computed as: 

DG) 

DG> 

Mi 

1 1 GjDx, Dx = 

GjDy, Dy = l l 

Pi = tan - l 
DG] 

DG) 

(6) 

(7) 

(8) 

(9) 

where []T indicates vector transposition. 

3. The Mj and Pj images are used to obtain the edge using a top-down search algorithm. 

For a pixel to be classified as an edge, it must satisfy the condition: 

(Mj(m,n)>Tm)A(\Pj(m,n)-&(m,n)\ <%p), j= 1,...,6, (10) 

where A is the logical AND operator, %m and xp are magnitude and phase thresholds, 

respectively, and <I>(m,n) = P\{m,n). xm can be either a predefined global value, 
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xgm, or a local estimate, X/m as is defined by Eq. 3. The value of xp tends to be small 

and is used to take into account the discrete nature of the computation of the phase, 

Pj. When Eq. 10 is satisfied, the pixel at (m,n) is classified as an edge pixel. 

4. As pointed out by Clark [67], the edges after Gaussian filtering that correspond with 

zero-crossings can be divided into two groups: the authentic edge and the phantom 

edge. To further accurately localize the authentic edge, an edge also needs to satisfy 

two other conditions: 

(a) The edge is located at the pixel where the sign of second derivative would be 

different in at least one orientation. We use four predefined orientations to 

perform this assessment: 

Gj(/n,n)Gj(/n,n + l ) < 0 , 0°, 

G " ( m , n ) G " ( m + l , n - l ) < 0 , 45°, 
1 J (11) 

G'j(m,n)G'j(m+l,n) < 0, 90°, 

G'j(m,n)G'j(m+l,n+l)<0, 135°. 

This condition computes the direction of the zero-crossing. 

(b) If the first condition is satisfied for a specific orientation, (|), then, for this poten­

tial point, the product of first derivative and third derivative should be negative 

in the same orientation: 

G'j(m,n)G"'(m,n)<0. (12) 

If all the conditions specified by Equations 10-12 are satisfied, then the pixel at 

(m,n) in the image would be judged to lie on an edge. Once all the edge pixels have 
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been found, an edge map is generated. This edge-map is then used with connectivity 

analysis to eliminate the edges due to noise. Either the 3-of-3 or the 2-of-3 rule 

can be employed to generate the edge map. The latter rule leads to more connected 

edges but also allows more noise pixels to be classified as edges. 

II.2.2 Connectivity Analysis 

For each non-zero pixel in the edge image obtained from the multi-scale analysis de­

scribed in Section II.2.1 we perform connectivity analysis which dictates that we search 

for edges of a prescribed length, EL, in the image. The rationale for this is that edges due 

to noise will usually be isolated and will form either singular points or very short edges in 

the edge image. This idea expands on the ideas presented by Rahman and Jobson [42] and 

Jiang and Rahman [66] by looking at larger connectivities to differentiate between pixels 

due to noise and those due to signal. As an example, consider the case when EL = 2. In 

this case the minimum length of a signal feature would be 2, and all isolated single point 

edge pixels would be eliminated. Similar procedures apply for EL > 2, where longer and 

longer edge features are classified as signal and shorter ones eliminated as noise. The 

algorithm can be described by the following steps: 

1. Search the 3 x 3 allowed neighborhood area. If another edge pixel is found, and 

EL > 1, go to Step 2. If an edge pixel is found but EL = 1, then go to Step 3. If 

there is no edge pixel, the pixel would be classified as noise. 

2. Move to the new 3 x 3 area, the center pixel of which is the edge pixel found in 

Step 1. Not all the pixels in the new 3 x 3 neighborhood would be examined because 
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FIG. 2: Edge front: only pixels in front of the current pixel are examined for classification. 

some of these pixels have already been tested for connectivity in the previous step, 

and there is a chance that the edge features would loop back unless such pixels 

are eliminated from the search space. For this reason only pixels in front of the 

current edge-pixel are tested (Figure 2). This corresponds to examining only those 

pixels whose distance from the pixel being classified is larger than 1 in the Euclidean 

sense. The rule specified in Step 1 is used to classify the edge pixel as either noise 

or signal. In Figure 2 'o' denotes classified edges, '? ' denotes potential edge pixels, 

and ' x ' denotes pixels that are not examined since they can cause the search to loop. 

Only the pixels marked as '?' are tested in each analysis step. If a connecting pixel 

is found, such as that shown in Figure 2 (middle) and EL > 1, the area of search is 

shifted to that pixel and centered on it. Using this new center, the new 3 x 3 search 

area is examined, except for the pixels marked with the ' x ' symbol. This process is 

repeated until the requisite EL has been achieved. 

3. There is a final condition that should also be satisfied 

\io-i\>ELV\j0-j\>EL, (13) 



26 

where V is the logical OR operator, (10,70) is the location of the pixel under consid­

eration, and (i, 7) is the current edge location. This condition is invoked because at 

times the pixel being classified satisfies the edge length criteria in the Manhattan-

distance sense but in the Euclidean sense. This condition places a limit on how short 

a Manhattan distance is allowed to satisfy the EL constraint. 

In fact, the determination of how large an EL should be used is done by defining what 

constitutes a feature edge. Because of this, EL can be application dependent. In this 

dissertation, we examine the performance of the noise reduction algorithm as a function 

of EL. We expect that while larger EL increases the complexity of the computation, it will 

reduce the overall impact of noise on the image. This procedure is similar to the analysis 

used for hysteresis thresholding in the Canny edge operator [5] where pixels in between 

the two thresholds are considered as edge pixels only if they are already connected to edge 

pixels. 

II.2.3 Noise Reduction 

The noise reduction process typically follows the multi-scale edge detection and con­

nectivity analysis processes. To eliminate noise, the final edge maps after connectivity 

analysis would be utilized to guide the smoothing filter. Edge pixels that are classified 

as noise are used to mark the pixels at the same location in the original image as noise. 

These pixels are replaced in the original image by the output of a 3 x 3 smoothing filter 

operating on the pixel neighborhood. An important aspect of this algorithm is that while 

the analysis for determining pixels due to noise is performed on the edge image, the action 

for eliminating noise is taken on the original image. Hence, this procedure finds the noise 
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pixels in the image and replaces them by a reduced resolution, blurred representation of 

its neighbors. As shown by Rahman and Jobson [42], this noise reduction mechanism can 

preserve the edge information while performing noise-reduction. 

Thus far, we have introduced the multi-scale edge detection algorithms and the noise 

reduction mechanism. In Chapter III, we will define the information-theoretic assessment 

procedure that we use to evaluate the performance of the edge detection algorithms. 
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CHAPTER III 

INFORMATION-THEORETIC ANALYSIS IN VISUAL 

COMMUNICATION SYSTEM 

III.1 INFORMATION-THEORETIC ANALYSIS 

This chapter introduces the information-theoretic analysis that we use to assess the 

performance of edge detection operators in a visual communication system. This anal­

ysis is meaningful because there appears to exist a close correlation between the mutual 

information between the original and the edge image and the quality of the output. 

III.l.l End-to-end Image Processing System 

As Shannon [60] stated, the fundamental problem of communication is that of repro­

ducing at one point either exactly or approximately a message selected at another point. 

Information 
Source 

Image-Gather ing 
System 

Image-Res torat ion 
System 

Destination 

Scene 
Radiance 
field 

Image Gathering 
& signal encoding Encoded v-'Recieved' 

signal | signal 

Signal decoding & 
image restoration 

Spatial frequency 
response, sampling 
passband & noise 

Transmission 
bandwidth 
& noise 

Restored 
image 

Observer 

Display 
noise 

FIG. 3: Model of visual communication channel with the critical limiting factors that 
constrain its performance. 
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Figure 3 depicts a typical visual communication channel in which image gathering is com­

bined with encoding to compress the data, and image display is combined with image 

restoration to enhance the image quality. This channel can be described in terms of three 

major processes: the image gathering process, the data transmission process and the image 

restoration process. Huck et al. [57] assumed that transmission errors could be corrected 

with well-established error-correcting codes, so they did not consider the data transmission 

process as part of their model. Instead, they developed a framework where the imaging 

system including digital image processing could be examined as a whole. Since we are 

not considering image display as part of our analysis, we use the simplified end-to-end 

imaging model which is shown in Figure 4. 

s(x, y) Digital Image 
Processing 

*Kv] 

N.[x,y] 

FIG. 4: Simplified end-to-end imaging model. 

As can be seen from Figure 4, several sources of noise impact the acquired digital 

image /?[x,y]. Three major sources of noise are thermo-electric noise due to the sensor 

CCD, quantization noise due to the analog-to-digital (A/D) conversion, and aliasing noise 

due to sampling. The end-to-end imaging process can, thus, be modeled as 

(14) 

R[x,y] = p[x,y]*¥(>,y), 

where s(x,y) is the scene with PSD 4>5[^i,v]; x(jc,y) is the point spread function (PSF) of 
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the combined sensor and system optics; |||(JC,;V) = Y,m,nez&(x~m,y~n) represents the 

sampling lattice with unit sampling distance; Ak[x,v] is the aliasing noise due to sampling; 

A/e[jc,y] is the discrete system noise due to thermo-electric effects; Na/d[x,y\ is the discrete 

quantization noise. d[x,y] is the discrete signal with continuous amplitude; and p[x,y] is 

the digital signal. The digital image processing can refer to any processing, including 

image restoration and edge detection. For example, for image restoration, ^(JC, y) is the 

joint restoration and reconstruction filter that corrects for signal attenuation due to noise 

sources and interpolates the sub-sampled discrete signal p[x,y] onto the continuous display, 

and produces the restored image /?[jc,y], which is the same size as the scene, s(x,y). 

In the spatial-frequency domain, the end-to-end imaging process can be described 

as [63] 

p(ji,v) = (%v]*Du,v])*||||>i,v]+iVa/d|^,v]+iVr
e|Ai,v], 

(15) 

where'shows the continuous Fourier transform,~shows the discrete Fourier transform, and 

|||[JU,V] =Y*m,nez^{lJL~ fw,v — n). The associated sampling passband is given by B — {p,v : 

H,|v|<0.5}. 

