
Self-adaptivity of Applications on
Network on Chip Multiprocessors

The Case of Fault-tolerant Kahn Process Networks

Doctoral Dissertation submitted to the

Faculty of Informatics of the Università della Svizzera Italiana

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

presented by

Onur Derin

under the supervision of

Prof. Mariagiovanna Sami

May 2015

Dissertation Committee

Prof. Matthias Hauswirth Università della Svizzera italiana, Lugano, Switzerland
Prof. Dr. Miroslaw Malek Università della Svizzera italiana, Lugano, Switzerland
Prof. Fernando Pedone Università della Svizzera italiana, Lugano, Switzerland
Prof. Dr. Peter Marwedel Technische Universität Dortmund, Dortmund, Germany

Dissertation accepted on 19 May 2015

Research Advisor PhD Program Director

Prof. Mariagiovanna Sami Prof. Igor Pivkin

i

I certify that except where due acknowledgement has been given, the work
presented in this thesis is that of the author alone; the work has not been submit-
ted previously, in whole or in part, to qualify for any other academic award; and
the content of the thesis is the result of work which has been carried out since
the official commencement date of the approved research program.

Onur Derin
Lugano, 19 May 2015

ii

To my family

iii

iv

The way to succeed is to double
your failure rate.

Thomas J. Watson

v

vi

Abstract

Technology scaling accompanied with higher operating frequencies and the abil-
ity to integrate more functionality in the same chip has been the driving force
behind delivering higher performance computing systems at lower costs. Embed-
ded computing systems, which have been riding the same wave of success, have
evolved into complex architectures encompassing a high number of cores inter-
connected by an on-chip network (usually identified as Multiprocessor System-
on-Chip). However these trends are hindered by issues that arise as technology
scaling continues towards deep submicron scales. Firstly, growing complexity
of these systems and the variability introduced by process technologies make it
ever harder to perform a thorough optimization of the system at design time.
Secondly, designers are faced with a reliability wall that emerges as age-related
degradation reduces the lifetime of transistors, and as the probability of defects
escaping post-manufacturing testing is increased.

In this thesis, we take on these challenges within the context of streaming
applications running in network-on-chip based parallel (not necessarily homo-
geneous) systems-on-chip that adopt the no-remote memory access model. In
particular, this thesis tackles two main problems: (1) fault-aware online task
remapping, (2) application-level self-adaptation for quality management. For
the former, by viewing fault tolerance as a self-adaptation aspect, we adopt a
cross-layer approach that aims at graceful performance degradation by address-
ing permanent faults in processing elements mostly at system-level, in particular
by exploiting redundancy available in multi-core platforms. We propose an op-
timal solution based on an integer linear programming formulation (suitable for
design time adoption) as well as heuristic-based solutions to be used at run-time.
We assess the impact of our approach on the lifetime reliability. We propose two
recovery schemes based on a checkpoint-and-rollback and a rollforward tech-
nique. For the latter, we propose two variants of a monitor-controller-adapter
loop that adapts application-level parameters to meet performance goals. We
demonstrate not only that fault tolerance and self-adaptivity can be achieved in
embedded platforms, but also that it can be done without incurring large over-
heads. In addressing these problems, we present techniques which have been
realized (depending on their characteristics) in the form of a design tool, a run-
time library or a hardware core to be added to the basic architecture.

vii

viii

Acknowledgements

I am indebted to numerous people for their support in the creation of this thesis.
First and foremost, this work would not be possible if it was not for the hospitable
environment offered by ALaRI and University of Lugano. For that I am forever
grateful to the administration, in particular, to Prof. Mariagiovanna Sami, Prof.
Miroslaw Malek, Umberto Bondi and the late Prof. Luigi Dadda. Mariagiovanna,
as my research advisor, has provided me with continuous support, guidance and
patience. Not only as a scientist but as a person, her example sets a high standard
to follow for the rest of my life.

I feel privileged to have taken part in the MADNESS Project and I would
like to thank all of its members, in particular Prof. Luigi Raffo, Paolo Meloni,
Giuseppe Tuveri and Sebastiano Pomata (University of Cagliari) for providing the
baseline platform upon which our implementation is built; Prof. Todor Stefanov
and Emanuele Cannella (University of Leiden) for hosting me during my research
visit and HiPEAC Network of Excellence for providing me a collaboration grant.
I would also like to thank the members of my dissertation committee whose
insightful comments helped me to improve this work.

While carrying out the work presented in this thesis, I had the opportunity
to tutor some master of science students enabling me to investigate a variety
of research problems and to offload some of the required engineering effort.
Throughout the years our relationships have evolved into dear friendships. I
hope I have been as impactful in their lives as they have been in mine. In partic-
ular, I would like to thank Deniz Kabakcı for the implementation of remapping
heuristics in C; Karim M. A. Ali for coding of the TMH in VHDL; Poorna C. S.
Alamanda for helping with tedious roll-forward recovery experiments; Prasanth
K. Ramankutty for the implementation of the fuzzy controller and carrying out
extensive experiments; Mariano Perna and Enea Affini for suffering the bugs of
the platform and helping in their identification; Erkan Diken for exploring self-
adaptation with the SACRE-Noxim integration; Katarina Balać and Aleksandra
Jovanović for exploring self-adaptation in the GStreamer framework; and lastly
Erick Amador, Amrit Panda, Yücel Şahin and Sherif El-Wafa for helping me ex-

ix

x

plore other research areas towards the beginning of my studies.
I am also thankful to all of my colleagues at ALaRI, in no particular order,

Leandro, Jelena, Antonio, Alberto, Giovanni, Francesco, Daniela, Katarina, Slo-
bodan, Igor, Rami, Yum, Elisa, Janine, Carola, Luca and Marco for their support,
availability and friendship. Life in Lugano has been even sunnier for me thanks to
some of my friends, of whom I can list only a few: Cumhur, Ali, Korman, Gamze,
Sertuğ, Burcu, Seda, Oktay and Caner. Without their moral support, these years
would have been more difficult and less joyful.

Finally, the process leading to the completion of this thesis was as hard for
my wife, Rana, as it was for me. I cannot thank her enough for being by my
side. My deepest gratitude is to my parents who have lived through this world
by making one not from zero but from minus one.

Contents

Contents xi

List of Figures xv

List of Tables xix

List of Abbreviations xxi

1 Introduction 1
1.1 Motivation . 2

1.1.1 The need for self-adaptation 2
1.1.2 The need for fault tolerance 4

1.2 Research framework . 7
1.2.1 KPN and PPN as the model of computation 9

1.3 Dissertation contributions . 11
1.4 Organization of the dissertation . 13

2 Background and Related Work 15
2.1 Self-adaptive systems . 15

2.1.1 Adaptation coverage . 16
2.1.2 Separation of concerns . 18
2.1.3 Adaptation management . 18
2.1.4 Adaptation requirements specification 19

2.2 MPSoC programming models . 19
2.3 Kahn Process Networks . 22
2.4 Polyhedral Process Networks . 24
2.5 KPN for MPSoCs . 25
2.6 Mapping applications to NoCs . 26
2.7 Task migration . 28
2.8 Fault tolerance . 29

xi

xii Contents

2.8.1 Fault detection . 29
2.8.2 Error recovery . 30
2.8.3 Related fault tolerance approaches in embedded systems . 31
2.8.4 The lifetime reliability aspect 37

