547 research outputs found

    Dependable Embedded Systems

    Get PDF
    This Open Access book introduces readers to many new techniques for enhancing and optimizing reliability in embedded systems, which have emerged particularly within the last five years. This book introduces the most prominent reliability concerns from today’s points of view and roughly recapitulates the progress in the community so far. Unlike other books that focus on a single abstraction level such circuit level or system level alone, the focus of this book is to deal with the different reliability challenges across different levels starting from the physical level all the way to the system level (cross-layer approaches). The book aims at demonstrating how new hardware/software co-design solution can be proposed to ef-fectively mitigate reliability degradation such as transistor aging, processor variation, temperature effects, soft errors, etc. Provides readers with latest insights into novel, cross-layer methods and models with respect to dependability of embedded systems; Describes cross-layer approaches that can leverage reliability through techniques that are pro-actively designed with respect to techniques at other layers; Explains run-time adaptation and concepts/means of self-organization, in order to achieve error resiliency in complex, future many core systems

    Flexible error handling for embedded real time systems

    Get PDF
    Due to advancements of semiconductor fabrication that lead to shrinking geometries and lowered supply voltages of semiconductor devices, transient fault rates will increase significantly for future semiconductor generations [Int13]. To cope with transient faults, error detection and correction is mandatory. However, additional resources are required for their implementation. This is a serious problem in embedded systems development since embedded systems possess only a limited number of resources, like processing time, memory, and energy. To cope with this problem, a software-based flexible error handling approach is proposed in this dissertation. The goal of flexible error handling is to decide if, how, and when errors have to be corrected. By applying this approach, deadline misses will be reduced by up to 97% for the considered video decoding benchmark. Furthermore, it will be shown that the approach is able to cope with very high error rates of nearly 50 errors per second

    Reliable Software for Unreliable Hardware - A Cross-Layer Approach

    Get PDF
    A novel cross-layer reliability analysis, modeling, and optimization approach is proposed in this thesis that leverages multiple layers in the system design abstraction (i.e. hardware, compiler, system software, and application program) to exploit the available reliability enhancing potential at each system layer and to exchange this information across multiple system layers

    Optimized Visual Internet of Things in Video Processing for Video Streaming

    Get PDF
    The global expansion of the Visual Internet of Things (VIoT) has enabled various new applications during the last decade through the interconnection of a wide range of devices and sensors.Frame freezing and buffering are the major artefacts in broad area of multimedia networking applications occurring due to significant packet loss and network congestion. Numerous studies have been carried out in order to understand the impact of packet loss on QoE for a wide range of applications. This paper improves the video streaming quality by using the proposed framework Lossy Video Transmission (LVT)  for simulating the effect of network congestion on the performance of  encrypted static images sent over wireless sensor networks.The simulations are intended for analysing video quality and determining packet drop resilience during video conversations.The assessment of emerging trends in quality measurement, including picture preference, visual attention, and audio visual quality is checked. To appropriately quantify the video quality loss caused by the encoding system, various encoders compress video sequences at various data rates.Simulation results for different QoE metrics with respect to user developed videos have been demonstrated which outperforms the existing metrics

    Self-adaptivity of applications on network on chip multiprocessors: the case of fault-tolerant Kahn process networks

    Get PDF
    Technology scaling accompanied with higher operating frequencies and the ability to integrate more functionality in the same chip has been the driving force behind delivering higher performance computing systems at lower costs. Embedded computing systems, which have been riding the same wave of success, have evolved into complex architectures encompassing a high number of cores interconnected by an on-chip network (usually identified as Multiprocessor System-on-Chip). However these trends are hindered by issues that arise as technology scaling continues towards deep submicron scales. Firstly, growing complexity of these systems and the variability introduced by process technologies make it ever harder to perform a thorough optimization of the system at design time. Secondly, designers are faced with a reliability wall that emerges as age-related degradation reduces the lifetime of transistors, and as the probability of defects escaping post-manufacturing testing is increased. In this thesis, we take on these challenges within the context of streaming applications running in network-on-chip based parallel (not necessarily homogeneous) systems-on-chip that adopt the no-remote memory access model. In particular, this thesis tackles two main problems: (1) fault-aware online task remapping, (2) application-level self-adaptation for quality management. For the former, by viewing fault tolerance as a self-adaptation aspect, we adopt a cross-layer approach that aims at graceful performance degradation by addressing permanent faults in processing elements mostly at system-level, in particular by exploiting redundancy available in multi-core platforms. We propose an optimal solution based on an integer linear programming formulation (suitable for design time adoption) as well as heuristic-based solutions to be used at run-time. We assess the impact of our approach on the lifetime reliability. We propose two recovery schemes based on a checkpoint-and-rollback and a rollforward technique. For the latter, we propose two variants of a monitor-controller- adapter loop that adapts application-level parameters to meet performance goals. We demonstrate not only that fault tolerance and self-adaptivity can be achieved in embedded platforms, but also that it can be done without incurring large overheads. In addressing these problems, we present techniques which have been realized (depending on their characteristics) in the form of a design tool, a run-time library or a hardware core to be added to the basic architecture

    Embracing Visual Experience and Data Knowledge: Efficient Embedded Memory Design for Big Videos and Deep Learning