In our research, the optical transfer function (OTF), which is the Fourier transform of 

the PSF of the image-gathering device can simply, but fairly accurately, be modeled using 

a Gaussian function [63]: 

x(x,y) = 7tp;:exp[-7i2p;?(*2-|-y2)], 
(16) 

x(p,v) = exp [ - ( / ?+v 2 ) /p2] . 

The value of pc determines the extent of blurring: larger values of pc imply less blurring 

but more aliasing, and smaller values of pc (< 0.3) imply more blurring but less aliasing. 
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The probability density function of the quantization noise Na/^[x,y] is assumed to be 

uniform. It can be written as [63] 

P(N"i[X'y]) = sP^y)\Pml,(x,yr^ <17) 

where sPmax = kos and sPmin = —kas specify the range of the signal; K is the number of 

quantization levels of A/D converter, and a2, = fg<t>p\ju,\]d/udv. For k = \ / 3 , the dynamic 

range encompasses 92% of the signal. The PSD of the signal <tp\n,v] prior to quantization 

is [63] 

®P[M,V}=E{P(»,V)P*(MM} = [K2®s\x(v,v)2\] *]ll + <i>tfeM, (18) 

where E is the expectation operator, and * indicates complex conjugation. K is the linear 

signal-to-radiance conversion constant. Assuming that the error within each quantization 

interval is uncorrelated with errors within other intervals, the PSD of quantization noise 

is [63] 

The aliasing "noise" <J>a(/i, v) is due to sampling and is given by 

4>fl(A/,v) = Jfi:2d J( iu,v)|T(/y,v) |2*£8(^-m,v-n), (20) 

where m,nE Z and m,n ^ 0,0. 

III. 1.2 Information Rate 

The visual communication channel, as modeled above in Section III. 1.1, contains three 

critical transformations: (a) the continuous-to-discrete transformation of the continuous 

radiance field s(x,y) into the discrete signal d[x,y] with analog magnitudes, (b) the analog-

to-digital transformation of the discrete signal d[x,y] into the digital signal P[JC,V], and 
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(c) the digital-to-continuous transformation of the resorted digital image R[x,y] into the 

continuous observed image R0(x,y). 

According to Shannon [60], the rate of transmission of information 9i that the image-

gathering process produces or, equivalently, the mutual information between the input 

radiance field s(x,y) within the sampling passband and the output digital signal p[x,y] is 

defined by [63] 

^ = e\p[x,y]]-e\p\x,y]\s(x,y)]=e[p(M,yf)]-E\pOi,\)\SOi,v)], (21) 

where the first term, £[•], in each equation represents the entropy of the received signal 

in spatial and spatial frequency coordinates, respectively, and the second term, e[-|-], rep­

resents the conditional entropy of the received signal given the radiance field. The con­

ditional entropy is the uncertainty of the digital signal p(p,v) when the radiance-field 

spectrum s(p.,v) is known. Thus, the information rate 5i given by this defining equation 

measures the amount of information received less the part of this which is due to noise. 

The assumptions that we have made above in Section III. 1.1, show that the aliased 

signal components Na(x,y) caused by insufficient sampling and the quantization noise 

Na/d(xiy) caused by the analog-to-digital transformation can both be treated as indepen­

dent, additive noises. This allows us, according to Shannon's Theorem 16 [60], to simplify 

9t given by Eq. 21 to [63] 

X = £[p[x,y}}-£[N[x,y}}=£[p(fi,v)}-£[N\M,v}}, (22) 

where 

p(p,v) = KSQirftfav) +NQi,v) (23) 
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and 

N(fi,v)=fta(ji,\)+Ne(M,v)+Na/d{M>v)' (24) 

A full interpretation of Eq. 22 in terms of the probability densities ps[p(/j,v)] and 

pn[N(ji,\)] of the signal and the total noise, respectively, is given by the expression [63] 

«-k P5[p(/i,v)]log2p,[pCu,v)]dp0u,v) 

- JJpN[N(v,v)]\og2pN[N(n,v)}dN(p.,v)\diiidv, 

(25) 

where dp(^,v) and dN(p,v) denote the real differential area elements comprising the real 

and imaginary parts of p(p,v) and N(/u,v), respectively. The Gaussian probability density 

ps\p(ji,v)] of the signal p(ji,\) is 

Ps\P(M,v)] = 
1 

7tf>p(/I,v) 
exp 

2 /jL - |P(^,V)|V*PO«.V) (26) 

Similarly, the Gaussian probability density ptf[N(fi,v)] of the noise pff[n(jn,v)] with the 

PSD4>N(/i,v)is[63] 

Pn\p<Ji,v)] = 
1 

TC^HGU.V) 
exp -|«Cu,v)|2/<i>«Gu,v) (27) 

The PSD &p(fi,v) of the signal is 

* , = [6p|t0l,v)|2]*jIl + *e + *B/rf. (28) 

and the PSD <fv/(/u,v) of the signal is 

<i>,v = [4> P |X(A/ ,V) | 2 ] *]| |+<i>«. + «i>fl/d, (29) 
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where ||| = |||(/i,v) = 5(^,v) + ||| G",v), i.e., ||| represents the aliasing sidebands. Sub 

stituting the above into Eq. 22 yields the following results: 

^ = 2IIl0g2 *p '̂ v^dv ~ 2 //log2 * " ^ ' v ) ^ ^ 
+ • 

4//'-
*/iG",y) 

-}d/jdv (30) 

1 + -=- ^(^v)|t(^,v)r d/idv. 
4>a (/i, V) + 3>tfe (A/, V) + 4>Nfl/, (//, V) _ 

Actually, the above formulations of 9i can be tied to the Wiener restoration filter *P, 

which is given by [63] 

•fov) = 
4»,(Ai,v)r(Ai,v) 

/^<|)5(^v)|T(Ju,v)|2 + 4 > a ( / u , v ) + ^ ( i U , v ) + ^ a / d ( ^ v ) ' 
(31) 

where 

<l>a(A/,v)=/i:2<l>i(Ai,v)|x(Ay,v)|2*£5(Ju-m,v-n) (32) 

is the aliasing noise, where m,n E Z and m,n^ 0,0. Therefore, the information capacity 

H of a system is defined as the mutual information between the radiance field and the 

sampled image [63]: 

«&,fov)|iGi,v)|2 

rt - £ / / • * 1 + -*- d/tf/V. (33) 
<Da foi, v) + ^ e G", v) + <*X/d (JI, v) _ 

For the simplifying assumptions that (a) the photodetector noise is white so that the 

PSD <J>Afe(//,v) is equal to its variance c2^ and (b) the PSD <f>;va/d0">v) of the quantization 

noise is equal to its variance ojj , Eq. 33 can be expressed as a function of the SNRs 

Kos/oNe and (KCS/CP)K as [63] 

# 
- * / / • * 

l + icr 
^ v ) + (Kos/oN.)-2 + (KOS/GP)-1K-I 

where <f>ifoi,v) = o724>s(^i, v) and <f>l(//,v) = a724>a(//,v). 

d/jdv, (34) 
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Huck et al. [63] proposed that o2, can be assumed the same as a2, for o2 = K2a2
p. The 

information capacity equation can be further simplified as [63] 

H -UJ** *;<,,, v)|toi,v)i2 

d/jdv. (35) 
<I>>,V) + (1/SM?)2 + (1/K)2_ 

The one "unknown" in Equations 33-35 is the power spectral density of the scene, 4>s. 

We assume that 

*,(*v) = ^ S m, (36) 

where C, is the mean spatial detail in the scene with respect to the inter-sample distance, and 

cs is the standard deviation of the radiance field. This description represents the ensemble 

average of scenes acquired from remote sensing platforms. 

In the end-to-end system model described in Figure 3, image processing algorithms like 

edge-detection are applied prior to image restoration. Hence, we will further restrict our 

evaluation to just before the formation of the image restoration filter which, consequently, 

plays no part in this analysis. 

Edge detection is a typical digital image processing algorithm that can be evaluated 

within the context of the end-to-end imaging model. Edges are usually modeled by the 

high frequency information in an image. For this reason, edge detectors are often regarded 

as high-pass or band-pass filters, but the properties and parameters of the edge-detection 

filters vary for different edge operators. Here, we incorporate the edge-detection process 

into the model shown in Figure 4 by letting the image processing module be an edge-

detection module. To evaluate the edge detection, the model would have to be adjusted as 

shown in Figure 5. 
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FIG. 5: End-to-end edge detection model. 

We again neglect anything beyond the edge-detection process because we are only 

interested in the information throughput between input scene at image acquisition and the 

output of the edge-detection algorithm. Consequently, the associated information capacity 

H: is 

*=i//k* 1 + 
<f>,fov)|tfri1v)|2|*,(Ai,v)|2 

$>A (jU, V) + ®Ne (M, V) + &Na/d (M, V) 
d/jdv, (37) 

where 

^( A / ,v)=^ 2 <l> s (^v) |x( / i ,v) | 2 | t e ( A i ,v) | 2 *£5( / / -m,v-n) (38) 

is the aliasing noise and where m,n 6 Z and m,n^ 0,0, and xe(//, v) is the SFR of edge 

detector. 

III.2 EDGE DETECTORS 

To analyze traditional edge detection performance in the context of visual communi­

cation, we use the following edge detection operators in this dissertation: 

1. Sobel[2], 

2. Prewitt[3], 

3. Roberts [1], 
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4. Laplacian-of-Gaussian (LoG) [8], 

5. Canny [5]. 

III.2.1 Sobel Operator 

The Sobel operator is one of the most popular edge detection operators. In its sim­

plest form, it consists of two convolution kernels: one, SH, is designed to detect primarily 

horizontal edges and the other, Sy, primarily vertical edges. 

SH 

The edge pixel, es(m,n), is then given by 

1 

0 

1 

- 2 

0 

2 

- 1 

0 

1 

Sv = 

- 1 0 1 

- 2 0 2 

- 1 0 1 

es(m,n) = \G(m,n) *S//(m,n)| + \G(m,n) *Sy(m,n)|, 

where G(m, n) are the pixels from the input image, G. 