2.9 Application-level self-adaptation for quality management 37
2.9.1 Adaptation of application-level parameters 38
2.9.2 Quality management in multimedia systems 39

3 Reference Platform 41
3.1 Architectural support . 41

3.1.1 Message passing support . 43
3.1.2 Inter-processor interrupt generation support 44

3.2 Software/Middleware infrastructure 45
3.2.1 Application model . 46
3.2.2 PPN middleware . 47

3.3 Fault-tolerance support . 50
3.3.1 Fault model . 51
3.3.2 Online self-testing support . 56

4 Fault-aware Online Task Remapping 59
4.1 Contributions with respect to the state of the art 59
4.2 ILP formulation of the mapping problem 64

4.2.1 Minimization of the communication cost 65
4.2.2 Minimization of the total execution time 67
4.2.3 Multi-objective optimization with ILP 68

4.3 OTR: Online task remapping . 69
4.3.1 Optimal task remapping . 69
4.3.2 Center of Gravity heuristic (CoG) 70
4.3.3 Nonidentical Multiprocessor Scheduling (NMS) 72
4.3.4 Localized NMS Heuristic (LNMS) 73

4.4 The reliability aspect . 74
4.4.1 Reliability estimation for online task remapping 74
4.4.2 Reliability estimation for N-modular redundancy 76

4.5 Experimental results . 81
4.5.1 Case study: the MPEG-2 decoder 82
4.5.2 A synthetic task graph . 85
4.5.3 Case studies on the platform 89
4.5.4 Evaluation of the remapping strategies on the platform . . 90
4.5.5 Reliability evaluation . 92

xiii Contents

4.6 Summary . 96

5 Recovery Support in the Fault-aware Run-time Environment 99
5.1 Contributions with respect to the state of the art 99
5.2 CRR: Fine-grained checkpointing and rollback based fault recovery 101

5.2.1 Modifications to the PPN processes 102
5.2.2 Fault-aware remapping support 104
5.2.3 Task migration hardware module 106

5.3 RFR: Roll-forward fault recovery . 108
5.3.1 Task migration hardware module 109
5.3.2 Fault-aware remapping support 110
5.3.3 Modifications to the PPN processes 112

5.4 Experimental results for CRR . 113
5.4.1 Fault recovery time overhead 114
5.4.2 Steady-state performance overhead 115
5.4.3 Architectural support hardware overhead 116

5.5 Experimental results for RFR . 119
5.5.1 Fault recovery time overhead 119
5.5.2 Steady-state performance overhead 121
5.5.3 Architectural support hardware overhead 123

5.6 Summary . 123

6 Application-level Self-adaptation for Quality Management 125
6.1 Contributions with respect to the state of the art 125
6.2 MCA-EB: Self-adaptation with blocking channels 128

6.2.1 Adaptive task . 128
6.2.2 Monitoring task . 130
6.2.3 Controller . 132

6.3 MCA-EI: Self-adaptation using inter-processor interrupts 137
6.4 Case study: Motion JPEG . 140

6.4.1 Self-adaptive M-JPEG with MCA-EB 141
6.4.2 Self-adaptive M-JPEG with MCA-EI 145

6.5 Results for MCA-EB . 145
6.5.1 Bit-rate and frame-rate adaptation tests 147
6.5.2 Fast video vs. slow video . 148
6.5.3 Cost of adaptation . 148

6.6 Comparison of MCA-EB and MCA-EI 150
6.6.1 Adaptation overhead . 150
6.6.2 Control quality . 151

xiv Contents

6.6.3 Adaptation overhead vs. Controller workload 152
6.7 Summary . 153

7 Conclusion and Future Work 155

Bibliography 161

Figures

1.1 Model of a self-adaptive system . 8
1.2 Overview of the proposed self-adaptive and fault-tolerant system 12

2.1 A KPN process with single input and output channels 22
2.2 Example of a PPN (a) and structure of process P2 (b). 24

3.1 A general overview of the baseline tile architecture 42
3.2 Software stack in the reference platform 45
3.3 Example of a streaming application. 46
3.4 Producer-consumer pair with FIFO buffer split over two tiles. . . . 47
3.5 Request-driven inter-tile communication implementation 49
3.6 Pseudocode of the R approach. 49
3.7 Overview of the STM architecture . 57

4.1 A 2× 2 NoC, a simple task graph and a table listing tasks and the
core types capable of executing the tasks (a), and the correspond-
ing fault tree (b) . 76

4.2 Example of a KPN application composed of three software tasks
(a), and a mapping of the example application using the TMR
pattern onto a 3× 3 NoC (b) . 77

4.3 The fault trees corresponding to the mapping in figure 4.2(b) . . . 78
4.4 Tool flow for evaluating the fault-aware online task remapping

with the ILP-based mapper (a) and the reliability estimation with
the genetic algorithm based mapper (b) 81

4.5 An MPEG-2 encoder task graph with 12 tasks (a), and a 3 × 3
mesh-based NoC with RISC and DSP processors (b) 83

4.6 Remapping results for the MPEG2 decoder case study on a 3× 3
heterogeneous platform with a faulty node (n5) 84

4.7 Remapping results for 30 tasks on a 4× 4 homogeneous platform
averaged over 13 initial mappings and 16 single fault scenarios . 86

xv

xvi Figures

4.8 Computation times of the heuristics on the Microblaze processor . 88
4.9 PPN specification of the M-JPEG encoder. 89
4.10 Simplified PPN specification of the H.264 decoder. 90
4.11 Initial mapping and the two single fault scenarios showing all pos-

sible remappings. 91
4.12 Comparison of measured and calculated performance degradation

of all possible remappings when n1 is faulty (a) and when n2 is
faulty (b) as shown in figures 4.11(b) and 4.11(c), respectively. . 92

4.13 Initial mapping and the two single fault scenarios showing all pos-
sible remappings. 93

4.14 Comparison of measured and calculated performance degradation
of all possible remappings when n1 is faulty (a) and n2 is faulty
(b) as shown in figures 4.13(b) and 4.13(c). 93

4.15 Comparison of the Pareto points of original and NMR-ed task graphs
as well as the OTR design points . 95

5.1 Interfaces and internal block diagrams 107
5.2 Block diagram of the task migration hardware 109
5.3 The modified read(token, channelID) primitive 114
5.4 The modified write(token, channelID) primitive 114
5.5 A fault scenario example . 115
5.6 Execution times of fault recovery actions 115
5.7 Performance overhead with respect to the duration of the self-

testing routine . 116
5.8 Area occupation overhead in comparison to the baseline network

adapter due to the support for system adaptivity and fault-tolerance117
5.9 Critical path length overhead related with support for system adap-

tivity and fault-tolerance . 118
5.10 Area occupation overhead in comparison to the baseline tile archi-

tecture due to the support for system adaptivity and fault-tolerance118
5.11 TMH area for varying number of supported channels 119
5.12 The time of fault recovery actions for M-JPEG 121
5.13 The time of fault recovery actions for H.264 122
5.14 Performance overhead with respect to the period of the self-testing

routine (a) and the duration of the self-testing routine (b) 122

6.1 Self-adaptation approaches for PPN applications on NoC. 129
6.2 An adaptive task . 130
6.3 A monitoring task . 131

xvii Figures

6.4 A simple fuzzy control based system 133
6.5 A monitoring task in MCA-EI scheme. 138
6.6 Adaptation interrupt handler in MCA-EI scheme. 139
6.7 An adaptive task in MCA-EI scheme. 140
6.8 Self-adaptive M-JPEG encoders in MCA-EB and MCA-EI (refer to

the legend of figure 6.1(d)) . 141
6.9 Impact of adaptation parameters on goal metrics 144
6.10 Results for initial FR = 8 fps, initial BR = 200000 bps and final FR

