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Abstract

In medicine, genetics, criminology and various other areas, Venn and Euler diagrams are used to
visualize data set relations and their cardinalities. The data sets are represented by closed curves and the
data set relationships are depicted by the overlaps between these curves. Both the sets and their
intersections are easily visible as the closed curves are preattentively processed and form common
regions that have a strong perceptual grouping effect. Besides set relations such as intersection,
containment and disjointness, the cardinality of the sets and their intersections can also be depicted in
the same diagram (referred to as area-proportional) through the size of the curves and their overlaps.
Size is a preattentive feature and so similarities, differences and trends are easily identified. Thus, such
diagrams facilitate data analysis and reasoning about the sets. However, drawing these diagrams
manually is difficult, often impossible, and current automatic drawing methods do not always produce
appropriate diagrams.

This dissertation presents novel automatic drawing methods for different types of Euler diagrams
and a user study of how such diagrams can help probabilistic judgement. The main drawing algorithms
are: eulerForce, which uses a force-directed approach to lay out Euler diagrams; eulerAPE, which draws
area-proportional Venn diagrams with ellipses. The user study evaluated the effectiveness of area-
proportional Euler diagrams, glyph representations, Euler diagrams with glyphs and text+visualization
formats for Bayesian reasoning, and a method eulerGlyphs was devised to automatically and accurately
draw the assessed visualizations for any Bayesian problem. Additionally, analytic algorithms that
instantaneously compute the overlapping areas of three general intersecting ellipses are provided,
together with an evaluation of the effectiveness of ellipses in drawing accurate area-proportional Venn
diagrams for 3-set data and the characteristics of the data that can be depicted accurately with ellipses.
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Chapter 1

Introduction

This chapter outlines the motivation, objectives, contributions and structure of this dissertation.

1.1 Motivation and Objectives

Advances in technology have led to the vast amount of data that is routinely generated. Emails, digital
photos, CCTV footage, tracking data from smart devices are a few examples of the types of the data that
anyone can generate on a daily basis. Through this data, links between communities can be identified
and crimes or terrorist attacks can be predicted and disrupted. Historical stock market data is studied
and compared to identify market trends and to aid investors make informed decisions. Data from
scientific experiments is generated to analyse relationships between groups of genes and find cures to
illnesses. So often, data sets are compared, and relationships between data elements and sets are studied.

Various visual representations of relationships between data elements and data sets have been
proposed to facilitate analysis. However, similarities and differences are not always easily visible.
Consider this example. The geometric shapes in Figure 1.1A are all quadrilaterals, as they all have four
sides, four vertices and interior angles that add up to 2π. There are different types of quadrilaterals.
Each type is distinguished by specific properties (e.g., a rectangle has all four angles right angles and
opposite sides parallel and equal in length), and some types share a few properties (e.g., a rectangle and
a parallelogram both have opposite sides parallel and equal in length). Thus, the quadrilaterals in
Figure 1.1A are of one or more types, and various quadrilaterals could be of a certain type.

Figure 1.1: Visualizing relationships between different quadrilaterals (left, A) using a node-link
diagram (centre, B) and an Euler diagram (right, C). 
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The relationships between the quadrilaterals, based on their properties and types, can be represented
by a hierarchical tree and visualized using a node-link diagram as in Figure 1.1B. Instead of using links,
closed curves could be used, such that the quadrilaterals of a specific type are enclosed within one
region, as illustrated by the Euler diagram in Figure 1.1C.

From Figure 1.1C, we immediately note that, for instance: there are kites that are also parallelograms
and rectangles; a rhombus is both a parallelogram and a kite; and a square is a rectangle, a
parallelogram and a kite as well as a rhombus, since the rhombus is a parallelogram and a kite. The
same information can be derived from Figure 1.1B, but the paths have to be traversed and information is
discovered level by level. For instance, the square has two links indicating that it is a rectangle and a
rhombus. Moving up a level, we then get to know that a square is also a parallelogram and a kite, since
the rectangle and the rhombus are parallelograms, and the rhombus is a kite. This means that the shapes
have to be considered one at a time for their types to be identified and so, similarities and differences
between the quadrilateral types are not so easily noticeable. The levels in the hierarchy could facilitate
reasoning about containment, but intersections and exclusions are not easily noticed.

The similarities and differences between the quadrilaterals types are more easily noticeable in
Figure 1.1C than in Figure 1.1B. This is because in Figure 1.1C, shapes with certain properties are
bounded by closed curves, forming common regions [Palmer, 1992] that have a perceptual grouping
effect that is stronger than and independent from any other grouping principles, such as the Gestalt
powerful proximity and similarity [Koffka, 1935]. Closed curves are also processed preattentively, so
that the curves and their intersections are distinguishable and seem to pop out as discrete objects
without requiring focused attention [Enns, 1986; Treisman and Souther, 1985]. Moreover, a single
diagram can depict different types of relationships (intersection, containment, exclusion). All of these
features facilitate analysis and reasoning about relationships between concepts. Thus the reason why
Euler [1768a] successfully explained categorical propositions to laymen using the diagrams, and why
they are used in various areas such as medicine, finance and criminology to facilitate data analysis.

Before drawing an Euler diagram, the data sets and the intersections that need to be depicted are first
identified. If all the possible intersections between the identified data sets are required, then the Euler
diagram is a Venn diagram [Venn, 1880]. Drawing a closed curve for each identified data set and
overlapping the curves to depict only the required set intersections is difficult, particularly when certain
aesthetic features should be satisfied, so that the generated diagram is comprehensible and usable. 

In this dissertation, we devised novel automatic drawing algorithms for different types of Euler
diagrams and we conducted a user study to assess the effectiveness of Euler diagrams for probabilistic
judgement. To develop algorithms that draw accurate Venn and Euler diagrams with aesthetically
desirable features, we explored and adopted various techniques. Firstly, we investigated force-directed
graph drawing techniques and we devised a force-directed method, eulerForce, to lay out Euler diagrams.
Secondly, we examined the effectiveness of ellipses in drawing Venn diagrams that accurately depict
the cardinality of 3-set data through the size of the curves and their overlaps, and we devised a method,
eulerAPE, to automatically draw these diagrams using ellipses. Finally, we assessed the effect of area-
proportional Euler diagrams, glyph representations, Euler diagrams with glyphs and text+visualization
formats on Bayesian reasoning, and we devised a method, eulerGlyphs, to automatically draw such
visualizatons for Bayesian problems. We further discuss the motivation and objectives of this work in
the next sections.
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1.1.1 Laying Out Euler Diagrams Using a Force-Directed Approach

Circles are regular and have good continuity and so, Euler diagrams with curves depicted as circles are
easier to understand than those with non-smooth curves [Benoy and Rodgers, 2007]. However, an Euler
diagram cannot be drawn with circles for all possible data, unless unwanted set intersections are
depicted [Stapleton et al., 2012]. Drawing methods that automatically generate Euler diagrams with
only the required set intersections have been proposed (e.g., [Rodgers et al., 2008b]). However, the
curves of these generated diagrams are often non-smooth and not easily distinguishable. Figure 1.2A is
an example. It accurately depicts the required data, but it is difficult to comprehend and rather unusable.

A B

Figure 1.2: An Euler diagram generated by an automatic drawing method [Rodgers et al., 2008b] that
only depicts the required set intersections (left, A), and its improved layout generated by our force-
directed method, eulerForce (right, B). 

Layout methods could be devised to take these diagrams and improve their layout, so that the
required data is still depicted accurately, but the diagram is easier to comprehend. Two such methods
have been proposed: one uses graph transformations [Rodgers et al., 2010b] and another uses multi-
criteria optimization [Flower et al., 2003b]. However, only the latter has been implemented and even so,
the method is complex, computationally expensive and impractical when a number of aesthetic criteria
have to be satisfied and when the diagrams have various curves and intersections. In contrast, force-
directed techniques have been successfully used to lay out node-link diagrams of graphs with various
vertices and edges in relatively fast time and with various desirable aesthetic features [Di Battista et al.,
1999a; Eades, 1984; Gibson et al., 2012; Kobourov, 2012].

Euler diagrams are a collection of overlapping curves. If a closed curve is represented as a polygon
and the basic attractive and repulsive forces of such force-directed methods are applied to the vertices
and edges, the curve would be laid out as a regular circle-like polygon. If all the curves in the diagram
are laid out in this way, the curves would be easily distinguishable and the diagram would be easier to
comprehend. So such an approach could improve the layout of the diagrams in relatively fast time.
Since force-directed algorithms are often efficient and not complex to implement, different forces can
be used to handle different aesthetic features. However, the challenge is to develop a force model that
improves the layout and the curve aesthetics of the diagram, and maintains the diagram's depicted set
intersections. Prior to our work, force-directed techniques have not been used to lay out Euler diagrams.

We developed the force-directed method eulerForce to lay out Euler diagrams, so that Figure 1.2A is
converted to Figure 1.2B in relatively fast time.
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1.1.2 Drawing Area-Proportional Venn Diagrams Using Ellipses

Venn and Euler diagrams can also depict set intersection cardinalities or any other quantitative data
assigned to the sets and their intersections, in addition to depicting relationships between data sets. Such
diagrams are said to be area-proportional as the total area of the regions corresponding to a specific set
intersection is directly proportional to the cardinality of or the quantity assigned to that intersection.
Size is a visual variable [Bertin, 1983] and a preattentive feature [Treisman, 1985] that is easily
noticeable due to its pop-out effect [Treisman and Gelade, 1980], which is classified third in strength
just after colour and orientation [Ware, 2012]. This further aids data analysis and the identification of
differences and similarities between data sets. 

Area-proportional Venn diagrams with three curves are extensively used in diverse areas,
particularly for medical and scientific disciplines. An informal study identified various area-proportional
Venn diagrams (72 diagrams) in 2009 in the world’s most cited journals [Wilkinson, 2012]. Looking
into these diagrams, almost all have two or three curves and are drawn using circles. Most of those with
three circles are misleading and inconsistent with the data. Figure 1.3A is an example obtained from a
BMC Medicine journal paper [Lenz and Fornoni, 2006] illustrating the results (the numeric labels) from
a survey that assessed whether medical trainees can manage chronic kidney disease. This diagram was
meant to raise awareness that better guidelines on the screening and therapy of the disease should be
provided. Yet the regions with labels 1% and 25% are respectively bigger than those with 3% and 29%.

Figure 1.3: Area-proportional Venn diagrams generated by different drawing methods for the same
quantitative data (indicated by the numeric labels) using circles, polygons, and ellipses. (A) A
redrawing of Figure 5 (bottom) in the medical journal article [Lenz and Fornoni, 2006] from where the data
was obtained. The authors generated this diagram using the first drawing method that used circles [Chow and
Rodgers, 2005]. (B) Generated by Convex Venn-3 using 4-sided and 5-sided polygons [Rodgers et al.,
2010a]. (C) Generated by our drawing method eulerAPE using ellipses.

Such area-proportional Venn diagrams cannot be drawn analytically using a specific curve shape and
so, numerical methods or heuristics are required [Chow, 2007]. Circles can draw accurate area-
proportional Venn diagrams for any data with two sets [Chow and Ruskey, 2004], but not three [Chow,
2007] due to their limited degrees of freedom (i.e., a centre and a radius). Polygons can draw accurate
area-proportional Venn diagrams for any 3-set data, but their non-smoothness impedes comprehension
[Benoy and Rodgers, 2007]. Yet current automatic drawing techniques represent the curves as either
circles or polygons. The authors of the BMC Medicine article generated Figure 1.3A using the first
drawing method that used circles [Chow and Rodgers, 2005]. For the same data as that in Figure 1.3A,
we generated Figure 1.3B using a drawing method that uses 4-sided and 5-sided polygons [Rodgers et
al., 2010a]. Though Figure 1.3B accurately depicts the data, the curves are not easily identified without
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focused attention [Treisman and Souther, 1985]. So despite the inaccurate diagrams, circles are often
preferred over polygons due to their good continuity [Koffka, 1935], which enables the curves to be
easily identified [Field et al., 1993; Hess and Field, 1999] and to pop out as discrete and complete
objects [Ware, 2012], so that the relationships between the sets are easily visible.

Ellipses, on the other hand, have more degrees of freedom than circles and are similarly smooth. So
diagrams drawn with ellipses are more likely to depict the required 3-set data accurately than those with
circles. Thus, automatic drawing methods that use ellipses should be developed and the effectiveness of
ellipses in accurately depicting most 3-set data should be investigated. The need to use such curves was
previously suggested [Chow and Ruskey, 2004; Chow, 2007; Wilkinson, 2012], but was not adopted
prior to the work in this dissertation due to difficulties in calculating the area of the regions of
overlapping ellipses and in adjusting the various properties of the ellipses [Chow and Ruskey, 2004].

We developed analytic algorithms that instantaneously compute the area of the regions of three
general intersecting ellipses and we devised the drawing method eulerAPE to automatically draw area-
proportional Venn diagrams with three curves using ellipses. As shown in Figure 1.3C, an accurate
area-proportional Venn diagram with smooth curves can be drawn with ellipses (using eulerAPE) for the
same data as that in Figure 1.3A, which is inaccurate, and that in Figure 1.3B, which is difficult to
comprehend. The design choices of the various components that make up eulerAPE (e.g., the heuristic
algorithm, cost function, starting diagram generator) and the final drawing method were thoroughly
evaluated to ensure its effectiveness in drawing a good diagram when one is known to exist for the
required data. With such a drawing method, we aspired to evaluate the effectiveness of ellipses in
drawing accurate diagrams with smooth curves for random and real world 3-set data (in contrast to
circles and polygons used by previous methods), and to identify characteristics of data that can or
cannot be depicted accurately with ellipses.We focused our work on Venn diagrams with three curves,
so that an extensive evaluation of both the drawing method and the effectiveness of ellipses could be
carried out, paving the way for future extensions to handle Euler diagrams with any number of curves. 

Design features, such as colour and outline, may hinder the identification of the sets and their
intersections. Figure 1.3A uses circles, but identifying the curves in which the regions are located is still
difficult as the colours of the regions located within the same curve are completely unrelated. So based
on theories of human perception and cognition, we aspired to devise diagram design features that aid
reasoning about the relationships between the sets, by ensuring that separate layers, one per curve, are
perceived and that the curves in which regions are located are easily identified, as in Figure 1.3C.

1.1.3 Assessing Euler Diagrams with Glyphs for Bayesian Reasoning

Area-proportional Euler diagrams could be particularly problematic for Bayesian reasoning, as biases
elicited by area judgement [Cleveland and McGill, 1984] would add on to the cognitive judgemental
errors and biases that affect Bayesian reasoning [Bar-Hillel, 1980; Barbey and Sloman, 2007a, b].
Studies in Bayesian reasoning illustrate that Euler diagrams clarify the relationships between the
quantities and the sets of Bayesian problems [Sloman et al., 2003], while frequency grids as in
Figure 1.4A facilitate logical reasoning by depicting the quantities as discrete objects [Brase, 2009;
Cosmides and Tooby, 1996]. So combining the two into one hybrid diagram as in Figure 1.4B could
aid, as the curves of the Euler diagram only depict the sets and their intersections, while equally-sized
glyphs (proportional in number to the required quantities) depict the quantitative data. Such a diagram

1.1 Motivation and Objectives | 5



could thus be a good alternative to an area-proportional one. The use of 'equal-sized points' proportional
in number to the required quantity was also suggested by Bertin [1983] as an alternative to area.

However, it is still unclear which is the most effective visualization to aid Bayesian reasoning and
the few studies carried out in psychology had a number of limitations. For instance, most studies were
carried out over a small, non-diverse population, typically highly educated students (e.g., [Cole and
Davidson, 1989; Cosmides and Tooby, 1996]). In each study, one or very few visualizations were
tested, often over one problem (e.g., [Brase, 2009; Cosmides and Tooby, 1996]). In various cases, the
visualizations were inconsistent, depicting the data incorrectly (e.g., [Brase, 2009; Sloman et al., 2003]).

A B

Figure 1.4: A frequency grid and an Euler diagram with glyphs for the classic mammography Bayesian
problem [Eddy, 1982]. (A) A frequency grid. Source: [Sedlmeier and Gigerenzer, 2001]–Figure 5
(B) One of the Euler diagrams with glyphs assessed in our study and generated with our method, eulerGlyphs.

Both laymen and professionals have difficulty in probabilistic judgement and Bayesian reasoning
and are unaware of their wrong judgements. However, based on such reasoning, important decisions
that could have severe consequences (e.g., overdiagnosis of diseases, not predicting criminal attacks)
have to be made. Euler diagrams with glyphs seem to have the right features to facilitate reasoning of
both the set relations and the quantitative data. Thus, we devised eulerGlyphs, the first method that draws
two different types of area-proportional Euler diagrams, a glyph representation and three different types
of Euler diagrams with glyphs (Figure 1.4B represents one type) for probabilistic judgement, and we
conducted a study through crowdsourcing on three Bayesian problems to assess whether any of the six
visualizations generated by eulerGlyphs can facilitate reasoning and decision-making. Through this study,
we aspired to identify the effectiveness of the different visualizations on a large, diverse group of
participants and over various Bayesian problems and to determine whether depicting quantitative data
using discrete objects is more effective than using area. We also aspired to investigate novel ways how
visualizations could be holistically combined with textual information. To our knowledge, this is the
only computer science study on Bayesian reasoning since 1989 [Cole and Davidson, 1989; Cole, 1989].

1.2 Contributions

The major contributions of this dissertation are the development (and evaluation) of novel drawing
algorithms for different types of Euler diagrams, and a user study assessing the effectiveness of Euler
diagrams for Bayesian reasoning. More specifically:
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1. the development of the method, eulerForce, that uses a force-directed approach and a novel force
model to automatically lay out Euler diagrams (Chapter 4); 

2. the development of the method, eulerAPE, that uses ellipses to automatically draw accurate area-
proportional Venn diagrams with three smooth curves (Chapter 5), including also:

a. the development of analytic geometry algorithms that instantaneously compute the area
of the regions of three general intersecting ellipses;

b. the development of (i) a novel cost function to direct the optimization to the required
diagram, (ii) an algorithm to generate a rational starting diagram for the optimization,
(iii) an algorithm to adjust the ellipses' properties during the optimization process;

c. the evaluation of the effectiveness of ellipses in drawing accurate area-proportional Venn
diagrams with smooth curves, in contrast to circles and polygons, for random 3-set data
and for real world data, and the identification of characteristics of the quantitative 3-set
data that can be depicted accurately using ellipses;

d. diagram design features that could facilitate comprehension of the diagram and the
depicted set relations and their set intersection cardinalities;

3. a user study assessing the effect of area-proportional Euler diagrams, glyph representations,
Euler diagrams with glyphs and text+visualization formats on Bayesian reasoning, (Chapter 6)
including also:

a. recommendations on how visualizations should be combined with textual information;

b. the development of the method, eulerGlyphs, that automatically draws the assessed
diagram types for any Bayesian problem.

The devised drawing algorithms generate accurate diagrams with aesthetically desirable features that
could facilitate analysis of data set relations and their intersection cardinalities, assisting users in
knowledge discovery and decision-making. Our evaluation of these drawing algorithms can aid in the
development of other improved drawing methods in the future. Finally, our user study on Bayesian
reasoning will guide future research on how quantitative data should be depicted with Euler diagrams,
how to facilitate probabilistic judgement, and text+visualization formats that should be considered next.

With the exception of contribution 3, this research was funded by the School of Computing,
University of Kent, UK and carried out under the supervision of Dr Peter Rodgers, member of the same
school. The work in relation to contribution 3 was funded by INRIA Saclay, France and carried out
during my internship with their visualization team, AVIZ, where I worked with Dr Pierre Dragicevic
and Prof Jean-Daniel Fekete. I conducted a literature view on probabilistic judgement, based on which I
decided to focus on Bayesian reasoning. I designed, developed and implemented the automatic drawing
method, eulerGlyphs, and later, with the guidance of Dragicevic and Fekete, I designed and conducted the
user study, analysed the data, and wrote a journal article.

To promote these contributions and ensure accessibility, the work in this dissertation has been
presented and published in journals and conference proceedings. Software implementations of our novel
algorithms, as well as the experimental stimuli and data of our user study are also available online.
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1.3 Publications

The contributions of this dissertation (Section 1.2) have appeared in the following publications.

1. Refereed journal article, eulerForce: Force-directed Layout for Euler Diagrams, in the Journal of
Visual Languages and Computing (JVLC) [Micallef and Rodgers, 2014b]. This paper was
accepted at the 2014 International Workshop on Visual Languages and Computing (VLC) as
part of the 2014 International Conference on Distributed Multimedia Systems (DMS). Papers
accepted at DMS (including workshops) are presented at the conference and appear in a special
issue of the JVLC after an additional round of reviews. This work appears in Chapter 4, which
discusses the first contribution of this dissertation (contribution 1).

2. Refereed extended abstract and poster, Force-Directed Layout for Euler Diagrams, at the
2009 IEEE Information Visualization (IEEE InfoVis), one of the main conferences of IEEE VIS
(formerly VisWeek) [Micallef and Rodgers, 2009]. This work appears in Chapter 4, which
discusses the first contribution of this dissertation (contribution 1).

3. Refereed journal article, eulerAPE: Drawing Area-Proportional 3-Venn Diagrams Using
Ellipses, in the open-access PLoS ONE [Micallef and Rodgers, 2014a]. This work appears in
Chapter 5, which discusses the second contribution of this dissertation (contribution 2).

4. Refereed workshop paper, Computing the Region Areas of Euler Diagrams Drawn with Three
Ellipses, in the Proceedings of the 2014 International Workshop on Euler Diagrams as part of
the 2014 International Conference on the Diagrammatic Representation and Inference
(Diagrams) [Micallef and Rodgers, 2014c]. This work appears in Section 5.4 of Chapter 5,
which discusses contribution 2a.

5. Refereed conference poster, Drawing Area-Proportional 3-Venn Diagrams Using Ellipses, at
the 2012 Annual Grace Hopper Celebration for Women in Computing (GHC), Poster Session
and ACM Student Research Competition (SRC) [Micallef and Rodgers, 2012]. GHC 2012 had
an overall acceptance rate of 13.32%. This work appears in Chapter 5, which discusses the
second contribution of this dissertation (contribution 2).

6. Refereed journal article, Assessing the Effect of Visualizations on Bayesian Reasoning through
Crowdsourcing, in the IEEE Transactions on Visualization and Computer Graphics (IEEE
TVCG) 18(12) [Micallef et al., 2012]. This paper was accepted at the 2012 IEEE Information
Visualization (IEEE InfoVis) conference and received one of three Best Paper Honourable
Mention Awards. IEEE InfoVis 2012 had an acceptance rate of 24.72%. All papers accepted at
IEEE InfoVis are presented at the IEEE VIS (formerly VisWeek) and appear in a special issue
of the IEEE TVCG (volume 18, issue 12, for 2012). This work appears in Chapter 6, which
discusses the third contribution of this dissertation (contribution 3).

7. Refereed conference paper, Visualizations with Venn and Euler Diagrams, in the Proceedings
of the 2012 Annual Grace Hopper Celebration for Women in Computing (GHC), PhD Forum
[Micallef, 2012]. GHC 2012 had an overall acceptance rate of 13.32%. This paper summarizes
the contributions of this dissertation that are discussed in Chapter 4, Chapter 5 and Chapter 6.
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8. Refereed conference paper, Visualizing Sets and Set-typed Data: State-of-the-Art and Future
Challenges, in the Proceedings of the 2014 Annual Eurographics Conference on Visualization
(EuroVis), State of the Art Reports (STARs) [Bilal et al., 2014]. This paper was invited for
submission to the Computer Graphics Forum (CGF) journal. As the second author of the paper,
I wrote the sections related to Euler diagrams. These sections summarize the literature review in
Chapter 3.

The software implementations of our algorithms and the other resources available online in relation to
our work (e.g., experimental stimuli and data; related videos) are listed in the following section.

1.4 Software Implementations and Online Resources

The novel drawing algorithms discussed in this dissertation have been implemented (in Java) and the
software implementations are available online as freeware. The source code is also available under
GNU General Public License version 3 (GPLv3). 

The software implementations are available at:

http://www.eulerdiagrams.org/eulerForce 

http://www.eulerdiagrams.org/eulerAPE

http://www.eulerdiagrams.org/eulerGlyphs

Resources corresponding to the third contribution of this dissertation (contribution 3, Section 1.2;
publication 3, Section 1.3) are available online for public reference and possible use in future studies:

1. Experimental stimuli and experimental data, in relation to our user study
assessing the effect of visualizations and text+visualization formats on Bayesian
reasoning [Micallef et al., 2012], are available at
http://www.aviz.fr/Research/Bayes

2. A video with a visual explanation of a classic Bayesian problem using Euler
diagrams with glyphs is available at 
http://www.youtube.com/watch?v=D8VZqxcu0I0
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1.5 Overview of Chapters

After this introduction chapter, two chapters provide a literature review on areas related to this work,
followed by a chapter on each of the three contributions in Section 1.2 and a conclusion chapter.

Chapter 2

A literature review on information visualization, visual representations of data set relations, graph
drawing techniques particularly those using a force-directed approach, visualizations for Bayesian
reasoning, and effective methods for combining visualization and text.

Chapter 3

A literature review on Venn and Euler diagrams, including: the historical background, application areas,
diagram properties, aesthetic and perceptual factors, automatic drawing techniques, area-proportional
Venn and Euler diagrams, Euler diagrams with glyphs, and Euler diagrams for Bayesian reasoning.

Chapter 4

Discusses the first contribution of this dissertation, that is the drawing method eulerForce that uses a
force-directed approach (similar to that used in graph drawing) to automatically lay out easy to
comprehend Euler diagrams. The force model and the algorithm are discussed, together with our
experimental results, evaluation and related future work.

Chapter 5

Discusses the second contribution of this dissertation, that is the drawing method eulerAPE that uses
ellipses to automatically draw accurate area-proportional Venn diagrams with three smooth curves. The
drawing method and our analytic geometry methods that instantaneously compute the area of the
regions of three general intersecting ellipses are discussed, together with our evaluation of the
effectiveness of ellipses in drawing such diagrams, characteristics of the quantitative data that can be
depicted accurately using ellipses, diagram design features that could facilitate comprehension and
related future work.

Chapter 6

Discusses the third contribution of this dissertation, that is our user study on the effectiveness of area-
proportional Euler diagrams, glyph representations, Euler diagrams with glyphs and text+visualization
formats for Bayesian reasoning. Guidelines on how visualizations should be combined with textual
information to facilitate reasoning are provided. The drawing method eulerGlyphs that automatically
draws the diagram types assessed in our user study for any Bayesian problem is also discussed.

Chapter 7

Summarizes the objectives, contributions and findings of this dissertation and highlights important
future work.
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Chapter 2

General Background

This chapter provides a literature review on areas relevant to this research. This will help the reader
understand the novel research work discussed in this dissertation. It excludes Venn and Euler diagrams,
since these are discussed in detail in the next chapter.

2.1 Introduction

Graphics are used extensively everywhere and everyday. Traffic and public signs are simple examples
of such graphics. Their effectiveness is essentially due to their simplicity in quickly and universally
conveying messages and information. In some cases, such as metro maps, a graphic encodes a large
amount of information, which could facilitate reasoning and enable faster and more accurate decision-
making. It is for this reason why Arthur Brisbane stated, "Use a picture. It's worth a thousand words"
[Syracuse Post Standard, 1911]. However, "a picture worth a thousand words must first be a good
picture" [Bowman, 1967]. A visualization is good if the information obtained from it, when it is visually
decoded, is the same as the original information that was graphically encoded [Cleveland, 1994].
Various visual representations of information have been and are still being proposed to facilitate data
analysis and decision-making for diverse tasks and applications. However, a good visualization is often
not enough. Text is typically used to convey specific details and so, the visualization and the textual
information should be holistically combined to ensure that the link between the two is easily noticeable,
such that the two are seen as one and that one is seen as incomplete without the other [Tufte, 1983].

We start this review with an introduction to information visualization (Section 2.2), followed by an
overview of different visual representations of data set relations (Section 2.3) and techniques used in
graph drawing to visualize relationships between data items using a node-link diagram (Section 2.4).
The effectiveness of visualizations has been studied in various application areas, one of which is
Bayesian reasoning. We discuss visualizations for Bayesian reasoning (Section 2.5) and a few
techniques on how visualizations should be combined with text to facilitate comprehension and
reasoning (Section 2.6). We then conclude with a summary of this chapter (Section 2.7).
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2.2 Information Visualization

Visual representations of data have been used for millennia be it for presentation, communication and
storytelling, or as a means to understand, analyse and reason about data, make decisions and answer
questions [Friendly, 2008; Mackinlay, 2009; Spence, 2007; Tufte, 2001].

Cave paintings during the Ice Ages (after 25,000 BC) were among the earliest visualizations,
followed by maps like those on Babylonian clay tablets and the wall painting of Çatalhöyük (Figure 2.1)
[Friendly and Denis, 2001]. Early writing inscriptions in 3100 BC such as the Mesopotamian cuneiform
and the Egyptian hieroglyphs respectively emerged from pictography and the civilizations' pre-literate
artistic customs [Robinson, 2007]. In geometry, visualizations have been used since its roots in ancient
Mesopotamia and Egypt in second millennium BC for astronomy, architecture and other purposes. In
around 300 BC, Euclid included various diagrams in his treatise on geometry, Elements [Heath, 1956].

A B

Figure 2.1: An early map (7500 BC) depicting the city of Çatalhöyük, Antolia, Turkey. Source:
[Friendly and Denis, 2001] (A) The original wall painting. (B) A recreation of A showing the city's structure.

Visualizations have long been used to report findings and observations in astronomy (e.g., [Galilei,
1613], [Scheiner, 1626]) and to present statistical data (e.g., [van Langren, 1644, p. 3]—the first known
statistical graph). Playfair (1759-1823), "the founder of graphic methods of statistics" [Fitzpatrick,
1960, p. 38], invented and used the bar chart and the time-series line chart to, for instance, summarize
England's balance of trade [Playfair, 1786], and the circle chart and the pie chart to depict quantities,
such as the cities' population (Figure 2.2A) and the countries' land mass (Figure 2.2B), as area [Playfair,
1801]. Using these graphics, he aimed to better communicate statistical data by exploiting the human
psychological capabilities [Spence, 2006].

Playfair's graphics have inspired other classics in information visualization. Nightingale [1858] used
the area of the radial segments in her iconic 'rose' diagram to report the number of deaths during the
Crimean war (Figure 2.3). Minard [1869] used a flow map with two lines of varying thickness to show
the loss of men in Napoleon's army as they moved from Poland to invade Russia and as they later
retreated, between 1812 and 1813 (discussed in Section 2.6, Figure C.8). Dr John Snow marked deaths
from cholera for September 1854 with dots and water pumps with crosses on a map of a London district
and from the concentration of dots in a specific area, he managed to identify the contaminated pump
(visualization available in Tufte's book [1983, p. 24]). Thus, with a simple visualization, Snow managed
to answer his question and save lives. A more recent classic is Harry Beck's 1931 London Underground
map [Garland, 1994], which, with a schematic design that is topologically exact as the true route but
geographically inaccurate (as underground the exact geographic location does not matter), the map is
easily processed and remembered in full detail, as a mental image of the map is easily constructed.
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A

B

Figure 2.2: First applications of area to represent quantities—William Playfair. These diagrams are
from the book 'Statistical Breviary' [Playfair, 1801], which Tufte describes as Playfair's "most theoretical
book about graphics" [Tufte, 1983, p. 44]. (A) Depicts the European cities' population. Instead of a
cartogram, each city is represented as a circle with an area proportional to the city's population. Source:
[Cleveland, 1985, p. 115] (B) Depicts the European empires' land mass after the 1801 Luneville Treaty and
indicates that the British were paying more taxes than other nations. Circles represent the countries and their
area represents the country's land mass. An Euler diagram is also provided at the bottom. The diagram
depicts data in different forms: the population by a left vertical line to the circle; tax due by a right vertical
line to the circle; relative tax burden on population by another line graph; maritime powers by colour; the
empire’s land mass proportion on the continents by pie charts. Source: [Tufte, 1983, p. 44]
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Figure 2.3: First applications of area to represent quantities—Florence Nightingale. Nightingale
included this diagram (known as Nightingale's 'rose' or 'coxcomb' diagram) in her report [Nightingale, 1858]
to the British government to demonstrate that during the Crimean War most of the soldiers died due to
preventable diseases rather than wounds. The area of the radial segments in the diagram depict the number of
deaths from preventable diseases (in blue), wounds (in red) and other causes (in black) per month for 24
months. Her presentation was so effective in communicating the issue that later the government implemented
various reforms to improve the sanitary conditions in military hospitals. Source: [Nightingale, 1858]

Despite the use of data visualizations for all of these years, research in understanding how
information should be effectively encoded in a visualization to facilitate communication and reasoning
began more recently with Bertin's 'Sémiologie Graphique' [Bertin, 1983], first published in 1969. For
the first time, the different ways how graphical representations encode data were systematically
identified and various basic terms were defined. Bertin noted that every visualization is made up of
basic units, known as marks, including points, lines and areas. These marks have properties, including
position, size, shape, value, orientation, colour, texture and motion, which are used to represent the data
and which are referred to as retinal or visual variables. Bertin also noted that the characteristics of these
variables could be associative, selective, ordinal or quantitative in that marks are respectively perceived
as similar, different, ordered or proportional, when changes in a specific variable are carried out (e.g.,
selection, order and quantity is perceived as the size of a mark be it point, line or area changes).

Following up on Bertin's work, Cleveland and McGill [1984; 1985; 1987] carried out experiments to
identify which visual variables are most effective for specific data types and the accuracy at which
humans can decode information encoded using these visual variables (referred to as elementary
graphical-perception tasks). With their experimental results and theory of visual perception, they
concluded that humans are best and most accurate at position judgement along a common scale,
followed by position along non-aligned but identical scales, length, angle, area, volume and colour (hue,
saturation, density) [Cleveland, 1994]. Thus, it is more difficult for humans to, for instance, identify
differences in or quantify volume than length. These findings are important as visualization is not a
process carried out by computers [Spence, 1996], but rather a 'cognitive activity' [MacEachren, 2004;
Ware, 2012] carried out by humans, so that an effective visualization is one which acknowledges human
capabilities and limitations [Spence, 2001].
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Both Bertin's theoretical work and Cleveland and McGill's experimental findings are foundational to
information visualization and will continue to provide guidance on the design of effective
visualizations. To facilitate the design process, Mackinlay [1986a; 1986b; 1988] devised a system that
used Bertin's semiology to automatically design effective visualizations for any data. In this way,
Mackinlay managed to automate Bertin's theoretical work.

Other fundamental principles and good practices for the design of visualizations were provided by
Tufte [1990; 1997b; 1997a; 2001; 2006]. Tufte emphasized the need for graphical excellence, in that
concepts are "communicated with clarity, precision, and efficiency", the viewer is given "the greatest
number of ideas in the shortest time with the least ink in the smallest space", and graphics tell "the truth
about the data" [Tufte, 1983, p. 51]. He also illustrated the importance of graphical integrity, in that the
depicted quantities on the graphic are directly proportional to the ones represented, text is added to the
graphic to clarify the depicted data, and "data variation, not design variation" is shown [Tufte, 1983, p.
77]. Other practical design guidelines based on theories of human perception, cognition and attention
were provided by Ware to direct designers in creating effective and useful visualizations that exploit the
capabilities and manage the limitations of human psychology [Ware, 2008, 2012].

With such guidelines and advances in technology, various novel, sophisticated and specialized visual
representations and visual interactions have been developed to analyse the vast amount of data that is
routinely generated. In most application areas, relationships between data sets are studied for the
understanding of processes, systems and communities, for informed decision-making and for
knowledge discovery. Thus, over the years, different visual representations of data set relations have
been proposed. We discuss such representations in the next section.

2.3 Visualizing Data Set Relations

"We are drowning in information, while starving for wisdom" [Wilson, 1998, p. 294]. Relationships
between data sets are analysed to, for instance, understand biological processes and find cures to
illnesses or to identify connections among communities and predict and disrupt crimes. 

Often such data is structured as a graph and thus, over the years, various visual representations of
graphs have been proposed. The two most popular are node-link diagrams and adjacency matrices.
Figure 2.4A and Figure 2.4B are respectively the weighted node-link diagram and the weighted
adjacency matrix in Schich's [2010, pp. 232-33] book chapter depicting the data model of the CENSUS
database on Renaissance works of art and architecture [CENSUS, 2007]. So both visualizations depict
the same data. Figure 2.4A is weighted as the size of the nodes and the thickness of the links indicate
the number of nodes and links of that specific type. In Figure 2.4B, a line and a column for each node
type is depicted and the number of links between every two types of nodes is noted in the cells of the
matrix, so that the matrix is said to be weighted. Node-link diagrams tend to become cluttered very
easily, as more nodes and links are added to the diagram. So, in such cases, adjacency matrices are often
preferred. The effectiveness of such visualizations has been studied extensively (e.g., [Ghoniem et al.,
2004; Keller et al., 2006]) and software systems that draw these visualizations and that aid users explore
the visualized data have been devised (e.g., [Abello and van Ham, 2004; Henry et al., 2007; Henry and
Fekete, 2006]). These have been used for various applications, such as social network analysis [Henry
et al., 2007] and cancer data analysis and trend identification [Abello and van Ham, 2004]. Drawing
techniques for depicting graphs as node-link diagrams are discussed in Section 2.4.
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Figure 2.4: Visualizing the CENSUS data model using (A) a weighted node-link diagram and (B) a
weighted adjacency matrix. Source: [Schich, 2010, pp. 232-33]—Figure 14-3, Figure 14-4

It is also common for data to be structured as a tree (i.e., an acyclic connected graph) as is often the
case with hierarchies (e.g., a file hierarchy). Various visual representations for these data structures have
been proposed ([Schulz, 2011]—a visual survey). A few are radial visualizations ([Draper et al.,
2009]—a survey), such as Calling Context Ring Charts (e.g., Figure 2.5A) [Moret et al., 2010], which
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visualize Calling Context Trees containing dynamic metrics on the performance of object-oriented
software. Both the caller and the callee methods are depicted as ring segments, with the segment of the
callee placed around that of the caller. The area of the segments can also be proportional to a specific
metric, such as the bytecode metric as in Figure 2.5A. Another visual representation is RINGS (e.g.,
Figure 2.5B) [Teoh and Kwan-Liu, 2002], which depicts all the nodes of the tree as circles and places
the circles of the children nodes within the circle of the parent node. A colour map, as in Figure 2.5B, is
then used to depict the number of children in the nodes. 

Amongst the most popular tree visualizations are treemaps, which depict the nodes as rectangles
with an area that is proportional to some attribute (e.g., the number of children nodes) and subdivide
parent nodes to depict their children [Shneiderman, 1992]. Different variants of treemaps have been
proposed. Squarified treemaps [Bruls et al., 2000], for instance, use rectangles that approximate as much
as possible squares to avoid elongated rectangles. Cushion treemaps [van Wijk and van de Wetering,
1999] use a simple shading model to add ridges each time a rectangle is subdivided, so that the shading
aids in depicting the hierarchical structure of the tree at different levels of details based on the selected
height of the ridges. Cushion treemaps as well as squarified cushion treemaps, as Figure 2.5C, are used
by the disk browser, SequoiaView [Bruls et al., 2002], to facilitate file management, file navigation and
inspection of disk usage space. 

All of these tree visualizations allow users to interactively navigate and explore the depicted data. A
limitation is that intersections at the same level cannot be visualized and so, in a file system, for
instance, a file cannot be in two directories unless one is a subdirectory of the other.

A B C

Figure 2.5: Visualizing trees: (A) a Calling Context Tree using Calling Context Ring Charts, (B) a
UNIX directory using RINGS, (C) a file hierarchical system using a squarified cushion treemap in
SequoiaView. Sources: (A) [Moret et al., 2010]—Figure 5; (B) [Teoh and Kwan-Liu, 2002]—Figure 7 (left);
(C) [Bruls et al., 2002].

Circular visualizations, like Figure 2.6A, have also been proposed and software systems that
automatically generate them have been devised (e.g., Circos [Krzywinski et al., 2009] which generated
Figure 2.6A; CGView [Stothard and Wishart, 2005]; Radial Sets [Alsallakh et al., 2013]). Such layouts
are thought to facilitate comparison of data sets, exploration and reasoning about relationships between
the data elements. A more recently proposed visualization is LineSets [Alper et al., 2011] whereby each
set is depicted as a coloured, curved line that passes through the elements of the set, as in Figure 2.6B.
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A B

Figure 2.6: Visualizing (A) genomic data using Circos's circular visualization, and (B) social network
groups using LineSets. Sources: (A) [Krzywinski et al., 2009] Figure 6; (B) [Alper et al., 2011] Figure 1.

In contrast to these visual representations, Venn and Euler diagrams, like those in Figure 2.7, depict
the sets as closed curves, thus facilitating reasoning about the relations of the sets, as the sets and their
overlaps are easily visible. This is so, as closed curves are preattentively processed [Treisman and
Souther, 1985] and form common regions that have a strong perceptual grouping effect [Palmer, 1992].
Also, Euler diagrams can depict intersection, containment and exclusion amongst data sets all in one
diagram (e.g., Figure 2.7A). The cardinalities of the sets and their intersections can also be depicted by
the size of the curves and their overlaps (e.g., Figure 2.7B which in this case is a Venn diagram as it
shows all the possible intersections between the curves). Venn and Euler diagrams are discussed in
detail in the next chapter. Euler-like diagrams are discussed in Section 3.6.6.

A B

Figure 2.7: Examples of an Euler diagram and a Venn diagram. (A) An Euler diagram (drawn manually)
classifying geometric shapes. (B) A Venn diagram whose curves and overlaps have area that is proportional
to the data indicated by the numeric labels. The curves depict prognostic indicators of severe malaria (data
source: [Dzeing-Ella et al., 2005]–Figure 3). The diagram was generated using eulerAPE (Chapter 5).

We will now discuss algorithms for the generation of node-link diagrams depicting graphs.
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2.4 Graph Drawing

Various automatic techniques have been developed to draw graphs as node-link diagrams [Di Battista et
al., 1994, 1999b; Díaz et al., 2002; Gibson et al., 2012; Sugiyama, 2002]. However, most techniques,
such as those using simulated annealing [Coleman and Parker, 1996], genetic algorithms [Hobbs and
Rodgers, 1998] or evolutionary algorithms [Utech et al., 1998], can be complex and computationally
expensive. So lately, force-directed algorithms have been used [Gibson et al., 2012] to produce
comprehensible graph layouts in relatively fast time [Kobourov, 2012]. Using a physical analogy, these
methods are often simple, easy to reason about and to implement [Di Battista et al., 1999b]. 

2.4.1 Force-Directed Drawing Methods

The physical analogy used by force-directed algorithms is that of a system of physical structures (the
vertices of the graph) that exert a force over others in the system, such that these structures move along
the direction of the force [Di Battista et al., 1999a]. The system is brought to a halt when the algorithm
positions the structures appropriately so that the forces are equilibrated.

A force-directed method is made up of: (i) a force model that is determined by the vertices, the edges
and the forces exerted by each one; (ii) an algorithm that equilibrates the forces in the system. For such
a method to generate an improved graph layout, the forces in the model should be defined appropriately
so the required aesthetic criteria and constraints are met. Similarly, the algorithm should ensure that
when the forces are equilibrated, the graph layout has been improved and satisfies the required criteria.

Various force-directed methods have been proposed to lay out graphs [Di Battista et al., 1999a;
Gibson et al., 2012; Kobourov, 2012]). One of the very first is Tutte's [1960; 1963] barycentre method,
that positions freely moving vertices at their neighbour's barycentre, that is the point between the vertex
and the neighbour where the gravitational forces exerted by these two vertices are balanced. 

However, one of the simplest methods that forms the basis of various others is the spring embedder,
first proposed by Eades [1984], whereby the physical system is made up of electrically charged particles
(the vertices of the graph) and springs (the edges connecting the vertices in the graph), as in the example
in Figure 2.8A. So, while the particles repel each other, the springs attract the particles that are
connected to their endpoints (Figure 2.8B). The forces in the system will move the particles around in
space until their position equilibrates the forces (Figure 2.8C), at which point the improved graph layout
should be obtained (Figure 2.8D). In this method, the force model is made up of a repulsive force
between each pair of vertices and an attractive force between each pair of vertices that are connected
with an edge. Typically, the repulsive forces are inversely proportional to the squared distance between
the two vertices (consistent with the inverse-square law), while the attractive forces are directly
proportional to the difference between the natural length of the springs in the physical system and the
distance between the two vertices (consistent with Hooke's law) [Di Battista et al., 1999a]. So, while
repulsive forces ensure that the vertices are not close to one another, attractive forces aid in obtaining
uniform edge lengths [Di Battista et al., 1999a]. Often the vertices are evenly distributed and the graphs
are symmetric [Eades and Lin, 2000], even though the force model does not directly take into account
these features. 
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Figure 2.8: The physical system and forces in a simple force-directed spring embedder. (A) The vertices
in the graph act like electrically charges particles, while the edges act like springs. (B) As the particles repel,
the springs attract the particles attached to its endpoints. The vertices are moved around until (C) the position
of the vertices equilibrates the forces in the system, at which point (D) an improved layout is obtained.

Various types of algorithms could be used to equilibrate the forces. A simple approach is to go
through the system in discrete time steps, so that, starting with a graph layout whose vertices are
randomly positioned, the forces exerted on the vertices are calculated at every step and the vertices are
moved accordingly based on the magnitude and the direction of the forces [Eades, 1984]. The algorithm
stops either after a fixed number of iterations or once the magnitude of the forces exerted on the vertices
is zero. The transition from the initial to the final layout could be animated to facilitate understanding of
how the forces in the system are acting upon each other [Di Battista et al., 1999a] and to possibly aid in
preserving the mental map of the layout [Eades et al., 1991].

Alternative algorithms aim to avoid local minima and improve layout aesthetics by using numerical
methods (e.g., [Kamada and Kawai, 1989]) or optimization heuristics (e.g., [Branke et al., 1997;
Davidson and Harel, 1996]) to minimize the total energy of the system defined as a function in terms of
the aesthetic criteria that should be satisfied by the final layout. In fact, different variants of Eades's
spring embedder have been proposed (e.g., [Davidson and Harel, 1996; Fruchterman and Reingold,
1991; Hu, 2005; Kamada and Kawai, 1989; Sugiyama and Misue, 1995a, b]). For instance, magnetic
fields have been added to the springs and the system to handle more aesthetic criteria (e.g., edge
orientation) and to lay out other types of graphs (e.g., trees and directed graphs) besides undirected ones
[Sugiyama and Misue, 1995a, b]. Others used Barnes and Hut [1986] algorithm to accurately and
efficiently calculate the forces at every iteration to ensure that the final layouts satisfy the required
criteria (e.g., [Hu, 2005; Tunkelang, 1999]).

Eades [1984] notes that his spring embedder is appropriate for non-dense graphs with fewer than 50
vertices. In fact, due to local minima, poor layouts are generated when graphs have hundreds of vertices
[Kobourov, 2012]. So a few variants (e.g., [Gajer et al., 2001; Hadany and Harel, 2001; Harel and
Koren, 2001, 2001; Hu, 2005; Walshaw, 2001]) adopted a multilevel approach, whereby vertices are
iteratively clustered to form coarser and coarser graphs until a graph with a small number of vertices is
obtained, at which point, layout optimization commerces with the coarsest graph and continues with
others, until the original graph is reached. This approach has been successful in overcoming local
minima and in appropriately and efficiently laying out large graphs. For instance, using this approach,
Hu's [2005] (also [2011]) method lays out graphs with over 10,000 vertices in less than a minute.

Various force-directed algorithms are discussed and compared in Kobourov's [2012] review and in
Gibson et al.'s [2012] survey. Such methods have also been used to bundle edges in graphs [Holten and
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van Wijk, 2009], thus reducing visual clutter, and to lay out diagrams, such as 3D UML class diagrams
[Dwyer, 2001]. This indicates their applicability to other areas besides graph drawing. Other graph
layout methods and aesthetics of node-link diagrams for graphs are briefly discussed in Appendix C.1.

Visualizations could facilitate data analysis and reasoning, particularly in areas that are notorious for
fallacious reasoning. Decision-making with statistical, uncertain data that involves Bayesian inferencing
is an example. We discuss this further in the next section.

2.5 Visualizations for Bayesian Reasoning

Both laymen and professionals have difficulty making inferences and decisions based on statistical and
probabilistic data and often they are unaware of their wrong judgements [Gigerenzer et al., 2007;
Hoffrage et al., 2000]. In cases of uncertainty, judgement could also be affected by gut feelings
[Gigerenzer, 2007], past experiences, emotions [Slovic et al., 2005], and whether making decisions for
oneself or others [Zikmund-Fisher et al., 2006]. This can have severe consequences in many domains.

2.5.1 A Few Bayesian Reasoning Scenarios

Physicians need to diagnose diseases based on the outcome of unreliable medical tests. Patients need to
decide whether they should undertake heavy medical treatment. Wrong judgements are common and
often result in overdiagnosis [Welch and Black, 2010]—example, up to two thirds of the breast cancers
that are detected by mammography screening can be overdiagnosed [Zahl and Maehlen, 2004]. In other
cases, patients with a positive HIV test result attempted or committed suicide before further tests turned
out negative [Chicago Tribune, 1993; Stine, 1998]. In this domain, a crucial piece of information for
effective decision-making is the probability that a patient has a disease given that a test is positive.

In legal trials, juries have to convict or acquit defendents based on unreliable evidence and here too,
wrong judgements abound [Koehler, 1997]. A Harvard law professor, Alan Dershowitz, who advised
defence lawyers in a murder trial of a husband who battered his wife and whose wife was murdered
claimed on US television that only 0.1% of husbands who batter their wives end up murdering them
[Good, 1995]. However, Dershowitz's reasoning was fallacious, as the probability that the husband was
the murderer is conditional on both the events that he battered his wife and that she was killed (giving a
probability of 50%) rather than just the event that he battered her (giving 0.1%) [Good, 1995].

Intrusion detection systems are not 100% effective at detecting intrusions as decisions are based on
uncertain information [Axelsson, 2000]. False alarms can be costly and intrusions can be disregarded.
So, the chance that a real intrusion has been identified when the alarm goes off has to be determined.
Other scenarios in everyday are provided by Hastie and Dawes [2001].

2.5.2 The Base Rate Fallacy

The scenarios in Section 2.5.1 involve Bayesian inference, which is known to be counterintuitive and
subject to fallacious reasoning. As an illustration, consider the following classic Bayesian problem:
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The probability that a woman at age 40 has breast cancer is 1%. According to the
literature, the probability that the disease is detected by a mammography is 80%. The
probability that the test misdetects the disease although the patient does not have it is
9.6%.

If a woman at age 40 is tested as positive, what is the probability that she indeed has
breast cancer?

[Eddy, 1982]

Out of 100 doctors, 95 estimated this probability to be between 70% and 80% [Eddy, 1982], but the
correct probability is only 7.8% (Appendix C.2.1 explains how this is computed using Bayes' theorem).
The probability is low because the prevalence of the disease in the population, that is the base rate (here
1%), is low. When making Bayesian inference, this information is often ignored [Gigerenzer and
Hoffrage, 1995], leading to the base rate fallacy [Barbey and Sloman, 2007a, b]. Studies suggest that the
presentation of the problem is decisive for the use or neglect of the base rate [Gigerenzer et al., 1988].
Presentations with natural frequencies (Section 2.5.3) and visualizations (Section 2.5.4) have been used.

2.5.3 Using Natural Frequencies

Natural frequencies could be used, so that the Bayesian problem in Section 2.5.2 is presented as:

10 out of every 1,000 women at age forty who participate in routine screening have
breast cancer. 8 of every 10 women with breast cancer will get a positive
mammography. 95 out of every 990 women without breast cancer will also get a
positive mammography.

Here is a new representative sample of women at age forty who got a positive
mammography in routine screening. How many of these women do you expect to
actually have breast cancer?

[Gigerenzer and Hoffrage, 1995]

Using natural frequencies instead of probabilities reduces the fallacy [Hoffrage et al., 2002], with a
typical improvement that goes from 16% to 46% of correct answers (over 15 problems and 60
university students, most from psychology) [Gigerenzer and Hoffrage, 1995]. Similar improvements
were observed in other studies (e.g., [Brase, 2008; Cosmides and Tooby, 1996]). Appendix C.2.2
discusses why natural frequencies reduce the fallacy. Yet a success of 46% is still low. So other
representations that aid understanding of how the base rate (here 1% or "10 of every 1,000"), the hit rate
(here 80% or "8 of every 10") and the false alarm rate (here 9.6% or "95 out of every 990") of the
problem are related, should be studied for improved success rates. Visual representations could help.

2.5.4 Using Visualizations

To solve Bayesian problems without using Bayes' [1763] theorem, heuristics (e.g., [Kahneman et al.,
1982]), cognitive algorithms (e.g., [Gigerenzer and Hoffrage, 1995]) and other methods that do not use
visualizations (Appendix C.2.3) have been used. Solutions that use visualizations were also proposed as
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diagrams are known to facilitate reasoning [Bauer and Johnson-Laird, 1993]. In fact, a study confirms
that when Bayes’ theorem is introduced to students through visualizations, students learn faster and
report higher temporal stability than without a visualization [Sedlmeier and Gigerenzer, 2001]. Prior
training is not always possible and so, a few studies were conducted to assess the immediate benefits of
visualizations (e.g., [Brase, 2009; Cole and Davidson, 1989; Cole, 1989; Sloman et al., 2003]).
However, it is still unclear which is the most effective representation for Bayesian reasoning.

The visual representations that have been considered for Bayesian reasoning include: contingency
tables [Cole and Davidson, 1989; Cole, 1989], detection bars [Cole and Davidson, 1989; Cole, 1989],
signal detection curves [Cole and Davidson, 1989; Cole, 1989], Bayesian Boxes [Burns, 2003, 2004a,
b], probability space diagrams [Cheng and Pitt, 2003], frequency trees [Sedlmeier and Gigerenzer,
2001], and probability trees [Sedlmeier and Gigerenzer, 2001]. Examples of such visualizations are
available in Appendix C.2.3 Figure C.2. Most of these representations attempt to visualize the structure
of the problem and how the different quantities (i.e., the base rate, the hit rate and the false alarm rate)
relate, but most are difficult to understand, thus require training prior to use.

Two popular visualizations are Euler diagrams and frequency grids. Studies suggest that Euler
diagrams (e.g., Figure 2.9A) can clarify the nested-set relations and categorical information of Bayesian
problems (how the quantities relate) [Sloman et al., 2003], while frequency grids (e.g., Figure 2.9B) can
facilitate logical reasoning [Brase, 2008; Cosmides and Tooby, 1996]. 

Figure 2.9: An Euler diagram and a frequency grid for Bayesian reasoning to avoid the base rate
fallacy. (A) An Euler diagram (for a general disease diagnosis problem [Brase, 2009]). Source: [Brase,
2009]–Figure 1, top diagram (B) A frequency grid (for the mammography problem [Eddy, 1982]). Source:
[Sedlmeier and Gigerenzer, 2001]–Figure 5, top section

Part of this dissertation evaluates Euler diagrams, frequency grids and combinations of both for
Bayesian reasoning. Studies on Bayesian reasoning assessing frequency grids are discussed in the next
section, while others assessing Euler diagrams or combinations of both are discussed in Section 3.9. 

2.5.5 Using Frequency Grids

Cosmides and Tooby [1996] argued that representations with discrete, countable objects like frequency
grids (e.g., Figure 2.9B, Figure 2.10) facilitate logical reasoning and understanding of how categories
relate, as the human mind is adapted to process information in natural frequency format. However they
found no improvement over text alone (success of 76% of 75 participants with frequency grids and 76%
of 50 participants with text alone, using natural frequencies, over a major revision of Casscells et al.'s
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[1978] disease diagnosis Bayesian problem; participants were paid Stanford University students with
19.6 years average age). They believed that visualizations were ignored, as they observed a notably
improved success of 92% of 25 participants when guided to actively draw their own frequency grid.

Similarly, after training, Sedlmeier and Gigerenzer [2001] observed a success of 75% then 100%
five weeks later among 14 participants who drew frequency grids, compared to 60% then 20% (as
before training) among 20 participants applying Bayes’ theorem (participants were paid university
students and 10 Bayesian problems were tested). However later, Brase [2009] reported no improvement
between passive and actively drawn grids (49% success of 49 participants for active, 48.4% of 95 for
passive, over one problem similar to that of Cosmides and Tooby [1996]; participants were university
Psychology students with 18.7 years average age, who participated to partly fulfil a class requirement).

Cole and Davidson [1989] (see also [Cole, 1989]) showed that subjects become remarkably accurate
and fast when trained using a frequency grid (or any of the other two visualizations they tested) rather
than a contingency table and compared to the use of text alone with no training. However, differences in
errors between frequency grids and other visualizations were not significant (18 Psychology students
from Carnegie Mellon University per visualization participated to fulfil a course requirement; eight
problems with diverse 'high'/'low' value combinations for the base, hit and false alarm rates were tested).

Brase [2009] also compared frequency grids with regular (Figure 2.10A) and random (Figure 2.10B)
layouts, but found no difference in success rate (47.6% of 42 university Psychology students for both
with 18.8 years average age, over one problem similar to Cosmides and Tooby's [1996]).

A B

Figure 2.10: Brase's [2009] frequency grids with (A) a regular layout and (B) a random layout.
Source: [Brase, 2009]—(A) Figure 1, bottom diagram; (B) Figure 2, top diagram

Kellen et al. [2007] argued that the effectiveness of the visualization is determined by the user's
spatial abilities. Those with high spatial abilities can handle any visualization particularly those with
spatial properties, while those with low spatial abilities have difficulties handling visualizations with
spatial properties and are better at handling ones with discrete objects [Kozhevnikov et al., 2002, 2005].
This led to Kellen et al.'s hypothesis that visual representations with icons like frequency grids
(Appendix C.2.4 Figure C.4) are more effective for Bayesian reasoning than ones with spatial properties
like Figure 2.9A. However, the findings of their proposed study were not published.

Frequency grids with tree diagrams [Spiegelhalter et al., 2011] and frequency grids with interactive
features [Tsai, 2012] have also been proposed to facilitate Bayesian reasoning. Such visualizations are
not the focus of this research work and are thus discussed in Appendix C.2.5 and Appendix C.2.6
respectively. Further reading on frequency grids is provided in Appendix C.2.7 – Appendix C.2.9.

Proposed visualizations for Bayesian reasoning are provided with the text conveying the problem.
Guiding the user to draw their own diagram [Cosmides and Tooby, 1996] or using interactive
visualizations [Tsai, 2012] could help as the users experience the inferencing process [Sedlmeier, 1999].
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However, these solutions are not practical as often information is provided on paper (e.g., medical
pamphlets, newspapers) and timely decisions have to be made (e.g., military generals in war). So
techniques that holistically combine text and visualization should be considered. We discuss a few
techniques in the next section.

2.6 Visualization and Text

Visualizations can facilitate understanding of information that is often conveyed using text, but they
have to be linked to the text appropriately for the reader to benefit from their availability [Tufte, 2001].

Consider the two representations for part of Euclid's Pythagorean theorem proof in Figure 2.11.
Figure 2.11A is a classic representation that uses letters to refer to elements of the diagram in text.
Figure 2.11B is Byrne's [1847] visual representation that uses colours and shows the actual elements
(i.e., parts of the diagram) in the text, sometimes as nouns instead of words. The link between the
diagram and text is easily noticeable in Figure 2.11B and facilitates understanding. In Figure 2.11C,
Tufte [1990, p. 87] added letters to Figure 2.11B and argued that, even though redundant symbols are
often confounding, in this case, the letters rapidly link the diagram to the proof as they facilitate eye
movements between the two. Thus, it is likely that both representations would be used together, but if
not, the readers can choose their preferred way of linking the diagram with the text [Tufte, 1990, p. 87].

A B

C

Figure 2.11: Different representations for part of Euclid's Pythagorean theorem proof. (A) A classic
representation using labels. Source: [Tufte, 1990, p. 84]; original source: [Durell, 1936, p. 119] (B) Byrne's
representation using colours and the actual elements of the diagram in the text in his visual edition of Euclid's
Elements [Heath, 1956]. Source: Tufte's [1990, p. 85] redrawing of the original [Byrne, 1847, pp. 48-49]
(C) Byrne's hybrid representation combining A and B. Source: [Tufte, 1990, p. 87] 
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A classic in information visualization that "exemplifies many of the fundamental principles of
analytical design" [Tufte, 2006, p. 126] and illustrates how to "Completely integrate words, numbers,
images, diagrams" [Tufte, 2006, p. 126] is Minard's [1869] flow map (Figure C.8) showing the loss of
men in Napoleon's army as they moved from Poland to Russia and as they later retreated, during their
invasion of Russia between 1812 and 1813. Besides labelling all the interesting and necessary data,
Minard also includes some textual information to describe the encoding mechanism (e.g., the widths of
the coloured regions depict the number of men), the measurement scales, the source of the data and any
assumptions made. Though at first sight there seems to be a lot of words, there is no cognitive overload
as the provided details are necessary to understand the data and the story (without the need to read about
the invasion) and "the map's essential features remain in our memory long after we have ceased looking
at it" [Spence, 2007, p. 2]. Minard's graphic was meant for "exploration" rather than "communication
and illustration of a settled fact" [Tufte, 1983, p. 182] and so, he rightly used text to instruct the reader
on "how to read the design … and not what to read in terms of content" [Tufte, 1983, p. 182].

Both visualization and text present information and so, "Data graphics are paragraphs about data and
should be treated as such" [Tufte, 1983, p. 181] (Tufte's "data/text integration" principle). Further
reading on techniques to combine visualization and text is provided in Appendix C.3.

2.7 Summary

Information visualization has developed extensively over the years. A number of visualizations have
been proposed to facilitate data analysis and reasoning in diverse areas. Visualizations could facilitate
Bayesian reasoning by depicting the structure of the problem and how different data sets relate. This
could reduce fallacy reasoning that could otherwise have severe consequences in areas like medicine,
law and military. The context of a visualization has to be defined for it to be meaningful. Pictures alone
cannot define the context and text is often required. Even so, a visualization is helpful, only if the text
and the visualization are integrated appropriately and the link between the two is clear.

In contrast to other visual representations, Euler diagrams represent various relationships between
data sets in one diagram, including containment, exclusion and intersections. If all the possible overlaps
between the data sets are represented, the Euler diagram is a Venn diagram. Venn and Euler diagrams
are extensively used for various applications areas and are the main focus of this dissertation. The next
chapter provides an overview of the current state-of-the-art of Venn and Euler diagrams and discusses
areas that need to investigated further.

2.7 Summary | 26



Chapter 3

Venn and Euler Diagrams

This chapter provides a literature review on work related to Venn and Euler diagrams. This will help
the reader understand the current state-of-the-art and concepts discussed in this dissertation. 

3.1 Introduction

Data sets in diverse areas are compared and their relationships are analysed. For instance, in genetics,
relationships and differences between groups of genes and proteins are studied to understand biological
processes, find cure for illnesses, and solve problems in agriculture. In national security, connections
between communities in social networks are investigated to predict and disrupt criminal threats.

To facilitate analysis, Venn and Euler diagrams are often used to depict relationships between data
sets. These diagrams are made up of labelled closed curves (of any shape) each depicting a data set
(Figure 3.1). As the curves intersect, regions depicting data set overlaps are formed. An Euler diagram
(Figure 3.1A) can represent any containment, exclusion and intersection of the data sets in one diagram
[Euler, 1768a], but a Venn diagram (Figure 3.1B) depicts all the possible intersections of the data sets
[Ruskey and Weston, 1997; Venn, 1880]. The properties of these diagrams are discussed in Section 3.4.

A    B

Figure 3.1: An Euler diagram (left, A) and a Venn diagram (right, B), with four curves. (A) Depicts
containment, exclusion and intersection, as curve c is contained in a (so c is a subset of a), curves a and b
intersect, and curve d is excluded. (B) Depicts all the possible intersections between curves w, x, y and z.

Other visualizations for sets and their relations are available (Section 2.3), but these alternatives do
not use closed curves to represent data sets and so, overlaps between the sets are not easily visible. The
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perceptual grouping principle of common regions [Palmer, 1992] indicates that elements within an
enclosed region or curve tend to be grouped together. This grouping effect is stronger than and
independent from any others like the Gestalt powerful proximity and similarity [Koffka, 1935]. Closed
curves [Enns, 1986; Treisman and Souther, 1985] and crossing line segments [Julesz and Bergen, 1983]
are also processed preattentively, so the curves and regions are distinguishable and pop out as discrete
complete objects. Closure is also a Gestalt perceptual grouping principle [Koffka, 1935]. These factors
motivated Ware's [2012] design guideline of "putting related information inside a closed contour".

Also, most of these alternative representations are not capable of visualizing containment, exclusion
and intersection relations all in one diagram, as is possible with Euler diagrams. This allows Euler
diagrams to be "well-matched to meaning" [Gurr and Tourlas, 2000] and the set relations they depict,
thus facilitating reasoning [Stenning and Oberlander, 1995] and providing facts for free (known as 'free-
rides' [Shimojima, 1996, 2004] or 'cheap rides' [Gurr, 2001]) without inferencing. For an example of a
'free-ride', consider Figure 3.2A. We know that c is a subset of a. So, if a curve e is placed in c as in
Figure 3.2B, then e is a subset of c. However, since c is a subset of a then for free we know that e is also
a subset of a. This partly explains why these diagrams are used for reasoning systems [Stapleton, 2005].

A B

Figure 3.2: An example of a 'free-ride'. (A) Curve c is a subset of curve a. (B) Curve e is added to diagram
A so e is a subset of c. Since c is a subset of a, then we know for free that e is also a subset of a. 

This review outlines the state-of-the-art of Venn and Euler diagrams based on concepts discussed in
this dissertation. Historical background (Section 3.2), application areas (Section 3.3), properties of these
diagrams (Section 3.4) and related aesthetic and perceptual factors (Section 3.5) are discussed, followed
by current automatic drawing techniques for Venn and Euler diagrams (Section 3.6) whose curves only
depict the data sets. Sometimes the area of the regions is proportional to the depicted quantitative data.
Such area-proportional Venn and Euler diagrams are discussed (Section 3.7), including their specific
application areas (Section 3.7.1), properties (Section 3.7.2), relevant aesthetic and perceptual factors
(Section 3.7.3), automatic drawing techniques (Section 3.7.4), theoretical findings (Section 3.7.5), and
difficulties in drawing these diagrams (Section 3.7.6). Instead of area, glyphs that are proportional in
number could be placed in the regions to depict associated quantitative data. Euler diagrams with glyphs
and drawing techniques for these diagrams are discussed (Section 3.8), followed by an overview of how
Euler diagrams are used for Bayesian reasoning (Section 3.9). We conclude with a discussion of how
the contributions of this dissertation try to resolve current important issues in the area (Section 3.10).

3.2 Historical Background

Euler diagrams are named after the Swiss mathematician and physicist Leonhard Euler (1707-1783).
Between 1760 and 1762, the King of Prussia hired Euler to teach his niece, the Princess of Anhalt-
Dessau, science and philosophy [James, 2002]. His 234 letters with lessons for the King's niece, known
as the 'Lettres à une Princesse d'Allemagne' [Euler, 1768b], became world renowned, widely translated
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and "one of history's finest examples of popular science" [Dunham, 1999, p. xxv], which laymen could
understand. To teach categorical propositions and syllogisms [Euler, 1768a], Euler used overlapping
circles as in Figure 3.1A. In Figure 3.1A, it is easily noted that all b are a. So, if for instance a depicts
vertebrates and b fish, then we know that all fish are vertebrates. These diagrams were later referred to
as Euler diagrams or Euler circles [Baron, 1969]. In one of his letters, Euler claims: 

These circles, or rather these spaces … are extremely commodious for facilitating our
reflections on this subject, and for unfolding all the boasted mysteries of logic, which
that art finds it so difficult to explain; whereas, by means of these signs, the whole is
rendered sensible to the eye.

[Euler, 1795, pp. 453-54]

Baron [1969] notes that Euler was not the first to use such diagrams. German mathematician and
philosopher Gottfied Wilhelm Leibniz (1646-1716) used Euler-like circles for logical reasoning
[Couturat, 1901], but his work was not published [Couturat, 1903]. Similar diagrams were drawn by
Ramon Lull (1235-1315) to reason about combinations of concepts [Lull, 1617]. Yet Euler was the first
to make Euler diagrams accessible to all (also laymen) through his letters to the princess [Euler, 1768a].

Over a hundred years after Euler's letters, a logician, philosopher and Cambridge priest John Venn
introduced Venn diagrams and a shading mechanism to indicate which of the set overlaps do not exist in
the actual data [Venn, 1880]. So while an Euler diagram shows only the overlaps of interest, a Venn
diagram shows all the possible set overlaps and then shades those that do not exist in the actual data.
Thus the Euler diagram and the Venn diagram in Figure 3.3 are representing the same data set relations.

A B

Figure 3.3: An Euler diagram (left, A) and a Venn diagram (right, B) representing the same data set
relations. Regions in B that are not depicted in A are shaded, for B to represent same data set relations as A.

3.3 Application Areas

Venn and Euler diagrams are used in various applications areas for different types of data sets.
Figure 3.4 illustrates a few general examples. More specific application areas include: biosciences and
genetics (e.g., Figure 3.5, Figure 3.6A, [Kestler et al., 2008; Lim et al., 2005]); medicine and public
health (e.g., [Carr, 1996; Dyer et al., 2007]); psychology (e.g., [Henson, 2006; Schubert, 1999]);
ecology (e.g., [Coreau and Martin, 2007; Liao et al., 2011]); military (e.g., [Laabs and Baker, 1989]);
large database querying (e.g., [Verroust and Viaud, 2004]); computer file systems (e.g., [Cordasco et al.,
2012; De Chiara et al., 2003]); robotics (e.g., [Quick et al., 2006]); ontologies (e.g., [Howse et al.,
2011]); Bayesian reasoning (Section 3.9); reasoning systems (e.g., spider diagrams—Figure 3.6B;
constraint diagrams [Kent, 1997]; see Stapleton's [2005] survey); theorem provers [Urbas et al., 2012;
Urbas and Jamnik, 2011, 2012]. Euler-like curves have also been used to group fixed points [Collins et
al., 2009; Dinkla et al., 2012] and nodes in 3D structures [Balzer and Deussen, 2007].
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A B 

C D

Figure 3.4: Examples of Euler diagrams. (A) Classification of shapes based on their properties. Source:
[Micallef and Rodgers, 2009] poster (B) European bodies, their members and relations. Source: [Wikimedia
Foundation, 2013] (C) The British Isles. Green for geographical features, blue for legal distinctions. Source:
[Wikimedia Foundation, 2011] (D) UK's higher education system. Source: [Morgan, 2012]—redrawn

Figure 3.5: An Euler diagram in genetics showing the results of a microarray experiment. Source:
[Kestler et al., 2008]–Figure 3
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A

B

Figure 3.6: Examples of Euler diagrams in biosciences and logic. (A) Properties of amino acids. Source:
[Podtelezhnikov, 2008] (B) A spider diagram for a library system. Source: [Howse et al., 2001]–Figure 1.1

3.4 Properties of a Venn Diagram and an Euler Diagram 

Venn and Euler diagrams are made up of labelled closed curves (Section 3.1; e.g., Figure 3.1). Each
closed curve splits up the plane into two components, one interior to the curve and another exterior to
the curve. When a number of closed curves intersect, the interior of each curve is split up into smaller
components, each of which is completely bound by segments of the curves. Excluding the components
that are exterior to all of the curves, all the other components will be part of the interior of one or more
curves. Every connected component in the diagram is a minimal region of the diagram. The set of
minimal regions located in exactly the same set of curves makes up a zone of the diagram. The set of
minimal regions that are exterior to all of the curves in the diagram is also a zone of the diagram. 

A zone made up of just one minimal region is referred to as connected, while a zone made up of
more than one minimal region is referred to as disconnected. Figure 3.7A has eight minimal regions and
eight zones all of which are connected, while Figure 3.7B has ten minimal regions and eight zones of
which two are disconnected. Formal definitions of all properties are provided by Stapleton et al. [2007].
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A B

Figure 3.7: Venn diagrams with connected (left, A) and disconnected (right, B) zones. (A) All the zones
are connected, as all are made up of one minimal region. (B) Two zones are disconnected, as there are two
minimal regions inside curves a and b but not c, and two minimal regions inside curve b but not a and not c.

An Venn diagram with n curves is referred to as an n-Venn diagram or just an n-Venn. Similarly, an
Euler diagram with n curves is referred to as an n-Euler diagram or just an n-Euler. So Figure 3.7A and
Figure 3.7B are 3-Venn diagrams, Figure 3.1A is a 4-Euler diagram, Figure 3.1B is a 4-Venn diagram.

3.4.1 The Curves

The curves in the diagram can have any shape, unless some constraints are imposed. Examples of such
constraints include: curves should have a particular geometric shape such as a circle (e.g., [Stapleton et
al., 2011c, 2012]), an ellipse (e.g., [Stapleton and Rodgers, 2011]; the work in Chapter 5), a triangle
(e.g., [Carroll, 2000; Swinton, 2009]), a rectangle (e.g., [Marshall, 2005]), a rectilinear shape (e.g.,
[Chow and Ruskey, 2004]), a regular polygon (e.g., [Rodgers et al., 2010a]), n-gons (e.g., [Carroll et al.,
2007]) or a particular irregular shape (e.g., [Griggs et al., 2004; Grünbaum, 1992]); the curves should be
convex (e.g., [Mamakani et al., 2011]). However, it is not always possible to satisfy specific constraints.
For instance, while a Venn diagram with three curves can be drawn with circles (Figure 3.8A), a Venn
diagram with four curves cannot [Ruskey et al., 2006] and so, as proposed by Venn [1880], it is either
drawn using ellipses (Figure 3.8B) or by adding a non-convex closed curve to a Venn diagram with
three circles (Figure 3.8C). The latter is a general mechanism to draw Venn diagram with more than
three curves [Venn, 1880] (see survey [Ruskey and Weston, 1997]).

A B C

Figure 3.8: A Venn diagram with three curves (left, A) and Venn diagrams with four curves (centre, B;
right, C). (A) A 3-Venn diagram drawn with circles. (B) A 4-Venn diagram drawn with ellipses. (C) A 4-
Venn diagram drawn by adding a non-convex closed curve (curve z) to a 3-Venn diagram like A.

A diagram can have various other properties elicited by its curves. If a label is assigned to no more
than one curve, the diagram has unique curve labels. Figure 3.9A has two curves labelled c, so it has
duplicate curve labels. A diagram has simple curves when none of its curves self-intersect as curve c in
Figure 3.9B. A diagram with concurrent curves has two or more curves sharing a common path for a
segment of the curve. In Figure 3.9C, curves a and b are totally concurrent, as one is laid over the other,
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and in Figure 3.9D, all the curves are partially concurrent to one another. A brushing point is when two
curves do not cross each other but touch at one point, as curves a and b in Figure 3.9E. The point where
n curves in a diagram meet is known as an n-point. Figure 3.9F has one 3-point or a triple point and
three 2-points or double points. Figure 3.9B and E also have a triple point. A diagram has multiple
points when it has one or more n-points with n>2. So Figure 3.9B-F all have multiple points.

A B C

D

E F

Figure 3.9: Euler diagrams with (A) duplicate curve labels, (B) self-intersecting curves, (C) totally
concurrent curves, (D) partially concurrent curves, (E) brushing points, and (F) multiple points. 

There might be constraints on the positioning of the curves. Example, symmetric Venn diagrams are
n-Venn diagrams with n-fold rotational symmetry, so all the curves have the same shape and when the
diagram is rotated 2πi⧸n for i ∈ [0, 1, … , n-1] about its centre, it remains unchanged [Ruskey et al.,
2006]. Figure 3.8A has 3-fold rotational symmetry and is a symmetric Venn diagram. Figure 3.8B-C are
not symmetric and cannot be, as symmetric diagrams can only be drawn for a prime number of curves
[Henderson, 1963]. Symmetric Venn diagrams have been studied (e.g., [Ruskey et al., 2006]), but it is
unclear whether symmetry can aid diagram comprehension [Stapleton et al., 2007].

3.4.2 The Zones

A zone is described by the curves in which its minimal regions are located, so the zone description (or
zone label) is the set of these curve labels. The zone with the minimal regions that are exterior to all of
the curves in the diagram is labelled as ∅. Figure 3.10A indicates the zone labels (in red and italics) of
the Euler diagram in Figure 3.1A. Example, the zone with the minimal region inside curves a and c is
described and labelled as {a,c}, in short ac. The set of all the zone descriptions of a diagram is referred
to as an abstract description. So, as shown in Figure 3.10A, the diagram in Figure 3.1A has zones ∅, a,
b, d, ab, ac and abstract description {∅, a, b, d, ab, ac}. This example has connected zones, but the
same applies to diagrams with disconnected zones, as shown in Figure 3.10B, which indicates the zone
labels of the 3-Venn diagram in Figure 3.7B with abstract description {∅, a, b, c, ab, bc, ac, abc}.

A B

Figure 3.10: Labelling the zones (in red and italics) of an Euler diagram with connected zones (left, A)
and a Venn diagram with disconnected zones (right, B). Curve labels are shown in black.
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An abstract description is often defined before the diagram is drawn to describe the set of zones that
are required. Automatic drawing algorithms for Euler diagrams typically take an abstract description as
input and return an Euler diagram with exactly the set of zones described in the abstract description. If it
is not possible to draw a diagram that represents the required zones and satisfies specified constraints
like those in Section 3.4.1, the abstract description is said to be not drawable under those constraints.

A Venn diagram with n curves has 2n zones (e.g., Figure 3.10B has three curves, thus eight zones).
An Euler diagram with n curves can have one to 2n zones (when it has 2n zones, it is a Venn diagram).
Given n curves, there is one set of zones that can be represented with a Venn diagram, but there are

2n!
k! 2n − k( )!
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⎠
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k=0
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∑

sets of zones that can be represented with an Euler diagram when all the possible combinations of
various number of zones from the maximum 2n zones are computed. So given three curves, there can be
eight different zones and thus, one set of zones for 3-Venn diagrams and 256 sets of zones for 3-Euler
diagrams. However, some of these sets of zones for Euler diagrams are isomorphic. For instance, the
Euler diagrams in Figure 3.11 are the same up to curve label swapping. Stapleton et al. [2008a] define a
number of invariants of isomorphic sets of zones and quote the number of non-isomorphic sets of zones
that can be depicted with up to five curves (e.g., 80 non-isomorphic sets of zones for three curves).
Sometimes, a diagram with a particular set of zones can be drawn in different ways using different
aesthetic features (Section 3.4.1). For instance, all the diagrams in Figure 3.12 are 3-Venn diagrams.

A B

Figure 3.11: An example of two isomorphic sets of zones represented by Euler diagrams. 

A B C D

Figure 3.12: Four possible ways how a Venn diagram with three curves can be drawn. (A) All zones
connected, no concurrent curves, no brushing points, no multiple points. (B) Two disconnected zones (ab and
b). (C) All zones connected, but two concurrent curves (a and b). (D) All zones connected, but a brushing
point (curves b and c touch at a point without crossing) and a triple point (the three curves meet at a point).

3.4.3 Representing Data Set Relations

Each data set is depicted by a curve in the diagram and each set relation is depicted by a zone. The label
of each curve is the name of the data set it represents, so the zone label easily relates the data set
relation it depicts and the abstract description clearly describes the data set relations the diagram is
representing. A zone depicting a set relation that does not exist in the actual data is an empty zone.
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If a Venn diagram is used, empty zones are shaded as proposed by Venn (Section 3.2, Figure 3.3). If
an Euler diagram is used, all and only the zones corresponding to the required data set relations should
ideally be visible. Venn diagrams become visually cluttered as the number of the curves increase, thus
they are often used only when all the set combinations are required [Ruskey and Weston, 1997]. Venn
diagrams may also be less effective than Euler diagrams for deductive reasoning [Sato et al., 2010].

Euler diagrams should not have empty zones, but this is not always possible if certain aesthetic
features should be avoided. Example, in Figure 3.4C, the zone whose minimal region is in curves
'Ireland' and 'British Islands' but not 'United Kingdom' has no members and is thus empty. Rodgers et al.
[2012b] argue that for an Euler diagram not to show this zone, either curves 'British Islands' and 'United
Kingdom' are concurrent (Figure 3.13A) or the curve 'Ireland (island)' is non-simple (Figure 3.13B)
eliciting a brushing point and a triple point. Alternatively two curves could be labelled 'Ireland (island)'
[Rodgers et al., 2010b] (Figure 3.13C). Concurrent curves, non-simple curves, brushing points, triple
points and duplicate curve labels impede diagram understanding and should be avoided (Section 3.5.1).
Yet there are various sets of zones (e.g., those in Figure 3.9) for which a diagram with no empty zones
cannot be drawn unless such undesirable features are used. In such cases, glyphs could be placed inside
the non-empty zones, as in Figure 3.4C (the small blue ellipses with the names of the countries) and
Figure 3.4B (the flags of the countries), or empty zones could be shaded (e.g., [Stapleton et al., 2012]). 

Figure 3.13: The Euler diagrams proposed by Rodgers et al. [2012, 2010b] to represent the British
Isles without showing empty zones (redrawn and adapted to match the data in Figure 3.4C). Curve
labels are shown in black just above the curve, while members are shown in red and italics inside the curves. 

3.4.4 A Wellformed Diagram

A constraint that is often imposed when drawing an Euler diagram for an abstract description is that of
wellformedness, in which case, the diagram must have the following wellformedness properties:

1. Connected zones (defined in Section 3.4); 
2. Unique curve labels (defined in Section 3.4.1);
3. Simple curves (defined in Section 3.4.1);
4. Discrete curves, so the diagram has no concurrent curves (defined in Section 3.4.1);
5. Crossing curves, so the diagram has no brushing points (defined in Section 3.4.1);
6. Double points, so the diagram has no multiple points (defined in Section 3.4.1);

A wellformed diagram is one that satisfies all of these wellformedness properties. Figure 3.4C is a
wellformed diagram, but Figure 3.13A-C are not. Figure 3.12A is also wellformed, but Figure 3.12B-D
and all in Figure 3.9 are not. We discuss the importance of these properties in the next section. 
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3.5 Aesthetic and Perceptual Factors

The aesthetics of Venn and Euler diagrams have not been studied adequately, despite that the way they
are drawn "will often influence how useful they are as tools" [Ruskey et al., 2006]. Perception "provides
a sensible order to what we see, and aesthetics govern our receptiveness to our perceptions" [House et
al., 2005, p. 87]. So their aesthetics should be considered with respect to human perceptual factors.

3.5.1 Wellformedness

The wellformedness properties in Section 3.4.4 were first noted by Flower and Howse [2002] in their
paper describing the first drawing algorithm for Euler diagrams. These were later formalized [Stapleton
et al., 2007] and used by various automatic algorithms (e.g., [Stapleton et al., 2008b, 2011c]). These
properties are considered important in facilitating comprehension for the following reasons. 

Not satisfying any of properties 1 and 2 (i.e., connected zones and unique curve labels) results in a
dispersion of minimal regions for the same zone, thus an increase in cognitive effort to search, merge
and track all of the minimal regions that make up a zone and a curve [Rodgers et al., 2012b; Sweller,
1994]. Not satisfying any of properties 3 to 6 (i.e., simple curves, discrete curves, crossing curves,
double points) increases the amount of detail at specific points leading to additional cognitive effort to
distinguish the curves as discrete complete objects [Rodgers et al., 2012b].