(39) 

(40) 

III.2.2 Prewitt Operator 

The Prewitt horizontal and vertical are very similar to the Sobel kernels. The main 

difference is that whereas the Sobel operator weights the central column and row values 

twice as much as the border values, the Prewitt operator uses a weight of 1. The two 

convolution kernels PH and Py are given as 

PH = 

1 

0 

1 

- 1 

0 

1 

- 1 

0 

1 

Pv = 

- 1 0 1 

- 1 0 1 

- 1 0 1 

(41) 
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The edge pixel, es(m,n), is then given by 

es(m,n) = \G(m,n) *P//(ra,n)| + \G(m,n) *Pv(m,ri)\ (42) 

III.2.3 Roberts Operator 

Except Sobel and Prewitt are first-order partial derivative kernel operators, the Robert 

operator is another first-order partial derivative kernel, but its mask size is 2 x 2. It has two 

convolution kernels: Rx andRy. 

Rr = 
1 

0 

0 

1 
Ry = 

0 - 1 

1 0 

The edge pixel, es(m,n), is then given by 

(43) 

es(m,n) = \G(m,n) *Rx{m,n)\ + \G(m,n) *Ry(m,n)\ (44) 

III.2.4 LoG Operator 

The LoG is a second-order derivative operator. The spatial response and SFR of this 

operator, respectively, are 

ie(x,y) = — 4 ( 1 
20? exp 

r2 

2 O | J 
(45) 

and 

fe(/i,v) = (27tp)2exp [-2(7iaep)2], (46) 

where r2 = x2 + v2, p2 = //2 + v2, oe is the standard deviation of the Gaussian function, 

and p = l/y/2%Ge is the spatial frequency at which ie is maximum. 
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0 0 - 1 0 0 

0 - 1 1 0 

- 1 - 2 16 - 2 - 1 

0 - 1 1 0 

0 0 - 1 0 0 

The edge pixel, es(m,n), is then given by 

(47) 

es(m,n) = G(m,n) *L(m,n). (48) 

III.2.5 Canny Operator 

The Canny operator [5] is based upon three basic performance criteria: good SNR, 

good detection and localization, and only one response to a single edge. It is implemented 

as the following four steps: 

1. Smoothing the image using Gaussian filtering: this step is used to low-pass filter the 

image to reduce some of the high-frequency noise. 

2. Calculating the gradient magnitude and direction by using first order finite differ­

ences: this step provides the candidate map for edge-pixels. Typically an operation 

like Sobel edge detection is used. 

3. Imposing non-maximum suppression on the gradient value: this step ensures that 

there is only one response to an edge. In other words, this is an edge-thinning pro­

cess. 
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4. Detecting and connecting the edges by using hysteresis thresholding. The idea of 

hysteresis thresholding is simple yet elegant. Two thresholds xu and T/, which are 

often linearly related, are used. A candidate edge pixel c(m,n) is classified as an 

edge pixel if \c(m,n)\ > xu and as a non-edge if c(m,n) < X/. If neither condition 

is satisfied, then c(m,n) is classified as an edge if it is 4-adjacent to a previously 

classified edge-pixel. The idea of 4-adjacency simply means that the search space for 

adjacency is restricted to the East, West, North, and South neighbors. This reduces 

the number of spurious pixels due to noise. 

So far we have described the complete system model and introduced the edge de­

tectors that we compare using the information-theoretic analysis. As stated earlier, the 

information-theoretic analysis requires that we know the spatial-frequency response and 

the PSD of the edge detection operators. We will investigate edge detection and noise-

reduction using edge and connectivity analysis in Chapter IV and derive the PSDs and 

evaluate the performance of the operators in Chapter V. 
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CHAPTER IV 

RESULTS OF EDGE DETECTION AND NOISE REDUCTION 

We compare the performance of the multi-scale edge detection algorithms with several 

edge detection algorithms. We also use edge-detection in conjunction with connectivity 

analysis to perform noise reduction. For noise reduction, we use both edge detection al­

gorithms, including the proposed algorithms, and some traditional edge preserving noise 

reduction filters. For the edge detection operators, we perform connectivity analysis after 

edge detection to denoise the original image. For the linear or non-linear filters, we apply 

them directly to the image. Each of these algorithms is discussed in some detail in Sec­

tion IV. 1, except those that were described in Section III.2. The results of edge detection 

are shown in Section IV.2, and the noise reduction performance of different methods is 

shown in Section IV. 3. 

IV.l ALGORITHMS USED FOR EDGE DETECTION OR NOISE REDUCTION 

In addition to the previously described Sobel, Prewitt, Roberts, LoG, and Canny oper­

ators (Chapter III), we use the following algorithms for denoising: 

1 . 3 x 3 smallest difference-of-Gaussian, or, lateral-inhibition (LIH) [63, 59], 

2. Median filter [7, pp. 165-167], 

3. Adaptive median filter (AMF) [7, pp. 332-335], 
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4. Adaptive threshold median filter (ATMF) [25]. 

Of these, the LIH is an edge-detection algorithm, and the other three are traditionally used 

noise-reduction algorithms. 

IV.1.1 Lateral Inhibition 

The smallest difference-of-Gaussian (DOG), or the lateral inhibition (LIH) [63, 59], 

operator derives its origin from the natural vision literature. The lateral inhibition termi­

nology comes from its physical renditions, where a positive center pixel in a 3 x 3 neigh­

borhood is inhibited by all of its neighbors to produce a high pass signal. Mathematically, 

the output of the LIH is given by 

ei(m,n) = G(m,n) *L(m,n), (49) 

where ei(m,n) is the edge output, and 

-0.0675 -0.1820 -0.0675 

-0.1820 1.0000 -0.1820 

-0.0675 -0.1820 -0.0675 

(50) 

IV.1.2 Median Filter 

The best-known median filter [7, pp. 165-167] replaces the pixel value f(m,n) with 

the median of the gray levels in the 3 x 3 neighborhood J? of that pixel: 

f(m,n) = median(g(m,n)), (m,n)e3l. (51) 
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The original value of the pixel is included in the computation of the median. The median 

filter is very popular because, for certain types of random noise, it provides excellent noise-

reduction capabilities, with considerably less blurring than the linear mean filter of the 

same size. 

IV.1.3 Adaptive Median Filter 

Despite its effectiveness in eliminating noise, the median filter tends to remove fine 

details when applied uniformly to an image. To eliminate this drawback, the adaptive 

median filter (AMF) [7, pp. 332-335] has been proposed. The AMF uses variable window 

sizes for removing impulse noise while preserving sharpness. In this way, the integrity of 

edge and detail information becomes better. The basic window size of AMF is 3, which is 

the same as the median filter. The following algorithm is used to implement the AMF: 

1. In the P x P neighborhood around the pixel p(m,n), compute the median zmed, the 

maximum value Zmax, and the minimum value zmin- If Zmin < zmed < zmax go to step 3; 

otherwise go to step 2. 

2. Increase the size of the neighborhood to the next higher odd number, i.e., P <— P+2. 

If the new P is larger than the allowed maximum size, go to step 4. Otherwise, go 

back to step 1. 

3. Compare p(m,n) with zmax and zmin- If zmin < p(m,n) < zmax, output p(m,n). 

4. Output p(m, n) ^ zmed-
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IV.1.4 Adaptive Threshold Median Filter 

Images are often corrupted by multiple-impulse noise, which means that the magni­

tude of impulse noise is not constant as is generally assumed. Its magnitude might be 

slightly varying but still close to extreme (pure black or while) values in an image. The 

performance of the AMF in the presence of such noise is not very good, so a modified 

AMF called the adaptive threshold median filter (ATMF) [25] is used. The basic steps of 

the ATMF are the same as those of the AMF as described in Section IV. 1.3. The major 

difference is that the ATMF integrates the AMF with two dynamic thresholds. An in-depth 

analysis of the AMF shows that the values of Zmax and zmin are critical in judging the noise. 

Since the ATMF attempts to handle multiple impulse noise, the Zmax and Zmin of AMF are 

replaced with the least maximum and the largest minimum with the help of two dynamic 

thresholds. The dynamic thresholds enhance the ability of the filter to detect the multiple 

noises and balance the noise removal and image quality. 

IV.2 EDGE DETECTION RESULTS 

IV.2.1 Experimental Evaluation 

We have tested our methods on color and grayscale images with root-mean-square 

(RMS) SNRs varying from 1 to 10. For color images, the algorithms are applied to each 

channel individually. The baseline images used in the experiments were computer gen­

erated so they are noise free, allowing us to control the SNR of the images precisely by 

adding white Gaussian noise of requisite amplitude to the data. This provides a controlled 

environment in which the performance of the algorithms can be evaluated as a function of 



45 

the different system parameters which can be modified. Also, this allows us to compare the 

effectiveness of the noise-reduction algorithms since we can access the original noise-free 

image and compare the denoised directly with the original image. To test the performance 

of the algorithms on real images, "Barbara" and "Lena" were used. The original test im­

ages are shown in Figure 6 for the noise-free and the extremely noisy—SNR = 1—case. 

FIG. 6: Top-row: noise-free, and bottom-row SNR = 1: (left-column) Rect; (second-
column) Randpoly; (third-column) Barbara; (right-column) Lena. 

Figure 7 shows an original, noise-free, image G and three noisy images, GSNR=IO, 

G$NR=S, and GSNR=I- In general, except when the SNR « 1, traditional edge detection 

methods can be used to find the edges that have been impacted by noise. Figure 8 shows 

Gj for the original noise free image, G, and Figure 9 shows the multi-resolution images for 

GSNR=I- The Fj (Eq. 5) used for these images were generated using 0\ = 2. This value of 

Oi was deemed to be optimal after conducting a series of experiments based on different 
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FIG. 7: (left) Original image, G; (second) noisy image GSNR=IO', (third) noisy image, 
GSNR=5', and (right) noisy image, GSNR=\-

images, which are noise-free or corrupted by white Gaussian noise with various SNR from 

1 to 10. This scale makes the resolution differences between each neighbor scales large 

enough to differentiate details and noise but not so overwhelming so as to lead to too much 

blurring. 

As can be seen from Figures 8 and 9, while noise suppression due to the Gaussian 

filters is small for 7 = 1,2,3, i.e., A(G) = \Gj — GSNR=IJ\ is large, A(G) is relatively small 

for j = 4,5,6, i.e., noise suppression is large. 