= 16 fps, final BR = 300000 bps . 147
6.11 Results for bit-rate and frame-rate control of slow and fast videos 149
6.12 Cost of adaptation in terms of reduction in FR (left) and BR (right) 150
6.13 Results for initial FR = 8 fps, initial BR = 200000 bps and final FR

= 16 fps, final BR = 300000 bps. 151
6.14 Effect of controller workload on adaptation overhead. 152

xviii Figures

Tables

1.1 Addressed self-adaptation problems 11

4.1 Table of notations . 63
4.2 Execution times (in seconds) of tasks on the available core types

(T C T
cap) . 83

4.3 Bandwidth demands (in MBps) of edges (d) 84
4.4 Degradation achieved by Pareto-optimal limited remappings for

faulty n5 scenario . 85
4.5 Degradation achieved by proposed heuristics for faulty n5 scenario 85
4.6 Execution times of M-JPEG processes 89
4.7 Execution times of H.264 processes 90
4.8 Computation times of remapping heuristics 93

5.1 M-JPEG fault scenarios . 120
5.2 H-264 fault scenarios . 120
5.3 Area synthesis results of the TMH and STM modules as well as the

base tile architecture . 123

6.1 Error ranges for the fuzzy controller 134
6.2 Delta-error ranges for the fuzzy controller 134
6.3 Control levels and their meanings . 135
6.4 Adaptation control algorithm . 136
6.5 Settling widths and error thresholds for controllers (Fraction pa-

rameters shown in italic). 142
6.6 Two step DSE for adaptation control. Selected controller configu-

ration is shown in the last column. 146
6.7 Comparison of adaptation quality for fast and slow videos 148
6.8 Comparison of steady-state overheads. 150
6.9 Comparison of control quality for MCA-EI and MCA-EB 152

xix

xx Tables

List of Abbreviations

API application programming interface.

ASIP Application Specific Instruction Processor.

BDD binary decision diagram.

BER backward error recovery.

BIST built-in self-test.

BR bit-rate.

CMOS complementary metal-oxide-semiconductor.

CoG Center of Gravity.

CPU central processing unit.

CRC cyclic redundancy check.

CRR checkpointing-and-rollback recovery.

DMA direct memory access.

DMR double modular redundancy.

DSE design space exploration.

DSP digital signal processor.

EM electro-migration.

FER forward error recovery.

xxi

xxii List of Abbreviations

FIFO first-in first-out.

FPGA Field-Programmable Gate Array.

FR frame-rate.

GPU graphics processing unit.

HCI hot carrier injection.

HW hardware.

ILP integer linear programming.

IP intellectual property.

JPEG Joint Photographic Experts Group.

KPN Kahn Process Networks.

LNMS Localized NMS.

M-JPEG Motion JPEG.

MCA monitor-controller-adapter.

MCA-EB event-based MCA using blocking channels.

MCA-EI event-based MCA using interrupts.

MoC model of computation.

MPEG Moving Picture Experts Group.

MPH DMA message-passing handler.

MPI Message Passing Interface.

MPSoC Multiprocessor System-on-Chip.

MTOS multi-threaded operating system.

MTTF mean-time-to-failure.

xxiii List of Abbreviations

NA Network Adapter.

NBTI negative bias temperature instability.

NI network interface.

NMR N-modular redundancy.

NMS nonidentical multiprocessor scheduling.

NoC Network-on-Chip.

NORMA no-remote memory access.

NUMA non-uniform memory access.

OS operating system.

OTR fault-aware online task remapping.

PE processing element.

PPN Polyhedral Process Networks.

QoS quality of service.

RFR roll-forward recovery.

RISC Reduced Instruction Set Computing.

RM run-time manager.

RTE run-time environment.

SDC silent data corruption.

SDF Synchronous Data Flow.

SM stress migration.

SoC System-on-Chip.

STM Self-testing Module.

SW software.

xxiv List of Abbreviations

TDDB time dependent dielectric breakdown.

TMH task migration hardware.

TMR triple modular redundancy.

Chapter 1

Introduction

Guided by Moore’s Law, technology scaling accompanied with higher operat-
ing frequencies has been the driving force behind delivering higher performance
computing systems at lower costs. However the past decade has witnessed the
rise of some barriers, namely the power wall, the memory wall and the reliabil-
ity wall, which threaten the rule of Moore’s Law in the semiconductor industry
[Borkar et al., 2007]. High performance embedded systems are also affected
by these barriers as power consumption and reliability are even more important
concerns for such systems. Power and memory wall have been regarded as more
imminent threats and new architectural design trends have emerged in an effort
to avert them.

Thanks to the advances in micro- and nano-electronic technologies, enabling
the integration of billions of transistors in the same on-chip die, the next genera-
tion of embedded platforms will be composed of a high number of heterogeneous
processing and storage elements; performances are increased by task-level par-
allelism, distributing the tasks on a multiplicity of (relatively simple) processors
rather than by going for single, highly complex units running at very high fre-
quency.

The initial trend was designing multi-core chips, usually in the form of a
symmetric Multiprocessor System-on-Chip (MPSoC), with a limited number of
nodes consisting of CPU and L1 cache interconnected by simple bus connections
and capable in turn of becoming nodes in larger multiprocessors. However, as
the number of components in these systems increases, communication becomes
a bottleneck and it hinders the predictability of the metrics of the final system.

Networks-on-Chip (NoCs) [Dally and Towles, 2001] appeared as a design
paradigm allowing to overcome the efficiency and technology problems related
to traditional solutions for inter-core communication. NoCs, among the other

1

2 1.1 Motivation

advantages, improve scalability, available bandwidth, and power efficiency of
complex MPSoCs, usually by implementing a packet-switched communication
among the cores [Benini and De Micheli, 2002]. The 48-core Single Cloud Com-
puter [Howard et al., 2011] and the 80-core Teraflops Research Chip [Vangal et al.,
2008] processors from Intel; the 64-core Tile64 processor [Wentzlaff et al., 2007]
from Tilera; and the 64-core Epiphany [Adapteva Inc., 2014] processor are few
of the commercial NoC-based platforms exemplifying these trends.

Memory organization is also an important design choice. Shared memory ar-
chitectures are less scalable than distributed-memory solutions. Although NoC-
based platforms can support shared memory access, memory coherence protocols
induce an overhead in the communication network rendering the gain from ad-
ditional cores useless. There are two design paradigms for non-symmetric mem-
ory organization in NoCs: non-uniform memory access (NUMA) and no-remote
memory access (NORMA). In NUMA, all cores share one logical address space,
but this address space is physically partitioned so that each node has a local
segment of the memory space; communication takes place simply by accessing
shared memory locations. In NORMA, each core has its private local memory:
this solution is suited for programming models based on message-passing [Carara
et al., 2007].

This thesis takes on the challenges described in the next section in accordance
with the aforementioned trends.

1.1 Motivation

1.1.1 The need for self-adaptation

Embedded systems are often subject to stringent non-functional goals such as
high computational performance, low power consumption, restrictions on mem-
ory dimensions, low chip area and high dependability. Goals are specified by
programmers or users by stating that a certain metric should be above or be-
low a threshold value, or that it should be minimized or maximized. In classical
design space exploration (DSE), systems are designed by evaluating the design
alternatives in terms of the relevant metrics and by picking one that satisfies the
goals, possibly with a trade-off between conflicting objectives.