There are sets of zones for which an Euler diagram with precisely the required zones cannot be
drawn without breaking one or more of these wellformedness properties (Section 3.4.3) and knowing
which of these properties are most important could be helpful [Rodgers et al., 2012b]. In other cases,
diagrams that are non-wellformed are generated despite that wellformed ones exist for the required set
of zones (e.g., [Chow and Ruskey, 2004; Simonetto et al., 2009]). Studies assessing the effects of such
properties on comprehension could thus provide guidance in the design of these diagram and automatic
techniques that draw them. Only the following two studies of this kind have been conducted.

Rodgers et al.'s [2012b] study involved two experiments: one using diagrams with factual data
(students registered for different modules) and another with abstract data (with curves labelled A, B, …)
both of showing elements in the zones. Their second experiment suggests that wellformed diagrams
improve comprehension. Both experiments indicate that: non-wellformed diagrams with disconnected
zones or concurrent curves (breaking property 1 or 4) are the least helpful and most difficult to use;
diagrams with non-simple curves (breaking property 3) are the least preferred; diagrams with brushing
points (breaking property 5) do not have any negative effect on comprehension.

Contrary to these findings, Fish et al.'s [2011] study suggests that diagrams with concurrent curves
(breaking property 4) can aid comprehension and diagrams with either brushing points or multiple
points (breaking property 5 or 6) are the least helpful and the most difficult to use, but they confirm that
wellformed diagrams improve comprehension. They also claim that diagrams breaking more than one
of the wellformedness properties have a greater impact on comprehension than those breaking only one.

Discrepancies between the two studies could be due to a number of differences. In Fish et al.'s
[2011] study, the tasks were oriented to logic and the diagrams had abstract data with no members
depicted in the zones and with shading to indicate empty zones. Also, Fish et al. [2011] only tested
restricted forms of diagrams with non-simple curves or concurrent curves (breaking property 3 or 4).
The diagrams in the former had non-simple curves that self-intersected at one or two points and in the
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latter the concurrent curves depicted total concurrency so that one curve was shown with two distinct
labels. Thus, Fish et al.'s [2011] findings for properties 3 and 4 are not generalizable to all possible
cases, particularly diagrams with partial concurrency. These inconsistent findings indicate the need for
studies to assess these properties in various contexts using different design features and experimental
parameters to ensure that findings are generalizable and representative of the class of such diagrams.

3.5.2 Curve Aesthetic

As mentioned earlier in Section 3.4.1, the curves in the diagram can have any shape, but some
constraints could be imposed. This often depends on the context, the data being visualized, user
preferences and aesthetics based on perceptual and cognitive factors that could aid comprehension.

A Specific Shape

The Euler diagrams drawn by Euler [1768a] and his predecessors Leibniz [Couturat, 1901] and Lull
[1617] all used circles. Venn diagrams cannot always be drawn with circles [Ruskey and Weston, 1997]
but when possible, Venn [1880] used circles or ellipses as in Figure 3.8. This indicates that curves that
are simple and regular are often preferred. In fact, Birkhoff's [1933] aesthetic measure states that highly
regular objects consisting of a few elements are likely to be seen attractive. After all, visual patterns that
are mathematically simple are easier to recognize than random ones [Klinger and Salingaros, 2000].
Also, the structure and physical layout of visual representations affect the way readers perceive and
understand the presented information [Ziemkiewicz and Kosara, 2010a; Ziemkiewicz, 2010].

Having curves with the same shape could be a rational choice. Shape is a preattentive feature [Ware,
2012, p. 154]. If a diagram has curves with a different shape from the majority, the reader's attention
could be attracted to the different curves. Unless such a salience effect is explicitly required, it is often
undesired, particularly in data analysis when each data set should be considered equally in an unbiased
manner. Zones should also be similar in size (unless their area indicates some quantitative data), else the
reader might think the size is encoding some information such as importance or quantity. Also, a study
[Benoy and Rodgers, 2007] indicates that Euler diagrams with similarly sized zones aid comprehension.

The simple circle is widely used and preferred. An informal survey that analysed 72 Venn and Euler
diagrams in Nature, Science and online affiliated journals in 2009 found that 65 of them (i.e., 90%) used
circles [Wilkinson, 2012]. A circle is smooth, regular and recognizable, and could indicate "a sense of
wholeness" [Ziemkiewicz and Kosara, 2010a] which contrasts the "regimented or compartmentalized
structure" and isolation suggested by rectangles [Ziemkiewicz and Kosara, 2010a]. However, an Euler
diagram with circles cannot be drawn for all sets of zones [Stapleton et al., 2012]. A wellformed Euler
diagram can be drawn with circles for a class of abstract descriptions that have lots of set disjointness
and subsets (i.e., 'Pierced' Euler diagrams) [Stapleton et al., 2011c], but for other abstract descriptions,
the diagram with circles could have empty zones that are often shaded [Stapleton et al., 2012]. In such
cases, circles and ellipses could first be used wherever possible and then arbitrary shaped curves, that
are regular, smooth, convex as possible, could be added where required [Stapleton and Rodgers, 2011].

Continuity, Closure and Convexity

A study [Benoy and Rodgers, 2007] shows that smooth curves with good continuity aid comprehension
of Euler diagrams. The Gestalt continuation principle [Koffka, 1935] also suggests that smooth curves
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with good continuity are easier to identify than non-smooth ones. Studies [Field et al., 1993; Hess and
Field, 1999] confirm that the ease of identifying a curve is a direct function of its good continuity:
curves made up of connected small line segments whose orientation successively differs by ±30 degrees
are more easily seen than when it differs by ±60 degrees. Also, curves with good continuity pop out as
discrete, complete objects [Ware, 2012], so are easily distinguishable [Treisman and Gormican, 1988].

Figure 3.14A will be perceived as a rectangle and a circle (Figure 3.14B) rather than as two irregular
shapes with abrupt changes in direction (Figure 3.14C). Though a rectangle is not smooth, a circle is
and its good continuity facilitates identification of the two shapes in Figure 3.14A. Occam's razor plays
an important role here as the simplest and most understandable explanations are chosen [Chater, 1997].
This also relates to the Law of Prägnanz [Koffka, 1935], which states that complex less recognizable
objects are perceived as simpler, better understood elements. Yet it is unclear whether Figure 3.15A is
two overlapping rectangles (Figure 3.15B) or three adjacent rectangles (Figure 3.15C). To imply the
former, labels could be added to the curves (Figure 3.16A), but ideally the rectangles should be replaced
with two smooth curves like circles (Figure 3.16B) so the two curves pop out as discrete objects. Also,
Figure 3.16B is wellformed, but Figure 3.16A is not as it has concurrent curves. As noted in Figure 3.9,
the curves in non-wellformed diagrams are not easily distinguishable as it is hard to follow the curves.

A B C

Figure 3.14: Good continuity. It is more likely for A to be interpreted as a rectangle and a circle (as in B)
that are overlapping than two irregular shapes (as in C) that are touching.

A B C

Figure 3.15: Lack of good continuity. It is unclear whether A is two rectangles (as in B) that are
overlapping or three rectangles (as in C) that are touching.

A B

Figure 3.16: Venn diagrams with two curves. (A) The curves are rectangles. (B) The curves are circles.

Continuity has a stronger perceptual effect than colour and similarity and aids closure by facilitating
the identification of closed curves even when they are partially occluded, but it is often underestimated
[Ware et al., 2002]. Continuity and closure are crucial [Ware, 2012, p. 186] in supporting the principle
of common regions [Palmer, 1992] and should thus be given priority. Convexity of the curves is also
important as it too allows readers to perceive complete objects [Kanizsa and Gerbino, 1976] even when
partially occluded [Liu et al., 1999]. Rectilinear curves could yet be used when the zone areas encode
quantitative data as they could facilitate estimation and comparison of the quantities (Section 3.7.3).
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Other Attributes

Curve closeness should also be considered. A study [Benoy and Rodgers, 2007] suggests that diagrams
with segments of different curves close to one another impede understanding. In fact, Ware et al. [2002]
argue that since neurons that detect orientation at the early stages of visual processing are approximately
tuned within ±30 degrees [Blake and Holopigian, 1985], curves crossing at acute angles are more likely
to lead to 'visual confusion' than ones that cross at a right angle. Though this was claimed in the context
of graph drawing, this could be applicable to Euler diagrams and should be investigated further.

Every diagram design feature, be it the curve shape or any others that do not necessarily encode any
specific information (e.g., colour schemes, outline thickness, background), should be considered with
caution as they could affect the readers' diagram interpretation [Ziemkiewicz and Kosara, 2010b]. Also,
some visual attributes that are meant to be meaningless could unintentionally put emphasis on specific
aspects of the presented information [Elting et al., 1999]. Colour could be distracting, imply a semantic
meaning, or attract attention especially when the coloured shape is large [Ziemkiewicz and Kosara,
2010a]. However, the design and perception of Euler diagrams have not be studied adequately.

3.5.3 Other Aesthetic Features

The cardinality of the data sets and their relations could be depicted by the area of the curves and the
zones in the diagram. Such diagrams, referred to as area-proportional, are discussed in Section 3.7.

Other aesthetic features which should be considered include orientation, shape and colours. The
importance of these features in Euler diagrams was recently noted [Blake et al., 2012b] and a study
showed that diagram orientation has no significant effect on comprehension [Blake et al., 2012a]. Yet
other related factors still need to be investigated. Example, can a change in orientation of a diagram that
has already been processed affect recall and comprehension due to mental map preservation [Eades et
al., 1991]? This is important for Euler diagram transformation [Fish, 2009; Rodgers et al., 2010b].

Visual clutter can make diagrams less usable [Rosenholtz et al., 2005]. Few metrics for clutter in
Euler diagrams have been proposed [John et al., 2006; John, 2005] and a study showed consistency
between the measured and user perceived clutter [John et al., 2006]. Euler diagram variants, ComED
and DupED, try to reduce clutter [Riche and Dwyer, 2010] (Figure C.16A). ComED represents each set
by multiple rectangular curves linked with hyperedges. DupED depicts each set by a rectangular curve,
duplicates the elements belonging to multiple sets and connects these elements with hyperedges. A
study revealed that ComED was more helpful for counting elements than for identifying set
membership, while DupED significantly improved accuracy and the time taken for most of the tasks in
the study [Riche and Dwyer, 2010]. However more work is required in the aesthetics of Euler diagrams.

3.5.4 Future Considerations

Aesthetic criteria, readability metrics and cognitive measures have to be defined, tested and formalized,
as in example graph drawing [Dunne and Shneiderman, 2009; Purchase, 2002; Ware et al., 2002].
Drawing algorithms that optimize these criteria are more likely to generate readable diagrams. Aesthetic
metrics for Euler diagrams that measure the roundness, smoothness and convexity of curves and zones,
how distant curves are from one another, and how similar curves and zones are in size were defined, and
two methods that optimize these metrics were devised to improve the aesthetics of already generated
diagrams [Flower et al., 2003a]. Yet none of the metrics were fully formalized and tested.
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Design guidelines based on perceptual theories such as Gestalt principles [Koffka, 1935] and
Norman's [2004] emotional design model should be considered. Norman's model was originally
intended for the evaluation of the commercial products, but it is applicable to information visualization.
Norman [2002] makes a link between human emotions and cognition and states that attractive objects
trick our receptors to view details in the object. Thus, effective visualizations are ones that engage the
user and attract their attention [Healey and Enns, 2002; Tateosian et al., 2007], so that voluntarily they
put in more effort in understanding the presented information. This concept was also confirmed in a
study assessing the effect of aesthetic on information visualization [Cawthon and Moere, 2007].
Differences among users (e.g., spatial abilities, gender) should be taken into account as these can impact
diagram understanding and usability [Ziemkiewicz and Kosara, 2009]. Thus studies comparing hand
drawn and automatically generated diagrams should be conducted to aid in the identification of
preferred visual features that users want to have and use (as in other visualization areas; e.g., [Alper et
al., 2011; Dwyer et al., 2009]). A "user centered evaluation method not solely centered around task
efficiency metrics is now imperative" [Cawthon and Moere, 2006] and so, available information
visualization metrics that measure user experience [Cawthon and Moere, 2007] could be used. 

Models of design in information visualization (e.g., [Liu and Stasko, 2010; Vande Moere and
Purchase, 2011]) could aid in the understanding and evaluation of Euler diagram aesthetics. The
graphical perception [Cleveland, 1994] of Euler diagrams should be studied to understand how various
features (e.g., the shape or closeness of the curves) are perceived and to identify appropriate ways how
to encode information in the diagram (e.g., Should the cardinality of a set relation be encoded by the
area of the zone or by the number of glyphs in the zone? How is the area of a zone judged?). Besides the
syntax of the diagram and how individual features are perceived and read, the overall interpretation of
the diagram and its semantics should be investigated. This is important as simple aesthetic features and
design choices (e.g., curve thickness, colours, background) can affect the mental model the reader
constructs of the presented information [Ziemkiewicz and Kosara, 2010b].

Proposed formalisms and models of aesthetics [Filonik and Baur, 2009] could also be considered for
Euler diagrams. Example, Birkhoff's [1933] aesthetic measure states that highly complex (made of a
large number of elements) and disordered (made of a large number of irregularities) objects are unlikely
to be seen attractive. The aesthetic score is defined as order⧸complexity, so the square gets the highest
score out of various polygons as it is made of a few edges and has lots of symmetry [Birkhoff, 1933].

Aesthetics affect the usability and effectiveness of any information visualization [Cawthon and
Moere, 2007] and thus, it should be given priority in the current ongoing research on Euler diagrams.

3.6 Automatic Drawing Techniques for Venn and Euler Diagrams

Drawing Venn and Euler diagrams is difficult particularly when a large number of curves and overlaps
are required [Verroust and Viaud, 2004]. Automatic drawing techniques have been proposed. It is not
always possible to draw an Euler diagram for any abstract description and satisfy specific aesthetic
features (Section 3.5), so different techniques have been devised to meet different objectives. 

It could be computationally expensive to explore the various ways how the required Euler diagram
could be drawn, so often drawing algorithms provide an approximate or a heuristic solution [Chow,
2007]. Approximate solutions produce diagrams that, in some cases, either do not show all the required
zones (e.g., [Kestler et al., 2008; Wilkinson, 2012]) or show empty zones which are often shaded (e.g.,
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[Howse et al., 2005; Stapleton et al., 2012]) or noted by placing glyphs in all of the non-empty zones
(e.g., [Clark, 2008]; the work in Section 6.3). Heuristic solutions vary from computational expensive
ones such as evolutionary optimization (e.g., [Kestler et al., 2008]) to simpler and more efficient ones
such as hill-climbing (e.g., [Chow and Rodgers, 2005; Flower et al., 2003b]; the work in Chapter 5).

We now discuss some of the main drawing techniques that are used. A detailed review is provided
by Ruskey and Weston [1997] and Simonetto [2011] for respectively Venn and Euler diagrams.

3.6.1 Methods Using a Planar Dual Graph

A common practice adopted by a few Euler diagram drawing techniques (e.g., [Flower et al., 2008;
Simonetto et al., 2009; Stapleton et al., 2011b]) is to create a planar dual graph of the zones in the
abstract description and then use the graph to draw the curves of the diagram. 

Figure 3.17A is a planar dual graph for abstract description {∅, a, b, ab, bc, abc}. Each node in the
graph corresponds to a required zone. Edges indicate zone adjacencies and where possible connect
nodes whose label differs by only one curve label. This graph is embedded in the plane so the edges
intersect only at endpoints. This elicits a planar dual graph (Figure 3.17A). The diagram is then drawn
by enclosing all the nodes with a common curve label in one closed curve (Figure 3.17B). The resulting
curves are often not smooth and easily distinguishable, so a few of these drawing techniques [Rodgers
et al., 2008a, b; Simonetto et al., 2009] use a force-directed heuristic to improve the layout of the planar
dual graph, before using it to draw the curves. In this way, Figure 3.17C is generated instead of the
Euler diagram in Figure 3.17B [Rodgers et al., 2008b]. Yet the curves are often still non-smooth.

A B C

Figure 3.17: Generating an Euler diagram for abstract description {∅, a, b, ab, bc, abc} using a
planar dual graph. The displayed graph and diagram were generated by Rodgers et al.'s [2008b] algorithm.
(A) The planar dual graph (before its layout is improved). (B) The diagram generated after curves are drawn
around the nodes with a common curve label. (C) The generated diagram when the layout of the planar dual
graph in A is first improved by a force-directed heuristic. Source: [Rodgers et al., 2008b]—Figure 3 redrawn

3.6.2 General and Restricted Methods

Some drawing methods are general and draw an Euler diagram for any set of zones (e.g., [Simonetto et
al., 2009; Stapleton et al., 2011a, 2011b]). Others are restricted to a class of abstract descriptions for
which a diagram that satisfies some criteria can be drawn (e.g., [Chow, 2007; Stapleton et al., 2011c]).

The first automatic drawing algorithm that was devised [Flower and Howse, 2002] was restricted to
the class of abstract descriptions for which a wellformed Euler diagram can be drawn. Other techniques
with such a restriction were later proposed (e.g., [Rodgers et al., 2008b; Stapleton et al., 2011c]). Most
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general drawing techniques try to draw wellformed diagrams whenever possible (e.g., [Rodgers et al.,
2008a; Stapleton et al., 2010]), with a few also allowing users to specify their preferred wellformedness
properties (e.g., [Stapleton et al., 2011b; Stapleton and Rodgers, 2011]). The generated diagrams could
still be aesthetically undesirable, as various other aesthetic features should also be taken into account
(Section 3.5). Thus, other techniques that restrict the shape (e.g., [Stapleton et al., 2011c, 2012];
Section 3.4.1) and form (e.g., [Mamakani et al., 2011]) of the curves were devised.

3.6.3 Layout Methods

Sometimes a different layout for an Euler diagram is required. A layout method transforms the current
layout of the diagram into another that has the same set of zones, but satisfies specific aesthetic features.

A layout technique based on transformations of the Euler graph (i.e., a node is placed at each curve
intersection point and undirected edges follow the direction of the underlying curve segment in the
diagram) has been proposed to satisfy different wellformedness conditions [Rodgers et al., 2010b]. 

Another layout technique [Flower et al., 2003b] uses one of two implemented variants of a hill-
climbing heuristic to optimize the weighted sum of a set of aesthetic metrics that the authors defined to
generate improved layouts with curves that are round, smooth and not too close to one another and with
curves and zones that are similarly sized and easily visible. According to a later study [Benoy and
Rodgers, 2007], these features aid comprehension. This technique allows users to choose the criteria to
be optimized and to provide a weight for each one. This could be helpful when multiple criteria cannot
be fully optimized, as weights indicate how much a criteria should be enforced at the expense or benefit
of another, but assigning appropriate weights is difficult [Marler and Arora, 2004; Rosenthal, 1985].

3.6.4 Inductive Methods and Drawing Diagrams From Existing Ones

An inductive drawing method [Stapleton et al., 2011b] is also available. Given an abstract description,
curves are consecutively added to a new or existing diagram to get the required zones and to satisfy user
preferred wellformedness properties. Similar methods were proposed by Venn [1880] and Edwards
[1989] for Venn diagrams. Other techniques generate Euler diagrams from existing ones to preserve
certain wellformedness properties (e.g., [Stapleton et al., 2008b]).

3.6.5 Methods for Euler Diagrams with Specific Features

Other algorithms were devised for Euler diagrams that are area-proportional (Section 3.7), 3D [Rodgers
et al., 2012a] and those generated from hand drawn sketches [Delaney et al., 2010]. Various drawing
methods have also been proposed specifically for Venn diagrams [Ruskey and Weston, 1997], despite
that general methods for Euler diagrams can also draw Venn diagrams.

3.6.6 Methods for Euler-like Diagrams

A number of drawing techniques have been devised to enclose elements in Euler-like curves to visualize
their set memberships and the set relations. Sometimes the elements have a predefined position and the
curves are drawn on an existing visualization (e.g., Bubble Sets [Collins et al., 2009], Kelp diagrams
[Dinkla et al., 2012]). If the position of the elements is not predefined, the elements are moved as the
curves are laid out (e.g., [Simonetto et al., 2009], Set Visualiser [Wyatt et al., 2009; Wyatt, 2010],
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ComED, DupED [Riche and Dwyer, 2010]). The curves are often rectangles (e.g., ComED, DupED),
smooth (e.g., Bubble Sets, Set Visualiser) or non-smooth (e.g., [Simonetto et al., 2009]) irregular
convex or concave curves, or curves with a schematic-like layout (e.g., Kelp diagrams). Sometimes the
curves are not easily distinguishable due to example curve concurrency (e.g., [Simonetto et al., 2009]).

Other drawing techniques have been devised to depict clusters in graphs as a cartographic map (e.g.,
[Gansner et al., 2009, 2010a, b]) and to draw Voronoi diagrams [Aurenhammer, 1991]. However, the
curves in these diagrams never overlap and are thus not applicable to Euler diagrams.

3.7 Area-Proportional Venn and Euler Diagrams

The zones in an Euler diagram represent specific data set relations and thus, the existence of elements
that are members of the data sets in that relation. There are cases where the reader wants to see the
actual elements, and glyphs or labels representing these elements are placed inside the zones. In other
cases, the reader is interested in the total number of the elements in each zone. A label with the quantity
could be placed in the zones but often, Euler diagrams that are area-proportional are preferred, so that
the area of the zones and the curves reflects their cardinality, as in Figure 3.18A and Figure 3.18B. So
differences in cardinalities between the data set relations and the data sets are easily noticeable. 

A B

Figure 3.18: Area-proportional 2-Venn diagrams showing the global overlap in land area (per
1000 km2) between hotspots area and cost-effective priority area as determined by two global cost-
effective conservation planning schemes, (A) the biodiversity hotspots and (B) the Global 200
ecoregions. Data obtained from Table 1 of the manuscript, 'Global-scale mapping of economic benefits from
agricultural lands: Implications for conservation priorities' [Naidoo and Iwamura, 2007]. The area of each
region is directly proportional to the quantitative value displayed in the region. A common scale is used
between the two diagrams so regions from different diagrams are comparable.

The notion of depicting quantity as area has long been used and Playfair seems to be the first [Tufte,
1983, p. 44]. For instance, Playfair [1801] encoded cities' population (Figure 2.2A) and countries' land
mass (Figure 2.2B) by area of circles. Nightingale [1858] used the area of the radial segments in her
iconic 'rose' diagram to report the number of deaths during the Crimean war (Figure 2.3). Studies show
that humans are biased to area judgement, so area should not be used to encode quantitative data
(Section 3.7.3). However, area-proportional Venn and Euler diagrams are widely used in diverse areas
(Section 3.7.1) to facilitate data analysis.
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A

B

C

Figure 3.19: Area-proportional 2-Venn diagrams showing the global overlap in land area (per
1000 km2) between hotspots area and cost-effective priority area as determined by two global cost-
effective conservation planning schemes, (A) the biodiversity hotspots and (B) the Global 200
ecoregions, for six biogeographical realms to facilitate understanding of (C) the data in the table. These
are copies of Figure 4a, Figure 4b and Table 1 of the manuscript, 'Global-scale mapping of economic benefits
from agricultural lands: Implications for conservation priorities' [Naidoo and Iwamura, 2007]. The hotspot
areas are depicted in red and the cost-effective priority areas are depicted in blue. The six biogeographical
realms include Nearctic (NA), Neotropical (NT), Afrotropical (AT), Indo-Malayan (IM), Australasian (AA),
Palearctic (PA). The 2-Venn diagrams are depicting the quantitative data of the table in C.
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Size is a preattentive feature [Treisman, 1985] that is easily noticeable and pops out from the rest of
the display [Treisman and Gelade, 1980]. The pop-out effect of size is classified third just after colour
and orientation which have a stronger effect [Ware, 2012, p. 155]. Size is also one of Bertin's visual or
retinal variables [Bertin, 1983] which can easily be noted without much effort or cognitive processing.
This could be one of the reasons why area-proportional Venn and Euler diagrams are widely used. 

Area-proportional Venn and Euler diagrams also facilitate the comparison of quantitative data for
the same sets but for a different factor (e.g., [Aronson et al., 2013; Clark et al., 2011; Nikulenkov et al.,
2012]). For instance, Figure 3.18 illustrates the same data sets for two different schemes. Having a
common scale and structure, similarities and differences are easily noticeable without the need to read
the curve labels or to understand and process each of the diagrams. Tufte discusses similar benefits of
using small multiples (i.e., same structured, small visual displays) to illustrate how a concept changes as
a variable changes [Tufte, 1990, pp. 67-79]. In Figure 3.18, the small multiple is the 2-Venn diagram
with data sets 'Global Hotspots Area' and 'Global Cost-Effective (Priority) Area', the concept is the
percentage of the hotspot area that is prioritized and the variable between the diagrams is the scheme.

Hence, at first glance it is noticeable that the percentage of overlap between the two diagram is not
so different, but the hotspot area in Figure 3.18B is clearly larger than that in Figure 3.18A. Though the
diagrams in Figure 3.18 are not in the article [Naidoo and Iwamura, 2007], the authors take this concept
further by drawing an area-proportional 2-Venn diagrams for each of the biogeographic realms for both
schemes and displaying them on a map as in Figure 3.19A and Figure 3.19B to facilitate understanding
of their tabular data in Figure 3.19C. Like this they demonstrate that the biodiversity hotspots
conservation scheme "resulted in more priority areas in the low-opportunity-cost lands of the Nearctic
and Australasia" and "in less area being prioritized in the Palearctic and Indo-Malay realms", while the
Global 200 ecoregions scheme priortized least area in Nearctic, Palearctic and Indo-Malay which is
visible from the small overlap [Naidoo and Iwamura, 2007, p. 44]. Using area-proportional diagrams, it
is more likely to consider the overlap with respect to the size of the two curves and to view patterns in
the data without looking at the actual values or curve labels. Avoiding labels by encoding the quantities
as area could prevent adding noise to sophisticated diagrams like these [Ware, 2012, p. 170].

Venn diagrams with three curves drawn with circles are the most commonly used area-proportional
Euler diagrams (Section 3.7.1). Yet drawing these diagrams accurately is difficult (Section 3.7.6). Thus,
this dissertation focuses on area-proportional 3-Venn diagrams, unless notified otherwise. We now
discuss application areas (Section 3.7.1), properties (Section 3.7.2), aesthetic and perceptual factors
(Section 3.7.3), automatic drawing techniques (Section 3.7.4), theoretical findings (Section 3.7.5) and
difficulties in drawing these area-proportional diagrams (Section 3.7.6).

3.7.1 Application Areas

Area-proportional Venn and Euler diagrams have long been used for various applications. Figure 3.20
and Figure 3.21 illustrate a few real-life examples. Other diagram examples in some medical disciplines
include: medicine [Flowers et al., 2013]; genetics [Axtell, 2013]; vascular surgery [Ohrlander et al.,
2011]; pathology [Short et al., 2013]; biosciences [Klees et al., 2007]; microbiology [Bielecki et al.,
2013]; biochemistry [Aronson et al., 2013]; ecology [Liao et al., 2011]; neuroscience [Wang et al.,
2010]; public health [Primack et al., 2013]. These diagrams are also used in non-medical disciplines
like: astrophysics [Lister et al., 2013]; criminology [Farrell and Sousa, 2001]; segregation of duties [de
Lange, 2011]; classification [Thièvre et al., 2005]; search and filtering [Dang et al., 2012].
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An informal survey [Wilkinson, 2012] that analysed 72 Venn and Euler diagrams in 2009 Nature,
Science and online affiliated journals found that 32 (44%) were area-proportional. Looking into these 32
area-proportional diagrams (after obtaining the list of the analysed articles from the author), we found
that 14 (44%) were 2-Venn diagrams and 11 (34%) were 3-Venn diagrams (the remaining seven, that is
22%, were either Euler diagrams or Venn diagrams with more than three curves). All of these 2-Venn
and 3-Venn diagrams were drawn with circles, as in Figure 3.20, except for a 3-Venn diagram drawn
with two circles and an ellipse [Boj et al., 2009] and a 2-Venn diagram drawn with two squares [Hong
et al., 2009]. This suggests that various real data sets are visualized using a 2-Venn or a 3-Venn diagram
and that circles are preferred for these diagrams. The examples in Figure 3.21 are amongst the very few
cases where polygons are used for 3-Venn diagrams, as often polygons and irregular curves are used for
Venn diagrams with more curves (e.g., [D’Hont et al., 2012; Worden et al., 2009]).

A B C

Figure 3.20: Area-proportional 3-Venn diagrams drawn with circles in literature. (A) Comparing the
cell-type of differentially regulated genes after an anti-cancer drug treatment [Regenbrecht et al., 2008, p. 7].
The method used to draw this diagram was not noted. (B) Summarizing prognostic indicators of severe
malaria [Dzeing-Ella et al., 2005, p. 4]. The method used to draw this diagram was not noted. (C) Analysing
differences and similarities between identified chicken egg white proteome in three different studies [Mann
and Mann, 2011, p. 3]. Drawn using Venn Diagram Plotter [Littlefield and Monroe, 2013].

A B C

Figure 3.21: Area-proportional 3-Venn diagrams drawn with polygons in literature. (A) Analysing
overlaps between gene libraries [Huber et al., 2009, p. 1297]. Drawn using DrawVenn [Chow and Ruskey,
2004]. (B) Studying transcriptome variation of different tissue types (i.e., testis, accessory gland, the rest of
the body) of the male field cricket [Bailey et al., 2013, p. 227]. Drawn using Convex Venn-3 [Rodgers et al.,
2010a]. (C) Summarizing genes affecting Top1-induced DNA damage identified in three different studies
[Reid et al., 2011, p. 482]. Drawn using DrawEuler [Chow and Ruskey, 2005]. We added numeric labels to
indicate the set intersection cardinalities (obtained from the article) that this diagram was intended to depict.
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3.7.2 Properties

A Venn or Euler diagram is area-proportional when the area of each zone in the diagram is directly
proportional to a quantity assigned to the depicted set relation. The required set of zones is indicated by
the abstract description like not area-proportional diagrams (Section 3.4). The quantity assigned to each
zone is indicated by an area specification, ω, so that if l is a zone label, ω(l) ∈ ℝ+ is the quantity
assigned to the zone. The minimal regions of the zone labelled ∅ are exterior to all the curves, so one of
these regions is unbound and infinite. Thus zone ∅ is not assigned a quantity and is excluded from the
area specification. An example of an area specification defined for a Venn diagram with three curves
labelled a, b and c is {(a, 141), (b, 139), (c, 179), (ab, 20), (ac, 40), (bc, 102), (abc, 39)}.

A zone is made up of one or minimal regions and thus the area of a zone is the sum of the area of all
the minimal regions making up the zone. An area-proportional Euler diagram d is accurate with respect
to an area specification ω, if d has all and only the required zones and for every zone z in d, the area of
z, area(z), is directly proportional to ω(z) and so area(z) : ω(z) is the same for all z. Else d is inaccurate
with respect to ω. Direct proportions ensure graphical integrity, but other proportionality measures for
accuracy could be defined and used (Section 3.7.3 subsection 'Counteracting Area Judgement Bias').
Figure 3.22 illustrates an example of an accurate and an inaccurate area-proportional Euler diagram (in
this figure both examples are 3-Venn diagrams) with respect to specific area specifications. Formal
definitions for area-proportional Euler diagrams are available [Chow and Ruskey, 2004; Chow, 2007].

A B

Figure 3.22: An accurate (left, A) and an inaccurate (right, B) area-proportional 3-Venn diagram with
respect to area specification {(a, 141), (b, 139), (c, 179), (ab, 20), (ac, 40), (bc, 102), (abc, 39)} for A and
{(a, 120), (b, 120), (c, 160), (ab, 40), (ac, 60), (bc, 120), (abc, 20)} for B. The numeric label in each zone
indicates the quantity the area of that zone should be proportional to, as specified in the area specification.

3.7.3 Aesthetic and Perceptual Factors

The aesthetic and perceptual factors in Section 3.5 are also applicable to area-proportional Venn and
Euler diagrams. Certain factors could in fact have a greater effect. Yet other factors, particularly those
related to the perception of area, are more specific to area-proportional diagrams.

In the first paper on area-proportional Venn and Euler diagrams, Chow and Ruskey [2004] argue the
importance for aesthetics that facilitate: (a) the identification of the curves in which zones are located;
(b) the comparison of the zone areas. The former is discussed in Section 3.5, while the latter is
discussed in this section. Yet the importance of different aesthetic and perceptual factors will also
depend on how the diagrams are used in the application area. For instance, the curve areas could be
judged and compared to obtain details on the size of the represented data sets.
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Wellformedness

A diagram that breaks any of the wellformedness properties (Section 3.4.4) is difficult to comprehend
(Section 3.5.1). If such a diagram is also area-proportional, the properties that make the diagram non-
wellformed will have an additional adverse effect on the area perception of the zones and the curves. 

If a zone in the diagram is disconnected (i.e., breaking wellformedness property 1), the zone is made
up of multiple dispersed minimal regions. The area of a disconnected zone is the sum of the area of all
of its minimal regions. Thus, increased cognitive effort is required to search for all the regions, estimate
the area of each one and sum them to find the zone area. This means that comparing the area of different
zones could be difficult if not impossible due to cognitive overload and a limited working memory
[Sweller, 1994], which can handle only four elements [Cowan, 2000]. An increase in cognitive effort is
also more likely to lead to errors and prolonged processing time [Kroger et al., 2002]. Same issues arise
when a diagram has duplicate curve labels (i.e., breaking wellformedness property 2), as one data set
would be depicted by the union of multiple curves. If a diagram breaks any of the other wellformedness
properties, the curves are not easily distinguishable (Section 3.5.1), impeding the area perception of the
zones and curves. Thus, this dissertation focuses on area-proportional diagrams that are wellformed.

The Shape of the Curves and the Zones

The shape of the curves and the zones in the diagram can have an effect on how their area is perceived.
Cleveland argues that area judgement of regions on a geographical map is inaccurate and biased due to
false misconception elicited by the shape of the regions. In Figure 3.23, Cleveland [1985, p. 282] notes
that the state Florida (FL) seems bigger than Georgia (GA) despite the opposite is true, and Idaho (ID)
seems bigger than Kansas (KS) despite their area is similar. Cleveland argues that FL, ID and OK seem
bigger than their actual size due to appendages and their large perimeter. A non-smooth curve enclosing
a region is likely to have a larger perimeter-to-area ratio than a smooth curve enclosing a region with
the same area. Thus, smooth curves should be used when drawing area-proportional Euler diagrams as
the region areas enclosed by the curves are less likely to be overestimated than with non-smooth curves.

Figure 3.23: The map of U.S. states used by Cleveland [1985] to demonstrate the effect of shape on
area perception. Source: [Cleveland, 1985, p. 282]—Figure 4.38

However, rectilinear curves could be preferred to aid estimation and comparison of region areas.
Example, in cartography, cartograms using rectilinear regions (e.g., [Buchin et al., 2012; de Berg et al.,
2010]) are often preferred over those using arbitrary curves (e.g., [Dougenik, 1985; Sun, 2013]) to aid
estimation of areas "by visual inspection" [de Berg et al., 2010, p. 203] (review [Speckmann, 2006]). 
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Chow and Ruskey [2004] argue that the area of zones in area-proportional Euler diagrams are easily
comparable when the regions in the diagram are similar in shape, so two circles are easier to compare
than a circle and a triangle, and rectangles are easier to compare when they have a similar aspect ratio.
They state "the measure of a diagram’s regional uniformity may be a good indicator of its effectiveness"
[Chow and Ruskey, 2004, p. 476]. So according to the authors, Figure 3.24A could be effective as all of
its regions are rectangles with an aspect ratio of 1:n, n ∈ {1, 2, 4}, and a linear scaling. In Figure 3.24A,
it is easily noticeable that zones a and b are twice as large as zones ab, abc and c, and four times as
large as zones ac and bc, but this is not as apparent in Figure 3.24B despite that the diagram is accurate
with respect to the same area specification of Figure 3.24A. Figure 3.24B is drawn with circles, so its
regions have irregular shapes and a non-linear scaling. However, the curves in Figure 3.24A are not
easily distinguishable and the zones are not easily identified, as in contrast to Figure 3.24B, the curves
are irregular and non-smooth, and the diagram is non-wellformed (Section 3.5). So comparing the area
of the curves in Figure 3.24B could be easier than in Figure 3.24A. This indicates that it is typically not
possible to have easily comparable zones as well as easily comparable and distinguishable curves.

A B

Figure 3.24: Accurate area-proportional 3-Venn diagrams with respect to {(a, 40), (b, 40), (c, 20),
(ab, 20), (ac,10), (bc, 10), (abc, 20)} drawn using rectilinear curves (left, A) and circles (right, B). 

Rectangular regions could aid area estimation, but comparing the area of rectangular regions that are
squares or have extreme aspect ratios could be difficult [Kong et al., 2010]. The shape and position of
the curves and regions in the diagram could also elicit optical illusions, like those in Figure 3.25, which
can distort the perceived size [Coren and Girgus, 1978; Gregory, 1966]. Also "dimensions of shape that
can be rapidly processed are unknown; however, the number is certainly small" [Ware, 2012, p. 171].

A B C D

Figure 3.25: Examples of optical illusions that could be relevant to area-proportional Euler diagrams.
(A) Ebbinghaus illusion. The circles at the centre of the 2 groups are congruent, but the left one (surrounded
by larger circles) seems smaller than the right one (surrounded by smaller circles). (B) As A but with squares.
(C) Both white rectangles are congruent, but the right one seems bigger as it has a thinner black border.
(D) The shapes are congruent, but the bottom one seems larger. Source: [Stone, 2013]—figures redrawn
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Counteracting Area Judgement Bias

Judging the area of the regions in Figure 3.24A might not be difficult, as they have a similar rectangular
shape, the quantities assigned to the zones are 10n, n ∈ {1, 2, 4}, and all the regions have the same
width so it is enough to compare the height of the regions than estimate their area. Also, most regions
have a common baseline, so the area of zones a, abc and b can be judged by comparing the position of
their top edge with respect to the bottom and vice versa for zones a, ab and b and zones ac, c and bc.

The theory of visual perception and experiments in graphical perception [Cleveland and McGill,
1984, 1985; Cleveland, 1994] indicate that judging position along a common aligned scale is the most
accurate task humans can carry out on graphical elements. Judging area is ranked fifth just after position
along an identical but non-aligned scale, length and angles, and followed by volume and colour hue.
Thus humans are biased to area judgement and the perceived area could be different from the actual
area. This human limitation to perceive area has long been noted by Brinton in 1916 who claimed that 

Circles compared on a diameter basis mislead the reader by causing him to over-
estimate the ratios. … Circles compared on an area basis mislead the reader by causing
him to underestimate the ratios. Circles of different size should never be compared.
Horizontal bars have all the advantages of circles with none of the disadvantages.

[Brinton, 1916]

Stevens' [1957; 1986] Power Law on how scales are perceived states that, if readers are asked to
estimate an area, area1, with respect to another, area2, most judgements would be of the form

area1
area2

⎛
⎝⎜

⎞
⎠⎟

β

where β < 1. Typically β is 0.7 [Stevens, 1975, p. 15]. So if area1 is twice as much as area2, readers are
more likely to say 20.7, that is 1.62 instead of 2, and if area1 is five times as much as area2, readers are
more likely to say 50.7, that is 3.09 instead of 5. It might sound sensible to use these laws to counteract
the bias and "to take the areas to be proportional to the data to the 1⧸0.7 = 1.43 power" [Cleveland,
1985, p. 282]. However, studies on area perception indicate that β could be any value between 0.6 and
0.9 [Baird, 1970, p. 64] as it depends greatly on the person and what is judging [Cleveland et al., 1982]. 

Other perceptual scaling measures have been proposed to scale symbols on maps and to compensate
for the area judgement bias [Montello, 2002], but the great variations in the studies' findings indicate
that area misperception is not systematic and it is unlikelihood that a universal 'correction' measure can
be defined [Meihoefer, 1969, 1973]. The use of perceptual scaling was greatly criticized by Tufte who
argued that irrespective of any possible perceptual limitations, it is compulsory "telling the truth about
the data" [Tufte, 1983, p. 51] as this is the only way how "graphical excellence begins" [Tufte, 1983, p.
53]. In fact, his first principle to improve graphical integrity states that 

The representation of numbers, as physically measured on the surface of the graphic
itself, should be directly proportional to the numerical quantities represented.

[Tufte, 1983, p. 56].

To help identify graphics that break this principle, Tufte [1983, p. 57] defined the 'Lie Factor' formula 

Lie Factor = size of  effect  shown in graphic
size of  effect  in data 
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If the Lie Factor is equal to one, then the graphic might be doing a reasonable job of
accurately representing the underlying numbers. Lie Factor greater than 1.05 or less
than 0.95 indicate substantial distortion. 

[Tufte, 1983, p. 57]

Experiments on area perception have been carried out only for circles [Cleveland and McGill, 1984;
Flannery, 1971] and irregular regions [Cleveland and McGill, 1985; Cleveland, 1994] (squares for map
symbols [Crawford, 1973]); none for Euler diagrams or areas of overlapping closed curves. Findings for
non-overlapping objects might not be applicable to Euler diagrams, since they are highly dependent on
what is judged [Cleveland et al., 1982]. No theories, metrics or studies provide guidelines on how area-
proportional Euler diagrams should be drawn to aid judgement of the region areas. It is unclear which is
the ideal shape for the regions, and the smallest perceivable region area and noticeable discrepancy in
the region areas of such diagrams. Yet, even if these details are known, no effective and universal
perceptual scaling measures could be defined. Thus area-proportional Euler diagrams should have zones
whose area is "directly proportional to the numerical quantities represented" [Tufte, 1983, p. 56].

Different readers could judge the same area differently, so labels with the quantitative value depicted
by each region could be added to the diagram (as in Figure 3.20, Figure 3.21) to reassure the perceived
areas. Example, regions with the same area are easily noted in Figure 3.26 than in Figure 3.24 with the
help of the labels. This supports Tufte's second principle to improve graphical integrity which states that

Clear, detailed, and thorough labeling should be used to defeat graphical distortion and
ambiguity. Write out explanations of the data on the graphic itself.

[Tufte, 1983, p. 56]

Nonetheless, such an accurate judgement of the region areas is only required when looking into specific
details of the data. If only an overview is required as in Figure 3.19, the labels showing the exact
quantities should be omitted to avoid adding noise to the diagram [Ware, 2012, p. 170]. Instead of such
labels, exact quantities can also be read from a table provided with the diagram, as in Figure 3.19C. 

A B

Figure 3.26: Accurate area-proportional 3-Venn diagrams with respect to {(a, 40), (b, 40), (c, 20),
(ab, 20), (ac,10), (bc, 10), (abc, 20)} with labels indicating the quantity each region represents. 

Cleveland argues that area judgement biases can be avoided only if area is not used altogether and
quantitative data is instead encoded by position or length which humans can judge more accurately
[Cleveland, 1985]. He explains that the population of European cities in Playfair's diagram with
relatively sized circles (Figure 3.27A—Figure 2.2A replica) could be depicted more effectively using a
dot chart with log scale (Figure 3.27B), so the position along a common scale rather than area is judged.
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A   B

Figure 3.27: Playfair's circles depicting the population of European cities (left, A) and Cleveland's dot
chart with log scale for the same data (right, B). Source: [Cleveland, 1985] (A) p. 115, (B) p. 281.

However, area-proportional Euler diagrams cannot easily be replaced by other diagrams. They are
used extensively in various areas (Section 3.7.1), and in areas like genetics (e.g., [Bailey et al., 2013; el
Azzouzi et al., 2011]), their use is often considered a standard and an essential part of the data analysis.
Figure 3.24A attempts to divert area judgement to position and length judgement by representing the
quantities as "columns of different height" [Bertin, 1983], but this is not always possible, particularly if
the diagram has to be wellformed to aid understanding (Section 3.5.1). A dot or a bar chart encoding the
quantitative data by position and length could be provided with an area-proportional Euler diagram.
Alternatively to avoid redundancy, the quantitative data could be represented by the number of equally-
sized glyphs in an Euler diagram that is not necessarily area-proportional. If the glyphs inside the
regions are then placed in the form of a grid, the quantity could be judged by position or length
judgement. Scaled glyphs could also be used. More on Euler diagrams with glyphs in Section 3.8.

3.7.4 Automatic Drawing Techniques

Current automatic techniques draw area-proportional Venn and Euler diagrams with circles or polygons.

Circle-based

The first automatic drawing methods to use circles were developed for area-proportional Venn diagrams
with two [Chow and Ruskey, 2004] and three [Chow and Rodgers, 2005] curves. These were used in
different areas, including medicine (e.g., [Lenz and Fornoni, 2006]). Later, other methods were devised
(examples of diagrams in literature drawn using the method are given in parenthesis): BioVenn [Hulsen
et al., 2008] (e.g., [Bouyer et al., 2011]); Venn Diagram Plotter [Littlefield and Monroe, 2013] (e.g.,
Figure 3.20C); a module in PatternLab for proteomics [Carvalho et al., 2008] (e.g., [Chun et al., 2011]);
R packages, Vennerable [Swinton, 2009] (e.g., [Nikulenkov et al., 2012]) and venneuler [Wilkinson,
2012] (e.g., [Harvey et al., 2013]); Google Venn Charts [Google Inc, 2012]; Stata’s PVENN [Gong and
Ostermann, 2011]; SAS macro [Shiqun, 2009] (e.g., [Soriano et al., 2003]); Matlab’s VENN [Darik,
2011] and vennX [Heil, 2004]; a web application [BioInfoRx Inc , 2013] (e.g., [Kang et al., 2011]).

3.7 Area-Proportional Venn and Euler Diagrams | 52



Except for venneuler, all of these drawing methods aim to draw area-proportional Venn diagrams
with two or three circles. Some allow a few zones to be assigned a value of zero (e.g., Vennerable,
BioVenn) and thus try to draw Euler diagrams. The first proposed drawing method [Chow and Ruskey,
2004] draws accurate 2-Venn diagrams for any set of zone areas, so most later techniques used this
method within their algorithm to draw 3-Venn diagrams. A few (e.g., BioVenn, Venn Diagram Plotter)
are actually variants of the first drawing technique for 3-Venn diagrams [Chow and Rodgers, 2005].

The technique venneuler [Wilkinson, 2012] is particularly different from the rest. Using a statistical
model for fitting an area-proportional diagram to an area specification comprising of a normalized loss
function stress (defined as, the sum of squared residuals divided by the total sum of squares) and a
mechanism to minimize the function, venneuler is considered to be the current best method in drawing
accurate area-proportional Venn and Euler diagrams for any number of curves with circles. However,
circles cannot draw accurate area-proportional 3-Venn diagrams for most data (Section 3.7.6) and thus,
it still generates inaccurate and misleading diagrams for most data, as shown in example Figure 3.28.

In Figure 3.28A, zone abc with assigned value 1 appears to have the same area as zones ab, ac and
bc, each of which should represent value 50 and all of which seem smaller than half the area of zones a,
b and c that should depict 100 each. Figure 3.28B has missing zone abc and Figure 3.28C has missing
zone ac, so both diagrams do not depict all the required set relations. Yet they both have a low stress of
3.12×10-4 and 5.85×10-3 respectively as indicators to venneuler that the diagrams are accurate. In some
cases, the generated diagram is non-wellformed as in Figure 3.28C where zone b is disconnected.
Similar problems are also apparent in other circle-based techniques. There are area specifications for
which an Euler diagram cannot be drawn with circles unless unwanted zones are visible (Section 3.5.2).
To handle this, circle-based methods for not area-proportional Euler diagrams shade unwanted zones
[Stapleton et al., 2012] or use some non-circle shaped curves [Stapleton and Rodgers, 2011]. venneuler
cannot shade or use non-circle curves, so some of its generated Euler diagrams have unwanted zones
like ac and bc in Figure 3.28D, which can only be avoided if curve c is non-simple as in Figure 3.9B.

A B C D

Figure 3.28: Examples of area-proportional 3-Venn diagrams drawn using venneuler. All of these
diagrams are inaccurate with respect to the required area specification. (A) The generated diagram with
respect to {a=100, b=100, c=100, ab=50, ac=50, bc=50, abc=1}, whose stress value is 4.77×10-2. All the
required zones are present, but their area is misleading with respect to the quantities they represent. (B) The
generated diagram with respect to {a=100, b=100, c=100, ab=1, ac=1, bc=1, abc=1}, whose stress value is
3.12×10-4. Zone abc is missing. (C) The generated diagram with respect to {a=100, b=10, c=100, ab=50,
ac=10, bc=50, abc=10}, whose stress value is 5.85×10-3. Zone ac is missing and zone b is disconnected.
(D) The generated diagram with respect to {a=10, b=10, c=1, ab=5, ac=0, bc=0, abc=1}, whose stress value
is 2.70×10-3. Zones ac and bc are visible even though they were not meant to be included in the diagram.
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As we discuss in Section 3.7.6, no circle-based method can draw accurate area-proportional Venn
diagrams with three curves for most sets of zone areas due to the limited degrees of freedom of circles.
Inaccurate diagrams can be misleading, so a few drawing methods use not area-proportional diagrams
and either label the zones with the required value, as in R packages VennDiagram [Chen and Boutros,
2011] and Limma [Smyth, 2005], GeneSpring® [Agilent Technologies Inc, 2012], GeneVenn
[Pirooznia et al., 2007], ArrayTrack [Fang et al., 2009], VENNY [Oliveros, 2007] and Pangloss Venn
Diagram Generator [Seidel, 2005], or fill up the zones with equally-sized glyphs that are proportional in
number to the value assigned to the zone, as in TwitterVenn [Clark, 2008]. VennPlex [Cai et al., 2013]
uses not area-proportional diagrams with labels to report multiple values corresponding to each zone.

Algorithms that generate circular cartograms (scaled regions are depicted as circles) are available
(e.g., [Dorling, 1996]), but are not applicable to Euler diagrams, as in cartograms no overlaps are shown.

Polygon-based

The first proposed method VennMaster [Kestler et al., 2005, 2008] uses convex regular polygons. Such
polygons are similar in shape to circles, so the generated diagrams are often inaccurate (e.g., [Rodrigues
et al., 2012]). Other methods use: triangles as in Vennerable [Swinton, 2009]; rectangles [Marshall,
2005]; orthogonal rectilinear curves as in DrawVenn [Chow and Ruskey, 2004] (e.g., Figure 3.21A) and
Vennerable [Swinton, 2009]; 4-sided and 5-sided convex polygons as in Convex Venn-3 [Rodgers et
al., 2010a] (e.g., Figure 3.21B); parallelograms [Wieland et al., 2005]; orthogonal polyominoes [Chow
and Ruskey, 2007]; a combination of convex and non-convex, smooth and rectilinear curves as in
VENNTURE [Martin et al., 2012] and in Vennerable [Swinton, 2009] (both using Edward’s [1989]
general n-Venn diagram construction); convoluted polygons as in DrawEuler [Chow and Ruskey, 2005]
(e.g., Figure 3.21C) and Fan Diagrams [Kim et al., 2007]. A method that draws diagrams with polygons
for any number of curves has been proposed but not implemented [Stapleton et al., 2011a]. A recent
method, Euler3, was devised to use polygons only when circles cannot be used [Rodgers et al., 2014].
Often polygons are used for area-proportional diagrams that cannot be drawn accurately with circles. 

Algorithms that generate cartograms using rectilinear (e.g., [van Kreveld and Speckmann, 2007]) or
arbitrary polygon (e.g., [Sun, 2013]) curves are available, but are not applicable to Euler diagrams as in
cartograms no overlaps are shown and some criteria to be optimized are different (e.g., a cartogram
should preserve the region adjacencies of a geographical map). Algorithms for voronoi treemaps are
also available (e.g., [Sud et al., 2010]), yet again no overlaps are shown as their curves do not intersect.

3.7.5 Theoretical Findings

Chow's [2007] theoretical findings on area-proportional Euler diagrams are the basis for understanding
how and when these diagrams can be drawn accurately. The most important for this dissertation are:

1. An accurate area-proportional 2-Venn diagram with respect to any area specification can be
drawn using circles ([Chow, 2007]—Theorem 3.1.1).

2. There are area specifications for which an accurate area-proportional 3-Venn diagram cannot be
drawn using circles ([Chow, 2007]—Theorem 3.3.1).

3. There are area specifications for which an accurate area-proportional wellformed 3-Venn diagram
cannot be drawn using convex curves ([Chow, 2007]—Theorem 3.4.2; [Rodgers et al., 2009]).
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Other theoretical findings that are relevant to this dissertation include:

4. An accurate area-proportional wellformed 3-Venn diagram with respect to any area specification
can be drawn using orthogonal rectangles or orthogonal 6-gons ([Chow, 2007]—Theorem 3.2.1).

5. An accurate area-proportional 3-Euler diagram with respect to any area specification can be
drawn using orthogonal rectangles or orthogonal 6-gons ([Chow, 2007]—Theorem 3.2.3).

Additional work was carried out (e.g., [Stapleton et al., 2011a]), but is not relevant to this dissertation.

3.7.6 Difficulties in Drawing Accurate 3-Venn Diagrams

An accurate area-proportional Venn diagram can be drawn with circles for any quantitative data with
two sets but not three (Section 3.7.5). Section 3.7.1 showed the diagrams in Figure 3.29, as examples of
the 3-Venn diagrams with circles used in various application areas. All of these diagrams are inaccurate
with respect to the quantitative data indicated by the numeric labels in the zones. In Figure 3.29A, the
zone with value 45 is much bigger than those with values 53 and 54. In Figure 3.29B, the zone with
value 25 is greater than that with value 36, and in Figure 3.29C, the zone with value 3 is barely visible
and much smaller than that with value 4. Similar problems are apparent with most area-proportional
3-Venn diagrams drawn with circles, including those generated by venneuler [Wilkinson, 2012], which
is considered the most effective in accurately drawing theses diagrams (Section 3.7.4). This is due to the
limited degrees of freedom of circles (i.e., a centre and a radius). Thus, numeric labels are often added
to the diagrams to confirm the quantitative data that the diagram is meant to represent.

A B C

Figure 3.29: Area-proportional 3-Venn diagrams drawn with circles in literature. Figure 3.20 replica

In contrast to circles, an accurate area-proportional 3-Venn diagram can be drawn with polygons for
any quantitative data (Section 3.7.5). Section 3.7.1 showed the diagrams in Figure 3.30, as examples of
the 3-Venn diagrams with polygons used in various application areas. All of these diagrams are accurate
with respect to the quantitative data indicated by the numeric labels in the zones. This is so as polygons
have various degrees of freedom that can be adjusted to accurately depict the required data. Yet the
irregularity and non-smoothness of polygons make the diagrams difficult to comprehend as the curves
and their overlaps are not easily identified (Section 3.5.2, Section 3.7.3). This is particularly problematic
when the curves are concurrent as in Figure 3.30A, and when the diagram has brushing or multiple
points and the curves meet or cross at bending points as in Figure 3.30B and Figure 3.30C. The curves
in Figure 3.30A and B are convex, so they are more likely to be perceived as complete objects [Kanizsa
and Gerbino, 1976] than those in Figure 3.30C , but their pop-out effect is not as strong as with circles.
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Figure 3.30: Area-proportional 3-Venn diagrams drawn with polygons in literature. Figure 3.21 replica

Hence, circles and polygons cannot draw area-proportional Venn diagrams that are accurate as well
as easy to comprehend for most 3-set data. Yet drawing methods, prior to the work in Chapter 5, use
circles or polygons. Irrespective of the curve shape, an accurate area-proportional Venn diagram cannot
be defined analytically for a given area specification [Chow, 2007] and thus a heuristic is required.

The Need for a Heuristic

No analytic method can determine the properties of the curves of an accurate area-proportional Venn
diagram for a given area specification, even when the diagram has as little as two curves and when
simple shapes with very few properties (like circles) are used to represent the curves [Chow, 2007].

Consider for instance two overlapping circles. The area of their overlap is defined by the properties
of the two circles, namely their radius and their centre. The radius of each circle can be computed if the
area of the circles is known, but not the coordinates of their centre. Given a specific area for the overlap,
the value of the properties of the two intersecting circles cannot be determined analytically as the
function defining the overlapping area is non-invertible (details given by Chow [2007, pp. 61-64]). So
numerical methods and heuristic search techniques (Section 3.7.4) are used to adjust the properties of
the curves to generate an appropriate area-proportional diagram.

This problem is also evident with other curves that are more general than circles. Consider ellipses.
The overlapping area of two ellipses is defined by their properties, namely the semi-minor and semi-
major axes, the centre and the angle of rotation of each ellipse. It is more complex with ellipses than
circles, as the area of an ellipse is defined by a function of the semi-minor and semi-major axes that is
also non-invertible. So given the area of an ellipse, its two semi-axes cannot be determined analytically,
unless the semi-axes are equal to one another in that the ellipse is a circle. Thus, an optimization
technique is required to find an appropriate set of values for the properties of the intersecting ellipses
and generate a diagram whose curve and zone areas accurately depict the required quantitative data.

Hence, irrespective whether the curves are depicted as circles, ellipses, polygons or any other shape,
the function defining the zone areas is non-invertible [Chow, 2007]. We now explain how an accurate
area-proportional 2-Venn can always be drawn with circles and why this is not possible for 3-Venn.

Constructing Accurate Area-proportional Venn Diagrams with Two But Not Three Circles

An accurate 2-Venn diagram as Figure 3.31A can be drawn for any area specification using two circles
a and b (Section 3.7.5). This is fully constrained, as given that circles a and b have radii ra and rb

respectively and distance dab between their centres as in Figure 3.31B, only one overlapping area exists.
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So to draw the accurate 2-Venn diagram in Figure 3.31A, radii ra and rb and distance dab must be
computed. The area of circles a and b is the sum of the required area of the zones inside each of the
circles. Knowing the area of the circles, radii ra and rb are then computed using simple Euclidean
geometry rules. If a is located at the origin such that its centre is (0, 0), then the centre of b is (dab, 0).
We know that the value of dab is between (ra—rb) and (ra+rb). If dab= (ra—rb), the area of the overlap
would be equal to the area of the smaller circle, as in Figure 3.31C, so that the smaller circle would be
fully contained in the larger circle. As the value of dab increases, the area of the overlap decreases and is
reduced to zero as in Figure 3.31D when dab= (ra+rb). Thus, a numerical approximation technique such
as the bisection method [Burden and Faires, 2010] can be used to find dab in the interval (ra-rb, ra+rb) as
explained by Chow and Ruskey [2004] (also [Chow, 2007, pp. 61-64]). The diagrams in Figure 3.31C
and Figure 3.31D are Euler diagrams not Venn diagrams as they fail to represent all possible set
intersections and so, dab should not be equal to (ra—rb) or (ra+rb). Yet, if Euler diagrams with two circles
are required, the bisection method should be applied in the interval [ra—rb, ra+rb].

 A                                         B                                             C                            D

Figure 3.31: Constructing an area-proportional 2-Venn diagram using circles and the bisection
method. (A) An accurate area-proportional 2-Venn diagram. (B) A 2-Venn diagram, 2-Vennab, drawn with
two circles a and b—the area of the overlap is defined by radii ra and rb and the distance dab between the
centres of a and b. The value of dab should be (C) greater than (ra – rb) but (D) smaller than (ra+rb).

When a circle c is added (Figure 3.32A), the overlapping region of the 2-Venn diagram is split up
into two and new regions are introduced. So as shown in Figure 3.32B, a 3-Venn diagram is made up of
three 2-Venn diagrams. Thus, an area-proportional 3-Venn diagram for the zone areas depicted by the
numeric labels in Figure 3.33A (i.e., area specification {a=120, b=120, c=160, ab=40, ac=60, bc=120,
abc=20}) can be constructed by first drawing the exact 2-Venn diagrams in Figure 3.33B, whereby two
copies of circle c are drawn to ensure that both 2-Vennac and 2-Vennbc are accurate. Then, rotate the left
copy of c anticlockwise about the centre of a and the right copy of c clockwise about the centre of b.
Only one circle c is required and so the two copies of c are rotated until they overlap (Figure 3.33C). By
satisfying this constraint, the overlapping regions in a 3-Venn diagram are formed (Figure 3.33D). Yet
the resulting zone areas (Figure 3.33E) are unlikely to coincide with those required (Figure 3.33A) and
no changes can be made to get the required areas without making other areas inaccurate.

A B

Figure 3.32: A 3-Venn diagram is made up of three 2-Venn diagrams. (A) A 3-Venn diagram, 3-Vennabc.
(B) The three 2-Venn diagrams in 3-Vennabc: 2-Vennab, 2-Vennac, 2-Vennbc.
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A                          B                                         C                                       D                        E

Figure 3.33: A method for constructing an area-proportional 3-Venn diagram with circles.
(A) The numeric labels in the zones indicate the required zone areas, thus the area specification (i.e., {a=120,
b=120, c=160, ab=40, ac=60, bc=120, abc=20}) for which an area-proportional 3-Venn diagram should be
drawn. (B) 2-Venn diagrams with respect to {a=200, c=280, ac=80}, {a=220, b=280, ab=60} and {b=200,
c=220, bc=140} respectively are drawn. (C) The two copies of circle c are rotated so they overlap and unite.
(D) When only three circles are visible, a 3-Venn diagram is obtained. (E) The zone areas in D are not
proportional to the desired values in A. The numeric labels in the zones indicate the zones' actual area.

If, instead of circles, polygons were used, an accurate area-proportional 3-Venn diagram could have
been generated. Figure 3.34 shows such a diagram drawn with rectilinear curves (Figure 3.34A), convex
5-sided curves (Figure 3.34B), and complex non-convex curves (Figure 3.34C) for the quantities shown
by the numeric labels in Figure 3.33A. However, as discussed earlier, these diagrams are difficult to use
and comprehend as the curves are non-smooth and not easily identified. Instead of area, the quantitative
data could be depicted in an Euler diagram using glyphs, as we discuss in the next section.

A B C

Figure 3.34: Accurate area-proportional 3-Venn diagrams drawn with polygons with respect to area
specification {a=120, b=120, c=160, ab=40, ac=60, bc=120, abc=20}. Curve a is drawn in red, curve b
in green (or black in the case of C), curve c in blue. These were generated using: (A) DrawVenn [Chow and
Ruskey, 2004]; (B) Convex Venn-3 [Rodgers et al., 2010a]; (C) DrawEuler [Chow and Ruskey, 2005]. 

3.8 Euler Diagrams with Glyphs

A possible way to counteract the area judgement bias in humans (Section 3.7.3) is to place equally-sized
glyphs that are proportional in number to the desired quantities in the regions of an Euler diagram that is
not necessarily area-proportional. In this way, the quantity assigned to each zone in an area specification
is represented by the number of glyphs in the regions of that zone in the Euler diagram and the data sets
and their relationships are represented by the curves in the Euler diagram. This alternative to area was
proposed by Bertin [1983] to represent size and quantitative data, example on maps.

Only few automatic methods draw Euler diagrams with glyphs. TwitterVenn [Clark, 2008] draws
Venn diagrams with equally-sized glyphs that are proportional in number to the twitter messages that
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used any of two or three user selected words (Figure 3.35). A zone with no glyphs is empty, thus glyphs
can be used instead of Venn's [1880] shading mechanism for empty zones (e.g., Figure 3.3). Other
methods draw irregular curves around elements forming Euler-like diagrams with glyphs (e.g., [Collins
et al., 2009; Simonetto et al., 2009]; Section 3.6.6; examples in Appendix C.4). These methods differ
from TwitterVenn as the glyphs also show the individual identity of the elements besides the quantity.

Figure 3.35: A not area-proportional Venn diagram with equally-sized glyphs drawn by TwitterVenn.
The user selected words are 'chocolate', 'milk' and 'hot'. Source: [Clark, 2008].

Euler diagrams with multi-attribute glyphs have been proposed [Brath, 2012] (Figure 3.36) but not
evaluated. Euler diagrams with glyphs have also been drawn manually for 2⨉2⨉2 contingency tables
[Myšičková and Vingron, 2012] as well as Bayesian problems as we discuss in the next section.

Figure 3.36: A few of Brath's [2012] Euler diagrams with glyphs. Quantities assigned to the zones are
depicted by the glyphs as follows: (A) the number of pictograms; (B) the area of the scaled glyphs; (D) the
area of whisker glyphs whose whiskers indicate the sets in which they are located and its glyph shading
indicates the proportion of purchases by females versus males. Source: [Brath, 2012] Figure 4, 5, 10.
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3.9 Euler Diagrams for Bayesian Reasoning

Making decisions based on statistical, uncertain data is difficult and often involves Bayesian inference,
which is subject to fallacious reasoning (Section 2.5). Psychology studies assessed a few visualizations
for Bayesian reasoning, but their effectiveness is still unclear. Euler diagrams and frequency grids, as in
Figure 2.9, are amongst those evaluated. Studies on frequency grids were discussed in Section 2.5.5. 

We now discuss how area-proportional Euler diagrams and Euler diagrams with glyphs have been
used for Bayesian reasoning and what the studies on such visual representations revealed.

3.9.1 Area-Proportional Euler Diagrams

Sloman et al. [2003] argued that area-proportional Euler diagrams, as Figure 2.9A, are effective in
conveying the nested-set relations of Bayesian problems (success of 48% of 25 subjects with Euler
diagrams and 20% of 25 with text alone, over a revision of Casscells et al.'s [1978] disease diagnosis
Bayesian problem with probabilities, among university students aged 18 to 24 who had completed
courses in Psychology, Cognitive Science, Economics). However, similar benefits were reported when
the nested-set relations were explicated in the text. Later Brase [2009] found no improvement with area-
proportional Euler diagrams (success of 34.7% of 98 subjects with Euler diagrams and 35.4% of 96
with text alone, over a problem similar to Sloman et al's [2003] but with natural frequencies, among
university Psychology students aged 18.8 on average, who participated to fulfil a class requirement).

Kellen [2012] (also [Kellen et al., 2013]) claimed improved performance when an area-proportional
Euler diagram as Figure 3.37 was provided (correct means of 5.38 for 40 subjects with Euler diagrams
and 3.32 for 37 subjects with text alone). However, he argued that this representation is too complex as
there are various interacting elements. Instead he proposed Figure 3.38 as a relationally and cognitively
simpler alternative and reported improved performance particularly when a diagram was not provided
(correct means of 6.39 for 44 subjects with Euler diagrams and 7.41 of 37 with text alone). The results
of this study also indicated that people with low spatial abilities have difficulties in solving such
problems using a visual representation as, in contrast to those with high spatial abilities, they performed
better with text alone than with a diagram (be it complex as in Figure 3.37 or simple as in Figure 3.38). 

Figure 3.37: Kellen's [2012] representation of a Bayesian problem with one question. For the classic
cab problem [Tversky and Kahneman, 1982] using natural frequencies. Source: [Kellen, 2012]–Figure 1
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Figure 3.38: Kellen's [2012] representation of a Bayesian problem with two questions. Representing the
classic cab problem [Tversky and Kahneman, 1982] using natural frequencies with changes to the classic
text, a different type of final question (in B) and an intermediary question (in A). (A) The first visual display
provided to the user. (B) The second visual display provided to the user which focuses on the sets in relation
to the final question to be answered. Source: [Kellen, 2012]–Figure 2 and Figure 3

In contrast to previous studies, Kellen's 158 participants were diverse (university students and staff
from different faculties; 57 were aged over 22; 28 did not attend high school or similar) and various
Bayesian problems were tested (10 using natural frequencies: the cab [Tversky and Kahneman, 1982]
and mammography [Eddy, 1982] classic problems; eight others with a base rate, hit rate and false alarm
rate ranging "1-90%, 5-93% and 33-99%" and overall natural frequency population ranging from less
than 50 to thousands). Thus, Kellen's findings could be more generalizable than those of other studies. 

However, the final question in his problems is different from the classic one, as subjects were asked
to think about future incidents rather than the present one (e.g., Kellen asked, "If 20 accidents occurred
over the next few months in which witnesses identified the cab as Blue, how many accidents would a
Blue cab actually be involved in?"—Figure 3.37, Figure 3.38B—but the classic problem asks "What are
the chances that the cab involved in the hit-and-run accident was Blue?" [Mellers and McGraw, 1999, p.
424]). The text of his simple form (Figure 3.38) was also different as two questions had to be answered.
In real-life the answer to one question is often required based on data provided statically rather than
interactively. Interestingly, the quantitative data in Kellen's representations (Figure 3.37, Figure 3.38)
was provided only in the diagram and so, the subjects had to parse the diagram to complete the task.
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Euler diagrams visualize the nested-set relations of Bayesian problems and provide 'free-rides'
(Section 3.1). They are "well-matched to meaning" [Gurr and Tourlas, 2000], and "representations are
more helpful in solving statistical tasks the more closely they resemble the naturally occurring events
they represent" [Sedlmeier, 1999, p. 65]. Thus Euler diagrams could facilitate Bayesian reasoning.

3.9.2 Euler Diagram with Glyphs

Representations with discrete objects can aid logical reasoning [Cosmides and Tooby, 1996]. So Euler
diagrams with glyphs, as in Figure 3.39, could facilitate logical reasoning as well as reasoning about the
nested-set relations of Bayesian problems, as such relations are easily depicted by Euler diagrams.

Figure 3.39: Hybrid diagrams made up of an Euler diagram and glyphs for Bayesian reasoning.
(A) An area-proportional Euler diagram with equally-sized glyphs that should be proportional in number to
the quantity assigned to the zone (for a disease diagnosis problem). Source: [Brase, 2009]–Figure 1 (B) An
area-proportional Euler diagrams with rectilinear curves whose interior is packed with equally-sized
contiguous squares that are proportional in number to the quantity assigned to the zone (for the
mammography problem [Eddy, 1982]). Source: [Garcia-Retamero and Hoffrage, 2013]–Figure 1

Brase [2009] finds that hybrid diagrams like Figure 3.39A do not increase success compared to
standard Euler diagrams or frequency grids (41.7% of 108 subjects with hybrid diagrams, 48.4% of 95
with frequency grids, 34.7% of 98 with Euler diagrams, 35.4% of 96 with text alone; non-statistically
significant differences; used natural frequencies). When subjects were asked to draw their visualization
as in Cosmides and Tooby's [1996] study, hybrid diagrams were even less effective (success of 28% of
50 subjects with hybrid diagrams, 49% of 49 with frequency grids, 30% of 50 with Euler diagrams).

However, Brase's [2009] tested visualization designs had a number of issues: (i) the hybrid diagram
was area-proportional whereas the Euler diagram without glyphs was not, introducing a possibility of
experimental confound; (ii) the number of glyphs in the hybrid diagram was inconsistent with the data
(when comparing the hybrid with the standard frequency grid); (iii) the hybrid and frequency diagrams
used different glyph shapes (dots versus anthropomorphic) introducing another possibility of confound.

Contrary to Brase's study, Garcia-Retamero and Hoffrage [2013] suggest that hybrid diagrams as in
Figure 3.39B can help doctors and patients be more accurate when solving Bayesian problems related to
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the diagnosis of different diseases (success of 62% of 40 subjects with hybrid diagrams, 26% of 40 with
text alone, using natural frequencies). Doctors were more accurate than their patients (53% versus
35%), but differences were not evident when the effect of variations in the subjects' numerical abilities
(i.e., the ability to handle numerical data) was controlled for. Also, patients claimed that the numerical
data was not so useful when a diagram was not provided and both doctors and patients claimed that the
problem was harder to complete without a diagram. Euler diagrams with curves that are not smooth, as
in Garcia-Retamero and Hoffrage's, impede diagram understanding [Benoy and Rodgers, 2007]
(Section 3.5.2). The curves in Brase's diagrams were regular, smooth circles, but the success of Brase's
hybrid diagrams (41.7% of 108 subjects) was less than that of Garcia-Retamero and Hoffrage (62% of
40 subjecs). However, a number of differences and limitations can be noted in the two studies. 

Brase's [2009] study involved a population of university psychology students with 18.7 average age
who participated to partially fulfil a class requirement. Garcia-Retamero and Hoffrage's [2013] study
involved 81 doctors (each paid €40) and 81 patients (each paid €20) from four hospitals in Jaén and
Granada in Spain with age 18 to 85 and an even gender distribution. The subjects in both studies had an
incentive and had no time constraints, which is not the case in real-life when timely, accurate decisions
have to be made. Also, the populations of these studies are from the psychology and medical fields, so
their findings are not fully applicable to a more diverse population of laypeople of various backgrounds.

Brase's study was conducted over only one Bayesian problem on the diagnosis of a "Disease X",
which could have been hard to relate to. Garcia-Retamero and Hoffrage's study had three Bayesian
problems: the mammography problem [Eddy, 1982] and two others on the diagnosis of colon cancer
and insulin-dependent diabetes. Their subjects were doctors and patients with such diseases, so they
could easily relate to the problems. Their findings are more generalizable than those of Brase as they
had various problems, but all were about medicine with similar quantitative data. So the findings of
these studies are less likely generalizable to any Bayesian problem in any application area.

Thus more studies are required to assess the effectiveness of visualizations for Bayesian reasoning.

3.10 Summary

Venn and Euler diagrams are used extensively in various application areas to visualize relationships
amongst data sets. A number of automatic drawing techniques have been proposed. Most of these
methods generate diagrams with the correct zones, but the curves representing the data sets are often
non-smooth, not easily visible and distinguishable from other curves. Very few automatic layout
techniques have been proposed to convert such diagrams into ones that are perceptually easier to
comprehend, but these current techniques are computational expensive, complex and impractical for
diagrams with a large number of curves. Force-directed techniques (Section 2.4.1) have been successful
in laying out graphs in relatively fast time, but were never adopted to lay out Euler diagrams. In the next
chapter (Chapter 4), we discuss our force-directed method, eulerForce, to improve the layout of Euler
diagrams in relatively fast time.

In various application areas such as medicine and biosciences, 3-Venn diagrams that are area-
proportional are often used, so that the area of the each zone in the diagram corresponds to a
quantitative value in the data sets. Current automatic generation methods for such diagrams represent
each data set either as a circle or as a polygon. Circles are often preferred and used in literature due to
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their smoothness and continuity, but their limited degrees of freedom (i.e., a radius and a centre) impede
them from accurately representing most sets of zone areas. Polygons are more flexible and are thus able
to represent most sets of zone areas accurately, but their non-smooth curves lack good continuation and
the curves are not easily distinguishable. Ellipses, on the other hand, are smooth like circles, but have
more degrees of freedom (i.e., a centre, a semi-minor and a semi-major axis, and an angle of rotation)
than circles. This motivates the need to develop drawing methods that use ellipses and to evaluate their
effectiveness in drawing accurate diagrams for any set of zone areas. However, due to concerns of
complexities in calculating the zone areas of overlapping ellipses and in adjusting the properties of the
ellipses, none of the current drawing techniques use ellipses. In Chapter 5, we discuss our automatic
drawing method, eulerAPE, to draw area-proportional 3-Venn diagrams using ellipses, together with our
computational and qualitative evaluation and case study.

Though area-proportional Venn diagrams are widely used, studies suggest that humans are biased in
area judgement. This is particularly problematic in areas such as Bayesian reasoning (Section 2.5)
which is additionally affected by cognitive judgemental errors and biases. Thus, since studies in
Bayesian reasoning illustrate that frequency grids facilitate logical reasoning (Section 2.5.5) and Euler
diagrams facilitate reasoning of the data set relationships, then combining the two into a hybrid
diagram, such that grids of equally-sized glyphs represent quantitative data and the curves in the Euler
diagram represent the sets, might be beneficial. A few studies in psychology have been carried out to
evaluate the effect of visualizations on Bayesian reasoning, but it is still unclear which is the most
effective visualization. Also, most studies were carried out among a small population with a specific
background (often highly educated students) and few designs, some of which were inappropriate and
inconsistent with the data, were tested in each study often using just one Bayesian problem. In
Chapter 6, we discuss our automatic method, eulerGlyphs, that draws frequency grids, Euler diagrams and
combinations of both for Bayesian problems, together with a study which we conducted on a large,
diverse population through crowdsourcing, to test a classic textual representation and six different
visualizations accurately generated by eulerGlyphs for three classic Bayesian problems, and two novel
textual representations which we proposed for the problem.

We will now start by discussing our force-directed layout method, eulerForce, for Euler diagrams.
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Chapter 4

Force-Directed Layout for Euler Diagrams

This chapter introduces our drawing algorithm eulerForce that lays out Euler diagrams using a force-
directed approach. Its software implementation is at 	  http://www.eulerdiagrams.org/eulerForce.

4.1 Introduction

An automatic drawing algorithm should ideally draw an Euler diagram with precisely the set of zones in
the abstract description, but often the generated diagrams are difficult to comprehend (Section 3.6.1) as
the curves are irregular, non-smooth and not easily identified (Section 3.5.2). Algorithms that restrict
the shape of the curves (e.g., to a circle) are also available (Section 3.6.2), but the generated diagrams
could have empty zones (Section 3.5.2). Thus in such cases, it would be appropriate to generate a
diagram that has all and only the zones defined in the abstract description and then use a layout method
to transform the diagram's layout into one that satisfies specific aesthetic features. Yet only two layout
methods have been proposed (Section 3.6.3) and both are complex and computationally expensive. In
contrast, force-directed techniques (Section 2.4.1) have been successfully used and evaluated in areas
like graph drawing to produce layouts with desired aesthetic features in relatively fast time.

In this chapter, we present our force-directed layout method, eulerForce, that produces improved
layouts of Euler diagrams and in relatively fast time. Our results indicate a great potential in force-
directed techniques for improving the layout of Euler diagrams and possibly for generating diagrams.

We start by outlining our motivations and objectives of this work (Section 4.2), followed by our
layout method eulerForce, including the force model and the algorithm that equilibrates the forces
(Section 4.3). We discuss our experimental results and evaluation of the method (Section 4.4). We end
with ideas for future work (Section 4.5) and a summary of this chapter (Section 4.6).

This work has been published as a journal article [Micallef and Rodgers, 2014b] and extended
abstract and poster [Micallef and Rodgers, 2009], and presented at the 2014 International Workshop on
Visual Languages and Computing (VLC) and the 2009 IEEE Information Visualization (InfoVis) Poster
Session. The software implementation of eulerForce is at http://www.eulerdiagrams.org/eulerForce.
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4.2 Motivation and Objectives

Identifying the zones in the diagrams in Figure 4.1 is difficult. The diagrams were generated using a
drawing algorithm [Rodgers et al., 2008b] that produces diagrams with all and only the required set of
zones in the abstract description. Thus, none of the required zones are missing and none of the zones in
the diagram are empty. However, the diagrams are difficult to comprehend and the zones are not easily
identified, as the curves are irregular, non-smooth and not easily distinguishable (Section 3.5.2). An
Euler diagram layout method could improve the diagrams' layout, but current methods (Section 3.6.3)
have a number of limitations, which could be mitigated using a force-directed approach (Section 2.4.1).

A B

Figure 4.1: Examples of Euler diagrams by a drawing algorithm [Rodgers et al., 2008b] that generates
diagrams with all and only the zones in the given abstract description. The diagram generated for abstract
description: (A) {∅, a, c, ac, cd, acd, bcd, abcd}, (B) {∅, b, d, ab, bd, be, abd, abe, bcd, bde, abde, bcde}.

4.2.1 Limitations of Previous Euler Diagram Layout Methods

Using Graph Transformations

Rodgers et al. [2010b] defined (not implemented) a method that uses graph transformations to generate
a layout that satisfies a particular wellformedness property. However, it does not take into account
important curve aesthetics like regularity, smoothness and convexity and thus, it cannot improve layouts
as in Figure 4.1. Also, graph transformations could be computationally expensive [Ehrig et al., 1999].

Using Multi-Criteria Optimization

Flower et al. [2003b] defined metrics for curve aesthetics (roundness, smoothness, size uniformity,
closeness) to direct their optimization to an improved layout. Thus, this method could improve layouts
like Figure 4.1A, but not necessarily Figure 4.1B as it handles diagrams with up to four curves. Yet, the
effectiveness and correctness of these metrics were not evaluated, and assigning appropriate weights to
these criteria in a multi-criteria optimization is difficult [Marler and Arora, 2004]. Helpful aesthetics
like the use of regular, similarly shaped curves (Section 3.5.2) and diagram symmetry are not taken into
account, and the algorithm still needs to convert the line segments in the diagram to Bézier curves after
optimization to ensure curve smoothness. Also, this method uses the hill-climbing heuristic, thus it is
likely to encounter a local minimum and find a local rather than global best optimized solution. More
sophisticated multi-criteria optimization algorithms (e.g., simulated annealing, evolutionary algorithms)
could be used, but these are computationally more expensive. In itself, multi-criteria optimization is
computationally more expensive than single-criteria ones [Marler and Arora, 2004].
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4.2.2 A Force-Directed Approach

Using a physical analogy of electrically charged particles (the vertices) and springs (the edges), a simple
spring embedder (Section 2.4.1) converts the graph layout with multiple edge crossings in Figure 4.2A
to the symmetric layout with no edge crossings, uniform edge lengths and evenly distributed vertices in
Figure 4.2B. Also, this conversion is carried out in relatively fast time. 

A B

Figure 4.2: A simple force-directed spring embedder converts the graph layout in A to that in B. B was
generated using Eades's [1984] spring embedder (which we implemented) for the graph layout in A.

A closed curve represented as a polygon is like a graph with a set of vertices and edges (Figure 4.3).
So using a force-directed approach, a closed curve as in Figure 4.3A would be laid out as a smooth
regular circle as in Figure 4.3B. The curve in Figure 4.3A is the same as curve a in Figure 4.1A. Thus, if
all the curves in Figure 4.1A were converted to smooth regular circles, an easy to comprehend layout
like Figure 4.4A would be produced. Similarly, Figure 4.1B could be converted to Figure 4.4B. Both
diagrams in Figure 4.4 were generated using our novel force-directed layout method, eulerForce, which
we discuss in Section 4.3. So a force-directed approach could be used to improve Euler diagram layouts.
Also because these force-directed algorithms are often efficient, different forces could be defined to
handle different constraints, and simple versions are easy to implement and to understand.

A B

Figure 4.3: A simple force-directed spring embedder converts the closed curve in A to that in B. B was
generated using Eades's [1984] spring embedder (which we implemented) for the graph layout in A.

A B

Figure 4.4: The improved layouts generated by our force-directed spring embedder, eulerForce, for the
Euler diagrams in Figure 4.1. The improved layout for: (A) Figure 4.1A, (B) Figure 4.1B.
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To successfully adopt a force-directed approach to improve the layouts of Euler diagram, techniques
studied and used in graph drawing (Section 2.4.1) have to be investigated. A major challenge that is not
a problem in graph drawing is the development of an appropriate force model that, besides satisfying
the required aesthetic criteria, maintains the zones in the original layout, in that no zones are added or
lost during the layout improvement process. Thus, initially, simple force-directed methods such as the
spring embedder should be investigated. This method is easy to understand and to implement and so,
the required forces for Euler diagram layouts can be studied including an investigation of how these
forces interact with one another. Once this is understood and an appropriate simple force model is
defined, more complex force-directed techniques that improve performance and handle more aesthetic
criteria and complex large Euler diagrams with various vertices and edges can be investigated.

4.2.3 Our Objectives

We devised the layout method eulerForce to improve the layout of automatically drawn Euler diagrams
that depict all and only the zones in the abstract description, like those generated by Rodgers et al.'s
[2008b] method. This is the first force-directed layout method for Euler diagrams, so we aimed to
improve important diagram aesthetics that could otherwise impede understanding (Section 3.5). Yet
we still wanted to depict the same set of zones as in the initial layout (the layout before the layout
improvement process commences). Thus, we devised a force model that:

1. Obtains regular, smooth and similarly shaped convex curves;
2. Maintains the same set of zones as that in the initial diagram layout;
3. Ensures zones are connected (i.e., made up of one region);
4. Ensures curves are not too close to one another;
5. Ensures contained curves are centred in their containing curve or zone;
6. Attains adequately sized zones and curves.