From our experiments we determined that it is not necessary to use all six images with 

different resolutions to obtain an edge image: in general, three resolutions are enough. The 

question, then, is: which three resolutions should be used? For the noise-free image or 

good SNR, i.e., SNR> 10, this is not hard to choose. Since we do not want to attenuate too 

much original information, smaller scales of the Gaussian filters, i.e., j = 1,2,3, would be 

used to create the three resolution images. The selection is not so obvious for the extremely 

noisy condition, such as SNR= 1. We will discuss this low SNR condition in detail below. 
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FIG. 8: Multi-resolution images: Gj = G*Fj, j — 1,...,6, G\ = 2 (Equation 5). 

FIG. 9: Multi-resolution images: Gj = GSNR=I *FJ, j = 1,..., 6, ai = 2 (Equation 5). 
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From Figure 9, we see that smaller a, keep the image sharp and noisy and vice versa. 

Using just the smallest or largest Gy does not provide good performance. Experiments 

show that the larger Gj, such as the one shown in Figure 9 (bottom-right) lose almost all 

the high-frequency information and hardly give any help for edge detection. In Figure 10, 

different combinations of resolutions are shown. In each case, three neighboring scaled 

images were selected. We found that different combinations of resolutions required dif­

ferent values for xm and %p. While we had to relax the requirement on xp, its impact on 

edge detection was not critical. However, varying %m has a significant impact on the per­

formance of the algorithm. Increasing im removes more noise but also loses more edges. 

FIG. 10: The results of combining 3 different layers on GSNR=V- (left) layers 1, 2, and 3; 
(center) layers 2, 3, and 4; and (right) layers 3, 4, and 5. 

Using the same Oi, another new scheme was introduced. A pixel at (m,n) was con­

sidered to be an edge pixel if Mj(m, n) > xm for two out of the three (2-of-3) resolutions, 

rather than for all three (3-of-3) resolutions as shown in Figure 10. Results for this scheme 

are shown in Figure 11. While this new scheme leads to more connected edges, it also 

allows more noise pixels to be classified as edges. However, the visual impact is better 
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than the 3-of-3 scheme because the edges are finer. The value for xm changes slightly for 

optimal results, but xp is the same as that used in Figure 10. 

FIG. 11: The results of using the 2-of-3 rule on GSNR=V- (left) layers 2, 3, and 4; (center) 
layers 3, 4, and 5; and (right) layers 4, 5, and 6. 

For the 3-of-3 and 2-of-3 schemes, using different Gaussian filters to suppress the 

noise would make the edges thicker as ai increases. Thinner edges can be produced only 

at the cost of classifying more noise pixels as edge pixels, especially for very low SNRs. 

We have determined experimentally that if SNR > 10, then the proposed algorithms can 

produce edges that are as thin as those produced by traditional algorithms for the noise-free 

case. 

IV.2.2 Results of Comparisons 

In order to evaluate the performance of the proposed algorithms, we compare its per­

formance with the traditional edge detection methods described in Sections III.2 and IV. 1. 
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Noise-free case 

In the noise-free case, all the methods give excellent results, with relatively minor 

differences in performance, for all the test cases. In Figures 12,13,14, and 15, we show the 

results for two computer-generated images, "Rect" and "Randpoly," and two real images, 

"Barbara" and "Lena." For the computer-generated cases, both 3-of-3 and 2-of-3 methods 

give good results, but the edges for the latter are finer than those produced by the former. 

This is because fewer pixels are eliminated for the 2-of-3 methods since the comparison 

takes place over fewer scales. The LNE algorithm extracts additional finer details and 

produces cleaner, straighter, and thinner edges. While the Sobel operator correctly finds 

the edges in the image, the edges it produces are thicker than those produced by other 

operators. Prewitt and Roberts also have almost the same results—since the image is 

noise-free, all results of first derivative based operators are very good. LIH marks the 

location of the edges precisely and the edges are thin. The result of LoG is not as good as 

the others because of the single kernel approximation which balances the trade-off between 

the contour and details. Thus, while the small details are not picked up, the main structures 

are. The Canny operator also performs well and produces thin edges. 

Since the "Barbara" image contains fine detail, it is a good exemplar for testing the per­

formance of edge detectors. Our proposed algorithms and the first derivative methods— 

Sobel, Prewitt, Roberts, and LIH—both produce good results. All of them not only effec­

tively extract edge from main structures, such as the frame, the books, and the "Barbara," 

but also extract the edge exists in high edge density areas like the scarf, the trousers and 

the table cover. The LoG and the Canny operators are good at extracting main structures 



FIG. 12: "Rect": (top-row-left) Sobel; (top-row-center) Prewitt; (top-row-right) Roberts; 
(second-row-left) LIH; (second-row-center) LoG; (second-row-right) Canny; (third-row-
left) 3-of-3 (EL=1); (third-row-center) 2-of-3 (EL=1); and (third-row-right) LNE (EL=1). 
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FIG. 13: "Randpoly": (top-row-left) Sobel; (top-row-center) Prewitt; (top-row-right) 
Roberts; (second-row-left) LIH; (second-row-center) LoG; (second-row-right) Canny; 
(third-row-left) 3-of-3 (EL=1); (third-row-center) 2-of-3 (EL=1); and (third-row-right) 
LNE (EL=1). 
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FIG. 15: "Lena": (top-row-left) Sobel; (top-row-center) Prewitt; (top-row-right) Roberts; 
(second-row-left) LIH; (second-row-center) LoG; (second-row-right) Canny; (third-row-
left) 3-of-3 (EL=2); (third-row-center) 2-of-3 (EL=2); and (third-row-right) LNE (EL=1). 
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but not very good at the finer details because of the inherent blurring associated with the 

processes. 

The original "Lena" image exhibits some minor noise. The first derivative methods 

would produce spurious edges as can be seen in Figure 15 because noise introduces gradi­

ent transitions. Our proposed methods produce strong edges and are comparable in perfor­

mance to the other methods. The LNE method produced relatively thinner edges and less 

noise than others but lost some details. Both the 3-of-3 and LNE methods produce finer 

edges than the 2-of-3 method. While the edge results using the LoG are good, some small 

details are lost. Canny produces the cleanest results and single response for each edges, 

but edge terminals are slightly distorted. 

Noise with SNR = 1 

Figures 16 and 17 show the edge images obtained with the different methods used 

in Figures 12 and 13 except the case where heavy noise (SNR =1) has been introduced 

into the image. Here, for the multi-scale methods, relatively larger scales are used to 

decrease the impact of noise, which results in some details not being preserved in all 

three scales and, hence, not being detected as edges. The 2-of-3 algorithm displays to 

advantage in this case: while it finds more pixels as edges and is, hence, noisier, we can 

use connectivity analysis to eliminate the edges due to noise. The LNE algorithm is better 

than the 3-of-3 algorithm but a little worse than the 2-of-3 method. The first derivative 

methods such as Sobel, Prewitt, and Roberts operator are badly affected by the noise since 

noise causes edge transitions. LIH seems to lose connectivity since it is primarily a point 

detector. LoG exhibits better performance than the first derivative methods but is not 
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especially good because of the single kernel. The Canny operator is good at suppressing 

noise and detecting edges because it uses a Gaussian filter to smooth the image before edge 

localization, but greater noise reduction results in a number of small distortions—curves 

or projections at the edge terminals. 

Additional experimental results for the SNR = 1 case are shown in Figure 18. For 

"Barbara," our proposed algorithms give better results than other algorithms. Even in 

this case of extremely poor SNR, they can separate the small edges, for example, on the 

table cover. Furthermore, they robustly detect the main structures in this image, such as 

the contour of Barbara, the bookshelf, and the tables. While the edges produced by the 

3-of-3 and LNE methods are thinner than those produced by the 2-of-3 method, the 2-

of-3 detected more complete edges. The first derivative methods are not effective at all 

because they do not employ noise-reduction. Although LoG and Canny do perform noise-

reduction, their results are not as good as those produced by our algorithms. 

Similarly, for the case when the "Lena" image is corrupted by noise with SNR= 1 (Fig­

ure 19), the first derivative methods do not properly detect the edges. The LoG managed 

to detect a few edges scattered across the image, but it also let more noise through. The 

filtering process of Canny introduced bad distortions in the result but got a clean and par­

tial contour. Our algorithms obviously produce better results than others. The distortion 

is less than Canny, and more edges are extracted such as the long straight lines in the left 

side of the image. While the edges produced by the 3-of-3 and LNE methods are thinner 

than those produced by the 2-of-3 method, the 2-of-3 found more complete edges. 
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FIG. 16: "Rect" SNR= 1: (top-row-left) Sobel; (top-row-center) Prewitt; (top-row-right) 
Roberts; (second-row-left) LIH; (second-row-center) LoG; (second-row-right) Canny; 
(third-row-left) 3-of-3 (EL=3); (third-row-center) 2-of-3 (EL=3); and (third-row-right) 
LNE (EL=3). 



FIG. 17: "Randpoly" SNR= 1: (top-row-left) Sobel; (top-row-center) Prewitt; (top-
row-right) Roberts; (second-row-left) LIH; (second-row-center) LoG; (second-row-right) 
Canny; (third-row-left) 3-of-3 (EL=2); (third-row-center) 2-of-3 (EL=3); and (third-row-
right) LNE (EL=2). 



FIG. 18: "Barbara" SNR= 1: (top-row-left) Sobel; (top-row-center) Prewitt; (top-
row-right) Roberts; (second-row-left) LIH; (second-row-center) LoG; (second-row-right) 
Canny; (third-row-left) 3-of-3 (EL=2); (third-row-center) 2-of-3 (EL=3); and (third-row-
right) LNE (EL=2). 



FIG. 19: "Lena" SNR= 1: (top-row-left) Sobel; (top-row-center) Prewitt; (top-row-right) 
Roberts; (second-row-left) LIH; (second-row-center) LoG; (second-row-right) Canny; 
(third-row-left) 3-of-3 (EL=2); (third-row-center) 2-of-3 (EL=3); and (third-row-right) 
LNE (EL=2). 



61 

FIG. 20: The effect of connectivity analysis: (left) No connectivity analysis; (center) EL 
= 3; and (right) EL = 5. 

Figure 20 shows the effect of the connectivity analysis. The original edge image is gen­

erated by using the 2-of-3 algorithm. The condition EL=\ represents the case where all 

the edges are passed through, i.e., no connectivity analysis is performed. For EL> 1, the 

difference is obvious: as EL increases, the small edges appearing frequently in the center of 

blocks of smooth regions away from the authentic boundaries are increasingly removed. 