Satisfying the non-functional requirements imposed by the application de-
signer on systems with increasing complexity of the underlying architectures is
a fundamental challenge. Design activities are mainly hindered by the difficulty
in analyzing and estimating the performance metrics of the system. Design time

3 1.1 Motivation

choices may be less than satisfactory when confronted with run-time process-
ing, due to the complexity of the design space. Moreover, some run-time factors,
which are only known during operation, may cause a performance that is dif-
ferent than the expected one. Variability issues of transistors at deep-submicron
scale due to both manufacturing and aging effects show major performance and
power consumption variability in the final system and thus they can no longer
be overlooked [Borkar et al., 2007]. In order to deal with this problem, design-
ers more and more often resort to self-adaptation based techniques [Kramer and
Magee, 2007; Józwiak, 2006]. Self-adaptivity is the ability of the system to adapt
itself dynamically to achieve its goals. As the complexity of the components in-
creases and their integration becomes difficult, some of the decisions that are
taken at design time are deferred to run-time. From that perspective, one can
view self-adaptation as the ability of the system to switch at run-time from one
design point to another in the design space with the help of a run-time design
space exploration logic.

Self-adaptive systems are able to react when the actual operating conditions
of the system differ from the design-time assumptions such as the workload, the
internal and external conditions and the non-functional goals. For example, a
portable device may be frequently moved from an office environment (where
power and network plugs are available) to an external environment (where the
device can only be battery operated and the network may be available in different
wired or wireless forms). In this case the behavior of the system needs to be
adapted to the new conditions (e.g., to reduce power consumption). Again, a
video encoding application running on such a device may be required to work
at higher resolution (i.e. different workload), at higher frame rate (i.e. different
goal) and alongside a new application launched on the system (i.e. different
internal condition).

There are certain challenges to be tackled when designing self-adaptive sys-
tems. A general concern when making the system monitorable and adaptable is
the overhead introduced in the metrics of interest such as time, area and power.
The benefits of adaptation can easily be offset by a large overhead. There are two
types of overhead. The first type, which can be called steady state overhead, is
the overhead experienced simply due to the additional hardware or software for
enabling monitoring and adaptation capabilities. It is present even when there
are no ongoing adaptations. This overhead should be minimized because it is
afforded at all times. The second type, which can be called transient overhead, is
the overhead experienced while an adaptation is taking place. The major sources
of this overhead are the adaptation algorithm of the controller and the execution
of an adaptation. If the system is expected to have frequent adaptations, then

4 1.1 Motivation

care must be taken to minimize this type of overhead.
Separation of concerns is a key feature for self-adaptive systems. However

the realization of this principle is quite challenging for several reasons. It em-
phasizes that the application programmer should be involved as little as possible
in making the system self-adaptive. Although it may be possible to realize this
for adaptations at the run-time environment and hardware levels because of the
clear interface between the application and the execution platform, it is a more
difficult task for application level adaptations. Intrinsic application knowledge
by the application programmer is required in order to expose the feasible adapta-
tions in the application. Automatic inference of such adaptations would be very
difficult, if possible at all. Depending on the adaptation goal, another difficulty
is in the inference of what to monitor and how to monitor it without involving
the programmer. There is a semantic gap to be bridged between the given goal
and the application. Monitoring involves choosing the correct program variables
and operating on them in order to calculate the actual metric that corresponds
to the goal. Another issue with the separation of concerns principle is that it is
likely to conflict with the low overhead goal mentioned previously. Decreasing
the amount of load on the programmer would lead to increasing the amount of
work that the self-adaptation logic has to do, thus leading to greater overhead
due its complexity. Last but not least, the behaviour of the adaptation controller
is application-dependent. Machine learning algorithms can be used to obtain
the application knowledge, particularly the relation between the goal and the
adaptations, but this would result in a complex control logic with a larger over-
head. Alternatively, the required application knowledge can be provided to the
controller by the application programmer.

Another fundamental challenge for system-wide self-adaptivity is presented
by the management of the adaptations. The systems are usually faced with mul-
tiple goals to be satisfied at run-time such as a desired throughput, low power
consumption, high dependability. Satisfying all the goals by controlling vari-
ous possible adaptation options is a difficult task. Changing the set of goal types
would require a complete or partial re-design of the controller. Possible solutions
to solve this problem are automated controller synthesis or designing generic
controllers.

1.1.2 The need for fault tolerance

Over the years semiconductor industry has benefited greatly from the improve-
ments in process technologies that enabled scaling down of CMOS transistors.
Smaller transistors led to better circuit performance due to higher frequencies.

5 1.1 Motivation

As the area of the chip got smaller, fabrication costs per chip were also reduced.
Moreover, the ability to pack more transistors in a smaller area enabled the inte-
gration of many more functions in a chip, leading also to performance improve-
ments. These trends, referred to as Moore’s Law, are threatened by power and
reliability concerns in the deep sub-micron scale. As highlighted by the Inter-
national Technology Roadmap for Semiconductors [ITRS, 2009], these concerns
have to be addressed to continue harvesting the benefits of More-Moore.

A hardware fault is caused by an underlying physical defect in hardware. An
error is the external manifestation of a fault. Regarding their duration, hardware
faults have been classified as permanent (hard), transient (soft) and intermittent
[Koren and Krishna, 2007]. Permanent faults cause persistent component mal-
function, while transient faults last only for some time. Intermittent faults are
those that make a component oscillate permanently between malfunctioning and
correct functioning. We limit the scope of this thesis to permanent faults as they
determine the lifetime reliability of a system. For systems that are prone to radi-
ation effects, which are the major cause of transient errors, techniques presented
in this thesis should be accompanied with techniques that handle such errors.

Permanent faults can be extrinsic or intrinsic. The former are caused by man-
ufacturing defects and can be mostly detected by post-manufacturing tests such
as burn-in. The latter are caused by wear-out and manifest during operation.
The failure rate of electronic systems usually adhere to the Weibull distribution,
also known as the bathtub curve [Koren and Krishna, 2007]. Extrinsic faults ex-
hibit as high infant mortality rate, while intrinsic faults account for the increasing
failure rates in the wear-out phase. In between the two lies the useful lifetime
phase with a lower constant failure rate.

Considering an individual transistor, the fundamental mechanisms leading to
intrinsic permanent failures are electro-migration (EM), stress migration (SM),
time dependent dielectric breakdown (TDDB), negative bias temperature insta-
bility (NBTI) and hot carrier injection (HCI) [Renesas, 2013]. EM is caused by
the movement of metal atoms in the interconnect with the momenta of the elec-
trons, leading eventually to an open or a short circuit. SM stems from the thermal
stress due to different thermal expansion coefficients of the interconnect metal
and the underlying film, leading possibly to a rupture in the interconnect. In
TDDB, a conducting path gradually forms between the gate electrode and the
silicon substrate due to the traps created inside the dielectric by the electric field
between the gate and the substrate. NBTI is caused by the formation of positive
charge inside the dielectric due to high negative bias at the gate (with respect
to source and drain) and high temperature, leading to the degradation of PMOS
transistor’s threshold voltage and thus performance. Similarly, NMOS transis-

6 1.1 Motivation

tors suffer PBTI. HCI is caused by high electric field around the drain due to high
supply voltage, leading to the injection of carriers (electrons or holes) inside the
dielectric, thus degrading transistor’s performance.