By satisfying these objectives, the final layout is easy to comprehend, and the curves and the zones are
distinguishable and easily identified (Section 3.5). Example, Benoy and Rodgers 's [2007] study shows
that diagrams that do not satisfy the curve aesthetics in objectives 1, 4 and 6, the diagram is difficult to
understand. The force model also aims to obtain layouts that are wellformed (Section 3.4.4) as this
would also aid diagram comprehension (Section 3.5.1). In particular, objective 3 and 4 ensure that the
most important wellformedness properties, that of connected zones and discrete curves, are met—
Rodgers et al.'s [2012b] study indicates that diagrams that do not satisfy any one of these two properties
are the most difficult to use. Final layouts are also highly likely to be symmetric [Eades and Lin, 2000],
particularly when objective 5 is met (as Figure 4.4A). Thus using such layout algorithms, automatically
generated diagrams depicting all and only the required zones (as Figure 4.1) could be used instead of
diagrams with empty zones generated by algorithms that restrict the shape of the curve.

We aspired to develop a simple yet appropriate force model for Euler diagrams that could later
be extended to handle other criteria. Thus we aimed at using a simple force-directed algorithm that aids
understanding of the forces and how the different forces interact with one another. Various techniques
could be adopted to improve the performance of such simple methods, overcome local minima and
handle more criteria and more complex large systems with various vertices and edges (Section 2.4.1).
Based on our findings, we wanted to identify a number of techniques that should be considered next to
ensure the fast and efficient generation of comprehensible Euler diagram layouts for any number of
curves and set of zones. We discuss our force model and algorithm in the next section (Section 4.3).
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4.3 The Layout Method – eulerForce

Each curve in the given Euler diagram is represented as a polygon with a number of vertices and edges.
A force model acts on the vertices, edges and entire polygons to improve the diagram's layout while still
depicting the same set relations, so the objectives in Section 4.2.3 are reached. Thus, given a diagram,
the algorithm iteratively applies forces in our model on the diagram's layout based on its current state.
The final improved layout is returned once the forces equilibrate and no further changes are made.

4.3.1 The Force Model

Our physical system is similar to that of a simple spring embedder (Section 2.4.1) as shown in Figure 4.5.

A B

Figure 4.5: The physical system and forces in a simple spring embedder. (A) Vertices and edges defining
a polygon, possibly a curve in an Euler diagram. (B) The vertices in A act like electrically charged particles
that repel one another. The edges in A act like springs that attract particles attached to their endpoints.

Two Types of Forces

Our force model consists of repulsive and attractive forces between different structures in the layout,
including: (i) vertices, (ii) edges, (iii) entire polygons. Thus, our forces differ from those used in simple
graph drawing methods by systematically moving any of these structures and not only the vertices.

Similar to the typical spring embedder in graph drawing, our repulsive forces follow the inverse
square law and our attractive forces follow the Hooke's law [Di Battista et al., 1999a]. So, given d is the
Euclidean distance between two structures s1 and s2 in the layout, these forces are defined as:

Repulsive Forces

inversely proportional to the squared distance between structures s1 and s2,
so the repulsive force between s1 and s2, that is, 
the repulsive force exerted on s2 by s1 and on s1 by s2 is  fr = cr⧸d2

where cr is a constant that determines the strength of the force;

Attractive Forces

directly proportional to the distance between structures s1 and s2, 
so the attractive force exerted between s1 and s2, that is,
the attractive force exerted on s1 and s2 by the spring between s1 and s2 is  fa = cad
where ca is the stiffness of the spring that determines the strength of the force and 
the natural length of the spring is zero.
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Each repulsive and attractive force in our model is specifically devised to reach one of the objectives in
Section 4.2.3. So as shown in the next sections, the involved structures and the value of constants cr and
ca are not the same for all the forces. The value of the predefined (hardcoded) cr or ca for each force
was determined after the layout improvement process was observed for a number of different diagrams
using different values for cr and ca of our forces. The chosen values were the ones that best met our
objectives for the tested diagrams. The direction of a force in our model is always as defined above for
of its type. The magnitude of a force is also as defined above for its type, except for specific cases
were the magnitude (never the direction) is defined differently. Such special repulsive and attractive
forces are respectively indicated in the next sections using   and  .

Our repulsive forces are the same as those used in Eades's [1984] spring embedder. Our attractive
forces are different from those of Eades, as Eades uses logarithmic rather than linear (Hooke's law)
springs stating that the latter could be too strong. However, Di Battista et al. argue that, "it is difficult to
justify the extra computational effort by the quality of the resulting drawings" [Di Battista et al., 1999a,
p. 309]. Since our attractive forces assume linear, Hooke's law springs with natural length zero, they are
the same as those used in Tutte's [1963] barycentre method. We opted for such attractive forces, as these
forces are used to smooth the curves and to regain zones that are lost during the layout improvement
process. Thus, while in the former the edges should be as short as possible to produce smooth curves, in
the latter the force of the spring should be strong enough to attract structures and regain the lost zones.

We will now discuss how such repulsive and attractive forces between vertices, edges and polygons
are used in our force model to generate layouts that meet our objectives in Section 4.2.3. 

Forces to Meet Objective 1

To obtain regular, smooth and similarly shaped convex curves (objective 1, Section 4.2.3), we use the
following forces that are typical for a simple spring embedder [Di Battista et al., 1999a]: 

(F1) Repulsion for vertices not to be too close to one another

For every polygon p in the current layout and 
for every pair of distinct vertices v1 and v2 of p,
a repulsive force with cr = 3500 is exerted between v1 and v2, 
so that v1 and v2 move away from one another;

(F2) Attraction for approximately uniform edge lengths

For every polygon p in the current layout and 
for every pair of distinct vertices v1 and v2 of p that are connected by an edge,
an attractive force with ca = 0.5 is exerted between v1 and v2, 
so that v1 and v2 move closer to one another.

Starting with a non-smooth polygon (Figure 4.6A), the vertices (acting as electrically charged particles)
of the polygon repel one another and the edges (acting as springs) attract the vertices connected to their
endpoints (Figure 4.6B). So when the forces equilibrate, a regular, smooth and convex polygon is
obtained (Figure 4.6C). In this way, these forces will also help the algorithm achieve similarly shaped
curves, as in for instance Figure 4.4A.
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A B C

Figure 4.6: Forces to obtain regular, smooth and similarly shaped convex curves (objective 1). (A) The
polygon representing a curve in a given diagram. (B) The physical system with forces F1 and F2 between the
vertices of the polygon in A. (C) The final polygon layout once the forces in B equilibrate.

Forces to Meet Objective 2

To maintain the same set of zones as that in the initial diagram layout (objective 2, Section 4.2.3), so
that no zones are added or lost during the layout improvement process, we devised a set of forces for
each different type of curve relation to ensure that: (a) the current improved layout maintains the zones
in the initial layout; (b) if the current layout has new zones or is missing any of the zones in the initial
layout, forces correct the layout accordingly. We opted to use forces to correct layouts that depict the
incorrect set of zones rather than to disallow such layouts altogether, to avoid local minima. So for
every pair of distinct polygons in the initial layout, the following forces are applied: 

(F3) If the two polygons in the initial layout do not intersect
and in the current layout they still do not intersect (Figure 4.7A):

If p1 and p2 are these two polygons in the current layout, 
for every vertex v1 of p1 and for every vertex v2 of p2 
(e.g., Figure 4.7B),

a repulsive force with cr = 1500 is exerted between v1 and v2,

so that these vertices move accordingly and
the required disjointness of p1 and p2 is reinforced (Figure 4.7C);

A B C

Figure 4.7: Forces to maintain the same zones as those in the initial layout (objective 2)—if, consistent
with the initial layout, two polygons in the current layout do not intersect, the vertices of the two
polygons repulse to reinforce the required disjointness. (A) The two polygons, p1 and p2, in the current
layout. (B) The repulsive force between a vertex v1 of p1 and a vertex v2 of p2. (C) The polygons once the
repulsive force is exerted between the vertices of p1 and p2 and these vertices are moved accordingly.

4.3 The Layout Method – eulerForce | 71



(F4) If the two polygons in the initial layout do not intersect
but in the current layout they do intersect (e.g., Figure 4.8A):

If p1 and p2 are these two polygons in the current layout, 
for every vertex v1 of p1 and vertex v2 of p2

if v1 is inside or on an edge of p2 and v2 is inside or on an edge of p1 
(e.g., Figure 4.8B),

an attractive force with ca = 0.2 is exerted between v1 and v2,

if v2 is not inside or on an edge of p1 (e.g., Figure 4.8C-D),

a repulsive force with cr = 1500 is exerted on v1 by v2,

if v1 is not inside or on an edge of p2 (e.g., Figure 4.8E-F),

a repulsive force with cr = 1500 is exerted on v2 by v1,

so that these vertices move accordingly and
the required disjointness of p1 and p2 is regained (as in Figure 4.7A);

A B C

D E F

Figure 4.8: Forces to maintain the same zones as those in the initial layout (objective 2)—if,
inconsistent with the initial layout, two polygons in the current layout intersect, attractive and repulsive
forces between specific vertices of the two polygons strive to regain the required disjointness. (A) An
example of how the two polygons, p1 and p2, in the current layout could be inconsistent with the initial layout
in that they intersect. (B) The attractive force between a vertex v1 of p1 and a vertex v2 of p2, when v1 is inside
or on an edge of p2 and v2 is inside or on an edge of p1. (C) The repulsive force on v1 by v2, when v2 is not
inside or on an edge of p1—in this case, v1 is inside p2. (D) The same type of force as in C, but here v1 is not
inside or on an edge of p2. (E) The repulsive force on v2 by v1, when v1 is not inside or on an edge of p2—in
this case, v2 is inside p1. (F) The same type of force as in E, but here v2 is not inside or on an edge of p1.

(F5) If the two polygons in the initial layout intersect
and in the current layout they still intersect (Figure 4.9A):

If p1 and p2 are these two polygons in the current layout, 
for every vertex v1 of p1 and for every vertex v2 of p2,

if both v1 and v2 are on the boundary of the overlapping region, 
that is v1 is inside p2 and v2 is inside p1, (e.g., Figure 4.9B),

a repulsive force with cr = 1000 is exerted between v2 and v1,

so that these vertices move accordingly and
the required intersection of p1 and p2 is reinforced (Figure 4.9E);
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if v1 is not inside p2 and v2 is inside or on an edge of p1 
(e.g., Figure 4.9C),

a repulsive force with cr = 1000 is exerted on v1 by v2,

so that these vertices move accordingly and
p1 and p2 are not too close to one another (Figure 4.9E);

if v2 is not inside p1 and v1 is inside or on an edge of p2 
(e.g., Figure 4.9D),

a repulsive force with cr = 50 is exerted on v2 by v1,

so that these vertices move accordingly and
p1 and p2 are not too close to one another (Figure 4.9E);

A B E

C D

Figure 4.9: Forces to maintain the same zones as those in the initial layout (objective 2)—if, consistent
with the initial layout, two polygons in the current layout intersect, the vertices of the two polygons that
are on the boundary of the overlapping region repulse to reinforce the required intersection. (A) The
two polygons, p1 and p2, in the current layout. (B) The repulsive force between a vertex v2 of p2 and a vertex
v1 of p1, where both v1 and v2 are the boundary of the overlapping region. (C) The repulsive force on a v1 by a
v2, when v1 is not in p2 but v2 is in or on an edge of p1. (D) The repulsive force on a v2 by a v1, when v2 is not
in p1 but v1 is in or on an edge of p2. (E) The polygons once the repulsive force is exerted between the
vertices of p1 and p2.

(F6) If the two polygons in the initial layout intersect
but in the current layout they do not intersect (e.g., Figure 4.10A):

If p1 and p2 are these two polygons in the current layout, 
for every vertex v1 of p1 and vertex v2 of p2

(e.g., Figure 4.10B-C)

a special attractive force defined as  f = c⧸d2

where c is a constant (0.1) determining the strength of the force
and d is the Euclidean distance between v1 and v2

is exerted between v1 and v2,

so that these vertices move accordingly and
the required intersection of p1 and p2 is regained (as in Figure 4.9A);
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A B C

Figure 4.10: Forces to maintain the same zones as those in the initial layout (objective 2)—if,
inconsistent with the initial layout, two polygons in the current layout do not intersect, a special
attractive force that is inversely proportional to the squared distance between vertices of the two
polygons strives to regain the required intersection. (A) Example of how two polygons, p1 and p2, in the
current layout could be inconsistent with the initial layout as they do not intersect. (B) The special attractive
force between a vertex v1 of p1 and a vertex v2 of p2. (C) Same force as in B but between different vertices.

(F7) If, in the initial layout, one of the polygons contains the other
and in the current layout, the polygons still depict the required containment:

If p1 and p2 are these two polygons in the current layout 
and p2 is contained in p1 (Figure 4.11A),
for every vertex v1 of p1 and for every vertex v2 of p2 
(e.g., Figure 4.11B),

a repulsive force with cr = 1000 is exerted between v1 and v2,

so that these vertices move accordingly and
the required containment of p2 in p1 is reinforced (Figure 4.11C);

A B C

Figure 4.11: Forces to maintain the same zones as those in the initial layout (objective 2)—if,
consistent with the initial layout, two polygons in the current layout depict the required containment,
the vertices of the two polygons repulse to reinforce the required containment. (A) The two polygons, p1

and p2, in the current layout, where p1 contains p2. (B) The repulsive force between a vertex v1 of p1 and a
vertex v2 of p2. (C) The polygons once the repulsive force is exerted between the vertices of p1 and p2.

(F8) If, in the initial layout, one of the polygons contains the other
but in the current layout, the polygons do not depict the required containment
(e.g., Figure 4.12A):

If p1 and p2 are these two polygons in the current layout 
and according to the initial layout, p2 should be contained in p1 (as in Figure 4.11A),

for every vertex v1 of p1 and vertex v2 of p2

if v1 is inside or on an edge of p2 and v2 is not inside or on an edge of p1 
(e.g., Figure 4.12B),

an attractive force with ca = 0.15 is exerted between v2 and v1,
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if v2 is inside or on an edge of p1 (e.g., Figure 4.12C-D),

a repulsive force with cr = 2000 is exerted on v1 by v2,

if v1 is not inside or on an edge of p2 (e.g., Figure 4.12E-F),

an attractive force with ca = 0.1 is exerted on v2 from v1,

so that these vertices move accordingly and
the required containment of p2 in p1 is regained (as in Figure 4.11A).

A B C

D E F

Figure 4.12: Forces to maintain the same zones as those in the initial layout (objective 2)—if,
inconsistent with the initial layout, two polygons in the current layout do not depict the required
containment, attractive and repulsive forces between specific vertices of the two polygons strive to
regain the required containment. (A) An example of how the two polygons, p1 and p2, in the current layout
could be inconsistent with the initial layout in that p1 does not contain p2. (B) The attractive force between a
vertex v1 of p1 and a vertex v2 of p2, when v1 is inside or on an edge of p2 and v2 is not inside or on an edge of
p1. (C) The repulsive force on v1 by v2, when v2 is inside or on an edge of p1 and in this case, v1 is not inside
p2. (D) The same type of force as in C, but in this case, v1 is inside or on an edge of p2. (E) The repulsive
force on v2 by v1, when v1 is not inside or on an edge of p2 and in this case, v2 is inside p1. (F) The same type
of force as in E, but in this case, v2 is not inside or on an edge of p1.

In the above, forces F3 to F8 are applied between vertices of polygons to (a) maintain the zones of
the initial layout and (b) correct layouts that are not depicting the same set of zones as that of the initial
layout. However, to ensure (a) and reduce the need for (b), if a vertex v1 of polygon p1 is closer to a
point x on an edge e = (v2i,v2j) of a polygon p2 than vertex v2i or v2j of p2 (as in Figure 4.13), forces F3-
F8 are also applied between v1 and e, such that e is moved based on the forces exerted on it about x.

A B

Figure 4.13: Forces to maintain the same zones as those in the initial layout (objective 2)—forces F3
to F8 are also applied between vertices and edges when the vertex of one polygon is closer to a point on
the edge of a second polygon than the vertices of this second polygon. (A) Two polygons, p1 and p2, in a
layout generated at some point during the layout improvement process. (B) A magnified view of a section of
the layout. Vertex v1 of p1 is closer to point x on the edge (v2i, v2j) of p2 than to vertices v2i and v2j.
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Forces to Meet Objective 3

As the vertices are moved during the layout improvement process, zones could become disconnected
making the diagram layout non-wellformed and thus difficult to comprehend (Section 3.5.1).

To ensure zones are connected, so all are made up of one region (objective 3, Section 4.2.3), the
following force is applied to layouts with at least one disconnected zone, just before any of the forces
that strive to meet objective 2 are considered. So, for every pair of distinct polygons, p1 and p2, in the
current layout and for every zone z in any or both of p1 and p2:

(F9) While zone z is disconnected (e.g., Figure 4.14A)

If r is the smallest region of z,
for every vertex v1 of p1 and vertex v2 of p2

if v1 is inside or on an edge of r and v2 is not inside or on an edge of r 
(e.g., Figure 4.14B-C),

an attractive force with ca = 0.05 is exerted between v1 and v2,

so that these vertices move accordingly and 
a region from z is discarded (as in Figure 4.14D).

A B C D

Figure 4.14: Forces to ensure zones are connected, so all are made up of one region (objective 3).
(A) An example of two polygons, p1 and p2, with two disconnected zones whose regions are precisely inside
one of the polygons. (B) The attractive force between a vertex v1 of p1 and a vertex v2 of p2, when v1 and v2

are inside or on an edge of the smallest region of a disconnected zone (here the disconnected zone has two
regions in exactly p1). (C) The same type of force as in B, but for a different disconnected zone (here the
disconnected zone has two regions in exactly p2). (D) The polygons with connected zones once the attractive
force is exerted between the relevant vertices of p1 and p2 and these vertices are moved accordingly.

Forces to Meet Objective 4

Layouts with curves close to one another are difficult to comprehend [Benoy and Rodgers, 2007] and
could break the important wellformedness property of discrete curves [Rodgers et al., 2012b]. Repulsive
forces ensure that vertices (or other structures) are not too close to one another. As the vertices move by
the force, the edges connected to them also move. So most of the previously discussed repulsive forces
will also ensure curves are not too close to one another (objective 4, Section 4.2.3). This is particularly
relevant to the forces for objective 2, as in some cases they are also applied between vertices and edges.

Forces to Meet Objective 5

Sometimes a curve is contained in another curve or zone. The repulsive forces in the model would
ensure that this contained polygon remains inside the containing polygon or zone. However, centring
this contained polygon in its containing polygon or zone, so that its boundary is equidistant from that of
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the containing structure, could improve the layout and its symmetry. To ensure contained curves are
centred in their containing curve or zone (objective 5, Section 4.2.3), the following force is applied:

(F10) When a polygon is contained in another polygon or zone (e.g., Figure 4.15A, D)

If c1 is the centroid of the contained polygon 
and c2 is the centroid of the containing polygon or zone
(e.g., Figure 4.15B, E),

an attractive force with ca = 0.05 is exerted on c1 from c2,

so that the entire contained polygon is moved closer to c2 and 
centred in its containing polygon or zone (e.g., Figure 4.15C, F).

A B C

D E F

Figure 4.15: Forces to centre contained curves in their containing curve or zone (objective 5). (A) An
example of a polygon contained in another polygon. (B) The attractive force on centroid c1 of the contained
polygon from centroid c2 of the containing polygon. (C) The layout once the attractive force is exerted.
(D) An example of a polygon contained in a zone. (E) The attractive force on centroid c1 of the contained
polygon from centroid c2 of the containing zone. (F) The layout once the attractive force is exerted.

Forces to Meet Objective 6

If the size of the zones is inadequate, the layout could be difficult to understand, particularly when zones
are not easily visible and their area is disproportional to that of other zones [Benoy and Rodgers, 2007].
An adequate zone area could be one that is similar to the area of other zones in the layout, so that the
diagram area is evenly distributed among its zones [Benoy and Rodgers, 2007]. 

Another option is for the zone area to be inversely proportional to the number of curves in which it
resides, in that the greater the number of curves it is located in, the smaller the zone area [Stapleton et
al., 2012]. So if a k-curve zone is a zone that is located in k curves of a diagram with n curves, the area
of the zone is assigned a weight w = n⧸k. Example, if a diagram has three curves (n=3), a 1-curve zone
(k=1; w=3) will be twice as large as a 2-curve zone (k=2; w=3⧸2) and three times as large as a 3-curve
zone (k=3; w=1). This ensures that outermost curves in the diagram are similar in size even when any
one of the curves contains other curves. This is illustrated in Figure 4.16 where the difference in the
area of curves a and b in Figure 4.16A, in which layout the area of the zones is inversely proportional to
the number of curves the zones reside in, is smaller than that in Figure 4.16B where all the zones have
the same area. Also, for layouts to have same sized zones, the shape of some of the curves might have to
be less regular than desired and contained curves might not fit in the containing curve or zone. Example,
the curve labelled c in Figure 4.16B is depicted by an ellipse rather than a circle. If curve c is depicted
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as a circle with the same area as that of the ellipse in Figure 4.16B, curve c would intersect with curve
b. This issue is not visible in Figure 4.16A, as the area of zone ac, thus the area of curve c, is smaller
than that of zone a, as zone ac is in two curves rather than one. Flower et al.'s [2003b] layout method
aims at having same sized zones. However, the authors indicate that often this is not possible as other
important curve aesthetics such as curve smoothness and closeness could be compromised. Thus, in this
work, an adequate area for a k-curve zone in a diagram with n curves is proportional to w = n⧸k.

A B

Figure 4.16: Possible ways how to adequately size zones and curves in a diagram. (A) The area of each
zone is the inversely proportional to the number of curves the zone is located in. (B) The area of all the zones
is equal. However, curve c is depicted as an ellipse, as a circle with the required area would not fit in zone a.

To attain the adequately sized zones and curves (objective 6, Section 4.2.3), a set of forces are
required to change the size of the polygons depicting the curves and to move these polygons closer or
further away from one another, so that the required adequate zone areas are obtained. The size of the
polygons is changed appropriately by progressively changing the strength of the repulsive force F1 that
ensures that vertices of polygons are not too close to one another. The greater the repulsive force, the
further away neighbouring vertices of a polygon are from one another, thus enlarging the polygon. Once
the size of the polygons is changed so their area is the sum of the required adequate area of the zones
they contain, the polygons are moved using the following forces to get the required zone areas:

(F11) To increase the area of a zone (e.g., Figure 4.17A)

If z is the zone whose area should be increased 
and c1 is the centroid of z,

for every polygon p that contains z,

if c2 is the centroid of p (e.g., Figure 4.17B, C),

an attractive force with ca = 0.03 is exerted on c2 from c1,

so that the entire polygon p is moved closer to c1, 
thus increasing its size (e.g., Figure 4.17D).

A B C D

Figure 4.17: Forces to attain adequately sized zones and curves (objective 6)—increasing the area of a
zone. (A) In this example, the area of the zone that is in both polygon p1 and p2 (compromised by the
overlapping region) should be increased. (B) The attractive force on the centroid c2 of p1 from the centroid c1

of the zone to be enlarged. (C) The attractive force on the centroid c2 of p2 from the centroid c1 of the zone to
be enlarged. (D) The layout once the attractive force is exerted on the centroid of all the polygons that
contain the zone from the centroid of the zone and the entire polygons are moved accordingly.

4.3 The Layout Method – eulerForce | 78



(F12) To decrease the area of a zone (e.g., Figure 4.18A)

If z is the zone whose area should be decreased 
and c1 is the centroid of z,

for every polygon p that contains z,

if c2 is the centroid of p (e.g., Figure 4.18B, C),

a repulsive force with cr = 4000 is exerted on c2 from c1,

so that the entire polygon p is moved further away from c1, 
thus decreasing the size of z (e.g., Figure 4.18D).

A B C D

Figure 4.18: Forces to attain adequately sized zones and curves (objective 6)—decreasing the area of
a zone. (A) Here the area of the zone that is in both polygon p1 and p2 should be decreased. (B) The repulsive
force on centroid c2 of p1 from centroid c1 of the zone to be enlarged. (C) The repulsive force on centroid c2

of p2 from centroid c1 of the zone to be enlarged. (D) The layout once the repulsive force is exerted on the
centroid of all polygons that contain the zone from the centroid of the zone and the entire polygons moved.

Similar to the forces for objective 2 (i.e., maintaining the same zones as in the initial layout), other
forces besides F11 and F12 have been added to correct generated layouts whose zones are not the same
as in the initial layout. We do not disallowed incorrect layouts to reduce the chances of reaching a local
minimum. So, if while increasing or decreasing zone areas,

(F13) The current layout has a zone that is not depicted in the initial layout 
 (e.g., Figure 4.19A is the initial layout, Figure 4.19B is the current layout)

If z is the zone that is in the current but not the initial layout 
and c1 is the centroid of z,
for every polygon p that contains z in the current but not in the initial layout,
if c2 is the centroid of p (e.g., Figure 4.19C),

a repulsive force with cr = 2000 is exerted on c2 from c1,

so that the entire polygon p is moved further away from c1, 
thus reducing the size of z and its appearance in the layout 
until it is no longer visible (as in Figure 4.19A).

A B C

Figure 4.19: Forces to attain adequately sized zones and curves (objective 6)—correcting layouts with
a new zone. (A) An initial layout. (B) The current layout with a zone that is not in the initial layout. (C) The
repulsive force on centroid c2 of p1 from centroid c1 of the unwanted zone, which moves p1 away from c1. 
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(F14) The current layout does not have a zone that is depicted in the initial layout 
 (e.g., Figure 4.20A is the initial layout, Figure 4.20B is the current layout)

If z is the zone that is in the initial but not the current layout,

for every pair of distinct polygons p1 and p2 that should contain z,

if c1 is the centroid of p1 and c2 is the centroid of p2 (e.g., Figure 4.20C),

an attractive force with ca = 0.05 is exerted between c1 and c2,

so that the entire polygons p1 and p2 are moved closer to one another
and once all the distinct pairs of polygons that should contain z get closer,
the missing zone is regained (as in Figure 4.20A).

A B C

Figure 4.20: Forces to attain adequately sized zones and curves (objective 6)—correcting layouts with
a missing zone. (A) The initial layout. (B) The current layout with a missing zone that is in the initial layout.
(C) Attractive force between centroid c1 of p1 and centroid c2 of p2, moving p1 and p2 closer to one another.

F1 to F14 describe our force model that strives to generate improved layouts that satisfy objectives 1
to 6 (Section 4.2.3). We now describe the algorithm we used to apply and balance out the forces.

4.3.2 The Algorithm

Our algorithm is similar to that used by Eades [1984] to apply and balance out the forces in the system.
Given an Euler diagram generated by a current automatic drawing method, the eulerForce algorithm
iteratively: checks which of the forces in Section 4.3.1 should be applied to the layout of the diagram
based on its current state and the set of zones in the diagram's initial layout; computes the magnitude
and the direction of the forces on each of the structures (vertices, edges, entire polygons) that the forces
should be applied to; moves these structures accordingly to create a new layout. After a number of
iterations, the forces in the system equilibrate and the improved layout is returned. 

Most of the forces in the model act on the vertices of the polygons in the layout, so polygons with
fewer vertices are subject to fewer changes than those with more vertices. Thus, before the algorithms
iterates through the force model, the number of vertices on each of the polygons in the given diagram
layout is equalized. For instance, if a layout has two polygons, p1 and p2, and p1 has 10 vertices and p2

has 12 vertices, two vertices are added to p1. This is done by first adding a vertex x between two vertices
v1 and v2 of the polygon that are connected by an edge (v1, v2), then removing (v1, v2) and adding new
edges (v1, x) and (x, v2). Since the forces can enlarge the polygons, at the end of every iteration, vertices
are added on edges whose length is large enough to make the polygon look non-smooth.

Algorithm 4.1 shows the eulerForce algorithm as explained above. Figure 4.21 illustrates the layouts
produced at various stages of the algorithm for a diagram example provided as an input to eulerForce. 
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Algorithm 4.1: eulerForce (d)

Input: An Euler diagram d with curves represented as polygons
Output: An improved layout for d

1. layout ← d
2. Equalize the number of vertices of each polygon in layout
3. for i = 1 to I do 
4.      for each force F in the force model do
5.           if F should be applied on layout based on layout's current state and the set of zones in d then
6.                for each structure s in layout on which F should be applied do
7.                     (m, r) ← magnitude and direction of F on s
8.                     layout ← new layout after s is moved m in direction r
9.                end for
10.           end if
11.      end for
12.      Add as many vertices as necessary to the polygons in layout, so the polygons look smooth 
13. end for
14. return layout

For Euler diagrams with 3 curves I=200, 4-curves I=250, 5-curves I=350, more than 5 curves I=500.

A – 0 iterations B – 100 iterations

C – 200 iterations D – 350 iterations – final

Figure 4.21: Running the eulerForce algorithm on a diagram example. (A) A diagram generated by
Rodgers et al.'s [2008b] method with abstract description {∅, c, d, bc, cd, ce, ace, bcd, bce, cde, abce, acde,
bcde, abcde} that is passed on as input to eulerForce. The layout of A after: (B) 100 iterations; (C) 200
iterations; (D) 350 iterations, when the algorithm terminates. D is the improved layout returned by eulerForce

for A. Though B has a zone de which is not visible in A, the set of zones of C and D is the same as that of A.
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The number of iterations I in Algorithm 4.1 is predefined (hardcoded), as in Eades's [1984]
algorithm, but its value varies depending on the number of curves in the Euler diagram. The value of I
for an n-Euler diagram, shown below Algorithm 4.1, was determined after the layout improvement
process was observed for a number of different n-Euler diagrams using different values for I. The
chosen values were the ones that best met our objectives in Section 4.2.3 for the tested diagrams. 

Due to the various forces in the model, a limit is set on the magnitude of the resultant force
exerted on a structure (vertex, edge, polygon). This limit is inversely proportional to the current i in
Algorithm 4.1, so major changes are only carried out at the initial iterations when a more extensive
search for an appropriate layout is required. During the final iterations, minor changes are carried out to
refine the layout and ensure the algorithm converges to a solution. 

The transition from the initial to the final layout is animated, thus facilitating understanding of
how the forces aid in improving the layout and how they interact with one another [Di Battista et al.,
1999a]. This method was also helpful to understand and appropriately define the required forces to lay
out Euler diagrams and to devise the first force model to improve their layout. Moreover, this simple
algorithm could aid in preserving the layout's mental map [Eades et al., 1991] despite it is changed.

Eades's [1984] simple spring embedder was aimed for non-dense graphs with few vertices. For
graphs with with hundreds of vertices, poor layouts are produced by this embedder due to the various
local minima in its physical model [Kobourov, 2012]. As discussed in Section 4.3.1, we avoid these
local minima by accepting all layouts obtained during the improvement process, including those that do
not depict the same set of zones as in the initial layout. To correct these layouts, we then apply forces
F4, F6, F8, F13 and F14 to regain lost zones and remove extra zones. In this way, we explore more of
the search space than is possible if we disallow incorrect layouts from the improvement process. Even
so, Euler diagram layouts typically have few curves, thus fewer than hundreds of vertices. Sophisticated
techniques, like those in Section 2.4.1, will later be adopted to improve the efficiency and performance
of our algorithm. Example, Hu's [2005] method lays out graphs with over 10,000 vertices in less than a
minute. Yet as shown in Section 4.4, eulerForce already produces improved layouts in relatively fast time.

4.4 Evaluation

To evaluate our method eulerForce, we used its software implementation to improve the layouts of Euler
diagrams generated by a current drawing method (Section 4.4.1), and we compared eulerForce's layouts
with those generated by the only other implemented layout method for Euler diagrams (Section 4.4.2).
All the experiments were run on an Intel Core 2 Duo CPU E7200 @2.53GHz with 3.23GB RAM, 32-bit
Microsoft Windows XP Professional SP1, SP2 and SP3 and Java Platform 1.6.0.14.

4.4.1 Accuracy, Time and Aesthetics

We tested eulerForce on diagrams automatically generated by Rodgers et al.'s [2008b] method, to
evaluate its effectiveness in generating improved layouts that satisfy our objectives 1-6 (Section 4.2.3).
Rodgers et al.'s method was chosen, as it is the only method that draws a diagram for abstract
descriptions for which a wellformed Euler diagram can be drawn (Section 3.6). Thus, if an improved
layout generated by eulerForce had disconnected zones or concurrent curves, such that it was non-
wellformed and it did not satisfy our objective 3 or 4 (Section 4.2.3), a limitation in our method was
evident, as a wellformed diagram for that abstract description is known to exist.
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A(i) A(ii)

B(i) B(ii)

C(i) C(ii)

D(i) D(ii)

E(i) E(ii)

Figure 4.22: Examples of diagrams in the library generated by Rodgers et al.'s [2008b] method (left,
(i)) and eulerForce's layout for each of the diagrams (right, (ii))—the diagrams have four curves and
eulerForce's layouts are correct, as each (ii) depicts the same set of zones as respective (i). Layouts (i) and
(ii) have abstract description: (A) {∅, a, c, ac, cd, acd, bcd, abcd}; (B) {∅, b, c, ac, bc, cd, abc, bcd};
(C) {∅, b, c, ac, bc, bd, abc, bcd}; (D) {∅, a, b, d, ab, ad, bd, abd, bcd, abcd}; (E) {∅, a, b, c, d, ab, bc, bd}.
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A(i) A(ii)

B(i) B(ii)

C(i) C(ii)

D(i) D(ii)

E(i) E(ii)

Figure 4.23: Examples of diagrams in the library generated by Rodgers et al.'s [2008b] method (left,
(i)) and eulerForce's layout for each of the diagrams (right, (ii))—the diagrams have five curves and
eulerForce's layouts are correct, as each (ii) depicts the same set of zones as respective (i). Layouts (i) and
(ii) have abstract description: (A) {∅, b, d, ab, bd, be, abd, abe, bcd, bde, abde, bcde}; (B) {∅, b, d, ab, bc,
bd, be, abc, abe, bce, bde, abce}; (C) {∅, b, c, d, bc, bd, cd, abc, bcd, bce, abcd, bcde}; (D) {∅, a, b, d, e, ab,
ac, ad, bc, be, cd, ce, de, abc, acd, bce, cde, abcd, abce, acde, bcde, abcde}; (E) {∅, a, b, c, d, e, ad, ae, bc,
bd, ce, abd, abe, ace, ade, bcd, bce, abcd, abce, abde, bcde, abcde}.
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(i) (ii)

Figure 4.24: Examples of diagrams in the library generated by Rodgers et al.'s [2008b] method (left,
(i)) and eulerForce's layout for each of the diagrams (right, (ii))—the diagram has three curves and
eulerForce's layout is correct, as (ii) depicts the same set of zones as (i). Layouts (i) and (ii) have abstract
description {∅, a, b, c, ab, ac}.

A(i) A(ii)

B(i) B(ii)

Figure 4.25: Examples of diagrams in the library generated by Rodgers et al.'s [2008b] method (left,
(i)) and eulerForce's layout for each of the diagrams (right, (ii))—the diagrams have five curves and
eulerForce's layouts are incorrect, as each (ii) depicts a different set of zones than respective (i). (A) The
abstract description of (i) is {∅, c, e, bc, cd, ce, acd, bcd, bce, cde, acde, bcde}, but that of (ii) is {∅, c, e, bc,
cd, ce, acd, bcd, bce, cde, acde, bcde, abcd, abcde} as it has zones, abcd and abcde, that are not depicted in
(i). Also, curve a in (ii) is not completely regular and smooth. (B) The abstract description of (i) is {∅, b, c, e,
ab, ad, ae, bc, bd, be, cd, ce, de, abd, abe, acd, ade, bcd, cde, abcd, abde, acde}, but that of (ii) is {∅, b, c, e,
ab, ae, bc, bd, cd, ce, de, abd, abe, acd, ade, bcd, cde, abcd, abde, acde, abcde} as it does not have zones, ad
and be, that are depicted in (i) but has zone, abcde, that is not depicted in (i). Also, (ii) is non-wellformed.

A library of Euler diagrams generated by Rodgers et al.'s [2008b] method for all the abstract
descriptions for which a wellformed Euler diagram with three, four and five curves can be drawn was
assembled. This library included: 9 3-Euler diagrams, 114 4-Euler diagrams, 342 5-Euler diagrams. Our
method eulerForce was used to improve the layout of the diagrams in this library. Figure 4.22,
Figure 4.23, Figure 4.24 and Figure 4.25 illustrate a few of: (i) the diagrams in the library, (ii) the
corresponding layout by eulerForce. Layouts (ii) in Figure 4.22, Figure 4.23, Figure 4.24 depict the same
set of zones as those in (i), but those in Figure 4.25 do not and are thus examples of cases where
eulerForce fails to produce an appropriate layout. We now discuss eulerForce's results shown in Table 4.1.
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Table 4.1: Results for the layouts produced by eulerForce for all of Rodgers et al.'s [2008b] diagrams in
our library: the percentage of layouts satisfying our objectives; the mean time to produce the layouts.

N

objectives

mean
time

1 2 3 4 5 6
regular, smooth,
similarly shaped,

convex curves

same zones
as initial
layout

connected
zones

curves not
too close to
one another

centring contained
curves in containing

curve or zone

adequately
sized zones
and curves

3-Euler 9 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 7s

4-Euler 114 94.4% 100.0% 100.0% 93.8% 99.1% 72.8% 26s

5-Euler 342 92.4% 61.2% 84.5% 88.0% 96.5% 58.1% 77s

An n-Euler is an Euler diagram with n curves. Our objectives were defined in Section 4.2.3.

Accuracy

A layout produced by eulerForce is accurate if it satisfies objective 2 (Section 4.2.3) and thus depicts the
same set of zones as in the initial layout. Table 4.1 shows that all the produced layouts were accurate
except for those with five curves. Most (95.5%) of the inaccurate 5-curve layouts had on average 200
vertices and were produced for dense Euler diagrams with over 20 zones. Spring embedders are aimed
for non-dense graphs with less than 50 vertices [Eades, 1984; Gibson et al., 2012], so this result was
partly expected as spring embedders cannot effectively manage the forces on a large number of
structures. Yet, as discussed in Section 4.2.3 and Section 4.3.2, we opted for a spring embedder to help
us identify (for the first time) the main forces that are required to handle Euler diagrams. Sophisticated
force-directed techniques (Section 2.4.1) will later be used to better handle large, dense Euler diagrams.

In Figure 4.25A, eulerForce's layout (ii) has zones abcd and abcde that are not depicted in the initial
diagram layout (i), as curves a and b should be disjoint as in Figure 4.26A. The non-smooth section of
curve a indicates that force F4 was attempting to get curves a and b disjoint, but did not fully succeed as
F4 was weaker than other current interacting forces.

In Figure 4.25B, eulerForce's layout (ii): does not have zones ad and be that are depicted in the
initial layout (i); has zone abcde that is not depicted in the initial layout (i). Despite having smooth
curves, layout (ii) is non-wellformed due to a triple point on curves a, b and e. To depict multiple curve
overlaps, less regular shaped curves are likely to be required and thus, the strength of forces F1 and F2
(to obtain regular, smooth, similarly shaped, convex curves—objective 1) might have to be dynamically
tuned using more sophisticated techniques. In fact, to depict the set of zones of (i) with smooth curves
and a wellformed layout, curves b, c, e should be less circular and more elongated as in Figure 4.26B.

A B

Figure 4.26: Alternative layouts to Figure 4.25A(i) and Figure 4.25B(i). (A) Has abstract description
{∅, c, e, bc, cd, ce, acd, bcd, bce, cde, acde, bcde} as Figure 4.25A(i). (B) Has abstract description {∅, b, c,
e, ab, ad, ae, bc, bd, be, cd, ce, de, abd, abe, acd, ade, bcd, cde, abcd, abde, acde} as Figure 4.25B(i).
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Time

Despite using a simple algorithm, eulerForce still produces layouts in relatively fast time (Table 4.1).
This time is comparable to that of other force-directed drawing algorithms for graphs, which typically
produce layouts within a minute [Gibson et al., 2012]. Also, a response time of 10 seconds or less
ensures the users' attention is maintained [Miller, 1968]. This time could be improved further in the
future once a better-optimized algorithm (like those in Section 2.4.1) is adopted.

Aesthetics

Besides being accurate, eulerForce's layouts should satisfy the aesthetic criteria in objectives 1, 3-6
(Section 4.2.3). Table 4.1 shows the percentage of eulerForce's layouts satisfying each of these objectives.
No formal metrics are available to measure the aesthetics of Euler diagrams (Section 3.5) and thus, the
results in Table 4.1 for objectives 1, 4, 5 are based on our judgement of how these should be measured.

A layout with regular, smooth, similarly shaped, convex curves (objective 1) has: polygons for
the curves whose interior angles are greater than 3π / 4; curves that can be classified into no more than
two groups of similarly shaped curves (e.g., in Figure 4.22C(ii), the two groups are: curves b and c;
curves a and d). There are no formal metrics for this aesthetic criteria and thus, our measure is based on
our judgement of what constitutes a smooth curve and a layout with similarly shaped curves. Table 4.1
indicates that most of the layouts, including inaccurate ones (e.g., Figure 4.25B(ii)) satisfied objective 1,
which is typical for a spring embedder due to its physical system and its attractive and repulsive forces.
The same is apparent in (ii) of Figure 4.22, Figure 4.23, Figure 4.24 and Figure 4.25. 

A layout with connected zones (objective 3) has zones with only one minimal region (Section 3.4.2).
All accurate layouts were wellformed, thus all satisfied objective 3, as in (ii) of Figure 4.22, Figure 4.23,
Figure 4.24. Only 39.8% of the inaccurate layouts, all of which had five curves, had disconnected zones.

A layout has curves that are not too close to one another (objective 4) when all of its non-
intersecting curves are at least 10 pixels away from one another. There are no formal metrics for this
aesthetic criteria and thus, our measure is based on our judgement of how far apart two non-intersecting
curves have to be for them to be seen as discrete and non-concurrent. All accurate layouts satisfied
objective 4, as in (ii) of Figure 4.22, Figure 4.23, Figure 4.24. Only 16.5% of the inaccurate layouts, all
of which had five curves, did not satisfy objective 4.

A layout whose contained curves are centred in their containing curve or zone (objective 5) is
one whose curves contained in other curves or zones appear to be centred as appropriately as possible in
their containing curve or zone. It is difficult to formally evaluate how well this objective was met as the
possibility of centring a curve depends on the layout of other curves and the required zones. Example in
(ii) of Figure 4.23C, curve a cannot be centred in the containing zone bc, as zone bc also contains curve
e. Table 4.1 shows that most contained curves appeared to be (according to our visual judgement)
centred as appropriately as possible. Layouts (ii) of Figure 4.22A-D and Figure 4.23A-C indicate that
the force (F10) that handles this objective aids in improving the aesthetics of the layouts as it ensures
that: contained curves are evenly distributed in the containing curve or zone, thus helping produce
highly symmetric layouts; containing curves are not enlarged unnecessarily just because a contained
curve is getting too close to its edge despite that there is enough space elsewhere in the containing zone.

A layout with adequately sized zones and curves (objective 6) is one whose area for each of the
zones is inversely proportional to the number of curves in which the zone is located (Section 4.3.1).
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Most of the layouts satisfied objective 6 (Table 4.1), but as expected, fewer layouts satisfied this
objective than others as the forces (F11-F14) handling this objective were intentionally weaker than
others that handle more important aesthetics. Layouts (ii) of Figure 4.22, Figure 4.23 and Figure 4.24
indicate that our approach to ensure adequately sized zones and curves is effective as it ensures that:
curves contained in other curves or zones are not too large to fit in the containing curve or zone with
possibly other zones as in Figure 4.22B and Figure 4.23A-C and without breaking wellformedness; the
number of curves in which a zone is located is easier to identify than if all the zones had a similar area. 

Layouts (ii) of Figure 4.22, Figure 4.23, Figure 4.24 indicate that eulerForce's layouts are often
symmetric. The typical spring embedder forces (F1, F2) are likely to produce symmetric layouts [Eades
and Lin, 2000]. Yet other forces in our model like the centring force F10 help in achieving symmetry.

For the layouts to be effectively evaluated, formalized aesthetic metrics and cognitive measures (like
those in graph drawing [Purchase et al., 2002, 2002, 2012]; Appendix C.1.1) are required. Few studies
have investigated the aesthetics of such diagrams and no criteria have been formalized (Section 3.5).

4.4.2 eulerForce versus Previous Methods

The only other implemented layout method is Flower et al.'s [2003b] multi-criteria optimization
method (Section 4.2.1). We visually compared layouts generated by eulerForce and Flower et al.’s
method ((ii) in Figure 4.27 and Figure 4.28) for two 4-set abstract descriptions (Flower et al.'s method
handles up to four curves). Table 4.2 shows our observations. There are no formal metrics or empirical
evidence for Euler diagram aesthetics (Section 3.5) and thus, our judgement could be partly subjective.

Flower et al.'s initial layouts were generated by methods [Flower et al., 2003a; Flower and Howse,
2002] available at the time. The initial layouts of eulerForce were generated by a more recent method
[Rodgers et al., 2008b], which is a variant of those used by Flower et al., as it uses a planar dual graph
to draw the curves and it is restricted to abstract descriptions for which a wellformed Euler diagram can
be drawn (Section 3.6). So for the same abstract description, the initial layout used by Flower et al.'s
method (e.g., (i) of Figure 4.27) was different from that used by eulerForce (e.g., (i) of Figure 4.28).

For abstract description {∅, a, c, ac, cd, acd, bcd, abcd}, Flower et al.'s method produced layout
(ii) from the initial layout (i) in Figure 4.27A, while eulerForce produced layout (ii) from the initial
layout (i) in Figure 4.28A. The layouts by both methods are accurate as they depict the same zones as in
the initial layout. The curves in Flower et al.'s layout are smooth and convex, but different in shape, and
the layout is non-symmetric. The curves in eulerForce's layout have a more regular, circular, similar
shape than those in Flower et al.'s layout. These curve aesthetics are preferred and consistent with
various perceptual principles that could facilitate diagram understanding (Section 3.5.2). The containing
and contained curves b, c and d are centre aligned and the distance between curve c and d is the same as
the distance between curve b and d. These features could make subsets more apparent and the layout
more symmetric. It is unknown whether symmetry could aid Euler diagram comprehension, but it is
known that symmetry helps comprehension of other diagrams like graphs (e.g., [Purchase et al., 2002]).

For abstract description {∅, a, c, d, ac, ad, bc, abc}, Flower et al.'s method produced the accurate
layout (ii) from the initial layout (i) in Figure 4.27B, while eulerForce produced the accurate layout (ii)
from the initial layout (i) in Figure 4.28B. The curve aesthetics of the layouts produced by Flower et al.
and eulerForce are similar to those of the layouts in the previous example (Figure 4.27A, Figure 4.28A).
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A(i) A(ii) B(i) B(ii)

Figure 4.27: The improved layouts (ii) generated by Flower et al.'s [2003b] method for the diagrams
and initial layouts (i). Curve labels were added to the original diagrams in Flower et al.'s [2003b] article.
Layouts (i) and (ii) have abstract descriptions (A) {∅, a, c, ac, cd, acd, bcd, abcd} and (B) {∅, a, c, d, ac, ad,
bc, abc}, which are the same as those in Figure 4.28. Source: [Flower et al., 2003b] Figures 11 and 13 redrawn

A(i) A(ii) B(i) B(ii)

Figure 4.28: The improved layouts (ii) generated by eulerForce for the diagrams and initial layouts (i).
Layouts (i) and (ii) have abstract descriptions (A) {∅, a, c, ac, cd, acd, bcd, abcd} and (B) {∅, a, c, d, ac, ad,
bc, abc}, which are the same as those in Figure 4.27.

Table 4.2: The characteristics of the two layouts (ii) in Figure 4.27 produced by Flower et al.'s
[2003b] method and the characteristics of the two layouts (ii) in Figure 4.28 produced by eulerForce.

adequately
sized zones
and curves

same zones
as initial
layout

smooth
curves

convex
curves

similarly
shaped
curves

contained curves
centred in

containing curve

symmetric
layout

Flower et al. yes yes yes somewhat somewhat no no

eulerForce yes yes yes yes yes yes yes

yes / somewhat / no – the 2 layouts generated by the method  had / somewhat had / did not have  the characteristic

Both eulerForce and Flower et al.'s method aim for layouts with adequately sized zones. Our method
eulerForce aims for a zone area that is inversely proportional to the number of curves in which the zone is
located, while Flower et al.'s method aims for same sized zones. As discussed in Section 4.3.1, the latter
definition for an adequate zone area is not appropriate for all Euler diagrams. In fact, Flower et al.
indicate that often their optimization is not able to optimize the zone areas, as in most cases same sized
zones cannot be obtained without breaking other more important aesthetic criteria like curve roundness
and closeness. Thus, the zones often end up getting an arbitrary non-optimized area. This is evident in
Figure 4.27, as Flower et al.'s produced layouts seem to have differently sized zones. In contrast, all the
zones located in the same number of curves of eulerForce's layouts in Figure 4.28 seem to have a similar
area. As discussed in Section 4.3.1 and as noted by Flower et al., it is hard to get same sized zones in an
accurate layout that satisfies important curves aesthetics. Thus other definitions of adequately sized
zones, like the one adopted by eulerForce, should be considered and evaluated.
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Though the initial layouts used by eulerForce have curves that are less smooth and less convex than
those used by Flower et al.'s method, eulerForce's improved layouts are accurate and have smooth,
convex curves as in Flower et al.'s layouts, but they also have similarly shaped curves, contained curves
centred in containing curves, a symmetric layout, and adequately (non-arbitrary) sized zones, all of
which are not as apparent in Flower et al.'s layouts (Table 4.2).

4.5 Future Work

This is the first forced-directed approach that has been devised to improve the aesthetics of the curves
of Euler diagrams and though we adopted a simple spring embedder, our evaluation (Section 4.4)
indicates a great potential for this approach. So further investigations should be carried out to improve
and extend our method, so the layout of different diagram types is improved in relatively fast time.

Firstly, it would be interesting to evaluate the layouts generated by eulerForce for initial layouts that
are non-wellformed and for diagrams with an abstract description for which a wellformed Euler
diagram cannot be drawn. Until now, eulerForce has been evaluated for initial layouts that are wellformed
and have an abstract description for which a wellformed diagram can be drawn (Section 4.4.1). This
was intentionally done to evaluate the effectiveness of the forces that we specifically devised to ensure
that the zones are connected and the curves are not too close to one another (objectives 3 and 4,
Section 4.2.3; forces described in Section 4.3.1 subsection 'Forces to Meet Objective 3' and subsection
'Forces to Meet Objective 4'). However, the effectiveness of these forces in handling non-wellformed
diagrams should be evaluated, so that, if necessary, the force model is adapted to handle such diagrams.

Our main aim was to devise a force model that appropriately handles Euler diagrams. We wanted to
evaluate the effectiveness of our forces and how they interact with one another and thus, we opted for
Eades's [1984] simple spring embedder algorithm that facilitates understanding of the interacting forces
in the system [Di Battista et al., 1999a]. We are aware that this algorithm is not as efficient as other
algorithms [Gibson et al., 2012] and is unable to appropriately handle hundreds of vertices due to the
likelihood of reaching a local minimum [Kobourov, 2012]. Such limitations are evident in our eulerForce

evaluation for Euler diagram layout with five curves (discussed in Section 4.4.1 subsection 'Accuracy').
However, until now, our focus was on the force model rather than the algorithm. Now that the force
model is devised, sophisticated force-directed algorithms such as those used for laying out large graphs
(discussed in Section 2.4.1) should be adopted and investigated.

For instance, a multilevel approach such as that used in graph drawing (e.g., [Hu, 2005; Walshaw,
2001]) can be adopted to overcome local minima and to efficiently handle layouts with thousands of
vertices and thus, with various curves and zones like those in Figure 4.25. As an example, Hu's [2005]
method uses this approach to lay out graphs with over 10,000 vertices in less than a minute.

Barnes and Hut [1986] algorithm can be used to efficiently and dynamically compute the appropriate
forces at every step of the layout improvement process. This could thus aid in handling cases such as
those in Figure 4.25 . This method has been successful in graph drawing to ensure the required criteria
are met (e.g., [Hu, 2005; Tunkelang, 1999]). Force-directed techniques in graph drawing have also
demonstrated that adding magnetic fields to the system and its springs could aid in satisfying various
aesthetic criteria [Sugiyama and Misue, 1995a, b] and so, this technique should also be considering for
Euler diagram layouts.
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Very few studies have been carried out to assess the aesthetics of Euler diagrams and to identify the
important features that make the diagrams easier to comprehend and reason out (e.g., [Benoy and
Rodgers, 2007; Rodgers et al., 2012b]; Section 3.5). However, formalized aesthetic metrics and
cognitive measures are required to appropriately evaluate Euler diagram layouts and their effectiveness.
Though Flower et al. [2003b] defined a few metrics for their layout method, their metrics have not been
evaluated and they might not be entirely appropriate in identifying effective layouts (Section 4.4.2). So
at present, no formalized aesthetic criteria or metrics are available for Euler diagrams. As evident in
graph drawing (graph aesthetics discussed in Appendix C.1.1), various studies, expertise, resources and
time are required for such metrics and measures to be fully formalized and evaluated, but work should
commence to ensure the availability of guidelines to appropriately evaluate Euler diagram layouts.

4.6 Summary

Drawing a comprehensible Euler diagram that only depicts the required zones in an abstract description
is difficult (Section 3.6). Automatic drawing techniques that attempt to generate comprehensible Euler
diagrams by for instance, restricting the shape of the curves to a circle, often generate diagrams with
empty zones which could be misleading (Section 3.5.2). Other techniques that generate diagrams with
precisely the required set of zones are often incomprehensible as the curves are non-smooth, non-
convex and indistinguishable (Section 3.5.2). Two methods have been proposed to improve the layouts
of such diagrams (Section 3.6.3). However, these methods are complex, computational expensive and
inappropriate to satisfy diverse aesthetic criteria and handle diagrams with various curves. Force-
directed techniques (Section 2.4.1) have been widely evaluated and used to lay out comprehensible
graphs in relatively fast time, but have never been used for Euler diagram layouts.

In this chapter, we introduced our layout method, eulerForce, as the first method that uses a force-
directed approach to improve the layout of Euler diagrams in relatively fast time. We discussed the
force model we devised to handle Euler diagrams and our evaluation of this technique. Though this was
a preliminary project and a simple algorithm was adopted, our evaluation indicates great potential for
using force-directed techniques to improve Euler diagram layouts and to possibly develop an efficient
automatic drawing technique that generates comprehensible diagrams given an abstract description.

In most application areas, 3-Venn diagrams that are area-proportional are typically used
(Section 3.7.1), as in one diagram both the data set relations and cardinalities are depicted, thus
facilitating analysis. In contrast to the diagrams handled in this chapter, in such cases, the area of each
zone must be proportional to the cardinality of the depicted data set relation. So special drawing
algorithms, different from those used for not area-proportional diagrams, are required to accurately
generate such diagrams (Section 3.7.4). Typically, the curves of these diagrams are drawn as circles due
to their regularity and good continuity. However, these diagrams are often inaccurate and misleading as
circles have limited degrees of freedom (i.e., a radius and a centre). So polygons are used to produce
accurate diagrams, but due to their non-smoothness, the diagrams are incomprehensible. Ellipses are
smooth and have more degrees of freedom than circles (i.e., a centre, a semi-minor and a semi-major
axis, and an angle of rotation) and so, they are more likely to produce diagrams that are both accurate
and easy to comprehend. However, none of the current drawing techniques, before our method eulerAPE,
use ellipses. In the next chapter, we discuss eulerAPE and the effectiveness of ellipses in drawing
accurate and comprehensible area-proportional Venn diagrams with three curves.
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Chapter 5

Drawing Area-Proportional 3-Venn 

Diagrams Using Ellipses

This chapter introduces our drawing algorithm eulerAPE for area-proportional 3-Venn diagrams using
ellipses. Its software implementation at http://www.eulerdiagrams.org/eulerAPE. It also includes:
analytic algorithms that compute the region areas of three overlapping ellipses, an evaluation of the
effectiveness of ellipses in drawing area-proportional 3-Venn diagrams, characteristics of the area
specifications that ellipses can depict accurately, and diagram design features to aid comprehension.

5.1 Introduction

Area-proportional 3-Venn diagrams (Section 3.7) are used extensively in diverse areas (Section 3.7.1)
to visualize data set relationships and cardinalities. Drawing these diagrams manually is difficult and
typically, an automatic drawing method (Section 3.7.4) is used. The data sets are often depicted as
circles, as they perceptually pop out as complete distinct objects due to their regularity and good
continuity (Section 3.5.2). However, circles cannot draw accurate area-proportional 3-Venn diagrams
for most data (Section 3.7.6) and so, the generated diagrams often have misleading zone areas. Accurate
diagrams can be drawn with polygons, but due to their non-smoothness and lack of good continuity, the
curves are not easily distinguishable and these diagrams are difficult to comprehend (Section 3.5.2).

In this chapter, we present our drawing algorithm eulerAPE as the first automatic method that uses
ellipses to draw area-proportional 3-Venn diagrams. Ellipses have more degrees of freedom than circles,
and unlike polygons, ellipses are smooth. So area-proportional Venn diagrams drawn with ellipses often
have distinguishable curves and zone areas that are proportional to the set intersection cardinalities.

Our evaluation of eulerAPE and ellipses indicated that for a large majority of random area
specifications (86%, N = 10000), an accurate area-proportional 3-Venn diagram can be drawn with
ellipses, even though there are area specifications for which such a diagram cannot be drawn accurately
using convex curves (Section 3.7.5). This indicates great potential for using curves that are regular and
smooth like circles, but more general and flexible.
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We start by outlining the motivation and objectives of this work (Section 5.2), followed by basic
concepts and definitions namely related to ellipses (Section 5.3). We then discuss our analytic methods
to calculate the region areas of three general overlapping ellipses (Section 5.4) and we explain how we
generate libraries of random area specifications for which it is known or yet uncertain that an accurate
area-proportional 3-Venn diagram can be drawn with ellipses (Section 5.5). We proceed with a detailed
explanation of our drawing method eulerAPE and a justification for our design decisions (Section 5.6),
followed by our evaluation of the effectiveness of eulerAPE and ellipses in depicting accurate area-
proportional 3-Venn diagrams with smooth curves for various random area specifications (Section 5.7).
We then discuss diagram design features that could facilitate comprehension of the diagram and the
depicted set relations and cardinalities (Section 5.8). We end this chapter with a discussion of possible
future work (Section 5.9) and a summary of our contributions and this chapter (Section 5.10).

This work has been published as a journal article [Micallef and Rodgers, 2014a], workshop paper
[Micallef and Rodgers, 2014c] and poster [Micallef and Rodgers, 2012], and presented at the 2012
Annual Grace Hopper Celebration (GHC) and ACM Student Research Competition (SRC).

The software implementation is at http://www.eulerdiagrams.org/eulerAPE. eulerAPE is widely
used in various research and industry areas (e.g., medicine, genomics, biophysics, astrophysics, mind
sciences, marketing), and it is recommended on PNNL's Venn Diagram Plotter webpage [Littlefield and
Monroe, 2013] indicating that eulerAPE produces more appropriate diagrams than their own circle-based
method. Diagrams drawn by eulerAPE are being included in various journal (e.g., [Burdon et al., 2013;
Flowers et al., 2013; Gresnigt et al., 2013]) and newspaper (e.g., [Bloch and Fairfield, 2013]) articles.

5.2 Motivations and Objectives

Area-proportional Venn diagrams with two and three curves are most commonly used (Section 3.7.1).
Automatic drawing methods have been proposed (Section 3.7.4), but they have a number of limitations.

5.2.1 Limitations of Previous Drawing Methods

Area-proportional Venn diagrams cannot be drawn analytically using a specific curve, so heuristics or
numerical methods are used (Section 3.7.6). Often these diagrams are drawn using circles (Section 3.7.1)
due to their regularity and good continuity (Section 3.5.2). Circles can draw accurate area-proportional
Venn diagrams for any data with two sets, but not three (Section 3.7.6), so most of those with three
circles are misleading, like those discussed in Section 3.7.6, which we show again in Figure 5.1. Other
diagrams with circles do not depict all the required zones or are non-wellformed (Section 3.7.4).

Such misleading diagrams are generated by all drawing methods using circles, including venneuler

[Wilkinson, 2012], which is considered the current best method in drawing accurate area-proportional
diagrams with circles (illustrated in Figure 3.28). Also, venneuler's loss function stress, that is used by
venneuler's optimization method to obtain the required diagram, could be relatively low even when the
diagram is missing required zones (e.g., Figure 3.28B and Figure 3.28C). Diagrams with missing zones
do not depict all the required set relations of the data and are thus misleading. However, since the
diagram's stress value is low, venneuler's optimization method considers such inappropriate diagrams a
good solution. So venneuler's statistical loss function stress might not be as appropriate in ensuring that
the required set relations are depicted.
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Polygons have more degrees of freedom than circles and can thus draw more accurate diagrams.
Chow proved that accurate, wellformed area-proportional 3-Venn diagrams with respect to any area
specification can be drawn using orthogonal rectangles or 6-gons (Section 3.7.5). However, polygons
are non-smooth, so the curves and zones are not easily distinguishable and the generated diagrams are
difficult to comprehend, like those discussed in Section 3.7.6, which we show again in Figure 5.2. Thus,
very few diagrams are drawn using polygons (Section 3.7.1).

Yet, drawing techniques, prior to our work in this chapter, depicted the curves as circles or polygons.

A B C

Figure 5.1: Area-proportional 3-Venn diagrams drawn with circles in literature. Figure 3.20 replica

A B C

Figure 5.2: Area-proportional 3-Venn diagrams drawn with polygons in literature. Figure 3.21 replica

5.2.2 Using Curves with More Degrees of Freedom That Are Still Smooth

Using ellipses, the accurate diagrams with smooth, distinguishable curves in Figure 5.3 and Figure 5.4
were generated for the quantitative data indicated by the numeric labels of the respective diagram in
Figure 5.1 or Figure 5.2. The diagrams in Figure 5.3 and Figure 5.4 were drawn using our novel
drawing algorithm eulerAPE, discussed in Section 5.6. It is the first to use ellipses, so the few area-
proportional 3-Venn diagrams with ellipses available prior to eulerAPE (e.g., [Gookin et al., 2008;
Haetzman et al., 2003; Zhang et al., 2011]) were all drawn manually. The need to use ellipses was noted
in 2004 in the first paper on drawing area-proportional Venn and Euler diagrams [Chow and Ruskey,
2004], and then in 2007 [Chow, 2007] and 2012 [Wilkinson, 2012]. Even so, ellipses had never been
used due to difficulties in calculating the areas of the regions of overlapping ellipses and in adjusting the
various properties of the ellipses [Chow and Ruskey, 2004].
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Figure 5.3: Accurate area-proportional 3-Venn diagrams drawn with ellipses using our drawing
algorithm eulerAPE for the quantities indicated by the numeric labels of the diagrams in Figure 5.1. 
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Figure 5.4: Accurate area-proportional 3-Venn diagrams drawn with ellipses using our drawing
algorithm eulerAPE for the quantities indicated by the numeric labels of the diagrams in Figure 5.2. 

There are area specifications for which an accurate area-proportional wellformed 3-Venn diagram
cannot be drawn using convex curves (Section 3.7.5). So ellipses cannot generate accurate diagrams for
all possible area specifications. However, since circles are preferred and a circle is a special instance of
an ellipse, it is sensible to use ellipses whenever circles are not good enough. It would be beneficial to
consider different shaped curves in a "natural progression" [Chow, 2007, p. 83], starting off with circles
and progressing with more general shapes like ellipses and ovals before less desired and non-smooth
shapes like polygons are considered. This would ensure that the smoothest and most regular curves
possible for the required data are used. Thus ellipses are the next to be investigated.

5.2.3 Our Objectives

With the development of eulerAPE, we aspired to: 

1. provide a deterministic drawing method that automatically draws appropriate area-proportional
Venn diagrams with smooth curves for most data with three sets instantaneously;

2. evaluate the effectiveness of ellipses in drawing appropriate area-proportional Venn diagrams
for most data with three sets, in contrast to circles and polygons;

3. provide and discuss diagram design features that could facilitate understanding of the diagram
and the depicted set relations and cardinalities.

To achieve these objectives, we first devised eulerAPE (objective 1). Our method eulerAPE uses a
simple hill-climber as an optimization technique to find a diagram that appropriately depicts the
required set relations and cardinalities and so, the following components were required:
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• analytic geometry methods to compute the region areas of three general intersecting ellipses
(Section 5.4);

• a novel cost function to direct the optimization process towards a good solution (Section 5.6.4);

• a method to generate a rational starting diagram for the optimization (Section 5.6.5);

• a mechanism to adjust the properties of the ellipses during the optimization process in search
for a good solution (Section 5.6.6).

There are various ways how each of the above can be defined and implemented. So, being the first
drawing algorithm using ellipses, each option was thoroughly evaluated before one that effectively aids
in achieving our objectives was chosen. The rationale for our design choices is clearly explained, and
experimental and pragmatic evidence justifies our choices for each of the components. The type of
diagrams that eulerAPE was aimed at generating is outlined later on. This justifies why analytic geometry
methods were developed and used to compute the region areas of the three intersecting ellipses.

To evaluate the effectiveness of eulerAPE and ellipses in drawing accurate area-proportional Venn
diagrams with smooth curves for most data with three sets (objective 2), we: 

• evaluated the effectiveness of eulerAPE in drawing an accurate diagram when one is known to
exist for the given area specification (Section 5.7.1);

• evaluated the effectiveness of eulerAPE in drawing an accurate diagram for any area specification
for which an accurate diagram drawn with ellipses might not exist and compared these diagrams
with those generated by a variant of eulerAPE that restricts the ellipses to circles (Section 5.7.2);

• identified characteristics of the area specifications for which an accurate diagram can or cannot
be drawn using ellipses (Section 5.7.2);

• compared the effectiveness of eulerAPE and venneuler [Wilkinson, 2012] (considered to be the
most effective circle-based drawing method) in generating accurate Venn diagrams for a set of
random area specifications (Section 5.7.3);

• compared the quality of the diagrams generated by eulerAPE and various other drawing methods
that use circles or polygons in depicting real data for an application area (Section 5.7.4).

Design features that could facilitate comprehension of such diagrams (objective 3) were suggested
after looking into theories of perception and cognitive for visual design. We will now explain: the
rationale for focusing on 3-Venn diagrams rather than Venn or Euler diagrams with any number of
curves; the diagram types that eulerAPE aims at generating. These clarify our objectives for this chapter. 

Why 3-Venn Diagrams and not n-Venn or n-Euler Diagrams

This work focuses on 3-Venn diagrams rather than n-Venn or n-Euler diagrams for various reasons.

Venn diagrams with three curves are the most commonly used area-proportional Euler diagrams
(Section 3.7.1), but cannot be drawn accurately using circles (Section 3.7.6). Thus the need for a method
that automatically draws accurate 3-Venn diagrams with smooth, distinguishable curves like circles.

An n-Venn diagram with n curves depicts all the possible intersections between n curves, while an
n-Euler diagram depicts any intersection, containment or exclusion between n curves (Section 3.4). So
there is one abstract description corresponding to a Venn diagram with n curves, but there could be
various for an Euler diagram with the same n number of curves (Section 3.4.2). There could also be
different ways how a diagram with a specific abstract description could be drawn (e.g., Figure 3.12). If
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the diagram is area-proportional, any quantitative data could be assigned to the zones in the diagram
(Section 3.7.2). Thus, if area-proportional Euler diagrams are handled, various diagrams, variables and
quantitative data for each of the different possible abstract descriptions would have to be evaluated. Our
algorithm eulerAPE is the first to use ellipses. Drawing accurate area-proportional 3-Venn diagrams with
respect to an area specification using a specific shaped curve is a well-known, difficult problem
(Section 3.7.6) and using ellipses makes the problem more complex [Chow and Ruskey, 2004]. Focusing
on diagrams with one abstract description and a fixed number of curves (3; the most common) aid in
devising an effective algorithm that is the first to draw area-proportional diagrams with ellipses.

Evaluating the effectiveness of ellipses in drawing area-proportional diagrams with one abstract
description and a fixed number of curves facilitates the identification of the area specification types
for which an area-proportional diagram cannot be drawn with ellipses. Example, there are area
specifications for which an accurate area-proportional wellformed 3-Venn diagram cannot be drawn
with convex curves (Section 3.7.5). Wellformedness (Section 3.5.1, Section 3.7.3) and curve convexity
(Section 3.5.2) facilitate diagram understanding, so such properties should be met when possible. Thus
focusing our evaluation on 3-Venn diagrams with ellipses aids in identifying such area specifications. 

There are abstract descriptions for which a not area-proportional Euler diagram can only be
drawn using non-simple curves (e.g., Figure 3.9B) or irregular curves (e.g., Figure 3.9D), so ellipses
cannot be used. A few of the circle-based drawing methods still attempt to draw diagrams for such area
specifications. However, the generated diagrams are far more misleading than ones with incorrect zone
areas, as incorrect zones thus set relations are depicted. Example, Figure 3.28D by venneuler is a Venn
diagram despite that an Euler diagram for abstract description {∅, a, b, c, ab, abc} was required. In fact,
an Euler diagram for this abstract description can only be drawn using irregular curves, as Figure 3.9D.

For some abstract descriptions, a not area-proportional Euler diagram that is wellformed can
only be drawn if the diagram has empty zones (Section 3.4.3), so quantitative data cannot be
depicted by the zone areas of such diagrams. A non-wellformed diagram could be used, but the
diagram would be difficult to comprehend particularly if it has disconnected zones (Section 3.7.3). Thus
for some abstract descriptions, it is not possible to draw an area-proportional Euler diagram that
effectively conveys the required set relations and quantitative data.

Rodgers et al. [2014] have devised a method that draws area-proportional Euler diagrams with up to
three curves using circles when possible, convex polygons if circles cannot be used, and non-convex
polygons if convex polygons cannot be used. The authors show that for most abstract descriptions
and area specifications, an accurate area-proportional 3-Euler diagram can only be drawn using
non-smooth polygons that are not easily distinguishable as they overlap and make the diagram
non-wellformed (only 37.5% of the abstract descriptions corresponding to an Euler diagram with up to
three curves can be drawn using circles for any area specification), so ellipses cannot be used.

Current drawing methods indicate the difficulty in devising measures that adequately identify zone
area inaccuracies as well as missing or not required zones, to generate diagrams that accurately depict
the required set cardinalities and relations. Example, as noted in Section 5.2.1, venneuler's stress could
be relatively low (indicating that a diagram is good for the required area specification) even when the
diagram has missing or unwanted zones, and thus incorrectly depicts the required set relations. Focusing
on one abstract description (that of a Venn diagram; using shading a Venn depicts an Euler diagram)
and a fixed number of curves (3; the more common) also simplifies the development and thorough
evaluation of all the components that make an effectiveness drawing algorithm that uses ellipses. 
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For the above reasons, this work focused on 3-Venn diagrams. eulerAPE draws some Euler diagrams,
but further investigations have be carried out in the future.

The Type of Diagrams eulerAPE Aims at Generating

Various aesthetic features that could affect the comprehension of Venn and Euler diagrams have not
been studied empirically and no aesthetic metrics have been formalized (Section 3.5, Section 3.7.3).
Chow and Ruskey [2004] argue that the curves in which a zone is located should be easily identified
and the zone areas should be easily comparable to one another. To ensure that the curves are smooth,
convex and distinguishable (Section 3.5.2), eulerAPE represents the curves as ellipses. Wellformedness
facilitates diagram understanding (Section 3.5.1), particularly when the diagram is area-proportional
(Section 3.7.3). So eulerAPE aims to draw diagrams that are wellformed.

Studies indicate that humans are biased to area judgement, yet it is still unclear how areas in such
diagrams are perceived and what discrepancies in zone area are not noted (Section 3.7.3). Perceptual
scaling was proposed for map symbols to help readers perceive their areas correctly, but studies show
that no universal scaling metrics can be defined (Section 3.7.3). Such scaling measures were harshly
criticised by Tufte who claimed that "graphical excellence begins with telling the truth about the data"
[Tufte, 1983, p. 53] and if area is used to depict quantitative data, then the represented area "should be
directly proportional to the numerical quantities represented" [Tufte, 1983, p. 56]. Tufte also defined the
'Lie Factor' formula to determine whether a visualization is representing the quantitative data accurately
(Section 3.7.3). So for eulerAPE, a good, accurate diagram is one whose zone areas are all directly
proportional to the quantities in the given area specification (Section 5.6.3). 

However, this is only possible if the zone areas of the diagram are computed accurately. Numerical
approximate methods introduce error [Antia, 2002; Isaacson, 1994] that could distort the visualization
and its integrity, violating Tufte's [1983] graphical integrity principle. So, eulerAPE uses an analytic
geometry algorithm to accurately compute the region areas of the three intersection ellipse, which,
similar to numerical methods, provide results instantaneously (in 10 milliseconds) (Section 5.4).

The shape of the curves and zones could affect judgement, comparison and estimation of their area,
but their effect has not been studied empirically as yet (Section 3.7.3). In some cases, it is not possible
to draw a diagram that accurately depicts the required quantitative data and satisfies desired aesthetics,
yet it is still unclear what a good compromise between zone area accuracy and aesthetics for diagram
comprehension could be (Section 3.7.3). So currently the concept of accuracy is objective, but that of
the aesthetics is still highly subjective as various empirical studies are yet to be carried out.

Hence, considering the importance for the "representation of numbers, as physically measured on the
surface of the graphic itself" [Tufte, 1983, p. 56], eulerAPE aims at generating wellformed diagrams
with smooth, convex curves represented as ellipses and with zone areas that are accurately and
directly proportional to the represented quantitative data, thus conforming with Tufte's graphical
integrity principle. Once area specifications for which an accurate diagram can be drawn are identified
(whose zone areas are computed using analytic methods) and once a better understanding of diagrams'
aesthetics is obtained, constraints on the zone area accuracy could be eased to satisfy important
aesthetics based on their priority. Our approach is consistent with that of other methods, including the
circle-based venneuler that aims to generate diagrams whose zone "areas are proportional to the size of
subsets" [Wilkinson, 2012, p. 337] without taking into account any specific aesthetic considerations.

We will now discuss basic concepts and definitions, namely those related to ellipses (Section 5.3).
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5.3 Basic Concepts and Definitions

The basic concepts and definitions in relation to area-proportional Venn diagrams are discussed in
Section 3.7.2. A wellformed diagram is defined in Section 3.4.4. So this section focuses on ellipses.

5.3.1 Ellipses

An ellipse is a simple closed curve characterized by (Figure 5.5A): a centre, (γ1,γ2); two semi-axes, α
and β, where α ≥ β; and an angle of rotation, θ, where 0 ≤ θ < 2π. Since α ≥ β, often α and β are
respectively referred to as the semi-major axis and semi-minor axis.

An ellipse is in canonical form if (γ1, γ2) = (0, 0) and θ = 0, so that in the Cartesian coordinate
system, the ellipse is centred on the origin and the ellipse’s semi-axes are along the x-axis and y-axis, as
shown in Figure 5.5B. An ellipse with any (γ1, γ2) and θ is a general ellipse.

A B

Figure 5.5: An ellipse and its properties. (A) An ellipse is characteristic by: a centre, (γ1,γ2); two semi-
axes, α and β, where α ≥ β; an angle of rotation, θ. (B) An ellipse in canonical form has (γ1,γ2) = 0 and θ = 0.

The area of an ellipse is
παβ (5.1)

The curve of an ellipse, using a polar coordinate system with pole (or origin) (γ1,γ2) and polar axis a
ray from (γ1,γ2) passing through α, is defined as

(5.2)
ρ2= α 2β 2

β 2 cos2ϕ+α 2 sin2ϕ

where ϕ  is  the polar  angle between  α  and  
a  ray  from  (γ 1 , γ 2 )  passing  through  a  point  on  the ellipse 

An ellipse arc (⌒) is a connected portion of the ellipse curve (e.g., MN  in Figure 5.6A). 

An ellipse sector (⌔) is the space bounded by an ellipse arc and two line segments between the
ellipse's centre and the arc's endpoints (e.g., ⌔MNO in Figure 5.6B). The area of an ellipse sector can
be defined using the polar coordinates representation of the ellipse curve in Equation (5.2) as 
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where ϕ1  and  ϕ2  are the polar  angles of  the arc 's endpoints from α  with respect  to (γ 1,γ 2 ) 
 and   0 <ϕ2 −ϕ1 ≤ 2π

The value returned by Equation (5.3) is the area of the ellipse sector from φ1 to φ2 in an anticlockwise
direction along the ellipse. So, to compute the area of ⌔MNO in Figure 5.6B using Equation (5.3), φ1

and φ2 should respectively be the polar angles of M and N from α with respect to (γ1,γ2). In Figure 5.6B,
α is along the x-axis and (γ1,γ2) is (0, 0) or O. If instead, φ1 and φ2 are respectively the polar angles of N
and M from α with respect to O, the area computed by Equation (5.3) is the area of the ellipse minus the
area of ⌔MNO.

An ellipse segment (⌓) is the space bounded by an ellipse arc and a chord that share the same
endpoints (e.g., ⌓MNO in Figure 5.6C). As shown in Figure 5.6D, an ellipse sector (⌔MNO), is
composed of an ellipse segment (⌓MNO) with the same ellipse arc as the sector and a triangle
(△MNO). Thus, the area of an ellipse segment can be defined as 

Area of ⌓MNO = Area of ⌔MNO − Area of △MNO (5.4)

The area of ⌔MNO in Equation (5.4) is computed using Equation (5.3) for the same arc endpoints as
that of ⌓MNO.

A B

C D

Figure 5.6: An ellipse arc, an ellipse sector, an ellipse segment, and an ellipse sector with an ellipse
segment. (a)MN (in red) is an ellipse arc between points M and N on the ellipse curve. (b) ⌔MNO (dashed) is
an ellipse sector defined by MN and line segments OM and ON. φ1 and φ2 are respectively the polar angles of
M and N from α with respect to O. (c) ⌓MNO (in grey) is an ellipse segment defined by MN and chord MN.
(d) ⌔MNO is made up of ⌓MNO and △MNO, so the area of ⌓MNO = area of ⌔MNO − area of △MNO.
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The polar coordinates representation of an ellipse curve in Equation (5.2), assumes that (γ1,γ2) is at
the pole and α is along the polar axis of the coordinate system. So Equation (5.2) cannot represent a
general ellipse. 

The curve of a general ellipse can be defined parametrically as

(5.5)

x(t) = γ 1 +α cosθ cost − β sinθ sin t
y(t) = γ 2 +α sinθ cost + β cosθ sin t

where t  is the parameter  and  0 ≤ t ≤ 2π  and  
(x(t), y(t)) are the Cartesian coordinates of  a point  on the ellipse curve

In Equation (5.5), t is the angular parameter (or eccentric angle or eccentric anomaly) that determines
the position of a particle moving along the ellipse curve, so that every value of t determines the
Cartesian coordinates (x(t), y(t)) of a point on the ellipse curve. As shown in Figure 5.7, given a point
(x,y) on the ellipse curve, the corresponding value of t is determined by drawing a line perpendicular to
α that passes through (x,y) and intersects with the auxiliary circle (i.e., a circle with radius α and centre
(γ1,γ2) that is the circumscribed circle of the ellipse; in red in Figure 5.7) at a point P, and by then
computing the anticlockwise angle from α to the line passing through (γ1,γ2) and P with respect to
(γ1,γ2). The latter angle is the value of t. Since in Figure 5.7, θ = 0 and point (x, y) is on the top right
quarter of the ellipse curve, the value of t for (x, y) can be computed using any one of the following

(5.6)t = cos−1 x − γ 1

α
⎛
⎝⎜

⎞
⎠⎟     or     t = sin−1 y − γ 2

β
⎛
⎝⎜

⎞
⎠⎟

If θ = 0 and the point (x, y) is on any other quarter of the ellipse curve, the above equations would need
to be adapted. For instance, if the point (x,y) is on the upper left quarter of the ellipse curve, t is π minus
the value of one of the above equations of t. If θ ≠ 0, the point (x,y) has to be rotated by -θ about (γ1,γ2)
before the above equations of t or any adaptations of them can be used.

Figure 5.7: Computing the value of parameter t of the parametric representation of the curve of a
general ellipse, given the Cartesian coordinates (x,y) of a point on the ellipse curve. The red circle with
radius α and centre (γ1,γ2) is the auxiliary circle that is the circumscribed circle of the ellipse (in blue). The
green circle with radius β and centre (γ1,γ2) is the minor auxiliary circle that is the inscribed circle of the
ellipse (in blue). Both circles and the ellipse are concentric. The value of t for point (x,y) is the anticlockwise
angle from α to the line passing through (γ1,γ2) and P with respect to (γ1,γ2). P is the point where the line
perpendicular to α passing through (x,y) intersects the auxiliary circle (in red).
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Alternatively, the curve of a general ellipse can be defined by the set of points (x,y) on the Cartesian
plane that satisfy the following implicit polynomial equation:

(5.7)(x − γ 1 )cosθ + (y − γ 2 )sinθ( )2
α 2

+
(y − γ 2 )cosθ − (x − γ 1 )sinθ( )2

β 2
= 1

This is rather complex to handle compared to the parametric representation in Equation (5.5) and the
implicit polynomial equation that should be satisfied by the set of points (x,y) that define the curve of an
ellipse in canonical form, that is

(5.8)x 2

α 2
+ y2

β 2
= 1

These basic concepts and definitions will be referred to in this chapter, particularly the next section
where we discuss our geometry analytic methods to compute the zones areas of our diagrams drawn
with ellipses. Further details about ellipses are available in geometry textbooks (e.g., [Eberly, 2011a;
Farin et al., 2002; Page, 2009; Schneider and Eberly, 2002; Stewart, 2009]).

5.4 Analytic Geometry Methods for Computing the Region Areas 

of Three General Overlapping Ellipses

The region areas of two or three intersecting circles can be computed using analytic methods [Chow and
Rodgers, 2005; Chow and Ruskey, 2004]. For more than three circles, numerical approximations
[Antia, 2002; Schneider and Eberly, 2002] are often used, as analytic solutions for these cases are more
complex. Example, venneuler [Wilkinson, 2012] uses a numerical quadrature method whereby each
circle is drawn on a 200 × 200 byte plane and each 'pixel' on each plane is set to 1 if it is in the circle or
0 if not. The area of each region in the diagram is the sum of the value of all the pixels on all the planes
that are located in that region. For diagrams with more than three circles, numerical methods can be
computationally less expensive than analytic ones. However, approximation errors could be introduced
and unless the required function is evaluated at an excessive number of intervals, the estimated value of
the function could be unreliable [Antia, 2002; Isaacson, 1994]. When the curves are represented as
polygons, the area of the overlaps is often computed by applying the Gaussian integration theorem
[Kestler et al., 2005, 2008].

None of the drawing methods before eulerAPE used ellipses, possibly due to difficulties in calculating
the area of the regions of overlapping ellipses [Chow and Ruskey, 2004]. We discuss possible methods
that could be used and the method we devised for eulerAPE.

