2,030 research outputs found

    Evaluating the Comprehension of Euler Diagrams

    Get PDF
    We describe an empirical investigation into layout criteria that can help with the comprehension of Euler diagrams. Euler diagrams are used to represent set inclusion in applications such as teaching set theory, database querying, software engineering, filing system organisation and bio-informatics. Research in automatically laying out Euler diagrams for use with these applications is at an early stage, and our work attempts to aid this research by informing layout designers about the importance of various Euler diagram aesthetic criteria. The three criteria under investigation were: contour jaggedness, zone area inequality and edge closeness. Subjects were asked to interpret diagrams with different combinations of levels for each of the criteria. Results for this investigation indicate that, within the parameters of the study, all three criteria are important for understanding Euler diagrams and we have a preliminary indication of the ordering of their importance

    The Effects of Diagrams and Relational Complexity on User Performance in Conditional Probability Problems in a Non-Learning Context

    Get PDF
    Many disciplines in everyday life depend on improved performance in conditional probability problems. Most adults struggle with conditional probability problems and several prior studies have shown participant accuracy is less than 50%. This study examined user performance when aided with computer-generated Venn and Euler type diagrams in a non-learning context. Despite the prevalence of research into diagrams and extensive research into conditional probability problem solving, this study is one of the only studies to apply theories of working memory to predict user performance in conditional probability problems with diagrams. Following relational complexity theory, this study manipulated problem complexity in computer generated diagrams and text-only displays to improve user performance and perceptions of satisfaction. Partially consistent with the study hypotheses, complex visuals outperformed complex text-only displays and simple text-only displays outperformed complex text-only displays. However, a significant interaction between users’ spatial ability and the use of diagram displays led to a degradation of low-spatial user performance in the diagram displays when compared to high spatial users. Participants with less spatial ability were significantly impaired in their ability to solve conditional probability problems when aided by a diagram

    Ontology specific visual canvas generation to facilitate sense-making-an algorithmic approach

    Get PDF
    Ontologies are domain-specific conceptualizations that are both human and machine-readable. Due to this remarkable attribute of ontologies, its applications are not limited to computing domains. Banking, medicine, agriculture, and law are a few of the non-computing domains, where ontologies are being used very effectively. When creating ontologies for non-computing domains, involvement of the non-computing domain specialists like bankers, lawyers, farmers become very vital. Hence, they are not semantic specialists, particularly designed visualization assistance is required for the ontology schema verifications and sense-making. Existing visualization methods are not fine-tuned for non-technical domain specialists and there are lots of complexities. In this research, a novel algorithm capable of generating domain specialists’ friendlier visualization canvas has been explored. This proposed algorithm and the visualization canvas has been tested for three different domains and overall success of 85% has been yielded

    Accessible reasoning with diagrams: From cognition to automation

    Get PDF
    High-tech systems are ubiquitous and often safety and se- curity critical: reasoning about their correctness is paramount. Thus, precise modelling and formal reasoning are necessary in order to convey knowledge unambiguously and accurately. Whilst mathematical mod- elling adds great rigour, it is opaque to many stakeholders which leads to errors in data handling, delays in product release, for example. This is a major motivation for the development of diagrammatic approaches to formalisation and reasoning about models of knowledge. In this paper, we present an interactive theorem prover, called iCon, for a highly expressive diagrammatic logic that is capable of modelling OWL 2 ontologies and, thus, has practical relevance. Significantly, this work is the first to design diagrammatic inference rules using insights into what humans find accessible. Specifically, we conducted an experiment about relative cognitive benefits of primitive (small step) and derived (big step) inferences, and use the results to guide the implementation of inference rules in iCon

    Evaluating Visualizations of Sets and Networks that Use Euler Diagrams and Graphs

    Get PDF
    This paper presents an empirical evaluation of state-of-the-art visualization techniques that combine Euler diagrams and graphs to visualize sets and networks. Focusing on SetNet, Bubble Sets and WebCola – techniques for which there is freely available software – our evaluation reveals that they can inaccurately and ineffectively visualize the data. Inaccuracies include placing vertices in incorrect zones, thus incorrectly conveying the sets in which the represented data items lie. Ineffective properties, which are known to hinder cognition, include drawing Euler diagrams with extra zones or graphs with large numbers of edge crossings. The results demonstrate the need for improved techniques that are more accurate and more effective for end users.The Leverhulme Trus

    Visualizing Set Relations and Cardinalities Using Venn and Euler Diagrams

    Get PDF
    In medicine, genetics, criminology and various other areas, Venn and Euler diagrams are used to visualize data set relations and their cardinalities. The data sets are represented by closed curves and the data set relationships are depicted by the overlaps between these curves. Both the sets and their intersections are easily visible as the closed curves are preattentively processed and form common regions that have a strong perceptual grouping effect. Besides set relations such as intersection, containment and disjointness, the cardinality of the sets and their intersections can also be depicted in the same diagram (referred to as area-proportional) through the size of the curves and their overlaps. Size is a preattentive feature and so similarities, differences and trends are easily identified. Thus, such diagrams facilitate data analysis and reasoning about the sets. However, drawing these diagrams manually is difficult, often impossible, and current automatic drawing methods do not always produce appropriate diagrams. This dissertation presents novel automatic drawing methods for different types of Euler diagrams and a user study of how such diagrams can help probabilistic judgement. The main drawing algorithms are: eulerForce, which uses a force-directed approach to lay out Euler diagrams; eulerAPE, which draws area-proportional Venn diagrams with ellipses. The user study evaluated the effectiveness of area- proportional Euler diagrams, glyph representations, Euler diagrams with glyphs and text+visualization formats for Bayesian reasoning, and a method eulerGlyphs was devised to automatically and accurately draw the assessed visualizations for any Bayesian problem. Additionally, analytic algorithms that instantaneously compute the overlapping areas of three general intersecting ellipses are provided, together with an evaluation of the effectiveness of ellipses in drawing accurate area-proportional Venn diagrams for 3-set data and the characteristics of the data that can be depicted accurately with ellipses
    corecore