However, the algorithm takes longer to process the image since multiple neighborhoods 

need to be examined at each pixel location (See Section II.2.2). In our experiments, the 

size of the image would be 512 x 512. When EL < 4, the computation time is less than 

1 second in C/C++ compiler on 2.40GHz Intel Core2 CPU. However, when EL > 5, the 

process would take about 5 seconds or more to finish connectivity analysis. Thus, by 

help of connectivity analysis, the edges with prescribed lengths are classified as signal and 

kept, while those with lengths shorter than EL are classified as noise and eliminated using 

smoothing. 



62 

IV.3 NOISE REDUCTION RESULTS 

IV.3.1 Comparison for Computer-generated Images 

Recall that the overall denoising process relies on the edge-detection mechanism fol­

lowed by noise suppression at those locations where the pixels are not classified as edge 

pixels. We also introduced the idea of edge connectivity analysis to determine which edge 

pixels were actually produced due to noise. In order to determine the effectiveness of this 

approach, we performed two different group tests. Figure 21 shows the output of the tra­

ditional noise reduction filters: the median filter, the AMF, or the ATMF. Also, as a final 

comparison, the noise-reduction achieved by applying just the smoothing filter is shown. 

In Figure 22, the results of applying edge detection for noise reduction are shown for our 

proposed methods and other edge detection algorithms. 

After edge detection, we can either apply: 

1. a blurring filter to every pixel that is not an edge pixel without performing edge 

connectivity analysis to determine if it were a noise pixel or not, or 

2. edge analysis with different edge length requirements and further reduce the total 

number of edge pixels by eliminating those that were classified as noise. 

Experiments show that using connectivity analysis, for example, with the 3 x 3 edge neigh­

borhood, eliminates noise along the boundaries of regions with intensity transitions and 

produces an overall less noisy image. Increasing EL would, additionally, remove isolated 

small edges, further reducing the noise along the boundaries of regions. Larger connectiv­

ity neighborhoods produce smoother results, yet, the impact on sharpness and contrast is 
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FIG. 21: (top-row-left) Original image, G; (top-row-center) noisy image, GSNR=I, SNR = 
1; (top-row-right) Mean filter; (second-row-left) 3 x 3 Median filter; (second-row-center) 
7 x 7 AMF; and (second-row-right) 7 x 7 ATMF. 
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FIG. 22: (left) without edge analysis; (center) EL = 3; and (right) EL = 5. 
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minimal. The 3-of-3, 2-of-3 and LNE methods are able to eliminate more noise than Sobel 

and LIH because of better edge detection and localization. The performance of the Canny 

operator is similar to that of the proposed method. Compared with our proposed method, 

the traditional methods are less effective in very low SNR environments. While the mean 

filter produces good results in terms of eliminating visible noise distortion, it blurs the 

edges severely—depending on the SNR—limiting the utility of the processed image for 

further operations. The AMF does not produce good results for the additive white Gaus­

sian noise. Similarly, the ATMF does not perform well even though it is good at reducing 

multi-layer impulse noise [25]. 

IV.3.2 Fidelity Assessment 

A commonly used metric of similarity between two images G\ and G2 is the fidelity, 

jF(Gi,G2) denned as 

£ £ ( G i ( m , n ) - G 2 ( m , n ) ) 2 

T(GuG2) = \-m=0n=0
M_XN_x , (52) 

£ £G!(m,«)2 

m=0 n=0 

where J — 1 when G\ = G2. The fidelity metric corresponds fairly closely with visual 

judgment for comparing images. In order to measure the performance of our noise-

reduction approach, we compute !F(G,GP), where Gp is variously produced by edge-

directed noise reduction using the Sobel, LIH, Canny, and our two methods, and G is the 

original noise-free image. The results are tabulated in Table 1. 

Using J for assessing the performance, it is clear that the connectivity analysis method 

indeed improves noise reduction for LIH, Canny, and our proposed method. Furthermore, 



66 

Table 1: Fidelity improvement with noise reduction. 

Noisy Image (SNR=1) 

Sobel+Mean filter 
LIH+Mean filter 

Canny+Mean filter 
3-of-3+Mean filter 
2-of-3+Mean filter 
LNE+Mean filter 
Mean filter (3 x 3) 

Median filter (3 x 3) 
AMF (7 x 7) 

ATMF (7 x 7) 

Fidelity ( 5 ) 
Without connectivity 

analysis 

0.779 
0.801 
0.915 
0.958 
0.957 
0.954 
0.955 
0.959 
0.805 
0.884 
0.873 

With connectivity analysis 
EL = 3 

-
0.801 
0.928 
0.958 
0.958 
0.955 
0.957 

-
-
-
-

EL = 5 

-
0.801 
0.938 
0.958 
0.959 
0.956 
0.958 

-
-
-
-

increasing the size of the connectivity neighborhood can improve F̂ by as much as 2% for 

LIH. However, there is no obvious impact when the Sobel operator is used. Also, 7 for 

median filter and AMF are not good: both produce denoised images with a contrast that 

is poorer than that of the original image. The effect on ATMF is also not good: while it 

removes a little more noise than the AMF, its fidelity is worse. The mean filter performs 

about as well, in terms of jF, as the proposed noise reduction. We can explain this (slightly) 

unexpected result by the observation that jF is a gross measure of visual similarity, so a 

blurred image compared with its original unblurred version would typically result in a 

high $. Additionally, the experimental results show that both the proposed methods and 

the Canny operator are effective in preserving edges and removing noise. 
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IV.3.3 Comparison of Real Images 

In addition to the results based on computer generated images, we also applied the 

proposed algorithms to real images. In Figure 23(a), the "Barbara" image, which has 

areas of varying edge densities, was used to test our algorithms. Since we are looking at 

the extreme case of SNR=1, we do not show the result for the derivative-based methods 

because their performance is extremely poor for this condition (Figure 12). Therefore, we 

only show the results of the Canny algorithm and our algorithms. All methods performed 

well in detecting edges. Then, we used the computed edge images to direct the mean filter 

to reduce image noise. In comparison with the result of the mean filter alone, the results 

generated by combining edge detection algorithms and the mean filter are better because 

the edges were preserved during smoothing. The Canny operator helped the mean filter to 

remove the most noise but also resulted in phantom edges due to hysteresis thresholding. 

Our methods extracted more edges than Canny, especially the 2-of-3 method, but also 

allowed more noise to go through. However, the greater number of edges led to a greater 

number of features being preserved. For the LNE algorithm, the edges were thinner and 

cleaner. It also had less noise than the 3-of-3 and the 2-of-3 methods. The fidelity results 

of the "Barbara" image are tabulated in Table 2. All the methods achieved good results in 

terms of the fidelity metric. 

In Figure 23(b) another example, "Lena," has been used. This image not only has 

straight edges but also curved and vanishing ones. The mean filter attenuated both features 

and noise. The Canny operator did well in noise reduction, but, since it used a relatively 

larger scale for the Gaussian filter, some of the features, for example Lena's eyes, were 



FIG. 23: Noise reduction for real images: (a) Barbara; (b) Lena: clockwise from top-left: 
Image with SNR = 1; Mean filter (MF); Canny + MF; 3-of-3 + MF; 2-of-3; LNE + MF. 
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Table 2: Fidelity improvement with noise reduction. 

Fidelity 

Barbara 
Lena 

Original 
Image 

1.00 
1.00 

Noisy Image 
(SNR = 1) 

0.82 
0.85 

Canny + 
MF 

0.97 
0.96 

3-of-3 + 
MF 

0.97 
0.96 

2-of-3 + 
MF 

0.97 
0.96 

LNE + 
MF 

0.97 
0.97 

Mean 
filter 

0.97 
0.97 

MF = Mean filter 

not completely preserved. The 3-of-3 and the 2-of-3 methods are better than Canny in pre­

serving the features, but they have more noisy outputs. This depicts the trade-off between 

signal preservation and noise reduction. LNE is better than other methods because it pre­

served the most edge structures, such as the hat and the mirror, but let less noise through. 

Table 2 shows the LNE is best in terms of the fidelity comparison. 

During our experiments we found that the value of the parameters in Section II.2.1 

needed to be changed depending upon the value of the SNR. From observation we see that 

to find a thinner edge Oi should be decreased and %m should be increased; otherwise, more 

edges and more noise would be produced. At the same time, due to small <5\, the residual 

noise would be higher and affect the edges, making it harder to differentiate between edges 

and noise. Under these conditions, though the edge might be thinner, the noise would be 

worse not just around the true edges but also spread across non-edge areas. However, 

since we do not use all the resolutions, reducing Ci is equivalent to using a different set of 

resolutions that correspond to the same G\ value, so the overall impact of changing Oi is 

in selecting different resolutions that do not impact overall performance. The same cannot 

be said, however, about xm. Figure 24 shows that the SNR and zm are inversely related: 

as SNR increases, %m should decrease. This regularity was found by statistical analysis 
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FIG. 24: Magnitude threshold xm as a function of the SNR: * color data; o grayscale data. 

across different color and gray images. We generated 40 noise-free images for both color 

and gray images. They were corrupted by Gaussian white noise with different SNR from 

1 to 10. Then, we applied our edge detection methods to those images and examined the 

regularity of xm. This regularity makes intuitive sense since less noise in the image (higher 

SNR) corresponds to fewer false edges in the image corresponding to noise and, hence, 

does not require a larger threshold to eliminate such edges. 



71 

CHAPTER V 

RESULTS OF INFORMATION-THEORETIC ANALYSIS 

V.l PSDS OF EDGE DETECTORS 

As shown in Section III. 1, the information capacity 0{ requires the PSD of its corre­

sponding process, such as the image gathering function or the scene. Similarly, to evaluate 

the edge detection process, xe, in the context of the visual communication channel, we 

need to determine its PSD. The PSD of the edge-detection process falls into one of three 

major categories: 

1. The edge detection algorithm has a close-formed analytic expression in the spatial 

domain; 

2. It does not have a close-formed analytic expression, but it is linear and shift-

invariant; 

3. It does not belong to either category 1 or category 2. For example, it is a non-linear 

and shift-variant operator. 