5.4.1 Possible Methods

Ellipses have more degrees of freedom than circles and so, using an analytic method to compute the
region areas of overlapping ellipses might seem complex and too computationally expensive. However,
an analytic method [Hughes and Chraibi, 2011] has been successfully used and efficient enough to
compute the area of two overlapping ellipses for simulations of dynamic systems, (e.g., an orbiting
satellite with a solar calibrator [Kent et al., 2009]; a force-based model for pedestrian dynamics [Chraibi
et al., 2010; Chraibi, 2012]) and in image feature matching and extraction [Barandiaran et al., 2013a, b].
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If eulerAPE had to use a numerical approximation such as venneuler's [Wilkinson, 2012] numerical
quadrature method, errors would be introduced in the calculation of the region areas of the intersecting
ellipses. Example, in Figure 5.8A and Figure 5.8B, the same diagram is drawn on two same 200 × 200
grids, with a difference in the placement of the diagrams on the grids. The magnified views of zones ab,
ac, bc and abc indicate that according to Figure 5.8A, there are 0 grid squares or pixels that are only in
zone bc, while according to Figure 5.8B, there are 3. Similar differences can be noted for the other
zones, due to a difference in the positioning of the diagrams on the grids. Though using a larger grid
could reduce inaccuracies, such issues will still be evident. So with this method, the zone areas are not
computed accurately and small zones (e.g., zone bc in Figure 5.8) could be considered missing even
though they are depicted. This could thus impede the optimization process from taking a path that could
lead to an improved solution and impede the method from handling diagrams with small zones. The
zone area inaccuracies would violate Tufte's primary graphical integrity principle [Tufte, 1983, p. 56],
thus our objectives (Section 5.2.3) in generating diagrams whose zone areas are directly proportional to
the required quantitative data and in identifying area specifications for which an area-proportional
diagram can be drawn accurately using ellipses. So numerical methods are not appropriate for eulerAPE.

A B

Figure 5.8: Computing the region areas of intersecting ellipses using a numerical quadrature method.
The diagram and the 200 × 200 grid is the same for both A and B. The only difference is the positioning of
the diagram on the grid, resulting in a different number of grid squares that are only inside a specific zone.

Also, to check if the pixel is in the circle, venneuler's numerical quadrature method [Wilkinson,
2012] takes the coordinates of the pixel's location as if it was a point on the Cartesian plane, and uses
them and the implicit polynomial equation of the circle to verify if the distance between the circle's
centre and the pixel is less than the circle's radius. If the latter is true, the pixel is in the circle. Checking
if such a pixel is in an ellipse rather than a circle is more complex and conducting this check for all the
pixels on all the planes would make the method more computationally expensive than it is for circles.
This is so, as different from circles, ellipses have two semi-axes and an angle of rotation, and the
implicit polynomial equation of the curve of a general ellipse (Equation (5.7)) is more complex. If
instead, the implicit polynomial equation of the curve of an ellipse in canonical form (Equation (5.8)) is
used, both the ellipse and the pixel would have to be translated and rotated before this simpler equation
is used. An alternative would be to have a secant line passing through the ellipse's centre and the pixel
to be checked, then compute the intersection points of this secant line with the ellipse, identifying the
intersection points that has the same polar angle from the semi-axes α with respect to ellipse's centre as
that of the pixel. If the distance between the ellipse's centre and this intersection point is greater than the
distance between the ellipse's centre and the pixel, then the pixel is in the ellipse. However, all of these
methods to check if a pixel is in an ellipse are more computationally expensive than those for circles.
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Alternatively, the ellipses could be represented using regular convex polygons and a standard
polygon intersection algorithm could be used to compute the area of the regions. However, once
again, the zone areas would not be computed accurately, small zones could be considered missing, and
unless the polygons has numerous vertices and short edges, the computed zone areas would be
unreliable approximations of the zones areas of intersecting ellipses, as the curves would lack the good
continuity of ellipses. Polygon intersection algorithms for polygons with numerous vertices are also
more computationally expensive than the numerical quadrature method [Schneider and Eberly, 2002].

Hence, to achieve our objectives (Section 5.2.3), namely that of accuracy, we opted for an analytic
method that would compute the accurate area of the regions of the intersecting ellipses. As noted in
Section 5.4.4, the analytic method used by eulerAPE provides results in 10 milliseconds (on an Intel Core
i7 CPU @2GHz with 8GB RAM, OS X 10.8.4, Java Platform 1.6.0_51), which is 10 times less than the
0.1 second limit for an instantaneous response [Card et al., 1991; Miller, 1968] and which is relatively
similar to the 1 millisecond (on a MacBook Pro @2.5Ghz with 2GB RAM, Java Platform 1.5) that
venneuler's [Wilkinson, 2012] numerical quadrature method takes to provide the area of the regions of
intersecting circles. Thus, an analytic method can still be efficient and yet ensure zone area accuracy.

Though venneuler's [Wilkinson, 2012] numerical quadrature method is relatively fast, the computed
zone areas are not accurate and so, the analytical gradient of its steepest descent optimization method, in
search for a diagram with respect to an area specification, cannot be computed. Instead, an
approximation of the gradient is used. This could be expensive to compute as various iterations
involving repeated evaluation of venneuler's statistical loss function, stress, for each curve are required
to obtain a good approximation of the true gradient. So, after all, a similar amount of time is required to
generate a diagram whose zone areas are computed using either a numerical method or an analytic
method. This is demonstrated in our comparative analysis of eulerAPE and venneuler in Section 5.7.2.

5.4.2 Current Analytic Methods

Two analytic methods are available to compute the region areas of the overlapping ellipses: one by
Eberly [2010] and another by Hughes and Chraibi [2011] (both as non-refereed articles). Both methods
are restricted to two ellipses. Eberly's method is further restricted to ellipses in canonical form, while
that by Hughes and Chraibi can handle any two general ellipses with any centre and angle of rotation.
Both methods compute the area of the overlapping region by first obtaining the area of the two ellipse
segments compromising the region (as shown later in Figure 5.9B). The area of each ellipse segment is
obtained by computing the area of an ellipse sector and then subtracting the area of a triangle, as shown
earlier in Figure 5.6D. The derivation of the area of a sector of an ellipse in canonical form is obtained
using integral calculus. The representation of the ellipse curve is defined in polar coordinates by Eberly
and parametrically by Hughes and Chraibi. To handle general ellipses, Hughes and Chraibi first
translate and rotate the general ellipses so they are transformed into canonical form, and then compute
the area of the required ellipse segment using the same equation as that of ellipses in canonical form.

However, no analytic methods that compute the region areas of three general intersecting ellipses
have been proposed. So we developed, implemented and evaluated two different and efficient analytic
methods, one of which is used by eulerAPE. We explain our methods in the next section. It should be
noted that only Eberly's method was available at the time our method was developed. Hughes and
Chraibi's method was available months after our analytic methods were developed and implemented. 
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5.4.3 Our Analytic Methods

We devised two general analytic methods for three ellipses, both of which can handle ellipses that are
not necessarily in canonical form. These include:

• M1. Decomposition into ellipse segments;
• M2. Using integral calculus. 

These methods differ in the way they compute the area of the overlapping region between two
ellipses and that of an ellipse segment. Similar to Eberly's [2010] and Hughes and Chraibi's [2011]
methods, M1 decomposes the region of interest into ellipse segments and uses an equation of the
segment area of an ellipse in canonical form. M2 uses integral calculus to directly derive the equation
of the required enclosed region area without any transformations. M1 and M2 are discussed later.

The general algorithm for computing the region areas of three intersecting ellipses representing a
Venn diagram using either M1 or M2 is as follows:

Algorithm 5.1: ComputeRegionAreasOfThreeIntersectingEllipses (d)

Input: A Venn diagram d with three ellipses
Output: regionAreas, a set of areas one for every region in d

1. for each ellipse e in d do 
2.       ellipseAreas[e] ← area of e by Equation (5.1)
3. end for
4. for each pair of ellipses e1 and e2 in d do
5.      points[e1, e2] ← intersection points of e1 and e2 by Hill's [1995] method 
6.      overlapAreas[e1, e2] ← area of the overlapping region between e1 and e2

                                                  by M1 or M2 and points[e1, e2]
7.     interiorPoints[e1, e2] ← the intersection point in points[e1, e2] that

                                                  is inside the third ellipse of d
8. end for
9. Decompose the region in all three ellipses of d into ellipse segments es1, es2, es3 and triangle t

(as in Figure 5.9D) using interiorPoints, which defines the arc endpoints of es1, es2, es3 and the
vertices of t

10. regionAreas[e1, e2, e3] ← ∑ areas of es1, es2, es3 by Equation (5.4) and t
11. for each pair of ellipses e1 and e2 in d do
12.       regionAreas[e1, e2] ← overlapAreas[e1, e2] − regionAreas[e1, e2, e3],

                                                 where e3 is the other ellipse in d
13. end for
14. for each ellipse e in d do
15.       otherAreas ← ∑ regionAreas[e, e1], regionAreas[e, e2], regionAreas[e, e1, e2], 

                                    where e1 and e2 are the two other ellipses in d
16.       regionAreas[e] ← ellipseAreas[e] − otherAreas 
17. end for
18. return regionAreas
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If the diagram represented by the intersecting ellipses is wellformed, all of its zones are connected and
so each of the mentioned regions in Algorithm 5.1 correspond to precisely one zone. The area of these
regions is thus the area of the corresponding zone.

Algorithm 5.1 has been implemented for both M1 and M2 and for any possible representation of a
wellformed 3-Venn diagram drawn using ellipses that are not necessarily in canonical form. M1, M2
and the chosen method to compute the ellipses' intersection points are discussed in the next sections.

If the general intersecting ellipses do not form a wellformed 3-Venn diagram, an extended version
of Algorithm 5.1 would have to be implemented, so that the various ways how the ellipses can intersect
are handled (there can be from zero up to four intersection points between two ellipses [Eberly, 2010]).
The method we have chosen to compute the intersection points [Hill, 1995] returns all the intersection
points (i.e., zero up to four) between any two general ellipses. So the algorithm can easily be extended
by: (i) identifying the way each pair of ellipses intersect from the number of intersection points between
the two ellipses; (ii) decomposing the relevant regions into ellipse segments and basic geometry shapes
like triangles or rectangles when necessary; (iii) using either M1 or M2 to find the area of the
overlapping region between two ellipses and the area of ellipse segments; (iv) using Equation (5.1) to
compute the area of the ellipses; (v) using basic algebra to add and subtract areas wherever necessary to
calculate the region areas. In such cases, a zone in the diagram could be made up of multiple regions
and so, its area would be the sum of the area of all of these regions. At present, eulerAPE draws 3-Venn
diagrams that are wellformed and thus, such an extension is currently not required.

A B C

D E

Figure 5.9: Computing the area of the overlapping region between two ellipses and the area of the
region that is located in exactly the three ellipses using M1 and M2. (A) Three general intersecting
ellipses representing a wellformed 3-Venn diagrams with curves a, b and c. The intersection points of every
ellipse pair are labelled. Example, iab1 and iab2 are the intersection points of a and b. (B) The overlapping
region between a and b in A decomposed into two ellipse segments. M1 computes the area of such a region
by adding the area of the two ellipse segments. (C) The overlapping region between a and b in A. This region
is the same as that in B, but the region is not decomposed into ellipse segments. M2 computes the area of
such a region by adding the area under the ellipse curve a from iab1 to iab2 and the area under the ellipse
curve b from iab2 and iab1, where each area is defined by a definite integral. (D) The region in A that is
located in exactly the three ellipses. M1 and M2 decompose the region into ellipse segments (a segment of
ellipse a with arc endpoints iac2 and iab2, a segment of ellipse b with arc endpoints iab2 and ibc2, a segment
of ellipse c with arc endpoints ibc2 and iac2) and a triangle (with vertices iac2, iab2 and ibc2), and add up their
areas. (E) The segment of ellipse a with arc endpoints iac2 and iab2 in D. M2 computes the area of such a
segment by adding the area under the ellipse curve a from iac2 to iab2 and the area under the secant line
passing through the arc endpoints from iab2 and iac2.
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M1: Decomposition Into Ellipse Segments

To compute the area of the overlapping region of two general ellipses, M1 decomposes the region into
two ellipse segments, as in Figure 5.9B. As explained earlier in Algorithm 5.1 and Figure 5.9D, the
region in exactly the three ellipses is similarly decomposed into ellipse segments and a triangle.

Equations defining the area of a segment of an ellipse in canonical form can be easily derived and
could be less complex than ones for a general ellipse. Such equations are already available. Example,
Eberly [2010] and Hughes and Chraibi [2011] provide two different equations based on the area of a
sector of an ellipse in canonical form. Eberly's equation uses the polar coordinates representation of the
ellipse curve, while that of Hughes and Chraibi uses the parametric representation of the ellipse curve.

M1 uses Equation (5.4) to compute the area of an ellipse segment which, similar to Eberly's equation,
uses the polar coordinates representation of the ellipse curve in Equation (5.2). As shown in Figure 5.9B
and Figure 5.9D, the arc endpoints of an ellipse segment are two of the intersection points of the three
overlapping ellipses, which define the arc in an anticlockwise direction along the ellipse (the importance
of this direction is explained in Section 5.3.1 in relation to Equation (5.3)). The arc endpoints and the
ellipse are rotated by an angle of -θ about (γ1,γ2) and translated to (0,0), so that the transformed ellipse
is in canonical form. Rotation and translation are affine transformations and so, the ellipse's properties,
its area and the area of the required ellipse segment are preserved. The polar angle of each transformed
endpoint from α with respect to (0,0) is then computed, and together with the transformed ellipse, these
polar angles are used to compute the area of the required ellipse segment using Equation (5.4).

M2: Using Integral Calculus

M2 derives an equation of the area of the required enclosed region from definite integrals that compute
the area under an ellipse curve (or line) between two given points. The equation of the curve of a
general ellipse is used and so, M2 does not require any of the geometric transformations used in M1 to
get the ellipse in canonical form.

Let e1 and e2 be two ellipses that intersect at points i1 and i2, such that the overlapping region is
enclosed by an ellipse arc from i1 and i2 in an anticlockwise direction along e1 and an ellipse arc from i2

and i1 in an anticlockwise direction along e2. In M2, the area of the overlapping region between e1 and e2

is defined as
Area under curve e1 from i1 to i2  +  Area under curve e2 from i2 to i1 (5.9)

This is illustrated in Figure 5.9C for ellipses a and b in Figure 5.9A, where a and b are respectively e1

and e2 in Equation (5.9), and iab1 and iab2  are respectively i1 and i2 in Equation (5.9).

To compute the area of the region located in exactly the three ellipses, M2 decomposes the region
into ellipse segments and a triangle, as in M1 and as shown in Figure 5.9D, where the arc endpoints of
the ellipse segments and the vertices of the triangle are defined by the intersection points of the three
overlapping ellipses. Given a segment of an ellipse e with an arc from i1 and i2 in an anticlockwise
direction along e and a secant line l intersecting e at i1 and i2, M2 defines the area of the ellipse segment
as

Area under curve e from i1 to i2  +  Area under line l from i2 to i1 (5.10)

This is illustrated in Figure 5.9E for the segment of ellipse a between iac2 and iab2 that is located in
exactly the three ellipses of Figure 5.9A, where a is e in Equation (5.9) and iac2 and iab2 are
respectively i1 and i2 in Equation (5.9).
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The area under a curve between two given points is defined by a definite integral. The curve of a
general ellipse can be defined in different ways (Section 5.3.1). However, it is not always so
straightforward to handle some representations. For instance, the implicit polynomial in Equation (5.7)
has to be converted to an explicit polynomial before it can be used to find the area under an ellipse
curve. The parametric representation in Equation (5.5) can be used as is and determining the
antiderivative of this representation is straightforward. So M2 uses the parametric representation of the
curve of the general ellipse in Equation (5.5), that is x(t) and y(t), and defines the area under the curve of
a general ellipse e from (x1,y1) to (x2,y2) on e as follows:

If ⏐x1−x2⏐>⏐y1−y2⏐ 

If y = F(x) is the explicit definition of e as a function of x and x(t1) = x1 and x(t2) = x2, 
the area under the curve e from (x1,y1) to (x2,y2) is

(5.11)

F(x)dx =
x1

x2

∫ F(x(t))x'(t)dt
t1

t2

∫ = y(t)x'(t)dt
t1

t2

∫

= γ 2 +α sinθ cost + β cosθ sin t( ) −α cosθ sin t − β sinθ cost( )dt
t1

t2

∫
= K1 sin2t + K2 sin t + K3 cos2t + K4 cost + K5t ]t1

t2

where   K1 =
αβ cos2θ

4
,    K2 = −γ 2β sinθ ,    K3 =

α 2 + β 2( )sin2θ
8

,    

K4 = γ 2α cosθ ,    K5 = −αβ
2

Else (i.e., ⏐x1−x2⏐≤⏐y1−y2⏐)

If x = F(y) is the explicit definition of e as a function of y and y(t1) = y1 and y(t2) = y2, 
the area under the curve e from (x1,y1) to (x2,y2) is

(5.12)

F(y)dy =
y1

y2

∫ F(y(t))y'(t)dt
t1

t2

∫ = x(t)y'(t)dt
t1

t2

∫

= γ 1 +α cosθ cost − β sinθ sin t( ) −α sinθ sin t + β cosθ cost( )dt
t1

t2

∫
= K1 sin2t + K2 sin t + K3 cos2t + K4 cost + K5t ]t1

t2

where   K1 =
αβ cos2θ

4
,    K2 = γ 1β cosθ ,    K3 =

α 2 + β 2( )sin2θ
8

,    

K4 = γ 1α sinθ ,    K5 =
αβ
2

The value of t1 and t2 corresponding to (x1,y1) and (x2,y2) respectively is computed as discussed in
Section 5.3.1 in relation to Equation (5.5) and Equation (5.6).

Similarly, the area under a line l from (x1,y1) to (x2,y2) on l where m and c are respectively the
gradient and y-intercept of l is defined as:

If ⏐x1−x2⏐>⏐y1−y2⏐ 

If  y = mx+c  explicitly defines l as a function of x, the area under l from (x1,y1) to (x2,y2) is

(5.13)(mx + c)dx =
x1

x2

∫
mx2

2
+ cx

⎤

⎦
⎥
x1

x2

5.4 Analytic Geometry Methods for Computing the Region Areas of Three General Overlapping Ellipses | 108



Else (i.e., ⏐x1−x2⏐≤⏐y1−y2⏐)

If x = y − c
m

 explicitly defines l as a function of y, the area under l from (x1,y1) to (x2,y2) is

(5.14)1
m

(y − c)dy =
y1

y2

∫
1
m

y2

2
− cy

⎛

⎝⎜
⎞

⎠⎟
⎤

⎦
⎥
⎥y1

y2

However, to compute the region area of the overlapping ellipses, the intersection points of the
ellipses are required. We now discuss our chosen method to compute the intersection points.

Computing the Intersection Points of the Ellipses

All the intersection points of the ellipses making up a diagram can be obtained by computing the
intersection points of every ellipse pair. 

An ellipse is a curve and so, the various methods of computing the intersection points of two curves
[Böhm et al., 1984; Farin et al., 2002; Manocha and Demmel, 1994; Schneider and Eberly, 2002] can be
adapted for the intersection points of two ellipses. Numerical methods [Sederberg and Parry, 1986],
such as Bézier and internal subdivision [Yap, 2006], Bézier clipping [Sederberg and Nishita, 1990] and
the Newton-Raphson method, could also be used. However, as explained in Section 5.4.1, numerical
methods are not appropriate for eulerAPE as zone area accuracy is important to conform with Tufte's
primary graphical integrity principle [Tufte, 1983, p. 56] and to meet our objectives (Section 5.2.3).

The most common analytic methods include: (i) the resultant-based method using for instance
Bezout's resultant [Eberly, 2010, 2011b]; (ii) the Gröbner basis method [Farin et al., 2002]; (iii) the
matrix-based method [Hill, 1995]. These methods have been used for various areas (e.g., the resultant-
based method [Hughes and Chraibi, 2011; Maitre and Nguyen, 2004]; the Gröbner basis method
[Pernici, 2005]; the matrix-based method [Alfano and Greer, 2003]). 

Methods (i) and (ii) are more complex than (iii) as the roots of a quartic polynomial have to be
solved using Ferrari's solution (e.g., [Herbison-Evans, 1995; Korn and Korn, 1968]) or other methods
(e.g., [Herbison-Evans, 1995]). Example, Hughes and Chraibi's [2011] analytic method, for the region
areas of two intersecting ellipses, uses a numerical implementation of Ferrari's solution [Nonweiler,
1968] to find the roots of the quartic polynomial. However, we only require the real roots and so, finding
all the roots of a quartic polynomial is a waste of computational resources [Herbison-Evans, 1995].

Using the matrix representation of conic sections and homogeneous transformation matrices, method
(iii) can compute the intersection points of the two ellipses without referring to any quartic polynomials.
This method has now been extended to efficiently identify whether two solid ellipsoid intersect [Alfano
and Greer, 2003]. So eulerAPE uses this method [Hill, 1995] to compute the ellipses' intersection points.

5.4.4 Evaluation of Our Methods

M1, M2 and an approximate method were used to compute the zone areas of 8000 wellformed 3-Venn
diagrams with ellipses whose properties were randomly generated. Some of these randomly generated
diagrams had very small region areas that were barely visible. The computed areas were then compared.
The approximate method represented the ellipses as regular convex polygons and used a standard
polygon intersection algorithm to find the area of the regions and to compute the intersection points.
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The same areas were obtained by our analytic methods, M1 and M2 (with an occasional insignificant
difference of less than 10-4). The average percentage error of the areas provided by the approximate
method with respect to any one of our analytic methods was 1.04%. So the areas provided by M1 and
M2 are similar to the approximate areas computed with a standard algorithm, and considering that the
areas of M1 and M2 are the same, then these areas are after all correct. 

M1 and M2 computed the areas in around 10 milliseconds on an Intel Core i7 CPU @2GHz with
8GB RAM, OS X 10.8.4 and Java Platform 1.6.0_51. This response time is 10 times less than the 0.1
second limit for an instantaneous response [Card et al., 1991; Miller, 1968], and similar to that of
numerical methods (e.g., venneuler's [Wilkinson, 2012] response time is 1 millisecond using a
numerical quadrature method on a MacBook Pro @2.5Ghz with 2GB RAM and Java Platform 1.5). So
our analytic methods can also be used for any other application, including simulations of dynamic
systems, where both accuracy and efficiency is important.

5.4.5 The Method Employed By eulerAPE

As discussed in the previous section, there are no significant differences in terms of accuracy and
efficiency between M1 and M2, so any one could be employed by eulerAPE. However, at present eulerAPE

uses M2 so that the area of the regions is computed without the need of any geometric transformations.

We now explain how we generated libraries of random area specifications to evaluate our design
choices for eulerAPE in Section 5.6 and eulerAPE's effectiveness in achieving our objectives in Section 5.7.

5.5 Generating Different Libraries of Random Area Specifications

The various design options for eulerAPE were thoroughly evaluated (Section 5.6), before the most
effective choices to meet our objectives were adopted. So experimental evidence supports our design
rationale. Once eulerAPE was implemented, the effectiveness of eulerAPE and ellipses in drawing accurate
area-proportional 3-Venn diagrams was evaluated and compared with other methods (Section 5.7).

Random area specifications for the above experiments were obtained from two types of libraries,
DIAGLIB and AREASPECLIB, that were generated at both the design phase and the evaluation phase of
eulerAPE (to avoid using the same library for the two phases). So in all we had four libraries of two types:

• DIAGLIB_design and AREASPECLIB_design, for the design phase; 
• DIAGLIB_eval and AREASPECLIB_eval, for the evaluation phase.

From each library, 10,000 area specifications each corresponding to the abstract description of a 3-Venn
diagram with curves labelled a, b and c were obtained. A Venn diagram has one abstract description,
which in this case is {∅, a, b, c, ab, ac, bc, abc}. So each area specification, ω, was of the form

ω = a,  k1( ), b,  k2( ), c,  k3( ), ab,  k4( ), ac,  k5( ), bc,  k6( ), abc,  k7( ){ }  

where  k1,  k2,  k3,  k4 ,  k5,  k6,  k7{ }⊂ >0

Conducting our experiments on a large sample of 10,000 area specifications at both the design phase
and the evaluation phase was important to ensure that the sample is representative of the population of
area specifications we were studying and to conform with the 'Law of Large Numbers', which states that
the larger the sample, the more reliable the obtained findings, as its mean result would be closer to the
expected value than that of a smaller sample [Bernoulli, 1713; Sedlmeier and Gigerenzer, 1997].
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We will now explain how the libraries of type DIAGLIB and AREASPECLIB were generated and how
the area specifications were obtained from each one, including details on the type of area specifications
each represented and how they were used. Later, we discuss the characteristics of the area specifications
in each of the four generated libraries, namely DIAGLIB_design, AREASPECLIB_design, DIAGLIB_eval
and AREASPECLIB_eval.

5.5.1 Two Types of Libraries

DIAGLIB

A library of type DIAGLIB provides a sample of the population of area specifications for which an
accurate wellformed area-proportional 3-Venn diagram can be drawn with ellipses. Such area
specifications can be obtained by accurately computing the zone areas of randomly generated diagrams.
The zone areas of the generated diagrams can be computed using our analytic methods in Section 5.4.3.

Hence, a library of this type consists of 10,000 random wellformed Venn diagrams drawn with three
ellipses labelled a, b and c. For each ellipse e, random real positive numbers taken from a uniform
distribution are used to define the properties of e, namely:

• centre (γ1,γ2), where (γ1,γ2) and the entire curve of e are in eulerAPE's diagram display panel;

• semi-axes α and β, where α and β are in the interval [5, 180] and α ≥ β, 
(180 pixels is a quarter of the width of eulerAPE's diagram display panel);

• angle of rotation θ, where θ is in the interval [0, π).

Though the restrictions on the value of (γ1,γ2) and α and β are practical, they are not indispensable as
the diagrams can be translated and scaled to fit in eulerAPE's diagram display panel. Similarly, θ could be
in the interval [0, 2π). However, we restricted θ to [0, π), as due to symmetry, an ellipse with an angle
of rotation x in [0, π) is the same as an ellipse with an angle of rotation x+π, given that the two ellipses
have the same centre and semi-axes. Three ellipses with randomly generated properties make up a
diagram. If it is a wellformed Venn diagram, the diagram is included in the library, else it is discarded.

Generated diagrams with zone areas less than 1 pixel are not included in the library. Such areas are
not depicted on a display device and so, an Euler diagram rather than a Venn diagram is displayed.
Similarly, generated diagrams that would be displayed (on a display device) with disconnected zones or
brushing points are not included in the library. To identify these diagrams, the ellipses are first
represented as regular convex polygons (constructed by computing the value of the ellipse curve for
every 0.5 interval in x) and then, polygons representing the zones are obtained. If a zone is made up of
zero or more than one polygon with area greater than 1 pixel, the diagram is discarded.

Some of the generated diagrams, such as those in Figure 5.10, might not be considered aesthetically
desirable, as the shape of some of their zones could hinder the estimation of their area and comparisons
with other zone areas (Section 3.7.3). For instance, zones b and bc in Figure 5.10A have a very irregular
shape, while zones a and abc in Figure 5.10B have a very elongated shape. However, this is still highly
subjective as such aesthetic characteristics have not been studied empirically (Section 3.7.3). Since such
diagrams are wellformed Venn diagrams, they are still included in the library as the area specification
they are representing is one for which a wellformed accurate area-proportional 3-Venn diagram can be
drawn with ellipses.
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A B

Figure 5.10: Generated wellformed 3-Venn diagrams that are still included in a DIAGLIB type library.
Though these diagrams might not be considered aesthetically pleasing due to the shape of some of the zones,
they are still included in the library (DIAGLIB_design) as they are wellformed 3-Venn diagrams. Zones b and
bc in both A and B have irregular shapes. Zones a and abc have a very elongated shape.

The two generated libraries of this type are DIAGLIB_design and DIAGLIB_eval. The area
specifications from these libraries were obtained by computing the zone areas of their diagrams using
our analytic method M2 in Section 5.4.3. The area specifications obtained from DIAGLIB_design and
DIAGLIB_eval were then used for our experiments at respectively the design phase (Section 5.6) and the
evaluation phase (Section 5.7) of eulerAPE to assess when and how often local minima are encountered.

AREASPECLIB

A library of type AREASPECLIB provides a sample of the overall population of area specifications
corresponding to the abstract description of a 3-Venn diagram, without any knowledge as to whether an
accurate wellformed area-proportional 3-Venn diagram can be drawn with ellipses with respect to these
area specifications.

Hence, a library of this type is made up of 10,000 random area specifications, each corresponding to
the abstract description of a 3-Venn diagram with curves labelled a, b and c. Seven random real positive
numbers are taken from a uniform distribution in the interval [1, 10000] to ensure a large diversity of
zone areas. These numbers are then rounded up to two decimal places and each is randomly assigned to
one of the seven zones to be located in at least one of the curves of the Venn diagram once it is drawn. 

The two generated libraries of this type are AREASPECLIB_design and AREASPECLIB_eval. These
libraries were used for our experiments at respectively the design phase (Section 5.6) and the evaluation
phase (Section 5.7) of eulerAPE, to evaluate the number of area specifications from the overall population
that can be drawn with ellipses and eulerAPE and compare these results with those of other methods, and
to identify the types of area specifications for which an accurate area-proportional 3-Venn diagram can
be drawn with ellipses.

5.5.2 The Area Specifications of the Four Generated Libraries

The area specifications obtained from DIAGLIB_design and DIAGLIB_eval are a special subset of the
general population of area specifications, as an accurate area-proportional wellformed 3-Venn diagram
with respect to these area specifications is known to exist. On the other hand, the area specifications in
AREASPECLIB_design and AREASPECLIB_eval are representative of the general population, but it might
not always be possible to draw an accurate diagram for some of these area specifications using ellipses. 
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The differences between the area specifications of these two library types is noted in Figure 5.11.
These boxplots show the area of the zones in only one curve, the area of the zones in only two curves,
the area of the zones in (exactly) the three curves, the total area of all the zones in only one curve, the
total area of all the zones in only two curves, and the range of the zone areas, as percentages of the total
area of all the zones in their respective area specification, for the 10,000 area specifications obtained
from each of libraries DIAGLIB_design, AREASPECLIB_design, DIAGLIB_eval and AREASPECLIB_eval.

Figure 5.11: The characteristics of the area specifications of the four generated libraries. Libraries
DIAGLIB_design, DIAGLIB_eval, AREASPECLIB_design and AREASPECLIB_eval are referred to as DLd, DLe,
ASLd and ASLe respectively.

Looking at the plots for the area of the zones in only one and only two curves (the two leftmost top
boxes in Figure 5.11) and those for the total areas of the zones in only one and only two curves (the two
leftmost bottom boxes in Figure 5.11), we note that area specifications for which an accurate diagram is
known to exist (obtained from a library of type DIAGLIB) are likely to have larger areas for the zones in
only one curve (median 23.1%, mean 25.2%) than for the zones in only two curves (median 4.2%, mean
7.0%). The median zone area as a percentage of the total area of all the zones in the area specification
was smaller (8.3%) for the area specifications obtained from the libraries of type DIAGLIB than that
(14.3%) for the area specifications in the libraries of type AREASPECLIB. A median of 14.3% is equal to
the mean zone area percentage (100% ÷ 7 zones = 14.3%). This indicates that the zone areas of the area
specifications in AREASPECLIB type libraries are more evenly distributed than those obtained from
DIAGLIB type libraries and are thus more representative of the general population for which an accurate
diagram drawn with ellipses might not exist. As shown in Figure 5.11 (rightmost bottom box), the
ranges of the zone areas were greater for the area specifications obtained from the DIAGLIB type
libraries (median 41.6%, mean 43.3%) than those for the area specifications in AREASPECLIB type
libraries (median 22.2%, mean 22.5%). These differences between the two library types suggest that not
all area specifications can be depicted accurately with a wellformed Venn diagram drawn with ellipses.
Characteristics of such area specifications are in Section 5.7.2. We now discuss our eulerAPE algorithm.
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5.6 The Drawing Method – eulerAPE

Our drawing method eulerAPE is based on the simple hill-climbing optimization technique to generate an
accurate area-proportional diagram using ellipses with respect to a given area specification. We explain
the rationale for a heuristic and for choosing a simple hill-climber not other heuristics in Section 5.6.1.

The quantities provided in an area specification are first scaled as explained in Section 5.6.2 to
ensure the same diagram is generated for different area specifications whose quantities are proportional.
Later, the search for a solution that satisfies our goodness measure (Section 5.6.3) commences, so that a
diagram with zone areas that are directly proportional to the scaled quantitative data of the area
specification is generated. A cost function directs the optimization process to a good solution
(Section 5.6.4), in that, starting with a rational diagram for the required zone areas (Section 5.6.5), the
properties of the ellipses are adjusted based on the cost of the modified diagram (Section 5.6.6). 

Design options were considered and evaluated, so pragmatic and experimental evidence supports the
design of all the components of eulerAPE (details in the section corresponding to each component). A
number of techniques were also adopted to avoid and handle local minima (Section 5.6.7).

5.6.1 The Rationale for a Simple Hill-Climber

Why a Heuristic

No analytic method can determine the properties of the curves of an area-proportional Venn diagram
given only an area specification, since the zone areas are defined by the various properties of the curves
enclosing the regions of the zones (Section 3.7.6 subsection 'The Need for a Heuristic'). Example, the
area of the overlap between two ellipses is defined in terms of the centre, the semi-axes and the angle of
rotation of the two ellipses. So irrespective of the representation and shape of the curves (circle, ellipse,
polygon or any other shape), the function defining the zone areas is non-invertible [Chow, 2007]. 

Also, different diagrams with possibly different aesthetic features could be generated with respect to
an abstract description (Section 3.4.3, Section 3.5; e.g., Figure 3.12 shows four ways how a 3-Venn
diagram can be drawn—only Figure 3.12A is wellformed) and with respect to an area specification
(e.g., the diagrams in Figure 5.2 and Figure 5.4 whose zone areas depict the same quantitative data).

Thus, a numerical method or a heuristic technique (as in Section 3.7.4) is required to adjust the
curves' properties, in search for an adequate diagram whose zone areas are proportional to the required
quantitative data and that satisfies any required aesthetic features, such as wellformedness as in eulerAPE.

Why a Simple Hill-Climber and Not Other Heuristics

Previous drawing techniques use different heuristic techniques (Section 3.7.4). Example the circle-based
method venneuler [Wilkinson, 2012] uses the steepest descent method with an approximate gradient
(i.e., local search optimization), while the polygon-based method VennMaster [Kestler et al., 2005,
2008] uses particle swarm and evolutionary optimization algorithms (i.e., global search optimization).

As noted by Wilkinson [2012] in his comparative analysis of venneuler to VennMaster, stochastic
optimization methods, like those in VennMaster, use random variables and a random starting diagram,
making the method non-deterministic as a different diagram is generated for the same area specification
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each time VennMaster is run. Also, the randomly generated starting diagram might not be as adequate
for the required quantitative data, so the optimization process might take long to converge to a solution,
and it is more likely to reach a local minimum as indicated by studies (e.g., [Clark, 1976; Spence and
Young, 1978]) for starting diagrams that are invariant or random. Wilkinson also argues that when a
rational starting diagram is used, such that the required solution is close to the starting diagram,
computationally expensive global search optimization algorithms, like those used by VennMaster and
others such as simulated annealing and genetic algorithms, are not required. In fact, Wilkinson
claims that though VennMaster took over 10 minutes to generate a diagram for some gene data, the
stress value of the diagram (i.e., 0.036) was greater and thus worse than that of venneuler's diagram
(i.e., 0.014), which was generated in 10 seconds (when run on a MacBook Pro @2.5Ghz with 2GB
RAM and Java Platform 1.5). Wilkinson provides various other cases where VennMaster fails to
produce an adequate diagram, despite the use of global optimization and irrespective to whether the
particle swarm or the evolutionary algorithm were used in the optimization. Also, generating a
diagram in 10 seconds or less is preferred as it ensures the users' attention is maintained [Card et al.,
1991; Miller, 1968]. However, this is not possible with stochastic global search optimization methods
as they are notorious for a long search time (e.g., [Fouskakis and Draper, 2002; Mitchell et al., 1993;
Talbi and Muntean, 1993]). VennMaster keeps the shape and orientation of the polygons unchanged and
only optimizes their position, but its convergence time is still far from an immediate response.

Thus, a local search optimization method with a rational starting diagram that is close to the
required solution should adequately draw area-proportional diagrams. The rational starting diagram
ensures the algorithm is deterministic and reduces the likelihood of converging to the wrong solution or
a local minimum. Yet, there are various local search optimization methods that can be used. Example,
venneuler uses the steepest descent method, while the circle-based method by Chow and Rodgers
[2005] uses a simple hill-climbing algorithm. In a steepest descent method, the gradient has to be
computed and the minimization function has to be differentiated. The gradient is defined as a function
of the accurate zone areas and so, computing this gradient is computationally expensive. In the case of
venneuler, an approximation of the gradient is used, as the zone areas are not computed accurately with
its quadrature numerical method. However, to compute a good approximation, various iterations
involving repeated evaluation of its minimization function are required and thus, computing an
approximation of the gradient could also be computationally expensive. If the approximate gradient is
not close enough to the true gradient, the optimization diverges from the required solution.

The hill-climbing algorithm is simple and easy to implement. No gradient has to be computed and
it has been preferred over other methods for various application areas (e.g., [Gent and Walsh, 1993;
Guindon and Gascuel, 2003; Katoh and Toh, 2010; Storer et al., 1992]). The steepest descent method
could aid handling ridges and speed up convergence [Hopgood, 2012]. However, it still unclear how
problematic ridges are when drawing such diagrams. So, being the first drawing method that uses
ellipses, we decided to adopt a simple hill-climbing algorithm which commences with a rational
starting diagram, that is close to the final required solution and that has characteristics that could prevent
convergence to a local minimum (Section 5.6.5), and adjusts the various properties of the ellipses
systematically, accepting only the changes that minimize the cost function (Section 5.6.6). Though a
simple technique, experimental evidence indicates that eulerAPE rarely encounters a local minimum
(Section 5.7.1) and when it does, the techniques we have adopted to handle local minima (Section 5.6.7)
are able to find the required solution when one is known to exist. The time required to generate a
diagram with eulerAPE is similar to that of venneuler (Section 5.7.2) and so, considering that venneuler
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uses a numerical method to compute the zone areas that is slightly faster than our analytic method
(Section 5.4.4), the steepest descent method does not necessarily aid in speeding up convergence. It
could also be that ridges are not much of a problem when drawing these diagrams and so, a simple hill
climbing algorithm could be sufficient for our purpose. Also, using such a local search optimization, it
is more likely for a diagram to be generated within the 10 second response time limit that ensures users'
attention is maintained [Card et al., 1991; Miller, 1968] (as demonstrated in Section 5.7).

5.6.2 Scaling the Quantitative Data of the Area Specification

Given an area specification, the quantity assigned to each zone is scaled, before a diagram is drawn. The
scaled quantity of a zone is then the required area of the zone in the diagram to be generated. In this
way, the same diagram is generated for different area specifications whose quantities are proportional
(e.g., the same diagram is generated for area specifications {a=12, b=12, c=16, ab=4, ac=6, bc=12,
abc=2} and {a=120, b=120, c=160, ab=40, ac=60, bc=120, abc=20}).

So given an area specification, ω, of the form

ω = a,  k1( ), b,  k2( ), c,  k3( ), ab,  k4( ), ac,  k5( ), bc,  k6( ), abc,  k7( ){ }  

where  k1,  k2,  k3,  k4 ,  k5,  k6,  k7{ }⊂ >0

the smallest quantity in ω, kmin, is found and each quantity ki for i ∈ {1, … , 7} is scaled to

′ki = ki ×
C
kmin

    where  C ∈ (5.15)

with each scaled value rounded up to 15 decimal places. So, the area specification with the scaled
quantities, indicating the required zone areas in the diagram to be generated, is

(5.16)′ω = a,  ′k1( ), b,  ′k2( ), c,  ′k3( ), ab,  ′k4( ), ac,  ′k5( ), bc,  ′k6( ), abc,  ′k7( ){ }  

where  ′k1,  ′k2,  ′k3,  ′k4 ,  ′k5,  ′k6,  ′k7{ }⊂ >0

We set the constant C in Equation (5.15) to 100. Any other value for c could have been chosen.
However, since the diagram display panel of eulerAPE is 720 pixels × 650 pixels, an area of 100 pixels2

for the smallest zone in the diagram seems reasonable, so the smallest possible diagram (i.e., one whose
zone areas are all equal) would have a total area of 700 pixels2. The diagram displayed in eulerAPE's
diagram display panel is a copy of the generated diagram with respect to ωʹ, which is scaled (i.e.,
contracted or enlarged) to adequately fit in the panel.

Other scaling mechanisms have been considered and evaluated. For instance, the quantities assigned
to the zones could be scaled by a factor that is inversely proportional to the quantity assigned to the
zone in exactly the three curves. However, no difference in both quantity and time was noted and so, we
decided to scale the quantities by a factor that is inversely proportional to the smallest quantity in the
area specification as in Equation (5.15), to avoid handling very small zone areas.

5.6.3 The Diagram Goodness Measure

The main objective of eulerAPE is to generate wellformed area-proportional 3-Venn diagrams with
regular, smooth and convex curves represented as ellipses and with zone areas that are accurate and
directly proportional to the quantities in a given area specification (Section 5.2.3). We can easily check
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whether the 3-Venn diagram satisfies all the wellformedness properties in Section 3.4.4 by computing
the number of intersection points between every pair of ellipses. Each ellipse represents a set in the data
provided in the area specification and so, the diagram always has unique curve labels and simple curves,
satisfying wellformedness properties 2 and 3 in Section 3.4.4. For the other properties to be satisfied, so
the diagram is wellformed, every pair of ellipses must intersect at only two points (as shown in example
Figure 3.12A for a wellformed 3-Venn diagram). However, to check whether the zone areas are directly
proportional to the quantities in a given area specification and thus accurate, a measure is required. We
now discuss the measures we have considered and the measure we defined for eulerAPE.

Possible Measures

Various measures have been used by drawing methods (Section 3.7.4). venneuler [Wilkinson, 2012]
uses its statistical loss function stress to measure the error in the diagram and how close it is to the
required solution. The lower the stress value, the better the solution. Yet the stress value could be
relatively low even if the diagram has missing zones (Section 3.7.4, Section 5.2.1). This is problematic
as such diagrams do not depict all the required set relations and are thus more misleading than those
with only inaccurate zone areas. So such a goodness measure is not appropriate for eulerAPE.

In Chow and Rodgers's [2005] circle-based method, an ad hoc measure is used to determine
whether the perceived order of the zones with respect to their size is consistent with that in the given
area specification. If so, the diagram is good irrespective to whether the zone areas are proportional to
the required quantities in the area specification, as the authors argue that readers are more concerned
with the relative sizes of the zones (i.e., whether one zone is equal, larger or smaller than another) than
the actual quantity they depict. The thresholds used to determine, example, that two zones are perceived
equal in size are ad hoc, based on intuition rather than empirical evidence, as it is not known how zone
areas are perceived and what differences in areas are not noted (Section 3.7.3). This measure does not
meet our objective of generating diagrams with zone areas that are accurate and directly proportional to
the quantitative data and thus, it is not adequate for eulerAPE.

The goodness measure of a diagram in VennMaster [Kestler et al., 2005, 2008] is primarily based
on the absolute difference between the cardinality of the set intersection represented by a zone and the
actual area of the zone scaled to correspond with the cardinality of the set intersection. It also includes a
few weights to manage the diagram aesthetics. Example, errors of overlaps of large sets are weighted
heavier than those of smaller sets. However, these weights are based on intuition rather than empirical
evidence and conflict with our objective of generating zone areas that are all directly proportional to the
required quantitative data. A measure that sums the absolute difference between the required and actual
scaled zone areas is still not appropriate. Consider the following example. Let the area specification
for which a diagram should be drawn be {a=1, b=1, c=1, ab=1, ac=1, bc=1, abc=1}. The sum of the
absolute zone differences of a diagram d1 whose zone areas correspond to {a=11, b=1, c=1, ab=1, ac=1,
bc=1, abc=1} will be 10 and that of diagram d2 whose zone areas correspond to {a=5, b=4, c=4, ab=1,
ac=1, bc=1, abc=1} is also 10. However, d1 could be less preferred than d2 as one of the zones depicts a
quantity that is 11 times as much as the required. If the maximum absolute zone differences is used, d1

would have a value of 10, while d2 a value of 4, indicating that d1 is worst than d2. Even so, it is difficult
to determine an acceptable maximum absolute difference for a diagram to be good. A difference of 1 for
a total area of the zones of 10000 is not the same as a difference of 1 for a total area of the zones of
example 10.
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A well-established measure known as the cartographic error [Dougenik, 1985], synonymous to the
standard relative error, is used to determine the accuracy of the area of the regions of a cartogram in
depicting the required quantitative data [Speckmann, 2006]. The error measure for each region is 

where actualArea is the area that the region has and requiredArea is the area that the region should
have. The error of the cartogram is often the maximum or average error of all the regions [Speckmann,
2006]. This measure is still not appropriate for area-proportional Venn (or Euler) diagrams. We refer
to this error measure as relative error whenever we are not referring to it in the context of cartography.

Firstly, the relative error measure is not symmetric. So, if the area specification for which a
diagram should be drawn is ω1 = {a=1, b=1, c=1, ab=1, ac=1, bc=1, abc=1} and the generated diagram
d1 has zone areas proportional to {a=10, b=1, c=1, ab=1, ac=1, bc=1, abc=1}, the relative error for zone
a in d1 is 9, so the maximum zone relative error in d1 is 9 and the average 1.29. Yet if the area
specification for which a diagram should be drawn is ω2 = {a=10, b=1, c=1, ab=1, ac=1, bc=1, abc=1}
and the generated diagram d2 has zone areas proportional to {a=1, b=1, c=1, ab=1, ac=1, bc=1, abc=1},
the relative error for zone a in d2 is 0.9, so the maximum zone relative error in d2 is 0.9 and the average
0.13. Thus according to relative error, the error in d1 with respect to ω1 is much greater than the error in
d2 with respect to ω2, even though in both d1 and d2 the only incorrect zone is a and the difference
between the required and actual area of this zone a is 10 times as much. So an appropriate measure for
area-proportional Euler diagrams must be symmetric, such that the error in d1 and d2 is treated equally.

Secondly, it is difficult to determine a small value for relative error for a diagram to be good. A
cartogram with a maximum zone error in [0.01, 0.05] is often considered good and adequate in depicting
the required quantitative data (e.g., [Buchin et al., 2012; van Kreveld and Speckmann, 2007]), as often a
zero error is not feasible except for few special cases (e.g., [de Berg et al., 2010]). For area-proportional
Euler diagrams, finding such a value is not so easy. Zones are in one or more curves. The area of all the
zones and curves should be accurate and directly proportional to the required quantities. If a zone area is
inaccurate, the area of the curve containing that zone would also be inaccurate. Quantities depicted by
other zones can also be interpreted incorrectly, even if their area is proportional to the required quantity.
This could occur as the zone areas are often compared with the area of the containing curve, of the other
zones and of the entire diagram to understand the zone proportion and the depicted quantitative data. 

Consider this example. The diagram in Figure 5.12A is accurate with respect to ω = {a=90, b=1,
ab=1}. The relative error in each zone is zero. The diagram is clearly depicting the required cardinality
for the sets and set intersections, as curve a is much larger than curve b, zone ab is half the size of curve
b, and zones ab and b are similar in size. The diagram in Figure 5.12B is inaccurate with respect to ω as
it corresponds to {a=90, b=10, ab=1}. Only zone ab has relative error greater than zero (i.e., 9), so
according to this measure, only this zone is incorrect. Yet, looking at just Figure 5.12B, zones ab and b
are clearly depicting different quantitative data, and despite the numeric labels, it is still unclear which
is erroneous even when their areas are compared to that of zone a. In fact, all the curves and zones are
erroneous. The area of curve b was meant to be 2.2% of that of curve a, but in Figure 5.12B, the area of
curve b is 11.0% of a. The percentage area of zone a, b, and ab to the total diagram area was expected
to be 97.8%, 1.1%, 1.1% respectively, but in Figure 5.12B, the percentage zone areas are 89.1%, 1.0%,
9.9% respectively. So all the zones are depicting an inaccurate percentage area of the total diagram,
particularly zones a and ab with a similar percentage area difference of 8.7% and 8.8% respectively.

actualArea − requiredArea
requiredArea
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Yet relative error indicates that only zone ab is incorrect. This further shows the inappropriateness of
such a measure to quantify the accuracy of area-proportional Euler diagrams with respect to an area
specification. After all, cartograms and area-proportional Euler diagrams are different (Section 3.7.4)
and a measure that is appropriate for cartograms is not necessarily appropriate for Euler diagrams.

A B

Figure 5.12: A simple example to demonstrate that relative error is not adequate to measure the
accuracy of an area-proportional Euler diagram with respect to an area specification. A Venn diagram
should be drawn for area specification ω = {a=90, b=1, ab=1}. The numeric labels indicate the quantity the
zones should depict. (A) An accurate area-proportional Venn diagram with respect to ω. All zones have zero
relative error. (B) An inaccurate area-proportional Venn diagram with respect to ω, corresponding to {a=90,
b=10, ab=1}. Relative error zero for zones a and b, 9 for ab. So according to relative error, only zone ab is
incorrect, despite that the percentage area of each zone to the total diagram area differs from that in A and ω.

Thus, we defined our diagram error measure based on the percentage area of each zone to the area
of the total diagram. A similar measure was considered but not adopted by Chow and Rodgers [2005].

Our Measure

The accuracy of each zone area in depicting the required quantity should not be measured independently
of the total diagram area. As shown in the previous section, an inaccuracy in one zone could make other
accurate zone areas or curves in the diagram seem erroneous, as zones and curves might be compared
for their area to be estimated. Instead of the absolute zone area, the zone area should be considered in
respect to the total diagram area. This means that the proportion of each zone area to the total diagram
area should be computed for both the required and actual diagram. The absolute difference of the two
proportions for a zone would provide the error of that zone. The diagram error can then be equal to the
largest error of the zones in the diagram. Thus, we define our diagram goodness measure as follows:

If
• ω is the area specification for which a diagram had to be drawn,
• d is a wellformed area-proportional diagram generated for ω,
• Z is the set of labels describing the required set of zones interior to the curves of the diagram,
• ω(z) ∈  + is the quantity assigned to z ∈ Z that should be depicted by the area of z in d, and 
• A(z) ∈


  + is the area of z ∈ Z in d,

then the error in each z ∈ Z is defined as 

(5.17)
zoneError(z) = ω (z)

ωS
− A(z)
AS

where   ωS = ω (z)
z∈Z
∑   and   AS = A(z)

z∈Z
∑
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and the error in d is defined as 

diagError = maxz∈Z zoneError(z)[ ] (5.18)

so that d is a good, accurate diagram with respect to ω, in that its zone areas are accurately and
directly proportional to the quantities in ω, if and only if

diagError ≤ ε       where  ε → 0 (5.19)

In eulerAPE, ε = 10-6, which value is consistent with that of other methods when defining a value for 0 in
their implementation (e.g., venneuler [Wilkinson, 2012]). Identifying a value for ε is simpler for this
measure than for others such as absolute or relative error, as the value of zoneError and diagError is
always in the interval of [0,1]. In eulerAPE, the area of the zones in the diagram (i.e., A(z) ∈


+ for every z

∈ Z) are computed using our analytic method M2 in Section 5.4.3.

We opted for a diagram error (diagError) that is defined as the maximum zone error rather than the
average zone error, to ensure that the greatest error in the zones is considered and that the error in the
other zones of the diagram is smaller or equal. The diagram error could also be defined as the sum of the
error in all the zones. However, getting a diagram with the sum of all the zone errors less than or equal
to ε where ε = 10-6 is not feasible. If instead, ε = 7 × 10-6, then a diagram that is considered to be good
when its zone errors are summed up, is also considered to be good by our measure in Equation (5.19)
with ε = 10-6. Also, in most areas, the maximum or the average error is considered (e.g., in cartography
[Alam et al., 2012; Buchin et al., 2012; Speckmann et al., 2006; van Kreveld and Speckmann, 2007]).
Thus, we decided to use the maximum zone error rather than the sum of the zone errors.

Before Equation (5.19) is used to determine whether a diagram accurately depicts the required
quantities, the check explained at the beginning of this section (Section 5.6.3) is carried out to ensure
that the diagram is wellformed. If the diagram is non-wellformed, then it is not a good solution as it
does not satisfy our objectives (Section 5.2.3).

In contrast to relative error, our measure is symmetric. So, if the required area specification is
ω1 = {a=1, b=1, c=1, ab=1, ac=1, bc=1, abc=1} but the generated diagram d1 corresponds to {a=10,
b=1, c=1, ab=1, ac=1, bc=1, abc=1}, diagError in Equation (5.18) is 0.48. If, however, the required
area specification is ω2 = {a=10, b=1, c=1, ab=1, ac=1, bc=1, abc=1} but the generated diagram d2

corresponds to {a=1, b=1, c=1, ab=1, ac=1, bc=1, abc=1}, diagError is also 0.48. So, the error in d1

with respect to ω1 and d2 with respect to ω2 is treated equally, as the error in both diagrams is in one
zone whose quantity differs by a factor of 10 from the required. Thus, our measure is symmetric. This
contrasts the asymmetric relative error measure which, as discussed earlier, returns a maximum error of
9 for d1 with respect to ω1 and 0.9 for d2 with respect to ω2, suggesting that the error in d1 is greater than
that in d2, despite that both have one erroneous zone that differs by the same factor from the required.

Also, if we consider again the example we discussed earlier in relation to relative error and the
diagrams in Figure 5.12 for area specification {a=90, b=1, ab=1} where the zone areas of Figure 5.12A
correspond to {a=90, b=1, ab=1} and those of Figure 5.12A correspond to {a=90, b=1, ab=10}, we
note that only Figure 5.12A satisfies Equation (5.19). This is so, as zoneError(z) in Equation (5.17) is 0
for every zone z in Figure 5.12A, but 0.087 (i.e., 8.7%), 0.001 (i.e., 0.1%) and 0.088 (i.e., 8.8%) for
respectively zones a, b and ab in Figure 5.12B. So the diagram error (diagError) is 0 for Figure 5.12A
and 0.088 for Figure 5.12B. Looking at only the quantities the zones of the diagrams relate to, zones a
and b seem to be correct. However, due to the error in the area of zone ab, zone a and b seem erroneous
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in Figure 5.12B, particularly when the zones are compared with one another, with a curve or with the
area of the diagram, to gain better understanding of the proportions. Such effects can mislead the reader
and so, these are noted by our zone error measure, so that zoneError(a) and zoneError(b) are greater
than 0. Thus, in contrast to relative error, our zone error measure (zoneError) is capable of identifying
zones that could appear erroneous and interpreted incorrectly due to errors in other zones.

Hence, if a generated diagram for an area specification is wellformed and satisfies Equation (5.19),
the diagram accurately depicts the required quantitative data and is thus a good solution that meets our
objectives (Section 5.2.3). Such a good solution would terminate the optimization algorithm discussed
in Section 5.6.6. However, the cost function that directs the optimization process to this good solution is
not based on Equation (5.19). We discuss this further in the next section (Section 5.6.4) and we provide
pragmatic and experimental evidence to support this choice and the decision to devise a more specific
cost function that aims at identifying and avoiding paths leading to local minima, while still directing
the optimization to such a good solution. With a diagram goodness measure that it is independent of the
cost function, it was possible to evaluate the effectiveness of different cost functions and still use the
same measure to check the goodness of the diagram.

Though this work focuses on area-proportional 3-Venn diagrams drawn with ellipses, our diagram
goodness measure Equation (5.19) can be used for any area-proportional Euler diagram with any
number of curves that are not necessarily represented as ellipses.

5.6.4 The Cost Function

Our diagram goodness measure determines whether a wellformed area-proportional 3-Venn diagram is
good, such that its zone areas are accurate and directly proportional to the quantities in a given area
specification (Section 5.6.3). If a diagram is good, based on this measure, and its curves are regular,
smooth and convex represented as ellipses, the diagram satisfies our objectives (Section 5.2.3). Such a
good diagram would terminate the optimization, but to get to this diagram, during the optimization,
other characteristics of the explored solutions have to be measured to determine and avoid any change
that increases the likelihood of encountering a local minimum even though the error of the overall
diagram is reduced. So during the optimization, a solution is preferred over another based on whether
the cost to get to the good solution is reduced. Thus often the cost function that the optimization has to
minimize differs in a few ways from the measure that is only used to determine if a diagram is good.

We now discuss the different functions that have been previously proposed and whether these could
be considered for eulerAPE. We introduce the cost functions we devised, and we discuss our evaluation
of the various functions we considered for eulerAPE, stating which of these was then employed and why.

Possible Functions

Various types of cost functions were used by previous drawing methods (Section 3.7.4). venneuler

[Wilkinson, 2012] uses the same loss function stress as a diagram goodness measure and as a function
to direct the optimization. Using this function, generated diagrams with missing zones could still have a
relatively low stress value (Section 3.7.4, Section 5.2.1) despite that such diagrams are more misleading
than ones with only inaccurate zone areas. However, during our optimization, no diagram that is not a
3-Venn diagram is allowed and so, stress could still be considered for eulerAPE.
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Chow and Rodgers's [2005] fitness function was based on their ad hoc goodness measure, which
as discussed earlier in Section 5.6.3 subsection 'Possible Measures' does not meet our objectives and
should not be considered for eulerAPE. However, the authors also provide an 'idealistic' function, which
they did not use nor evaluate. The function is the sum of two components. The first is the sum of the
squared zoneError Equation (5.17) for all the required zones, while the second is the summation of an
inequality that verifies whether the ordering of the zones with respect to their area is consistent with that
defined in the area specification. If the first component is minimized to a value very close to zero, all the
zone areas would be directly proportional to the required quantitative data and the second component
would not be required. The intent for this second component was namely to help the algorithm generate
less misleading diagrams with circles, since circles cannot draw accurate diagrams for most 3-set data. 

Hence, since the first component of the 'idealistic' function by Chow and Rodgers [2005] is based
on our zoneError Equation (5.17), it is worth considering this component (without the second) as a cost
function for eulerAPE. Such a function would be more effective in directing our optimization than if our
diagError Equation (5.18) was used. This is so, as squaring the zoneError could aid the optimization in
identifying inappropriate changes to the diagram as large errors are weighted more heavily than smaller
ones. Also, squaring would ensure that if, example, a diagram has only one zone with zoneError > 0
and its zoneError is 1, and another diagram has two zones with zoneError > 0 and both have zoneError
0.5, the cost of the first would be greater than that of the second. If the cost was the sum of zoneError,
both diagrams would have the same cost, even though the first is less preferred than the second. This is
in fact one of the ways how the cost function often differs from the goodness measure. 

Also, it is typical for the cost to be the sum or mean rather than the maximum of the squared error,
so the error of all the zones is considered. If the maximum of the squared error is considered and the
optimization has to choose which of the diagrams between d1 and d2 reduces the cost, where d1 has one
zone with zoneError 1 and the rest have zoneError 0, and d2 has two zones each with zoneError 1 and
the rest have zoneError 0, the optimization would not be able to choose between d1 and d2 as both
would have the same cost despite that d2 is worse. For the diagram goodness measure Equation (5.19),
considering the maximum error in the zones is sufficient as the measure determines whether the diagram
error is less than or equal to a value close to zero. So the worst possible diagram considered good is one
whose zoneError for all the zones is less than or equal to a value close to zero (in eulerAPE, 10-6). When
the cost is the sum of the squared errors, large errors would dominate the final cost, so the largest errors
in the zones are minimized first. Such large errors in the zones still affect the mean and so, often, when
Euler diagrams with any number of zones are drawn, the mean of the squared error is used, as diagrams
with the same zone errors but with a different number of required zones would get a different cost if the
sum is used. Since this work focuses on 3-Venn diagrams, the area specifications will always have the
same number of zones, so the sum or mean of the squared zoneError could be considered for eulerAPE.

The cost function used in the polygon-based method VennMaster [Kestler et al., 2008] tries to
direct the optimization to a solution that is a compromise between accuracy and aesthetics (discussed
earlier in Section 5.6.3 subsection 'Possible Measures'). Thus the zone areas of the targeted solution are
not necessarily directly proportional to the depicted quantity. This conflicts with our accuracy objective,
so this cost function cannot be considered for eulerAPE. It is however interesting that the function heavily
weights overlaps that are unwanted or missing, in a bid to generate only the required zones.

Cost functions based on cartographic error [Dougenik, 1985] are often used to draw accurate
cartograms [Speckmann, 2006]. Example, when evolutionary strategies were used, the part of the cost

5.6 The Drawing Method – eulerAPE | 122



function that determines the error of the cartogram's region areas was defined as the mean of the squared
cartographic error [Buchin et al., 2012]. Another method that adopted a linear programming approach
used the sum of the squared cartographic error [Speckmann et al., 2006]. As a goodness measure, the
maximum or average cartographic error of the cartogram's regions is used, but as a cost function, the
mean or sum of the squared cartographic error is used, for the same reasons discussed earlier for our
zoneError. This cartographic error or standard relative error is not symmetric, so as shown earlier in
Section 5.6.3, it cannot be used as a goodness measure of area-proportional Euler diagrams and more so,
it cannot be used to define a cost function for these diagrams. Example, consider that two diagrams d1

and d2 have only one zone area not equal to the required, and in d1 the zone is 10 times larger than
required and in d2 the zone is 10 times smaller than required. The relative error of the zone in d1 is 9 and
that of the zone in d2 is 0.9. So the cost of d2 would be less than that of d1 (e.g., if the cost function is the
sum of the squared relative error than the cost of d1 is 81 and the cost of d2 is 0.81) and thus, during the
optimization, d2 would be preferred over d1 despite that both diagrams are equally wrong. Yet relative
error is well-established and it is worth evaluating a cost function based on relative error for eulerAPE.

In an informal experimentation, we observed that when most of the cost functions discussed above
are used, including venneuler's stress and Chow and Rodgers's 'idealistic' function, a local minimum is
often reached when the optimization is driven to a path that reduces the overall diagram error at the
expense of diminishing a zone that is meant to be larger, up to a point when the zone is close to non-
existent and the optimization stops. Thus, we devised novel cost functions that drive the optimization
to a good diagram Equation (5.19) and yet, prevent it from taking such paths. We now discuss these cost
functions and our experimental comparison of these and other functions discussed here for eulerAPE.

Our Novel Functions

As demonstrated in the previous section, the cost function often differs from the goodness measure in a
number of ways, as the former determines whether a change in the diagram will direct the optimization
to a path that leads to a good solution, while the latter only determines whether a diagram is good. So,
besides checking if a change reduces the overall error in the diagram, the cost function should also
determine and prevent the optimization from taking paths that lead to a local minimum. 

We observed that a local minimum is often reached when the error of the diagram is reduced at the
expense of one zone diminishing, even though it should be larger, up to a point when it is barely visible.
To prevent the optimization from taking such paths, we devised the following cost function, so that: 

If

• ω is the area specification for which a diagram should be drawn,
• ωʹ is the area specification with the scaled quantities of ω obtained as defined in Section 5.6.2

indicating the required zone areas in the required good diagram for ω,
• d is a wellformed area-proportional diagram that is explored for ω during the optimization,
• Z is the set of labels describing the required set of zones interior to the curves of the diagram,
• ωʹ(z) ∈  + is the area that z ∈ Z should have in the required good diagram, and 
• A(z) ∈


  + is the area of z ∈ Z in d,

then the cost of d is defined as 

1
Z

′ω (z)− A(z)( )2
A(z)z∈Z

∑ (5.20)
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In eulerAPE, the zone areas (A(z) ∈

 + for each z ∈ Z) are computed by our algorithm M2 in Section 5.4.3.

Hence, the cost of a diagram is the mean of the cost of all the zones in that diagram. The use of
the sum or mean of the cost of all the zones is typical and preferred over maximum, as explained in the
previous section. This work focuses on 3-Venn diagrams and so, the sum could be used instead of the
mean as the number of zones and thus⏐Z⏐will always be seven. However, we opted for the mean so
Equation (5.20) could be used as a cost function for other future algorithms that are devised to draw
Euler diagrams with any zones. Yet its effectiveness to handle such diagrams still needs to be evaluated.

To compute the error of the zone areas, we consider the squared absolute difference between the
required and actual zone area (i.e., (ωʹ(z) − A(z))2 for z ∈ Z). We square the difference for the reasons
discussed in the previous section, but primarily, to heavily weight large errors, as shown in Figure 5.13
where, as an example, the value of (ωʹ(z) − A(z))2 for z ∈ Z is shown for A(z) in [0.01, 10] and for ωʹ(z)
∈ {0.01, 0.1, 0.5, 1}. Squaring the difference is also typical when defining cost functions. Since we
scale the required area for each zone in the given area specification, such that the quantities in ωʹ are the
zone areas in the required diagram, it is adequate to consider the absolute zone areas. This contrasts our
diagram goodness measure, which considers the zone areas relative to the diagram area, as an error in
one zone makes other accurate zones or curves seem erroneous (Section 5.6.3). Yet its objectives are
different from those of the cost function, as it only determines whether a diagram is good and whether
the optimization should be terminated. The cost function, on the other hand, determines whether a
change in the diagram will aid the optimization reach a good solution and so, if it considers relative
zone areas as in our goodness measure, it could be too restrictive, particularly at the initial stages of the
optimization when major changes are explored in search for a good yet non-refined solution. The area of
most of the zones in such initial solutions will not be equal to that required and so, considering the error
of each zone independently of one another could be more effective, particularly in terms of time and the
number of iterations to get to a good solution. This is possible by considering the absolute difference
between the required and actual zone area. If this difference is minimized to a value close to zero for all
the zones, the obtained solution is still likely to meet our diagram goodness measure. VennMaster's
[Kestler et al., 2008] cost function, heavily weights overlaps that are unwanted or missing, but it does
not attempt to identify and prevent the optimization from taking paths that lead to such diagrams.

Figure 5.13: The cost of a zone z when it is computed as (ωʹ(z) − A(z))2 where ωʹ(z) and A(z) are
respectively the required and actual area of z—this example illustrates the cost for A(z) in [0.01, 10]
and for ωʹ(z) ∈ {0.01, 0.1, 0.5, 1}. This is how the cost of every zone in the diagram would be computed if
only the squared absolute difference between the required and actual zone areas is considered.
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The denominator A(z) for z ∈ Z in our function prevents the optimization from taking paths that
would reduce the overall diagram error, at the expense of constantly diminishing one zone area that
should be larger, up to the point when the zone is close to non-existent and a local minimum is reached.
With our function, a zone with a very small area compared to the required in ωʹ will have a very large
cost to prevent the optimization from taking such paths. This is illustrated in Figure 5.14 where, as an
example, the cost of a zone z ∈ Z as computed by our cost function Equation (5.20) is shown for A(z) in
[0.01, 10] and ωʹ(z) ∈ {0.01, 0.1, 0.5, 1}. The larger the absolute difference between the required and
actual area, and the smaller the actual zone area, the greater the zone cost. Yet, if the absolute difference
is less than one, which is often the case when the required good diagram is about to be reached, and the
actual zone area is also less than one, then since the absolute difference is squared, the cost will not be
too large and the optimization will proceed with this path. So, if the absolute difference between the
required and actual zone area is 10-6 (a value which eulerAPE considers very close to zero) and the actual
zone area is less than one (possibly close to zero like 10-6), the zone cost would still be close to zero
(i.e., 10-6 or smaller). If, however, the actual zone area is greater than one, the influence of the squared
absolute difference between the actual and required zone area on the zone cost is reduced. This should
not be problematic as by squaring the absolute differences, large differences are heavily weighted, as
shown in Figure 5.13. Weakening these heavy weights on outliers could in fact be beneficial. 

Consider, for instance, two zones z1 and z2 where A(z1) = 20, ωʹ(z1) = 10, A(z2) = 2, ωʹ(z2) = 1. The
actual area of both z1 and z2 is twice as large as that required. If the cost of the zone was (ωʹ(z) − A(z))2

for z ∈ Z, the cost of z1 would be 100 and that of z2 1, meaning that though both z1 and z2 are twice as
large as required, z1 would have a much greater impact on the final diagram cost than z2. However, if the
zone cost is (ωʹ(z) − A(z))2⧸A(z) as in Equation (5.20), the cost of z1 would be 5 and that of z2 0.5. So by
considering the squared absolute difference relative to the actual zone area, the cost of all the zones
would get a fair chance to contribute to the total diagram cost independently of the size of the required
zone area. As illustrated in Figure 5.13 and Figure 5.14, as the actual zone area increases, the cost of the
zone increases much rapidly when the squared absolute difference is considered (Figure 5.13) than
when the squared absolute difference relative to the actual zone area is taken into account (Figure 5.14).

Figure 5.14: The cost of a zone z when it is computed as (ωʹ(z) − A(z))2⧸A(z) where ωʹ(z) and A(z) are
respectively the required and actual area of z—this example illustrates the cost for A(z) in [0.01, 10]
and for ωʹ(z) ∈ {0.01, 0.1, 0.5, 1}. This is how our non-dimensionless cost function in Equation (5.20)
computes the cost of every zone in the diagram.
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Our cost function in Equation (5.20) is non-dimensionless, but as explained in Section 5.6.2, the
quantities in the given area specification ω are always scaled using a predefined constant (hardcoded in
eulerAPE) and made available as ωʹ before the optimization commences. So the area of a zone z∈Z, A(z),
in a good diagram generated for ω should be equal to ωʹ(z). Such scaling was also used in VennMaster
[Kestler et al., 2008]. The diagram displayed in eulerAPE's panel is a copy of the diagram generated for
the required zone areas in ωʹ, which is enlarged or compressed to adequately fit in the panel.

By scaling the given area specification, our non-dimensionless cost function can be used. Yet we
still considered ways how to make Equation (5.20) dimensionless. The denominator A(z) for z ∈ Z
could be squared as in

1
Z

′ω (z)− A(z)
A(z)

⎛
⎝⎜

⎞
⎠⎟
2

z∈Z
∑ (5.21)

or the numerator could be the absolute difference between the required and actual zone area not squared
as in 1

Z
′ω (z)− A(z)
A(z)z∈Z

∑ (5.22)

By squaring the denominator, the cost of a zone z in Equation (5.21) would be much smaller than that in
Equation (5.20) when A(z) > 1 and much greater when A(z) < 1. This would have a different effect from
that intended by our non-dimensionless function in Equation (5.20), as large errors would be less easily
identified and the actual zone area would have a greater impact on the cost from that intended to aid
identify zones that are diminishing in size when they should not. As an example, Figure 5.15 shows the
cost of a zone z ∈ Z computed by Equation (5.21) for A(z) in [0.01, 10] and ωʹ(z) ∈ {0.01, 0.1, 0.5, 1}. 

Figure 5.15: The cost of a zone z when it is computed as ((ωʹ(z) − A(z))⧸A(z))2 where ωʹ(z) and A(z)
are respectively the required and actual area of z—this example shows the cost for A(z) in [0.01, 10]
and for ωʹ(z) ∈ {0.01, 0.1, 0.5, 1}. This is how our dimensionless cost function in Equation (5.21)
computes the cost of every zone in the diagram. Below is a magnified view of the plots for the cost in [0, 25].

The zone cost in Equation (5.22) is the same as that in Equation (5.21) except that it is not squared. So
if large zone errors result in a smaller cost in Equation (5.21) than in Equation (5.20), in Equation (5.22)
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the cost would be even smaller, making it harder to identify inappropriate paths. Also, if the absolute
difference between the actual and required zone area is less than one and the actual zone area is greater
than or equal to one, then the zone will have a larger cost in Equation (5.22) than in the other two
functions, making it even harder to determine which path leads to a good solution. Thus, the reason why
typically a cost function squares the error, even when the related goodness measure only considers the
absolute error (e.g., cartographic error). As an example, Figure 5.16 illustrates the cost of a zone z ∈ Z
as computed by Equation (5.22) for A(z) in [0.01, 10] and for ωʹ(z) ∈ {0.01, 0.1, 0.5, 1}. So we expect
Equation (5.21) and Equation (5.22) to be less effective than Equation (5.20) and for Equation (5.22)
to perform worse than Equation (5.21). Yet it is worth evaluating these dimensionless cost functions.

Figure 5.16: The cost of a zone z when it is computed as⏐ωʹ(z) − A(z)⏐⧸A(z) where ωʹ(z) and A(z) are
respectively the required and actual area of z—this example illustrates the cost for A(z) in [0.01, 10]
and for ωʹ(z) ∈ {0.01, 0.1, 0.5, 1}. This is how our dimensionless cost function in Equation (5.22)
computes the cost of every zone in the diagram.

We will now discuss our evaluation and experimental comparison of these cost functions and others
discussed in the previous section that are worth considering for eulerAPE.

Evaluation of Possible Functions

To choose the most effective cost function for eulerAPE, we conducted an experimental comparison of
the following cost functions discussed in the previous sections. So, if

• ω is the area specification for which a diagram should be drawn,
• ωʹ is the area specification with the scaled quantities of ω obtained as defined in Section 5.6.2

indicating the required zone areas in the required good diagram for ω,

• d is a wellformed area-proportional diagram that is explored for ω during the optimization,

• Z is the set of labels describing the required set of zones interior to the curves of the diagram,

• ωʹ(z) ∈  + is the area that z ∈ Z should have in the required good diagram, and 

• A(z) ∈

  + is the area of z ∈ Z in d computed using our analytic method M2 in Section 5.4.3,

then the evaluated cost functions were:
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• F1. The statistical stress function used in venneuler [Wilkinson, 2012] that was computed
with the source code of venneuler version 1.1-0 (provided to us by the author) but using
ωʹ(z) and A(z) for the required and the actual area of a zone z ∈ Z;

• F2. The first component of the 'idealistic' function of Chow and Rodgers [2005], based on
zoneError Equation (5.17) Section 5.6.3, which we computed as

zoneError(z)( )2  =  
z∈Z
∑ ω (z)

ωS
− A(z)
AS

⎛
⎝⎜

⎞
⎠⎟

2

 
z∈Z
∑ where  ωS = ω (z)

z∈Z
∑   and   AS = A(z)

z∈Z
∑

;

• F3. The sum of the squared relative error of the zones, which we computed as

′ω (z)− A(z)
′ω (z)

⎛
⎝⎜

⎞
⎠⎟
2

z∈Z
∑

;

• F4. The maximum of the relative error of the zones, which we computed as

maxz∈Z
′ω (z)− A(z)

′ω (z)
⎡
⎣⎢

⎤
⎦⎥ ;

• F5. The sum of the relative error of the zones, which we computed as

′ω (z)− A(z)
′ω (z)z∈Z

∑
;

• F6. Our non-dimensionless cost function Equation (5.20) defined in the previous section as

1
Z

′ω (z)− A(z)( )2
A(z)z∈Z

∑ ;

• F7. Our dimensionless cost function Equation (5.21) defined in the previous section as

1
Z

′ω (z)− A(z)
A(z)

⎛
⎝⎜

⎞
⎠⎟
2

z∈Z
∑ ;

• F8. Our dimensionless cost function Equation (5.22) defined in the previous section as

1
Z

′ω (z)− A(z)
A(z)z∈Z

∑
.

As discussed in the previous sections, since this work focuses on 3-Venn diagrams, the diagrams and
the area specifications will always have the same number of zones and so, independently of whether the
sum or the mean is used to collate the cost of every zone to the cost of the diagram, the optimization
will be directed to the same solution. Thus, we evaluated F2 and F3, but not variants of them using the
mean. Our cost functions F6, F7 and F8 use the mean as they were devised to handle Euler diagrams
with any number of curves. For this work and this experimentation, we could have used variants that
use the sum, but we did not for integrity, to evaluate the functions as they were devised. Though both
F3 and F4 are based on relative error, in areas such as cartography F4 is used as a goodness measure,
while F3 is used a cost function. We expect F4 to perform worse than F3 for various reasons discussed
earlier, primarily for not squaring the cost of the zones and for only considering the maximum cost of
the zones. However, relative error has never been adopted for the generation of area-proportional Venn
or Euler diagrams and so, we decided to evaluate F3 and F4, as well as F5 that is based on the sum
rather than the maximum cost of the zones.
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Each cost function was used by the optimization algorithm discussed in Section 5.6.6 to generate
diagrams for the two sets of 10,000 area specifications obtained from libraries DIAGLIB_design and
AREASPECLIB_design (Section 5.5). Throughout this section, these two sets of area specifications are
respectively referred to DLas and ASLas. To conduct the experiment, the cost function Equation (5.20)
in step 8 of the optimization algorithm (Algorithm 5.3) was replaced by any one of the above that was
being evaluated. Independently of the cost function, the optimization terminated when a good diagram
satisfying Equation (5.19) was found or when a local minimum was reached, as in Algorithm 5.3. In this
way, the cost function only determined whether a change in the diagram leads the optimization to a
good solution. This also ensured integrity in our evaluation, such that the definition of a good diagram
for a given area specification was consistent between cost functions. The rerun option in our
optimization algorithm was disabled, so the optimization was always run once with one set of values for
its parameters. The error of the generated diagrams was measured using our diagError Equation (5.18)
and the error was then used to determine how many of the generated diagrams satisfied our diagram
goodness measure Equation (5.19). The number of iterations and the time taken to generate the
diagrams was also recorded. All the experiments were run on an Intel Core i7-3770 CPU @3.4GHz
with 8GB RAM, 64-bit Microsoft Windows 7 Professional SP1 and Java Platform 1.7.0_10. 

In this evaluation, we aimed to

• identify which cost function is most effective in avoiding local minima and in driving the
optimization to a good diagram when one is known to exist for the given area specification, and 

• identify which cost function is most effective in driving the optimization to a good diagram
when it is not known whether such a diagram exists for the given area specification.

For the first objective, we compared the number of generated diagrams for DLas, that satisfied our
diagram goodness measure Equation (5.19). Libraries of type DIAGLIB like DIAGLIB_design are a
collection of wellformed 3-Venn diagrams with random ellipses (Section 5.5.1). The zone areas of these
diagrams are computed, so a collection of area specifications for which a good diagram is known to
exist is defined. Thus, failing to generate a good diagram for such area specifications indicates that a
local minimum was reached. For the second objective, we compared the number of generated diagrams
for ASLas that satisfied our diagram goodness measure Equation (5.19), as AREASPECLIB type libraries
like AREASPECLIB_design consist of area specifications with random quantities for which a wellformed
accurate area-proportional 3-Venn diagram drawn with ellipses might not exist (Section 5.5.1).

We hypothesized that our non-dimensionless cost function F6 would be the most effective in
generally directing the optimization to a good diagram, as it was devised to identify and avoid paths that
lead to a local minimum, particularly those that reduce the overall diagram error at the expense of one
zone diminishing that should be much larger, up to a point when it is barely visible and the optimization
has to terminate. We expected our dimensionless variants F7 and F8 to be less effective than F6 for the
reasons discussed in subsection 'Our Novel Functions' and also, possibly less effective than F1 and F2
in reaching a good solution, as the required adaptations to make our cost function dimensionless make
inappropriate paths less easily identified. Even so, F7 and F8 will not lead to diagrams whose overall
error is reduced at the expense of diminishing one zone that should be larger. We hypothesized that F2
will require more iterations and time to get to a good diagram than F6, as F2 considers the zone areas
relative to the area of the diagram rather than the absolute zone areas independently of the other zones
as in F6 (subsection 'Our Novel Functions'). Relative error is not entirely appropriate for drawing these
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diagrams (subsection 'Possible Functions') and so, we expected F3 to perform worse than F1, F2 and F6,
and for F4 and F5 together with F8 to be the least effective as the error in the zones is not squared.

The experimental results are available in Appendix A. 

This evaluation and experimental comparison indicates that our non-dimensionless cost function
F6 is the most effective in:

• Generating good diagrams for area specifications for which a good diagram is known to exist
(Appendix A.2.1);

• Converging to diagrams that have a low diagError even when a good diagram cannot be drawn
with respect to the given area specification (Appendix A.2.2); 

• Identifying and avoiding paths that lead the optimization to a local minimum when the overall
error of the diagram is reduced at the expense of diminishing a zone to a point where it is close
to non-existent and its actual-to-required zone area ratio is close to zero (Appendix A.2.3);

• Taking the least amount of the time and iterations to generate the diagrams, particularly for area
specifications for which a good diagram is known to exist (Appendix A.2.4);

• Generating a large majority of the diagrams (97.3%, N = 20000) within a time (1 second) that
ensures that the users' train of thought is maintained, and generating nearly all the diagrams
(99.6%, N=20000) within a time (10seconds) that ensures that the users' attention is maintained
(Appendix A.2.4 “Response Time Effectiveness”).

The effectiveness of F6 over the other cost functions with respect to the generation of good diagrams,
time and the number of iterations was highly evident for DLas, but less evident for ASLas. No
statistically significant differences were revealed between the percentages of good diagrams of F1, F2
and F6 for ASLas. A small significant effect between F6 and both of F1 and F2 on time and number of
iterations for ASLas was reported. However, though the medians of F1 and F2 were marginally smaller
than those of F6, the means of F6 were much lower than those of F1 and F2. 

This evaluation also demonstrated that all of the cost functions (F1-F5), except for those we devised
(F6-F8), often direct the optimization to a local minimum as the actual-to-required zone area ratio is
reduced to a value close to zero. So F1-F5, all of which had been previously used or proposed should be
avoided. These cost functions include: (F1) stress that is used by venneuler [Wilkinson, 2012], which is
considered the current most effective circle-based method; (F2) Chow and Rodgers's [2005] 'idealistic'
function, that is a variant of diagError and our goodness measure; (F3, F4, F5) the cost functions based
on relative error, that are often effective in drawing accurate cartograms. This also indicates that a cost
function differs from the diagram goodness measure, as it should reduce the diagram error, but also
identify and avoid paths leading to a local minimum. The latter is possible by a cost function that
heavily weights zones whose area is very small with respect to that required, as done in F6-F8.

Following F6, cost functions F2 and F1 were the most effective in generating a good diagram. Next
there were F7 and F3 and finally, F4, F5 and F8, which functions led to the generation of very few good
diagrams as they do not square the error in the zones, making inappropriate paths less distinguishable.
As expected, our dimensionless cost functions F7 and F8 were not as effective as our non-dimensionless
F6 and less effective than F1 and F2. However, both achieved results (in terms of diagError, time and
iterations) similar to those of functions based on relative error, namely F3 which squares the cost of the
zones as our F7, and F5 which sums but does not square the cost of the zones as our F8.
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For 0.5% of the area specifications for which a good diagram was known to exist (i.e., DLas), F6
reached a local minimum and generate an inaccurate with diagError≤ 1.85× 10-2. As we demonstrate in
Section 5.7.1, these very few cases are handled by the rerun option in our algorithm, which reruns the
optimization using different starting values for its parameters. However, this option was disabled in this
experiment to determine the number of good diagrams generated by only the first run.

The Function Employed By eulerAPE

As demonstrated, our specially devised non-dimensionless cost function in Equation (5.20) (F6 in our
evaluation) has various characteristics that make it more effective than other cost functions, in directing
the optimization to a wellformed diagram whose zone areas are accurate and directly proportional to the
quantities in a given area specification, and in identifying and avoiding paths that lead to a local
minimum, particularly in those cases when the overall error of the diagram is reduced at the expense of
diminishing the area of one zone. Thus, cost function Equation (5.20) was employed by eulerAPE.

We now discuss the methods we devised and evaluated to generate a rational starting diagram that is
close to the required diagram and that has characteristics that could further aid avoid local minima. 

5.6.5 The Starting Diagram

The optimization process has to start with a solution. This is often an arbitrary or invariant one. Both
types do not take into account the data the good solution must represent, so convergence time is long.
For problems like ours, studies (e.g., [Clark, 1976; Spence and Young, 1978]) suggest that these starting
diagram types are more likely to direct the optimization to a local minimum. If the starting diagram is
arbitrary as in example VennMaster [Kestler et al., 2008] the drawing method is non-deterministic as a
different diagram is generated for the same area specification every time the optimization is run.

Both types of starting diagrams were considered for eulerAPE. The arbitrary starting diagram was a
wellformed Venn diagram comprised of three ellipses whose properties were assigned random values.
The invariant starting diagram was a wellformed Venn diagram with 3-fold rotational symmetry,
comprised of three equally-sized circles and zones that were similar in size, except for those in only one
curve that were around three times as much as the rest. The radii of the circles and the zone areas in the
invariant starting diagram were predefined irrespective of the required quantitative data. As expected,
both starting diagram types led to poor results in terms of generation time and diagram accuracy. The
arbitrary type was particularly inappropriate, as our objective was to develop a deterministic method.