These failure mechanisms are affected strongly by the feature sizes of the
transistor and in particular by the electric field at the gate, the temperature and
the supply voltage. Although ideal scaling rules of transistors aim at keeping the
electric field constant, in practice the supply voltage has been kept above ideally
scaled values for performance concerns. This has two implications, firstly, the
power densities have been increasing, and secondly, the ratio of leakage power
with respect to switching power has been increasing with each technology node.
As a result, chip temperatures have also increased, deteriorating the lifetime re-
liability of transistors [Borkar, 2005].

Moving from transistor to chip level, as the probabilty of failure in individual
transistors increases, the probabilty of a failing transistor in a chip with billions
of them becomes a more threatening issue for the lifetime of the system. While
memories are often protected with error detecting and correcting codes, compo-
nents consisting majorly of logic such as the processing elements (PEs) are more
vulnerable to hard failures. Srinivasan [2006] estimates a five-fold decrease in a
processor’s lifetime as it is scaled from 180nm to 65 nm technology and expects
this decrease to occur at higher rates with further scaling.

Another concern calling for fault tolerance against operational faults is due
to the limitations of post-manufacturing tests to catch early defects. In particu-
lar, the effectiveness of the burn-in process, which subjects the final product to
testing at higher voltages and higher temperatures to accelarate aging, is ham-
pered by device scaling due to the prohibitive (exponential) increases in the gate
leakage [Borkar et al., 2007] and by decreases in supply voltages (resulting in
exponentially longer burn-in times) [ITRS, 2009].

As a result, designers are faced with the challenge of handling faults at run-
time by detection, isolation and recovery without introducing prohibitive perfor-
mance and cost overheads. Although reliability improvements in process tech-
nologies are continuously sought, a permanent solution to this problem requires
new design techniques to be developed. Constraints presented by embedded
systems design (e.g., low cost and low power consumption) make traditional
approaches involving massive redundancy hardly adoptable. Moreover assess-
ing the reliability of the system, consisting of the application and the platform
it runs on, only after the platform is available puts the product development
at risk with regard to time-to-market requirements. Design flows that encom-
pass a loop in order to incorporate a posteriori measures for meeting reliability
constraints are rendered obsolete. Therefore design techniques embracing con-

7 1.2 Research framework

tinued availability in the presence of faults must be embedded into the normal
design flow. This brings in a new challenge on the part of the designers of these
techniques. In order to develop such techniques, low level fault models strongly
tied to the technology should be abstracted in the form of functional-level error
models. Since the exploitation of knowledge at higher levels of abstraction (e.g.,
regarding the application, the error or the system) creates a potential for devel-
oping fault tolerance techniques with lower performance and area costs; there
has been a trend to move from physical and logical to micro-architectural, ar-
chitectural and software-based solutions. In fact, these techniques employed at
several levels should work hand in hand to guarantee reliable computation from
unreliable components. This design paradigm which distributes the responsi-
bility for tolerating errors, device variation and aging across the system stack
is known as cross-layer resilient design [Mitra et al., 2010; Carter et al., 2010;
DeHon et al., 2010]. By viewing fault tolerance as a self-adaptation aspect, in
this thesis we adopt a cross-layer approach that aims at graceful performance
degradation by addressing fault tolerance mostly at system-level, in particular
by exploiting redundancy available in multi-core platforms. By system-level, we
refer to techniques implemented in software both at application and run-time
environment levels and not purely in hardware.

1.2 Research framework

The work presented in this thesis has been carried out within two European
projects. Initially it benefited from our partial involvement in the AETHER EU
FP6 Project (No. IST-027611) – Self-Adaptive Embedded Technologies for Perva-
sive Computing Architectures. As it will be mentioned in section 2.1, the common
design pattern for self-adaptivity is the monitor-controller-adapter (MCA) loop.
Self-adaptive systems can be characterized with respect to what can be moni-
tored, controlled and adapted. As a part of our work within the AETHER Project
on modeling system-wide self-adaptivity in embedded systems, we proposed a
generic model consisting of three levels, which are application, run-time envi-
ronment (RTE) and hardware as shown in figure 1.1 [Derin et al., 2009]. In each
of these levels, there are parameters to be monitored and adapted. To exemplify
each level, at the application level, some application parameters or variant im-
plementations of some functions can be adapted; some performance goals such
as throughput and delay can be monitored. At the RTE level, the mapping of
tasks onto the resources as well as the scheduling policy of tasks on a given re-
source can be adapted; resource utilization, goal achievements per application

8 1.2 Research framework

Figure 1.1. Model of a self-adaptive system

can be monitored. At the hardware level, the clock frequency and voltage levels
can be adapted; power consumption and temperature can be monitored. A goal
is an expression containing boolean and arithmetic operators, which evaluates
to true or false to denote whether the goal is satisfied or not. The variables in a
goal expression come from the monitors. Controllers provide commands to the
adaptors to change the system configuration. A goal is assigned to a controller at
a specific level. For example, a performance goal for an application is associated
with the application level, whereas a power consumption goal can be assigned
to the RTE or hardware levels. Assigning the goals to the level where there are
a relevant adaptor and monitor is a wise choice; otherwise, some overhead to
monitor and/or adapt parameters of another level would be involved. Moreover,
this is likely to violate the seperation of concerns principle.

Our AETHER work has also produced some ideas for enabling application-
level self-adaptation capabilities for process networks [Derin and Ferrante, 2009]
and middleware support for Kahn Process Networks (KPN) on NoC-based plat-

9 1.2 Research framework

forms [Derin and Diken, 2010] with consideration of adaptability and fault-
tolerance [Derin, Diken and Fiorin, 2011]. However, it is the MADNESS Project
that allowed us to move from simulated systems to prototyped solutions.

Most of the work presented in this thesis has been done within the MAD-
NESS EU FP7 Project (No. ICT-248424) – Methods for predictAble Design of
heterogeneous Embedded Systems with adaptivity and reliability Support – in
coordination with the project partners. Both reference architecture and bench-
mark application(s) were chosen in agreement with the whole collaboration.

The project aims at the definition of innovative system-level design method-
ologies for embedded MPSoCs, extending the classic concept of design space
exploration in multi-application domains to cope with high heterogeneity, tech-
nology scaling and system reliability. The main goal of the project is to provide a
framework able to guide designers and researchers to the optimal composition of
embedded MPSoC architectures, according to the requirements and the features
of a given target application field. The proposed strategies tackle the new chal-
lenges, related to both architecture and design methodologies, arising with the
technology scaling, the system reliability and the ever-growing computational
needs of modern applications.

1.2.1 KPN and PPN as the model of computation

The design of embedded systems, unlike general computing systems, involve
not only functional goals but also non-functional ones that dictate performance
and/or resource usage goals. As a consequence, design flows entail the adoption
of a model of computation (MoC). The behavioral specification of the system
can be expressed with the given MoC. But, most importantly, the MoC enables
the analyzability of the system with regard to the given non-functional goals.
Depending on the target application domain, system-level synthesis approaches
adopt a variety of MoCs based on finite state machines or process networks [Ger-
stlauer et al., 2009].