The SFR of the LoG or other traditionally used edge-detection operators that can be 

described with close-formed analytic functions in the spatial domain can be easily obtained 

by the Fourier transform (FT) of the analytic function: 

xe(^,v) = / / Xe(x,y)exp(-i2n(fjx + vy)dxdy. (53) 
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The PSD of a function is defined as the FT of its autocorrelation. This is equivalent to 

taking the magnitude of the SFR for stationary signals. 

Typically, first derivative operators used for edge-detection are defined strictly in the 

spatial domain, and their SFR is not examined. However, for the information theoretic 

analysis, a spatial frequency domain representation is needed. To evaluate Sobel, and 

other kernel-based operators which do not have closed-form analytic expressions, we use 

two methods to determine their PSDs. The first method is simulation based and physically 

computes the DFT of the convolution kernels, while the second method derives the DFT 

theoretically. Identical results are obtained using the two methods. 

V.l.l Simulation Derivation of PSDs 

The procedure for computing the PSDs of the edge-detectors using simulations is as 

follows: 

1. Build a blank M xN image / (all pixel values are 0); 

2. Place the p x q edge operator kernel in the center of /; 

3. Compute the frequency response / using the DFT; 

4. Compute / which is the PSD for a zero-mean process. 

The PSD of the operator is then equivalent to / . 

V.1.2 Theoretical Derivation of PSDs 

The theoretical derivation makes use of the commonly used kernels for the Sobel, 

Roberts and Prewitt operators and expands them using signal processing techniques. 
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Sobel 

The Sobel operator is typically described using two convolution kernels: Sn(x,y) or 

Sy(x, y). We can expand these kernels using the Dirac delta function 8() in the following 

manner: 

SH(x,y) = ESH(m,n)b(x-m,y-n), 
(54) 

Sv(x,y) = Y,Sv(m,n)S(x — m,y — n), 

where SH (m, n) and Sy (m, n) are the values of SH (JC, y) and Sy (x, y) at the nodes of the sam­

pling lattice. Based on standard Sobel kernels [7], the two kernels can then be expressed 

as 

SH(x,y)= - l x 8 ( ; c + l , y + l ) + 0 X 5 ( J C + 1 , V ) + 1 x 8(JC+ l , v - 1 ) 

- 2 x 8 ( x , y + l ) + 0X8(JC,V) + 2 x 8 ( x , y - l ) 

- 1 X 8 ( J C - 1 , V + 1 ) + 0 x 8 ( x - l , y ) + 1 x 8 ( JC- l,y- 1), 

Sv(x,y)= - 1 x 8 ( j c + l , y + l ) - 2 x 8 ( x + l , y ) - 1 x 8(JC + 1, y-l) 

+ 0 x 8 ( x , y + l ) + 0x8(*,y) + 0x8( j c ,y - l ) 

+ l x 8 ( j t - l , y + l ) + 2 x 8 ( x - l , y ) + 1 x 8(x- l,y- 1). 

Simplifying, 

SH(x,y)= - 5 ( j c + l , y + l ) + 8 ( x + l , y - l ) - 28(jc,y+l) 

+2b(x,y-l) - 5(JC— l , y + l ) + 8(x-l,y-l), 

Sv(x,y)= - 5 ( j c + l , y + l ) - 2d(x+l,y) - 8 ( j c + l , y - l ) 

+ 8 ( * - l , y + l ) + 28(jc-l,y) + 8 ( j t - l , y - l ) . 

To obtain the SFR, we take the Fourier transforms of the kernels. Using the shift-in-

space relationship between the spatial and spatial frequency domain representations, and 

the identity that ^F(8) = 1, we can combine the various terms and obtain the following 

(55) 

(56) 
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simplified forms for the two kernels: 

SH(M,V) = -*'4sin(27Cv)(l+cos(27t//)), 
(57) 

Sv(fi,v) = -i4sin(27i/i)(l+cos(27tv)). 

Note that the presence of the i in both terms indicates that these are derivative operators. 

Hence, we can write the Sobel operator as 

xe(A/,v) = |5//(iu,v)| + |5v(A/,v)|. (58) 

Prewitt 

Following the development in Section V.1.2, the Prewitt kernels can be expressed as 

PH(x,y)= -8(x+l,y+l) + 8 ( * + l , y - l ) - 8(*,y+l) 

+ b(x,y-l) + 8 ( x - l , y + l ) + 8 ( j t - l , y - l ) , 

Pv(x,y)= - 8 ( j c + l , y + l ) - &(x+l,y) - 8(x+l,y-l) 

+ 5 ( j c - l , y + l ) -f 8(jc-l,y) + 8(x-l,y-l). 

After computation, their frequency responses are given as 

(59) 

(60) 
P//(jU,v) = -i4sin(2jcv)(l/2 + cos(2jcju)), 

Pv(fi,v) = -i4sin(27t^)(l/2 + cos(27tv)). 

Consequently, 

te(p,v) = \PH(fi,v)\ + \Pv(n,v)\. (61) 
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Roberts 

As in V. 1.2, the Roberts masks can be explicitly expressed as two separate two dimen­

sional signals. Then, they can be expressed as 

Rx(x,y) = - 5 ( j c ,y )+6( j c - l , y - l ) , 
(62) 

Ry(x,y) = -S(x,y-l) + 6(x-l,y). 

After computation, their frequency responses are 

RX(/J,V) = - l+cos(2ji0i+v))-isin(2rc(/i + v)), 
(63) 

Ry(jLi,v) = cos(2n/ii) - cos(27tv) - i[sm(2%/u) - sin(27t/i)]. 

Consequently, 

^Cu,v) = |^Gu,v)| + |^Ou,v)|. (64) 

Laplacian-of-Gaussian 

The LoG is a second-order derivative operator. The spatial and spatial frequency re­

sponse of this operator, respectively, are 

^ ) = ^ ( 1 ~ ^ ) C T p ( ~ 2 5 j ) ' (65) 

and 

te(n,v) = (2rcp)2exp(-2(;toep)2), (66) 

where r2 = x2 +y2, p2 — /a2 -f v2, oe is the standard deviation of the Gaussian function, 

and p = l/V2nae is the spatial frequency at which fe is maximum. 

Canny 

There are a number of edge detection algorithms, such as our proposed edge detection 

algorithms, that fall into the third category: i.e., they neither have closed form analytic 
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descriptions, nor are they linear and shift-invariant. In this dissertation, we describe how 

the SFR of these operators can be approximated using experimental methods. We use the 

Canny operator as an example for this process. 

Recall that we use the simplified model of the end-to-end imaging process to evaluate 

the performance of the edge detection operators. The output image was given by Equa­

tion 14 which is reproduced below: 

R[x,y] = ((s(x,y)*x(x,y))\\\(x,y) +Na/d[x,y] +Ne[x,y])*V(x,y). 

If we let *¥(x,y) = xe(x,y) be the Canny operator, then R(x,y) is the edge-image. Addi­

tionally, if we ignore the influence of every noise source, we can rewrite Eq. 14 as 

R[x,y] = (s(x,y) *x(x,y)) *xe(x,y). (67) 

The SFR xe could then be described using the following: 

% , v ] = (£Gu,v)f(//,v))Te(/i,v). (68) 

If the scene s(ji,\), the image-gathering process x(/^,v) and the edge image R\JJ,V] are 

known, the SFR of the Canny operator in frequency domain could be approximated by 

x ^ v ) = . *^] . . (69) 

This can be used in Eq. 37 to compute the information capacity associated with the Canny 

operator. However, since this result is valid for only a single input image s(x,y), we use an 

ensemble average to actually approximate the PSD. 
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V.1.3 PSDs Results 

Derivative-based Algorithms 

In Figures 25 and 26, the PSDs of different derivative edge detectors are shown as 3-

dimensional plots. These were individually computed using both the simulation technique 

outlined in Section V. 1.1 and the theoretical derivation in Section V. 1.2. In our experi­

ments, the size of the image was set as 1024 x 1024 for both methods. 

Sobel Prewitt 

-0.25 -^r- . 0 25 
v -0.5 -0.5 „ -0.5 -0.5 0.25 

Roberts LoG 

-0.25 ~-w-— .0 25 
v -05 -0.5 ° ^ 

FIG. 25: Power Spectral Densities of Edge Detectors by Real Simulation. 

For the Sobel, Prewitt and Roberts operators, the PSDs generated by using the simu­

lation based method agree perfectly with the theoretical derivation. For the LoG operator, 
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the PSD of its 5 x 5 approximation mask is shown in Figure 25, and, the PSD of the LoG 

based on its SFR, where oe = 0.5, is shown in Figure 26. They are almost identical, but 

the amplitude and the point of inflexion are slightly different. 

Sobel Prewitt 

100!--"T" ' I L--f"""'J :"'"•••!... 

FIG. 26: Power Spectral Densities of Edge Detectors by Theoretical Derivation. 

Canny Operator 

Since the Canny operator is not a linear and shift-invariant operator, we have to esti­

mate its PSD associated with different conditions, such as the mean spatial detail and the 

image-gathering process parameters. To compute its PSD, a group of computer generated 

images with mean spatial detail ranging from 1 to 10 were used. A set of 100 images was 
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used for each mean spatial detail, and the ensemble averages were used to compute the 

PSD. For the image-gathering process, the pc was changed from 0.1 to 1.0. The sharpness 

or blurring of digital image p[x,y] varied based on different pc as stated in Section III. 1.1. 

Therefore, images with different sharpness and blurring conditions were used to find the 

properties of the Canny operator. 

Returning to the steps of the Canny operator, because we are using a noise-free image, 

the filtering procedure in the first step of the Canny algorithm needs to be adjusted. We 

set the scale of the Gaussian filter as a constant in the first step with a = 0.3, which 

was determined by a series of experiments. The second and third steps of the Canny 

algorithm remain unchanged. Looking at the Canny operation more closely, the output of 

the Canny operator after the first three steps is actually an edge image. However, these 

edges have different magnitudes. To further differentiate the edges and non-edges, the 

Canny algorithm makes use of a fourth step: hysteresis thresholding. Since our images are 

noise-free, the fourth step is omitted in our PSD approximation. 