A rational starting diagram that is adapted to the required area specification is more effective, as it
reduces convergence time and the likelihood of reaching a local minimum, without the need for a
computationally expensive global search optimization (Section 5.6.1). So the optimization is more
efficient. Thus, devising a method that generates an appropriate rational starting is worth the effort.

The circle-based method venneuler [Wilkinson, 2012] also uses a rational starting diagram that is
close to the required solution. The required area of a curve in the diagram is the sum of the required area
of each zone in that curve, so the radii of the circles for these curves can be computed analytically. To
find appropriate centres for these circles, venneuler uses a distance matrix. This matrix only considers
overlaps between every pair of ellipses, so the actual zone areas will not be close to the required, even if
the overlapping area of each pair of ellipses is equal or close to the required (as shown in Section 3.7.6
subsection 'Constructing Accurate Area-proportional Venn Diagrams with Two But Not Three Circles').
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Generating a rational starting diagram with ellipses is more difficult than circles. Given the required
area of an ellipse, the two semi-axes of the ellipse cannot be computed analytically and an optimization
technique is required to find appropriate values for these semi-axes (Section 3.7.6 subsection 'The Need
for a Heuristic'). Besides the centre and the angle of rotation, the semi-axes of the ellipses in the starting
diagram are also unlikely to be equal to those of the good solution. The optimization will then adjust all
the properties of the ellipses in the starting diagram to search for a good solution.

We devised two methods to generate a rational starting diagram with ellipses, that is close to the
required solution given an area specification and that has appropriate characteristics that could prevent
convergence to a local minimum. We discuss these two methods in the following section, followed by
the evaluation of both methods and the rationale of our chosen method for eulerAPE.

Our Novel Starting Diagram Generators

The starting diagram generated by both methods is drawn using three ellipses with equal semi-axes, so
that the ellipses are depicted as circles, as given the area of an ellipse, its semi-axes cannot be computed
analytically unless they are equal to one another. Also, area-proportional Venn diagrams drawn with
circles are preferred (Section 3.7.1) and easier to comprehend (Section 3.5.2). So whenever possible, we
wanted eulerAPE to draw the curves as circles or as ellipses with a circle-like shape (i.e., with similarly
sized semi-axes). With equal semi-axes, any angle of rotation could be assigned to the ellipses, but an
angle of rotation of 0, π⧸3 and 2π⧸3 is assigned to the three respective ellipses, to ensure that the entire
space of possible rotations is considered. The ellipses in the starting diagram need a centre. Assigning
an appropriate centre is difficult and yet important as this determines the accuracy of the zone areas. 

An accurate area-proportional Venn diagram can be drawn with circles for any data with two but not
three sets (Section 3.7.6). The ellipses in our starting diagram are depicted as circles and so, an area-
proportional 2-Venn diagram can be drawn to accurately depict two of these overlapping ellipses using
Chow and Ruskey's [2004] bisection method (explained in Section 3.7.6). A third ellipse must be added.

Only checking the accuracy of the overlapping area of every pair of ellipses (as in venneuler) does
not warrant zone areas that are close to the required, and in most cases, all of the zone areas are far from
the required (demonstrated in Section 3.7.6). Any changes carried out to any of the ellipses during the
optimization will affect the area of the zone that is located in exactly the three ellipses and so, having
a starting diagram that minimizes the error of this zone independently of the other zones in the diagram
seems beneficial. This is so, as though it is important to have a starting diagram whose zone areas are all
relatively close to the required solution, it is also important to have a starting diagram with appropriate
characteristics that could prevent convergence to a local minimum. Maximizing the accuracy of the area
of the zone located in exactly the three ellipses irrespective of the other zones could aid with the latter.
When we discussed our evaluation and experimental comparison of our cost function with others in
Section 5.6.4 and Appendix A, we gave an example in Figure A.8 that illustrates that sometimes, during
the optimization, the area of the zone located in exactly the three ellipses is minimized, even though a
larger area is required, up to the point that it is barely visible and a local minimum is reached. As
demonstrated in Section 5.6.4, our specially devised cost function can identify and avoid such paths.
However, starting with a diagram whose zone located in exactly the three ellipses already has the
required area, further aids to avoid such local minima. As we shall demonstrate in subsection
'Evaluation of Our Proposed Generators', the overall diagError (Section 5.6.3) of the starting diagram
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would still be reasonably low. This is primarily due to the choice of the ellipses for the generation of the
accurate area-proportional 2-Venn diagram. Choosing the two ellipses that are either the ones with the
largest required overlap or the largest two required ellipses in the diagram, increases the likelihood that
the overall starting diagram is somewhat close to the required, as the accurate 2-Venn diagram would
represent a large portion of the starting diagram and the third ellipse added to it is smaller than the other
two, thus easier to position appropriately.

Hence, both starting diagram generators, S1 and S2, use the bisection method [Burden and Faires,
2010] to find a centre for the third ellipse (depicted as a circle) that minimizes the error of the area of
the zone that is located in exactly the three ellipses independently of the other zones in the diagram. S1
and S2 mainly differ in the way they find the coordinates of the centre of the third ellipse:

• S1. Bisecting the interval along the y-axis and then along the x-axis;
• S2. Bisecting the interval along a bisector line. 

The general algorithm for S1 and S2 to generate a rational starting diagram with respect to a given
area specification ω is defined in Algorithm 5.2. S1 and S2 are discussed after Algorithm 5.2.

Algorithm 5.2: GenerateARationaleStartingDiagram (ω)

Input: ω, a set of seven quantities each corresponding to a zone of a 3-Venn diagram
Output: a rationale starting diagram with ellipses for ω

1. ω' ← the set of scaled quantities of ω (as defined in Section 5.6.2)
2. C ← the set of labels describing the required curves of the diagram to be generated for ω
3. for each curve label c in C do
4.       reqCurveAreas [c] ←∑ ω'[c], ω'[c, c1], ω'[c, c2], ω'[c, c1, c2] 

                                       where c1 and c2 are the two other curve labels in C
5.       radii [c] ← √(reqCurveAreas [c] / π) 
6. end for 
7. rotations ← {0, π / 3, 2π / 3}
8. if  S1 is used then
9.       for each pair of curve labels c1 and c2 in C do
10.             reqPairwiseOverlapAreas [c1, c2] ← ∑ ω'[c1, c2], ω'[c1, c2, c3] 

                                                                      where c3 is the other curve label in C
11.       end for
12.       C2Venn ← the label of the curves with the largest required pairwise overlap area in 

                   reqPairwiseOverlapAreas
13. else if  S2 is used then 
14.       C2Venn ← the label of the curves with the largest two required curve areas in requiredCurveAreas
15. end if 
16. ω'2Venn ← the set of three quantities each corresponding to a zone of a Venn diagram with only the

               two curves in C2Venn, computed using ω'
17. d2Venn ← an accurate area-proportional 2-Venn diagram drawn with circles with respect to ω'2Venn, 

             generated using Chow and Ruskey's [2004] bisection method 
18. i1 ← the upper intersection point (xi1, yi1) of the two circles in d2Venn

19. i2 ← the lower intersection point (xi2, yi2) of the two circles in d2Venn
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20. c3 ← the label of the curve in C but not in C2Venn 
21. e3 ← a circle with label c3, radius radii[c3] and an undefined centre
22. centres[c3] ← the centre of e3 computed by S1 or S2 using i1 and i2, such that when e3 is

                      added to d2Venn, a wellformed 3-Venn diagram d3Venn is formed and
                     ⏐ω'[c1, c2, c3] – zas[c1, c2, c3]⏐→0, where c1, c2 are the curve labels in C that are not c3

                      and zas is the set of the actual zone areas in d3Venn

23. for each curve label c in C2Venn do
24.       centres [c] ← the centre of the circle with label c in d2Venn

25. end for
26. for each curve label c in C do
27.       ellipses [c] ← an ellipse with label c, centre centres[c], both semi-axes radii[c] and angle of

                            rotation rotations[c]
28. end for 
29. return ellipses

The main objective of step 22 in Algorithm 5.2 is to find a centre for the third ellipse e3, such that the
area of the zone in exactly the three ellipses is closest as possible to the required scaled quantity
irrespective of the other zones in the diagram. So the absolute error based on the scaled quantity in
ωʹ(Section 5.6.2) is considered, rather than zoneError (Section 5.6.3) which takes into account the total
diagram area. In eulerAPE, the zone areas are computed using our analytic method M2 in Section 5.4.3.

If S1 is used, the centre of e3 is obtained by applying: (1) the bisection method in an interval along
the y-axis to obtain an appropriate y-coordinate, yc, while the x-coordinate is set to xi1; (2) the bisection
method in an interval along the x-axis to find an appropriate x-coordinate, xc, with respect to yc (as in
Figure 5.17B), so that (xc, yc) is the centre of e3. Let r ∈ ℝ+ be the value assigned to the semi-axes of e3.
Bisection (1) is in the interval (yi1 + r, yi1 − r) when (yi2 ≤ (yi1 − 2r)) else in the interval (yi1 + r, yi2 + r).
Bisection (2) is in the interval (xi1 - d, xi1 + d) where d = √(r2 − (yi1 − yc)2). The faded blue circles in
Figure 5.17 indicate the placement of the third ellipse (depicted as a circle) for the endpoints of the
interval in which the bisection method is applied and demonstrate that the endpoints of the interval as
well as any value that is not in the interval will generate a diagram that is not a Venn diagram.

A B

Figure 5.17: Starting diagram generator S1—bisecting the interval along the y-axis and then along the
x-axis. The centre of ellipse e3 is obtained by applying the bisection method in: (A) an interval along the y-
axis to find the y-coordinate; (B) an interval along the x-axis to find the x-coordinate. The obtained centre
should minimize the difference of the required and actual area of the zone in exactly the three ellipses. 
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If S2 is used, the centre of e3 is obtained by applying the bisection method in an interval along a line,
L, as shown in Figure 5.18, where L is the bisector of the angle, ψ, between two lines, T1 and T2, that are
respectively tangents to the other two ellipses e1 and e2 at the upper intersection point i1. The interval
along L is (u, l) where u is a point that lies above another point l on L, such that, as shown by the faded
blue circles in Figure 5.18, the centre of e3 must be between u and l (but not equal to u or l) for e3 to
intersect each of e1 and e2 twice, so that the seven zones interior to the curves of a 3-Venn diagram are
formed. As illustrated by the faded blue circles in Figure 5.18, the endpoints of the interval as well as
any value that is not in the interval will generate a diagram that is not a Venn diagram.

Figure 5.18: Starting diagram generator S2—bisecting the interval along a bisector line. The centre of
ellipse e3 is a point on the line L bisecting the angle ψ between the two tangents T1 and T2. The bisection
method is applied in the interval indicated by the faded blue circles along L. The obtained centre should
minimize the difference of the required and actual area of the zone in exactly the three ellipses.

As an example, Figure 5.19A and Figure 5.19B illustrate the starting diagram generated by
respectively S1 and S2 for area specification ω = {a=1, b=10, c=1, ab=20, ac=1, bc=1, abc=10}. In
both diagrams, the difference between the required scaled quantity and the area of the zone in exactly
the three ellipses, which in this example is zone abc, is zero. The diagError for the diagram of S1 is
0.03 and for that of S2 is 0.02. Differences in the areas of the other zones are also noticeable. For
instance, the areas of zones ac and bc are similar in the diagram of S2 in Figure 5.19B but different in
that of S1 in Figure 5.19A. These differences in the starting diagram led the optimization (Section 5.6.6)
to the different solutions in Figure 5.20, both of which have diagError zero with respect to ω.

A B

Figure 5.19: The starting diagrams generated by S1 and S2 for the same area specification. For area
specification ω = {a=1, b=10, c=1, ab=10, ac=1, bc=1, abc=10}, S1 generated A and S2 generated B.
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Figure 5.20: The diagrams generated by our hill climber for the area specification and the starting
diagrams in Figure 5.19. The area specification is ω = {a=1, b=10, c=1, ab=10, ac=1, bc=1, abc=10}. Both
diagrams have diagError zero with respect to ω. Our hill climber generates A if Figure 5.19A (generated by
S1) is used as a starting diagram and B if Figure 5.19B (generated by S2) is used as a starting diagram. 

Evaluation of Our Proposed Generators

Figure 5.21 shows the diagError Equation (5.18) of the starting diagrams generated by S1 and S2 for
the two sets of 10,000 area specifications obtained from DIAGLIB_design and AREASPECLIB_design
(Section 5.5), together with the time taken to generate the diagrams on an Intel Core i7-3770 CPU
@3.4GHz with 8GB RAM, 64-bit Microsoft Windows 7 Professional SP1 and Java Platform 1.7.0_10.
In Figure 5.21 and this section, the starting diagrams generated for the area specifications obtained from
libraries DIAGLIB_design and AREASPECLIB_design are respectively referred to as DLsd and ASLsd. 

The value of diagError is always in [0,1] (Section 5.6.3) and so, the errors of DLsd and ASLsd for
both S1 and S2 are relatively low. The mean diagError of DLsd and ASLsd are respectively 0.04 and
0.11 for S1 and 0.05 and 0.12 for S2. The mean error of ASLsd is greater than that of DLsd, as in
contrast to the latter, an accurate area-proportional 3-Venn diagram drawn with ellipses might not exist
for some of the area specifications in the former. Also, 76% and 18% of respectively DLsd and ASLsd
for S1 and 63% and 15% of respectively DLsd and ASLsd for S2 had a diagError ≤ 0.05 (i.e., 5%).
Looking at the time required to generate the starting diagram, S1 is overall marginally faster than S2,
with a mean of 3 milliseconds for S1 and a mean of 8 milliseconds for S2. However, the response time
for both is more than 10 times less than the 0.1 second limit for an instantaneous response [Card et al.,
1991; Miller, 1968]. So, in terms of generation time, any one of the generators could be used as neither
of them would affect the overall performance of our drawing method.

A B

Figure 5.21: The diagError of the starting diagrams generated by S1 and S2 for the area specifications
obtained from libraries DIAGLIB_design and AREASPECLIB_design and the time taken in milliseconds to
generate the diagrams. In these plots, the starting diagrams generated for the area specifications obtained
from libraries DIAGLIB_design and AREASPECLIB_design are referred to as DLsd and ASLsd respectively.
DLsd and ASLsd each have 10,000 starting diagrams, one for each of the 10,000 area specifications.

5.6 The Drawing Method – eulerAPE | 136



These results indicate that both S1 and S2 generate starting diagrams that are close to the
required solution and in relatively fast time, with the majority having a diagError percentage of less
than 5% whenever a good solution to the required area specification is known to exist. S1 seems to
generate diagrams with a diagError that is marginally smaller than that of S2. However, as we shall
demonstrate, the diagrams generated by S1 might not fully satisfy our objective, that of finding an
appropriate centre for the third ellipse that minimizes the error of the zone located in exactly the three
ellipses irrespective of the other zones.

As explained earlier, S1 obtains the centre (xc, yc) of the third ellipse by first applying the bisection
method in an interval along the y-axis to find yc while xc is set to the x-coordinate, xi1, of the upper
intersection of the two ellipses in the 2-Venn diagram and then, by applying the bisection method in an
interval along the x-axis to find an appropriate xc with respect to yc. However, often, no interval that
ensures that the diagram is a 3-Venn diagram exists in which the bisection method can be applied to
find an appropriate xc and so, xc is set to xi1. This occurred during the generation of 40% and 43% of
respectively DLsd and ASLsd (this could have contributed to the faster generation time of S1 with
respect to S2, as in these cases, the bisection method was applied on only one of the coordinates of the
centre). In such cases, the obtained centre might not be the most appropriate, and for some diagrams, the
area of the zone located in exactly the three ellipses will not be equal to the required area. In fact, the
area of this zone in DLsd and ASLsd (in total 20,000 diagrams) was on average equal to that required
for those generated by S2, but on average 5% greater or smaller than that required for those generated
by S1. Figure 5.22A illustrates an example of such a starting diagram generated by S1 for ω = {a=1,
b=20, c=200, ab=1, ac=1, bc=200, abc=200}. Its diagError is 0.06, yet zone abc is 20% smaller than
required. In contrast, the starting diagram in Figure 5.22B generated by S2 for ω, has a zero diagError
and the area of zone abc is as required. So a better compromise can be achieved by obtaining the centre
from a single application of the bisection method along the x-axis and the y-axis simultaneously (as in
S2), rather than obtaining the individual coordinates from two separate applications of the bisection
method (as in S1). Thus, S2 is more effective than S1.

A B

Figure 5.22: Illustrating a limitation of S1 in contrast to S2. A and B are the starting diagrams generated
by S1 and S2 respectively for the area specification ω = {a=1, b=20, c=200, ab=1, ac=1, bc=200, abc=200}.
The area of zone abc in B is equal to the required area, but that in A is not. In this example, S1 could not
apply the bisection method along the x-axis.

Also, in a preliminary experimentation using our optimization algorithm (Section 5.6.6) over two
sets of 10,000 random area specifications obtained from a library of type DIAGLIB and another of type
AREASPECLIB (Section 5.5.1), S2 performed better than S1 by 0.5% in generating a good solution for
the area specifications obtained from the DIAGLIB type library, while there was no difference between
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S1 and S2 in generating a good solution for the area specification obtained from the AREASPECLIB type
library. A good solution exists for the area specifications obtained from DIAGLIB (as such libraries are a
collection of wellformed 3-Venn diagrams drawn with ellipses with random properties) and so, failing
on such area specification means that a local minimum is encountered. Thus, S2 should be preferred.

The Generator Employed By eulerAPE

As discussed in the previous section, the starting diagram generator S2 is more effective than S1 and is
thus employed by eulerAPE.

As we demonstrate in Section 5.7, using a rational starting diagram generator (S2), eulerAPE is more
likely to draw a diagram within the 10 second response time limit that ensures users' attention is
maintained [Card et al., 1991; Miller, 1968], is less likely to converge to a local minimum
(Section 5.7.1) and is more likely to generate diagrams with circle-like curves (i.e., ellipses whose
individual semi-axes are similar in size) whenever possible. In some cases, the starting diagram is so
close to the required solution, that the user might consider it good enough and does not run the
optimization (e.g., [Palagi et al., 2013]). Above all, eulerAPE is deterministic.

We will now discuss our optimization algorithm that uses such a rational starting diagram to
generate the required good solution with respect to a given area specification.

5.6.6 The Optimization Algorithm

As discussed and justified in Section 5.6.1, we adopted a simple hill-climbing algorithm that
commences with a rational starting diagram and systematically adjusts the properties of its ellipses that
minimize our cost function (Equation (5.20)), until a good diagram (Equation (5.19)) with respect to the
given area specification is obtained. Though simple and a local search, it rarely encounters a local
minimum and if it does, our algorithm is capable of handling such cases (Section 5.6.7; also
Section 5.6.1) and obtain a good solution whenever an accurate area-proportional 3-Venn diagram
drawn with ellipses is known to exist for the given area specification (Section 5.7.1).

Our optimization algorithm is characterized by the following three parameters that determine
how, at every iteration, each ellipse e is modified in search for other possible solutions:

• pγ, the number of pixels by which one or both coordinates of the centre of e are increased or
decreased to explore eight new centres for e, as illustrated in Figure 5.23A, where the
black ellipse and the black point are respectively e and its centre prior to any change and
the grey points are the eight new centres for e;

• pαβ, the scaling percentage by which one or both semi-axes of e are increased or decreased to
explore eight new semi-axes for e, as illustrated in Figure 5.24A-D, where the solid black
ellipse is e prior to any change and the dashed coloured ellipses are e with the eight new
semi-axes;

• pθ, the number of radians by which the angle of rotation of e is increased or decreased to
explore two new angles of rotation for e, as illustrated in Figure 5.23B, where the solid
black ellipse is e prior to any change and the dashed coloured ellipses are e with the two
new angles of rotation.
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New properties that are explored for each ellipse are accepted only if the diagram cost is improved (i.e,
reduced). This cost is computed using Equation (5.20) and its sole purpose is to determine whether any
of the above new ellipses' properties should be accepted and so, drive the optimization to the good
solution. The diagram goodness with respect to a given area specification is determined by our goodness
measure in Equation (5.19), once the new properties are explored (possibly accepted) for all the ellipses.

A B

Figure 5.23: The different ways how the centre and the angle of rotation of every ellipse at every
iteration are respectively modified using the parameters pγ and pθ in search for other solutions.
(A) The grey points indicate the new centres that are obtained when the one or both of the coordinates of the
centre of an ellipse (solid black) are increasing or decreasing by pγ. (B) The dashed ellipses indicate how an
ellipse (solid black) is changed when its angle of rotation is increased or decreased by pθ.

A B

C D

Figure 5.24: The different ways how the semi-axes of every ellipse at every iteration is modified using
parameter pαβ in search for other solutions. A label +pαβ means that semi-axis was increased by the
percentage in pαβ, while -pαβ means that semi-axis was decreased by the percentage in pαβ. The dashed
ellipses indicate how an ellipse (solid black) is changed when: (A) only the semi-major axis is increased or
decreased by pαβ; (B) only the semi-minor is increased or decreased by pαβ; (C) the semi-axes are both
increased or both decreased by pαβ; (D) one of the semi-axes is increased and the other is decreased by pαβ.

At the start, pγ = 10 pixels, pαβ = 5% and pθ = 2π⧸3. For every iteration with no changes to a
property of the ellipses, the value of the respective parameter is reduced linearly (halved), so that major
changes only occur at the start when the search space is explored for a good yet non-refined solution. In
later iterations, when the values of pγ, pαβ and pθ are reduced, minor changes to the diagram are
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explored, so that the diagram is refined to the required good solution. This acts as a cooling schedule
similar to that used in the global optimization method of simulated annealing. If such a cooling schedule
is not used, pγ, pαβ and pθ would be invariant and their values would have to be significantly small for
any changes to improve the diagram. This would lead to longer convergence time as changes are minor
and numerous changes are required for the good solution to be reached. So, if the values of pγ, pαβ and
pθ are not small enough or if it is too computationally expensive for all the required changes to be
carried out, the optimization would converge to a local minimum. Thus, by allowing the exploration of
major changes to the diagram at the start of the optimization, our cooling schedule can reduce the
likelihood of converging to a local minimum and the time required to converge to the good solution.

The starting values for pγ, pαβ and pθ were chosen after the diagram generation process for
different area specifications was observed using different starting values for pγ, pαβ and pθ. The
chosen starting values were the most effective for most of the area specifications. We wanted these
values to be as large as possible to explore major initial changes for a more adequate exploration of the
search space. However, we noted that very large values often lead to diagrams that are not Venn
diagrams and so, improved solutions are only obtained after several iterations. We did however observe
that some cases can benefit from starting values that are 20% larger than those we have selected. So,
when eulerAPE encounters a local minimum, if enabled, it reruns the optimization using starting values
for pγ, pαβ and pθ that are 20% larger than those used in the previous run, to further explore the search
space. As we demonstrate in our evaluation in Section 5.7.1, this technique is effective in handling the
very few cases when eulerAPE encounters a local minimum.

The cooling rate (i.e., to half the values of pγ, pαβ and pθ) was chosen in a similar manner after
informal experimentation using different rates. We observed that faster cooling rates can limit the
number of refinements carried out on the diagram such that the required good solution is not achieved,
while slower cooling rates are more computation expensive.

Hence, the general algorithm to generate an accurate wellformed area-proportional 3-Venn
diagram with respect to a given area specification ω, using ellipses, is as follows (Algorithm 5.3):

Algorithm 5.3: eulerAPE (ω)

Input: ω, a set of seven quantities each corresponding to a zone of a 3-Venn diagram
Output: an area-proportional 3-Venn diagram drawn with ellipses for ω and whether the diagram is

accurate or inaccurate

1. d ← a rational starting diagram with respect to ω
2. if  d is a good diagram for ω by Equation (5.19) then
3.       return  d, accurate
4. end if 
5. ω' ← the set of scaled quantities of ω (as defined in Section 5.6.2)
6. pγ ←10 pixels,  pαβ ← 5%, pθ ← 2π / 3 
7. do
8.       for each ellipse e in d do
9.             centres ← the eight centres obtained by pγ for e
10.             for each c in centres do
11.                   if the cost of d by Equation (5.20) is reduced when the centre of e in d is c then
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12.                         Change the centre of e in d to c 
13.                   end if
14.             end for
15.             semiaxes ← the eight semi-axes obtained by pαβ for e
16.             for each s in semiaxes do
17.                   if the cost of d by Equation (5.20) is reduced when the semi-axes of e in d are s then
18.                         Change the semi-axes of e in d to s 
19.                   end if
20.             end for
21.             rotations ← the two angles of rotation obtained by pθ for e
22.             for each r in rotations do
23.                   if the cost of d by Equation (5.20) is reduced when the angle of rotation of e in d is r then
24.                         Change the angle of rotation of e in d to r 
25.                   end if
26.             end for
27.       end for
28.       if no ellipse in d had its centre changed then
29.             Divide pγ by 2  
30.       end if
31.       if no ellipse in d had any of its semi-axes changed then
32.             Divide pαβ by 2  
33.       end if
34.       if no ellipse in d had its angle of rotation changed then
35.             Divide pθ by 2  
36.       end if
37.       if pγ ≤ ε, pαβ ≤ ε and pθ ≤ ε, where ε = 10-6 then
38.             return d, inaccurate
39.       else
40.             if d is a good diagram for ω by Equation (5.19) then
41.                   return d, accurate
42.             end if
43.       end if
44. loop

As mentioned earlier, when a local minimum is reached, eulerAPE can rerun the optimization (if the
rerun option is enabled) using starting values for pγ, pαβ and pθ that are 20% larger than those used in
the previous run. So, if the optimization terminates at step 38 of Algorithm 5.3, pγ, pαβ and pθ are set
back to the starting values as in step 6 and each value is incremented by 20%. The optimization is then
run again starting from step 7. If it terminates again at step 38, pγ, pαβ and pθ are set back to the
starting values of that run and incremented by another 20%. So, if m ∈+ is the percentage by which the
starting values of the parameters are iteratively incremented for every rerun (i.e., 20% in eulerAPE) and j
∈ is the number of times the optimization was previously run, each of pγ = 10 pixels, pαβ = 5%,
pθ = 2π⧸3 are multiplied by (1 + m)j before the next rerun commences. Whenever this rerun option is
enabled, eulerAPE terminates either when a good diagram is found or when 10 reruns are completed and
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a good diagram is yet not found, in which case the diagram with the lowest diagError (Equation (5.18))
out of the 11 diagrams each of which were generated per run is returned.

At every iteration of our optimization algorithm, any of the properties of any of the ellipses can be
changed and similarly, the value of any of the parameters can be reduced independently of each other.
However, our algorithm could have been designed so that only one change per iteration is allowed or
our cooling schedule reduces the value of the parameters simultaneously. We discuss these alternatives
and our preliminary experimentation that led us to our current design in the next subsection. We have
also tried to reduce the dimensionality of our optimization problem by not changing any of the
properties of the largest ellipse in the starting diagram. However, as we discuss in one of the next
subsections, such a restriction could lead the optimization to converge on the wrong solution. 

Since this work focuses on wellformed 3-Venn diagrams, the diagrams always have three curves and
seven zones interior to the curves (each zone always has one minimal region, as the diagrams are
wellformed) and so, the number of steps per iteration of the optimization algorithm (i.e., the number of
steps in 7 of the algorithm) is constant. Thus, the time complexity of the general algorithm depends on
the maximum number of iterations that are required for the optimization to converge to a solution (i.e.,
the number of times 5 of the algorithm is iterated through), but this cannot be determined for the
generation of an area-proportional Venn diagram with respect to any possible area specification.

Choosing a Design—Single or Multiple Changes, Dependent or Independent Parameters

The number of changes (to the centre, semi-axes, angle of rotation of the ellipses) allowed per iteration
and the way the parameters (i.e., pγ, pαβ, pθ) are reduced could affect the quality of the generated
diagrams and the convergence time. Finding the most effective configuration for each and for the
combination of the two is important. Hence, when devising our algorithm, the following four possible
designs were identified and evaluated:

• SC–DP. SINGLE CHANGE–DEPENDENT PARAMETERS;
• SC –IP. SINGLE CHANGE–INDEPENDENT PARAMETERS;
• MC–DP. MULTIPLE CHANGES–DEPENDENT PARAMETERS;
• MC–IP. MULTIPLE CHANGES–INDEPENDENT PARAMETERS.

SINGLE CHANGE (SC) is when at every iteration at most a single property of a single ellipse is changed,
where the single change that reduces the cost of the diagram most is chosen. 

MULTIPLE CHANGES (MC) is when at every iteration any of the properties of any of the ellipses could
be changed to one that reduced cost of the diagram most.

DEPENDENT PARAMETERS (DP) is when pγ, pαβ and pθ are reduced (in our case, divided by 2)
simultaneously when none of the properties of any of the ellipses have been changed during that
iteration. So, for instance, if the centre and the semi-axes were not changed for any of the ellipses,
but the angle of rotation was changed for one or more ellipses, then none of the parameters are
reduced as they are dependent on each other.

INDEPENDENT PARAMETERS (IP) is when pγ, pαβ and pθ are reduced (in our case, divided by 2)
independently of each other when the property they handle was not changed for any of the ellipses
during that iteration. So example, if the centre was not changed for any of the ellipses, the value of
pγ is reduced, irrespective of whether the semi-axes or angle of rotation of any ellipse was changed.
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In a preliminary experimentation, we evaluated these four designs over a set of 5,000 random area
specifications obtained from a library of type DIAGLIB (Section 5.5.1). Such a library is a collection of
wellformed 3-Venn diagrams drawn with ellipses with random properties. So, a solution is known to
exist for each of the evaluated area specifications and failing to produce a good diagram for any of these
area specifications means that a local minimum is reached. 

MC–IP performed best in generating a good diagram for the given area specifications, followed by
MC–DP, SC–DP and SC–IP (MC–IP performed better than MC–DP, SC–DP and SC–IP by respectively
1.9%, 3.1% and 26.3%). MC–IP was also the fastest in converging to a solution, once again followed by
MC–DP, SC–DP and SC–IP (MC–IP was 2.3, 2.8 and 11.6 times faster than respectively MC–DP, SC–
DP and SC–IP). A longer convergence time was expected for those carrying out a single change per
iteration (SC), yet here we also note that this increases the likelihood of converging to a local minimum
and it is thus more effective to allow multiple changes per iteration (MC). Comparing the results for
MC–DP and MC–IP, we note that having independent parameters is more effective in obtaining a good
diagram with respect to the given area specification and in convergence time. 

Thus, we adopted MC–IP for the eulerAPE's optimization algorithm, which we have discussed earlier.

Trying to Reduce the Dimensionality of the Optimization Problem

Our optimization algorithm allows changes to all the properties (i.e., the centre, semi-axes and angle of
rotation) of all the ellipses. The optimization problem can be reduced by not changing any of the
properties of one the ellipses in the starting diagram, such that this ellipse is depicted as a circle.

We evaluated this possibility over the two sets of 10,000 area specifications obtained from the
libraries DIAGLIB_design and AREASPECLIB_design (Section 5.5) by not allowing any changes to any
of the properties of the largest ellipse in the starting diagram and the following results were obtained. In
this case, the rerun option of the optimization algorithm was disabled. An accurate, good diagram was
generated for 98.9% and 75.7% of respectively the area specifications obtained from DIAGLIB_design
and those obtained from AREASPECLIB_design, after an average number of 65 iterations and 204
iterations for the respective sets of area specifications. However, when changes to any of the ellipses
was allowed, an accurate, good diagram was obtained for 99.5% and 83.5% of respectively the area
specifications obtained from DIAGLIB_design and those obtained from AREASPECLIB_design, after an
average number of 73 iterations and 107 iterations for the respective sets of area specifications (these
results were also discussed in Section 5.6.4). Thus, not changing one of the ellipses could minimize the
dimensionality of the optimization problem, but it will increase the likelihood of converging to a local
minimum and in general, increase the required number of iterations to get to a good solution.

Figure 5.25 shows an example where the optimization fails to generate a good, accurate diagram
when one of the ellipses is not changed. An accurate area-proportional 3-Venn diagram had to be drawn
with respect to the area specification ω = {a=32086, b=16009, c=20393, ab=394, ac=740, bc=15776,
abc=1} obtained from DIAGLIB_design. When the largest ellipse (i.e., ellipse c) was not changed, the
inaccurate diagram in Figure 5.25A with diagError = 0.03 was generated, but when any changes to any
of the ellipses was allowed (as in eulerAPE), the accurate, good diagram in Figure 5.25B was obtained.
While it was possible for both ellipses b and c in Figure 5.25B to be elongated to accurately depict the
required zone areas, the circular shape of ellipse c in Figure 5.25A could not, so ellipse b was greatly
elongated in an attempt to accurately depict the required zone areas. Yet at one point, ellipse b could not
be stretched further (without breaking the diagram's wellformedness), so a local minimum was reached.
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A B

Figure 5.25: An example where the optimization fails to converge to a good diagram when none of the
properties of the largest ellipse in the starting diagram are changed. The two diagrams were generated
for area specification ω = {a=32086, b=16009, c=20393, ab=394, ac=740, bc=15776, abc=1}, which was
obtained from DIAGLIB_design. (A) An inaccurate area-proportional 3-Venn diagram with respect to ω
(diagError = 0.03) generated when the none of the properties of the largest ellipse in the starting diagram, in
this case ellipse c, were changed. (B). A good, accurate area-proportional 3-Venn diagram with respect to ω
generated with our optimization algorithm, which allows any properties of any of the ellipses to be changed.

As we have mentioned throughout our discussion on the design of the various of components that
make up eulerAPE, a number of techniques have been adopted to avoid and handle local minima. So,
despite adopting a simple local optimization hill-climbing algorithm, eulerAPE rarely reaches a local
minimum and when it does, it is capable of handling it and yet, find a good solution when one is know
to exist (Section 5.7.1). We summarize these techniques in the next section.

5.6.7 Avoiding and Handling Local Minima

As discussed in Section 5.6.1 and as demonstrated in eulerAPE's evaluation in Section 5.7, if techniques
are adopted to avoid and handle local minima, a local search optimization like eulerAPE's simple hill
climbing algorithm can be used to draw accurate area-proportional Venn diagrams in relatively fast
time, without the need for complex and computationally expensive global optimization techniques.

For eulerAPE, we have adopted the following techniques to avoid and handle local minima:

• A rational starting diagram (Section 5.6.5)

that is close to the required solution and has characteristics that could avoid local minima
(e.g., the largest two ellipses make up an accurate area-proportional 2-Venn diagram with
respect to the quantities these ellipses and their overlap depict; the error of the zone
located in exactly the three ellipses is minimized with respect to the quantity it should
depict and irrespectively of the other zones, as any changes carried out to the diagram
during the optimization process will affect this zone);

• A cost function (Section 5.6.4)

that prevents the optimization from taking paths that would improve the overall diagram at
the expense of constantly diminishing the area of one zone that is meant to be larger, up to
the point when this zone becomes close to non-existent and a local minimum is reached;
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• A cooling schedule (Section 5.6.6)

that reduces the value of the parameters of the optimization algorithm (i.e., pγ, pαβ and pθ
that determine how the ellipses are modified per iteration in search for other solutions)
linearly, allowing these parameters to be initially large, so major changes to the diagram
are done at the start when the search space is explored for a good yet non-refined solution,
while minor changes are done later when the diagram is refined to get the required one;

• A rerun option (Section 5.6.6)

that, if enabled, when a local minimum is encountered, the optimization is rerun using
starting values for the parameters of the optimization algorithm (i.e., pγ, pαβ and pθ) that
are 20% greater than those used in the previous run (to further explore the search space),
until a good diagram is found or until 10 reruns are completed.

All of these techniques have been discussed throughout in Section 5.6 on the design of eulerAPE.

Other techniques, such as the tabu search (to ensure new paths in the search space are explored) and
the steepest-descent method (to aid handling ridges), could have been adopted. Others like the random-
restart hill climbing or the stochastic hill climbing were not appropriate as we wanted a deterministic
method, and as discussed in Section 5.6.5, a random start can increase the likelihood of reaching a local
minimum. Others like global optimization methods (e.g., simulated annealing, genetic algorithms,
evolutionary algorithms, swarm algorithms) are complex and computationally expensive, and as
discussed in Section 5.6.1, such methods are not necessary for our problem and not appropriate for
obtaining a good solution in relatively fast time.

In our evaluation of eulerAPE (Section 5.7.1), eulerAPE rarely encountered a local minimum and when
it did, a good diagram was still obtained when one was known to exist for the given area specification.
This demonstrates that the adopted techniques are effective in both avoiding and handling local minima
and with their use, a local search optimization such as the simple hill climbing algorithm can be used to
effectively generate the required accurate area-proportional Venn diagram within an average time that is
fast enough (~10 seconds; Section 5.7) to ensure users' attention is maintained [Card et al., 1991].

We will now discuss our evaluation of eulerAPE and the effectiveness of ellipses in drawing accurate
area-proportional 3-Venn diagrams for various random area specifications. 

5.7 The Effectiveness of eulerAPE and Ellipses

To evaluate the effectiveness of ellipses in drawing an accurate area-proportional 3-Venn diagram for a
given area specification, we first evaluated the effectiveness of eulerAPE in drawing good diagrams for
drawable area specifications, that is area specifications for which a good diagram is known to exist
(Section 5.7.1). Being able to handle such area specifications means that eulerAPE can avoid and handle
local minima and if eulerAPE cannot draw an accurate, good diagram for any of the area specifications in
our second evaluation (Section 5.7.2) that were made up of random values, then it is highly likely that a
good diagram drawn with ellipses does not exist for that area specification. In this way, we were able to
identify characteristics of area specifications that are drawable or not with ellipses (Section 5.7.2). In
our second evaluation, we also generated diagrams for the same random area specifications using a
variant of eulerAPE that restricts the ellipses to circles to identify whether diagrams for any of the area
specifications could have been drawn with circles(Section 5.7.2). We then compared these results to the
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diagrams generated for the same random area specifications by venneuler [Wilkinson, 2012], which is
considered to be the most effective circle-based drawing method (Section 5.7.3). Finally, we compared
the accuracy and the curve aesthetics of the diagrams generated by eulerAPE and various other drawing
methods using circles or polygons for real data in an application area (Section 5.7.4).

The error of the diagrams generated by eulerAPE and other drawing methods was measured using our
diagError Equation (5.18) in Section 5.6.3, whose value is in [0,1]. Good diagrams are those which
satisfy the diagram goodness measure Equation (5.19) in Section 5.6.3 and are thus wellformed 3-Venn
diagrams with diagError ≤ 10-6. Wellformed 3-Venn diagrams are always generated by eulerAPE but not
always by other methods. In our quantitative experiments, the number of iterations and the time taken to
generate the diagrams was also recorded. All the experiments were run on an Intel Core i7-3770 CPU
@3.4GHz with 8GB RAM, 64-bit Microsoft Windows 7 Professional SP1 and Java Platform 1.7.0_10. 

As with the rest of this work, this evaluation focuses on area specifications corresponding to 3-Venn
diagrams (reasons further discussed in Section 5.2.3). Some Euler diagrams can already be drawn with
eulerAPE, but this needs to be evaluated further in the future.

5.7.1 For Drawable Area Specifications

To evaluate whether eulerAPE can generate a good diagram for area specifications for which such a
diagram drawn with ellipses is known to exist (i.e., drawable area specifications) and whether it can
handle and avoid local minima, we used eulerAPE to generate diagrams for the 10,000 area specifications
obtained from DIAGLIB_eval. DIAGLIB_eval is a library of 10,000 wellformed 3-Venn diagrams drawn
with ellipses labelled a, b, and c whose properties are assigned random values. The zone areas of each
diagram comprise one of the 10,000 area specifications over which this experiment was conducted.
Details about the library and the characteristics of the area specifications are discussed in Section 5.5.

The rerun option of our optimization algorithm (Section 5.6.6) was enabled to verify whether
eulerAPE can still draw a good diagram if a local minimum is reached in the first run. While choosing an
appropriate cost function for eulerAPE in Section 5.6.4, an experimental evaluation over a different set of
area specifications of the same type using the same cost function and algorithm as that of eulerAPE but
with the rerun option disabled, revealed that for 0.5% of the area specifications a non-good diagram was
generated. So, for a few area specifications, eulerAPE might not generate a good diagram during the first
run. If so, we need to investigate whether rerunning the optimization algorithm with different starting
values for its parameters (pγ, pαβ and pθ) as discussed in Section 5.6.6 is effective in finding a good
diagram, and how these reruns affect the performance of eulerAPE, in terms of time and iterations. The
maximum number of allowed reruns is 10, after which, unless a good diagram is found, the diagram
with the lowest diagError out of the 11 diagrams, each generated during one of the runs, is returned.

Results

By the first run, good diagrams were generated for 9939 of the 10,000 area specifications (i.e., 99.4%).
Though for the remaining 61 area specifications (i.e., 0.6%) a non-good diagram was generated, the
diagError of these diagrams was relatively low (median 1.06×10-4, mean 2.38×10-3, min 1.02×10-6, max
3.09×10-2), with 54 of them (i.e., 88.5%) having diagError ≤ 0.01. For all of these 61 area specifications,
good diagrams were generated after rerunning the optimization; for the majority (38/61=62.3%), a good
diagram was drawn after first rerun (Figure 5.26). 
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Figure 5.26: The number of reruns (1-10) that were required for eulerAPE to generate a good diagram
for the 61 area specifications obtained from DIAGLIB_eval for which a non-good diagram was
generated during the first run. Number of reruns: median 1, mean 2.1.

When the optimization algorithm is rerun, more time and total number of iterations are required to
generate a good diagram (Figure 5.27). Even so, the generation of the 10,000 good diagrams had an
overall median and mean time of respectively 0.4 seconds and 2.5 seconds, and an overall median and
mean number of iterations of respectively 32 and 273. Also, for 97.7% of the 10,000 area specifications,
a good diagram was generated within 1 second (98.1% of the 9939 good diagrams generated in run 1;
34.4% of the 61 good diagrams generated in a rerun) and for 99.7% of the 10,000 area specifications a
good diagram was generated within 10 seconds (99.9% of the 9939 good diagrams generated in run 1;
62.3% of the 61 good diagrams generated in a rerun). These results are important as a response time of
around 1 second ensures the users' train of thought is uninterrupted and a response time of around 10
seconds ensures the users' attention is retained [Card et al., 1991; Miller, 1968]. 

Figure 5.27: The log10(time in seconds) and log10(total number of iterations) taken to generate good
diagrams for 9939 of the area specifications in the first run (Run 1) and for 61 of the area specifications
in any of the one to a maximum of 10 reruns (Reruns)—the 10,000 area specifications were obtained
from DIAGLIB_eval. For Run 1 and Reruns: time, medians 0.4 seconds and 2.0 seconds, means, 0.5 seconds
and 329.3 seconds; number of iterations, medians 32 and 178, means 38 and 38470.

Thus, with 99% confidence, these results indicate that for area specifications for which a good
diagram drawn with ellipses is known to exist, eulerAPE draws a good diagram 

• after the first run for 99.2% to 99.6% and after 1-10 reruns for 99.9% to 100.0%;

• within 1 second for 97.4% to 98.0% and within 10 seconds for 99.6% to 99.8%.
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Discussion and Examples

The results indicate that our starting values the parameters of the optimization algorithm (pγ, pαβ
and pθ, in Section 5.6.6) are appropriate for most drawable area specifications as good diagrams are
generated for the majority during the first run. Also, rerunning the algorithm with starting values for its
parameters that are 20% larger at every run was effective in obtaining a good diagram for those area
specifications for which a non-good diagram was generated during the first run.

Figure 5.28 shows examples of good diagrams drawn after the first run for the area specifications
obtained from the diagrams in DIAGLIB_eval shown in Figure 5.29. These examples illustrate that
whenever possible eulerAPE draws circle-like curves (i.e., ellipses with similarly sized semi-axes). This is
particularly apparent in Figure 5.28A, where the semi-axes of ellipses a and b are equal and those of c
differ by only 2.8%, and Figure 5.28B, where the semi-axes of ellipses a, b and c differ by 6.0%, 5.4%
and 8% respectively. However, in other cases as in Figure 5.28C and Figure 5.28D, elongated ellipses
are required to accurately draw the required zone areas. Example, in Figure 5.28C, the required area for
zones c and abc was small compared to that of zone ac, so ellipse c had to be elongated. In
Figure 5.28D, the required area for the zones located in only one of the curves was large compared to
that of other zones, so all the curves had to be elongated. We further discuss characteristics of area
specifications that can be represented using ellipses and not circles in Section 5.7.2. Also, though no
formal aesthetic criteria have been defined for such diagrams (Section 3.7.3), the diagrams generated by
eulerAPE in Figure 5.28 could be considered more aesthetically desirable than those generated randomly
in Figure 5.29. This is so, as most of the diagrams in Figure 5.28 have circle-like or similarly shaped
curves (regular, convex curves with good continuity like circles are preferred, Section 3.7.3), that are
often evenly distributed, easily identified and comparable (e.g., Figure 5.28A, D).

Figure 5.28: Examples of good diagrams generated after the first run. The area specifications, for which
these diagrams were generated, were obtained from the diagrams in DIAGLIB_eval shown in Figure 5.29 and
included: (A) {a=43555, b=23697, c=5870, ab=7393, ac=2129, bc=2051, abc=1106}, obtained from
Figure 5.29A; (B) {a=2273, b=24458, c=44454, ab=7116, ac=740, bc=18807, abc=12092}, obtained from
Figure 5.29B; (C) {a=53790, b=20052, c=177, ab=217, ac=20387, bc=1050, abc=444}, obtained from
Figure 5.29C; (D) {a=17033, b=6248, c=16230, ab=615, ac=289, bc=840, abc=922}, obtained from
Figure 5.29D. The time and number of iterations taken to generate these diagrams were: (A) 0.4 seconds, 44
iterations; (B) 0.3 seconds, 28 iterations; (C) 1.9 seconds, 123 iterations; (D) 0.7 seconds, 46 iterations. 
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Figure 5.29: Examples of diagrams in DIAGLIB_eval. Good diagrams generated by eulerAPE for the area
specifications of these diagrams are in Figure 5.28. The area specifications obtained from these diagrams are:
(A) {a=43555, b=23697, c=5870, ab=7393, ac=2129, bc=2051, abc=1106}; (B) {a=2273, b=24458,
c=44454, ab=7116, ac=740, bc=18807, abc=12092}; (C) {a=53790, b=20052, c=177, ab=217, ac=20387,
bc=1050, abc=444}; (D) {a=17033, b=6248, c=16230, ab=615, ac=289, bc=840, abc=922}. 

Figure 5.30: The starting diagrams of the final good diagrams in Figure 5.28. These were generated by
eulerAPE for the area specifications obtained from the diagrams in DIAGLIB_eval shown in Figure 5.29, which
were: (A) {a=43555, b=23697, c=5870, ab=7393, ac=2129, bc=2051, abc=1106}; (B) {a=2273, b=24458,
c=44454, ab=7116, ac=740, bc=18807, abc=12092}; (C) {a=53790, b=20052, c=177, ab=217, ac=20387,
bc=1050, abc=444}; (D) {a=17033, b=6248, c=16230, ab=615, ac=289, bc=840, abc=922}. The final good
diagrams generated for the above area specifications using the starting diagrams in this figure were:
(A) Figure 5.28A; (B) Figure 5.28B; (C) Figure 5.28C; (D) Figure 5.28D.

The generation of good diagrams in relatively fast time and with the above aesthetic features was
possible through the generation of rational starting diagrams (Section 5.6.5). Figure 5.30 illustrates
the starting diagrams used to generate the good diagrams in Figure 5.28. In some cases, the starting
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diagram requires very few changes for it to be a good diagram, as Figure 5.30A with
diagError = 7.97 × 10-4 which was used to generate the good diagram in Figure 5.28A. Generating
starting diagrams that minimize the error of the zone in exactly the three ellipses, have helped the
optimization avoid local minima, as good diagrams were eventually drawn for all the area
specifications. Characteristics like the placement of the ellipses, where the largest two ellipses are
placed at the bottom and vertically centre aligned, and the assignment of angles of rotation 0, π⧸3 and
2π⧸3 for the three ellipses have contributed to the generation of well-balanced diagrams with evenly
and harmoniously positioned curves, that are easily comparable (e.g., Figure 5.28A, D).

Generating starting diagrams with ellipses whose semi-axis are equal to one another such that
the ellipses are circles, increases the likelihood that the curves in the generated good diagram are
circle-like (e.g., Figure 5.28A, B). In fact, Figure 5.31 demonstrates that the majority of the generated
diagrams had ellipses with ratios of their semi-axes close to one. Out of the 10,000 diagrams, 59.4% and
34.7% had at least one ellipse with semi-axes differing by respectively 10% and 5% (i.e., a ratio of
semi-axes in [0.90,1.10] for 10% and [0.95,1.05] for 5%), 20.6% and 6.5% of the diagrams had at least
two ellipses with semi-axes differing by respectively 10% and 5%, and 3.4% and 0.4% of the diagrams
had all the three ellipses with semi-axes differing by respectively 10% and 5%. As illustrated in
Figure 5.28B, it is not easily noted that ellipses with semi-axes differing by 10% or less are not circles.
Circles are preferred (Section 3.7.3), but they cannot depict most zone areas accurately (Section 3.7.6).
So using such ellipses when possible, accurate diagrams with circle-like curves can be generated. These
results show the effectiveness of our starting diagrams in helping the optimization avoid local minima
and generate good diagrams in relatively fast time, with aesthetic features that are often desirable.

Figure 5.31: Distributions and boxplots of the ratio of the semi-axes of ellipses a, b and c of the 10,000
good diagrams generated for the area specifications obtained from DIAGLIB_eval. The distributions
illustrate the ratios of the semi-axes of the ellipses in only [0, 4], as very few diagrams had greater ratios
(medians 1.01, 0.99, 1.00 for respectively ellipses a, b, c; means 1.07, 1.04, 1.06 for respectively ellipses a,
b, c). Black bars indicate those diagrams whose ratio of the semi-axes of the three ellipses was in [0.90,
1.10]. If the ratio of the semi-axes is one, then the ellipse is a circle.

As mentioned earlier, the majority (88.5%) of the non-good diagrams generated in the first run
had a low diagError and only needed further refinement. Figure 5.32A is an example of such a diagram
generated during the first run with diagError = 6.51 × 10-4. Figure 5.32B is the good diagram that was
generated after one rerun, when the starting values of the parameters of the optimization algorithm were
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set to pγ = 12 pixels, pαβ = 6% and pθ = 4π⧸5. This good diagram was generated in a total of 1.2
seconds and 86 iterations (including the first run and one rerun) for the area specifications obtained from
the diagram in DIAGLIB_eval in Figure 5.32C. Figure 5.32B might be considered more aesthetically
desirable than Figure 5.32C, as the curves are circle-like (ellipses b and c have equal semi-axes and are
thus circles, while ellipse a has semi-axes differing by 3.3%) and positioned evenly and harmoniously,
in a way that all the curves are easily comparable. The area of zone bc is 0.003% of the total diagram
area. However, with our analytic method for computing the area of overlapping ellipses (Section 5.4),
eulerAPE is still capable of accurately computing such zone areas and generating a good diagram. This
meets our objective and Tufte's graphical integrity principle [Tufte, 1983] in generating diagrams with
zone areas that are accurate and directly proportional to the required quantitative data (Section 5.2.3).

A B C

Figure 5.32: An example of a non-good diagram with a very low diagError drawn after run 1 and the
good diagram drawn after rerun 1, for the area specification obtained from a diagram in DIAGLIB_eval.
(A) The non-good diagram drawn after run 1 (diagError = 6.51×10-4) and (B) the good diagram drawn after
rerun 1, for {a=10018, b=27132, c=39737, ab=9567, ac=11454, bc=3, abc=668} obtained from (C) a
diagram in DIAGLIB_eval. B was drawn in 1.2 seconds and 86 iterations (including run 1 and the one rerun).

It could be argued that such small zones are not visible and could be considered missing. However,
no empirical evidence indicates how the zone areas are perceived and what areas are not perceived
(Section 3.7.3). Also, area specifications for which a good diagram can be drawn with ellipses should be
identified, so zone area accuracy is important. If users of eulerAPE do not need to depict such small areas
and a 3-Euler diagram is required, the area of zones of the 3-Venn diagram that are not required could
be set to a value close to zero, such that the zones are still drawn accurately, but they are too small to be
visible on the screen. Out of the 10,000 area specifications for which a good diagram was generated, 8
(0.08%), 543 (5.4%), 2355 (23.6%) and 6898 (69.0%) had at least one zone with an area that was
respectively 0.001%, 0.01%, 0.1% and 1% of the total required diagram area. Good diagrams were
drawn in the first run for the majority of these area specifications (75.0%, 94.1%, 97.7%, 99.1% of those
with at least one zone area that was respectively 0.001%, 0.01%, 0.1%, 1% of the total required diagram
area). Being able to handle zones with an area close to zero suggests that our algorithm is also effective
in drawing Euler diagrams (not only Venn diagrams), but further evaluation has to be carried out.

Figure 5.33B is another example of a good diagram drawn for an area specification with a few
very small zone areas compared to others in the required diagram. The area specification was obtained
from the diagram in DIAGLIB_eval in Figure 5.33C. The required area for both zone c and zone bc was
0.003% of the total diagram area. Thus the reason why Figure 5.33B seems to be an Euler diagram even
though it is a wellformed Venn diagram. This good diagram was generated during the second rerun,
within a total of 49.5 seconds and 4785 iterations (including the first run and the two reruns). In the

5.7 The Effectiveness of eulerAPE and Ellipses | 151



previous runs, a local minimum was reached where, as shown in Figure 5.33A (the non-good diagram
generated during the first run) ellipse c had a circle-like shape and ellipse a was tilted to the left leading
to a point where any change to the diagram would make it non-wellformed or not a Venn diagram.
Rerunning the optimization algorithm with its parameters assigned the starting values pγ = 14.4 pixels,
pαβ = 7.2% and pθ = 24π⧸25, the exploration of the search space was widened and the good diagram
was found. At first glance, zone a in Figure 5.33C seems to be made up of two minimal regions and so,
Figure 5.33B could be preferred, but no empirical evidence supports this observation (Section 3.7.3).

Figure 5.34B is an example of a good diagram that was generated after the first rerun for the
area specification obtained the diagram in DIAGLIB_eval in Figure 5.34C. As shown in Figure 5.34A
(the non-good diagram generated during the first run), during the first run, the optimization was trapped
in a local minimum as ellipse b approached the edge of ellipse c (making zone c seem like it was made
up of two minimal regions) and no change that would keep the diagram wellformed and a Venn diagram
was possible. Rerunning the optimization with parameters pγ = 12 pixels, pαβ = 6%, pθ = 4π⧸5 at the
start, Figure 5.34B was generated. Since in Figure 5.34C, the space between the edge of ellipses b and c
in zone b is narrow and not easily visible, Figure 5.34B could be preferred. However, the effect of the
shape of the curves and zoneson diagram comprehension have not been studied empirically and thus, in
contrast to zone area accuracy, these aesthetic preferences are currently subjective (Section 3.7.3).

A B C

Figure 5.33: An example of a non-good diagram generated during the first run and the good diagram
generated during the second rerun, for the area specification obtained from a diagram in DIAGLIB_eval.
(A) The non-good diagram drawn in run 1 (diagError = 4.03×10-1) and (B) the good diagram drawn after
rerun 2, for {a=17671, b=65298, c=3, ab=19904, ac=12951, bc=4, abc=4816} obtained from (C) a diagram
in DIAGLIB_eval. B was generated in 49.5 seconds and 4785 iterations (including run 1 and the two reruns).

A B C

Figure 5.34: An example of a non-good diagram generated during the first run and the good diagram
generated during the first rerun, for the area specification obtained from a diagram in DIAGLIB_eval.
(A) The non-good diagram drawn after run 1 (diagError = 8.38×10-3) and (B) the good diagram drawn after
rerun 1, for {a=53804, b=39550, c=1256, ab=15606, ac=15, bc=29904, abc=3597} obtained from (C) a diagram
in DIAGLIB_eval. B was generated in 2.9 seconds and 367 iterations (including run 1 and the one rerun).
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This evaluation demonstrates that eulerAPE always draws a good diagram for an area specification
that is drawable. So if eulerAPE cannot draw a good diagram, then an accurate wellformed 3-Venn
diagram drawn with ellipses does not exist for that area specification. Thus using eulerAPE, we can assess
the type and percentage of all area specifications for which a good diagram can be drawn with ellipses.

5.7.2 For Any Area Specification

To evaluate the effectiveness of ellipses in drawing accurate area-proportional 3-Venn diagrams for any
area specification, we used eulerAPE to draw diagrams using ellipses for the 10,000 area specifications in
the AREASPECLIB_eval. Each area specification was made of seven random values, indicating the zone
areas for a 3-Venn diagram. So in contrast to the area specifications in Section 5.7.1, it was unknown if
these area specifications were drawable and could be depicted accurately with a diagram drawn with
ellipses. The library and the characteristics of the area specifications are discussed in Section 5.5.

Since circles are often preferred for these diagrams (Section 3.7.3), we verified whether, for any of
the area specifications in AREASPECLIB_eval, a good diagram could be drawn using circles rather than
ellipses. To do so, we generated diagrams for these area specifications using a variant of eulerAPE that
restricts all the ellipses in the diagrams to circles, such that each individual ellipse has equal semi-axes.
These results were then used to identify characteristics of area specifications for which a good diagram
can or cannot be drawn using ellipses and others for which circle-like ellipses or circles could be used. 

When using eulerAPE, the rerun option of the optimization algorithm was enabled to ensure that a
good diagram is drawn for all drawable area specifications (Section 5.7.1). A maximum number of 10
reruns are allowed (Section 5.6.6). If by the tenth rerun a good diagram is not found, eulerAPE returns the
diagram with the lowest diagError out of the 11 generated in total during the first run and the 10 reruns.

Results and Discussion

Good diagrams drawn with ellipses were generated for 8607 of the 10,000 area specifications (i.e.,
86.1%)—8372 after the first run (i.e., 97.3% of the 8607) and 235 after one to a maximum of 10 reruns
(i.e., 2.7% of 8607). Figure 5.35 illustrates that more than half of the 235 good diagrams (56.2%) were
generated during the first rerun and only 1 was generated after 10 reruns, as the diagError of the non-
good diagrams generated for these area specifications during the first run was relatively low (diagError
in [1.51 × 10-6, 3.28 × 10-2] with median 1.89 × 10-3 and mean 3.77 × 10-3).

Figure 5.35: The number of reruns (1-10) for eulerAPE to draw a good diagram for the 235 area
specifications obtained from AREASPECLIB_eval for which a non-good diagram was drawn after run 1. 
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None of the diagrams drawn with circles for the 10,000 area specifications were good. The
diagError of these diagrams was greater than that of the non-good diagrams drawn with ellipses
(Figure 5.36). In all of these cases, the optimization was rerun 10 times and a non-good diagram was
generated at every run. The diagram with the lowest diagError was then returned. So the 1393 non-
good diagrams with ellipses and the 10,000 with circles are the most accurate diagrams that were
generated for the required area specification. Most of these diagrams drawn with ellipses were generated
during the initial reruns (Figure 5.37). Similar percentages of the diagrams drawn with circles were
generated during each of the 10 reruns. So with ellipses, fewer reruns than with circles are required to
get a diagram that is closest to the required out of all the ones found by eulerAPE during the various runs.

Figure 5.36: The log10(diagError) of the non-good diagrams generated for the area specifications in
AREASPECLIB_eval using ellipses and circles. Out of the 10,000 area specifications, non-good diagrams
were generated for 1393 using ellipses and 10,000 using circles. diagError: ellipses in [1.59×10-6, 1.39×10-1],
median 1.65×10-2, mean 2.11×10-2; circles in [3.30×10-6, 3.31×10-1], median 6.28×10-2, mean 6.73×10-2. A
non-good diagram is the diagram with the lowest diagError that is generated during the 11 runs. 

Figure 5.37: The reruns (1-10) during which the non-good diagrams returned by eulerAPE and drawn
using ellipses and circles were generated—percentages of the total number of 1393 non-good diagrams
drawn with ellipses and 10,000 non-good diagrams drawn with circles are shown. 

Thus, with 99% confidence, these results indicate that for any area specification corresponding to
the abstract description of a 3-Venn diagram, a good diagram can be drawn (using eulerAPE)

• with ellipses for 85.2% to 86.9% and with circles for 0.0% to 0.1%;

There are area specifications for which an accurate area-proportional wellformed 3-Venn diagram
cannot be drawn using convex curves (Section 3.7.5), so drawing good diagrams with ellipses for a
large majority of the 10,000 random area specifications in AREASPECLIB_eval, indicates great potential
for using curves that are regular and smooth like circles, but with more degrees of freedom like ellipses.
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Figure 5.38: Examples of good and non-good diagrams generated for area specifications in
AREASPECLIB_eval using either circles or ellipses. (A) A non-good diagram generated using circles for
{a=8698, b=7937, c=424, ab=7488, ac=6484, bc=4398, abc=4768}, with diagError=0.08 and zone areas
{a=10985, b=10153, c=4164, ab=4988, ac=4101, bc=2460, abc=8361}. (B) A good diagram generated using
ellipses for {a=8698, b=7937, c=424, ab=7488, ac=6484, bc=4398, abc=4768}, same area specification as in
A. The ratio of the semi-axes (semi-minor axis / semi-major axis) for ellipses a, b and c are respectively 0.63,
0.60, 0.62. Thus, the semi-axes of the ellipses differ by ~40%. (C) A good diagram generated using ellipses
for {a=1783, b=1311, c=1370, ab=771, ac=414, bc=6820, abc=8915}. The ratio of the semi-axes for ellipses
a, b and c are respectively 90.0, 0.91, 0.90. Thus, the semi-axes of the ellipses differ by 10%. (D) A non-
good diagram generated using ellipses for {a=618, b=1612, c=891, ab=978, ac=6979, bc=6255, abc=887},
with diagError = 0.07 and zone areas {a=1194, b=1967, c=1824, ab=663, ac=5612, bc=4949, abc=1907}.

Figure 5.38 illustrates examples of good and non-good diagrams generated with circles or ellipses.
For the same area specification, a non-good diagram Figure 5.38A was generated with circles and a
good diagram Figure 5.38B was generated with ellipses. The diagram in Figure 5.38A is misleading.
Despite having the smallest area in the area specification, zone c is bigger than other zones like zone bc
and ac. Zone abc should be similar in size to zone bc and smaller than zones ab and ac, yet is bigger
than the three of them. These problems are not apparent in Figure 5.38B as the zone areas are accurate,
the curves are easily identified and the ellipses have a similar shape (all the ellipses have semi-axes
differing by 40%). Figure 5.38C is also a good diagram with ellipses, but here the ellipses have a more
circle-like and similar shape as their semi-axes differ by 10%. Figure 5.38D is an non-good diagram
with ellipses, as the required areas for the zones in only two curves are much larger than those in only
one curve. Such area specifications are in fact non-drawable with ellipses (discussed in next subsection).

For drawable area specifications, eulerAPE (and ellipses) often generates diagrams with circle-like
ellipses (Section 5.7.1). For random area specifications for which a good diagram drawn with ellipses
might not even exist, fewer diagrams had circle-like ellipses with their semi-axes differing by at most
10% (as Figure 5.38C), and more diagrams had ellipses with semi-axes differing by 20% to 40% (as
Figure 5.38B). This is apparent in Figure 5.39, which shows the distributions and boxplots of the ratio
of the semi-axes of the ellipses in the 8607 good and 1393 non-good diagrams generated by eulerAPE. 
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Figure 5.39: Distributions and boxplots of the ratio of the semi-axes of ellipses a, b and c of the 8607
good diagrams and the 1393 non-good diagrams generated with ellipses for the area specifications in
AREASPECLIB_eval. The distributions illustrate the ratios of the semi-axes of the ellipses in only [0,4], as
very few diagrams had greater ratios (for ellipses a, b, c: good diagrams, medians 0.97, 0.91, 1.01, means
1.05, 1.04, 1.07; non-good diagrams, medians 0.57, 1.09, 1.28, means 1.02, 1.43, 1.49 for ellipses a, b, c).
Black bars indicate those diagrams whose ratio of the semi-axes of the three ellipses was in [0.90, 1.10]. If
the ratio of the semi-axes is one, then the ellipse is a circle. 

The time and number of iterations that were required for the generation of the good diagrams
using ellipses were similar to those of our evaluation in Section 5.7.1 for drawable area specifications
(median 0.4 seconds, 35 iterations; mean 1.9 seconds, 201 iterations). As expected, non-good diagrams
required more time and iterations as the optimization was rerun 10 times (median 4.0 seconds, 586
iterations; mean 25.9 seconds, 4417 iterations). All the diagrams drawn with circles required more time
and iterations as they were all non-good. Yet, their medians (3.2 seconds, 500 iterations) and means (3.4
seconds, 529 iterations) were lower than those of non-good diagrams with ellipses, possibly because the
diagram search space for circles is smaller than that for ellipses, and fewer of the explored changes
during the search reduce its cost since circles cannot draw most diagrams accurately (Section 3.7.6). 

Similar to the results obtained in our evaluation in Section 5.7.1, the majority of the 10,000 diagrams
with ellipses were generated within 1 second (84.1%: 8405/8607 good, 0/1393 non-good) and nearly all
of the 10,000 diagrams with ellipses within 10 seconds (96.9%: 8569/8607 good, 1119/1393 non-good).
These results also indicate that eulerAPE does not return a diagram within 1 second for any of the area
specifications that are non-drawable, but it does return a diagram within 10 seconds for 77.4% to 82.9%
of the non-drawable area specifications (99% confidence). Also, out of the 10,000 diagrams with circles,
none were generated eulerAPE 1 second, but 99.6% (9959/10,000) were generated eulerAPE 10 seconds

Thus, with 99% confidence, these results indicate that for any area specification corresponding to
the abstract description of a 3-Venn diagram, a diagram can be drawn with ellipses (using eulerAPE)

• within 1 second for 83.1% to 85.0% and within 10 seconds for 96.4% to 97.3%, irrespective to 
whether the diagram is good or non-good;

• within 1 second for 97.2% to 98.0% and within 10 seconds for 99.3% to 99.7%, when the 
diagram is good.
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Characteristics of Drawable and Non-Drawable Area Specifications

eulerAPE always draws a good diagram for drawable area specifications (Section 5.7.1). This means that
the 8607 area specifications in AREASPECLIB_eval for which eulerAPE drew a good diagram with ellipses
are drawable, while the remaining 1393 area specifications for which eulerAPE drew a non-good diagram
with ellipses are non-drawable. By analysing these area specifications (as in Figure 5.40), we identified
characteristics of area specifications for which a good diagram can or cannot be drawn using ellipses. 

Figure 5.40: The characteristics of the area specifications in AREASPECLIB_eval for which a good or a
non-good diagram was generated using ellipses (and eulerAPE). Out of the 10,000 generated diagrams,
8607 were good and 1393 were non-good with respect to the area specifications in AREASPECLIB_eval. The
areas are shown as percentages of the total area of all the zones in their respective area specification.

Table 5.1: The median and mean area percentages with respect to the diagram area for the 1-curve
zones, 2-curve zones and 3-curve zone of the 10,000 area specifications in AREASPECLIB_eval that are
drawable (8607) and non-drawable (1393) with ellipses (and eulerAPE).

drawable non-drawable
1-curve zones 2-curve zones 3-curve zone 1-curve zones 2-curve zones 3-curve zone

median 15.1% 13.2% 15.5% 8.1% 20.3% 6.4%
mean 14.9% 13.3% 15.3% 10.6% 19.8% 8.9%

The boxplots in Figure 5.40 illustrate the required area for different types and groups of zones as
percentages of the diagram area, of the 10,000 area specifications in AREASPECLIB_eval for which
diagrams were drawn with ellipses (and eulerAPE). In this section, we will refer to zones in only n curves
as n-curve zones. These boxplots and Table 5.1 indicate that drawable area specifications often had:
(1) larger areas for the 1-curve zones than for the 2-curve zones; (2) an area for the 3-curve zone
that is the largest of all the zone areas, but similar to the areas for the 1-curve zones. Also, 58.1%
of the 8607 drawable area specifications (5004/8607) had a greater total area for the 1-curve zones
(median 44.4%, mean 44.8%, of diagram area) than for the 2-curve zones (median 40.6%, mean 39.9%,
of diagram area). The other 41.9% of the 8607 drawable area specifications (3603/8607) had a total area
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for the 1-curve zones that was smaller than that for the 2-curve zones by median and mean factors of
10.5% and 12.3%, and an area for the 3-curve zone (median 16.1%, mean 16.1%, min 0.3%, of diagram
area) that was larger than that of the other 5004 drawable area specifications (median 14.8%, mean
14.7%, min 0.01%, of diagram area). These 3603 drawable area specifications also indicated that the
greater (a) the difference between the total area for the 1-curve zones and the total area for the 2-curve
zones, the greater (b) the area for the 3-curve zone (median and mean of b ∕a were 1.38 and 7.06).

Figure 5.41 shows two examples of good diagrams generated for 2 of the 8607 area specifications:
(A) with the total area for the 1-curve zones larger than the total area for the 2-curve zones, and with
zone area percentages (with respect to the diagram area) that differed by 5% from the median and mean
for drawable area specifications (Figure 5.41A); (B) with the total area for the 1-curve zones smaller
than the total area for the 2-curve zones, and with a large area for the 3-curve zone (Figure 5.41B;
Figure 5.38C is also of type B, whose area for the 3-curve zone is the largest zone).

A B

Figure 5.41: Examples of good diagrams generated for area specifications in AREASPECLIB_eval.
(A) A good diagram generated for {a=6330, b=8151, c=5911, ab=3730, ac=6851, bc=7670, abc=7503}. The
zone areas as percentages of the total area of all the zones in this area specification are {a=13.7%, b=17.7%,
c=12.8%, ab=8.1%, ac=14.8%, bc=16.6%, abc=16.3%}, where the total area of zones a, b and c is 44.2% of
the diagram area and the total area of zones ab, ac and bc is 39.6% of the diagram area with range of the zone
area percentages of 9.6%. This is an example of a drawable area specification with the total area of the 1-
curve zones larger than the total area of the 2-curve zones, and with zone area percentages with respect to the
diagram area that differed by 5% from the median and mean for drawable area specifications. (B) The good
diagram generated for {a=6266, b=5170, c=2232, ab=7256, ac=4218, bc=8684, abc=8458}. The zone areas
as percentages of the total area of all the zones in this area specification are {a=14.8%, b=12.2%, c=5.3%,
ab=17.2%, ac=10.0%, bc=20.5%, abc=20.0%}, where the total area of zones a, b and c is 32.3% of the
diagram area and the total area of zones ab, ac and bc is 47.7% of the diagram area with range of the zone
area percentages of 15.3%. This is an example of a drawable area specification with the total area of the 1-
curve zones smaller than the total area of the 2-curve zones, and with a large area for the 3-curve zone.

The boxplots (Figure 5.40) and Table 5.1 indicate that the opposite was true for most of the non-
drawable area specifications for which a non-good diagram was generated, as the areas for the 1-curve
zones were often smaller than those for the 2-curve zones, and the 3-curve zone often had the smallest
area of all the zones, which area was similar in quantity to the areas for the 1-curve zones. Also, 95.8%
of the 1393 non-drawable area specifications (1335/1393) had a smaller total area for the 1-curve zones
(median 31.8%, mean 31.7%, of diagram area) than for the 2-curve zones (median 59.0%, mean 59.5%,
of diagram area). In such cases, the greater (a) the difference between the total area for the 1-curve
zones and the total area for the 2-curve zones, the smaller (b) the area for the 3-curve zone (median and
mean of b∕a were 0.26 and 0.46). The other 4.2% of the 1393 non-drawable area specifications (58/1393)
had a total area for the 1-curve zones that was larger than that for 2-curve zones by median and mean
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factors of 6.1% and 8.1%, and an area for the 3-curve zone (median 1.0%, mean 2.6%, max 28.3%, of
diagram area) that was smaller than that of the other 1335 non-drawable area specifications (median
6.7%, mean 9.1%, max 38.1%, of diagram area). In fact, all except for six of these 58 non-drawable
area specifications had an area for the 3-curve zone that was less than 6% of diagram area.

Figure 5.42 shows examples of non-good diagrams generated for 2 of the 1393 area specifications:
(A) with the total area for 1-curve zones smaller than the total area for 2-curve zones, with zone area
percentages (with respect to diagram area) that differed by 5% from median and mean for non-drawable
area specifications (Figure 5.42A); (B) with the total area for 1-curve zones larger than that for 2-curve
zones, but with a very small area for the 3-curve zone and for one of the 1-curve zones (Figure 5.42B). 

A B

Figure 5.42: Examples of non-good diagrams generated for area specifications in AREASPECLIB_eval.
(A) The non-good diagram generated for {a=3300, b=4000, c=4043, ab=5808, ac=7598, bc=5800, abc=995}
with diagError = 0.02. The zone areas as percentages of the total area of all the zones in this area
specification are {a=10.5%, b=12.7%, c=12.8%, ab=18.4%, ac=24.1%, bc=18.4%, abc=3.2%}, where the
total area of zones a, b and c is 36.0% of the diagram area and the total area of zones ab, ac and bc is 60.9%
of the diagram area with range of the zone area percentages of 20.9%. This is an example of a non-drawable
area specification with the total area of the zones in only one curve is smaller than the total area of the zones
in only two curves and with zone area percentages with respect to the diagram area that were 5% smaller or
greater than the median and mean for non-drawable area specifications. (B) The non-good diagram generated
for {a=31, b=7944, c=9959, ab=2297, ac=2834, bc=8114, abc=1} with diagError = 0.01. The zone areas as
percentages of the total area of all the zones in this area specification are {a=0.1%, b=25.5%, c=31.9%,
ab=7.4%, ac=9.1%, bc=26.0%, abc=0.003%}, where the total area of zones a, b and c is 57.5% of the
diagram area and the total area of zones ab, ac and bc is 42.5% of the diagram area with range of the zone
area percentages of 31.9%. This is an example of a non-drawable area specification with the total area of the
zones in only one curve greater than the total area of the zones in only two curves and with a very small area
for the zone in exactly the three curves and for one of the zones in only one curve. 

The boxplots (Figure 5.40) also show that the ranges of the zone area percentages of drawable
area specifications were smaller (median 21.5%, mean 21.8%) than those of non-drawable area
specifications (median 25.8%, mean 26.9%), indicating that the greater the difference between the
largest and smallest zone area, the greater the likelihood that the area specification is non-drawable.

Earlier we noted that the 3-curve zone is typically one of the largest zones in drawable area
specification and one of the smallest zones in non-drawable area specifications. This is evident in
Figure 5.43 which shows the area of the 3-curve zone in the 10,000 area specifications as a ratio of: the
mean area of 1-curve zones, the mean area of 2-curve zones, the largest area of all the zones. These
boxplots indicate that drawable area specifications often had an area for the 3-curve zone that was:
greater than the mean area of the 1-curve zones (ratio in [0.0006,13.5] with median 1.05, mean 1.17)
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and 2-curve zones (ratio in [0.001, 21.4] with median 1.13, mean 1.32); similar in quantity to the largest
zone area in the area specification (ratio: median 0.65, mean 0.62). For 16.2% of the 8607 area
specifications (i.e., 1393/8607), the 3-curve zone was the largest zone in the area specification (as in
Figure 5.38C) and for 11.9% (i.e., 1024/8607), it was the smallest zone in the area specification. Non-
drawable area specifications often had an area for the 3-curve zone that was: greater than the mean area
of the 1-curve zones (ratio in [0.0002, 27.8] with median 0.59, mean 1.24), but smaller than the mean
area of the 2-curve zones (ratio in [0.0002, 23.8] with median 0.32, mean 0.48); dissimilar in quantity to
the largest zone area in the area specification (ratio: median 0.22, mean 0.62). For 3.1% of the 1393 area
specifications (i.e., 43/1393), the 3-curve zone was the largest zone in the area specification, and for
27.9% (i.e., 389/1393), it was the smallest zone in the area specification. For both the drawable and non-
drawable area specification, the area of the 3-curve zone was greater than the smallest zone area in the
area specification by a mean factor of 19 and 28 respectively.

Figure 5.43: The area of the zone in exactly the three curves as a ratio of the mean area of the zones in
only one curve, the mean area of the zones in only two curves, and the largest zone area, for all the
area specifications in AREASPECLIB_eval for which a good or a non-good diagram was generated
using ellipses (and eulerAPE). Out of the 10,000 generated diagrams, 8607 were good and 1393 were non-
good with respect to the area specifications in AREASPECLIB_eval.

Thus, a drawable area specification often has: (1) larger areas for the 1-curve zones than for
the 2-curve zones, and (2) an area for the 3-curve zone that is similar to those for the 1-curve
zones. (1) is consistent with the characteristics of the area specifications obtained from DIAGLIB type
libraries (DIAGLIB_design, DIAGLIB_eval) for which a good diagram is known to exist (Section 5.5.2).

We proceed with a comparative evaluation of the effectiveness of ellipses, circles and polygons, and
various drawing methods including eulerAPE, in drawing accurate, easy to comprehend area-proportional
3-Venn diagrams for randomly generated area specifications and for real world data. We start by
comparing diagrams drawn using ellipses and eulerAPE with those drawn using circles and venneuler.

5.7.3 Comparison with Circles and venneuler

Using a variant of eulerAPE, our evaluation in Section 5.7.2 indicates that it is highly unlikely that there
area specifications corresponding to a 3-Venn diagram for which a good diagram can be drawn with
circles. To verify this finding, we used the latest circle-based method venneuler [Wilkinson, 2012]
version 1.1-0 to generate diagrams with circles for the 10,000 area specifications in AREASPECLIB_eval.
We then compared the accuracy of venneuler's diagrams with the accuracy of the diagrams generated
by eulerAPE with circle and ellipses in Section 5.7.2.
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The method venneuler aims at generating zone areas that are accurate and directly proportional to
the required quantitative data, without considering any diagram aesthetics not even wellformedness. It is
currently considered the most effective in drawing accurate diagrams with circles. It is the only method
to take a statistical approach and differs from eulerAPE in various ways as discussed in Section 5.6,
Section 3.7.4. Example, venneuler uses a numerical approximation method to compute the zone areas
and a steepest descent method with an approximate gradient to minimize its loss function stress.

For eulerAPE, a good diagram is one that satisfies Equation (5.19) and is thus a wellformed 3-Venn
diagram with diagError ≤ 10-6. For venneuler, a good diagram is one that is not necessarily a Venn
diagram, even when a Venn diagram is required, with stress ≤ 10-6, so that if such a diagram is found,
venneuler terminates the optimization before the 200 fixed number of iterations are completed. Thus,
to compare the accuracy of the diagrams generated by eulerAPE and venneuler, we computed: stress for
the diagrams generated by eulerAPE using venneuler's version 1.1-0 source code, but eulerAPE's analytic
method to compute the zone areas; diagError Equation (5.18) for the diagrams generated by venneuler

using eulerAPE's source code, but venneuler's numerical approximation to compute the zone areas.

Results and Discussion—Diagram Error

None of the diagrams generated by venneuler for the 10,000 area specifications had stress ≤ 10-6 or
diagError ≤ 10-6. Thus, none of venneuler's diagrams were good according to venneuler's and
eulerAPE's diagram error measure. Also, only 64.5% (i.e., 6453/10,000) of the generated diagrams were
3-Venn diagrams. The other 35.5% (i.e., 3547/10,000) were 3-Euler diagrams, as one or more of the
seven zones that are interior to the curves of a 3-Venn diagram were missing.

Figure 5.44A(i) and Figure 5.44B(i) are examples of diagrams generated by venneuler that were
not Venn diagrams. Both diagrams had a relatively low stress (5.69× 10-4 and 3.17× 10-3 respectively),
which was close to the stress value that a good diagram should have (i.e., stress ≤ 10-6). However,
Figure 5.44A(i) was missing zone abc (despite its required area was larger than that for zones ab and ac
and similar to that for zone bc) and Figure 5.44B(i) was missing zone ac (despite its required area was
similar to that for zone b). Such diagrams are far more misleading than ones with inaccurate zone areas,
as besides showing incorrect quantities, not all the required set relations are depicted. Figure 5.44A(i)
and Figure 5.44B(i) could have been less misleading if they were depicted as the non-wellformed
diagrams in Figure 5.45A and Figure 5.45B, as the missing zones could have been interpreted as non-
visible because their area is incorrectly very small. Having a low stress for diagrams with the incorrect
set of zones is a problem in venneuler (Section 3.7.4), making stress inappropriate for such diagrams. In
contrast, the diagError for these diagrams was not so low (1.16×10-2, 2.07×10-2). Some of venneuler's
diagrams were also non-wellformed, impeding diagram comprehension (Section 3.7.3). Figure 5.44B(i)
is non-wellformed as zone b is disconnected. These problems are not evident in eulerAPE's diagrams (ii)
and (iii) in Figure 5.44, as our diagram goodness measure Equation (5.19) and other checks during the
optimization ensure that all of its generated diagrams have the required zones and are wellformed. 

Figure 5.44C(i) is an example of a diagram generated by venneuler that had all the required
zones. Such diagrams were often misleading, as the zone areas were inaccurate. According to the area
specification for which this diagram was generated, zone a should be 2.1 times larger than zone ab and
1.7 times larger than zone ac. However, zone a in the diagram is much smaller than both zones ab and
ac. The stress was low (stress=4.27×10-3, diagError=2.30×10-2), but greater than that of Figure 5.44A(i)
and Figure 5.44B(i), despite that the latter diagrams had missing zones and were thus more misleading.
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Figure 5.44: Examples of diagrams generated with circles by venneuler, with circles by eulerAPE and
with ellipses by eulerAPE for area specifications in AREASPECLIB_eval. (A) For {a=3491, b=3409,
c=3503, ab=120, ac=114, bc=132, abc=126}. A(i) is not a Venn diagram, as zone abc is missing, with
stress = 5.69×10-4, diagError = 1.16×10-2. A(ii) and A(iii) are Venn diagrams. A(ii) has stress = 8.36×10-3,
diagError = 2.63×10-2. A(iii) has stress = 3.96×10-12, diagError = 6.55×10-7. (B) For {a=45910, b=3261,
c=45467, ab=58845, ac=3028, bc=16406, abc=18496}. B(i) is not a Venn diagram, as zone ac is missing,
with stress = 3.17×10-3, diagError = 2.07×10-2. B(i) is also non-wellformed, as zone b is disconnected. B(ii),
B(iii) are Venn diagrams. B(ii) has stress = 2.13×10-2, diagError = 4.36×10-2. B(iii) has stress = 3.43×10-12,
diagError = 6.85×10-7. (C) For {a=3664, b=46743, c=59811, ab=1742, ac=2099, bc=17210, abc=24504}.
C(i), C(ii), C(iii) are all Venn diagrams. C(i) has stress = 4.27×10-3, diagError = 2.30×10-2. C(ii) has
stress = 8.31×10-3, diagError = 2.44×10-2. C(iii) has stress = 1.13×10-12, diagError = 4.03×10-7.

A B

Figure 5.45: Diagrams with circles alternative to venneuler's with a missing zone, that could give the
impression that the zone has a very small area. Both diagrams have a triple point instead of: (A) the white
space where zone abc should have been in Figure 5.44A(i); (B) the disconnected zone b in Figure 5.44B(i).
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The diagrams (ii) generated by eulerAPE with circles in Figure 5.44 had inaccurate and misleading
zone areas like those generated by venneuler, but all depicted the required set of zones and all were
wellformed. All of the diagrams (iii) generated by eulerAPE with ellipses in Figure 5.44 had the
required set of zones as well as stress ≤ 10-6 and diagError ≤ 10-6 and were thus considered good by
both venneuler's and eulerAPE's error measure. In all of these cases, at least one elongated ellipse was
required to accurately represent the area specification and thus, cannot be drawn accurately with circles.