A fundamental design decision taken at the beginning of the MADNESS Project
by the partners was the adoption of a streaming application model based on
KPN [Kahn, 1974], in particular its variant named Polyhedral Process Networks
(PPN). Although KPN was introduced by Kahn in 1974, it was only after year
2000 that it re-gained attention with the emergence of the increasingly parallel
platforms needed by high performance embedded applications, which constitute
a target domain for the MADNESS Project. KPN and PPN models are based on
the idea of organizing an application into streams (channels) and computational
blocks (interchangeably referred to as tasks or processes); channels represent the

10 1.2 Research framework

flow of data, while tasks represent operations on a stream of data. Further back-
ground on KPN and PPN is provided in sections 2.3 and 2.4, respectively.

KPN and PPN present themselves as an acceptable trade-off point between
abstraction level and efficiency versus flexibility and generality. The favorable
features of KPN and PPN, which enable the work presented in this thesis, are
discussed in the following.

Generality: It is capable of representing many signal and media process-
ing applications, which occupy a large percentage of the consumer electronics
in the market. Some KPN application examples that can be found in the litera-
ture are image/video processing (JPEG [de Kock, 2002], M-JPEG [Lieverse et al.,
2001], MPEG-2 [van der Wolf et al., 1999], H.264 [Zrida et al., 2008; Nikolov
et al., 2009; Vrba et al., 2009], Sobel edge detection, 2D-DWT [Verdoolaege
et al., 2007]), sound processing (ADPCM [Ceng et al., 2008]), telecommuni-
cation (GSM [Castrillon et al., 2010], software-defined radio [Castrillon et al.,
2011]), security (AES [Vrba et al., 2009]) and scientific computation (QR de-
composition [Stefanov et al., 2002]). It should further be noted that, a recent
work by Thies and Amarasinghe [2010] has shown that most of the streaming
applications can be specified using the Synchronous Data Flow (SDF) model [Lee
and Messerschmitt, 1987a]. KPN and PPN models are more expressive than SDF,
thus it can as well be used effectively to model all streaming applications that
can be specified via SDF. Moreover, KPN can be used to express applications from
other domains, thanks to its Turing-completeness, albeit they are likely to be less
efficient.

Abstraction level: Being untimed MoCs based on asynchronous message pass-
ing, KPN and PPN guarantee functional correctness independent of timing. The
programmer is not directly involved with concurrency management. KPN and
PPN tasks can be implemented in any programming language. The only restric-
tion imposed on the tasks is the communication interface consisting of the read
and write operations. Most importantly, the performance of the system given
the mapping of a KPN application on a platform is estimable with an analyti-
cal model. Moreover, in case of PPN, as the FIFOs are bounded, the memory
requirement of the system is also estimable.

Efficiency: KPN and PPN enable the exploitation of the parallel process-
ing power available on the NoC-based multiprocessor platforms. Organizing the
computation as parallel tasks and overlaping the computation with communica-
tion using FIFOs allows an efficient implementation when combined also with a
mapping exploration design phase. Since the communication between the tasks
is exposed explicitly, it makes KPN and PPN very suitable for message-passing
platforms such as the NoC-based multi-processor platforms with no remote mem-

11 1.3 Dissertation contributions

ory access. This enables estimating the amount of communication in the system.
Flexibility: The techniques to be developed in order to address self-adaptation

and fault-tolerance challenges depends on the adopted MoC. KPN/PPN makes it
possible to adapt the application without excessive effort and overhead. A fun-
damental property which facilitates this is that KPN/PPN tasks do not require a
global scheduler and can synchronize simply by blocking read operations. Such
a flexibility enables remapping of tasks at run-time. Secondly PPN tasks have a
special execution point (i.e., the beginning of their outmost loop bodies) where
they posses a small state, thus enabling efficient remapping of the tasks onto new
processing nodes.

1.3 Dissertation contributions

In the view of the aforementioned challenges, this thesis presents novel con-
tributions for achieving fault-tolerant and self-adaptive applications which are
modelled as process networks and run on top of NORMA-based NoC platforms.

The self-adaptation model provides a comprehensive basis for the work pre-
sented in this dissertation. The two concrete self-adaptation problems shown
in table 1.1 are derived based on this model. Firstly, the fault tolerance goal at
the RTE level is addressed by viewing the problem of fault tolerant execution
of KPNs on NoCs as a self-adaptation problem. Fault detection corresponds to
monitoring; the remapping decision (chapter 4) corresponds to the adaptation
control; and the fault recovery via task migration (chapter 5) corresponds to the
adapter. Secondly, quality goals at the application level are addressed by view-
ing the adaptation of the parameters of KPN tasks as a self-adaptation problem
as described in chapter 6. The quality attributes that are defined in [Derin et al.,
2009], namely control quality, steady-state overhead and separation of concerns,
have been used as the assessment criteria for the presented solutions to these two
self-adaptation problems.

Figure 1.2 shows a pictorial view of the concrete self-adaptive and fault-
tolerant system that has been realized in this thesis where the contributions are
marked with their corresponding chapter numbers.

The main contributions of the dissertation are as follows:

• Fault-aware online task remapping (OTR): Firstly, we propose an inte-
ger linear programming (ILP) based method for finding the Pareto-optimal
mappings and remappings of KPN applications onto NoC-based platforms
with consideration of computation and communication objectives. Although
optimal remappings can be computed offline for a given application and

12 1.3 Dissertation contributions

Table 1.1. Addressed self-adaptation problems

Problem
Fault-aware Application-level self-adaptation
online remapping for quality management

Goal space fault tolerance performance
Monitorable space permanent faults in PEs throughput
Adaptation space task mapping task parameters
Controller remapping algorithms quality controller

Control quality
performance degradation, mean absolute error,
fault recovery time rise/fall time

Other quality steady-state overhead, steady-state overhead,
criteria separation of concerns separation of concerns

stored in system’s memory to be used when a fault is encountered, it be-
comes inapplicable with increasing number of tasks and processing nodes,
which often have limited memory resources. For this reason, we adopt an
online approach and propose heuristics for the problem of remapping tasks
when run-time faults are encountered. We assess the quality of the heuris-
tics by comparing them with the optimal solutions found by the ILP-based
method. We also evaluate the computation times of the heuristics on the
actual platform.

We also present an analytical model for the calculation of the mean-time-
to-failure (MTTF) as a reliability metric when running KPN applications on
NoC-based platforms. We operate on an abstract, high-level model rather
than on detailed lower-level solutions, thus achieving a model that remains
valid for multiple underlying implementations. We investigate transfor-
mations of the KPN task graph that make it more reliable and allow fault
detection and/or fault masking. We provide a comparison between the
fault-aware online remapping technique and application-level N-modular
redundancy in terms of their reliability and performance overhead.

• Recovery support in the fault-aware run-time environment (CRR and
RFR): We realize the fault-aware online task remapping concept on a NoC-
based platform in the form of a self-adaptive run-time environment con-
sisting of a task-aware middleware, fault recovery support via task migra-
tion and a run-time manager. We propose roll-forward recovery (RFR) and
checkpointing-and-rollback recovery (CRR) schemes. For each scheme, the
recovery support involves modifications to the process template, run-time
support in the form of interrupt handlers and addition of a task migration

13 1.4 Organization of the dissertation

Modified PPN tasks

(Chapters 5 and 6)

PPN application

NORMA-based NoC multiprocessor

Fault tolerant tiles

(Chapter 5)

Run-time Environment

PPN middleware
(Chapter 3)

Fault-aware run-time support

Remapping
(Chapter 4)

Recovery
(Chapter 5)

Application-level self-adaptation
support

(Chapter 6)

Multi-Threaded Operating System Message passing and interprocessor interrupt support

Figure 1.2. Overview of the proposed self-adaptive and fault-tolerant system

hardware module to the tile architectural template. Both recovery schemes
have been implemented and compared in terms of their overheads.

