1,182 research outputs found

    Why (and How) Networks Should Run Themselves

    Full text link
    The proliferation of networked devices, systems, and applications that we depend on every day makes managing networks more important than ever. The increasing security, availability, and performance demands of these applications suggest that these increasingly difficult network management problems be solved in real time, across a complex web of interacting protocols and systems. Alas, just as the importance of network management has increased, the network has grown so complex that it is seemingly unmanageable. In this new era, network management requires a fundamentally new approach. Instead of optimizations based on closed-form analysis of individual protocols, network operators need data-driven, machine-learning-based models of end-to-end and application performance based on high-level policy goals and a holistic view of the underlying components. Instead of anomaly detection algorithms that operate on offline analysis of network traces, operators need classification and detection algorithms that can make real-time, closed-loop decisions. Networks should learn to drive themselves. This paper explores this concept, discussing how we might attain this ambitious goal by more closely coupling measurement with real-time control and by relying on learning for inference and prediction about a networked application or system, as opposed to closed-form analysis of individual protocols

    Performance-Aware Speculative Resource Oversubscription for Large-Scale Clusters

    Get PDF
    It is a long-standing challenge to achieve a high degree of resource utilization in cluster scheduling. Resource oversubscription has become a common practice in improving resource utilization and cost reduction. However, current centralized approaches to oversubscription suffer from the issue with resource mismatch and fail to take into account other performance requirements, e.g., tail latency. In this article we present ROSE, a new resource management platform capable of conducting performance-aware resource oversubscription. ROSE allows latency-sensitive long-running applications (LRAs) to co-exist with computation-intensive batch jobs. Instead of waiting for resource allocation to be confirmed by the centralized scheduler, job managers in ROSE can independently request to launch speculative tasks within specific machines according to their suitability for oversubscription. Node agents of those machines can however, avoid any excessive resource oversubscription by means of a mechanism for admission control using multi-resource threshold control and performance-aware resource throttle. Experiments show that in case of mixed co-location of batch jobs and latency-sensitive LRAs, the CPU utilization and the disk utilization can reach 56.34 and 43.49 percent, respectively, but the 95th percentile of read latency in YCSB workloads only increases by 5.4 percent against the case of executing the LRAs alone

    A Taxonomy of Data Grids for Distributed Data Sharing, Management and Processing

    Full text link
    Data Grids have been adopted as the platform for scientific communities that need to share, access, transport, process and manage large data collections distributed worldwide. They combine high-end computing technologies with high-performance networking and wide-area storage management techniques. In this paper, we discuss the key concepts behind Data Grids and compare them with other data sharing and distribution paradigms such as content delivery networks, peer-to-peer networks and distributed databases. We then provide comprehensive taxonomies that cover various aspects of architecture, data transportation, data replication and resource allocation and scheduling. Finally, we map the proposed taxonomy to various Data Grid systems not only to validate the taxonomy but also to identify areas for future exploration. Through this taxonomy, we aim to categorise existing systems to better understand their goals and their methodology. This would help evaluate their applicability for solving similar problems. This taxonomy also provides a "gap analysis" of this area through which researchers can potentially identify new issues for investigation. Finally, we hope that the proposed taxonomy and mapping also helps to provide an easy way for new practitioners to understand this complex area of research.Comment: 46 pages, 16 figures, Technical Repor

    A Survey of Performance Optimization for Mobile Applications

    Get PDF
    Nowadays there is a mobile application for almost everything a user may think of, ranging from paying bills and gathering information to playing games and watching movies. In order to ensure user satisfaction and success of applications, it is important to provide high performant applications. This is particularly important for resource constraint systems such as mobile devices. Thereby, non-functional performance characteristics, such as energy and memory consumption, play an important role for user satisfaction. This paper provides a comprehensive survey of non-functional performance optimization for Android applications. We collected 155 unique publications, published between 2008 and 2020, that focus on the optimization of non-functional performance of mobile applications. We target our search at four performance characteristics, in particular: responsiveness, launch time, memory and energy consumption. For each performance characteristic, we categorize optimization approaches based on the method used in the corresponding publications. Furthermore, we identify research gaps in the literature for future work

    Blocking online advertising - a state of the art

    Get PDF
    Online advertising has emerged as one of the major business models on the Internet. Publishers rely on the online revenue generated from advertising to offer many free services. However it has become evident that online advertisements are now becoming quite intrusive and also consume a lot of valuable bandwidth to download zero-caching ads and flash or video ads. The main contribution of this paper is as follows; it attempts to identify the main reasons why internet users want to block online ads, it also critically evaluates several existing ad-blocking techniques and conducts an experiment to measure the amount of bandwidth used by online advertisements relative to the actual content. Near the end of the paper a brief discussion on probable future researches open a vast new region to be explored

    Decentralized provenance-aware publishing with nanopublications

    Get PDF
    Publication and archival of scientific results is still commonly considered the responsability of classical publishing companies. Classical forms of publishing, however, which center around printed narrative articles, no longer seem well-suited in the digital age. In particular, there exist currently no efficient, reliable, and agreed-upon methods for publishing scientific datasets, which have become increasingly important for science. In this article, we propose to design scientific data publishing as a web-based bottom-up process, without top-down control of central authorities such as publishing companies. Based on a novel combination of existing concepts and technologies, we present a server network to decentrally store and archive data in the form of nanopublications, an RDF-based format to represent scientific data. We show how this approach allows researchers to publish, retrieve, verify, and recombine datasets of nanopublications in a reliable and trustworthy manner, and we argue that this architecture could be used as a low-level data publication layer to serve the Semantic Web in general. Our evaluation of the current network shows that this system is efficient and reliable

    Reducing Internet Latency : A Survey of Techniques and their Merit

    Get PDF
    Bob Briscoe, Anna Brunstrom, Andreas Petlund, David Hayes, David Ros, Ing-Jyh Tsang, Stein Gjessing, Gorry Fairhurst, Carsten Griwodz, Michael WelzlPeer reviewedPreprin
    corecore