As shown in Figure 5.46 (for stress) and Figure 5.47 (for diagError), the majority of venneuler's
diagrams had a lower stress and diagError than those of eulerAPE 's diagrams with circles (a lower stress
for 8675/10,000 diagrams; a lower diagError for 6234/10,000 diagrams), but a greater stress and
diagError than those of eulerAPE's diagrams with ellipses (a greater stress for 9730/10,000 diagrams; a
greater diagError for 9660/10,000 diagrams). The range, median and mean of stress and diagError for
the 10,000 diagrams by venneuler, eulerAPE with circles, eulerAPE with ellipses are provided in Table 5.2.

Table 5.2: The stress and diagError of all the diagrams generated with circles by venneuler, with
circles by eulerAPE and with ellipses by eulerAPE, for the 10,000 area specifications in AREASPECLIB_eval.

stress diagError
range median mean range median mean

circles
venneuler

[3.77 × 10-5,
6.14 × 10-1]

3.04 × 10-2 6.41 × 10-2 [1.56 × 10-3,
2.46 × 10-1]

4.56 × 10-2 5.73 × 10-2

circles
eulerAPE

[1.91×10-10,
7.79×10-1]

7.00 × 10-2 1.13× 10-1 [3.30×10-6,
3.31×10-1]

6.28×10-2 6.73×10-2

ellipses
eulerAPE

[3.98×10-14,
2.24×10-1]

7.59× 10-12 1.17×10-10 [6.00 × 10-8,
1.39 × 10-1]

8.00 × 10-7 2.94 × 10-3

The differences between venneuler's diagrams and eulerAPE's diagrams with ellipses were
expected due to the limitations of circles in generating accurate diagrams for most area specifications.
None of venneuler's diagrams were considered good by stress and diagError, but 8529 and 8607 of the
10,000 diagrams generated with ellipses by eulerAPE were considered good by respectively stress and
diagError (the difference between the percentages of good diagrams by stress and diagError for
eulerAPE's diagrams with ellipse is not statistically significant—using R’s pro.test with Yates’ continuity
correction disabled, χ2(1) = 2.48, p = 0.12).

The differences between venneuler's and eulerAPE's diagrams with circles could be less expected.
A Friedman rank sum test for non-normal distributions and repeated-measure data revealed a significant
effect of drawing method on stress (χ2(1) = 5402.3, p < 2.2 × 10-16) and on diagError (χ2(1) = 609.1,
p < 2.2 × 10-16). Post-hoc tests using Wilcoxon tests with Bonferroni correction showed significant
differences between venneuler and eulerAPE with a large effect size on stress (W = 1763624, Z = -80.50,
p < 2.2 × 10-16, r = 0.57) and with a medium effect size on diagError (W = 14730686, Z = -35.58,
p < 2.2× 10-16, r = 0.25). So according to these measures, venneuler's diagrams were more accurate than
those of eulerAPE. However, while all of eulerAPE's diagrams depicted the required set of zones, 35.5% of
venneuler's diagrams had missing zones and yet 83.5% of these diagrams had a low stress
(stress < 10-2). So eulerAPE's diagrams could still be more helpful than those of venneuler as all and only
the required set relations are depicted. Also, out of the 10,000 diagrams drawn by eulerAPE with circles,
zero (i.e., 0%) had diagError ≤ 10-6 (Section 5.7.2), but 28 (i.e., 0.3%) had stress ≤ 10-6 (the difference
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between these percentages is statistically significant—using R’s pro.test with Yates’ continuity
correction disabled, χ2(1) = 28.04, p = 1.19×10-7). Thus with 99% confidence, these results indicate that
for any area specification corresponding to a 3-Venn diagram, a good diagram with circles and
with stress ≤ 10-6 can be generated by: eulerAPE for 0.2% to 0.5%; venneuler for 0.0% to 0.1%.

Figure 5.46: The stress of all the diagrams generated with circles by venneuler, with circles by
eulerAPE and with ellipses by eulerAPE, for the 10,000 area specifications in AREASPECLIB_eval. 

Figure 5.47: The diagError of all the diagrams generated with circles by venneuler, with circles by
eulerAPE and with ellipses by eulerAPE, for the 10,000 area specifications in AREASPECLIB_eval. 

Results and Discussion—Area Specifications of Close to Accurate Diagrams with Circles

According to stress but not diagError, there are a few area specifications for which an accurate
area-proportional 3-Venn diagram can be drawn with circles. Out of the 10,000 diagrams with
circles by eulerAPE, 28 were good according to stress but not diagError (stress: [1.91×10-10, 9.36×10-7],
median 1.40×10-7, mean 2.55×10-7; diagError: [3.66×10-6, 2.68×10-4], median 9.10×10-5, mean 1.04×10-4).
Yet the diagError of all of these diagrams was relatively low and close to diagError ≤ 10-6, which good
diagrams in eulerAPE must satisfy. Figure 5.48 shows the diagrams out of these 28 with: (A) the lowest
diagError, (B) a diagError close to the mean diagError for these 28, (C) the highest diagError. In these
three diagrams, the depicted zone areas (available in the caption) varied by very few units from those in
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the required area specification for two zones (zone ab and ac in Figure 5.48A) or more (all the zones in
the case of Figure 5.48B,C). None of these diagrams are misleading and none of the inaccuracies seem
noticeable. However, no empirical evidence indicates what inaccuracies in zone areas are not noticeable
(Section 3.7.3), so identifying accurate diagrams using a diagram error measure and a very small value
defining when error is nil ensures a more objective approach. There will always be diagrams (like those
in Figure 5.48) with an error close to nil but still considered non-good, as a value for error has to be
defined for the optimization to identify when a good diagram has been found. To inform the user about
such cases, eulerAPE always outputs the diagError and the actual zone areas of the generated diagram.

Figure 5.48: Examples of the 28 diagrams generated with circles by eulerAPE for area specifications in
AREASPECLIB_eval with stress ≤ 10-6. (A) The diagram with the lowest diagError (3.66 × 10-6) out of the
28 diagrams, and stress=2.32 × 10-10 generated for {a=3004, b=4454, c=9513, ab=6956, ac=2785, bc=915,
abc=9841}. The diagram's zone areas correspond to {a=3004, b=4454, c=9513, ab=6955, ac=2784, bc=915,
abc=9841}. (B) A diagram with diagError = 9.96×10-5 close to the mean diagError (1.04×10-4) for these 28
diagrams, and stress = 1.66 × 10-7 generated for {a=6631, b=1341, c=4533, ab=1759, ac=1190, bc=4306,
abc=9455}. The diagram's zone areas correspond to {a=6629, b=1339, c=4531, ab=1761, ac=1192,
bc=4309, abc=9453}. (C) The diagram with the highest diagError (2.68 × 10-4) out of the 28 diagrams, and
stress = 9.09 × 10-7 generated for {a=9465, b=2407, c=1156, ab=891, ac=621, bc=7861, abc=8800}. The
diagram's zone areas correspond to {a=9469, b=2412, c=1161, ab=885, ac=616, bc=7853, abc=8806}.

All of these area specifications, for which the 28 diagrams were drawn, had a greater total area for
the 1-curve zones (median 50.4%, mean 53.7%, of the diagram area) than for the 2-curve zones (median
28.1%, mean 27.4%, of diagram area), and an area for the 3-curve zone that was amongst the largest of
all zone areas (the largest for 12/28 area specifications). This is evident in Table 5.3. Areas for 1-curve
zones were on average twice as large as those for 2-curve zones. This contrasts the area specifications
drawable with ellipses in Section 5.7.2, as the areas for the 1-curve zones were on average only 10%
larger than those for the 2-curve zones. Also, the area for the 3-curve zone and the range of the zone
areas were larger for these 28 area specifications than for the area specifications drawable with ellipses.

Table 5.3: The median and mean area percentages with respect to the diagram area for the 1-curve
zones, 2-curve zones, 3-curve zone and the range of zone areas, of the 28 area specifications in
AREASPECLIB_eval for which eulerAPE generated a diagram with circles with stress ≤ 10-6.

1-curve zones 2-curve zones 3-curve zone range of the zone areas

median 16.9% 6.2% 21.9% 25.5%

mean 17.9% 9.1% 18.9% 27.3%
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These observations indicate that, if an area specification has (1) areas for the 1-curve zones that
are around twice as large as those for the 2-curve zones, and (2) an area for the 3-curve zone that
is larger or as large as the areas for the 1-curve zones, then it is highly likely that a close to
accurate area-proportional 3-Venn diagram drawn with circles exists for that area specification.

Results and Discussion—Time and Iterations

venneuler was faster than eulerAPE. Median and mean generation times in seconds were: venneuler,
0.6 and 0.6; eulerAPE with ellipses, 0.4 and 5.3; eulerAPE with circles, 3.2 and 3.4. This could be due to
the various differences between venneuler and eulerAPE, such as the method used to compute the zone
areas, the search space being larger and more complex for ellipses than circles, and the optimization
algorithm, where example venneuler terminates after a maximum of 200 iterations and eulerAPE carries
out up to 10 reruns to avoid local minima and generate an accurate diagram. Despite this, eulerAPE

generates more accurate diagrams than venneuler and within a time that ensure the users'
attention is maintained (Section 5.7.2). If none of eulerAPE's reruns were considered, eulerAPE's median
and mean times in seconds were 0.4 and 0.9 for ellipses and 0.3 and 0.3 for circles, thus similar to or
less than venneuler's. Yet, if eulerAPE's rerun option was disabled, good diagrams with ellipses and
diagError ≤ 10-6 would have been drawn for 83.7% and not 86.1% of the 10,000 area specifications.

Each of venneuler's diagrams were generated after 200 iterations. Median and mean number of
iterations for eulerAPE's 10,000 diagrams were 36 and 708 for ellipses and 500 and 521 for circles, and
for only eulerAPE's 8607 good diagrams with ellipses and diagError ≤ 10-6 were 35 and 41. Thus, for
86.1% of the area specifications, on average, eulerAPE required less than a fourth of venneuler's number
of iterations. This indicates that the high means for eulerAPE's 10,000 diagrams were due to reruns. In
fact, the median and mean number of iterations for eulerAPE's 10,000 diagrams excluding reruns were 36
and 111 for ellipses and 49 and 51 for circles.

We continue with our comparative evaluation of the effectiveness of ellipses, circles and polygons
by analysing the diagrams generated by eulerAPE and various other drawing methods for real world data. 

5.7.4 Comparison with Circles and Polygons and Various Drawing Methods

Area-proportional 3-Venn diagrams are used extensively in various scientific disciplines to aid data
analysis (Section 3.7.1), but often the diagrams are more misleading than helpful due to the limitations
of the curve shapes used by current drawing methods (Section 5.2.1). We investigated this further using
real world medical data obtained from a BMC Medicine journal article [Lenz and Fornoni, 2006]. 

The article discusses the results from a web-based survey that assessed whether US trainees in
family medicine and internal medicine are knowledgeable of the complications, screening methods and
therapy for chronic kidney disease (CKD). The selected data from this survey was comprised of sets A,
B and C with participating trainees who claimed that secondary hyperparathyroidism is a complication
of CKD (set A), those who screened before or at stage 3 of CKD (set B), and those who commenced
therapy or referred the patient to a specialist when parathyroid hormone (PTH) reached a level of
PTH >70 ng/ml (set C). The set relations and intersection cardinalities are ω = {A = 0.25, B = 0.01,
C = 0.11, AB = 0.10, AC = 0.29, BC = 0.03, ABC = 0.15}. To aid data analysis and raise awareness for
better training to timely identify and manage patients with CKD, the area-proportional Venn diagram, in
Figure 5.49D, with respect to the data ω was included in the article [Lenz and Fornoni, 2006].
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Figure 5.49: The Venn diagram in the journal article from where the real medical data was obtained,
together with the diagrams generated by the various drawing methods for the same data. All the
diagrams are meant to depict ω ={A = 0.25, B = 0.01, C = 0.11, AB = 0.10, AC = 0.29, BC = 0.03,
ABC = 0.15}, which represents the findings of a medical survey from a journal article [Lenz and Fornoni,
2006] that also included diagram D for ω. So, D is a redrawing of the bottom diagram in Figure 5 of the
article. The diagrams generated for ω using a circle-based drawing method are marked as C, those of
polygon-based methods are marked as P, and the only diagram with ellipses that by eulerAPE is E. Green
indicates accurate diagrams with diagError ≤ 10-6. Red indicates diagrams with inaccurate or missing zones.
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Diagrams with respect to ω were generated using circle-based drawing methods, namely: C1,
Stata’s PVENN [Gong and Ostermann, 2011]; C2, Venn Diagram Plotter [Littlefield and Monroe,
2013]; C3, 3 Circle Venn [Chow and Rodgers, 2005]; C4, a module in PatternLab for proteomics
[Carvalho et al., 2008]; C5, BioVenn [Hulsen et al., 2008]; C6, Vennerable [Swinton, 2007, 2009]; C7,
venneuler [Wilkinson, 2012]; C8, Google Venn Charts [Google Inc, 2012]. Other diagrams with
respect to ω were generated using polygon-based drawing methods, namely: P1, VennMaster [Kestler
et al., 2005, 2008], with circle-like polygons; P2, Vennerable triangles [Swinton, 2009], with triangles;
P3, DrawVenn [Chow and Ruskey, 2004], with rectilinear polygons; P4, Vennerable squares [Swinton,
2009], with rectangular polygons; P5, Convex Venn-3 [Rodgers et al., 2010a], with 4-sided and 5-sided
convex polygons; P6, DrawEuler [Chow and Ruskey, 2005], with irregular, non-convex polygons. All
the diagrams are available in Figure 5.49, together with that generated using E, eulerAPE with ellipses.
The design of each diagram (e.g., labels, legend, colours, outlines, background) is precisely the same as
that generated by the drawing method. Curve labels were only added to C2, P3 and P6 as no labels or
legend are provided with the diagram. The numeric labels in eulerAPE's diagram were added manually to
illustrate how the diagram in the article would have looked like, if it was drawn with ellipses.

The diagError of all the generated diagrams that depicted all of the seven zones interior to the
curves of a 3-Venn diagram was computed and is displayed in Figure 5.49. To calculate diagError, the
zone areas of the diagrams drawn with circles were computed using eulerAPE's analytic geometry method
(Section 5.4.5) and the zone areas of the diagrams drawn with polygons were computed using standard
geometry formula. The diagError was then calculated by using Equation (5.18) in Section 5.6.3 as in
eulerAPE. Figure 5.49 also notes the missing zones of generated diagrams that were not Venn diagrams. 

Looking into the diagrams in Figure 5.49, we note that all the diagrams drawn with circles
including D, the diagram in the article, have inaccurate zone areas and are misleading. For
instance, zone B (1% in ω) is much larger than zone BC (3% in ω), zone C (11% in ω) is much larger
than zones AB (10% in ω) and ABC (15% in ω), and zone A (25% in ω) in most diagrams is larger than
zone AC (29% in ω). These issues are also evident in C7, the diagram generated by venneuler that is
considered the most effective in generating accurate diagrams using circles. Despite aiming at having a
larger area for zones with a larger value, regardless of whether the zone areas are directly proportional
to the values in the area specification, C3 generated by the first circle-based drawing method, 3 Circle
Venn, also has zone ABC (15% in ω) similar in area to that of zone AC (29% in ω). The same is evident
in D, as D was generated by the method of C3. However, C8 is the most misleading and inaccurate, as
zone BC is missing and both zones B and AB (respectively 1% and 10% in ω) are much larger than
zones C, AC and ABC (respectively 11%, 29% and 15% in ω). With respect to diagError, the most
accurate were C4 and C7 (diagError = 0.03), followed by C2, C5, C6 (diagError = 0.04) and C1
(diagError = 0.05), and finally C3 and thus D (diagError = 0.14). Due to the regularity and good
continuity of circles, the curves are often easily distinguishable and identifiable (Section 3.5.2). For a
few (e.g., C3 and D), it is difficult to comprehend in which curves the zones are located in. However,
this is down to design (e.g., colours, outlines, background), which we discuss in Section 5.8.

In contrast, most of the diagrams with polygons are either accurate with diagError ≤ 10-6, as P3,
P5, P6, or have zone areas that are less misleading than those of diagrams with circles, as P2, P4.
The latter is true as, for instance, consistent with ω, zone B is always the smallest and zone AC is
always the largest. The only diagram with missing zones (zones C and BC) is P1. The drawing method
used to generate P1, VennMaster, is non-deterministic and so this is one of the possible diagrams
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generated for ω. Since the curves are depicted as regular, circle-like polygons, this drawing method has
the same limitations as others that use circles. Though the other diagrams with polygons are more
accurate than those with circles, the curves lack good continuity and are not easily identified
(Section 3.5.2). Curve identification is particularly difficult when the curves meet at bending points, as
P5 and P6, and when the curves are non-convex, as P6. Moreover, all of the diagrams, except for P1, are
non-wellformed, making these diagrams accurate but difficult to use (Section 3.7.3). Thus, the
preference for the less accurate diagrams with circles instead of polygons.

Using ellipses, diagram E has zone areas that are accurate and directly proportional to the
quantities in ω (diagError ≤ 10-6). It is also easy to comprehend and to analyse the depicted data, as the
curves are regular and have good continuity like circles. So ellipses can be more effective than both
circles and polygons in drawing accurate, easy to comprehend area-proportional 3-Venn diagrams. This
was also demonstrated with other real data in Section 5.2.2, where Figure 5.3 and Figure 5.4 illustrate
the accurate diagrams generated by eulerAPE with ellipses as alternatives to respectively the misleading
diagrams drawn with circles in Figure 5.1 and the incomprehensible diagrams drawn with polygons in
Figure 5.2. Being the only method that uses ellipses, the effectiveness of ellipses could be the primary
reason why eulerAPE is being used in various areas and why its diagrams are appearing in various journal
articles (details in Section 5.1). The design of eulerAPE's diagrams is also different from that of other
diagrams. As we will discuss in Section 5.8, eulerAPE's design aids curve and zone identification.

Another area-proportional 3-Venn diagram for the same data sets but for the management of the
anaemia rather than secondary hyperparathyroidism (so set C was based on a level of hemoglobin rather
than parathyroid hormone) was included in the article as shown in Figure 5.50. Multiple Venn diagrams
depicting the same data sets but for a different factor are commonly used to easy note differences.
However, the zone areas have to be directly proportional to the required data for them to be helpful.

As explained earlier, Figure 5.50A(ii) is misleading due to inaccuracies in the zone areas.
Figure 5.50A(i) could be considered more misleading as besides inaccuracies in the zone areas (e.g.,
zone B with label 3% is larger than zone AC with label 4%; zone A with label 36% is larger than zone
AB with label 41%), a 3-Venn diagram is depicted when the data {A = 0.36, B = 0.03, C = 0.00,
AB = 0.41, AC = 0.04, BC = 0.00, ABC = 0.11} corresponds to a 3-Euler diagram with no zones C and
BC. So the depicted set relations are not entirely correct. Currently eulerAPE draws highly accurate
3-Venn diagrams even when zones are very small and barely visible. So, as discussed in Section 5.7.1,
we could use eulerAPE to generate an accurate diagram with respect to {A = 0.36, B = 0.03, C = 0.00001,
AB = 0.41, AC = 0.04, BC = 0.00001, ABC = 0.11}. As illustrated in Figure 5.50B(i), the minor
differences between the area of zones C and BC of eulerAPE's diagram and those required by the actual
data are not noticeable. Looking at this and the accurate Figure 5.50B(ii), it is easily noticeable that for
instance, though most participants claimed that anaemia and secondary hyperparathyroidism were
complications of CKD (set A), timely screening (set B) was more common with anaemia (i) than
secondary hyperparathyroidism (ii), while commencement of therapy or referral to a specialist (set C)
was more often delayed when diagnosis was based on the hemoglobin level (i) than on the parathyroid
hormone level (ii). The article emphasizes the importance for practitioners to have the right skills to
manage CKD, and using the diagrams in Figure 5.50A, they attempted to raise awareness of the need to
provide better training to avoid delays in screening and therapy. However, as discussed, this could have
been done more effectively if their diagrams accurately depicted their findings using ellipses.
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Figure 5.50: The figure in the journal article with two Venn diagrams with circles (left, A) and the
figure as it would have looked like if the diagrams were generated using eulerAPE and ellipses (right, B).
Figure 5 of the article [Lenz and Fornoni, 2006] was redrawn and the two Venn diagrams were placed next to
each other rather than one below the other. The labels for eulerAPE's diagrams were added manually. 

We will now discuss diagram design features that could aid comprehension of the depicted set
relations and set intersection cardinalities. Most of these features have already been adopted by eulerAPE.

5.8 Diagram Design Features to Aid Comprehension

To facilitate comprehension, an area-proportional Venn or Euler diagram should have curves that are
easily identified and zone areas that are easily comparable to one another [Chow and Ruskey, 2004].
We discuss design features that could facilitate both. 

5.8.1 Curve and Zone Identification

As demonstrated in Section 5.7.4 and discussed in Section 3.5, regular, convex curves that have good
continuity facilitate curve identification. So curves represented as circles are preferred over polygons.
However, design features of the diagram may also facilitate or hinder curve and thus zone identification.

In Figure 5.49, C2, C3, and C6 use circles. Yet it is unclear which zones are in which curves, as
completely unrelated colours are used for the zones in each curve. Also, the various colours used hinder
the visual search for a specific hue [Ware, 2008, p. 74] and thus a specific zone. It is even more difficult
in C3 than C2 and C6, as the curves in C3 do not have an outline and the diagram has low luminance
contrast among zones (e.g., zones A, AC) and between the zones and black background (e.g., zone B).

The main objective of Venn and Euler diagrams is to depict overlaps and relationships between the
sets and so, the main focus has to be on the curves representing the sets rather than the individual zones
representing the intersections. The zones are meaningful only when the curves are visually distinct
and the curves in which the zones are located can be identified.

Using a colour per curve (for the interior) and transparency as in C4, C5, C7 and C8, the diagram is
typically perceived as three overlapping curves, thus facilitating the identification of the different curves
and the zones in each one. However, since the colours of the curves could perceptually fuse at overlaps,
the colours of the zones in the same curve could seem unrelated, such that the transparency effect is not
perceived. In fact, for transparency to be perceived, the colour values of the zones in each curve must be
within a specific ratio [Masin, 1997] and a few perceptual rules have to be satisfied [Metelli, 1974]. If
the interior of the curves is not coloured and the curves only have an outline, then based on the law of
Prägnanz [Koffka, 1935] (stating that the simplest forms are perceived), the diagram is still perceived as
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three circles rather than seven irregular shapes. However, identifying the curves in which a zone is
located is not easy, even if coloured outlines as in C1 are used for the curves.

To ensure that the curves are visually distinct, different visual feature channels should be used
[Ware, 2012, p. 145 G5.2]. This is also known as a heterogeneous channel-based approach [Ware, 2008,
p. 52]. At the early stages of visual processing, different feature types, such as colour and texture, are
processed separately and in parallel by different cells and each type has its own channel such that
information in one channel, example colour, does not interfere with another, example texture [Ware,
2012]. When colour is the only feature type used to distinguish the curves, the same and only channel is
used to retrieve information on different curves and so, unless specific colour value ratios and other
rules are satisfied, transparency is not perceived and the layers perceptually fuse (discussed earlier). To
avoid this problem, eulerAPE uses colour, texture and outline to ensure the curves are visually distinct
(e.g., Figure 5.49E). Since these features are processed separately and are expressed in three different
channels, three separate layers one per curve are perceived and none of them perceptually fuse. So, the
curves in which the zones are located are easily identified. If viewers tune their attention to the feature
type of a specific curve, other feature types recede [Ware, 2008], thus facilitating reasoning about the
sets. In fact, Ware advices: "To define multiple overlapping regions, consider using a combination of
line contour, color, texture, and Cornsweet contours" [Ware, 2012, p. 188 G6.6]. 

Even so, eulerAPE still uses distinct curve colours. Unique hues, including colours black, white, red,
green, yellow and blue [Berlin and Kay, 1969], are distinct and contrasting [Mullen, 1985], processed in
parallel [Hurvich, 1981], and primary colours understood across cultures [Berlin and Kay, 1969]. Thus,
the colours used by eulerAPE are red, green and blue. Though colour-blind readers would have
difficulties distinguishing red and green, they would still be able to distinguish the curves, as one is
solid filled and the other is textured filled. In fact, the curves would still be visually distinct, even if the
diagram is displayed black and white. Blue-yellow colour blindness is less common. However, if these
colours were used instead of red and green, choosing a background that ensures adequate luminance
contrast for both colours would be difficult, as yellow requires a black background (e.g., curve B in
Figure 5.49 V7 is not easily visible on white), while blue requires a white background (e.g., zone C in
Figure 5.49 V3 is not easily visible on black) [Ware, 2008, p. 70]. This is not a problem for red and
green as a white background ensures adequate luminance contrast for both colours.

5.8.2 Zone Area Judgement and Comparison

Aesthetic characteristics, such as the shape of the zones and the curves, could facilitate or hinder zone
or curve area comparison, but no empirical studies have been carried out for such diagrams
(Section 3.7.3). Humans are biased to area judgement [Cleveland and McGill, 1984] and so Cleveland
[1985, p. 282] argues that quantitative data should be depicted using position or length which humans
are able to judge more accurately than area. However, Venn and Euler diagrams are widely used
(Section 3.7.1). In Section 3.7.3, we discussed ways to counteract judgement bias.

For instance, an additional plot that uses position or length judgement could be provided with
the diagram, as in Figure 5.51, which was generated as one figure by a prototype variant of eulerAPE that
we have devised (but not yet released) and which illustrates Figure 5.49E but with an adjacent bar chart
as an alternative representation of the quantities depicted by the zones in the Venn diagram. With our
design for the curves, it is possible to relate to the zones in the Venn diagram by only showing a sample
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of the interior fill of the zones in the bar chart without requiring any labels. This facilitates the mapping
of the plot to the diagram and reduces the processing time as the visualization is seen as one rather than
two. Also, numeric labels in the zones should be avoided, to prevent data redundancy, which could
delay the processing of the visualization [Tufte, 1990], and to instigate the use of the bar chart whenever
the quantities depicted by the zones are compared and judged, such that any biases are avoided.
However, the effectiveness of such visualizations needs to be evaluated.

Figure 5.51: A hybrid diagram generated by a prototype variant of eulerAPE to facilitate zone area
judgement and comparison. The Venn diagram is the same as that in Figure 5.49E.

Alternatively, equally-sized glyphs that are proportional in number to the quantities in the area
specification could be placed inside the zones of a Venn or Euler diagram that is not necessarily area-
proportional. This would replace area judgement with cardinality judgement of a number of discrete
objects. If the glyphs are arranged in multiple blocks with a size that is within a subitizing range (i.e.,
the number of objects that humans can effortlessly and correctly judge their number without counting),
the number of glyphs is easily and accurately estimated without the need for focused attention [Cowan,
2000; Miller, 1956]. Euler diagrams with glyphs were discussed in Section 3.8 and for Bayesian
reasoning in Section 3.9.2. In Chapter 6, we discuss our drawing method eulerGlyphs that draws Euler
diagrams with glyphs for Bayesian problems and a study we conducted to assess the effectiveness of
these diagrams. 

5.9 Future Work

This is the first work to assess the effectiveness of ellipses in drawing accurate diagrams with smooth
curves to depict the required set relations and cardinalities. Our novel drawing method, eulerAPE, is also
the first to use ellipses. Being the first, this work focused on 3-Venn diagrams. We have shown that
accurate 3-Venn diagrams with ellipses can be drawn for a large majority of random area specifications
(Section 5.7.2), far more than is possible with the circles, which are highly preferred over polygons.

These results indicate great potential for using ellipses to draw area-proportional 3-Euler diagrams
and possibly other Euler diagrams with more than three curves. The method adopted by eulerAPE already
draws some Euler diagrams, but further evaluation is required to identify abstract descriptions for which
an Euler diagram can be drawn with ellipses and ensure that eulerAPE draws such diagrams adequately.
Area specifications for which an accurate area-proportional 3-Euler diagram can be drawn with ellipses
should be identified. This work should then be extended for diagrams with more than three curves.

Based on the current automatic drawing methods, if an accurate diagram cannot be drawn with
ellipses, then polygons have to be used. However, there are other shapes that are more general than
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ellipses and similarly have good continuity (e.g., ovals) that could be used. Thus, other shape
representations for the curves should be investigated, so that, before a diagram is drawn, different
shaped curves are considered in a “natural progression” [Chow, 2007, p. 83], starting off with circles
and progressing with more general shapes such as ellipses and ovals before less desired and non-smooth
shapes such as convex and non-convex polygons are considered. This ensures that the smoothest and
most regular curves possible for the required area specification are used.

In our evaluation, characteristics of random area specifications (made up of random quantities) for
which an area-proportional 3-Venn diagram was drawn accurately with ellipses using eulerAPE were
identified (Section 5.7.2). Such observations will aid in the formalization of analytic methods that will
determine whether an accurate area-proportional diagram can be drawn with ellipses for a given area
specification. If similar analytic methods are formalized for other shaped curves, the most regular and
smoothest curves that are appropriate for a given area specification could be identified immediately.

Besides the shape of the curves, diagram design features (e.g., colours) can also facilitate or impede
understanding of the diagram and the depicted data. A few features have been discussed in Section 5.8.
However, various others should be evaluated to aid curve and zone identification, facilitate reasoning
about the depicted quantitative data and avoid area judgement biases. Features that could aid
understanding for different users with different spatial and numeracy abilities, as well as the benefits of
interactive diagrams in assisting the users with their data analysis and reasoning about the sets should
also be investigated. Different labelling strategies for the curves and zones should be evaluated to assess
whether they aid or hinder reasoning and area judgement and whether they add noise to the diagram.

A number of the studies should be conducted to understanding how such diagrams are processed
perceptually and cognitively, how zone areas are perceived, the effect of the shape of the zones and
curves on area judgement, what discrepancies in areas are not noticeable and whether perceptual scaling
measures like those proposed for map symbols in cartography [Montello, 2002] (highly criticized by
Tufte [1983]) aid or hinder area judgement in these diagrams. In this work, a good and accurate diagram
was one whose zone areas were directly and accurately proportional to the quantities in the area
specification. Doing so, it was possible to precisely assess for which area specifications an accurate,
good diagram can be drawn with ellipses. However, as noted in our evaluation (Section 5.7.1,
Section 5.7.2), minor errors in the zones are often not noticeable. So, the findings of these studies will
aid in the identification of diagrams whose zone area errors are not human detectable. In this way, an
inaccurate diagram drawn with ellipses for an area specification could be considered accurate for human
use and perception and so, it could be drawn with ellipses rather than other more complex curves with
less desirable features, such as irregular and non-smooth polygons. A study should also determine if
numeric labels in the zones could conceal errors in zone areas, thus allowing the use of smooth curves.

Following these studies, aesthetic criteria, metrics and cognitive measures as well as perceptual and
design guidelines defining an effective, good diagram for human use that facilitates comprehension and
reasoning about the depicted data should be formalized and prioritized. A variant of eulerAPE should then
be devised to optimize such measures, such that a diagram that is the best compromise between zone
area accuracy and aesthetics is generated. Such a diagram should ideally have all the important aesthetic
features and none of its zone area inaccuracies should be noticeable to the human user. This would be
particularly important for those area specifications for which an accurate diagram with specific aesthetic
features cannot be drawn (e.g., area specifications for which an accurate area-proportional wellformed
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3-Venn digram cannot be drawn using convex curves Section 3.7.5). With such a compromise, an
inaccurate diagram with smooth curves whose errors are not human detectable could be generated.
Other future considerations regarding the aesthetics of such diagrams are discussed in Section 3.5.4.

It is also interesting to assess the effectiveness of allowing users to select aspects of the diagram
which they consider important and would like to be optimized. Such aspects could include aesthetic
features as the wellformedness properties or the shape of certain curves, as well as the accuracy of all or
specific zones. The latter could aid in cases when specific zones are of greater importance.

5.10 Summary

In various application areas, area-proportional Venn and Euler diagrams, particularly 3-Venn diagrams,
are used to easily visualize both set relations and cardinalities. Current automatic drawing techniques
for area-proportional 3-Venn diagrams either use circles or polygons to represent the data set curves.
Circles are often preferred over polygons due to their regularity and smoothness. A few use polygons to
ensure the generation of accurate area-proportional diagrams for more area specifications than is
possible with circles. In this chapter, we have demonstrated that using ellipses and our novel drawing
method eulerAPE, accurate area-proportional 3-Venn diagrams can be drawn for a large majority of
random area specifications (86.1%, N = 10000, 99% confidence interval 85.2% to 86.9%). So curves
that are smooth like circles but more general like ellipses should be considered whenever a diagram
cannot be drawn accurately with circles. This result opens a wider research question as to whether
curves with different degrees of freedom such as circles, ellipses, ovals, n-ellipses, regular n-gons and
irregular n-gons could be progressively considered from the most specific to the more general until a
curve type that generates an accurate diagram for the required area specification is found. 

Humans are biased to area judgement [Cleveland, 1994], but it is still unclear how areas of regions
in an area-proportional diagram are perceived and judged and what discrepancy in the required and
actual zone areas is not noticeable (discussed in Section 3.7.3). Some perceptual scaling methods have
been proposed for proportional symbols on maps [Montello, 2002] (details in Section 3.7.3), but they
are ineffective and non-universal as they depend on various variables such as the reader's perceptual
abilities in judging area, experience, the context, and the object being judged. They could thus convey
the wrong quantitative data in different contexts and to readers who are capable of perceiving areas
correctly. So, if area is used to depict quantitative data then, the represented area "should be directly
proportional to the numerical quantities represented" [Tufte, 1983, p. 56]. A better alternative is to
avoid areas altogether [Cleveland, 1994] and instead use more effective representations such as grids of
equally-sized glyphs (i.e., frequency grids).

The first and foremost use of Venn and Euler diagrams is to represent relationships amongst sets. So,
a not area-proportional Venn or Euler diagram with equally-sized glyphs placed in the minimal regions
of its zones could be more effective than an area-proportional diagram, such that depicting quantitative
data using a number of equally-sized discrete objects is more effective than using area? We investigate
this further in the next chapter for probabilistic judgement and Bayesian reasoning, which areas can use
Euler diagrams to clarify the set relations of the problem.
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Chapter 6

Assessing the Effect of Euler Diagrams 

with Glyphs on Bayesian Reasoning

This chapter outlines a user study that assessed the effect of area-proportional Euler diagrams, glyph
representations and Euler diagrams with glyphs on Bayesian reasoning. It introduces eulerGlyphs

(http://www.eulerdiagrams.org/eulerGlyphs) as an automatic drawing method to generate such
diagrams. The study also suggests ways how visualizations can be combined with textual information.

6.1 Introduction

Area-proportional Venn and Euler diagrams are used in various areas to depict set relations and their
cardinalities (Section 3.7.1). However, humans are biased to area judgement [Cleveland, 1994] and it is
still unclear how region areas are perceived and what differences in areas are not noticeable. Scaling
mechanisms for proportional symbols on maps have been proposed, but are non-universal. Thus, the
area should either be "directly proportional to the numerical quantities represented" [Tufte, 1983, p. 56]
or avoided altogether, as discussed in Section 3.7.3 subsection 'Counteracting Area Judgement Bias'.

Grids of equally-sized glyphs, also known as frequency grids, have been used extensively in areas
such as risk communication to visualize quantities and facilitate reasoning (e.g., [Zikmund-Fisher et al.,
2008a, b]; Section 2.5.5). In probabilistic judgement and Bayesian reasoning, psychology studies
suggest that frequency grids facilitate logical reasoning by depicting the quantities in the problem as
discrete objects (Section 2.5.5), while Euler diagrams clarify the set relations and how the quantities
relate (Section 3.9). Both the quantities and the set relations are important for such statistical problems.
Thus, combining the two into one diagram, so that equally-sized glyphs that are proportional in number
to the quantities in the problem are enclosed by the curves of an Euler diagram that only depicts the data
set relations (as in Section 3.8), could be a good alternative to an area-proportional Euler diagram.
Bayesian reasoning is affected by cognitive judgemental errors and biases (Section 2.5.2) and so,
depicting quantities using glyphs rather than area could avoid additional biases elicited by area
judgement. 
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In this chapter, we investigate whether an Euler diagram that is not area-proportional but which has
equally-sized glyphs that are proportional in number to the quantitative data can be more effective than
an area-proportional Euler diagram for Bayesian reasoning. We discuss a study we conducted to assess
the effect of a textual and six visual representations including area-proportional Euler diagrams,
frequency grids and the Euler diagrams with glyphs for three classic Bayesian problems. We introduce
the novel method eulerGlyphs (http://www.eulerdiagrams.org/eulerGlyphs) which we devised to
automatically draw the visualizations investigated in the study for Bayesian problems. Laymen and
professionals have difficulty in understanding statistical information and Bayesian problems, and are
unaware of their wrong judgements. This could have severe consequences such as overdiagnosis of
diseases (Section 2.5.1). Thus considering such an application area was a priority. This study is also
important in indicating for the first time the effectiveness of different visualizations for Bayesian
reasoning on a large, diverse group of participants through crowdsourcing and in suggesting novel ways
how visualizations should be combined with textual information.

We will start by outlining the objectives of this work (Section 6.2), followed by our diagram
drawing method eulerGlyphs (Section 6.3), the rationale of our study design (Section 6.4), a detailed
account of our two experiments (Section 6.5, Section 6.6), including our findings and their implications,
future work (Section 6.7) and a summary of our contributions and this chapter (Section 6.8). 

The research work in this chapter was funded by INRIA, France. It was carried out during my
internship with the AVIZ team and advisors Dr Pierre Dragicevic and Prof Jean-Daniel Fekete. This
work has been published in a journal [Micallef et al., 2012] and presented at IEEE InfoVis 2012 as part
of IEEE VIS (formerly VisWeek) 2012, where it received a Best Paper Honourable Mention Award.

The experimental stimuli and data of the study, as well as, a video with a visual explanation of a
classic Bayesian problem using Euler diagrams and glyphs are available at http://www.aviz.fr/bayes.

6.2 Motivation and Objectives

Let us reconsider the classic mammography Bayesian problem: 

The probability that a woman at age 40 has breast cancer is 1%. According to the
literature, the probability that the disease is detected by a mammography is 80%. The
probability that the test misdetects the disease although the patient does not have it is
9.6%.

If a woman at age 40 is tested as positive, what is the probability that she indeed has
breast cancer?

[Eddy, 1982]

As mentioned in Section 2.5.2, the answer to this problem is only 7.8%. In real-life, a good
approximation rather than a correct answer is sufficient. However, in a study [Eddy, 1982], 95 of 100
doctors said that the answer is between 70% to 80%. So, why is the answer so low? 

The answer can be computed using Bayes' theorem (as explained in Appendix C.2.1), but this is only
possible if the reader is aware of the theorem and knows how to apply it to the Bayesian problem. An
alternative way is to use visualizations. 
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We know that 1% of the women aged 40 
have breast cancer. 

So, if the dots represent women, then 
the red dots are women with cancer and 
the blue dots are women without cancer.

The women take a mammography. 

80% of the women with cancer get a 
positive mammography

Similarly, 9.6% of the women without 
cancer also get a positive mammography.

Barbara got a positive mammography, so 
she must be one of the women in the black 
group. 

Thus, the probability that she is a red dot 
within the black group and that she indeed 
has breast cancer is only 7.8%.

A video with this visual explanation is available at http://www.youtube.com/watch?v=D8VZqxcu0I0.
The visualization was generated using our drawing method eulerGlyphs, discussed in Section 6.3.

The main problem with Bayesian inferencing is that often the base rate is ignored, leading to the
base-rate fallacy (Section 2.5.2). It is unclear whether this fallacy could be avoided using visualizations
that make the base rate and the nested-set relations of the problems easily visible and understandable.

6.2.1 Can Visualizations Facilitate Bayesian Reasoning?

Studies (e.g., [Sedlmeier and Gigerenzer, 2001]) indicate that learning Bayesian reasoning using
visualizations helps, despite that not all users have abilities to handle graphical information [Gaissmaier
et al., 2012]. A few visual representations have been proposed in psychology but most are difficult to
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understand and need training prior to use (Section 2.5.4). In contrast, Euler diagrams and frequency
grids are easy to understand and are widely used. Psychology studies suggest that while Euler diagrams
clarify the nested-set relations of Bayesian problems (Section 3.9.1), frequency grids facilitate logical
reasoning (Section 2.5.5). So combining the two into a hybrid diagram as in the previous section seems
beneficial (Section 3.9.2). Also because, people with high spatial abilities are better at handling
visualizations with spatial properties and those with high numeracy abilities are better at handling
discrete countable objects or glyphs [Kozhevnikov et al., 2002, 2005]. The findings of previous studies
are somehow inconsistent and it is still unclear which is the most effective representation for Bayesian
reasoning (Section 2.5.5, Section 3.9). This could be due to the limitations of the studies.

6.2.2 Limitations of Previous Studies

Diagram Designs

Some diagram designs were inconsistent and inappropriate. For instance, the Euler diagram used in
Sloman et al.'s [2003] study, shown in Figure 6.1A, was meant to be area-proportional with respect to
the quantitative data of the problem (i.e., 1,000 in 'All People'; 1 in 'Number of people who have the
disease'; 50 in 'Number of people that test positive for the disease'). However, an accurate area-
proportional Euler diagram with respect to the problem's data would look like Figure 6.1B. Thus,
Figure 6.1A could be misleading as it conveys the wrong information. Similar problems are evident in
the diagrams of other studies such as Brase's [2009] Euler diagram with glyphs where the number of
glyphs is not proportional to the problem's quantitative data (Section 3.9.2).

A B

Figure 6.1: The area-proportional Euler diagram in Sloman et al.'s [2003] study (left, A) is inaccurate
with respect to the quantitative data of the tested Bayesian problem. (A) Sloman et al.'s [2003] diagram
for a disease diagnosis problem with 1,000 for 'All People', 1 for 'people who have the disease', 50 for 'people
that test positive for the disease'. Source: [Sloman et al., 2003]–Figure 1 (B) An accurate area-proportional
Euler diagram, which we manually drew, for Sloman et al.'s [2003] problem with the same quantitative data.

The rationale for the design of the evaluated diagrams is often not explained, despite that various
design features could hinder the diagram's effectiveness (e.g., [Ancker et al., 2006; Tufte, 2001; Ware,
2012]; Appendix C.2.8). The diagrams were manually drawn and no automatic drawing method was
devised to accurately generate the visualizations. Few diagram designs were evaluated in the individual
studies, and no study assessed both visual and textual representations (Section 2.5 and Section 3.9).
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Participants

Most of the studies were carried out on populations with a specific background, typically university
students with around 18 to 24 years of age (Section 2.5.5, Section 3.9). In some studies, the students
were from psychology and carried out the experiment to partially fulfil a course requirement (e.g.,
[Brase, 2009; Cole and Davidson, 1989]). In others, the students were from highly ranked universities
(e.g., Stanford University [Cosmides and Tooby, 1996]). So the participants of these studies: had certain
skills and cognitive abilities and knew about Bayes' theorem; were highly-focused; have experience in
carrying out tests and possibly other research experiments; were aware that this was an experiment and
were thus less attached to the problem; had an incentive be it monetary or to fulfil a course requirement
or help a colleague or professor to complete their research (details in Section 2.5.5 and Section 3.9).

Also, human cognitive capabilities to process information decline with age, with best performance
being in early twenties [Salthouse, 1996]. Similarly, the capacity of the human working memory and
spatial processing abilities decrease with age [Hale et al., 2007]. So university students (typically aged
18 to 24 years) have greater cognitive abilities and a working memory with a greater capacity than other
older age groups, thus they are less likely to make mistakes than the rest of laypeople [Kellen, 2012].
Individual differences in working memory are also linked to intelligence [Engle et al., 1999].

Thus the findings of most studies are not generalizable to the more diverse population of laypeople
with various backgrounds, age groups and cognitive abilities. Another issue is ecological validity, since
probabilistic reasoning in the real-world is different from a university setting where students are trained
to remain focused and make the best of their cognitive resources to solve a problem given by a tutor.

We know of only two studies on Bayesian reasoning (assessing Euler diagrams, frequency grids or
combinations of both) that were carried out on a more diverse population. Both were still carried out in
a laboratory. These include the study by Kellen [2012] who had students and staff from different
faculties at the University of Kentucky with 18 to 67 years of age (one third were over 22 years of age
and some did not even attend high school) and that by Garcia-Retamero and Hoffrage [2013] who had
doctors and patients with 18 to 85 years of age from four different hospitals in Spain. Both had an
incentive: Kellen's participants took part in a lottery; Garcia-Retamero and Hoffrage's participants were
paid. However, their findings might not be fully generalizable. Kellen's experiment was carried out in an
academic research environment, so participants could have been subject to experimental biases like
demand characteristics [Nichols and Maner, 2008]. Also, more than half (68%) had "Probability
Experience" and many (78%) were completing an undergraduate or higher degree. Garcia-Retamero and
Hoffrage's participants were doctors and patients and their problems related to disease diagnosis. 

Difficulties in Replicating Previous Findings

Differences in "participant-sampling methodologies" [Brase et al., 2006] make it difficult for a study to
replicate previous findings. A reason why the findings of previous studies were inconsistent. In fact, a
series of experiments [Brase et al., 2006] demonstrate that studies using undergraduate students from
top-tier national universities who are also paid are likely to claim higher success rates (e.g., Cosmides
and Tooby's [1996] study whose participants were Stanford University paid students). The experiments
also demonstrated that when the students are either from a second-tier regional university or unpaid,
success rates drop significantly, particularly when they are not following an Honours degree course. The
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authors advise "to advocate an approach that attends to the relative levels of performances across
different conditions, within the same participant populations and using the same experimental
methodology" [Brase et al., 2006, p. 974]. Thus the need to evaluate more diagram designs in one study.

Bayesian Problems and Their Representation

Various studies involved one Bayesian problem relating the diagnosis of a "Disease X" or "a disease"
(Section 2.5.5, Section 3.9). This makes the findings less generalizable to different contexts. Also, a
story about a "Disease X" is not realistic and could be difficult to relate to it. Some could have lost trust
in the presented information and story (trust is essential to effectively convey a story [Glassner, 2004]).
Participants may have different backgrounds, interests and skills, all of which may affect their
understanding of and adherence to the problem [Brown et al., 2011; Davis et al., 2001]. A study over
diverse Bayesian problems can help balance out these effects and ensures findings are generalizable.

Also, for the results of the different studies to be comparable and for possible improvements to be
declared, a few of the problems including the text and quantitative data should be the same, as minor
differences could have a different effect [Girotto and Gonzalez, 2001]. This also applies to the way the
text and the visualization are presented together. For instance, while most studies compare text alone
with exactly the same text accompanied by their visualization (e.g., [Brase, 2009; Cosmides and Tooby,
1996; Sloman et al., 2003]), Kellen [2012] removed all the quantities from the text and placed them in
the visualization (as in Figure 3.37). So an improvement in Kellen's results does not necessarily mean
that his visualizations are more effective. Instead, the improvement could be attributed to the fact that
the participants were forced to link the diagram to the text, as the quantities were only in the diagram.

Quantitative Data of Bayesian Problems

Different quantities assigned to the base rate, hit rate and false alarm rate of the tested problems may
have a different effect on the participants' accuracy and processing time [Verguts et al., 2005] due to the
distance effect (numbers that differ by a large quantity are easier to compare than ones that differ by a
small quantity) and the size effect (numbers that are smaller in magnitude are easier to compare than
others that differ by the same quantity but are larger in magnitude) [Moyer and Landauer, 1967]. Also,
base rates of a certain magnitude can mislead subjects into focusing on some values underestimating the
rest [Cole, 1989]. A study over problems with values varying in distance and size could counterbalance
such effects. Yet only few studies consider this factor [Cole and Davidson, 1989; Kellen, 2012].

When the problem is represented using natural frequencies, an overall population size has to be
selected. For instance, a population size of 1,000 could be used for the mammography problem in
Section 6.2 as in Section 2.5.3. Though small populations (e.g., less than 100) are easier for participants
to relate to [Brase, 2002] and to handle [Schapira et al., 2001], it is not always possible to use such a
population size (e.g., if a population smaller than 1,000 is used for the mammography problem, some of
the quantities would be fractions). Also, confidence in the presented information may be lost [Schapira
et al., 2001] due to human intuition and the 'Law of Large Numbers' that larger samples are more
reliable [Bernoulli, 1713; Sedlmeier and Gigerenzer, 1997]. However, when a large population size is
used (e.g., 1,000), related risk could be perceived smaller than its actual magnitude [Schapira et al.,
2001] (details in Appendix C.2.8). So the population size should be carefully selected and a different
size for different problems should be used in a study to balance out the above effects.
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Different User Abilities

A level of numeracy ability is required for the understanding and manipulation of natural frequencies
[Chapman and Liu, 2009] and statistical information [Brown et al., 2011]. Spatial abilities are required
to efficiently retrieve information from visuals and handle spatial properties [Kozhevnikov et al., 2002,
2005]. So a visualization may not facilitate reasoning for some [Gaissmaier et al., 2012] as individuals
have different abilities [Galesic and Garcia-Retamero, 2010] (also Appendix C.2.9). In fact, Kellen's
[2012] findings indicate that while Euler diagrams help people with high spatial abilities in contrast to
text alone, those with low spatial abilities perform worse with an Euler diagram than with text alone.
Thus studies should evaluate different visualization types as well as text alone and identify which
representations, be they textual or graphical, are effective for different users types and levels of abilities.

Different representations could then be used to specifically aid different types of users [Spiegelhalter
et al., 2011], but this is not practical in the real-world [Hawley et al., 2008]. The ideal alternative would
be to have a representation that meets the needs of different types of users, but as mentioned earlier, this
might only be possible for visual users. For instance, a study [Hawley et al., 2008] indicated that people
with high numeracy benefit from any visualization and those with low numeracy benefit from
visualizations with discrete objects such as frequency grids, so frequency grids could be used, despite
that the success rate of those with low numeracy is lower than those with high numeracy. Similarly,
Kellen et al. [2007] noted that people with high spatial abilities can handle any visualization but
perform better with visualizations that have spatial rather than discrete properties, while those with low
spatial abilities can only handle visualizations with discrete objects. So they hypothesized (but not
evaluated) that frequency grids could be helpful for users with different spatial abilities. Garcia-
Retamero and Hoffrage's [2013] findings indicate that a hybrid diagram made up of rectilinear closed
curves filled up with square, touching glyphs that form a grid help doctors and patients be more
accurate, even when the numeracy abilities of the participants are taken into account. 

6.2.3 Our Objectives

Previous studies had limitations and their findings were inconsistent, so an effective representation of
Bayesian problems, be it textual or graphical, is still unknown (Section 6.2.2). We assessed the effect of
six visualizations (i.e., area-proportional Euler diagrams, Figure 6.2A-B; glyph representations,
Figure 6.2C; Euler diagrams with glyphs, Figure 6.2D-F) and text alone on such problems to identify:

1. the most effective representation in general, be it professionals or laymen;
2. whether hybrid visualizations are helpful; 
3. whether there is a link between the representation and different abilities (or user types).

To achieve these objectives, we conducted a study over three classic Bayesian problems on a large,
diverse group of participants through crowdsourcing—the first crowdsourced study in the area.

Two novel textual problem formats, specially designed to be used with visualizations, were also
proposed and evaluated. This makes it the first study to evaluate various types of visual and textual
representations using the "same experimental methodology" [Brase et al., 2006, p. 974] and for different
classic Bayesian problem. Other previous studies evaluated similar area-proportional Euler diagrams
(Figure 6.2A—[Brase, 2009; Sloman et al., 2003]; Figure 6.2B—[Kellen, 2012]) and frequency grids
(Figure 6.2C—e.g., [Cosmides and Tooby, 1996; Sedlmeier and Gigerenzer, 2001]), but none assessed
our Euler diagrams with glyphs (i.e., Figure 6.2D-F). It is also the only known study in this area that
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considered the participants' spatial as well as numeracy abilities (Kellen [2012] only spatial abilities;
Garcia-Retamero and Hoffrage [2013] only numeracy abilities), which could affect performance. The
rationale of the diagram designs is clearly explained (Section 6.4.2). The diagrams were accurately
generated with respect to the quantitative data in the problem using our method eulerGlyphs, which we
specifically devised to draw the evaluated visualization types for any Bayesian problems (Section 6.3). 

Figure 6.2: The six visualization types evaluated in our study. Here the visualizations (generated by
eulerGlyphs) show the classic mammography problem [Eddy, 1982]. (V1) An area-proportional Euler diagram
with the population represented as one set (the green curve). (V2) An area-proportional Euler diagram with
the population represented as two sets (the red and blue curves). (V3) A frequency grid. (V4) An area-
proportional Euler diagram with randomly positioned glyphs. (V5) A not area-proportional Euler diagram
with uniformly positioned glyphs. (V6) A not area-proportional Euler diagram with frequency grid glyphs.
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6.3 The Drawing Method – eulerGlyphs

Given the base rate, the hit rate and the false alarm rate (as percentages) and the population size of a
Bayesian problem, eulerGlyphs generates the different types of visualizations in Figure 6.2. All the
visualizations are consistent with one another. For instance, the shape and the size of the glyphs in V3-
V6 and the distance between the glyphs in V3, V5, V6 is the same for the relevant visualizations. The
labels and the colour coding scheme (both the solid and outline colours) for the sets are also consistent.
Features, such as the labels of the curves and the shape of the glyphs, are yet customizable.

The Bayesian problems handled by eulerGlyphs are comprised of two mutually exclusive and
exhaustive hypotheses and the data obtained from one single observation [Gigerenzer and Hoffrage,
1995]. For instance, in the classic mammography problem [Eddy, 1982] (discussed in Section 6.2), the
two hypotheses are breast cancer and no breast cancer, while the observation is the positive
mammography. The task is to estimate the likelihood that one of the two hypotheses is true based on the
data obtained from the observation [Gigerenzer and Hoffrage, 1995]. Visualizations such as eulerGlyphs's
V1-V6 (e.g., Figure 6.2) could facilitate reasoning by illustrating the set relations and cardinalities.

In this section, the sets characterizing the Bayesian problem will be referred to as follows: 

• S, the entire population considered in the problem (i.e., the sample space);
• H and H, are the two mutually exclusive and exhaustive hypotheses, so H ⋃ H = S;
• D, the data obtained from the single observation.

As illustrated in Figure 6.2, S is only depicted in V1 (in green), while H is only depicted in V2-V6 (in
blue). H and D are depicted in all visualization types V1-V6 (in red and black respectively). Before
drawing the actual visualizations, eulerGlyphs must first compute the cardinality of the required sets and
their intersections. We explain how eulerGlyphs computes these values (Section 6.3.1) and draws
visualization types V1-V6 to depict this quantitative data (Section 6.3.2).

This section explains how the visualizations are drawn. The rationale of the visualization designs in
relation to Bayesian reasoning, that is why, is discussed later in Section 6.4.2.

The software eulerGlyphs is available as freeware at http://www.eulerdiagrams.org/eulerGlyphs.

6.3.1 Computing the Cardinality of the Sets and Their Intersections

Percentages for the base rate, the hit rate and the false alarm rate are provided as inputs together with
the population size of the problem. Based on these inputs, eulerGlyphs computes the cardinality of the
required sets and their intersections as follows:

• ⏐S⏐ = population size of the problem;
• ⏐H⏐ = base rate × ⏐S⏐; 
• ⏐H⏐ = ⏐S⏐-⏐H⏐;
• ⏐D ⋂ H⏐ = hit rate × ⏐H⏐;
• ⏐D ⋂ H⏐ = false alarm rate × ⏐H⏐.

Based on this quantitative data, eulerGlyphs draws visualization types V1-V6 as explained in the next
section.
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6.3.2 Drawing the Visualizations

V1: Area-Proportional Euler Diagram with a 1-Set Population

V1 is the only visualization representing the entire population of the Bayesian problem as one set, S. It
is an Euler diagram which depicts sets S, H and D as circles. The area of each circle is proportional to
the cardinality of the depicted set, while the area of each zone is proportional to the cardinality of the set
intersection it represents. So V1 is an accurate area-proportional Euler diagram with respect to the
quantitative data in the Bayesian problem.

An accurate area-proportional Venn diagram with two circles can be drawn with respect to any set of
zone areas using a numerical method (Section 3.7.5). So eulerGlyphs uses Chow and Ruskey's [2004]
bisection method (explained in Section 3.7.6) to draw an accurate area-proportional 2-Venn diagram for
H and D and their intersection. This diagram is then placed inside a circle representing S whose area is
proportional to the population size of the problem. 

By default, the 2-Venn diagram for H and D is placed at the centre of the curve for S, but options are
available for the diagram to be moved to the left, right, top or bottom of the interior of curve S. The
curve for S is by default a circle, but an option is available to represent this as a square or rectangle.

V2: Area-Proportional Euler Diagram with a 2-Set Population

In contrast to V1, V2 (and V3-V6) represents the entire population of the Bayesian problem as two sets,
H and H. Together with H and H, it depicts D. It is an Euler diagram drawn using two circles (for H and
H) and a ellipse (for D). The area of each circle is proportional to the cardinality of the depicted set. The
area of the overlap between each circle and the ellipse is also proportional to the intersection cardinality
of the relevant sets. In fact, the area of all the zones, except for one, are proportional to the quantities in
the Bayesian problem. The only zone whose area does not represent any data in the problem and is thus
empty is the disconnected zone in the ellipse for D that is comprised of two regions, of which none are
in the circle for H or H. This zone and its area are irrelevant to the problem and should be ignored. 

Our method eulerGlyphs draws V2 as follows:

1. An accurate area-proportional Venn diagram with 
two circles for H and D and another for D and H is 
drawn using Chow and Ruskey's [2004] bisection 
method.

2. The two diagrams are centre aligned vertically and 
moved close to one another along the x-axis until 
the circles for H and H touch at a single point or the
two circles for D are merged into one, whichever 
occurs first. The two circles for D can now be 
replaced with an ellipse that depicts the cardinality 
of the intersections between H and D and D and H.
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3. The centre of the ellipse for D is set to the midpoint between the centre of the two circles for D. The
semi-horizontal axis of the ellipse is set to the distance between the centre of the ellipse and the
leftmost intersection point of the circumference of the leftmost circle for D with the circle's
horizontal diameter, so that the width of the ellipse covers the width of both circles for D. An
appropriate semi-vertical axis for the ellipse is one that ensures that the area of the zones in curves
H and H is proportional to the quantitative data of the problem. This is found using the bisection
method in the interval [l, u], where 

l is half the length of either the chord between the 
intersection points of circles H and D or the chord 
between the intersection points of circles D and H 
depending on which one is the longest,

and

u is the semi-horizontal axis of the ellipse.

Once the require semi-vertical axis is found, D is 
depicted as one curve and the area of all the zones 
relevant to the problem is proportional to the data of
the problem (here the mammography problem 
[Eddy, 1982]) with a maximum relative error 
percentage of less than 1%.

V3: Frequency Grid

V3 is a frequency grid depicting each member of the population of the Bayesian problem as a glyph.
Similar to V2, sets H, H and D are depicted. Every glyph is a member of one of the sets H or H and
possibly D. Their solid and outline colours indicate their set memberships, but their shape and size are
consistent within the visualization and among visualization types. A legend indicates the solid and
outline colour assigned to every set, which colours are consistent with those of other visualization types.

The glyphs are can be laid out horizontally (row by row) or vertically (column by column) and in
any direction (left to right or right to left; top to bottom or bottom to top; zig-zag or not). Example, in
Figure 6.2, the glyphs of V3 are laid out vertically, left to right, top to bottom and in a zigzag manner so
the second column is filled in bottom to top, the third top to bottom and so on. A ruler is provided to
indicate the direction of the glyph placement and to aid estimation of the number of glyphs.

The number of glyphs per row and column is calculated, unless the user indicates a specific aspect
ratio. If possible a square grid is used, else a grid with similarly sized rows and columns (e.g., multiples
of fives or tens) is used (e.g., 20 rows, 50 columns for population 1000). First n, the square root of the
population size, is calculated. If n is a whole number, a n × n square grid is used. Else, the number of
glyphs per row is set to 5 × 10s-3 where s is the number of significant figures of the population size.
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By default, the glyphs are circles, but are customizable to squares or person figures, in which case,
the shape of the glyphs of the other visualization types (i.e., V4-V6) is also changed. The size of the
glyphs is also consistent among visualization types. The size is obtained by dividing the area of the
largest inscribed rectangle in the smallest region of V2 by the population size, and then scaling the
glyph so that it fits in this area together with the required spacing between the glyphs.

V4: Area-Proportional Euler Diagram + Randomly Positioned Glyphs

V4 is the same as V2 with the only difference that same sized glyphs are placed in random locations
inside only the zones relevant to the problem, so no glyphs are added to the disconnected zone in the
curve D but in none of curves H or H. The number of glyphs in the zones is equal to the cardinality of
the set intersection depicted by the zone. The glyphs in V4 are the same as those in V3, V5 and V6 in
shape and size to ensure consistency and integrity. The size of the glyphs is automatically computed as
discussed in the section for V3. Similar to V3, a legend for the sets is displayed below the diagram. 

The glyphs are placed using an iterative random placement algorithm without packing. The largest
rectangle enclosing the zone is first found and then a random point in the rectangle is selected. If the
point is inside the zone and a glyph can be placed at that point such that it is inside the zone and it does
not collide with other glyphs already in the zone, then a glyph is added. If not, another random point is
selected. This iterative process continues until the required number of glyphs are added accordingly.

V5: Not Area-Proportional Euler Diagram + Uniformly Positioned Glyphs

V5 is the same as V4 except that the glyphs are placed in the form of a grid and the Euler diagram could
be not area-proportional as the smallest curves that enclose the glyphs of the relevant zones are drawn.

The size of the glyphs and the spacing between the glyphs is consistency with other visualization
types. So the area occupied by each glyph, including the required spacing, is known and will be referred
to as i. This means that a zone z with n glyphs requires an area of requiredArea(z) = i × n. Knowing
this, curves whose size is just right to only fit the relevant glyphs can be computed as follows:

1. The largest inscribed rectangle in the region of each
zone z of V2 (the area-proportional Euler diagram 
based on which also the glyph size is computed) is 
obtained and its area is referred to as 
currentRectArea(z). Each curve c in V2, with Z as 
the set of zones located in c, is then scaled by

requiredArea(z)
z∈Z
∑ currentRectArea(z)

z∈Z
∑

2. After a curve is scaled, the other curves in the 
diagram are displaced accordingly to ensure that the
same set intersections as in V2 are depicted.
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3. The largest inscribed rectangle in the region of each
zone of the modified diagram with scaled curves is 
then obtained.

4. Glyphs are placed within the zones by first filling 
up the inscribed rectangles.

5. Other glyphs are then placed around the sides of the
inscribed rectangle ensuring that all the glyphs are 
inside their respective zone and aligned in the form 
of a grid.

6. Once all the glyphs are added, the inscribed 
rectangles are removed. 

Here the diagram depicts the quantitative data of the
mammography problem [Eddy, 1982].

V6: Not Area-Proportional Euler Diagram + Frequency Grid Glyphs

V6 takes the frequency grid in V3, moves the groups of glyphs apart and adds not area-proportional
curves to depict the sets, their intersections and glyph set memberships. This is drawn as follows:

1. Frequency grid V3 is generated and the four 
different groups of glyphs are moved apart and 
centre aligned vertically.
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2. The two groups of glyphs that are members of H 
and the two others that are members of H are 
moved further apart from one another and 
bounded by an ellipse

that circumscribes the minimal bounding box of 
the two groups.

3. A similar ellipse is drawn around the two groups 
of glyphs that are members of D.

This ellipse for D might intersect one or both 
groups of glyphs that are in H or H but not in D.

In such cases, the relevant group of glyphs is 
moved away to the left (if its glyphs are members 
of H) or right (if its glyphs are members of H) 
until it is out of the curve for D.

If it is moved n units, both semi-axes of the ellipse
depicting the set its glyphs are members of are
enlarged by n. The x-coordinate of the centre of
this ellipse is decreased or increased (depending
on the direction of the initial move) by n⧸2.

Here the diagram depicts the quantitative data of
the mammography problem [Eddy, 1982].
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6.4 Study Design Rationale

After devising eulerGlyphs, we conducted our study to assess the effectiveness of the visualizations for
Bayesian reasoning. In this section, we motivate our study design, including the use of crowdsourcing,
our different visualization designs, our choices of Bayesian problems and our performance measures.

6.4.1 Crowdsourcing

Most studies on Bayesian reasoning were carried out on populations with a specific background, often
students. This poses problems in term of generalizability and ecological validity (Section 6.2.2
subsection 'Participants') as in the real-world both laymen and professionals are faced with probabilistic,
uncertain data based on which they have to make important timely decisions, possibly with limited
cognitive abilities that are known to decline with age [Hale et al., 2007; Salthouse, 1996].

For these reasons, we considered crowdsourcing and we used Amazon Mechanical Turk (MTurk) as
a technology to automatically outsource simple tasks to a network of Internet users [Chen et al., 2011;
Paolacci et al., 2010]. The tasks posted by requesters are called HITs (Human Intelligence Tasks) and
are completed by anonymous workers who get a monetary reward, if they complete the task
appropriately. Crowdsourcing platforms have not been initially designed for conducting experiments,
but their use in research is popular [Chen et al., 2011; Horton et al., 2011], including in information
visualization [Heer and Bostock, 2010]. The workers' demographics is well-understood [Ross et al.,
2010] and a methodology is being developed for designing effective experiments and addressing
concerns such as scientific control [Heer and Bostock, 2010; Horton et al., 2011; Paolacci et al., 2010].

Although crowdsourced experiments are subject to many of the same problems as laboratory
experiments, they capture interesting aspects of real-world problem solving. First, they capture a large,
diverse population with different backgrounds, education, occupations, age groups and gender [Ross et
al., 2010]. Secondly, workers typically try to complete as many HITs as possible (often for personal
satisfaction), while a rating system provides them with incentives for being accurate [Horton and
Chilton, 2010; Paolacci et al., 2010]. Since workers typically complete several HITs in sequence, they
cannot focus on a single task like participants in a laboratory. We believe this better captures situations
when timely decisions have to be made accurately. Also, due to the informal setup, participants might
be less subject to experimental biases like demand characteristics [Nichols and Maner, 2008].

Finally, setting up an experiment on a crowdsourcing platform can be initially costly, but the time
and effort for running subjects is much lower than in laboratory experiments. In contrast to previous
studies, experiments should be conducted on diverse, large populations to ensure generalizable findings,
detectable small effects and replicable results (Section 6.2.2). Crowdsourcing gives access to more
statistical power and makes it easier to test multiple, diverse hypotheses as those involving equivalence.

6.4.2 Visualization Designs

Previous studies investigated whether visualizations can aid Bayesian reasoning, but only one or a few
visualizations were evaluated in every individual study (Section 6.2.2 subsection 'Diagram Designs'). In
addition, the choices made in terms of visualization design were rarely discussed and often inconsistent
with respect to the quantitative data they are meant to represent. Overall, this impedes understanding
and comparison of findings of different studies.
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To address this, we assessed a set of visualization designs (V1−V6; Figure 6.2 illustrates the
diagrams for the classic mammography problem [Eddy, 1982]; the diagrams for the other two classic
Bayesian problems considered in our study are in Appendix B.1) including Euler diagrams, glyph-based
representations and combinations of both. Consistent with the tradition of research in information
visualization and human-computer interaction, our goal was to start paving the design space based on
clear design rationales, while keeping unimportant design details as consistent as possible in order to
better tease out the effects of important design features. The latter is important as slight changes in the
design could affect the subject's perception of the data semantics [Ziemkiewicz and Kosara, 2010b].

Visual design features that are known to hinder understanding such as non-smooth and irregular
curves for Euler diagrams (discussed in Section 3.5 for not area-proportional Euler diagrams and in
Section 3.7.3 for area-proportional ones) were avoided whenever possible. All the colours used in our
visualizations were obtained from one of ColorBrewer's [Harrower and Brewer, 2003] colour-blind
friendly scheme. We also used Adobe Illustrator to preview how people with different types of colour-
blindness would view our diagrams to ensure that the selected colours are, in such cases, distinguishable
as much as possible. Prominent data sets that appear in most of the visualizations were depicted using
colours (namely, red and blue) that are highly distinguishable for not colour-blind and colour-blind of
any type. All the visualizations were accurately generated by eulerGlyphs (Section 6.3).

We strived to make our visualizations compact, clear and consistent with the numeric data of the
problem ("To minimize the cost of visual searches, make visualization displays as compact as possible,
compatible with visual clarity" [Ware, 2012, p. 141 G5.1]) be it represented as area (area "should be
directly proportional to the numerical quantities represented" [Tufte, 1983, p. 56]) or glyphs (the
number of glyphs is equal to the quantity). All the elements of our visualizations were clearly labelled
to ensure graphical integrity ("Clear, detailed, and thorough labeling should be used to defeat graphical
distortion and ambiguity" [Tufte, 1983, p. 56]).

V1: Area-Proportional Euler Diagram with a 1-Set Population

V1 (Figure 6.2A) is an accurate area-proportional Euler diagram with respect to the quantities of the
Bayesian problem. Similar to Brase's [2009] (Figure 2.9A) and Sloman et al.'s [2003] (Figure 6.1A)
Euler diagrams, the entire population of the problem is represented as one set. We depict this set as a
green outlined circle (Figure 6.2A). The area of the red circle is proportional to the base rate. The
interior of the black outlined circle is split up into two regions: one (in red) whose area is proportional
to the hit rate; another (in white) whose area is proportional to the false alarm rate. The answer to a
Bayesian problem is the area of the hit rate region as a fraction of the area of the black circle.

V1 is the only diagram depicting the entire population of the Bayesian problem as one circle and
thus, its design unavoidably differs from the other visualizations (V2−V6). The other diagrams depict
the entire population as two circles, one shaded in red and another in blue. The entire population in V1
could be represented as two sets as in Figure 6.3, but an early pilot study revealed that this could be
misleading as subjects assumed that the red circle was part of the blue region. So instead of seeing the
blue as a circle with a hole, subjects thought the blue was an entire circle with the red circle as a subset. 

Thus, we opted to show the entire population as a circle as in Figure 6.1A. We wanted a style and
colour that is distinguishable from the data sets depicted in red and blue, even for colour-blind subjects,
and so we chose a green outlined circle.
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Figure 6.3: An alternative design of V1 that is more consistent with the other visualization (V2−V6). 

V2: Area-Proportional Euler Diagram with a 2-Set Population

V2 (Figure 6.2B) is an accurate area-proportional Euler diagram, except for a disconnected empty zone
(the white space in the black ellipse). V2 is different from V1 as it represents the entire population as
two sets (the red and blue circles in Figure 6.2B). A similar design was proposed [Kellen et al., 2007],
but only evaluated (Figure 3.37) [Kellen, 2012] after our study [Micallef et al., 2012] was published.

To reinforce the complementarity of the two population sets, two disjoint yet touching circles with
similar styles and contrasting colours that help relate their content are used. For instance, for the
mammography problem, the red circle represents the group of 'women with breast cancer' and the blue
circle represents the group of 'women without breast cancer'. Also, red and blue are: unique hues [Ware,
2008, p. 70], thus distinct and contrasting [Mullen, 1985]; primary colours, so understood across
cultures [Berlin and Kay, 1969]; visually processed in parallel on distinct channels [Hurvich, 1981]. For
the Bayesian cab problem [Tversky and Kahneman, 1982] which we also tested, we replaced green and
blue cabs in the original problem with red and blue cabs in our experiment to ensure consistency with
the design and colour scheme (that is also colour-blind friendly) of our visualizations.

An incorrect answer that is much bigger than expected is often provided for the mammography
problem because the base rate, which is low, is ignored. The area of the red circle is proportional to the
base rate and so, seeing it next to the blue circle could reduce the likelihood that it is ignored or
overestimated. Also, comparing the area of two circles is easier than that of two irregular shapes [Chow
and Ruskey, 2004] and have thus been used by Playfair [1801] (e.g., for populations—Figure 2.2A), as
map symbols [Montello, 2002], and in a geological survey to show the "relative amounts of Earth's
water in comparison to the size of the Earth" [Perlman, 2013]. Thus, by depicting the population as two
sets, we anticipated that compared to V1, V2 would clarify the nested-set relations of the problem and
aid Bayesian reasoning. Since the third set depicts a different concept, a different shape (an ellipse) is
used and only its outline is displayed, making it distinguishable from the two population sets [Ware,
2008, 2012]. As discussed in Section 3.5 and Section 3.7.3, circles (followed by ellipses) are often
preferred for the curves of Euler diagrams due to their regularity and smoothness. Thus, their use in V2.

A drawback of V2 is that it has a zone that is not relevant to the Bayesian problem and is thus,
empty. This zone is also disconnected as it is made up of the two white regions that are inside the black
ellipse. So for the mammography problem, this zone corresponds to the set of 'women with a positive
mammography', but that belong to none of the two population sets. To avoid having this empty zone,
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the third set could be depicted as a self-intersecting curve (Figure 6.4A) or as two circles with the same
label (Figure 6.4B). However, these diagrams are non-wellformed (Section 3.4.4) as Figure 6.4A has a
self-intersecting (i.e., non-simple) curve and multiple points and Figure 6.4B has duplicate curve labels.
To depict the third curve as a smooth curve and avoid the empty zone, the two population sets could be
depicted as rectangles. However, such diagrams cannot be drawn accurately for all data. Example for
the mammography problem (Figure 6.5A), the area of the red and blue rectangles and that of the black
ellipse are proportional to the required quantities, but the area of the regions inside the black ellipse are
not, as it is not possible to move the ellipse further to the left. If alternatively the third set is another
rectangle (Figure 6.5B), the diagram would be non-wellformed and unusable [Rodgers et al., 2012b]
due to concurrent curves (Section 3.5). So the diagrams in Figure 6.4 and Figure 6.5 should be avoided. 

The design in Figure 6.2B seems more familiar and easier to understand than other alternatives. For
instance, any woman that is in the set of 'women with a positive mammography' must also be in only
one of the sets 'women with breast cancer' or 'women without breast cancer', so the empty zone is easily
ignored. This is easier in V4-V6 as glyphs are added to all the regions except to the empty zone. V2 is
non-wellformed due to the brushing point between the red and blue circles, but such points do not have
negative effects on the diagram's comprehension [Rodgers et al., 2012b].

A B

Figure 6.4: Possible alternative designs for V2 with no empty zones. 

A

B

Figure 6.5: Possible alternative designs for V2 that depict the two population sets as rectangles. 

V3: Frequency Grid

V3 (Figure 6.2C) maps equally-sized circular glyphs to different sets in the Bayesian problem, with as
many glyphs as members of the population. The design is representative of typical designs in the
literature on risk communication, including the horizontal ruler provided to aid cardinality estimation.
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The same colour scheme (solid and outline colours) as in V2 is used to convey set membership of
glyphs. This ensures consistency and integrity. Ware advises to use unique hues for small symbols
[2012, p. 123 G4.11], so the colours used in V2 are also appropriate for the glyphs in V3 and V4-V6
which also have glyphs. A study suggests that since hue and orientation are preattentive features, the
number of glyphs that only vary by hue and orientation can accurately and rapidly be estimated [Healey
et al., 1996]. We are using distinct hues to represent set membership and so the number of glyphs
belonging to the same set should be accurately and rapidly estimated. 

Glyphs of different shapes have been used before, including simple geometrical shapes [Galesic et
al., 2009] and icons such as anthropomorphic figures [Brase, 2009; Brown et al., 2011]. Studies report
no significant improvement of icons that are visually similar to the objects they represent over simple
shapes [Stone et al., 1997] and no effect on comprehension and recall [Gaissmaier et al., 2012]. In
addition, icons are problem-dependent and can make diagrams cluttered [Galesic et al., 2009]. Hence,
we opted for circles. Studies assessing Euler diagrams with glyphs for Bayesian reasoning have also
used simple shapes like circles [Brase, 2009] or squares [Garcia-Retamero and Hoffrage, 2013].

Glyphs in a grid that are represented as simple geometric shapes (e.g., circles or squares) and that are
very close to one another, can be visually processed in a discrete manner or as area [Ancker et al.,
2006]. Thus, meeting the preferences and abilities of different readers (those with low spatial abilities
prefer discrete objects; those with high spatial abilities prefer area [Kozhevnikov et al., 2002, 2005]).
Also, studies indicate that humans are biased to area judgement and quantities should not by area but by
representations that involve tasks that humans are better at, like position or length judgement along a
common scale (Section 3.7.3), both of which are possible with such grids of equally-sized glyphs.

Different layouts have been proposed in the literature. Sometimes, glyphs are laid out horizontally
[Brown et al., 2011], vertically [Price et al., 2007] or randomly [Brase, 2009]. A study [Price et al.,
2007] suggests that horizontal grids are perceived faster. Brase [2009] argues that sequential and
random placement are both effective, but others [Ancker et al., 2011] suggest that randomness increases
subject’s uncertainty as proportions in the diagram are harder to estimate, differences are less easily
noticeable, and larger proportions are perceptually overestimated. We therefore used a sequential
layout, but placed glyphs vertically using an ordering for the sets that matches the layout of V2.

For the grid dimensions, we used aspect ratios that are typical in the literature: a 25 × 40 grid (for
problems with a population of 1000) and a 10 × 10 grid (for problems with a population of 100). Since
glyphs are difficult to label in-place, a separate legend was provided.

V4: Area-Proportional Euler Diagram + Randomly Positioned Glyphs

V4 (Figure 6.2D) consists of the area-proportional Euler diagram V2 with glyphs randomly positioned
in its regions. It is similar to Brase's [2009] diagram (Figure 3.39A), except that our area-proportional
Euler diagram is accurate with respect to the quantities of the problem (excluding the disconnected,
empty zone in the black ellipse) and the number of glyphs matches the values in the problem.

The size and shape of the glyphs for V4 (also V5, V6) is consistent with V3. A legend (for glyphs)
and in-place labels (for Euler curves) are provided. The same contrasting colours and style as in V2 are
used for the glyphs and the outline of the transparent Euler curves, so they are distinguishable and also
easily visible in the Euler diagram ("To make symbols easy to find, make them distinct from their
background and from other symbols …" [Ware, 2012, p. 149 G5.3]; "For small color-coded symbols,
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ensure luminance contrast with the background as well as large chromatic differences with the
background." [Ware, 2012, p. 123 G4.12]). Hence, regions with no glyphs look empty and irrelevant,
and the coloured glyphs pop out [Ware, 2012, p. 155]. Also, a study indicates that searching for an
empty convex shape among a number of convex shapes with a dot inside is slower than searching for a
convex shape with a dot outside among a number of convex shapes with a dot inside [Treisman and
Gormican, 1988] as the "search for the presence of a visual primitive is automatic and parallel, whereas
search for the absence of the same feature is serial and requires focused attention" [Treisman, 1985, p.
156]. So the regions with glyphs are automatically processed, while those with no glyphs are noted only
through focused attention. Thus, the empty unwanted zone is easily ignored. 

V4 and the other hybrid visualizations (V5, V6) could be more effective than V3, as elements that
are enclosed by a curve tend to be perceptually grouped together (the perceptual grouping principle of
common regions, which is stronger than others [Koffka, 1935] such as the Gestalt proximity and
similarity principles) [Palmer, 1992] and closed curves are processed preattentively, thus noted without
focused attention [Enns, 1986; Treisman and Souther, 1985]. In fact, one of Ware's design guidelines
advises to "Consider putting related information inside a closed contour" [Ware, 2012, p. 187 G6.5].

V5: Not Area-Proportional Euler Diagram + Uniformly Positioned Glyphs

V5 (Figure 6.2E) is similar to V4 but employs a regular grid layout with the same glyph spacing as in
V3. The smallest curves that enclose the glyphs are drawn after the glyphs are positioned in the correct
regions. Thus, the Euler diagram is more compact but not necessarily area-proportional.

V6: Not Area-Proportional Euler Diagram + Frequency Grid Glyphs

While V4 and V5 are 'Euler diagram oriented' as glyphs seem to be added to the Euler diagram in V2,
V6 (Figure 6.2F) is 'frequency grid oriented' as Euler diagram curves seem to be added to the frequency
grid in V3. Hence, no attempt is made to ensure that the Euler diagram (in V6) is area-proportional. 

Brase’s [2009] study involved a similar representation (Figure 2.10A), but instead of moving apart
the different groups of glyphs in the frequency grid to ensure that the Euler diagram curves are smooth
and regular (as in our V6), Brase just added a rectangular closed curves over the frequency grid and
highlighted some glyphs in the grid to indicate other set memberships. Brase's representation could be
more compact than our V6. However, his representation could be difficult to comprehend as the curves
are not smooth [Benoy and Rodgers, 2007] and no labels or legend is provided to understand what the
curve and the highlight glyphs represent. Also, for the quantitative data of some Bayesian problems, the
diagram could be cluttered and undesirable, non-convex, irregular curves might have to be used.

6.4.3 Bayesian Problems

Various previous studies involved a unique Bayesian problem. As discussed earlier in Section 6.2.2
subsection 'Bayesian Problems and Their Representation', this could be problematic. For instance,
individual differences among participants such as interests, background, education, skills and
experience could affect their adherence to and understanding of the problem [Brown et al., 2011; Davis
et al., 2001]. Studying more than one problem can help level out such effects and facilitate the
generalization of the experiment findings. 
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Gigerenzer and Hoffrage's [1995] classic study on Bayesian reasoning (that assessed textual but no
visual representations) was carried out over 15 problems, each involving a different scenario. Three of
these problems were classic Bayesian problems that had been considered in various previous studies,
thus ensuring that their results were comparable to those of previous studies. 

Crowdsourcing experiments have to be short [Heer and Bostock, 2010; Paolacci et al., 2010] and
thus, we opted for the three classic problems that were considered in Gigerenzer and Hoffrage's [1995]
study. These include:

• Mam, the mammography problem [Eddy, 1982];
• Cab, the cab problem [Tversky and Kahneman, 1982];
• Eco, choosing a course in economics problem [Ajzen, 1977]. 

The text, which we used in our study (mainly for Experiment 1—Section 6.5), for these three Bayesian
problems is provided in Table 6.1. The evaluated visualizations (V1-V6) for each of these Bayesian
problems are in Appendix B.1 (those for Mam are also available in Figure 6.2).

We opted for these specific problems as they have been tested by various previous studies (e.g.,
[Garcia-Retamero and Hoffrage, 2013; Gigerenzer and Hoffrage, 1995; Hoffrage and Gigerenzer, 1998;
Kellen, 2012; Mellers and McGraw, 1999; Sedlmeier and Gigerenzer, 2001]—Mam; [Gigerenzer and
Hoffrage, 1995; Kellen, 2012; Sedlmeier and Gigerenzer, 2001]—Cab; [Gigerenzer and Hoffrage, 1995;
Sedlmeier and Gigerenzer, 2001]—Eco) and their scenarios are diverse. 

Differences in the quantitative data used in different studies for the same Bayesian problem could
make results less comparable (see Section 6.2.2 subsection 'Quantitative Data of Bayesian Problems').
Thus, we decided to use the same base rate, hit rate and false alarm rate as those used in the original
classic problem. However, these values should ideally vary in distance and size to counterbalance any
possible distance and size effect [Moyer and Landauer, 1967] (discussed in Section 6.2.2 subsection
'Quantitative Data of Bayesian Problems'). Our chosen classic problems satisfy this desirable
characteristic as their values (which are the same as those in Gigerenzer and Hoffrage's [1995] study
and consistent with the original proposed problem) are sufficiently varied, as noted in Table 6.2. 