• Application-level self-adaptation for quality management (MCA-EB and
MCA-EI): We realize quality management support as a part of the self-
adaptive run-time environment consisting of monitoring tasks, adaptable
tasks and controller tasks based on fuzzy logic. Two schemes are pro-
posed based on an MCA loop that interacts with the application, firstly,
via blocking channel semantics, and secondly, via interrupting messages.
The two schemes have been implemented and compared in terms of their
overheads.

1.4 Organization of the dissertation

The remainder of this thesis is organized as follows:
Chapter 2 presents some background topics, in particular, regarding self-

adaptive systems, MPSoC programming models, Kahn Process Networks and
Polyhedral Process Networks. Then, an overview of the related work on each
of the individual parts addressed in the dissertation is provided, in particular, re-
garding KPN frameworks in MPSoCs, mapping of applications onto NoCs, fault

14 1.4 Organization of the dissertation

tolerance in embedded systems with a focus on system-level approaches and fi-
nally application-level self-adaptation.

Chapter 3 presents firstly the preliminaries of this thesis by describing the
baseline platform which forms the starting point of the implementation work.
Then we present the developed middleware which enables the fault tolerance
and self-adaptivity techniques that have been implemented in the following chap-
ters. Lastly, the adopted fault tolerance approach is described at large.

Chapter 4 presents the fault-aware online task remapping approach. Firstly,
the ILP formulation for the optimal solution of the mapping problem is described
based on an analytical model for throughput and communication cost. Then it is
extended for the remapping problem and a set of heuristics for online task remap-
ping are explained. After that, we propose an analytical model for estimating the
lifetime reliability of a system that adopts the fault-aware online task remapping
technique. N-modular redundancy technique is also considered for comparison
purposes. The chapter concludes with several case studies and results obtained
both analytically and experimentally on the actual platform.

Chapter 5 presents the two techniques proposed for fault recovery based on
fine-grained checkpointing-and-rollback and roll-forward. Each section details
the required changes at the application, RTE and hardware layers. We present
results obtained experimentally on the platform and compare the two techniques
in terms of their overhead in time and area.

Chapter 6 presents the two proposed approaches for a self-adaptive frame-
work with implementation details of monitoring, controlling and adaptive tasks.
We give details on how a self-adaptive M-JPEG encoder case study is built using
the two frameworks. Then we provide the results of the case study with a com-
parison of the two approaches in terms of the steady-state performance overhead
and quality of the control.

Finally, chapter 7 concludes with a summary of achieved results and discusses
possible extension points for future work.

Chapter 2

Background and Related Work

In the following sections, firstly, we provide general background on self-adaptive
systems in section 2.1. Then, some background information about MPSoC pro-
gramming models is given in section 2.2. The two models of computation of
interest to us, namely KPN and PPN, are described in section 2.3 and 2.4, respec-
tively. Previous work on KPN realizations in MPSoCs is discussed in section 2.5.
Mapping of applications onto NoC platforms is overviewed in section 2.6 fol-
lowed by task migration in section 2.7. Then, background information on fault
tolerance is given together with the related work on fault tolerance and lifetime
reliability approaches in embedded systems in section 2.8. The chapter ends with
the related work on application-level self-adaptation for quality management in
section 2.9.

2.1 Self-adaptive systems

As the most prevalent technique for self-adaptation, we see the use of the monitor-
control-adapt paradigm, also referred to as the autonomic control loop, the monitor-
analyze-plan-execute loop or the monitor-analyze-decide-act loop [Dobson et al.,
2010]. The main idea is monitoring internal and/or external conditions and
adapting the system according to a control logic in order to satisfy the goals. In
an effort to classify the existing solutions, we identify four main design decisions:

• Adaptation coverage is defined by the parts of the system affected by adap-
tations. It may consist of hardware, software, part of a distributed system
(through adaptive middleware) or any combination of them.

• Separation of concerns is a design principle that decouples the functionality
of the system from the implementation of its self-adaptation capability.

15

16 2.1 Self-adaptive systems

• Adaptation management is the decision making process on the evolution of
the system, in other words, the adaptation control logic.

• Adaptation requirements specification is the form of describing the non-
functional requirements of the system.

In the remaining part of this section we provide some examples of related work
on self-adaptivity, classified according to their most prominent characteristics
in the view of the above-listed criteria. A more complete list of related work on
self-adaptive systems can be found in [Salehie and Tahvildari, 2009; Cheng et al.,
2009; Lemos et al., 2013]. Similar concepts has been studied also under other
research areas such as autonomic computing [Huebscher and McCann, 2008] or
organic computing (a term coined by the German Organic Computing Initiative)
[Schmeck, 2005].

2.1.1 Adaptation coverage

A number of earlier studies address self-adaptivity in software; the simplest ap-
proach adopted is to manage adaptation in the application code. Although this
approach enables the development of ad hoc solutions for specific adaptation
problems, it is clearly not flexible enough to support a wide range of adapta-
tions. The use of an architecture-based approach eases self-adaptivity: the system
is viewed as a composition of concurrent components interconnected by connec-
tors. A comprehensive adaptation methodology is presented in [Oreizy et al.,
1999]. The authors propose an evolution and adaptation management infras-
tructure. The evolution management process adapts the architecture and the
topology of the components and of the system; the adaptation management pro-
cess gathers information from the operating environment, evaluates the obser-
vations with respect to the system requirements, plans and deploys adaptation
changes. Moreover the need of composable components is emphasized. Another
work describing a component-based architectural approach is presented in [Gar-
lan et al., 2004]. The authors propose a framework that is both reusable, to
cope with a large set of systems, and that supports mechanisms to specialize the
infrastructure for specific cases. To achieve such objectives, the framework is di-
vided into two logical parts: an adaptation infrastructure and a system specific
adaptation model. The former provides common functionality that is reusable
across different self-adaptive systems; the latter is specific to a certain system
and it is used to tailor the entire framework for it. Similarly, Geihs et al. [2009]
propose a comprehensive solution for the development and operation of context-
aware, self-adaptive applications. The main contributions of this work are (a) a

17 2.1 Self-adaptive systems

sophisticated middleware that supports the dynamic adaptation of component-
based applications, and (b) an innovative model-driven development method-
ology based on abstract adaptation models and corresponding model-to-code
transformations. In [Balasubramaniam et al., 2004] an architecture description
language named ArchWare is modified to support self-adaptation. Feedback ob-
tained by means of software probes is used to control software self-adaptations.

A formal approach to the design of adaptive software is introduced in [Zhang
and Cheng, 2006]. In particular, the adaptation is conceived as a state transition
from a source program to a target program inside a suitable set of adaptation
states. Each adaptive software is represented by a state machine, where each
state exhibits a different behavior and operates in a certain domain. To guaran-
tee system integrity and consistency, local and global properties (requirements,
constraints, and invariants) that should be satisfied by an adaptive program for
every state change are introduced.