    Get PDF
    Energy efficient memory designs are becoming increasingly important, especially for applications related to mobile video technology and machine learning. The growing popularity of smart phones, tablets and other mobile devices has created an exponential demand for video applications in today?s society. When mobile devices display video, the embedded video memory within the device consumes a large amount of the total system power. This issue has created the need to introduce power-quality tradeoff techniques for enabling good quality video output, while simultaneously enabling power consumption reduction. Similarly, power efficiency issues have arisen within the area of machine learning, especially with applications requiring large and fast computation, such as neural networks. Using the accumulated data knowledge from various machine learning applications, there is now the potential to create more intelligent memory with the capability for optimized trade-off between energy efficiency, area overhead, and classification accuracy on the learning systems. In this dissertation, a review of recently completed works involving video and machine learning memories will be covered. Based on the collected results from a variety of different methods, including: subjective trials, discovered data-mining patterns, software simulations, and hardware power and performance tests, the presented memories provide novel ways to significantly enhance power efficiency for future memory devices. An overview of related works, especially the relevant state-of-the-art research, will be referenced for comparison in order to produce memory design methodologies that exhibit optimal quality, low implementation overhead, and maximum power efficiency.National Science FoundationND EPSCoRCenter for Computationally Assisted Science and Technology (CCAST

    A survey of cross-layer power-reliability tradeoffs in multi and many core systems-on-chip

    Full text link
    As systems-on-chip increase in complexity, the underlying technology presents us with significant challenges due to increased power consumption as well as decreased reliability. Today, designers must consider building systems that achieve the requisite functionality and performance using components that may be unreliable. In order to do so, it is crucial to understand the close interplay between the different layers of a system: technology, platform, and application. This will enable the most general tradeoff exploration, reaping the most benefits in power, performance and reliability. This paper surveys various cross layer techniques and approaches for power, performance, and reliability tradeoffs are technology, circuit, architecture and application layers. © 2013 Elsevier B.V. All rights reserved

    Content-Aware Multimedia Communications

    Get PDF
    The demands for fast, economic and reliable dissemination of multimedia information are steadily growing within our society. While people and economy increasingly rely on communication technologies, engineers still struggle with their growing complexity. Complexity in multimedia communication originates from several sources. The most prominent is the unreliability of packet networks like the Internet. Recent advances in scheduling and error control mechanisms for streaming protocols have shown that the quality and robustness of multimedia delivery can be improved significantly when protocols are aware of the content they deliver. However, the proposed mechanisms require close cooperation between transport systems and application layers which increases the overall system complexity. Current approaches also require expensive metrics and focus on special encoding formats only. A general and efficient model is missing so far. This thesis presents efficient and format-independent solutions to support cross-layer coordination in system architectures. In particular, the first contribution of this work is a generic dependency model that enables transport layers to access content-specific properties of media streams, such as dependencies between data units and their importance. The second contribution is the design of a programming model for streaming communication and its implementation as a middleware architecture. The programming model hides the complexity of protocol stacks behind simple programming abstractions, but exposes cross-layer control and monitoring options to application programmers. For example, our interfaces allow programmers to choose appropriate failure semantics at design time while they can refine error protection and visibility of low-level errors at run-time. Based on some examples we show how our middleware simplifies the integration of stream-based communication into large-scale application architectures. An important result of this work is that despite cross-layer cooperation, neither application nor transport protocol designers experience an increase in complexity. Application programmers can even reuse existing streaming protocols which effectively increases system robustness.Der Bedarf unsere Gesellschaft nach kostengünstiger und zuverlässiger Kommunikation wächst stetig. Während wir uns selbst immer mehr von modernen Kommunikationstechnologien abhängig machen, müssen die Ingenieure dieser Technologien sowohl den Bedarf nach schneller Einführung neuer Produkte befriedigen als auch die wachsende Komplexität der Systeme beherrschen. Gerade die Übertragung multimedialer Inhalte wie Video und Audiodaten ist nicht trivial. Einer der prominentesten Gründe dafür ist die Unzuverlässigkeit heutiger Netzwerke, wie z.B.~dem Internet. Paketverluste und schwankende Laufzeiten können die Darstellungsqualität massiv beeinträchtigen. Wie jüngste Entwicklungen im Bereich der Streaming-Protokolle zeigen, sind jedoch Qualität und Robustheit der Übertragung effizient kontrollierbar, wenn Streamingprotokolle Informationen über den Inhalt der transportierten Daten ausnutzen. Existierende Ansätze, die den Inhalt von Multimediadatenströmen beschreiben, sind allerdings meist auf einzelne Kompressionsverfahren spezialisiert und verwenden berechnungsintensive Metriken. Das reduziert ihren praktischen Nutzen deutlich. Außerdem erfordert der Informationsaustausch eine enge Kooperation zwischen Applikationen und Transportschichten. Da allerdings die Schnittstellen aktueller Systemarchitekturen nicht darauf vorbereitet sind, müssen entweder die Schnittstellen erweitert oder alternative Architekturkonzepte geschaffen werden. Die Gefahr beider Varianten ist jedoch, dass sich die Komplexität eines Systems dadurch weiter erhöhen kann. Das zentrale Ziel dieser Dissertation ist es deshalb, schichtenübergreifende Koordination bei gleichzeitiger Reduzierung der Komplexität zu erreichen. Hier leistet die Arbeit zwei Beträge zum aktuellen Stand der Forschung. Erstens definiert sie ein universelles Modell zur Beschreibung von Inhaltsattributen, wie Wichtigkeiten und Abhängigkeitsbeziehungen innerhalb eines Datenstroms. Transportschichten können dieses Wissen zur effizienten Fehlerkontrolle verwenden. Zweitens beschreibt die Arbeit das Noja Programmiermodell für multimediale Middleware. Noja definiert Abstraktionen zur Übertragung und Kontrolle multimedialer Ströme, die die Koordination von Streamingprotokollen mit Applikationen ermöglichen. Zum Beispiel können Programmierer geeignete Fehlersemantiken und Kommunikationstopologien auswählen und den konkreten Fehlerschutz dann zur Laufzeit verfeinern und kontrolliere
    • …
    corecore