Various studies (e.g., [Gigerenzer and Hoffrage, 1995]) indicate that representing the problem's
quantitative data as natural frequencies rather than probabilities significantly improves performance
(Section 2.5.3). Thus, we opted for natural frequencies. The size of the problem's population can affect
the participants' performance (e.g., perceiving relative risk smaller than its true size [Schapira et al.,
2001]; discussed in Section 6.2.2 subsection 'Quantitative Data of Bayesian Problems') and so, the
tested problems should ideally have a different population size. Our chosen classic problems satisfy this
desirable characteristic as their population size (which is the same as that in Gigerenzer and Hoffrage's
[1995] study) is diverse (i.e., 1,000 for Mam and Eco; 100 for Cab—Table 6.2). 

Results of different studies could be less comparable, if the text used in the studies for the same
Bayesian problem is different (discussed in Section 6.2.2 subsection 'Bayesian Problems and Their
Representation'). To avoid this, we aimed to use the same text as that used in previous studies. The
original text of these Bayesian problems used probabilities rather than natural frequencies and so, they
could not be used for our study. Gigerenzer and Hoffrage [1995] only provided the text for the
mammography problem, which we used for Mam. The text for Cab was obtained from another study
that considered the same problem with the same quantitative data [Mellers and McGraw, 1999].
However, for Eco, no text in natural frequencies was found (the original used probabilities) and so, we
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wrote our own text using the original [Ajzen, 1977] and a natural frequency style similar to that used for
the other problems. The text for our problems is provided in Table 6.1.

Table 6.1: The text used for the three Bayesian problems in our study, mainly for Experiment 1. 

Mam 10 out of every 1,000 women at age forty who participate in routine screening have breast cancer. 8 of
every 10 women with breast cancer will get a positive mammography. 95 out of every 990 women
without breast cancer will also get a positive mammography.

Here is a new representative sample of women at age forty who got a positive mammography in routine
screening. How many of these women do you expect to actually have breast cancer?

Cab A cab was involved in a hit-and-run accident at night. Two cab companies, the Red and the Blue, operate
in the city. Of every 100 cabs in the city, 15 are Blue and 85 are Red. On the night of the accident, a
witness identified the cab as Blue. The court tested the reliability of the witness under the similar visibility
conditions with Blue and Red cabs. When the cabs were really Blue, the witness said they were Blue in 12
out of 15 tests. When the cabs were really Red, the witness said they were Blue in 17 out of 85 tests.

What are the chances that the cab involved in the hit-and-run accident was Blue?

Eco In a small liberal arts college students take, as an elective, a general interest course in economics or
history. A recent analysis of enrollment figures showed that out of every 1,000 students, 700 students took
the general interest course in history, while 300 students took the course in economics. For 210 of the
students out of the 300 who took the economics course, the decision on pursuing the economics course
was career oriented. For 350 of the students out of the 700 who took the history course, the decision on
pursuing the history course was career oriented.

Barbara T. was one of the students who took one of the two general interest courses. Her decision on
pursuing the course was career oriented. What are the chances that she had taken the economics course?

(Mam) Mammography problem ([Eddy, 1982]—original problem; [Gigerenzer and Hoffrage, 1995]—source text).
(Cab) Cab problem ([Tversky and Kahneman, 1982]—original problem; [Mellers and McGraw, 1999]—source text).
(Eco) Choosing a course in economics problem ([Ajzen, 1977]—original problem; we wrote the text based on the
original problem).

Table 6.2: The quantitative data used for the Bayesian problems in our study.
Base Rate Hit Rate False Alarm Rate Answer to Question

Mam 10 out of 1,000 8 out of 10 95 out of 990 8 out of 103 or 7.8%
Cab 15 out of 100 12 out of 15 17 out of 85 12 out of 29 or 41.4%
Eco 300 out of 1,000 210 out of 300 350 out of 700 210 out of 560 or 37.5%

These values are consistent with the original problems and are the same as those used in Gigerenzer and Hoffrage's
[1995] study. (Mam) Mammography problem [Eddy, 1982]. (Cab) Cab problem [Tversky and Kahneman, 1982].
(Eco) Choosing a course in economics problem [Ajzen, 1977].

6.4.4 Measures of Performance

Although most previous studies focus on maximizing and reporting the proportion of correct answers,
this dichotomous approach has some limits. First, a percentage of exact answers (say, 75%) says
nothing about how far off the remaining 25% are. Second, it is rare that the outcome of a decision
depends on a probability estimation being perfectly exact or not (e.g., making an estimation of 0.001
instead of the correct 0.0012), whereas an estimate of 0.4 versus 0.001 will often produce radically
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different outcomes. Finally, helping people compute an exact answer might be useful in some situations
(e.g., teaching probabilities), but is of limited relevance to many real-life situations where one has to
make quick decisions and rarely has attentional resources and time to use pen and paper or a calculator.

We therefore chose to focus on accuracy, that is, how far subjects are from the actual answers. Since
in the natural frequency format answers are provided as a nominator and a denominator (i.e., v1 out of
v2), we start by computing the probability p = v1⧸v2. We believe this is acceptable since ultimately, the
answer is a probability (e.g., the chances of having a cancer). We then compute a bias, which gives the
error together with the direction of the error. Although one could use p−pe, with pe being the exact
answer, subtracting probabilities can lead to paradoxes. For example, if pe = 0.01, then p = 0.0000001
would be a more correct answer than p = 0.02. So we use log10(p⧸pe) instead. The log makes it easy to
report and compare large estimation errors. Thus, if pe = 0.01 and p = 0.001, then the bias will be −1 and
if p = 0.1 the bias will be 1.

We derive the error from the bias by computing its absolute value. This assumes that a negative bias
is as serious as a positive bias, which is a reasonable assumption for problem-independent studies such
as our user study. Alternatively, this measure can be adapted to situations where an overestimation is
more costly than an underestimation or vice-versa, by pre-multiplying positive or negative biases with a
constant. To be able to compare our data with previous experiments, we still report the occurrence of
answers for which error = 0.

In addition to bias and error, we decided to measure the subjects confidence in their answers. This is
important because if a visualization makes people very accurate but not confident at all, then it is of
limited use. In contrast, a visualization that makes people very confident but plain wrong is harmful,
more so than a visualization that makes people less accurate but not overconfident.

Finally, we also decided to measure the time spent reading problems and providing an answer. If
workers devote very little time compared to, example laboratory experiment participants, then it could
mean that they are not carrying out the task seriously. On the other hand, if they devote too much time,
then maybe crowdsourcing does not capture quick real-world decision-making situations at all.

6.4.5 Measures of Abilities

As discussed in Section 6.2.2 subsection 'Different User Abilities', users have different numeracy and
spatial abilities. Yet both are required to understand statistical information and visual representations.
Frequency grids have been thought to effectively meet the needs of people with different levels of
numeracy [Hawley et al., 2008] and spatial abilities [Kellen et al., 2007]. However, they might not be
the best representation for all. For instance, those with high spatial abilities would benefit most from a
visualization with spatial properties [Kozhevnikov et al., 2002, 2005], like Euler diagrams. Others, like
those with low spatial abilities, find text alone more helpful than an Euler diagram [Kellen, 2012]. So
we must identify which representation is best for different abilities and user types.

Thus, we decided to measure the numeracy and spatial abilities of our participants. Numeracy was
measured using Brown et al.'s [2011] 6-question objective numeracy test due to the similarities of the
subjects’ demographics. To this, we added part 2 of the Subjective Numeracy Scale (SNS) [Fagerlin et
al., 2007b]. Spatial abilities were measured using part 1 of the Paper Folding Test (VZ-2) [Ekstrom et
al., 1976]. These are all paper-based tests that we faithfully reimplemented in HTML and JavaScript,
including the 3-minute limit for VZ-2.
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6.5 Experiment 1: Comparison of Visualizations

The purpose of this first experiment was to test the six visualizations (Section 6.4.2) and compare them
with text alone. We hypothesized that our visualizations will help subjects solve Bayesian problems.
Most of our visualizations were based on a less common Euler diagram representation for Bayesian
problems because we anticipated that, by representing the population as two disjoint sets, the reader will
be less likely to disregard the base rate. Following previous theories [Kozhevnikov et al., 2002, 2005],
we also hypothesized that subjects with low spatial abilities would benefit from visualizations with
discrete and countable objects such as glyphs (as in V3-V6), while those with high spatial abilities will
benefit mostly from visualizations with spatial properties like Euler diagrams (as in V1-V2 and V4-V6).

6.5.1 Design

As experimental conditions, we had three Bayesian problems and seven visualization types namely text
alone (V0) and the visualizations in Section 6.4.2 (V1-V6). Thus, our independent variables were:

• Bayesian problem: PROBLEM ∈ {Mam, Cab, Eco};
• Visualization type: VIS ∈ {V0, V1, V2, V3, V4, V5, V6}.

Our dependent variables were:

• BIAS, the difference between the subject’s answer and the exact answer, computed as a log ratio;
• ERROR, the absolute value of BIAS;
• EX ∈ {0, 1}, whether the answer is exact or not;
• TIME, the time taken to solve the problem;
• CONF ∈ [1 . . 5], the subject’s confidence in his or her answer.

Our covariates were:

• NUM ∈ [0 . . 30], the subject’s score in the numeracy test;
• SPAT ∈ [0 . . 10], the subject’s score in the paper folding task.

We used a mixed-design approach where each participant was presented the three problems, each
accompanied by the same visualization type. The use of a between-subjects design for the visualization
factor is consistent with previous studies (e.g., [Brase, 2009; Cosmides and Tooby, 1996]) and prevents
asymmetric skill transfer effects [Poulton and Freeman, 1966]. To counterbalance any possible learning
effect across problems, all the six possible orderings of the three problems were used. We had 24
participants per visualization and thus, each of the six problem orderings had one of the seven
visualization types and was carried out by four different participants.

6.5.2 Participants

The participants consisted of 168 crowdsource workers from MTurk. At the end of the HIT, they were
asked demographics questions whose answers are summarized in Table 6.3. These demographics are
not fully consistent with some other previous studies on MTurk workers. For instance, the majority of
our workers were males (59% in our experiment versus 25% [Paolacci et al., 2010] and 48% [Ross et
al., 2010] in MTurk workers studies). Also, considering education and occupation in Table 6.3, our
participants were considerably educated. This could be due to a self-selection bias (refer to the HIT title
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and details in the next section). Five (3%) reported having colour blindness, but all of our visualizations
used a colour-blind friendly palette from ColorBrewer [Harrower and Brewer, 2003] (see Section 6.4.2).

Table 6.3: The demographics of the 168 participants. 

Gender Female: 41%, Male: 59%

Age Median: 29, Mean: 32, Range: [18,64]

Residence USA: 47%, India: 40%, Other: 13%
Education Bachelor’s Degree: 45%, Some College, No Degree: 22%, Master’s Degree: 15%, Other: 18%
Occupation Professionals, Managers: 38%, Labourers, Service: 30%, Students: 18%, 

Unemployed, Retired, House-Makers: 15%
Colour-blind None: 163, Red-green: 4, Other: 1

Percentages may not add up to 100 due to rounding

6.5.3 Procedure

We first conducted a pilot study with subjects in France and UK (N = 14; two participants per
visualization type) by hosting the experiment form on a private web page. For the final experiment,
HITs were uploaded on MTurk. Once all the required HITs were completed, the workers were granted
a MTurk system qualification [Paolacci et al., 2010, p. 413] to carry out a follow-up questionnaire that
was implemented in the form of another HIT.

Task

Participants had to fill out a form in their own Web browser. The form was split up into 10 pages and
took around 25 minutes to complete. Participants could not review previous pages and could not
proceed to the next page without completing all the questions. The first page instructed them to remain
focused and not to stop unless all the pages were completed. The three problems were then presented on
separate pages (one page per problem) either using text alone (V0) or text followed by a visualization
(V1-V6). This is illustrated in Figure 6.6 for Mam and V4. Workers had to enter two values, v1 out of v2,
and had to indicate their confidence on a 5-point Likert scale. The next page contained three catch
questions in relation to the three previous problems, whose answer had to be selected from a drop-down
list (Table 6.4). This was followed by four pages containing the objective numeracy test, the subjective
numeracy test, and the paper folding test (tests discussed in Section 6.4.5). The final page was a brief
questionnaire asking workers demographics-related information and the methods (e.g., mathematical
theorems; diagrams drawn or used), material (e.g., pen and paper) or tools (e.g., calculator) they used to
solve the problems. The time spent on each page was recorded. An example of an entire HIT (with all of
its 10 pages) is available in Appendix B.2.1. In this example, the problems were ordered as Mam, Cab,
Eco and each one was accompanied by visualization type V4.

Table 6.4: The catch questions used in Experiment 1. 

Catch Question Items in Drop-Down List  (correct answer in red)

Which topic among the following was not part of the 
problems presented to you before?

Car accident, History course, Airplane crash,
Cancer, Students, Red cab, Economics

The women were screened for skin cancer. Yes, No
The witness identified the faulty cab as white. True, False
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Figure 6.6: The mammography problem (Mam) presented using text and visualization type V4. After
solving the problem, the subjects had to indicate their confidence in their answer on the bottom Likert scale.

MTurk Design

Since standard MTurk markup does not support custom JavaScript, we used the external HIT hosting
method. Each of the 42 unique combinations of problem orderings and visualization types (6 problem
orderings × 7 visualization types) was a unique HIT on MTurk and four copies of each were uploaded.
The title of the HIT was 'Scientific Study on Judgment and Visualization'. According to Horton et al.'s
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[2011] reservation wage, workers are willing to carry out HITs for $1.38 per hour. So often, a better
reward is granted (e.g., Paolacci et al.'s [2010] reward of $1.66 per hour). We opted for a reward of $1
for our 25-minute HITs (i.e., $2.40 per hour). A system qualification was also used to ensure that all the
participating workers have a HIT approval rate (i.e., the number of approved HITs—HITs carried out
successfully and paid for—as a percentage of the number of completed HITs) of at least 95%. 

After completion, multiple HITs carried out by the same worker were rejected (i.e., not paid as
stated on our instruction page) and discarded from analysis. HITs with a wrong answer to one or more
of the catch questions were also rejected and discarded from analysis. HITs were reposted until 168
(i.e., 6 problem orderings × 7 visualization types × 4 assignments; thus, 24 different participants for
each of the seven visualization types) valid HITs were obtained.

6.5.4 Hypotheses

Our hypotheses were:

• H1a. VIS types V1-V6 yield lower ERROR than type V0;

• H1b. VIS type V2 yields lower ERROR than type V1;

• H1c. The improvements observed for VIS types V3-V6 over type V0 will be the highest for
subjects having low scores in the paper folding task (low SPAT);

• H1d. The improvements observed for VIS type V2 and V4-V6 over type V0 will be the highest
for subjects with high SPAT.

6.5.5 Results

Biases in Answers

BIAS captures the discrepancy between the subjects’ answers to the problems and the exact answers.
Figure 6.7 shows the distributions of BIAS per PROBLEM and VIS of the 24 subjects assigned to each VIS.

Figure 6.7: Distributions of bias in answers per problem (column) and visualization type (row) with
N = 24 each. Black bars are exact answers. A bias of −1 is an answer 10× lower and bias 1 is 10× higher.
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From Figure 6.7, it can be observed that: (i) consistent with previous findings [Gigerenzer and
Hoffrage, 1995], answers are not normally distributed with certain wrong answers being much more
common than others; (ii) the distributions differ across PROBLEMs but seem very similar across VIS

types. In particular, there is no obvious sign of V1-V6 outperforming V0.

The distributions are also well-balanced around zero, suggesting no clear general tendency to
underestimate or overestimate probabilities. Median biases per PROBLEM × VIS were overall close to zero
(for all 21 values of median biases M = 0.06, SD = 0.13), as well as mean biases (M = 0.003,
SD = 0.14). A grand mean of 0.003 is remarkably small (it would correspond to a probability estimate
of, for instance, 0.1007 instead of 0.1) and suggests a 'wisdom of the crowd' effect [Surowiecki, 2005].

Exact Answers and Errors

Exact answers are those for which EX = 1 or equivalently BIAS = 0. They are shown in Figure 6.7 as
black bars. There were 12% exact answers overall, with 15% exact answers for Mam, 5% for Cab and
15% for Eco. V0 yielded 6% exact answers, whereas V1-V6 yielded 14%, 11%, 11%, 21%, 7% and
14% exact answers respectively (N = 24 each). These percentages are much lower than in previous
studies (e.g., overall exact answers: 12% in our study versus 40%-80% in previous studies as discussed
in Section 2.5.5 and Section 3.9), suggesting that the problem does not lie in a systematic bias (e.g., no
evidence for a base rate fallacy), but rather in poor individual accuracy.

A finer measure of accuracy is the ERROR metric, that indicates how far the subject's answer was
from the exact answer. The overall median ERROR was 0.27 (M = 0.38, SD = 0.39). A mean of 0.38 is
fairly large and corresponds to a probability estimate of 0.24 or 0.04 instead of 0.1.

Effect of Visualization on Error

In the rest of this section, we average the errors for Mam, Cab and Eco into a single ERROR measure.
Box plots of ERROR per VIS are shown in Figure 6.8. It can be seen that effect sizes are quite small
(differences in medians are much smaller than variances), and a Kruskal-Wallis rank sum test for non-
normal distributions indeed reports no significant difference between VIS types (H(6) = 4.1,
p = 0.66). Thus, our hypothesis H1b (i.e., V2 is more accurate than V1) is not confirmed.

Figure 6.8: Answer errors for the three Bayesian problems combined per visualization type
(N = 24 each). 
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Comparing text alone with V1-V6 aggregated (N = 144) does not yield any significant difference
either (Kruskal-Wallis, H(1) = 1.6, p = 0.21). Thus, our hypothesis H1a (i.e., V1-V6 are more accurate
than V0) cannot be confirmed either.

Subject Abilities

The median score for numeracy NUM was 24⧸30 (M = 23.5, SD = 4.0), while that for spatial ability SPAT

was 5⧸10 (M = 5.1, SD = 2.2). More than half (55%) of the subjects got a moderate to high score for
both tests, as defined by [Brown et al., 2011; Fagerlin et al., 2007b]. Correlations between ERROR and
subject abilities were low (r = −0.08 for NUM and r = −0.07 for SPAT), suggesting little influence of
abilities on accuracy overall.

We conducted further analysis by splitting subjects into two groups: SPAT ≤ 5 and SPAT > 5. In both
groups, mean errors were very similar (M ∈ [0.36, 0.38]) for 

• text alone with no visualization (V0),
• visualizations with glyphs (V3-V6) combined,
• visualizations with an Euler diagram (V2 and V4-V6) combined,

with no statistically significant difference. Thus, our hypotheses H1c (i.e., V3-V6 are more accurate
than V0 for low Spat) and H1d (i.e., V2 and V4-V6 are more accurate than V0 for high Spat) on effects
of individual abilities are not confirmed.

Confidence in Answers

The median score for CONF was 3 on a 5-point Likert scale (M = 3.4, SD = 1.1): subjects were typically
'reasonably confident' in their answers, with a trend towards high confidence. Correlation with ERROR

was low (r = −0.08). Medians for CONF averaged across problems ranged from 3.0 to 3.7 depending on
the VIS type, with no statistically significant difference (Kruskal-Wallis, H(6) = 5.8, p = 0.45).

Time Spent

The median completion time for reading and answering problems (TIME) was 113 seconds (M = 154
seconds, SD = 130): subjects typically spent about 2 minutes on each problem, which is about half the
time spent by our initial pilot subjects (researchers and students from our laboratories). The correlation
with ERROR was low (r = 0.02). The median TIME for the first problem presented was 129 seconds and
went down to 106 seconds for the last one, suggesting a moderate learning effect.

An analysis of variance (ANOVA) with the model log(TIME) ∼ VIS suggests that the total time spent
on the three problems depends on the VIS type (F(6, 161) = 2.5, p < .05). Post-hoc pairwise comparisons
with t-test and Bonferroni correction reveal a difference between V1 and V2 and between V2 and V4
(p < .05). Median times were 168 seconds for V1, 72 seconds for V2, and 149 seconds for V4. Thus,
although subjects were not more accurate with V2 than V1 (our initial hypothesis H1b), they spent
much less time (less than half) parsing V2.
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6.5.6 Qualitative Feedback

When asked which tools or methods they used to get their answer, 8% of the participants specifically
reported using Bayes’ theorem (not mentioned in the question). Others used basic mathematics, carried
out mental calculations, estimated answers, or guessed. About 75% reported using pen and paper or a
calculator. Three subjects (2%) commented that they did not know they could use any of these tools.

Three weeks after the experiment, all participants were invited to complete a 2-minute follow-up
questionnaire for $0.20 on MTurk (a preview of the HIT is available in Appendix B.2.2). Fifty-three
participants out of the 168 (32%) responded. The seven visualization types for the Cab problem were
shown and the participants had to either identify the type they had seen during the experiment or state
that they do not remember at all. They then had to indicate on a 5-point Likert scale how much they
looked at the provided visualizations, how much they used them to solve the corresponding problems,
and explain why. This helped us understand whether the participants referred to the visualizations and
whether they found them helpful.

A large majority (89%) of the 53 respondents reported using the visualizations to solve the problem
(scales 3 'somehow used them' up to 5 'used them a lot' on a 5-point Likert scale). However, only 47%
remembered the correct visualization type. This was likely due to the relatively long time period
between the experiment and the questionnaire and due to the similarities among some visualization
types. Among those who correctly remembered the visualization type, 92% reported using the
visualization to solve the problem.

Most of the 53 respondents (79%) commented that the diagrams helped them visualize the problem
(e.g., Table 6.5a), of which 6 (11%) specifically indicated that it helped them understand the relations
between the sets and the given values (e.g., Table 6.5b). Four subjects (8%) who had text alone (V0)
wished they had diagrams (e.g., Table 6.5c). Five (9%) reported comparing the colour and size of the
sets and the overlapping regions, while 3 (6%) reported counting the glyphs. Other positive comments
included: the diagrams helped to understand the statistics (e.g., Table 6.5d), clarified the problem (e.g.,
Table 6.5e), helped to identify the regions for the final answer (e.g., Table 6.5f).

Table 6.5: A few of the participants' comments in the follow-up questionnaire. 

a It can be explained only if there is a diagram relevant to the incident or question.

b Diagrams show relationships between different sets. Easy to understand links.

c I had trouble visualizing the data on my own. Diagrams would have been essential.

d Diagrams gave me a visual clue to understand problem better and to find answer.
e It would have been helpful to picture the scene.
f Saw the diagram and figured out the regions for the answer.
g I compared the size of the circles and the overlapping regions, but just looking at the diagram was not enough.
h Used diagrams to get answer but did not fully understand them so it was difficult.
i When thinking about populations, sample sizes and similar statistical problems, an intuitive grasp of problem

comes quicker and easier through diagrams than mere words. I would not, however, have slavishly followed
diagrams since I would still have to determine if the diagram was accurate and represented the problem as
stated.

j The text was enough, they didn’t simplify anything, just complicated it more.
k The text was more than sufficient.
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However, 7 participants (13%) commented that the diagrams were not enough to answer the
question (e.g., Table 6.5g). Three (6%) said that they did not fully understand the diagram (e.g.,
Table 6.5h), while one reported a lack of familiarity with the visualization. Six (11%) used the diagrams
just to verify their answer, 4 (8%) stated that they did not trust the diagrams as in some experiments
they are drawn incorrectly on purpose (e.g., Table 6.5i), while 3 (6%) claimed that having two
representations was confusing and since the actual values were in the text, they ignored the visualization
(e.g., Table 6.5j). Three (6%) stated that the diagrams were useless (e.g., Table 6.5k).

6.5.7 Discussion

Though we used the best known textual representation, that is, natural frequencies [Gigerenzer and
Hoffrage, 1995], and the same text and text+visualization format as in previous studies, we failed to
replicate previous findings as our subjects' accuracy was remarkably lower. For instance, considering
V0 (text and no visualization), previous studies reported 26% [Garcia-Retamero and Hoffrage, 2013],
35% [Brase, 2009], 46% [Gigerenzer and Hoffrage, 1995], 51% [Sloman et al., 2003] and 72%
[Cosmides and Tooby, 1996] exact answers with the natural frequency format, which are considerably
higher than the 6% we obtained. Additionally, we could not confirm the effect of abilities and we could
not determine which representation was most effective for different user types and level of abilities.

However, everything seems to suggest that our participants completed the tasks seriously. Only
workers with a high HIT approval rate of at least 95% could participate, and since such a selection
criteria is common practice, they have incentives to maintain a high rate. In addition, they were overall
successful at the tests, the paper folding test being particularly attention-demanding. Finally, they often
reported being confident in their answers and wrote a number of positive comments.

Of much concern is the fact that nearly all of our subjects were at least 'reasonably confident' in their
answer. In a real life, fallacious reasoning combined with overconfidence can easily lead to wrong
decisions, with potentially harmful consequences (e.g., undertaking chemotherapy after being diagnosed
with cancer). Since we found that bias was close to zero overall, bad judgements could go either way.

We believe that far from invalidating the choice of the crowdsourcing method, these poor results
motivate the need for more studies of this sort. It is important that techniques that aid probabilistic
reasoning and decision-making can benefit untrained people from different backgrounds and age ranges
and remain effective in situations where little time and attention are available.

In addition to a low accuracy overall, none of the visualizations we tested seemed to help. Although
there is surely an effect [Cohen, 1994], Figure 6.8 suggests that effects on our metrics of interest (see
Section 6.4.4) are small. This contrasts with conclusions drawn from studies on proportions of correct
answers [Brase, 2009]. Girotto and Gonzalez [2001] go as far as arguing that with representations that
clarify the subset relations of the problem and that use natural frequencies, anyone (including 'naive'
subjects) could solve Bayesian problems, even if the subject is unfamiliar with Bayes' theorem or the
representation. However, our results are also consistent with previous studies that reported no
significant improvement with visualizations over text alone [Cosmides and Tooby, 1996].

Although Cosmides and Tooby suggest that passive visualizations are ignored when solving
Bayesian problems [Cosmides and Tooby, 1996], 89% of our 53 participants who completed the follow-
up questionnaire confirmed that they at least 'somehow' used the diagram. Most of them reported finding
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the diagram very useful and commented that they generally like being given diagrams to solve
problems. So it seems that subjects tend to overestimate the degree to which diagrams are helpful.

It is worth noting that despite positive comments overall, various participants commented that: they
did not fully understand the diagram; having two representations was confusing; they ignored the
diagram; the information provided in the text was sufficient. A few others doubted the credibility of the
diagram and chose to trust the text. However, the answer to the Bayesian problem is in the diagram (as
seen in Section 6.2) and so, subjects have to understand and trust the visualization for it to aid
reasoning.

Several solutions have already been suggested. Teaching Bayesian reasoning is one of them. It can
be extremely effective [Sedlmeier and Gigerenzer, 2001] but again, we chose to focus on techniques
that can be used without prior training or background. Another well-known approach is the use of active
rather than passive visualizations [Cosmides and Tooby, 1996] (but see also [Brase, 2009]). Having
people draw their own visualization can be effective, but it is not practical in many situations, including
in scientific press, information pamphlets or broadcasted visual adverts [Gigerenzer et al., 2007]. For
similar reasons, static visualizations should probably be considered before interactive ones.

Macchi [2000] argued that Bayesian problems are difficult to solve because their presentation does
not clarify the link between the numeric data and the sets and to which set overlap the value is referring
to. So Kellen [2012] labelled all the set overlaps mentioned in the text and added the numeric value to
the label (e.g., Figure 3.37). However, he reported better results when the problem was split up into two
sub-problems (asking two questions instead of one and using two diagrams) and allowed subjects to
move back and forth between the two (e.g., Figure 3.38; discussed in Section 3.9.1), which presentation
requires more time, effort and possibly resources and is thus not practical in real-life.

Since the answer to the Bayesian problem is in the diagram itself, it should be possible to increase
the chances that people find it, either by (i) helping them make the link between the text and the
diagram (a few techniques in Section 2.6; further reading in Appendix C.3), (ii) encouraging them to
search for the solution in the diagram, or (iii) forcing them to search for the solution in the diagram.

We propose two alternative presentation techniques that involve moderate modifications to the text:

• adding short instructions in the text that refer to the diagram—supporting (i) and possibly (ii);
• removing all numerical quantities from the text—supporting (iii). 

The latter technique is based on the idea that a rough estimation can be better than a plain wrong
calculation and should further eliminate any possible doubt that the visualization is not credible.

We conducted a second experiment in order to: 

• confirm that simply adding a visualization to a Bayesian problem is of little help;
• testing whether an improvement can be obtained by the above two presentation techniques. 

In order to test the former, we only included V0 and V4 and increased statistical power with larger
sample sizes (from N = 24 to N = 120 each). V4 was the diagram with the lowest mean error and
combined both Euler diagrams and glyphs. To further simplify the design, we only included the Mam
problem. We chose it because it is a classic problem which has been used in various studies (e.g.,
[Garcia-Retamero and Hoffrage, 2013; Gigerenzer and Hoffrage, 1995; Hoffrage and Gigerenzer, 1998;
Kellen, 2012; Mellers and McGraw, 1999; Sedlmeier and Gigerenzer, 2001]).
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6.6 Experiment 2: Alternative Text Formats

In this second experiment, we aimed to (i) confirm with a larger sample that simply adding a
visualization to a Bayesian problem is of little help, and (ii) investigate some possible solutions.

Based on the data from our first experiment, we hypothesized that simply appending a visualization
to the textual information will yield at best weak improvements (our data only shows non-significant
differences in mean Errros of about 0.1 points). We further hypothesized that this issue could be
addressed by providing instructions in the text on how to parse the visualization. We also believed that
the numerical values provided in the text could encourage wrong calculations and discourage parsing
the visualization, so we hypothesized that not providing these values would also help.

6.6.1 Design

Our independent variable was presentation type PRES, with the following four conditions:

• V0:  Classic text with no visualization, as condition {PROBLEM=Mam, VIS=V0} in Experiment 1;
• V4:  Classic text with visualization, as condition {PROBLEM = Mam, VIS = V4} in Experiment 1;
• V4a: LikeV4, but with references to the visualization in the text (Table 6.6);
• V4b: LikeV4, but with numbers removed from the text (Table 6.6).

We used a between-subjects design and our dependent variables were BIAS, ERROR, EX, TIME and CONF

as in Experiment 1.

Table 6.6: Novel text format for the Mam problem in Experiment 2. 

V4a 10 out of every 1,000 women at age forty who participate in routine screening have breast cancer (compare
the red dots in the diagram below with the total number of dots). 8 of every 10 women with breast cancer
will get a positive mammography (compare the red dots that have a black border with the total number of
red dots). 95 out of every 990 women without breast cancer will also get a positive mammography
(compare the blue dots that have a black border with the total number of blue dots).

V4b A small minority of women at age forty who participate in routine screening have breast cancer. A large
proportion of women with breast cancer will get a positive mammography. A small proportion of women
without breast cancer will also get a positive mammography.

6.6.2 Participants

Our participants were 480 MTurk workers who never completed any of our previous HITs. We thought
the demographics should be similar to Experiment 1 (details in Section 6.5.2), so we did not include any
demographics questions in our HITs.

6.6.3 Procedure

We conducted the experiment on MTurk, as Experiment 1. The HITs were shorter, including only the
Mam problem and no abilities tests.
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Task

The form was made up of four pages and took around five minutes to complete. After the instruction
page, the Mam problem was presented using either V0, V4, V4a or V4b. The questions and the layout
of the pages were the same as before (see Figure 6.6), except participants were told they could
optionally use any tool or method. The next page had a single catch question (similar to the first catch
question in Experiment 1; see Table 6.4). On the final page, participants were asked whether they tried
to compute an exact answer and had to indicate on two independent 5-point Likert scales how much
they used the information in the text and the diagram to solve the problem.

An example of an entire HIT (with all of its four pages) is available in Appendix B.2.3. In this
example, the Mam problem is presented using presentation type V4b (i.e., text with no numbers).

MTurk Design

We created four unique HITs, one for each presentation type. For each unique HIT, 120 assignments
were uploaded on MTurk with a $0.40 reward. The same system qualification as in Experiment 1 was
used. Participants to Experiment 1 were blocked and duplicate HITs were rejected as before. HITs of
workers who selected the wrong answer to the catch question were also rejected. In contrast to the
previous experiment, workers who submitted the HIT only once but had previously seen the problem
(either because they gave up before submitting or experienced technical issues), were identified through
a question on the last page asking the workers whether they already attempted to load the HIT and
failed to submit it. We clearly stated that this was not going to affect our decision to accept or reject the
HIT. In fact, HITs from workers who replied "yes" or "unsure" (about 11%, not included in N = 480)
were accepted (i.e., paid) and the data was discarded from analysis.

6.6.4 Hypotheses

Our hypotheses were:

• H2a. Condition V4 does not lower the mean ERROR by more than 0.1 points compared to V0;
• H2b. Condition V4a yields lower ERRORS than V4;
• H2c. Condition V4b yields lower ERRORS than V4.

6.6.5 Results

Bias

Figure 6.9 shows the distributions of BIAS for each PRES. These are similar to those of the previous
experiment, except for V4b which is closer to normal. This time, as shown in Figure 6.10, not all the
distributions were well-balanced around zero. The median biases were 0.015, -0.59, -0.49 and 0.013 for
V0, V4, V4a and V4b. The differences are statistically significant (Kruskal-Wallis, H(3) = 22, p < .001).
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Mammography Bias

V0 V4

−2 −1 0 1 2

V4a

−2 −1 0 1 2

V4b

Figure 6.9: Distributions of biases in answers to the Mam problem (N = 120 each) per presentation
type. Black bars are exact answers.

Figure 6.10: Biases in answers to the Mam problem per presentation type (N = 120 each). 

Accuracy

Exact answers for V0 and V4 were respectively 3.3% and 5.0% (see black bars in Figure 6.9) and lower
than in Experiment 1 (15% for Mam). Median errors for V0 and V4 were both 0.8903 and equal to those
in Experiment 1. Mean errors were however larger (0.76 and 0.68 compared with 0.64 and 0.54 in
Experiment 1). Thus, it seems that subjects were overall less successful in this experiment.

That V4 yielded a lower mean error than V0 (0.68 versus 0.76, with same medians) suggests that
adding a diagram might have helped, but the difference in means is consistent with H2a. Inconsistent
with H2b however, V4a yielded the same ratio of exact answers, the same median error and a similar
mean error as V4, suggesting that referring to the diagram in the text did not help. In contrast, although
V4b rarely yielded an exact answer (0.83%—a single subject out of 120 gave an exact answer; later, in
the questionnaire, this subject commented, "I kept losing count, so I hit PrintScreen, and pasted it into
paint, and marked the ones I had counted."), it yielded a much lower median error of 0.41 and a lower
mean error of 0.53, consistent with H2c.

The differences between PRES types, shown in Figure 6.11, are statistically significant (Kruskal-
Wallis, H(3) = 21, p < .001). A multiple comparison with V0 using Siegel and Castellan’s procedure
revealed that all visual presentation types are significantly better than text alone, confirming our
previous hypothesis H1a (R package kruskalmc, one-tailed, p < .05). Using the same test with V4 as the
control, the only significant difference is with V4b, confirming our hypothesis H2c (removing numbers
helps) but not H2b (referring to the figure helps). Finally, a Wilcoxon test of equivalence for non-
normal data confirms our hypothesis H2a (R package etc.diff, margins = [−0.1, 0.1], p < .05).
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Figure 6.11: Answer errors to the Mam problem per presentation type (N = 120 each). 

Hence, all visual presentations were better than text alone but improvements were small, except for
V4b where improvements were larger. The task involved in V4b was still error-prone, with probability
estimations typically about 3 times lower or higher, but it clearly improved over V0 for which typical
estimates were 6 or 8 times lower or higher (depending on whether we consider the average or the
median error). In addition, V4b yielded no bias, whereas with other visual presentations, subjects tended
to underestimate probabilities.

Confidence

Confidence scores were similar to Experiment 1 and very similar across PRES, with a median of 3
('reasonably confident') and means between 3.28 and 3.36. Differences were not statistically significant
(Kruskal- Wallis, H(3) = 0.6, p = 0.89). As before, correlation with error was low (r = −0.06).

Time

Completion times were similar to those of Experiment 1 and similar across all PRES conditions
(ANOVA, F(3, 476) = 1.26, p = 0.29). Medians ranged from 112 seconds for V4b (M = 145, SD = 115)
to 132 seconds for V4a (M = 163, SD = 108).

Strategies

Discarding 'unsure' responses (9% overall), subjects who reported attempting to get the exact answer
were 68%, 72%, 63% and 50% for V0, V4, V4a and V4b respectively. This suggests that the diagrams
did not dissuade subjects from trying to find the exact answer.

As for the degree to which subjects reported relying on the diagram, the median answer to the 5-
point Likert scale was 3 for V4 (M = 3.3, SD = 1.5). Subjects who were assigned V0 and later asked
whether they would have used the diagram gave a median answer of 4 (M = 3.6, SD = 1.), suggesting
that subjects tend to use diagrams less than they would have predicted.

V4a was similar to V4, with a median answer of 3.5 (M = 3.4, SD = 1.3). In contrast, for V4b, the
median answer was 5 (M = 4.4, SD = 0.86). This indicates that, rather unsurprisingly, subjects relied on
the diagram much more when numbers were not provided.
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6.6.6 Discussion

Our first experiment revealed that crowdsource workers were quite unsuccessful at solving Bayesian
problems. Our second experiment had two objectives: 

1. confirm that simply adding a visualization (consisting of an Euler diagram or glyphs or both) to
a Bayesian problem is not a viable solution (we increased sample size from N = 24 to N = 120
to get more statistical power); 

2. start exploring possible solutions to this problem.

We met our first objective by measuring a statistically significant difference between text alone and
text+diagram, but showing that the practical difference was small (no more than 0.1 points of mean
error as confirmed by an equivalence test).

We incidentally found that subjects were even less accurate than in Experiment 1, although the
reasons for this are unclear. The design differed in two respects: (i) subjects were initially instructed
they could use any tool but they did not have to; (ii) those who reported having previously seen the HIT
without submitting were discarded from the analysis (11%). So subjects might have been primed in
trying to get exact answers and failed in their calculations, or alternatively, our first experiment could
have overestimated subjects’ accuracy by including workers who possibly acquainted themselves with
the problem way before carrying out the task.

With respect to our second objective, we tried two alternative presentations and found that referring
to the diagram within the text (V4a) did not help, whereas removing the actual numbers from the text
(V4b) yielded clear improvements. This is an important finding, since it is a simple and effective
technique that can be easily applied to many real-life situations. Previously proposed techniques are
more difficult to apply since they either involve prior training [Sedlmeier and Gigerenzer, 2001] or, like
active constructions, require a pen and paper, time and possibly assistance [Cosmides and Tooby, 1996]
(also [Cox, 1999]). Though Kellen [2012] removed the numeric data from the text, he still included the
values as labels in the diagram (as shown in Figure 3.37; also, Kellen's work was published after ours
[Micallef et al., 2012]). Thus, we do not know of any previous study on Bayesian reasoning which
proposed a technique similar to V4b (a presentation with no numbers, be it in the text or the labels in the
diagram), possibly due to the fact that most of them focused on increasing the number of exact answers
rather than reducing estimation errors. 

Our particular study focused on how to reduce inaccuracy, excluding investigations on why exactly
subjects make mistakes and what these mistakes are. Some previous studies have observed different
types of miscalculations in Bayesian reasoning tasks [Gigerenzer and Hoffrage, 1995] and such
investigations are likely crucial for designing effective visualizations and text formats. The distributions
in Figure 6.9 do suggest that typical miscalculations or reasoning errors have occurred in our
experiments. Some of them (close to bias 1) seem less common when a visualization is provided,
possibly resulting in more miscalculations of a different type (close to bias -1) and a lower bias overall
(Figure 6.10). Trying to address specific mistakes might help to further increase accuracy, including
when no numbers are provided, since diagrams can be misinterpreted. However, recurrent mistakes
seem to vary across problems (Figure 6.7) and finding general solutions might be challenging.

Our findings on visualization-friendly textual formats are only a step towards helping people being
more accurate in Bayesian reasoning: even when shown a diagram without numbers, workers were still
inaccurate at estimating probabilities (with a typical estimation about 3 times lower or higher). There
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are yet further possible improvements to our presentation techniques. Our working memory capacity
[Cowan et al., 2005] and our capabilities to process relations [Kroger et al., 2002] should also be taken
into account, as a text+visualization presentation that seemly links the various elements in the problem
should reduce the required cognitive effort to understand and solve a problem [Cook, 2006]. 

We will now discuss possible improvements to our presentation techniques and other future work.

6.7 Future Work

Our results indicate that only adding a visualization to the classic text is not enough. So various
techniques to effectively combine visualization and text for Bayesian reasoning should be evaluated. A
few classic techniques have been discussed in Section 2.6 and others are mentioned below (in the next
two paragraphs), but further reading is provided in Appendix C.3.

A possible improvement to our presentation techniques is to show the numbers on the visualization
(similar to that proposed by Kellen [2012]—Figure 3.37). Tufte claims that, "Words on and around
graphics are highly effective" [Tufte, 1983, p. 182] and advises to "Write out explanations of the data on
the graphic itself" [Tufte, 1983, p. 56] (Tufte's second graphical integrity principle). So, the text (story)
could be overlaid on the visualization. Alternatively, miniature visualizations like Tufte's [2006]
sparklines (Appendix C.3.3) or as in Figure 2.11C in Section 2.6 could be embedded in the text. 

Storytelling techniques (e.g., [Kosara and Mackinlay, 2013; Segel and Heer, 2010]; Appendix C.3.6)
could also be adopted. Tufte demonstrated the benefits of small multiples (i.e., same structured, small
visual displays) to illustrate how a concept changes as a variable changes [Tufte, 1990, pp. 67-79]
(Appendix C.3.1). Ware argued that it is easier to convey a story through strip cartoons and
diagrammatic instructions (e.g., [Heiser et al., 2004]) than using just pictures [Ware, 2008, p. 145]
(Appendix C.3.4). Studies in journalism and mass communication suggest that the most effective way to
present information related to a story is to use text and graphics (e.g., [Huh, 1993; Pasternack and Utt,
1990]) and to provide the information of the graphic also in the text (e.g., [Griffin and Stevenson, 1992,
1994b, b, 1996]) (Appendix C.3.5). Thus, it could be helpful to present the Bayesian problem as small
multiples such that small visual displays, each with some text and a relevant diagram, are provided in
sequence as in strip cartoons or diagrammatic instructions to outline the story of the Bayesian problem.
This could be similar to our visual explanation of the classic mammography problem in Section 6.2.

A story provides a context to the visualization, which will help the reader understand the problem,
the provided information and the data that is required to solve the problem [Shapiro, 2004]. There must
be a sense of trust between the storyteller and the reader [Glassner, 2004, p. 93] and so, the problem
should be realistic (e.g., avoid using problems about 'a Disease X'), the text should be engaging and the
story should be one that the reader can relate to and imagine. Thus, considering for instance the classic
mammography problem, it would be interesting to compare the accuracy of women versus men and that
of women who once had cancer or experienced cancer through a relative or friend versus others who
never experienced cancer. It would also be interesting to evaluate a personalized presentation that uses
the pronoun 'you' rather than a noun, for instance, 'a woman'. These findings could then be compared to
those of another presentation where the subjects have to imagine they are advising or choosing for
someone else (e.g., they are a doctor or a parent) rather than for themselves (e.g., they are a patient).
The latter presentation is interesting as a study indicates that roles affect the decision-making process
and the preferred treatment in a medical situation (e.g., subjects assigned the role of a doctor had a
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stronger preference than those assigned the role of a patient for a preventative treatment to reduce the
chances of dying from a disease rather than no preventative treatment and an increased risk of dying
from the disease) [Zikmund-Fisher et al., 2006]. 

Changing the order of the different pieces of information presented in the classic text could reduce
the likelihood that the base rate is ignored or underestimated, due to the recency effect as subjects are
more likely to rely on details presented at the end of the problem [Krosnick et al., 1990] (also [Obrecht
and Chesney, 2013]). Thus, the ordering of information in the text could be worth further investigation.
In fact, more novel textual representations with no visualizations should be proposed and evaluated, as
visualizations are not helpful for all, particularly for those individuals who do not have the right levels
of ability to handle graphical information [Gaissmaier et al., 2012].

Although we focused on static representations due to their wider applicability, interactive techniques
can not only help users understand the relationship between the text and the diagram (e.g., [Tsai, 2012]
and [Spiegelhalter et al., 2011]—movie S3) and experience the inferencing process [Sedlmeier, 1999],
but also let them explore variants and generalize the problems [Victor, 2011].

Other future work include extending our design space to evaluate other visualization types. Although
our initial comparison was inconclusive, we anticipate that using problem formats that are more adapted
to visualizations will encourage subjects to actually use them and ultimately make these visualization
designs easier to compare in terms of both speed and estimation accuracy.

Other visualization designs that we could evaluate for Bayesian reasoning, include: Euler diagrams
with equally-sized glyphs that are laid out as one block per region (Figure 6.12A) or multiple blocks
per region with a size that is within a subitizing range (i.e., the number of objects that humans can
effortlessly and correctly judge their number without counting) so that the number of glyphs is easily
and accurately estimated without the need of focused attention [Gobet and Clarkson, 2004]
(Figure 6.12B); designs that adopt alternative ways of representing quantitative data with glyphs in
Euler diagrams (a few discussed in Section 3.8); an Euler diagram (e.g., V2) and a frequency grid (e.g.,
V3) as two adjacent diagrams in one display for one problem, so while the Euler diagram depicts only
the set relations, the frequency grid depicts the quantitative data; a frequency grid with a tree diagram,
as proposed but not evaluated by Spiegelhalter et al. [2011] (Appendix C.2.5) and other combinations of
visualization types. Individual differences (e.g., background, age, abilities) among subjects should also
be taken into account as they can affect diagram understanding [Ziemkiewicz and Kosara, 2009] and
accuracy in solving the problem [Garcia-Retamero and Hoffrage, 2013] (more in Appendix C.2.9).

Figure 6.12: Two visualization designs that we could evaluate in the future. 
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In future studies, we could prohibit the use of pen and paper and any other external tools, except for
a calculator (as done in Kellen's [Kellen, 2012] study). Doing so, could ensure that any positive effect is
strictly accountable to the evaluated presentation type, without any addition aid from external tools that
the subject could have used. Also, when using pen and paper as external tools, cognitive load increases
as the subject has to keep track and link information in multiple locations [Pirolli and Card, 2005;
Sweller, 1994], that is, the computer display and paper. We could also design a sophisticated incentive
scheme [Shaw et al., 2011] to motivate the majority of the MTurk workers to carry out the HITs rapidly,
yet accurately, as would be required in a real-life situation. Special attention should also be given to
workers in India and any others who have difficulties with the language of the HIT, as they might not
fully understand the instructions and the problem and thus, perform poorly [Shaw et al., 2011]. In such
cases, it is likely that the problem is the language rather than the presentation type. To identify whether
the language is an issue, 'instructional manipulation checks' [Oppenheimer et al., 2009] could be used.

6.8 Summary

We used crowdsourcing to assess the effect of six visualizations (based on Euler diagrams, glyphs and
combinations of both) and text alone on probabilistic reasoning using three classic Bayesian problems
in psychology. Our findings were inconsistent with previous studies in that subjects’ accuracy was
remarkably low and did not significantly improve when a visualization was provided with the text. A
follow-up experiment confirmed that simply adding a visualization to a textual Bayesian problem is of
little help for crowdsource workers. It however revealed that communicating statistical information with
a diagram, giving no numbers and using text to just set the scene significantly reduces probability
estimation errors. Thus, novel representations that holistically combine text and visualizations and that
promote the use of estimation rather than calculation need to be investigated.

We also argue for the need to carry out more studies in settings that better capture real-life rapid
decision-making than laboratories. We propose the use of crowdsourcing to partly address this concern,
as crowdsourcing captures a more diverse and less intensely focused population than university
students. Doing so, we hope that appropriate representations that facilitate reasoning for both laymen
and professionals, independent of their background, knowledge, abilities and age will be identified. By
effectively communicating statistical and probabilistic information, physicians will interpret diagnostic
results more adequately, patients will take more informed decisions when choosing medical treatments,
juries will convict criminals and acquit innocent defendants more reliably, intrusion alarms will be
regarded and criminal attacks will be predicted and restrained.

Following our findings of no statistically significant differences between visualization types, even
for Bayesian reasoning, it is still unclear whether Euler diagrams with glyphs are more effective than
area-proportional Euler diagrams in representing the cardinality of the sets and their overlaps. Thus,
further studies should be conducted to investigate whether there exists a visualization that avoids area
judgement and that is more effective than area-proportional Euler diagrams in representing data set
relations and relevant quantitative data.

We will now proceed to the concluding chapter.
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Chapter 7

Conclusions

This chapter summarizes the objectives, contributions and findings of this dissertation and highlights
important future work.

7.1 Objectives, Contributions and Findings

Through the exploration of different drawing techniques, curve representations and graphical encodings
of quantitative data, we have developed novel drawing algorithms for Euler diagrams and we have
conducted a user study to assess the effectiveness of Euler diagrams for probabilistic judgement. 

The main drawing methods are eulerForce (Chapter 4), which uses a force-directed approach to lay
out Euler diagrams, and eulerAPE (Chapter 5), which uses ellipses to draw accurate area-proportional
Venn diagrams with three smooth curves. For the user study (Chapter 6), the effectiveness of area-
proportional Euler diagrams, glyph representations, Euler diagrams with glyphs and text+visualization
formats have been evaluated for Bayesian reasoning, and a method eulerGlyphs has been devised to
automatically and accurately draw the assessed visualizations for any Bayesian problem. Figure 7.1
illustrates examples of diagrams drawn by our methods. This work has been published (Section 1.3).
Software implementations and experimental stimuli and data are available online (Section 1.4).

We will now discuss details of our contributions and findings with respect to our research objectives.

Figure 7.1: Examples of diagrams generated by our methods: (A) eulerForce, (B) eulerAPE, (C) eulerGlyphs. 
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Aesthetics and Perceptual Factors

A distinctive feature of Euler diagrams is the use of closed curves to depict the data sets. With such
curves, elements within an enclosed region tend to be grouped together due to the perceptual grouping
principles of common regions and closure (Section 3.1). Data set relations are easily noticeable when
the curves (Section 3.5): have good continuity, so they pop out; are convex, so complete objects are
perceived even when partially occluded; are regular, so they are easily identified. Wellformedness
properties (Section 3.4.4) are also important for diagram comprehension (Section 3.5.1, Section 3.7.3).
So our drawing methods generate diagrams with curves that have good continuity and if possible, with
curves that are convex and circle-like and with all wellformedness properties satisfied, as in Figure 7.1.

There is a lack of empirical evidence to indicate what aesthetic features aid diagram comprehension
and how the diagrams and their areas are perceived (Section 3.5, Section 3.7.3). Aesthetic criteria and
measures need to be formalized. However, as in graph drawing (Appendix C.1.1), theories of perception
and cognition have to be applied and user studies have to be conducted for such metrics to be fully
formalized and evaluated. In this dissertation, we started work in this area by applying principles and
theories of human perception and cognition, graphical excellence and integrity, graphical encoding,
graphical perception, to Venn and Euler diagrams (Section 3.5, Section 3.7.3). We also prioritized some
features related to curve aesthetics (e.g., the importance of closure and continuity followed by convexity
and shape) (Section 3.5.2) and we used these as guidelines when devising our drawing methods.

Based on such theories of human perception, cognition and attention, designs that effectively use
colours, textures and outlines, as in Figure 7.1B, were also investigated and adopted (Section 5.8). With
the design of Figure 7.1B, the curves in which any point in the diagram is located are easily identified.
Also, by attending to the feature type of a particular curve, a viewer can easily focus on that curve, as
curves with other feature types recede. This can be particularly helpful for area-proportional diagrams
where the curves depict set relations as well as relevant quantitative data, thus its use in eulerAPE.

Laying Out Euler Diagrams Using a Force-Directed Approach

We devised eulerForce to improve the layout of Euler diagrams generated by other methods (Chapter 4).

Our method eulerForce is novel as it uses a force-directed approach to lay out Euler diagrams. Being
the first of this kind, we devised a simple yet an appropriate force model to improve the layout of
incomprehensible diagrams generated by current drawing methods. This force model ensures that the
diagram only depicts the required set relations as in the original diagram and strives to obtain curves
that are regular, smooth, convex, similarly shaped and not too close to one another, zones that are
connected and adequately sized, and contained curves that are centred in their containing curve or zone.
Thus, it aims at improving important aesthetic features that could otherwise impede understanding
(Section 3.5) and yet, only depict the required set relations as in the original, incomprehensible diagram.

Our evaluation of eulerForce indicates a great potential for such force-directed techniques. Accurate
layouts with smooth curves were generated in relatively fast time for a large majority of the Euler
diagrams with three to five curves that were automatically generated by Rodgers et al.'s [2008b] method
(Section 4.4.1). Comparing eulerForce's layouts with those of the previous multi-criteria optimization
method [Flower et al., 2003b], we noted that eulerForce's layouts were more compact, symmetric, easier
to understand and their curves were more regular and similar in shape (Section 4.4.2), as in Figure 7.1A.
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Drawing Area-Proportional Venn Diagrams Using Ellipses

We developed eulerAPE to automatically draw accurate area-proportional Venn diagrams with smooth
curves for most data with three sets (Chapter 5).

Our method eulerAPE is the first to use ellipses and thus, the first to generate diagrams that are: easy
to comprehend like those with circles but not polygons; accurate for most 3-set data like those with
polygons but not circles. It is a novel, deterministic drawing method, which is neither an extension nor
an adaptation of previous techniques. All the generated diagrams are also wellformed, as in Figure 7.1B.

We focused on Venn diagrams with three curves for mainly the following: 3-Venn diagrams are
widely used; current methods having difficulties drawing such diagrams accurately with smooth curves;
this work is the first to use ellipses. We extensively evaluated the drawing method and the effectiveness
of ellipses to facilitate future extensions of this work. Some Euler diagrams can be drawn with eulerAPE,
but further investigations are required to determine when accurate diagrams can be drawn with ellipses.

Our drawing method eulerAPE rarely encounters a local minimum and when it does, it effectively
handles such cases to obtain a good solution whenever an accurate area-proportional 3-Venn diagram
drawn with ellipses is known to exist for the given area specification (Section 5.7.1). A number of
techniques have been devised to avoid and handle local minima (Section 5.6.7): (i) a novel cost function
(Section 5.6.4); (ii) a novel rational starting diagram generator (Section 5.6.5); (iii) a mechanism to
adjust the ellipses' properties during the optimization process (Section 5.6.6) using (iii-a) a cooling
schedule to explore major changes in the diagram at the initial stages and minor changes in later stages
of refinement, (iii-b) a rerun option which when enabled, reruns the optimization using larger starting
values for its parameters that determine changes to the diagram. The various design options for each of
these components were thoroughly evaluated before the most effective were employed by eulerAPE. The
rationale for our choices was clearly explained and justified by experimental and pragmatic evidence.

Our evaluation (Section 5.7.1) suggested that a large majority of the diagrams (97.7%, N=10000) are
drawn in a time (1 second) that ensures users' train of thought is maintained, and nearly all the diagrams
(99.7%, N=10000) are drawn in a time (10 seconds) that ensures the users' attention is maintained.

Since eulerAPE generates an accurate diagram with respect to a given area specification whenever one
is known to exist for the area specification (Section 5.7.1), we used eulerAPE to evaluate the effectiveness
of ellipses in drawing wellformed accurate area-proportional 3-Venn diagrams for any 3-set data
(Section 5.7.2). Our evaluation revealed that accurate diagrams can be generated for a large majority of
random area specifications (86.1%, N = 10000) using ellipses, but for none using circles. There are area
specifications for which an area-proportional wellformed 3-Venn diagram cannot be drawn accurately
using convex curves (Section 3.7.5) and thus, such a result indicates great potential for using curves that
are smooth like circles, but more general and flexible like ellipses. We also identified characteristics of
area specifications for which (a) an accurate diagram was drawn with ellipses (Section 5.7.2) and (b) a
close to accurate diagram with circles exists (Section 5.7.3).

We compared the effectiveness of eulerAPE with that of venneuler [Wilkinson, 2012]—currently
considered the most effective method in drawing accurate diagrams with circles (Section 5.7.3). None
of venneuler's diagrams for the random 10,000 area specifications were accurate and only 64.5% were
3-Venn diagrams (all area specifications corresponded to the abstract description of a 3-Venn diagram).
This indicates the limitations of circles in drawing accurate diagrams for most 3-set data. 
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We also compared diagrams generated by eight circle-based drawing methods, six polygon-based
methods and eulerAPE for real medical data (Section 5.7.4). We noted that the diagrams with circles were
easier to comprehend than those with polygons, but all of them were misleading and inaccurate. Half of
the diagrams with polygons were accurate and most of the inaccurate diagrams were not as misleading
as those with circles. In contrast, eulerAPE's diagram with ellipses (Figure 7.1B) was accurate and the
curves were easily distinguishable. This indicates that polygons should be avoided when possible and
instead, curves that have more degrees of freedom than circles but are similarly smooth should be used.

Assessing the Effect of Euler Diagrams with Glyphs on Bayesian Reasoning

We conducted a user study to assess the effect of different area-proportional Euler diagrams, glyph
representations, Euler diagrams with glyphs and also text+visualization formats on Bayesian reasoning,
(Chapter 6). We also devised the drawing method eulerGlyphs to automatically and accurately draw the
assessed visualizations for any Bayesian problem.

Our user study is the first to assess the effect of six different visualizations over three Bayesian
problems and on a large, diverse population through crowdsourcing. All previous studies were carried
out in a laboratory. The visualizations consisted of two different area-proportional Euler diagrams, a
glyph representation, and three different Euler diagrams with glyphs (Figure 7.1C represents one type)
that have not been evaluated before our study. In contrast to previous studies, the diagram design
rationale was clearly explained (Section 6.4.2) and the diagrams were automatically generated by our
method eulerGlyphs (Section 6.3) to ensure an accurate depiction of the quantitative data and a consistent
design (e.g., labels, colours, glyph size) between visualization types. Though eulerGlyphs was specifically
devised to generate the diagrams for this study, it can be used to generate such diagrams for any
Bayesian problem. It is also the first of its kind. In our study, we also proposed and evaluated two novel
textual problem formats, designed to be used with visualizations to holistically combine the two. Our
study is thus also the first to the evaluate different visual and textual representations using the "same
experimental methodology" [Brase et al., 2006, p. 974]. To our knowledge, this is the only computer
science study on Bayesian reasoning since Cole's work [Cole and Davidson, 1989; Cole, 1989]. 

Our study failed to replicate previous findings in that subjects’ accuracy was remarkably lower and
visualizations exhibited no measurable benefit, as their accuracy was not improved significantly when
the visualization was provided with the text. A second experiment confirmed that simply adding a
diagram to the textual problem is of little help, even when the text refers to the diagram. However, it
suggested that visualizations are more effective when the text is given without numerical values and this
information is conveyed through phrases like "large proportion", "small minority" that just set the scene.
With such a text+visualization presentation, probability estimation errors in our experiments diminished
significantly, indicating the need for numerical data to be presented in a way that estimation rather than
calculation is encouraged and that the text and visualization are perceived holistically, as one.

Inconsistencies between our findings and those of previous studies could be due to differences in the
population types and the experiment setting. We argue for the need of more studies to be carried out on
heterogeneous populations of non-experts and in settings that better capture real-life rapid decision-
making than laboratories. We recommend the use of crowdsourcing due to the diversity of the workers
and the setting where the workers are less intensely focused than university students. Such studies will
aid in identifying representations that are effective for both laymen and professionals.
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Since the differences between visualization types with respect to the effect of visualization on error
were statistically insignificant, it is still unclear whether Euler diagrams with glyphs are more effective
than area-proportional Euler diagrams and thus, whether depicting quantitative data using a number of
equally-sized discrete objects is more helpful that using area.

7.2 Future Work

Future work in relation to the aesthetics of Venn and Euler diagrams (Section 3.5, Section 3.7.3), our
drawing algorithms, eulerForce (Chapter 4) and eulerAPE (Chapter 5), and our user study on Bayesian
reasoning and the related drawing method eulerGlyphs (Chapter 6), have been discussed in detail in each
of the respective chapters, namely in Section 3.5.4 and Section 3.7.3, Section 4.5, Section 5.9 and
Section 6.7. In this section, we highlight important future work for each one.

In Section 3.5 and Section 3.7.3, we have applied principles of human perception and cognition to
the aesthetics of Euler diagrams to explore design features that could easily convey set relations and
their cardinalities. However, various user studies have to be conducted for aesthetic criteria and metrics
to be formalized and evaluated in various contexts and application areas. At present, there is a lack of
empirical evidence to indicate, for instance: the effect of various aesthetic features on diagram
comprehension; how the diagrams are processed perceptually and cognitively; how zone areas are
perceived and judged; the features that could affect area judgement; discrepancies in areas that are not
noticeable. With such criteria, metrics and empirical findings, the effectiveness of layouts could be
evaluated, forces would be added to eulerForce's force model to handle each criteria and generate
improved layouts, and a variant of eulerAPE would be devised to generate diagrams with important
aesthetic features and with zone area inaccuracies that are not noticeable to human users. Diagram
design features (e.g., colour, texture, outline) should be evaluated empirically for curves and zones to be
easily identified and to allow users to attend to specific aspects of the diagram without much effort.
Details about future work in this area are provided in Section 3.5.4 (also Section 3.5, Section 3.7.3).

In Chapter 4, we have demonstrated the effectiveness of a force-directed approach in laying out
accurate diagrams with smooth curves in relatively fast time. To facilitate the development of the first
force model for Euler diagrams, a simple algorithm was used. Sophisticated force-directed algorithms,
that could speed-up the layout process and effectively handle more criteria and more complex Euler
diagrams, should now be adopted. Drawing methods that use a force-directed approach to automatically
generate an Euler diagram with smooth curves and with only the required set of zones given any
abstract description, should be devised. The proposed future work is discussed in detail in Section 4.5.

In Chapter 5, we have demonstrated the effectiveness of ellipses in drawing accurate, wellformed
area-proportional 3-Venn diagrams with smooth curves for most random data. However, there are area
specifications for which such a diagram cannot be drawn accurately using convex curves [Chow, 2007;
Rodgers et al., 2009] and thus ellipses. So other shapes that are more general than ellipses (e.g., ovals)
should be investigated, in that drawing methods that generate diagrams with such a curve shape are
devised and the characteristics of the area specifications for which a diagram can be drawn accurately
with that curve are identified. In this way, when an area-proportional diagram needs to be drawn for a
given area specification, different shaped curves could be considered in a "natural progression" [Chow,
2007, p. 83], from the most specific to the most general (e.g., circles, ellipses, ovals, n-ellipses, regular
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n-gons and irregular n-gons), until a curve shape that generates an accurate diagram for the required
area specification is found. This would ensure that the simplest and smoothest curves that can accurately
depict the required data are used, and that less desired and non-smooth curves such as polygons are
among the last to be considered. If the characteristics of the area specifications for which an accurate
diagram can be drawn using each of the shaped curves are identified, then given an area specification,
the most appropriate curve shape would automatically be established without the need to try various
shaped curves in the progression.

Being the first to use ellipses and considering the complexities in handling such shapes (e.g., to
compute the zone areas and to adjust their properties) [Chow and Ruskey, 2004], we focused on area-
proportional Venn diagrams with three curves. Our method eulerAPE already draws some Euler
diagrams, but abstract descriptions and area specifications for which an accurate area-proportional
3-Euler diagram can be drawn with ellipses should be identified, and the effectiveness of eulerAPE in
handling such cases should be evaluated. Further investigations are also required to identify whether
accurate area-proportional Venn and Euler diagrams with more curves can be drawn accurately with
ellipses. Further details on this and other future work are provided in Section 5.9. 

In Chapter 6, our user study on the effect of different Euler diagram visualizations on Bayesian
reasoning revealed no statistically significant differences between visualization types and thus, it is still
unclear whether Euler diagrams with glyphs are more effective than area-proportional Euler diagrams.
So further investigations should be carried out to identify effective ways how set relations and related
quantitative data can be accurately and easily depicted.

The results of our study indicated that simply adding a diagram to the classic text of the Bayesian
problem is not a viable solution. So other text+visualization presentation techniques should be
considered and evaluated. For instance, the numbers and the text (story) could be shown on or around
the visualization. Miniature visualizations like Tufte's [2006] sparklines could be embedded in the text,
and storytelling techniques could be adopted. Such presentation techniques should also promote the use
of estimation rather than calculation, as our results indicated a significant reduction in probability
estimation errors when numerical values were replaced with phrases that just set the scene. After all, in
such problems, a good estimation that is close to the exact calculated answer is adequate for making
informed decisions. Further details are provided in Section 6.7.

7.3 Final Remark

Venn and Euler diagrams are amongst the oldest and most widely used visualizations for representing
set-typed data. In contrast to other set visualizations, these diagrams use closed curves to depict
relationships between the sets. Closed curves that have good continuity are preattentively processed,
pop out and have a strong perceptual grouping effect that could aid reasoning about the sets and their
relationships. However, it is still unclear when these diagrams are most helpful and how other aesthetic
features of the diagrams could affect comprehension. Hence, empirical studies should be conducted to
explore and evaluate the design space of these diagrams, provide guidance when to use these diagrams,
and formalize aesthetic metrics of a 'good' Venn and Euler diagram that possibly "forces us to notice
what we never expected to see" [Tukey, 1977]. 
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Appendix A

Experimental Results from Our Evaluation 

of Possible Cost Functions for eulerAPE

This appendix presents the experimental results from our evaluation in Section 5.6.4 subsection
'Evaluation of Possible Functions', based on which the cost function employed by our drawing method
eulerAPE was chosen. Further details and discussions on this evaluation are provided in Section 5.6.4
subsection 'Evaluation of Possible Functions'. As discussed in Chapter 5, eulerAPE, generates area-
proportional 3-Venn diagrams drawn with ellipses.

A.1 Evaluated Cost Functions

The following list of evaluated cost functions is the same as that in Section 5.6.4 subsection 'Evaluation
of Possible Functions'. It has been provided in this appendix as a quick reference for the reader.

If

• ω is the area specification for which a diagram should be drawn,
• ωʹ is the area specification with the scaled quantities of ω obtained as defined in Section 5.6.2

indicating the required zone areas in the required good diagram for ω,
• d is a wellformed area-proportional diagram that is explored for ω during the optimization,
• Z is the set of labels describing the required set of zones interior to the curves of the diagram,
• ωʹ(z) ∈  + is the area that z ∈ Z should have in the required good diagram, and 
• A(z) ∈


  + is the area of z ∈ Z in d computed using our analytic method M2 in Section 5.4.3,

then the evaluated cost functions were:

• F1. The statistical stress function used in venneuler [Wilkinson, 2012] that was computed
with the source code of venneuler version 1.1-0 (provided to us by the author) but using
ωʹ(z) and A(z) for the required and the actual area of a zone z ∈ Z;
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• F2. The first component of the 'idealistic' function of Chow and Rodgers [2005], based on
zoneError Equation (5.17) Section 5.6.3, which we computed as

zoneError(z)( )2  =  
z∈Z
∑ ω (z)

ωS
− A(z)
AS

⎛
⎝⎜

⎞
⎠⎟

2

 
z∈Z
∑ where  ωS = ω (z)

z∈Z
∑   and   AS = A(z)

z∈Z
∑

;

• F3. The sum of the squared relative error of the zones, which we computed as

′ω (z)− A(z)
′ω (z)

⎛
⎝⎜

⎞
⎠⎟
2

z∈Z
∑

;

• F4. The maximum of the relative error of the zones, which we computed as

maxz∈Z
′ω (z)− A(z)

′ω (z)
⎡
⎣⎢

⎤
⎦⎥ ;

• F5. The sum of the relative error of the zones, which we computed as

′ω (z)− A(z)
′ω (z)z∈Z

∑
;

• F6. Our non-dimensionless cost function Equation (5.20) defined in Section 5.6.4 
subsection 'Our Novel Functions' as

1
Z

′ω (z)− A(z)( )2
A(z)z∈Z

∑ ;

• F7. Our dimensionless cost function Equation (5.21) defined in Section 5.6.4 
subsection 'Our Novel Functions' as

1
Z

′ω (z)− A(z)
A(z)

⎛
⎝⎜

⎞
⎠⎟
2

z∈Z
∑ ;

• F8. Our dimensionless cost function Equation (5.22) defined in Section 5.6.4 
subsection 'Our Novel Functions' as

1
Z

′ω (z)− A(z)
A(z)z∈Z

∑
.

A.2 Experimental Results

DLas and ASLas refer to the set of 10,000 area specifications obtained from respectively library
DIAGLIB_design and library AREASPECLIB_design (details about the libraries in Section 5.5). 

All the experiments were run on an Intel Core i7-3770 CPU @3.4GHz with 8GB RAM, 64-bit
Microsoft Windows 7 Professional SP1 and Java Platform 1.7.0_10.
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A.2.1 Accurate, Good Diagrams

Figure A.1 illustrates the number of accurate, good diagrams satisfying our diagram goodness measure
Equation (5.19) in Section 5.6.3 that were generated for DLas and ASLas using cost functions F1-F8.
So, the optimization terminated as soon as this diagram was obtained. The importance of squaring the
inaccuracy of the zones in depicting the required quantity, such that large errors are heavily weighted, is
evident, as F4, F5 and F8 all had a very low number of good diagrams compared to other functions, and
they were the least effective in the generating a good diagram when one was known to exist (i.e., for
DLas), suggesting that they often encountered a local minimum as inappropriate paths were not easily
identified. It is also interesting that F4 performed marginally better than F5, even though F4 only
considers the maximum cost of all the zones. However, the success rates of F4 and F5 are very low.

Figure A.1: The number of area specifications in DLas and ASLas for which a good diagram (i.e., with
diagError ≤ 10-6) was generated using the different cost functions F1-F8. DLas and ASLas are
respectively the area specifications obtained from libraries DIAGLIB_design and AREASPECLIB_design, each
with 10,000 area specifications. These diagrams were good and so, they had a diagError ≤ 10-6. Thus, these
diagrams satisfied our diagram goodness measure Equation (5.19) in Section 5.6.3 and their zone areas were
accurately and directly proportional to the quantities in the required area specification.

These differences in the functions are also noticeable in Figure A.2, which illustrates the number of
generated diagrams that had a diagError ≤ 0.01 (i.e., 1% as diagError is always in [0,1]). As defined by
Equation (5.19) in Section 5.6.3, a good diagram must have a diagError ≤ 10-6 and so, Figure A.2 also
includes the diagrams in Figure A.1, which we indicate with striped bars. As discussed in Section 5.6.5,
the starting diagrams typically have a diagError ≤ 0.05 and so, analysing diagrams that after
optimization have a diagError ≤ 0.01 is more adequate than analysing others with a greater diagError.
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Figure A.2: The number of area specifications in DLas and ASLas for which a diagram with
diagError ≤ 0.01 was generated using the different cost functions F1-F8. DLas and ASLas are
respectively the area specifications obtained from libraries DIAGLIB_design and AREASPECLIB_design, each
with 10,000 area specifications. Accurate, good diagrams with respect to an area specification satisfy our
diagram goodness measure Equation (5.19) in Section 5.6.3 and thus, have a diagError ≤ 10-6. So, this plot
also includes the area specifications in Figure A.1 for which a good diagram was generated. These area
specifications (i.e., for which a good diagram was generated) are indicated on this plot with striped bars.

Focusing on the results of the other cost functions, in Figure A.1 we note that for DLas, our non-
dimensionless cost function F6 outperformed all the rest by generating good diagrams for 99.5% of the
area specifications, followed by F2, F1, F7 and F3 which generated good diagrams for respectively
92.0%, 91.3%, 87.8% and 86.6% of the area specifications. The same is evident when all the generated
diagrams with diagError ≤ 0.01 are considered, which, as shown in Figure A.2, F6, F2, F1, F7 and F3
generated such diagrams for respectively 99.8%, 99.6%, 99.5%, 98.4% and 96.4% of the area
specifications. As for ASLas, the results for F2, F6 and F1 were close as they generated good diagrams
for respectively 83.6%, 83.5% and 83.3% of the area specifications, followed by F3 and F7 with 80.9%
and 80.4% respectively. Considering all the generated diagrams with diagError ≤ 0.01, Figure A.2
illustrates that F1 marginally surpassed F6, so that F2, F1, F6, F3 and F7 generated such diagrams for
respectively 89.5%, 89.3%, 88.5%, 85.1% and 84.2% of the area specifications.

Hence, the cost functions that led to the highest percentages of good diagrams were F1, F2 and F6.
The differences between these percentages are statistically significant for DLas but not for ASLas
(using R package prop.test with Yates' continuity correction disabled, χ2(2) = 767.8, p < 2.2 × 10-16 for
DLas and χ2(2) = 0.3, p = 0.85 for ASLas). The 99% confidence interval estimate of the difference
between the 99.5% of F6 and 92.0% of F2 both for DLas is between 6.8% and 8.2% (χ2(1) = 695.8,
p < 2.2 × 10-16) and similarly the 99% confidence interval estimate of the difference between the 99.5%
of F6 and 91.3% of F1 both for DLas is between 7.4% and 8.9% (χ2(1) = 769.8, p < 2.2 × 10-16). It is
also interesting that the difference between the percentages of F1 and F2 are not statistically significant
for both DLas (χ2(1) = 3.1, p = 0.08) and ASLas (χ2(1) = 0.3, p = 0.57).
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A.2.2 Effect of Cost Function on diagError

Cost Functions F1-F8

The optimization algorithm terminates as soon as a diagram satisfies our diagram goodness measure
(Equation (5.19), Section 5.6.3) and so, all the good diagrams had a diagError ≤ 10-6. So, to better
understand the effect of the cost function on the diagError of the generated diagrams, we should
consider the generated diagrams that were non-good (i.e., with diagError > 10-6). Boxplots of the
log10(diagError) of such diagrams per cost function are shown in Figure A.3 for DLas and ASLas.

Figure A.3: The log10(diagError) of non-good diagrams generated for DLas and ASLas using the
different cost functions F1-F8. DLas and ASLas are respectively the area specifications obtained from
libraries DIAGLIB_design and AREASPECLIB_design, each with 10,000 area specifications. These diagrams
were non-good, so they had a diagError >10-6. The diagrams generated for DLas had the following diagError
means: F1, 2.70 × 10-3 (N = 866); F2, 2.48 × 10-3 (N = 797); F3, 1.35 × 10-2 (N = 1339); F4, 1.52 × 10-2

(N = 9570); F5, 3.57 × 10-2 (N = 9978); F6, 1.77 × 10-3 (N = 47); F7, 4.72 × 10-3 (N = 1220);
F8, 2.95 × 10-2 (N = 9983). The diagrams generated for ASLas had the following diagError means:
F1, 2.86 × 10-2 (N = 1666); F2, 2.39 × 10-2 (N = 1636); F3, 7.03 × 10-2 (N = 1915); F4, 2.41 × 10-2 (N = 9214);
F5, 7.05 × 10-2 (N = 9898); F6, 2.36 × 10-2 (N = 1649); F7, 4.95 × 10-2 (N = 1963); F8, 5.79 × 10-2 (N = 9935).

For DLas, Figure A.3 illustrates that our cost functions F6 and F7 had the lowest medians. As
expected, the worst medians were those of F4, F5 and F8, which were the least effective in generating
good diagrams. Amongst the other five functions (i.e., F1, F2, F3, F6 and F7), we note that F1 and F2
had the highest medians and a similar interquartile range, while F3 had the largest maximum and the
largest interquartile range. As for means, F6, F2 and F1 had the lowest means followed by F7 and F3
(diagError means respectively 1.77 × 10-3, 2.48 × 10-3, 2.70 × 10-3, 4.72 × 10-3, 1.35 × 10-2). Besides
having the lowest median (diagError = 5.49 × 10-5) and mean (diagError = 1.77 × 10-3), F6 had the
lowest maximum (diagError = 1.85 × 10-2) and its median was lower than the first quartile of F2,
though F6 had the fewest non-good diagrams (N = 47). 
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For ASLas, Figure A.3 illustrates that the medians and the interquartile ranges of all the cost
functions excluding F4 were similar, particularly for F1, F2 and F6 whose means were also very much
alike (diagError medians respectively 1.55 × 10-2, 1.53 × 10-2 and 1.82 × 10-2; diagError means
respectively 2.86 × 10-2, 2.39 × 10-2 and 2.36 × 10-2). The errors of all the other cost functions, excluding
F4, F5 and F8, were much greater than those of DLas. This is so, as while a good diagram can be drawn
for all the area specifications in DLas (since the area specifications are obtained from wellformed
3-Venn diagrams drawn with ellipses), there could be area specifications in ASLas for which a good
diagram drawn with ellipses does not exist (since the area specifications are made up of random values).
The errors of F4, F5 and F8 were however similar to those of DLas. This indicates the inadequacy of
F4, F5 and F8 in directing the optimization to an adequate diagram, as their errors for area specifications
for which a good diagram is known to be drawable (i.e., those in DLas) are as bad as those of area
specifications for which a good diagram drawn with ellipses might not exist (i.e., those in ASLas).

Cost Functions F1, F2 and F6

Considering the effect of F1, F2 and F6 on the diagError of all the 10,000 diagrams generated for each
of DLas and ASLas by each of the cost functions, a Friedman rank sum test for non-normal
distributions and repeated-measure data revealed a significant effect of cost function on diagError for
DLas (χ2(2) = 2723.8, p < 2.2 × 10-16) but not for ASLas (χ2(2) = 4.1, p = 0.13). A post-hoc test using
Wilcoxon tests with Bonferroni correction showed significant differences with a medium effect size
between F6 and F2 (W = 10575265, Z = -49.83, p < 2.2 × 10-16, r = 0.35) and between F6 and F1
(W = 11127260, Z = -47.93, p < 2.2 × 10-16, r = 0.34), but with a very small effect size between F2 and
F1 (W = 24678752, Z = 2.53, p = 0.035, r = 0.05). If Pearson's correlation coefficient r is 0.3, it is a
medium effect that explains 9% of the variance, and if r is 0.1, it is a small effect that explains 1% of
the variance (r = 0.5 is a large effect) [Cohen, 1988, 1992; Field, 2009]. So, F6 indeed outperformed F1
and F2 in generating diagrams with a lower diagError, while F1 and F2 are indeed similar.

Overall Indications

All of these results, indicate that our non-dimensionless cost function F6 is the most effective in
avoiding and handling local minima such that a good diagram is obtained when one is know to exist, but
it is unclear which between F1, F2 and F6 is the most effective when it is unknown whether a good
diagram for the given area specification exists. Also, though different, F1 and F2 seem to be similar in
effectiveness. F3 is less effective than F1, F2 and F6 and marginally worse than F7 (though differences
in diagError of the 10,000 diagrams generated by F3 and F7 were not statistically significant; Friedman
test, χ2(1) = 0.3, p = 0.58 for DL_as, χ2(1) = 2.6, p = 0.10 for ASLas).
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A.2.3 Avoiding Local Minima

In an informal experimentation, we had observed that previously proposed cost functions are
inappropriate in identifying and avoiding paths that reduce the overall error of the diagram at the
expense of constantly diminishing one zone that should be larger, up to the point when the zone
becomes close to non-existent and the optimization terminates as a local minimum is reached. Thus, we
devised our cost functions F6, F7 and F8 to be able to handle such cases effectively (as discussed in
Section 5.6.4 subsection 'Our Novel Functions').

To determine whether our observation is true and whether our cost functions, particularly F6, are
capable of avoiding such paths, we computed the smallest actual-to-required ratio of the zones, that is

(A.1)minA R  =  minz∈Z
A(z)
′ω (z)

⎡
⎣⎢

⎤
⎦⎥

where Z is the set of zone labels, ωʹ(z) is the required zone area and A(z) is the actual zone area (as
defined at beginning of this section), for every diagram generated by the different cost functions. 

As shown in Figure A.4 and Figure A.5, minA∕R for a good, accurate diagram will be a value close
to one and never close to zero (for the eight cost functions, median 1 and mean in [1,1.02] for DLas
with N = 46202, median and mean both in [1,1.04] for ASLas with N = 42125). The diagram goodness
measure (Equation (5.19), Section 5.6.3) takes into account the zone area relative to the total area of the
diagram and so, a diagram could still be accurate and good when minA∕R is close to but not exactly
one. A value less than one means that there is one or more zones that are smaller than required and a
value greater than one means that all the zones are larger than required. So, if minA∕R is a value that is
close to zero, then the diagram has a zone that is barely visible even though its required area is larger,
indicating that the optimization was directed to a path that reduces the overall error of the diagram at the
expense of this zone.
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Figure A.4: The percentage distributions, relative to the number of good diagrams generated using
each cost function F1-F8 for each of DLas and ASLas, of the smallest actual-to-required zone area
ratio (minA/R) of the generated good diagrams. DLas and ASLas are respectively the area specifications
obtained from libraries DIAGLIB_design and AREASPECLIB_design, each with 10,000 area specifications.
These diagrams were good, so they had a diagError ≤ 10-6. The smallest actual-to-required zone area ratio
(minA∕R) was calculated using in Equation A.1. The total number of good diagrams generated by the cost
functions is different: for DLas, F1 N = 9134, F2 N = 9203, F3 N = 8661, F4 N = 430, F5 N = 22,
F6 N = 9953, F7 N = 8780, F8 N = 17; for ALas, F1 N = 8334, F2 N =8364, F3 N = 8085, F4 N = 786,
F5 N = 102, F6 N = 8351, F7 N =8037, F8 N = 65.
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Figure A.5: The smallest actual-to-required zone area ratio (minA/R) of the good diagrams generated
for DLas and ASLas using the different cost functions F1-F8. DLas and ASLas are respectively the area
specifications obtained from libraries DIAGLIB_design and AREASPECLIB_design, each with 10,000 area
specifications. These diagrams were good, so they had a diagError ≤ 10-6. The smallest actual-to-required
zone area ratio (minA∕R) was calculated using in Equation A.1. The total number of good diagrams
generated by the cost functions is different: for DLas, F1 N = 9134, F2 N = 9203, F3 N = 8661, F4 N = 430,
F5 N = 22, F6 N = 9953, F7 N = 8780, F8 N = 17; for ALas, F1 N = 8334, F2 N =8364, F3 N = 8085,
F4 N = 786, F5 N = 102, F6 N = 8351, F7 N =8037, F8 N = 65.

The percentage distributions of minA∕R for the generated non-good diagrams, in Figure A.6,
illustrate that a considerable percentage of the non-good diagrams generated by all except for our cost
functions F6, F7 and F8 had diagrams with minA∕R close to zero (the first bar of the histograms in
Figure A.6 represents the percentage of the non-good diagrams generated by the respective cost
function that had a minA/R ≤ 0.05). This is particularly evident with the diagrams generated for DLas,
for which a good diagram is known to exist. If a good diagram was not generated for such an area
specification, then a local minimum was reached. Thus, the results obtained for DLas are more
important for our purpose than those of ASLas as a good diagram might not exist for the latter. 