Thus, the procedure is that for each set of images with a given pc and C„ the simulation 

method is used to compute the individual PSD. The SFR %e is computed by averaging the 

results across all the different images that correspond to a given set of C, and pc. This 

does not provide a "general" SFR for the Canny operator. Rather, one can choose one 

of several depending upon the blurring coefficient pc and the mean spatial detail C,. The 

results obtained from the process are not "smooth." Thus, a curve fitting procedure is used 

to model the final PSD. During the curve fitting process, we tried several models such as 

the Gaussian, polynomial, exponential, and power functions. The Gaussian model was 

found to have the most suitable fit to the data. 
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FIG. 27: One simulation example: (top-left) original image; (top-right) blurred by pc = 
0.3; (bottom-left) blurred by pc = 0.5; and (bottom-right) blurred by pc = 0.7. 

Figure 27 shows one example of a computer generated image with £ = 1, which cor­

responds to the finest mean spatial detail with respect to the inter-sample distance. At this 

mean spatial detail the average distance between areas of different intensity values is equal 

to the distance between sampling elements on the CCD, so the image contains a lot of 

details (Figure 27 (top-left)). The image is generated at a high resolution and is used as 

the "scene" in the end-to-end model. The other three images in Figure 27 show the results 

after the image-gathering process for pc = {0.3,0.5,0.7}. 

A group of results for the Canny operator based on Figure 27 is shown in Figure 28. 

It is obvious that the larger the pc the clearer and more complete the edges in the output 
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FIG. 28: Examples of Canny operator: (left) blurred by pc = 0.3; (middle) blurred by 
pc = 0.5; and (right) blurred by pc = 0.7. 

image. The corresponding PSDs for the Canny operator are shown in Figure 29. The data 

is then curve fitted using the Gaussian function: 

21 

fix) =aexp x — b (70) 

Table 3 shows the parameters of the Gaussian model for different imaging conditions. In 

Figure 30, the curve fitted results for the Canny PSDs are shown. 

FIG. 29: Canny PSDs: (1st) blurred by pc = 0.3; (2nd) blurred by pc = 0.5; and (3rd) 
blurred by pc = 0.7. 
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Table 3: Canny PSD Parameters. 

Canny PSD 

9c = 0.1 

pc = 0.2 

pc = 0.3 

pc = 0.4 

pc = 0.5 

pc = 0.6 

pc = 0.7 

pc = 0.8 

pc = 0.9 

pc = 1.0 

a — 
b = 
c = 
a = 
b = 
c = 
a = 
b = 
c = 
a = 
b = 
c = 
a = 
b = 
c = 
a = 
b = 
c = 
a = 
b = 
c = 
a = 
b = 
c — 
a — 
b = 
c = 
a = 
b = 
c = 

C=l 
0.70 
0.25 
0.21 
1.8 

0.30 
0.16 
3.47 
0.32 
0.13 
4.96 
0.33 
0.12 
5.76 
0.34 
0.10 
5.92 
0.35 

0.094 
5.29 
0.36 
0.08 
3.96 
0.37 
0.07 
2.27 
0.38 
0.09 
1.44 
0.4 
0.11 

C=2 
0.82 
0.26 
0.20 
2.32 
0.31 
0.15 
4.38 
0.32 
0.13 
5.87 
0.32 
0.11 
6.37 
0.33 
0.10 
6.16 
0.34 
0.09 
5.65 
0.35 
0.07 
4.90 
0.36 
0.07 
2.32 
0.37 
0.08 
1.48 
0.38 
0.10 

C=3 
0.88 
0.27 
0.19 
2.5 

0.31 
0.14 
4.63 
0.33 
0.12 
5.88 
0.32 
0.11 
6.20 
0.32 
0.10 
6.10 
0.33 
0.09 
5.44 
0.35 
0.07 
5.29 
0.36 
0.06 
2.40 
0.37 
0.08 
1.52 
0.38 
0.09 

C=4 
0.96 
0.27 
0.19 
2.8 

0.32 
0.14 
4.81 
0.33 
0.12 
5.71 
0.31 
0.11 
6.02 
0.32 
0.10 
5.8 

0.33 
0.09 
5.33 
0.35 
0.07 
5.61 
0.35 
0.06 
2.25 
0.37 
0.08 
1.43 
0.37 
0.09 

5=5 
0.96 
0.27 
0.18 
2.90 
0.31 
0.14 
4.60 
0.33 
0.12 
5.54 
0.31 
0.11 
5.67 
0.32 
0.10 
5.77 
0.33 
0.09 
5.34 
0.35 
0.08 
5.65 
0.35 
0.06 
2.34 
0.37 
0.08 
1.49 
0.37 
0.09 

{,=6 
0.95 
0.27 
0.18 
2.74 
0.31 
0.14 
4.46 
0.33 
0.12 
5.21 
0.31 
0.10 
5.33 
0.32 
0.10 
5.28 
0.33 
0.09 
4.87 
0.35 
0.07 
5.39 
0.35 
0.06 
1.96 
0.37 
0.08 
1.26 
0.37 
0.09 

C=7 
0.96 
0.27 
0.18 
2.65 
0.31 
0.13 
4.27 
0.33 
0.12 
4.76 
0.31 
0.10 
5.0 

0.32 
0.10 
4.94 
0.33 
0.09 
4.44 
0.35 
0.08 
5.23 
0.35 
0.06 
1.97 
0.37 
0.09 
1.29 
0.37 
0.09 

C=8 
0.94 
0.27 
0.18 
2.65 
0.31 
0.13 
4.18 
0.33 
0.12 
4.75 
0.31 
0.10 
5.08 
0.31 
0.10 
5.06 
0.33 
0.09 
4.48 
0.35 
0.08 
5.26 
0.35 
0.06 
1.97 
0.37 
0.09 
1.27 
0.37 
0.09 

C=9 
0.89 
0.27 
0.18 
2.31 
0.31 
0.14 
3.62 
0.33 
0.12 
4.36 
0.30 
0.10 
4.43 
0.31 
0.10 
4.48 
0.33 
0.09 
4.11 
0.35 
0.08 
4.98 
0.35 
0.06 
1.76 
0.36 
0.09 
1.19 
0.37 
0.09 

C=10 

0.83 
0.27 
0.18 
2.2 

0.31 
0.13 
3.66 
0.33 
0.12 
4.07 
0.31 
0.10 
4.23 
0.31 
0.10 
4.20 
0.33 
0.09 
3.91 
0.35 
0.08 
4.58 
0.35 
0.06 
1.64 
0.37 
0.09 
1.09 
0.37 
0.09 
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FIG. 31: Validation of Canny PSDs: (1st) blurred by pc = 0.3; (2nd) blurred by pc = 0.5; 
and (3rd) blurred by pc = 0.7. 

FIG. 32: Theoretic Canny PSDs. 
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To validate the final form of the Canny PSDs from the Gaussian models, the PSDs were 

used to perform edge detection. Some results are shown in Figure 31. Though those edge 

outputs are not very accurate, they are close to the edge images in Figure 28. Therefore, we 

would use the approximate theoretic Canny PSDs (Figure 32) in the information-theoretic 

assessment of the performance of the Canny operator. 

V.2 INFORMATION ANALYSIS 

Since all the PSDs for the edge detectors listed in Section III.2 have been obtained, they 

can be used in Eq. 37 to determine empirically the impact of the edge detection algorithm 

on the mutual information between the input scene and the edge output. 

V.2.1 Kernel-based Algorithms 

First, the comparisons between the traditional first derivative edge detectors and the 

kernel defined LoG operator are shown. Figure 33 shows the information rate !He for the 

four edge-operators as a function of the system design parameters pc and the overall SNR. 

We used £ = 1 in Eq. 36 to model the finest mean spatial detail with respect to the inter-

sample distance. We examine the cases for SNR values varying from 1—where it is very 

difficult to discern between signal and noise—to 256, where the signal is essentially noise 

free. The blurring parameter pc on the jc-axis controls the amount of aliasing noise that is 

introduced in the image. We also assume that the A/D converter uses 8-bits per pixel to 

convert the signal. Thus, K = 256 and Q?Na/d is insignificant when compared to the other 

noise sources. Hence, the two primary noise PSDs that we examine are 4>a and <&Ne. 
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FIG. 33: Information rate 9-Q for the kernel-based operators as a function of the optical-
response index pc for several SNRs and C, = 1. 

The general observation that we can make is that the performance of the different edge 

operators is quite similar overall, at least as far as the information is concerned. Looking at 

the different cases plotted in Figure 33, Prewitt offers the best information performance for 

the low SNRs. This can probably be attributed to the fact that the Prewitt operator has the 

weakest edge detection performance of the four operators that we examined. This implies 

that for the low SNR cases, where the noise and signal are difficult to discriminate, the 

operator that detects the fewest edges is likely to provide the greatest overall information. 
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FIG. 34: Information rate î 4 for the kernel-based operators as functions of the optical-
response index pc for several SNRs and £ = 4. 

As the SNR increases to 16, %> is maximized at about pc = 0.5. At this point the 

maximum response is provided by the LoG operator. There is very little difference between 

the other three operators though a closer look shows that the performance of the Prewitt 

operator is better than that of the Sobel operator. This trend is repeated as the SNR increases 

from 16 to 256. 

An interesting aspect of the information rate, %>, is its dependence on the aliasing 

noise for a fixed SNR. As can be seen in Figure 33, the value of pc at which ?Q reaches 
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FIG. 35: Information rate 9Q for the kernel-based operators as functions of the optical-
response index pc for several SNRs and C, = 1. 

maximum decreases as SNR increases. This is readily explainable when one considers the 

imaging system model. As the SNR increases, there is less noise in the final image; hence, 

the impact of aliasing is more easily discernible. When the SNR is low, additional noise due 

to aliasing does not significantly impact the already poor image quality, so one can con­

tinue to decrease blurring without impacting the information. This provides, in essence, 

a guideline for designing image processing systems and selecting the edge-detection al­

gorithm. For systems with high SNR we can blur the signal more to get rid of the noise 
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FIG. 36: Information rate ^£ for the kernel-based operators as functions of the optical-
response index pc for several SNRs and C, — 10. 

because the restoration process is not hampered by noise. Additionally, since the informa­

tion is maximized by the LoG operator, that is the edge-detection operator of choice for 

such systems. As the SNR decreases, more noise is introduced into the image so additional 

aliasing noise does not have much of an impact on the image quality and less blurring gives 

sharper results, so information is maximized at higher values of pc. This trend continues 

for the lowest SNR case where one can essentially let the signal through unblurred without 

impacting the overall image quality or information throughput. 
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Figures 33, 34, 35, and 36 show the information capacity for low, medium, and high 

SNR as a function of pc for four different mean spatial details. It is interesting to note 

that information is maximized at roughly the same pc for a given SNR, regardless of the 

mean spatial detail. However, there is some variation. The SFR, in turn, is controlled by 

the optical-response index pc. The curve shows that the optical-response index pc that 

maximizes 5Q is independent of C, but that the losses in ?(, with increasing £ are critically 

dependent on pc. 