The boxplots in Figure A.7 support the results in Figure A.6. The dotted line in the boxplots
indicates that none of the diagrams generated by our cost functions F6, F7 and F8 had minA∕R < 0.1
(the smallest minA/R was 0.1 for DLas only). All the other cost functions had at least one diagram with
minA∕R equal to zero, and between 1.0% to 65.4% of the generated non-good diagrams for DLas with
minA/R < 0.1 and between 2.3% to 32.9% of the generated non-good diagrams for ALas with
minA/R < 0.1 (see caption of Figure A.6 or Figure A.7 for the N values of each cost function for DLas
and ASLas). F2 and F1, which had the second and the third largest set of good diagrams for DLas
following F6, had the smallest mean and median for DLas (F2 mean = 0.35, median = 0, N = 797;
F1 mean = 0.32, median = 0, N = 866). F5 and F3, both based on relative error, had the smallest median
and mean for ASLas (F5 mean = 0.53, median = 0.67, N = 9898; F3 mean = 0.59, median = 0.75,
N = 1915). 
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Figure A.6: The percentage distributions, relative to the number of non-good diagrams generated
using each cost function F1-F8 for each of DLas and ASLas, of the smallest actual-to-required zone
area ratio (minA/R) of the generated non-good diagrams. DLas and ASLas are respectively the area
specifications obtained from libraries DIAGLIB_design and AREASPECLIB_design, each with 10,000 area
specifications.These diagrams were non-good, so they had a diagError > 10-6. The smallest actual-to-required
zone area ratio (minA∕R) was calculated using in Equation A.1. The total number of non-good diagrams
generated by the cost functions is different: for DLas, F1 N = 866, F2 N = 797, F3 N = 1339, F4 N = 9570,
F5 N = 9978, F6 N = 47, F7 N = 1220, F8 N = 9983; for ALas, F1 N = 1666, F2 N = 1636, F3 N = 1915,
F4 N = 9214, F5 N = 9898, F6 N = 1649, F7 N = 1963, F8 N = 9935.
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Figure A.7: The smallest actual-to-required zone area ratio (minA/R) of the non-good diagrams
generated for DLas and ASLas using the different cost functions F1-F8. DLas and ASLas are
respectively the area specifications obtained from libraries DIAGLIB_design and AREASPECLIB_design, each
with 10,000 area specifications. These diagrams were good, so they had a diagError > 10-6. The smallest
actual-to-required zone area ratio (minA∕R) was calculated using in Equation A.1. The total number of non-
good diagrams generated by the cost functions is different: for DLas, F1 N = 866, F2 N = 797, F3 N = 1339,
F4 N = 9570, F5 N = 9978, F6 N = 47, F7 N = 1220, F8 N = 9983; for ALas, F1 N = 1666, F2 N = 1636,
F3 N = 1915, F4 N = 9214, F5 N = 9898, F6 N = 1649, F7 N = 1963, F8 N = 9935. The dotted line indicated
that none of our cost functions F6, F7 and F8 have a minA/R less than 0.1.

Looking into the percentages of the non-good diagrams that had minA/R ≤ 10-6, a value that is often
considered close to zero (e.g., in eulerAPE and venneuler [Wilkinson, 2012]), we note that F1 and F2 had
the greatest percentages for DLas followed by F3, F5 and F4 (36.0%, 30.0%, 12.2%, 2.0%, 0.1%
respectively), while F3 and F1 had the greatest percentages for ASLas followed by F5, F2 and F4
(20.1%, 13.6%, 9.7%, 6.4%, 0.7% respectively). The total number of diagrams for each cost function
and for each set of area specifications varied (see caption of Figure A.6 or Figure A.7 for the N values
of each cost function for DLas and ASLas). Figure A.8 illustrates such non-good diagrams with
minA/R ≤ 10-6 generated by F1, F2 and F3 (Figure A.8A-C) for ω = {a=17857, b=14021, c=35256,
ab=898, ac=4080, bc=4, abc=1282} in DLas and the good diagram generated by our cost function F6
for ω (Figure A.8D). According to ω, zone b should have the smallest area, followed by zone ab, zone
abc and then other zones. The zone areas of the diagrams generated by F1 and F2 (Figure A.8A and
Figure A.8B respectively) are close to the required, except for the area of zone bc that is much larger
than required and the area of zone abc that is very close to zero even though it is meant to be larger than
that of zone bc and zone ab. The area of zone abc in the diagram generated by F3 (Figure A.8C) is also
very close to zero. The other zone areas are not as close to the required areas as those of F1 and F2, with
the exception of zone bc whose area is equal to that required. Due to the area of zone abc, minA/R was
less than 10-6 for the three diagrams. F4, F5 and F8 also generated a non-good diagram for ω, but only
the diagram of F5 had a minA/R ≤ 10-6 due to a very small zone abc with area close to zero. Same as F6,
our cost function F7 generated a good diagram for ω. This illustrates the need for a cost function like
ours that heavily weights zones whose area is very small with respect to that required.
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Figure A.8: An example of an area specification in DLas for which a non-good diagram with the
smallest actual-to-required zone area ratio (minA/R) less than or equal to 10-6 was generated using F1,
F2 and F3, while a good diagram was generated using our cost function F6. The diagrams were
generated for area specification ω = {a = 17857, b = 14021, c = 35256, ab = 898, ac = 4080, bc = 4,
abc = 1282} that was in DLas. Non-good diagrams were also generated for ω by F4, F5 and F8 (that of F5
had minA/R = 3.3×10-8), while a good diagram was generated by F7. (A) The non-good diagram generated by
F1 for ω with zone areas {a = 16024, b = 12580, c = 31619, ab = 896, ac = 3695, bc = 209, abc = 1.30×10-4}
and with minA/R = 3.93×10-9 and diagError = 1.75×10-2. (B) The non-good diagram generated by F2 for ω
with zone areas {a = 16613, b = 13080, c = 32624, ab = 1014, ac = 3945, bc = 250, abc = 1.36×10-4} and
with minA/R = 4.12×10-9 and diagError = 1.75×10-2. (C) The non-good diagram generated by F3 for ω with
zone areas {a = 21707, b = 10135, c = 24077, ab = 1092, ac = 5706, bc = 4, abc = 5.82×10-4} and with
minA/R = 1.76×10-8 and diagError = 1.03×10-1. (D) The good diagram generated by F6 for ω with minA/R = 1
and diagError = 3.77×10-7.
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It is interesting that all the diagrams generated by F1, F2, F3 and F5 for ω had zone abc with an area
very close to zero that led to a minA/R < 10-6. In fact, considering the diagrams generated for DLas, for
which area specifications a good diagram is known to exist, 64.6%, 68.1%, 50.9% and 42.6% of
respectively the non-good diagrams generated by F1, F2, F3 and F5 with minA/R ≤ 10-6 had the actual-
to-required area ratio for zone abc less than or equal to 10-6. A possible reason why zone abc other than
any other zone was diminished is that any change to the diagram during the optimization affects the area
of the zone located in exactly the three ellipses and so, the smaller the required area of this zone with
respect to the average required zone area of the diagram, the greater the likelihood that the overall error
of the diagram is reduced at the expense of diminishing and increasing the error of this zone, as its
contribution to the overall cost of the diagram would not be adequate to avoid such cases. As shown
with our cost functions, such paths can easily be identified and avoided by heavily weighting those
zones whose area is very small with respect to that required. To further aid the optimization in avoiding
such paths, our starting diagram generator (explained in Section 5.6.5) minimizes the difference
between the actual and the required area of the zone in exactly the three ellipses independently of the
other zones. However, as seen with the results of this experiment, though this could help, it is not
enough and a cost function like ours that identifies and avoids inappropriate paths is required.

These results indicate that most of the previously proposed cost functions, including venneuler's
stress [Wilkinson, 2012] (F1) and Chow and Rodgers's [2005] 'idealistic' function (F2), as well as those
based on relative errors (F3, F4 and F5), which are typically used in cartography but never for such
diagrams, are all inadequate in identifying and avoiding paths that reduce the overall error of the
diagram at the expense of heavily reducing the actual-to-required zone area ratio of one zone, up to the
point when the zone is barely visible and the optimization terminates as it reaches a local minimum.
These results also indicate that our cost function F6 and its dimensionless variants F7 and F8 are all
capable of identifying and avoiding such paths.

A.2.4 Time and Iterations

Time is another important factor. It is also dependent on the number of iterations as the more iterations,
the longer the convergence time. Figure A.9 and Figure A.10 respectively demonstrate log10(time in
seconds) and log10(number of iterations) taken for good or non-good diagrams to be generated for DLas
and ASLas using the different cost functions. Though the boxplots indicate that F4, F5 and F8 had a
median that is among the lowest for both time and iterations, these cost functions generated very few
good diagrams and are thus not effective. Considering the other functions, F3 and F7 had medians that
were larger or close to the second quartile of F1, F2 and F6 for both time and iterations and considering
that their percentages of good diagrams was also lower than those of the latter functions, then it is worth
focusing only on F1, F2 and F6.
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Figure A.9: The log10(time in seconds) for the generation of good and non-good diagrams for DLas
and ASLas using the different cost functions F1-F8. DLas and ASLas are respectively the area
specifications obtained from libraries DIAGLIB_design and AREASPECLIB_design, each with 10,000 area
specifications. Good diagrams have diagError ≤ 10-6, while non-good diagrams have diagError > 10-6. The
total number of good diagrams generated by the cost functions is different: for DLas, F1 N = 9134,
F2 N = 9203, F3 N = 8661, F4 N = 430, F5 N = 22, F6 N = 9953, F7 N = 8780, F8 N = 17; for ALas,
F1 N = 8334, F2 N =8364, F3 N = 8085, F4 N = 786, F5 N = 102, F6 N = 8351, F7 N =8037, F8 N = 65.
Similarly, the total number of non-good diagrams generated by the cost functions is different: for DLas,
F1 N = 866, F2 N = 797, F3 N = 1339, F4 N = 9570, F5 N = 9978, F6 N = 47, F7 N = 1220, F8 N = 9983;
for ALas, F1 N = 1666, F2 N = 1636, F3 N = 1915, F4 N = 9214, F5 N = 9898, F6 N = 1649, F7 N = 1963,
F8 N = 9935.
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Figure A.10: The log10(number of iterations) for the generation of good and non-good diagrams for
DLas and ASLas using the different cost functions F1-F8. DLas and ASLas are respectively the area
specifications obtained from libraries DIAGLIB_design and AREASPECLIB_design, each with 10,000 area
specifications. Good diagrams have diagError ≤ 10-6, while non-good diagrams have diagError > 10-6. The
total number of good diagrams generated by the cost functions is different: for DLas, F1 N = 9134,
F2 N = 9203, F3 N = 8661, F4 N = 430, F5 N = 22, F6 N = 9953, F7 N = 8780, F8 N = 17; for ALas,
F1 N = 8334, F2 N =8364, F3 N = 8085, F4 N = 786, F5 N = 102, F6 N = 8351, F7 N =8037, F8 N = 65.
Similarly, the total number of non-good diagrams generated by the cost functions is different: for DLas,
F1 N = 866, F2 N = 797, F3 N = 1339, F4 N = 9570, F5 N = 9978, F6 N = 47, F7 N = 1220, F8 N = 9983;
for ALas, F1 N = 1666, F2 N = 1636, F3 N = 1915, F4 N = 9214, F5 N = 9898, F6 N = 1649, F7 N = 1963,
F8 N = 9935.
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From the boxplots of F1, F2 and F6 in Figure A.9 and Figure A.10, we note that most of the good
diagrams were generated in less time and fewer iterations. F6 had the smallest maximum times
compared to F1 and F2 (the maximum times of F6 were 12.4% and 24.0% of respectively those of F1
and F2 for DLas and 6.3% and 1.9% of respectively those of F1 and F2 for ASLas), while the three of
them had the same minimum time (0.2 seconds). F6 also had the smallest maximum number of
iterations compared to F1 and F2 (the maximums of F6 were 17.3% and 24.1% of respectively those of
F1 and F2 for DLas and 11.7% and 3.1% of respectively those of F1 and F2 for ASLas), but not the
smallest minimum number of iterations though the results were very much alike (the minimums for F1,
F2 and F6 were 16, 20 and 20 for DLas and 21, 20 and 23 for ASLas).

Effect of Cost Function on Time

A Friedman rank sum test for non-normal distributions and repeated-measure data revealed a significant
effect of F1, F2 and F6 on the generation time (in seconds) of the diagrams for DLas (χ2(2) = 1574.7,
p < 2.2 × 10-16) and for ASLas (χ2(2) = 1861.0, p < 2.2 × 10-16). A post-hoc test using Wilcoxon tests
with Bonferroni correction showed significant differences between every pair of cost functions. 

For DLas, there was a medium effect size between F6 and F1 (W = 10037550, Z = -48.64,
p < 2.2 × 10-16, r = 0.34) and between F6 and F2 (W = 10202120, Z = -48.20, p < 2.2 × 10-16, r = 0.34),
and a very small effect size between F1 and F2 (W = 24793228, Z = 5.95, p < 10-8, r = 0.04). For
ASLas, there was a small effect size between F6 and F1 (W = 29706974, Z = 22.76, p < 2.2 × 10-16,
r = 0.16) and between F6 and F2 (W = 30735043, Z = 26.37, p < 2.2 × 10-16, r = 0.19), and a very small
effect size between F1 and F2 (W = 22917786, Z = 4.56, p < 10-5, r = 0.03). 

For DLas, the medians for F1, F2 and F6 were respectively 0.44 seconds, 0.44 seconds and 0.39
seconds, while their means were respectively 13.59 seconds, 15.23 seconds and 0.78 seconds. For
ASLas, the medians for F1, F2 and F6 were respectively 0.37 seconds, 0.37 seconds and 0.41 seconds,
while their means were respectively 7.20 seconds, 9.54 seconds and 0.85 seconds. So, though F6 had
the lowest means, it did not have the lowest median for ASLas. 

However, the effect size between F6 and both of F1 and F2 for ASLas was smaller (r = 0.16,
r = 0.19) than that for DLas (r = 0.34, r = 0.34), and a small effect of 0.1 explains around 1% of the
variance, while a medium effect of 0.3 explains around 9% of the variance [Cohen, 1988, 1992; Field,
2009]. Also, the difference between the means of F6 and those of F1 and F2 is greater than the
difference between the medians. So, we can consider our cost function F6 to be more effective with
respect to time than F1 and F2. 

Effect of Cost Function on Iterations

Similar to time, a Friedman test revealed significant effect of F1, F2 and F6 on the number of iterations
that were required for the generation of the diagrams for DLas (χ2(2) = 1991.2, p < 2.2 × 10-16) and
ASLas (χ2(2) = 1509.6, p < 2.2 × 10-16). Significant differences between every pair of F1, F2 and F6
were reported by a post-hoc test using Wilcoxon tests with Bonferroni correction. 

For DLas, there was a medium effect size between F6 and F1 (W = 8414888, Z = -52.60,
p < 2.2 × 10-16, r = 0.37) and between F6 and F2 (W = 8765361, Z = -51.27, p < 2.2 × 10-16, r = 0.36),
but a very small effect size between F1 and F2 (W = 23814955, Z = 7.37, p < 10-12, r = 0.05). For
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ASLas there was a small effect size between F6 and F1 (W = 26598545, Z = 17.01, p < 2.2 × 10-16,
r = 0.12) and between F6 and F2 (W = 27994146, Z = 21.54, p < 2.2 × 10-16, r = 0.15), but a very small
effect size between F1 and F2 (W = 21569165, Z = 7.64, p < 10-13, r = 0.05). 

For DLas, the medians for F1, F2 and F6 were 38, 37 and 32 respectively, while their means were
1245, 1431 and 73 respectively. For ASLas, the medians for F1, F2 and F6 were 33, 33 and 36
respectively, while their means were 1063, 1528 and 107 respectively. 

These results are similar to those obtained for the generation time in that, F6 had much lower means
than those of F1 and F2, and F6 had the lowest median for DLas, but a greater median for ASLas.
However, once again the effect size between F6 and both of F1 and F2 for ASLas is smaller (r = 0.12,
r = 0.15) than that for DLas (r = 0.37, r = 0.36), and the differences between the means are much
greater than those between the medians. So, overall, our cost function F6 required fewer number of
iterations to generate the diagrams.

Response Time Effectiveness 

A response time of around 1 second ensures the users' train of thought is maintained and a response
time of around 10 seconds ensures the users' attention is maintained [Card et al., 1991; Miller, 1968].
Considering the time taken to generate good diagrams for both DLas and ASLas, we find that F1, F2
and F6 respectively generated 85.8.7%, 86.1% and 98.3% of them in or less than 1 second and 97.7%,
97.8% and 99.9% of them in or less than 10 seconds (N = 17468, N = 17567, N = 18304 respectively).
Considering the time taken to generate the non-good diagrams for both DLas and ASLas, we find that
F1, F2 and F6 respectively generated 63.2%, 64.6% and 86.3% of them in or less than 1 second and
81.4%, 79.8% and 96.6% of them in or less than 10 seconds (N = 2532, N = 2433, N = 1696
respectively). So, our cost function F6 had the largest percentage of diagrams generated in or less than 1
second and in or less than 10 seconds, followed by F1 and F2 which has similar percentages. Thus, in
this respect, F6 should be preferred as these results indicate that, using F6, in 97.3% of the cases (99%
confidence interval 97.0% to 97.6%, N = 20000) a diagram is generated in or less than 1 second, and in
99.6% of the cases (99% confidence interval 99.5% to 99.7%, N = 20000) a diagram is generated in or
less than 10 seconds.

F2 versus F6

As expected, overall, F2 required more time and iterations than F6 to generate a diagram for an area
specification, particularly when the generated diagram was good (see Figure A.9 and Figure A.10). A
possible reason for this is that, to calculate the error in the zones and to determine whether a change in
the diagram will aid the optimization reach a good solution, F2 considers the zone area relative to the
area of the diagram. As discussed in Section 5.6.4 subsection 'Our Novel Functions', this could be too
restrictive as the area of most zones, especially at the initial stages of the optimization when major
changes are explored in search for a good yet non-refined solution, will not be equal to that required and
so, if the relative zone area is considered as in F2, other errors in the diagram will add up to the
computed error of a zone. So, by considering the absolute difference between the required and the
actual zone area independently of the other zones as in F6, convergence time and the number of the
iterations could be reduced.
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Appendix B

Materials for the Study Assessing the 

Effect of Euler Diagrams with Glyphs on 

Bayesian Reasoning

This appendix contains additional material to our user study on the effect of different Euler diagram
visualizations on Bayesian reasoning, discussed in Chapter 6.

B.1 The Visualizations for the Bayesian Problems in Our Study

In our study, we compared a textual and six visual representations for three classic Bayesian problems
using a diverse subject pool through crowdsourcing. 

The visualizations included: Euler diagrams, glyphs, and combinations of both. The design of the
visualizations (V1-V6) is discussed in Section 6.4.2. The visualizations were automatically and
accurately generated using our diagram drawing software, eulerGlyphs, discussed in Section 6.3. 

The three classic Bayesian problems included: the mammography problem [Eddy, 1982] (Mam), the
cab problem [Tversky and Kahneman, 1982] (Cab), the choosing a course in economics problem
[Ajzen, 1977] (Eco). The rationale of choosing these Bayesian problems is discussed in Section 6.4.3.
The classic text that was used for these problems is provided in Table 6.1.

The following figures illustrate the visualizations (V1-V6) used for Mam (Figure B.1—replica of
Figure 6.2 in Chapter 6), for Cab (Figure B.2) and for Eco (Figure B.3). These visualizations are also
available at http://www.aviz.fr/bayes.
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Figure B.1: The six visualizations used for the Mam problem in our study. The visualizations illustrate
the classic mammography Bayesian problem [Eddy, 1982]. The diagrams were generated using our diagram
drawing software, eulerGlyphs. (V1) An area-proportional Euler diagram with the population of the problem
represented as one set (depicted by the green curve). (V2) An area-proportional Euler diagram with the
population of the problem represented as two sets (depicted by the red and blue curves). (V3) A frequency
grid. (V4) An area-proportional Euler diagram with randomly positioned glyphs. (V5) A not area-
proportional Euler diagram with uniformly positioned glyphs. (V6) A not area-proportional Euler diagram
with frequency grid glyphs.

B.1 The Visualizations for the Bayesian Problems in Our Study | 279



Figure B.2: The six visualizations used for the Cab problem in our study. The visualizations illustrate the
classic mammography Bayesian problem [Tversky and Kahneman, 1982]. The diagrams were generated
using our diagram drawing software, eulerGlyphs. (V1) An area-proportional Euler diagram with the
population of the problem represented as one set (depicted by the green curve). (V2) An area-proportional
Euler diagram with the population of the problem represented as two sets (depicted by the red and blue
curves). (V3) A frequency grid. (V4) An area-proportional Euler diagram with randomly positioned glyphs.
(V5) A not area-proportional Euler diagram with uniformly positioned glyphs. (V6) A not area-proportional
Euler diagram with frequency grid glyphs.
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Figure B.3: The six visualizations used for the Eco problem in our study. The visualizations illustrate the
classic mammography Bayesian problem [Ajzen, 1977]. The diagrams were generated using our diagram
drawing software, eulerGlyphs. (V1) An area-proportional Euler diagram with the population of the problem
represented as one set (depicted by the green curve). (V2) An area-proportional Euler diagram with the
population of the problem represented as two sets (depicted by the red and blue curves). (V3) A frequency
grid. (V4) An area-proportional Euler diagram with randomly positioned glyphs. (V5) A not area-
proportional Euler diagram with uniformly positioned glyphs. (V6) A not area-proportional Euler diagram
with frequency grid glyphs.
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B.2 The Tasks on Amazon Mechanical Turk in Our Study

The experiments were conducted through crowdsourcing using Amazon Mechanical Turk (MTurk)
[Chen et al., 2011; Paolacci et al., 2010]. Thus, each task was implemented as a HIT (Human
Intelligence Task). 

The next sections illustrate an example of the HITs (including all the pages of the HIT) used in
Experiment 1 (Appendix B.2.1; details in Section 6.5), qualitative feedback after Experiment 1
(Appendix B.2.2; details in Section 6.5.6), and Experiment 2 (Appendix B.2.3; details in Section 6.6).
An online version of these HITs is also accessible through http://www.aviz.fr/bayes.

B.2.1 Experiment 1: Comparison of Visualizations

As discussed in Section 6.5.3, the HITs were made up of 10 pages, including: a page with instructions;
three pages each with one of the three classic Bayesian problems we chose for our study, with no
visualization or one of the visualizations V1-V6 discussed in Section 6.4.2; a page with catch questions;
a page with the objective numeracy test; a page with the subjective numeracy test; two pages for the
paper folding test; a final page with a brief questionnaire to learn the worker's demographics.

Each of the six problem orderings were tested with each of the seven visualization types and carried
out by four different subjects. The following HIT illustrates problem ordering Mam, Cab, Eco and uses
visualization type V4 (area-proportional Euler diagram with randomly positioned glyphs).

B.2 The Tasks on Amazon Mechanical Turk in Our Study | 282



Figure B.4: Page 1 of 10 of Experiment 1 HIT for problem ordering Mam, Cab, Eco and visualization
type V4. 
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Figure B.5: Page 2 of 10 of Experiment 1 HIT for problem ordering Mam, Cab, Eco and visualization
type V4. 
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Figure B.6: Page 3 of 10 of Experiment 1 HIT for problem ordering Mam, Cab, Eco and visualization
type V4. 
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Figure B.7: Page 4 of 10 of Experiment 1 HIT for problem ordering Mam, Cab, Eco and visualization
type V4. 
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Figure B.8: Page 5 of 10 of Experiment 1 HIT for problem ordering Mam, Cab, Eco and visualization
type V4. 
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Figure B.9: Page 6 of 10 of Experiment 1 HIT for problem ordering Mam, Cab, Eco and visualization
type V4. 
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Figure B.10: Page 7 of 10 of Experiment 1 HIT for problem ordering Mam, Cab, Eco and visualization
type V4. 
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Figure B.11: Page 8 of 10 of Experiment 1 HIT for problem ordering Mam, Cab, Eco and visualization
type V4. 

B.2 The Tasks on Amazon Mechanical Turk in Our Study | 290



Figure B.12: Page 9 of 10 of Experiment 1 HIT for problem ordering Mam, Cab, Eco and visualization
type V4. 
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Figure B.13: Page 10 of 10 of Experiment 1 HIT for problem ordering Mam, Cab, Eco and
visualization type V4. 
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B.2.2 Qualitative Feedback After Experiment 1 

As discussed in Section 6.5.6, three weeks after Experiment 1, all the participants were asked to
complete a short follow-up questionnaire implemented as a one-page HIT on MTurk with some
interactive features.

Figure B.14 illustrates how the HIT appears once it is loaded. If the subject clicked on "There was
no diagram, just an icon and text" or "I don't remember at all", questions as in Figure B.15 were asked,
otherwise questions as in Figure B.16 appeared. Once an answer to the questions was indicated on the
Likert scales, the subject was asked to provide a reason for his or her choice as shown in the example in
Figure B.17 and Figure B.18.

Figure B.14: The qualitative feedback questionnaire HIT once it is loaded. 
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Figure B.15: The bottom part of the qualitative feedback questionnaire HIT when the subject clicked
on "There was no diagram, just an icon and text". A similar display was provided when the subject
clicked on "I don't remember at all".
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Figure B.16: The bottom part of the qualitative feedback questionnaire HIT when the subject clicked
on visualization V4. A similar display was provided when the subject clicked on any other visualization.
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Figure B.17: An example of the questions asked just after the subject completes his Likert scale scores
for the qualitative feedback questionnaire HIT when no visualization is selected for the first question. 
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Figure B.18: An example of the questions asked just after the subject completes his Likert scale scores
for the qualitative feedback questionnaire HIT when a visualization is selected for the first question. 

B.2 The Tasks on Amazon Mechanical Turk in Our Study | 297



B.2.3 Experiment 2: Alternative Text Formats

As discussed in Section 6.6.3, the HITs were made up of four pages, including: a page with instructions;
a page with the Mam problem presented using presentation type V0, classic text with no visualization,
or V4, the classic text with visualization V4, or V4a, text with references to the diagram and
visualization V4, or V4b, text with no numbers and visualization V4 (presentation types are discussed in
Section 6.6.1; novel text format V4a and V4b are available in Table 6.6); a page with a catch question; a
final page with questions asking the subjects whether they tried to compute an exact answer and how
much they used the text and the diagram to solve the problem.

Each of the four presentation types were assigned to 120 different subjects. The following HIT
illustrates presentation type V4b (text with no numbers and visualization V4).

B.2 The Tasks on Amazon Mechanical Turk in Our Study | 298



Figure B.19: Page 1 of 4 of Experiment 2 HIT for presentation type V4b. 
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Figure B.20: Page 2 of 4 of Experiment 2 HIT for presentation type V4b. 
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Figure B.21: Page 3 of 4 of Experiment 2 HIT for presentation type V4b. 
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Figure B.22: Page 4 of 4 of Experiment 2 HIT for presentation type V4b. 
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Appendix C

Further Reading

This appendix provides further reading on research areas related to this dissertation, including graph
drawing, Bayesian reasoning, visualization and text, and Euler-like diagrams with glyphs.

C.1 Graph Drawing

Graphs are versatile and widely used in diverse application areas (e.g., social network analysis [Perer,
2010; Scott, 2012]; comparative genomics [Krzywinski et al., 2009]; brain connectivity analysis
[Bullmore and Sporns, 2009]; stock market prices predictions [Shen et al., 2012]) to represent
collections of data of various types and dimensions. The vertices can represent any required data
elements, while the edges indicate relationships between the data elements [Bondy and Murty, 1976].

C.1.1 Aesthetics

Depicting the vertices as nodes and the edges as links could easily create a visualization (i.e., a node-
link diagram) that is hard to understand and possibly unusable, due to visual clutter, various connections
between vertices, edge crossings and other aesthetic features that could hinder comprehension [Bennett
et al., 2007; Díaz et al., 2002]. Studies have been conducted to identify aesthetic features that should be
avoided and others that can facilitate understanding. This led to the formulation and prioritization of a
number of structural (e.g., minimizing the length of the paths, edge bends and edge crossings;
maximizing orthogonality) and semantic (e.g., using equally-sized vertices) rules and conventions for
drawing such graphs [Bennett et al., 2007] (also [Sugiyama, 2002]).

Most of these aesthetic criteria are consistent with perceptual principles [Bennett et al., 2007], such
as the Gestalt principles [Koffka, 1935] and Norman's emotional design framework [Norman, 2004]
(also [Norman, 1988, 1991, 2002]). Studies have also been conducted to evaluate their effectiveness in
helping potential users carry out specific tasks on such graph drawings (e.g., [Dwyer et al., 2009;
Huang, 2013; Purchase et al., 2001, 2002, 2007, 2012; Purchase, 2000]). Formal metrics to quantify the
aesthetic quality of a graph drawing [Purchase et al., 2002] and cognitive measures to quantify the
cognitive effort required to use a graph drawing with specific aesthetic features [Ware et al., 2002] (also
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[Huang et al., 2006, 2008, 2009]) are also available. Such metrics could be used to define the cost
function of automatic graph drawing algorithms, such as those employing simulated annealing, genetic
algorithms or evolutionary algorithms.

C.1.2 Layout Methods

Various automatic techniques have been developed to draw graphs [Di Battista et al., 1994, 1999b; Díaz
et al., 2002; Gibson et al., 2012; Kaufmann and Wagner, 2001; Sugiyama, 2002]. The majority strive to
satisfy most of the defined aesthetic criteria to ensure that their generated layouts are comprehensible
and usable (e.g., [Coleman and Parker, 1996; Tamassia et al., 1988]), but often, this is not possible, as
various aesthetic criteria could be in conflict, and complex and computationally expensive algorithms
would be required to handle multiple aesthetic features simultaneously [Di Battista et al., 1999b; Díaz et
al., 2002]. Also, the precedence of aesthetic features varies between application areas [Di Battista et al.,
1999b; Díaz et al., 2002]. So, techniques that produce different layouts based on specific aesthetic
criteria with different precedence are available [Di Battista et al., 1994] (see Table 1 of Gibson et al.'s
[2012] survey for a comparison of different algorithms).

Examples of graph layouts generated by currently available algorithms, include: straight-line layouts
(e.g., [Eades et al., 1997]), so each edge is depicted as a one-line segment; planar layouts (e.g.,
[Nishizeki and Rahman, 2004]), so none of the edges cross; orthogonal layouts (e.g., [Biedl and Kant,
1998]), so each edge is depicted as one or a set of connected horizontal or vertical line segments;
circular layouts (e.g., [Krzywinski et al., 2009]), in that the depicted vertices are placed on a circle;
hierarchical layouts (e.g., [Eades et al., 1996]), in that the depicted vertices are positioned in
hierarchical arranged levels (where levels are depicted as parallel lines) to visualize the flow of a
directed graph.

Graph drawing algorithms (e.g., using simulated annealing [Coleman and Parker, 1996] or a genetic
algorithm [Hobbs and Rodgers, 1998] for multi-criteria optimization; using evolutionary algorithms
[Utech et al., 1998]) can be complex and computationally expensive. So, lately, force-directed
algorithms (previously used for circuit layouts [Fisk et al., 1967]) have been used [Gibson et al., 2012]
to generate comprehensible layouts in relatively fast time [Kobourov, 2012].

C.2 Bayesian Reasoning

C.2.1 Applying Bayes' Theorem Using Probabilities or Frequencies

Given two events A and B, the probability that A occurs given that B already happened is denoted as
P(A⎪B) and can be computed using Bayes' [1763] theorem as follows

P(A | B) = P(B | A)P(A)
P(B)

where P(A) is the probability that A occurs, P(B) is the probability that B occurs, and P(B⎪A) is the
probability that B occurs given that A already happened.

C.2 Bayesian Reasoning | 304



Let us now assume that A and B are respectively H (a hypothesis) and D (some data obtained from
an observation). When we have such events, we are often interested to know the likelihood that the
hypothesis is true given the data. So we need to find the conditional probability P(H⎪D), which as we
have seen above can be computed by applying Bayes' theorem

(C.2)
P(H |D) =             P(D |H )P(H )

P(D)

= P(D |H )P(H )
P(D |H )P(H )+ P(D |H )P(H )

where H is the complement of H, P(H) is the probability that H is true, P(D) is the probability that D is
obtained, and P(D⎪H) is the probability that D is obtained given that H is true [Gigerenzer and
Hoffrage, 1995].

Similarly, Bayes' theorem can be used to solve the classic mammography Bayesian problem:

The probability that a woman at age 40 has breast cancer is 1%. According to the
literature, the probability that the disease is detected by a mammography is 80%. The
probability that the test misdetects the disease although the patient does not have it is
9.6%.

If a woman at age 40 is tested as positive, what is the probability that she indeed has
breast cancer?

[Eddy, 1982]

If in Equation C.2, H and H are respectively breast cancer and no breast cancer and D is positive
mammography [Gigerenzer and Hoffrage, 1995], then

P(breast  cancer | positive mammography) = (0.8)(0.01)
(0.8)(0.01)+ (0.096)(0.99)

= 0.078

= 7.8%

So, the probability that a woman at age 40 indeed has breast cancer given that she is tested as positive
by a mammography is 7.8%.

The probabilities in the above problem could be replaced with natural frequencies:

10 out of every 1,000 women at age forty who participate in routine screening have
breast cancer. 8 of every 10 women with breast cancer will get a positive
mammography. 95 out of every 990 women without breast cancer will also get a
positive mammography.

Here is a new representative sample of women at age forty who got a positive
mammography in routine screening. How many of these women do you expect to
actually have breast cancer?

[Gigerenzer and Hoffrage, 1995]
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From the above, the following is known: the number of women who have got a positive mammography
and indeed have breast cancer (i.e., 8); the number of women who have also got a positive
mammography but do not have breast cancer (i.e., 95). Knowing these two quantities, all the other
quantitative values in the problem can be ignored and the answer can be computed as follows 

P(breast  cancer | positive mammography) = 8
8 + 95

= 0.078

= 7.8%

This answer is the same as that obtained when probabilities are used [Gigerenzer and Hoffrage, 1995].

Hence, when natural frequencies are used, the conditional probability P(H⎪D) can be computed as

(C.3)P(H |D) = D∩H
D∩H + D∩H

where D∩H is the number of cases consistent with the data and the hypothesis, while D∩H is the
number of cases consistent with the data but not the hypothesis [Gigerenzer and Hoffrage, 1995].

Both Equation C.2 and Equation C.3 are mathematically equivalent to Bayes' [1763] theorem
[Gigerenzer and Hoffrage, 1995]. However, the above computations using both equations demonstrate
Gigerenzer and Hoffrage's [1995, pp. 685-87] claim that it is "simpler" to solve a Bayesian problem that
uses natural frequencies than one that uses probabilities. This is so, as the former requires fewer
calculations, less complex computation, fewer pieces of information (only the hit rate and the false
alarm rate), and less thought on how the base rate should be used as it is inherently carried on to the hit
rate and false alarm rate.

C.2.2 Probabilities versus Natural Frequencies

Bayesian problems that present their quantitative data using natural frequencies instead of probabilities
reduce the fallacy [Gigerenzer and Hoffrage, 1995, 1999; Hoffrage et al., 2002], with a typical
improvement that goes from 16% to 46% of correct answers [Gigerenzer and Hoffrage, 1995].

A possible reason for this improvement is that using natural frequencies, information about the base
rate (in this case, 1% or "10 of every 1,000") is inherently carried on to both the hit rate (in this case,
80% or "8 of every 10") and the false alarm rate (in this case, 9.6% or "95 out of every 990"), both of
which are important in solving the Bayesian problem and thus, information about the base rate is not
lost [Hoffrage et al., 2000]. This would also reduce the amount of required computation to obtain an
answer [Gigerenzer and Hoffrage, 1995; Hoffrage et al., 2000] and the complexity of the computations
which are carried out on natural frequencies, that is natural countable numbers, instead of probabilities,
that is real continuous numbers and fractions [Gigerenzer and Hoffrage, 1995] (see Appendix C.2.1 to
compare the required computation to solve a problem when using probabilities and when using natural
frequencies). Moreover, natural frequencies explicitly indicate the reference class [Gigerenzer et al.,
2007], so from the first line of the mammography problem ("10 out of every 1,000 women …"), we
immediately know that "10" is referring to and is part of the class of "1,000 women". It is also thought
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that humans have a specific natural affinity to natural frequencies and that humans have evolved ways
how to handle information in this format which has long been used before the rise of probability theory
[Cosmides and Tooby, 1996; Gigerenzer and Hoffrage, 1995, 1999; Gigerenzer, 1998]. 

However, some argue that natural frequencies can be effective only because they provide a possible
representation that facilitates the construction of a mental map that clarifies the nested-set relations of
the problem, that is, how the base rate, the hit rate and the false alarm rate are related to each other
[Mellers and McGraw, 1999; Moro, 2010; Sloman et al., 2003], which benefit had been conjectured
much earlier [Tversky and Kahneman, 1983]. Others rejected the view that humans have cognitive
abilities to handle natural frequencies and not probabilities [Girotto and Gonzalez, 2002] and disputed
the possible benefits of natural frequencies over probabilities, emphasizing instead the importance for
representations to clarify the nested-set relations of the problem [Evans et al., 2000; Girotto and
Gonzalez, 2001, 2002]. Another study among physicians suggests that carrying out Bayesian inferences
and computing the outcome of an event that occurred in the past using natural frequencies is more
effective than using probabilities and yields better performance than using past experiences to predict
the outcome of the event in the future in natural frequencies [Obrecht et al., 2012]. 

Despite these debates, it is clear that representations of Bayesian problems should clarify their
structure and the relationships of the different numerical quantities. If using natural frequencies can help
to accomplish this objective, irrespective of the reason why this is true, then their use in representations
is rational. However, the success rate in solving Bayesian problems when information is provided
textually using natural frequencies could still be as low as 46% [Gigerenzer and Hoffrage, 1995] and so,
other representations and aids should be studied for further improvement and facilitation.

C.2.3 Facilitating Bayesian Reasoning

A few techniques to solve Bayesian problems, besides applying the Bayes' theorem [Bayes, 1763],
include: the use of heuristics [Bar-Hillel, 1983; Gigerenzer et al., 1999; Gigerenzer and Selten, 2002;
Kahneman et al., 1982; Tversky and Kahneman, 1974], the construction of mental models [Johnson-
Laird et al., 1999], Bayesian [Gigerenzer and Hoffrage, 1995, p. 689] and non-Bayesian [Gigerenzer
and Hoffrage, 1995, p. 694] cognitive algorithms, and inferencing mechanisms over causal models
[Krynski and Tenenbaum, 2007; Tversky and Kahneman, 1980].

Diagrams are known to facilitate reasoning [Bauer and Johnson-Laird, 1993; Sedlmeier, 1999] and
have been used extensively for the communication of numeric quantitative data [Macdonald-Ross,
1977] and for visualizing uncertainty (e.g., [Pang et al., 1997; Zuk, 2008]) to a widely diverse audience
[Spiegelhalter et al., 2011], particularly for risk communication and comprehension [Ancker et al.,
2006; Garcia-Retamero and Galesic, 2013; Lipkus, 2007; Schirillo and Stone, 2005; Visschers et al.,
2009] to, for instance, communicate earthquake [Bostrom et al., 2008] and climate change risks
[Sterman, 2011], promote healthier lifestyles (e.g., [Cox et al., 2010; Garcia-Retamero and Cokely,
2011]), make informed decisions about different possible therapies (e.g., [Elting et al., 1999; Goodyear-
Smith et al., 2008; Waters et al., 2007; Zikmund-Fisher et al., 2008a, b]) based on statistical rather than
anecdotal information (e.g., [Fagerlin et al., 2005]), communicate information to non-natives who have
difficulties with the language (e.g., [Garcia-Retamero and Dhami, 2011]). Bayesian reasoning can also
be facilitated with visual representations, so information is sometimes provided textually and visually.
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In a study that tested textual representations using probabilities and natural frequencies as the
mammography example we previously discussed, a participant voluntarily drew a "pictorial analog"
(Figure C.1) of the Bayes problem to help him carry out the required inferences and solve the problem
[Gigerenzer and Hoffrage, 1995]. Actually, in his original essay just after providing the definitions and
proofs of propositions, Bayes described the problem he was attempting to solve with his theorem using
an analogue of a table on which balls are thrown and illustrated this with a diagram [Bayes, 1763],
which analogue later became known as Bayes' billiard table. A study confirms that when Bayes’
theorem is introduced to students through visualizations, students learn faster and report higher
temporal stability than without a visualization [Sedlmeier and Gigerenzer, 2001]. However, prior
training is not always possible, particularly in cases such as medical patients, juries, and news readers
who are given access to growing amounts of open statistical and scientific data [Hall, 2011]. A few
studies were conducted to assess the immediate benefits of visualizations (e.g., [Brase, 2009; Cole and
Davidson, 1989; Cole, 1989; Sloman et al., 2003]) and though they confirm that visualizations facilitate
reasoning, it is still unclear which is the most effective representation for Bayesian reasoning.
Moreover, studies have been carried out on small populations with a specific background (usually
highly-focused university students; e.g., [Brase, 2009; Gigerenzer and Hoffrage, 1995; Sloman et al.,
2003]), making it difficult to generalize their findings to a more diverse population of laypeople of
various backgrounds and ages. These problems also pertain to the more general area of risk
communication where no solid recommendations on how visual representations can effectively and
transparently communicate statistics to inform rather than manipulate or persuade [Gigerenzer et al.,
2007; Nelson et al., 2009] have not been formulated [Visschers et al., 2009] except for Spiegelhalter et
al.'s "broad conclusions" [2011, p. 1399 Box 1] .

Figure C.1: A pictorial analogue known as "beam cut" of a Bayesian problem drawn voluntarily by a
participant during a study to facilitate inferencing. This was drawn for the German measles problem.
Source: [Gigerenzer and Hoffrage, 1995]–Figure 2
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The visual representations that have been considered for Bayesian reasoning include: contingency
tables [Cole and Davidson, 1989; Cole, 1989] (Figure C.2A), detection bars [Cole and Davidson, 1989;
Cole, 1989](Figure C.2B), signal detection curves [Cole and Davidson, 1989; Cole, 1989]
(Figure C.2C), “beam cut” pictorial analogues [Gigerenzer and Hoffrage, 1995] (Figure C.1), Bayesian
Boxes [Burns, 2003, 2004a, b] (Figure C.2D), probability space diagrams [Cheng and Pitt, 2003]
(Figure C.2E), frequency trees [Sedlmeier and Gigerenzer, 2001] (Figure C.2F), probability trees
[Sedlmeier and Gigerenzer, 2001] (Figure C.2G), frequency grids (e.g., [Brase, 2009]) and Euler
diagrams (e.g., [Sloman et al., 2003]). Trees [Yamagishi, 2003] and roulette-wheel diagrams [Ichikawa,
1989; Tubau, 2008; Yamagishi, 2003] (Figure C.3) have also been used to facilitate Bayesian reasoning
for a different fallacy (other than the base rate fallacy), that of the 'Problem of Three Prisoners' [Falk,
1992; Lindley, 1994; Mosteller, 1987; Shimojo and Ichikawa, 1989] and the mathematically equivalent
Monty Hall problem [Selvin, 1975]. However, though all of these representations attempt to visualize
the computational structure of the problem, most are difficult to understand, thus requiring training prior
to use.
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Figure C.2: Different visual representations that have been considered for Bayesian reasoning to
avoid the base rate fallacy (excluding Euler diagrams and frequency grids). (A) A contingency table (for
the disease diagnosis problem [Casscells et al., 1978]). Source: [Cole, 1989]—Table 1 (B) A detection bar
(for the disease diagnosis problem [Casscells et al., 1978]). Source: [Cole, 1989]—Figure 2 (C) A signal
detection curve (for the disease diagnosis problem [Casscells et al., 1978]). Source: [Cole, 1989]—Figure 1
(D) Bayesian Boxes (for the King and Queen card problem [Burns, 2004b]). Source: [Burns, 2004b]—
Figure 1 (E) A Probability Space diagram (for the cab problem [Tversky and Kahneman, 1982]). Source:
[Cheng and Pitt, 2003]—Figure 6 (F) A frequency tree (for the mammography problem [Gigerenzer and
Hoffrage, 1995]). Source: [Sedlmeier and Gigerenzer, 2001]—Figure 7 (G) A probability tree (for the
mammography problem [Eddy, 1982]). Source: [Sedlmeier and Gigerenzer, 2001]—Figure 11 
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Figure C.3: A roulette-wheel diagram for Bayesian reasoning to facilitate the 'Problem of Three
Prisoners' and the Monty Hall problem. Representing an isomorph of the 'Problem of Three Prisoners'
[Lindley, 1994; Mosteller, 1987; Shimojo and Ichikawa, 1989] named the Gemstone Problem [Yamagishi,
2003]. Source: [Yamagishi, 2003]—Figure 2

C.2.4 Iconic Visualizations

Kellen et al. [2007] hypothesized that an iconic visual representation, that is a visualization with
discrete objects like Figure C.4, can aid users with different spatial abilities solve Bayesian problems.
However, they did not evaluate their proposed visual representation. 

Figure C.4: Kellen et al.'s [2007] proposed iconic visualization. Source: [Kellen et al., 2007]–Figure 2

C.2.5 Frequency Grids with Tree Diagrams

Spiegelhalter et al. [2011] argued that having a frequency grid with a tree diagram, as in Figure C.5
(depicting the mammography problem we discussed earlier, but using different quantitative values),
could be beneficial, as it clearly illustrates how the quantitative values are relate, how portions of the
sampled population representing sub-classes relate to the entire sampled population and how the
Bayesian inferencing is carried out. However, no studies have been conducted. Both diagrams (the
frequency grid and the tree diagram) illustrate the same information and so, showing duplicate and
redundant data might be more confusing and would required further time to be processed [Tufte, 1990].
Spiegelhalter et al. [2011] also comment that interactions visualization can assist the user in their
reasoning and thus, they designed an interactive and animated version of the visualization in Figure C.5
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([Spiegelhalter et al., 2011]—Movie S3). They also designed an interactive version of Nightingale's
iconic 'rose' or 'coxcomb' 'Diagram of the Causes of Mortality in the Army in the East' [Nightingale,
1858] (Figure 2.3) and added to it an additional interactive visualization representing the same data as
frequency grids ([Spiegelhalter et al., 2011]—Movie S1).

                             A

                             B

Figure C.5: A frequency grid with a tree diagram for the classic mammography Bayesian problem.
(A) A tree diagram with (B) a frequency grid, illustrating the data published by the UK Breast Cancer Screen
Programme in 2011 [Cancer Research UK, 2012]. This depicts the classic mammography problem
(probability format [Eddy, 1982]; natural frequencies format [Gigerenzer and Hoffrage, 1995]) but using
different quantitative data, that is 1% or "10 out of 1000" base rate, 90% or "9 out of 10" hit rate, 10% or "99
out of 990" false alarm rate, so the answer is 8% or "9 out of 108". Source: [Spiegelhalter et al., 2011]–
Figure 4; an interactive and animated version is also available [Spiegelhalter et al., 2011]–Movie S3

C.2.6 Frequency Grids with Interactive Features

Tsai's [2012] studied frequency grids as Figure C.6 with interactive features. The main rational is that,
in contrast to passive visualizations which are only provided with the textual information, these
interactive visualizations allow the readers to engage in the construction process of the visualization.
Using the checkboxes at the side, the user can include (or exclude) the different pieces of information to
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(or from) the diagram as they read it off the text and while they are actively reasoning about the
problem. Initially, all the boxes in the grid are grey and all the checkboxes except for the first one are
unchecked (so the grid only illustrates the entire sampled population with no sub-groups). The author
also predicted that hiding the yellow and the green boxes, so only the yellow and the dark green striped
boxes are visible (the rest would be coloured in grey), would make the answer to the Bayesian problem
more transparent and the area of these sections easily comparable. 

Figure C.6: A frequency grid with interactive features for the HIV diagnosis problem. This was
designed and tested by Tsai [2012] and works in Microsoft Excel 2007 using VBA macros. This example
depicts the disease diagnosis problem. Out of a population of 100, 10 are HIV positive (yellow boxes—base
rate) and out of which, 8 get a positive HIV test (yellow with stripes boxes—hit rate). Out of the 90 who are
not HIV positive, 9 also get a positive HIV test (dark green with stripes boxes—false alarm rate). So the
likelihood that a patient is HIV positive, given a positive HIV test is 8 out of 17 or 47%. The checkboxes at
the side can be used to include or exclude different groups from the diagram. So, for instance, the dark green
with stripes boxes will change to light green (no stripes) when the last checkbox labelled as '(+) test result &
HIV' is unchecked. Source: [Tsai, 2012, p. 31]–Figure 6

Over six Bayesian problems (adaptations from Gigerenzer and Hoffrage's [1995] problems), Tsai
reported a success rate of 73% of 15 participants for the interactive frequency grid and a success rate of
49% of 15 participants for text alone using natural frequencies (participants were from various
Cambridge, Massachusetts, USA universities and local communities with age range of 18 to 32 years
and were paid $10 for the one-hour session; though they completed college education, none had an
understanding of Bayes' theorem and conditional probabilities). 

This result for the interaction frequency grid is similar to those of Cosmides and Tooby [1996] and
Sedlmeier and Gigerenzer [2001] for passive frequency grids, but are lower than those obtained by
Cosmides and Tooby [1996] for their actively drawn frequency grids. Thus, such interactive
visualizations might not be the best option to actively engage the reader and yet they might not be
practical in the real-world, as participants had to be instructed ("a short explanation lasting 1-2 minutes"
[Tsai, 2012, p. 34]) prior to the experiment. Tsai also reported an improved performance using similar
interactive frequency grids compared to only text for more complex problems known as 'chains of
reasoning' that involve multiple sequential Bayesian inferences and the integration of various
independent pieces of information in the understanding of the likelihood that an event will occur
[Schum, 1991, 1999].
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C.2.7 The Main Concept Behind Frequency Grids

The idea of frequency grids have long been used for various applications ([Macdonald-Ross, 1977, pp.
381-91]—brief review). In around 1930s, Neurath created the international picture language Isotype
[Neurath, 1936] (see also [Neurath and Kinross, 2009; Neurath and Neurath, 2012; Neurath, 2010]) as
an education tool to represent facts visually using objects and simple figures, with the primary rule
stating that quantities should be represented as a collection of same sized pictograms rather than
enlarged ones. This is so, as Neurath believed that, in contrast to repeated pictograms which can be
counted, size cannot be compared and judged accurately and could be misleading if it is unclear how
size is encoded (e.g., as length or area) [Neurath, 1936]. Figure C.7 is an example that used Isotype to
illustrate women's employment worldwide in the book, 'Women and Work' [Williams, 1945].

Figure C.7: A visualization similar to a frequency grid drawn using the picture language Isotype to
illustrate women's employment worldwide in 1930. This was originally published in the book 'Women and
Work' [Williams, 1945] and drawn using Isotype [Neurath, 1936] as most of the other diagrams in the book.
Source: [Neurath and Neurath, 2012]
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C.2.8 Frequency Grid in the General Area of Risk Communication

Frequency grids have also been used to facilitate reasoning in the more general area of risk
communication and comprehension (e.g., [Dolan and Iadarola, 2008; Elmore and Gigerenzer, 2005;
Elting et al., 1999; Kurz-Milcke et al., 2008; Price et al., 2007; Schapira et al., 2001; Waters et al.,
2007; Zikmund-Fisher et al., 2008a, b]) even for elderly [Fuller et al., 2001, 2002]. These visualizations
are considered more "attractive" than representations with only text and numbers [Gaissmaier et al.,
2012], are rated "favorably" [Hawley et al., 2008], and are regarded as the most effective representation
in communicating risk [Elting et al., 1999; Hawley et al., 2008; Schapira et al., 2001; Zikmund-Fisher et
al., 2008a] be it when numerical information should be read from the representation (referred to as
verbatim knowledge) or when the essence of the presented information should be understood (referred
to as gist knowledge) [Hawley et al., 2008] (when compared to other visualizations such as pie charts
and bar graphs and respective adaptations such as "sparkplug" and "clock" [Hawley et al., 2008]) and a
way of reducing related biases such as the denominator neglect [Garcia-Retamero et al., 2010]. They
also reduce the effect of anecdotal information in making informed decisions about a medical therapy
[Fagerlin et al., 2005]. Possible successful features of frequency grids is that they clearly illustrate part-
to-whole relationships (e.g., the number of the women who have breast cancer in the sampled
populations compared to all the women in the sampled population) [Ancker et al., 2006; Spiegelhalter et
al., 2011] and allow users to reason about the problem as if they are a character in the story (e.g., a
woman carrying out the mammography test) [Kurz-Milcke et al., 2008]. 

In contrast to the more specific area of Bayesian reasoning, the design of frequency grids for risk
communication in general has been studied thoroughly ([Ancker et al., 2006, pp. 610-12]—brief
review). It was shown that visualizations made up of two simple grids (each containing quantities about
two same concepts but differ by a third factor) are perceived faster than one complex grid (illustrating
the same information as in the two simple grids) [Price et al., 2007] and those containing the frequency
grid (with all the quantitative information) and an adjacent magnified view of the section of the grid
with the smaller quantities facilitate reasoning about events that are less likely to occur [Dolan and
Iadarola, 2008]. Grids with 10 or 100 glyphs are often preferred and considered easier to handle than
ones with more glyphs (even though portions of a glyph could be highlighted to represent the required
quantity) [Schapira et al., 2001; Viscusi, 1992], but still, confidence in the presented information might
be lost when grids with as few as 10 glyphs are used [Schapira et al., 2001] due to human intuition and
the 'Law of Large Numbers' that larger samples provide a mean that is closer to the expected value than
smaller ones and are thus considered more reliable [Bernoulli, 1713; Sedlmeier and Gigerenzer, 1997].
A study suggests that grids with more glyphs (e.g., 1000 glyphs) could perceive risk as being smaller as
unhighlighted glyphs get more attention than the highlighted ones [Schapira et al., 2001] (though this
might not be fully consistent with the ratio-bias phenomenon whereby a probability of, for instance, 1 in
20 could be perceived smaller than 50 in 1000 [Denes-Raj et al., 1995]). 

Some also warn about the effect of inappropriate designs. For instance, frequency grids with random
layouts are ineffective, make comparisons and judgement of the occurrence of events difficult, and
could mislead viewers in overestimating the size of large proportions [Ancker et al., 2011]. Also,
frequency grids that show just part of the sampled population, so that, in a case where a therapy should
be chosen, the grid contains glyphs for just the patients who were cured instead of having highlighted
and unhighlighted glyphs to respectively represent patients who were and were not cured, could be
misleading as the attention is drawn to patients who were cured, while information about those who
were not cured is ignored [Stone et al., 2003].
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C.2.9 Frequency Grids For Different Abilities

A study in risk communication showed that the level of visual similarity of the actual glyphs to the
objects they are representing (e.g., using stick figures, as in Figure 2.10, or a photograph of a person
instead of a simple geometric shape like a circle or square, as in Figure 2.9, to show that each glyph is
representing a person) does not have an effect on comprehension and recall, but the graph literacy of the
user (i.e., the user's ability to understand and handle graphical information [Aldrich and Sheppard,
2000]) does [Gaissmaier et al., 2012]. So, those with high graph literacy had higher comprehension and
recall scores when a graphic composed of a number of glyphs was provided and those with low graph
literacy had better scores when numbers with some text was given [Gaissmaier et al., 2012]. Besides
graph literacy, numeracy abilities (i.e., the user's ability to understand and handle numerical information
[Peters, 2012], which abilities are related to various demographic factors such as age, sex and country
[Galesic and Garcia-Retamero, 2010; Gigerenzer, 2010], but not necessarily the level of education
[Brown et al., 2011; Estrada et al., 1999; Lipkus et al., 2001; Sheridan et al., 2002]) can also affect
comprehension and reasoning [Fagerlin et al., 2007a; Nelson et al., 2008; Peters et al., 2006, 2007;
Reyna et al., 2009]. Studies show that while those with high numeracy abilities benefit from any
visualization in contrast to only numbers with text, those with low numeracy benefit mostly from
visualizations as frequency grids [Hawley et al., 2008]. Thus, though using such visualizations the
success rate of those with low numeracy is less than that of those with high numeracy [Galesic et al.,
2009; Hawley et al., 2008], frequency grids are regarded to be the best representation for risk
communication for users with different numeracy abilities [Hawley et al., 2008]. 

Different abilities and skills are required for a visual representation to facilitate comprehension and
reasoning [Galesic and Garcia-Retamero, 2011; Spiegelhalter et al., 2011]. However, not everyone has
the same abilities (e.g., [Galesic and Garcia-Retamero, 2010; Gigerenzer, 2010]) and thus needs (e.g.,
those with high numeracy are more likely to use the base rate [Obrecht and Chesney, 2013] and gain
more insight from numbers [Peters et al., 2006]). So, either different visual representations are used for
different levels of abilities [Spiegelhalter et al., 2011, p. 1399 Box 1] or visualizations that meet the
abilities of different readers statically or interactively are designed. Interactive visualizations could
assist readers and adapt to their needs and preferences [Strecher et al., 1999], but might not be
accessible to all due to software incompatibility and the users' abilities in using the technology
[Spiegelhalter et al., 2011], and users might not be willing to spend extra time and effort in
understanding how the technology works, since often (e.g., [Tsai, 2012]) users are instructed prior to
use. Also, adapting the visualization could help, but is not practical in the real-world [Hawley et al.,
2008]. So static visualizations that meet the needs of different users might be preferred.

C.3 Visualization and Text

Visualizations are often added to text to aid readers understand the presented textual information.
However, this is possible only when the visualization and the text are linked appropriately. For instance,
Minard's [1869] flow map (Figure C.8) is a classic in information visualization that "exemplifies many
of the fundamental principles of analytical design" [Tufte, 2006, p. 126] and illustrates how to
"Completely integrate words, numbers, images, diagrams" [Tufte, 2006, p. 126] (further discussed in
Section 2.6). 
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Figure C.8: Minard's 1869 flow map illustrating the loss of men in Napoleon's army during their
invasion of Russia between 1812 and 1813. Item 28 in Minard's [1869] portfolio of statistical maps.
Tufte describes this as "the best statistical graphics ever" [2006, p. 122]. Source: [Tufte, 2006, p. 136]

C.3 Visualization and Text | 317



C.3.1 In the Past

Looking back in history, we can see different techniques that have been used. Leonardo da Vinci
carefully placed drawings within blocks of relevant text such that the two are seen holistically (e.g.,
Figure C.9A [da Vinci, 1956, p. 234 para. 827]), while Galileo Galilei used drawings as sentence
elements instead of words (e.g., Figure C.9B [Galilei, 1613, p. 25]). René Descartes, in the first edition
of his book 'Principia Philosophiae' [Descartes, 1644], repeated a specific diagram 11 times to prevent
the reader from flipping over pages to relate the text and the diagram. Isaac Newton, in his book
'Principia' [Newton, 1687], neatly integrated the various physics diagrams within the text (e.g.,
Figure C.9C) and often used labels to refer to instances in the diagrams and replicated diagrams (such as
the one on the right in Figure C.9C) multiple times in the book to ensure that the diagram is always
closely integrated to the text that refers to it. This was not the case with of the first edition of Newton's
fundamental physics book 'Opticks' [Newton, 1704] (containing major discoveries such as the colours
of light and the designs of the refractor telescope). Though a third of the text directly refers to the 55
diagrams in the book, all the diagrams were printed on separate flaps of paper that were later bound to
the rest of the book, so that reader had to first understanding the label coding of the flaps (e.g., "Book I.
Part II. Plate IV. Fig. 16") and then flip back and forth the pages of the book to link the text to the
diagram [Tufte, 2006, pp. 110-11].
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Figure C.9: Pages from the manuscripts of Leonardo da Vinci, Galileo Galilei and Isaac Newton
illustrating how they integrated figures with text. (A) A page of a manuscript of Leonardo da Vinci
demonstrating how he carefully placed figures within relevant text. Source: [Tufte, 1983, p. 182]; original
source cited in Tufte's book: [da Vinci, 1956, p. 234 para. 827] (B) A page of a manuscript of Galileo Galilei
in 1613 on his first telescopic observations of Saturn. Here Galileo uses drawings as sentence elements
instead of words to describe the actual shape of Saturn (i.e., ) and how it appeared in a telescopic view
(i.e., ). Source: [Tufte, 1990, p. 120]; original source cited in Tufte's book: [Galilei, 1613, p. 25] (C) An
abstract for the book 'Principia' of Isaac Newton demonstrating how he carefully placed figures within
relevant text. Source: [Tufte, 2006, p. 110]; original source cited by Tufte: [Newton, 1687, pp. 170,189]

Lessons can also be learned from books recording motion and dance choreographies. For instance, in
Figure C.10A, multiple moves in a choreography are each described by a same structured column
consisting of text describing the move, a floor plan with 3D figures carrying out the move, a floor plan
with lines and symbols (it would have been helpful if a legend was provided) showing the movements
in 2-dimensions, and the notes of the accompanying music. Actually, Figure C.10A illustrates the use of
small multiples [Tufte, 1990, pp. 67-79], as the columns have the same structure to represent the same
set of variables but are ordering based on another variable, in this case, the sequence of the moves.

C.3 Visualization and Text | 319



Though many components are shown, the links between them are easily understood. The changes in the
moves, as well as the timings, are easily understood due to the transparency and consistency in the
display brought about by the use of small multiples, where each column describes ordered details (top to
bottom) about a move and different columns describe the flow (left to right) between moves [Tufte,
2006, pp. 32-33]. In another example, Figure C.10B, the dance notations (describing the steps) flow
along lines that indicate the movement the 3D figures laid just above them should carry out on the dance
floor. The closeness of the dance notations to the lines and the lines to the figures clearly indicate the
steps and the movement each dancer has to carry out without the need for further details [Tufte, 1990,
pp. 114-15]. Tufte also notes that "the paper encoding reflects the refinement of the dance itself—a
flowing and graceful line embellished by disciplined gesture" [Tufte, 1990, p. 114 para. 2] adding that
some of the dance notations ([Hilton, 1981]—a review) are visually elegant irrespective of the
illustrated moves. So, by looking at such displays, one can imagine the actual dance in real life. 

A B

Figure C.10: Recording dance choreographies. (A) Three moves in a 'contredanse' choreography in a
1765 dance pamphlet [La Cuisse, 1762] which, as the title (i.e., 'Le Répertoire des bals ou théorie-pratique
des contredanses, décrites d'une maniere aisée avec des figures démonstratives pour les pouvoir danser
facilement, auxquelles on a ajouté les airs notés') indicates, figures and musical notations were intentionally
included to easily demonstrate the moves and clearly relate them to the musical notes. Source: [Tufte, 1990,
p. 33]; original source cited in Tufte's book: [La Cuisse, 1762] (B) A move in a minuet choreography in a
1735 book titled 'The Art of Dancing Explained by Reading and Figure' [Tomlinson, 1735]. Source: [Tufte,
1990, p. 114]; original source cited in Tufte's book: [Tomlinson, 1735]—Plate XIV 

C.3.2 Tufte's View

Tufte [2001] notes that though different, text, graphics and tables are all presenting information and so,
references such as "see Fig." should be avoided and instead, graphics and tables should flow into the
text as part of the storyline in a way that they can use the same typeface and if some other text refers to
the graphic or the table, then a replica is used and integrated with that specific piece of text. With the
aim of avoiding the segregation of text, graphics and tables, he defined the principle of "data/text
integration" (or the principle of "text⧸graphic⧸table integration"):
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Data graphics are paragraphs about data and should be treated as such.
[Tufte, 1983, p. 181]

Tufte also encourages the integration of textual information (e.g., to explain the data or point out
interesting observations and outliers), equations, legends and in some cases tables into the graphic to
help the reader understand the graphic and its purpose in the storyline without having to revert back to
the actual lengthy text [Tufte, 2001]. In fact, he claims that: 

Words on and around graphics are highly effective—sometimes all too effective—in
telling viewers how to allocate their attention to the various parts of the data display

[Tufte, 1983, p. 182]

This follows from studies in visual perception that suggest that when we look at a picture, textual
instructions are decisive for our eye movements and thus, they determine the way we look at the picture
[Gould, 1976].

C.3.3 Sparklines

Tufte emphasized that, "Words and pictures belong together, genuinely together" [Tufte, 1990, p. 116]
and as an example, he created visually distinct "wordlike graphics" known as 'sparklines' [Tufte, 2006,
pp. 46-63]. So, instead of reporting the glucose level of a patient as

[Tufte, 2006, p. 47]

a sparkline could be added as in 

[Tufte, 2006, p. 47]

to provide a context and better understanding of the relevance of the number without the need to check
other information. In this case, the data-line depicts other previous glucose level results of the patient,
the red dot relates to the current 6.6 measure indicating the data-line should be read from left to right
(right-most value is the most recent), and the grey area illustrates the normal glucose range to find out
whether the patient's levels have been within this normal range or not [Tufte, 2006, p. 47]. These
sparklines could thus be embedded within the lengthy text, with Tufte defining them as 

sparklines—small, high-resolution graphics usually embedded in a full context of
words, number, images. Sparklines are datawords: data-intense, design-simple, word-
sized graphics

[Tufte, 2006, p. 47]

So similar to Galileo's method of integrating text and drawings, sparklines can be part of a sentence in
the text or table. They also adopt the idea of small multiples (used widely include dance notation as we
have seen earlier), so that, while within each sparkline the same data encoding and structure is used to
represent the values of a set of variables (like letters in a word), different sparklines can be used to
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represent different same-structured concepts whose details would be represented within the sparklines
(like words in a sentence). In this way, once the data encoding mechanism is learned, any number of
sparklines with the same structure can rapidly and effortlessly be analysed by just comparing the
graphics. Like other displays using small multiples, sparklines also ensure data transparency and avoid
confounding complex displays that combine the data into one complex graphic. So besides the glucose
level, the doctors might want to check other variables and sparklines as in 

[Tufte, 2006, p. 47]

can facilitate analysis and comparisons. In other cases, a magnified view of a section of a sparkline can
be illustrated using another sparkline as in 

[Tufte, 2006, p. 50]

illustrating some measure of performance over time.

C.3.4 Ware's View

Similar to Tufte, Ware recommends (as one of his guidelines) to 

Place explanatory text as close as possible to the related parts of a diagram, and use a
graphical linking method.

[Ware, 2012, p. 333—G9.5]

to ensure cognitive efficiency, but claims that due to printing restrictions, this is not always possible. To
justify his guideline [Ware, 2012, p. 333—G9.5], he points out a study [Chandler and Sweller, 1991]
that demonstrated improved comprehension when text was integrated with the diagram (as in
Figure C.11), in contrast to when the text and the diagram were segregated. The diagram represented an
electrical system and the text provided instructions on how to run a test with this system. Consistent
with previous work [Sweller et al., 1990, 1998], the authors argue that, since an integration of the text
and the diagram was required for the subjects to understand and recall the test procedure, those with the
text and the diagram segregated had to mentally integrate the two, leading to a cognitive overload due to
the limited capacity of the working memory. In contrast, those with the text integrated with the diagram,
did not have to retain much information in the working memory since the integration was already
available. When, on the other hand, the text and the diagram did not necessarily have to be mentally
integrated to be understood, no improvement was reported for text integrated with the diagram in
comparison with text and diagram segregated. So it is likely that attention is devoted to just one of the
representation (the text or the diagram) when the two are segregated. Thus, Sweller who devised the
cognitive load theory advises that:
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The cognitive effort required to mentally integrate disparate sources of information can
be reduced or eliminated by physically integrating the various entities.

[Sweller, 1994, p. 302]

Figure C.11: Instructional text integrated with a diagram of an electrical system to illustrate how to
run a test using the system. In Chandler and Sweller's [Chandler and Sweller, 1991] first experiment,
subjects using this visualization performed better than those using segregated text and diagram. Source:
[Chandler and Sweller, 1991]—Figure 2

Ware argues that a narrative must direct and maintain the audience's attention and this is possible
using language or visualization or both depending on what the narrative should communicate [Ware,
2008, pp. 129-45]:

Language can convey complex logical relationship between abstract ideas and support
conditional actions. Visual media can support the perception of almost instantaneous
scene gist, rapid explorations of spatial structure and relationships between objects, as
well as emotions and motivations.

[Ware, 2008, p. 145]

He also ranked visualization techniques based on their cognitive strength to control the audience's
attention, starting off from the most power techniques: movies and animated cartoons, strip cartoons,
diagrams including pictures and photographs. Ware explains that the narrative of a diagram is not so
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easily understood and readers "must actively discover the narrative in a diagram of still images" [Ware,
2008, p. 145]. Thus Tufte's emphasis to use words with graphics [Tufte, 2001] and a reason why textual
instructions influence the way we look at pictures [Gould, 1976]. However, care is required to avoid
unnecessary redundant text which could make the visualization cluttered and confusing [Tufte, 1990,
2001] and an example where this is particularly applicable is in diagrams in instruction manuals
explaining how to assemble products for instance, furniture or appliances. 

The cognitive process in using such assembling manuals has been studied and after experimentation
using different representations, cognitive principles to design effective diagrammatic instructions for
assembling furniture have been proposed, tested and integrated into an algorithm to automatically
generate these instructions (e.g., Figure C.12) [Heiser et al., 2004]. Some fundamental principles
included: ensuring transparency in the sequence of actions and consistency so readers can easily see the
link between the frames (and similar to frames in a strip cartoon, one storyline is perceived); choosing
an appropriate view point such that all parts are clearly visible and recognizable; showing the
assembling actions rather than the final structure after the actions are carried out (in their
experimentation, the authors demonstrated that diagrams showing actions rather than structural are
easier to follow; such actions are visible in Figure C.12 where arrows and dotted lines are used to show
direction and placement). Hence, in this case, words are not really necessary and most of information
and actions can effectively be represented graphically using such principles. Ware [2008] notes that
these assembling diagrams provide assistance for two different cognitive styles, namely, the narrative
style where the reader carries out the sequence of steps as instructed and the exploratory style where the
reader refers to different parts of the diagrams in no specific order and at any time to figure out the parts
and how they should be assembled. If a video is used instead of the diagram, the exploratory style
would not be supported as navigation through the sequence would not be practical. 

Figure C.12: Automatically generated diagrammatic instructions to assemble furniture. The cognitive
design principles which Heiser et al. proposed and validated, have been integrated into an algorithm to
automatically generate effective diagrammatic assembly instructions such as these. This diagram is an action
diagram and not a structural diagram as it illustrates actions rather than the final structure at each step.
Source: [Heiser et al., 2004]—Figure 7
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C.3.5 In Journalism and Mass Communication

Visualizations are often used when reporting news events or stories. A study reported that articles with a
visualization attract more readers and facilitate recall and comprehension, particularly when the
visualization is large as readers read more of the story [Huh, 1993]. Other studies investigated how
readers understand and use visualizations. For instance, a study [Pasternack and Utt, 1990] suggests that
dominant graphics are often read before the title or text of the article, while smaller and less attractive
graphics are read afterwards. However, the graphics were referred to mainly for content rather than just
appearance. Some readers read the graphics first in preparation for the story in the text, others refer to
them after reading the text as additional material, while other get all the information by just looking at
the visualization. Thus, the authors argue that information should be provided in the visualization, but
content in the article should not be repeated in the graphics. 

However, other studies in journalism and mass communication suggest that graphics that provide
information that is also in the text aids readers' comprehension of the story. For instance, when
reporting foreign news, a map showing the location of the incident [Griffin and Stevenson, 1992] as
well as a graphic with background information about the referenced country [Griffin and Stevenson,
1994b], which information would also be provided within the story, help readers' understanding of the
context of the event (some of these graphical features, including the map locator and a list of important
facts in the story, are visible in Figure C.13). Also, the retention of statistical information related to a
story is improved when the statistics are provided in both the text of the article and in a graphic [Griffin
and Stevenson, 1996]. Visualizations known as 'how graphics' (e.g., Figure C.13) are often used in news
articles to illustrate how events in the story unfolded. A study demonstrates that articles with both a
'how graphic' and a photo are the most effective in conveying stories followed by articles with just a
'how graphic' (when compared with articles with no visualizations or articles with just a photo and when
the information provided by the graphics was also available in the text) [Stark and Hollander, 1990].
Another study recorded an improvement in recall when a 'how graphic' was provided with the text
(again the information in graphic was also provided in the text) in contrast to text alone [Griffin and
Stevenson, 1994a]. However, it was shown that though graphics that illustrate information that is
already in the text facilitates understanding and improves recall, they detract the reader from
information that is only provided in the text and not in the graphics [Ramaprasad, 1991]. Thus,
providing the same information in both the graphics and the text is beneficial, but if the information
cannot be provided in both, then it is best to place in the information in the text rather than the graphic.
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Figure C.13: A 'how graphic' published by the Daily Mail. This "how graphic" illustrates how events
unfolded during the mass shooting in Sandy Hook Elementary School in Newton, CT, USA on December 14,
2012. Some important facts about the story are displayed on the right. Source: [Bates and Peterson, 2012]

General reading behaviour assumptions have been outlined [Kress and van Leeuwen, 2006] and eye-
tracking measurements were later used to investigate how many of these assumptions can be confirmed
when reading a newspaper [Holsanova et al., 2006]. For instance, the eye-tracking measurements
confirmed that readers often read the top of the page first and then the bottom, as it is often assumed that
the most general information is at the top while the most detailed information is at the bottom
[Holsanova et al., 2006]. Also, headlines and pictures are the first items that are looked at and items
connected with lines, arrows or other framing mechanism are traced.

C.3.6 Storytelling

Often visualizations have a story to tell. They typically have a goal and an answer to a question in a
particularly context, so that the context gives meaning to the presented data [Shapiro, 2004]. Thus,
Shapiro [2004, p. 16] claims, "Question + Visual Data + Context = Story". The context must be clear
and integrating text with the diagram can help. Example, the text at the top of Minard's [1869] flow map
(Figure C.8) informs the reader what the presented data is all about and how the data was encoded. 

Glassner [2004] focuses on the "bond" between the storyteller and the audience stating that the
"essence of the bond between creator and audience is trust" [Glassner, 2004, p. 93] and the need to
engage the reader. Both trust and engagement are important for information visualization. The audience
has to trust the creator of the information visualization in that the presented information is correct, is in
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the right context and is meant to inform rather than manipulate. The creator in turn must trust the reader
to make appropriate use of the information and must ensure that the visualization is correct, appropriate
and engaging for the information to be communicated effectively.

Engagement is particularly important when raising public aware of important issues. Hans Rosling,
the co-founder of the award winning Gapminder [2013] for its visualizations, told the story (in around 4
minutes) of how wealth (based on earnings) and health (based on lifespan) in 200 countries changed
over 200 years using both animated charts and spoken narrative to inform his audience about the
relevant statistical data [Rosling, 2010]. Similarly, information designer Morelli managed to raise
awareness of everyday water consumption from food (also known as virtual water, that is water that is
used in the production of food as well as goods) through the use of visual displays, storytelling (in the
form of written narrative) and interaction (allowing the readers to scroll through the story at their own
pace), and which she refers to as an 'infographic story' [2012a] (accompanying webpage [Morelli,
2013]). Referring to how she got the public's attention when giving talks on the topic before she created
the 'infographic story', Morelli stated: 

I discovered the power of words when they are in synch with strong images … I
experienced the power of telling stories and I felt that this power does not lie simply in
embedding diagrams or charts in a larger body of text but it lies in using a visual
platform as a stage—a stage where words and images dance in sync in order to guide
the audience through a journey.

[Morelli, 2012b]

She also emphasized the need not to overload the audience with too much details and to make sure that
at the end they get the main message. Following these ideas, she then created the 'infographic story' on
virtual water [2012a], which is currently being supported by the United Nations Regional Information
Centre for Western Europe (2013 being the International Year of Water Coorperation). 

In some cases, using stories that people can relate to can help to effectively convey the message.
Analogies have been used extensively both as a cognitive tool [Hesse, 1966; Holyoak and Thagard,
1995] and as a teaching aid (e.g., for statistics [Martin, 2003], mathematics [Novick and Holyoak, 1991]
and science [Donnelly and McDaniel, 1993; Treagust et al., 1992]) with studies suggesting their
effectiveness when, for instance, analogies based on prior knowledge are used to learn new material
(e.g., [Schustack and Anderson, 1979; Wharton et al., 1994]), when new problems are solved by
referring to previously solved similarly structured problems (e.g., [Quilici and Mayer, 1996; Renkl et
al., 1998]), when the learner has little background knowledge about the material taught (e.g., when
teaching science [Donnelly and McDaniel, 1993]), or when the analogy is used to aid learners develop
their own knowledge of a new concept (e.g., [Treagust et al., 1992]).

However, an analogy without a visualization might not always be so helpful. No knowledge in
calculus or climatology is needed to understand the link between global warming and increased carbon
emission [Sterman and Sweeney, 2007] (i.e., since the rate of carbon emission in the atmosphere is
faster than the drainage rate, carbon will accumulate and warm up Earth) as this issue is analogous to a
bathtub with running tap water and an open drain [Archer, 2009; Sterman and Sweeney, 2007; Sterman,
2011]. Even so, highly educated people lack intuition about such dynamic systems be it the climate
[Sterman and Sweeney, 2007] or simpler systems such as a bathtub and bank accounts [Cronin et al.,
2009; Sterman, 2002; Sweeney and Sterman, 2000]. This is due to human cognitive limitations which
impede us from understanding long term consequences and from reasoning about flows and
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accumulations that change over time and space [Sterman, 1994, 2008, 2011]. Nonetheless, studies in
various contexts such as the 'war on drugs' and automobile leasing [Sterman, 2000a, b, c] suggest that a
picture of a bathtub with a tap and a drain can illustrate the presence of accumulations and clearly
demonstrate the relationship between these accumulations and the flow [Sterman, 2010]. This would
thus provide a visual analogy that is highly compatible with the verbal information and so, aid readers
to process, understand and internalize the presented information [Ziemkiewicz and Kosara, 2008]. This
led Sterman [2011] to propose pictures of bathtubs as a possible effective way to inform the public
about the gravity of the issue and raise awareness of climate change. National geographic took up this
concept and employed information designer Nigel Holmes [2013] (well-known for his graphic designs
to convey information to laymen ) to create a graphic of this bathtub analogy and tell the story about the
relationship of carbon emission and global warning (Figure C.14). 

Figure C.14: The Carbon Bathtub published by the National Geographic Magazine to explain global
warming due to carbon emission. "It's simple, really: As long as we pour CO2 into the atmosphere faster
than nature drains it out, the planet warms. And that extra carbon takes a long time to drain out of the tub."
[National Geographic, 2009]. Created by Holmes and the Global Carbon Project, to convey scientific facts to
the public and to raise awareness of the gravity of the problem. Source: [National Geographic, 2009]

Morelli used a variety of analogies when designing the illustrations of Tony Allan's book 'Virtual
Water' [Allan, 2011]. Tony Allan is well-known for his expertise in sustainable water development and
his contributions in communicating related issues to the general public, and this book was another of the
latter contributions. For instance, Morelli used water filled bathtubs to demonstrate the litres of water
that are consumed daily by a non-vegetarian (Figure C.15). The readers would have definitely seen a
bathtub before and thus, they can relate to it and better understand the quantities of water the author is
talking about. 
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Figure C.15: Using water filled bathtubs to help readers understand how much 5,000 litres of water is
in Tony Allan's book, 'Virtual Water' [2011]. This graphic was designed by Angela Morelli to demonstrate
that 5,000 litres of water consumed in a non-vegetarian diet daily is equivalent to 15 water filled bathtubs. It
might be hard to understand how much 5,000 litres of water is, but not in the context of bathtubs which all
readers have seen before. Source: [Allan, 2011]—Figure 1.2

A story can express 

great quantities of information in relatively few words in a format that is easily
assimilated by the listener or viewer. People usually find it easier to understand
information integrated into stories than information spelled out in serial lists (such as
bulleted items in an overhead slide). Stories are also just more compelling. 

[Gershon and Page, 2001]

In fact, they are used in various contexts (including, for instance, in organizations to transfer knowledge
[Dennehy, 2001; Sole and Wilson, 2002]). After all, "Knowledge is Stories" [Schank, 1990, p. 1].
However, similar to Ware's argument about narrative (Appendix C.3.4), both visualizations and
language can be used to communicate a message and a story. Visualizations are more engaging than text
[Gershon and Page, 2001] and in cases such as instruction manuals showing the required actions to, for
instance, assemble a furniture, pictures with just numbers could be enough (e.g., Figure C.12). But in
most other cases, visualizations alone cannot tell all the story, particularly since the context must be
clear for the visualization to have a meaning [Shapiro, 2004]. So, it is sensible to tell the story by using
both text and graphics [Gershon and Page, 2001]. However, since information visualization visualizes
abstract concepts, appropriate analogies and "visual metaphors", such as the bathtub used in both
National Geographic's graphic on global warming (Figure C.14) and similar bathtubs used by Morelli to
illustrate quantities of water (Figure C.15), should be identified and used [Gershon and Eick, 1995;
Gershon and Page, 2001, p. 33] (this has also been studied for advertising [Forceville, 2002]).

To convey a story using visualizations, a number of storytelling techniques should be considered
[Gershon and Page, 2001] (see also [Gershon and Eick, 1995; Pinker, 1994; Schank, 1990]), such as:
clearly illustrating the big picture, the context and the setting; providing a sense of continuity between
different visualizations in the story-line; providing magnified views to avoid ambiguities; using
redundancy effectively to help the reader link text to the pictures [Gershon and Page, 2001]. Some of
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these storytelling techniques actually overlap with previously discussed principles such as Tufte's
'text⧸graphic⧸table integration' principle [Tufte, 2001] (Appendix C.3.2), the cognitive priniciples
defined to create effective instruction manuals to assemble goods [Heiser et al., 2004] (Appendix C.3.4),
and the techniques used in journalism and mass communication (Appendix C.3.5). 

Segel and Heer [2010] provide a general and thorough review of how stories can be related through
information visualization. They argue that the readers do not get to know the story from just the details
provided by the authors of the visualization, but more than that the readers often attempt to actively
explore and discover more about the story. Thus, the need for interactive visualizations to facilitate this
exploration. Segel and Heer analysed and classified the design features of various visualizations that
relate a story in areas such as budget predictions, reporting of war events and discovery of trends in
human development (e.g., Gapminder's [2013] interactive visualizations), and defined a framework of
design strategies that creates effective storytelling visualizations. However, they conclude that "there is
much that remains to be understood" [Segel and Heer, 2010].

Designing engaging visualizations that are able to attract the reader's attention and effectively
convey information to a wide, diverse audience in a concise but informative manner is challenging. It
requires designers to blend "the skills of computer science, statistics, artistic design and storytelling"
[Cukier, 2010] to provide "readers material that is worthy of their scan that makes them stop scanning
and start reading." [Garcia and Stark, 1991].

C.4 Euler-Like Diagrams with Glyphs

Closed curves are sometimes drawn around elements in a diagram to visualize the data set membership
of elements and relationships between the data sets. Such a visualization would be similar to an Euler
diagram with glyphs. 

Different irregular curves are used to visualize the groups including rounded rectangles as in
ComED and DupED [Riche and Dwyer, 2010] (e.g., Figure C.16A), smooth irregular curves as in Set
Visualiser [Wyatt et al., 2009; Wyatt, 2010] (e.g., Figure C.16B) or non-smooth irregular curves
[Simonetto et al., 2009] (e.g., Figure C.16C).

C.4 Euler-Like Diagrams with Glyphs | 330



A

B C

Figure C.16: Examples of not area-proportional Euler-like diagrams with glyphs to represent data set
membership of elements and their relationships. (A) Generated using ComED (left) and DupED (right).
The diagram represents relationships in a social network. Source: [Riche and Dwyer, 2010]—Figure 1.
(B) Generated using Set Visualiser. The diagram represents relationships between 'Fruit' (blue curve),
'Things that are green' (green curve), 'Vegetables' (purple curve) and'Things that are red' (red curve) and
notes disjointness of these data set with the set 'Great Pyramid at Giza' (grey label on the left but no curve).
Source: [Wyatt, 2010]. (C) Generated using Simonetto et al.'s technique. The diagram represents
relationships between world monuments (red curve), Italian culture (green curve) and French culture (blue
curve). Source: [Simonetto et al., 2009]—Figure 1.
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