Maximizing the information of the system leads to better edge detection because the 

ratio between signal and noise achieves its maximum value when ty reaches a maximum. 

Thus, the selection of the pc for which information is maximum for a particular SNR and a 

specific edge detector gives us a system design criterion in terms of the SFR of the image-

gathering device and the SNR: the former controls the amount of aliasing, and the latter 

affects the system noise. 

V.2.2 LoG Operator 

Since the derived PSD for the first derivative methods is the same as that computed 

using simulations, we do not compare the two techniques. Additionally, the first derivative 

methods that we consider—Sobel, Prewitt and Roberts—are non-parametric, so the form 

of the PSD is fixed. However, the SFR of the second-derivative based LoG method is 

controlled by the parameter ce. We further analyzed this SFR for a different value of ae. 

There are some differences in the PSD of the LoG as a function of oe, though the basic 

shape is generally the same. 
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FIG. 37: Information rate ^ for the LoG operator with different ae as functions of the 
optical-response index pc for several SNRs and C, — 1. 

Figure 37 characterizes the information rate 9^ of the LoG operator for oe. To make the 

explicit comparison for .?£, the LoG kernel has also been included. Since the LoG kernel 

and LoG with ae = 0.5 have almost the same PSD as shown in Section V.1.3, the curves 

representing their information should also be similar. In the actual graphs (Figure 37), 

we see that while they are similar for different SNR and pc, there is a slight difference in 

amplitude. As pc increases, % of the LoG with <5e — 0.5 is slightly larger than that of the 

LoG kernel. 
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FIG. 38: Information rate ty for the LoG operator with different Ge as functions of the 
optical-response index pc for several SNRs and £ = 4. 

When ae is larger than 0.8, the information capacity becomes (almost) constant for 

pc > 0.5. The reason for this is that the LoG with the larger ae blurs the edge image, thus 

eliminating the high aliasing noise caused by high pc. Therefore, the PSD of the signal and 

the aliasing noise decrease simultaneously, but the PSD of aliasing noise decreases faster 

than the PSD of the signal. Thus, 9^ for the LoG operator behaves differently for different 

values of oe. For oe < 0.5, we see the "expected" behavior with 9Q reaching a maximum 

for some pc and decreasing afterwards. For ae > 0.5, we see ^ achieve a maximum value 
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FIG. 39: Information rate % for the LoG operator with different ae as functions of the 
optical-response index pc for several SNRs and C, = 7. 

and essentially remain there. Consequently, based on Figure 37, the LoG with oe = 0.7, 

0.8 or 0.9 seems to be the best option, especially when pc is large. 

In Figures 38, 39, and 40, the information for low, medium, and high SNR as a function 

of pc for other mean spatial details is displayed. The information of LoG is also maximized 

at roughly the same pc for a given SNR regardless of the mean spatial detail, but some 

variation exists. The curves show that the optical-response index pc that maximizes % is 

independent of C, and that the losses in ?Q with increasing C, are critically dependent on pc. 
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FIG. 40: Information rate ^ for the LoG operator with different oe as functions of the 
optical-response index pc for several SNRs and t, = 10. 

V.2.3 Canny Operator 

As stated in Section V.l, the PSD of the Canny operator for different system parameters 

can be approximated using the simulation method. In this way, the information of the 

Canny operator can be examined and assessed. Figure 41 shows the information rate 0^ of 

the Canny operator for the noise-free case as a function of pc for four different mean spatial 

details. Since we only considered the noise-free condition, the results and comparisons are 

shown only for the different mean spatial details £. Furthermore, to compare with other 
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FIG. 41: Information rate 9Q of the Canny operator as functions of the optical-response 
index pc for several mean spatial details. 

methods, we used SNR=256, which is close to the noise-free condition. For different £, 'He 

is always maximized at about pc = 0.5. Also, as expected, the information rate decreases 

as mean spatial detail increases at the same point pc, because fewer edges lead to a smaller 

signal component. 

Comparing with other results in Section V.2.1, the information is obviously largest for 

the Canny operator. For example, when C, = 1, the maximum value He — 5.8 for Canny, 

but "He < 4.0 for those derivative kernel-based methods. Even for the parametric form of 
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the LoG operator, !He < 5.0 even with the optimal value of ae. Based on the information-

theoretic analysis, the Canny operator is better than the traditional edge detectors defined 

in Section III.2. This is also borne out by experiments [5]. 

There is a slight anomaly in Figure 41: there is a dip in the curve for ^ around 

pc = 0.7, when £ > 4. This anomalous behavior of the ^4 curve may be attributed to the 

fact that we are modeling an essentially non-linear, shift-variant process using a linear, 

shift-invariant process. 
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CHAPTER VI 

CONCLUSIONS AND FUTURE WORK 

This chapter summarizes the main contributions and conclusions in Section VI. 1 and 

presents possible future research directions in Section VI.2. 

VI.1 CONCLUSIONS 

We have examined three main topics in this dissertation. In the sections that follow 

we state the contributions that we made to each of these areas and the conclusions that we 

drew from our research. 

VI.1.1 Edge Detection 

We have proposed new algorithms based on multi-scale processing and higher order 

derivatives of image intensity to detect and localize an edge. A group of Gaussian filters 

was used to generate multi-scale representations of the original image. By recognizing 

that edges due to the signal have regional connectivity and specific orientation across the 

scales, and that edges due to noise do not, we can differentiate between the edge-features 

due to signal and those due to noise. Using these characteristics, pixels corresponding to 

edges can be preserved, while those due to noise can be eliminated. To further extend our 

proposed edge detection algorithm, the local noise estimate is introduced to help determine 

local dynamic threshold. It helps to reduce the effect of an ill-posed global threshold and 

makes the edge more complete. 
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The other key idea that emerges from this research is that of the efficacy of connectivity 

analysis in further reducing the impact of noise. This idea arose from the recognition that 

the structure of edge patterns remains substantially unchanged even in the presence of a 

high degree of noise. 

The proposed edge detection algorithm has been applied to a variety of images ranging 

from ideal, noise free images to images with very low SNR and from computer generated 

images to natural images. In all cases, the algorithm produces good results, extracting 

edge structure from extremely noisy—low SNR—images quite successfully. 

VI.1.2 Noise Reduction 

Instead of using global noise-reduction mechanisms such as a smoothing filter or a 

median filter, we made use of edge pattern analysis both for noise assessment and as a 

foundation for noise reduction methods. Starting with the premises that edges in the im­

age should be preserved, and that the overall impact of noise is to reduce resolution, our 

new edge detection algorithms that are based on multi-scale processing and connectivity 

analysis are applied to reduce noise by robustly extracting authentic edges. 

The significance of this method is to leave the resolution of all connected edges intact 

while reducing resolution in an area where noise is detected. Since the resolution of an im­

age is reduced by the overall impact of noise, reducing resolution in noisy areas by blurring 

eliminates the appearance of noise while not affecting overall image quality. Experimental 

results and the image comparison metric shows that this new method in noise reduction is 

effective even for very low SNR values. 
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VI.1.3 Edge Detection Evaluation 

We theoretically analyzed edge detection algorithms within the context of an end-to-

end visual communication channel. The impact of the different parts, such as image gath­

ering, sampling, and A/D conversion that comprise the image acquisition system are an­

alyzed and assessed in an integrated manner using information theory. By setting initial 

conditions, such as image-gathering response, sampling, additive noise, etc., the edge de­

tection methods can be theoretically quantified and compared. Edge detection is regarded 

to be high performing only if the information rate from the scene to the edge approaches 

the maximum possible. 

One key idea that emerged from this dissertation is that of the PSD of commonly used 

edge detectors. Since the PSD is required for computing information capacity, we first 

derived the PSDs for kernel-based methods, such as Sobel, Prewitt and Roberts. We also 

examined the impact of the ae parameter on the performance of the LoG function and 

determined the optimal solution for specific visual communication conditions. 

Non-linear operators like the Canny operator do not conform to the PSD analysis that 

we used earlier. Instead, we developed a family of PSDs for the Canny operator based on 

system parameters such as the mean spatial details of scene and the parameters of image 

acquisition process. The "PSD" was then approximated experimentally using an average 

of 100 instances of the application of Eq. 37. Results demonstrate that the Canny operator 

is better than traditional edge detectors in terms of its information capacity. 

In assessing edge detectors, people generally subjectively judge and compare the detec­

tors. Objective measures are often based on simulations and not necessarily on theoretic 



100 

analysis or consideration of the visual system. The information-theoretic analysis pre­

sented in this dissertation becomes a new tool for analyzing and comparing different edge 

detection operators, especially in the visual communication environment. 

VI.2 FUTURE WORK 

There are several directions to further extend this research, which are briefly discussed 

below: 

1. Noise Estimation: To solve the problem posed by static global thresholding, a local 

noise estimate was proposed. The initial tests show that this strategy is promising, 

but it is simple and primitive. This research can be continued to find more robust 

solutions. 

2. Connectivity Analysis: In this dissertation, we have presented some early results 

for edge detection and noise reduction using connectivity analysis that are quite 

promising. However, there are still significant issues to tackle. For example, in 

very noisy conditions, some structures can be easily discerned by a human, but it 

is hard to consider them as features because their edges are not connected. The 

connectivity analysis is currently rather primitive and needs to be made more robust 

and "intelligent." 

3. Canny Operator Evaluation: In the PSD derivation, we simplified the Canny op­

erator by assuming a noise-free image and computing the PSD as an "inverse" op­

eration. Additionally, we did not use hysteresis thresholding because we wanted a 
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grayscale image. Examining the whole operation in the mean-square-error environ­

ment should provide a more robust framework. 
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