In [Gjørven et al., 2006] a mirror-based reflection approach for self-adaptivity
is proposed. By definition, a reflective system is able to perform computations
about itself; moreover, it provides introspection and control through a reflective
interface. By applying this reflective mechanism to software components, the
middleware can perform self-adaptation by using the reflective interface of each
component. Adaptation behavior, architecture and implementation of a compo-
nent can be specialized to fit a specific context by annotating each implementa-
tion with quality of service metrics. Therefore, the middleware uses such quality
of service metrics to trigger the adaptation of components.

Some studies related to hardware self-adaptation have also been proposed.
Self-adaptation at the hardware level improves some quality metrics of the sys-
tem without requiring any changes in the software, that is, the hardware is
adapted in conformance to the HW-SW interface (e.g., instruction-set architec-
ture). In [Casas et al., 2007] a self-adaptive hardware architecture is presented;
this architecture provides self-configuration, self-repair and/or fault tolerance
capabilities by means of self-placement and self-routing. In [Bauer et al., 2007]
a self-adaptive embedded processor is described. This processor is able to deploy
different special instructions at run-time; the decision on which special instruc-
tions to deploy and when, is based on their monitored usage. A compile-time
analysis of the applications is performed to reduce run-time overhead: the infor-
mation extracted from this analysis is used to forecast the kind of instructions that
will be used by the applications in the immediate future. Thus, self-adaptation
can happen without introducing delays in the computation.

18 2.1 Self-adaptive systems

2.1.2 Separation of concerns

Separation of concerns between the regular system functionality and the adap-
tation processes is about putting different concerns into different components
that will address them independently; this approach, even though not essential
for self-adaptivity, is very important as it offers benefits in terms of generality,
level of abstraction, integrated approach, and scalability. In [Kramer and Magee,
2007] a vision of architecture-based self-adaptation is provided and a reference
software architecture is proposed.

In [Karsai et al., 2001] another architecture for software self-adaptivity is pre-
sented; one of its main goals is separation of concerns. Thus, a ground-level that
includes baseline processing and a supervisory-level that is responsible for adap-
tation and reconfiguration are considered. The former provides components that
are highly optimized for specific situations; the latter select the optimal compo-
nents for the different situations. The adoption of the supervisory-level enables
the system to provide flexibility and robustness. [Schantz et al., 2006] imple-
ments a quality of service (QoS) management framework in a distributed sys-
tem where adaptation strategies are separated from the core functionality by
means of aspect languages and an encapsulation model for packaging adaptive
behaviors. A standardized way to manage self-adaptivity at application level is
provided in [David and Ledoux, 2003], which proposes separation of concerns
between adaptation management and system functionalities. Self-adaptivity is
obtained by applying a set of adaptation policies on software components, while
these policies are triggered by certain configurable system events. Possible adap-
tations for component behavior and application parameters are also discussed.
Unfortunately, the authors do not discuss if and how a general goal is achieved.

2.1.3 Adaptation management

Most approaches proposed in the literature use a centralized controller for self-
adaptation. For example, [Neema and Lédeczi, 2001] proposes a centralized con-
troller based on constraint-guided DSE. The proposed approach is to use models
to represent the different points in the design space of the application. The de-
sign space is composed of different software component alternatives. The basic
idea is to create multiple-aspect models of the design points at design time. These
models, along with system constraints, are then embedded into the run-time sys-
tem and used for self-adaptivity decisions. Each constraint can be associated with
one or more values that are continuously measured at run-time. Whenever one
of these values crosses the threshold associated with it, the controller is triggered

19 2.2 MPSoC programming models

and the constrained DSE starts.
A different approach is to use decentralized controllers instead of a central-

ized one. This idea is mentioned in [Vaughan and Munro, 2000]; its main goal is
to propose a software architecture that enables applications to be self-tuning and
persistent. The work relies on strictly defined and controlled layering of policies
and mechanisms, and on the complete control of all layers. Layer coordination is
also utilized to obtain a stable behavior of the software. In [Derin et al., 2009],
we adopted a similar approach for designing adaptation controllers for multiple
goals. We showed (by means of a high level simulation of a self-adaptive system
in SystemC) that two independent controllers that are assigned different types
of goals may lead to non-converging adaptations. The system is prone to such
situations especially when the control decisions affect the monitored parameters
of other controllers. We proposed a recommender module that coordinates the
two controllers such that both goals are achieved. In our solution, the controller
at the higher level recommends to the lower level controller to take a non-greedy
decision. [Schantz et al., 2006] uses a mix of centralized and localized QoS man-
agement in a distributed real-time system setting. Central control drives the QoS
management via policies throughout the network whereas local control is guided
by the contract attached to the network component.

2.1.4 Adaptation requirements specification

Adaptation requirements have been specified differently in various early work. In
[Neema and Lédeczi, 2001] they are specified as constraints by Object Constraint
Language (OCL); in [Schantz et al., 2006] they are expressed as policies via
rule-based contracts. In [Hawthorne and Perry, 2004] adaptation requirements
are defined as constraints in a custom requirement description language (RDL).
In [Brown et al., 2006] the authors introduce a method to specify adaptation
requirements by means of goals. Goals are represented by using a graphical
language named KAOS; by using this language a full goal-oriented specification
of an adaptive system can be drawn.

2.2 MPSoC programming models

An MPSoC-based system is fundamentally composed of a hardware architecture
consisting of a set of processing, storage, communication elements which are put
together on the same chip, and of the software running on such architecture so
as to carry out a function at the same time satisfying some stringent design goals

20 2.2 MPSoC programming models

that would be otherwise not possible with conventional computing platforms.
An MPSoC design methodology can be defined as a design flow and its associ-
ated design tools that address the creation of MPSoC-based systems. However
the design methods are shaped not only by functional constraints but also by the
non-recurring engineering (NRE) and manufacturing costs as well as time-to-
market. Electronic system-level design (ESL) thrives to address these constraints
by automating as much as possible the design process from the functional specifi-
cation to the final HW/SW based system as a series of refinement steps. Transac-
tion level modeling (TLM) based on SystemC [IEEE Standards Association, 2012]
is used widely in the industry to model the abstraction levels above register-
transfer level. Several system-level design approaches such as platform-based
design, component-based design, design space exploration frameworks emerged
to fulfill the promise of ESL [Kogel et al., 2006]. Component-based design is a
bottom-up approach that synthesizes application-specific MPSoCs from a library
of parameterized intellectual property (IP) cores. Design space exploration is an
iterative top-down approach that explores for a given application model various
compositions of architectural elements and the mapping of the application onto
them. Platform-based design is a meet-in-the-middle approach which identifies
common hardware and software features that can be reused in many products
within a product line or product family, and aggregating them into a platform
[Bailey et al., 2005]. All of these approaches favor reuse of hardware and soft-
ware to various degrees.

The most prominent feature of an MPSoC is that it is a parallel computing ar-
chitecture. Parallelism, though, is an aspect that crosscuts all the layers from the
application down to the hardware components. The application model helps to
exploit the parallelism across these layers during the refinement of the MPSoC-
based system. In most system-level design approaches, application specification
is done in adherence to a model of computation (MoC). An MoC is the set of
rules that defines the formal semantics of interactions and sychronization of con-
current processes in a system [Jantsch, 2003]. The choice of MoC has implica-
tions on the rest of the design flow. Therefore most design methodologies are
MoC-specific, requiring the application to be specified with a particular MoC.
There have been also some efforts such as the Tagged Signal Model [Lee and
Sangiovanni-Vincentelli, 1998] and the Rugby metamodel [Jantsch, 2003] that
aim at providing a unified theory of MoCs and using them in a hybrid manner.
Some examples of common MoCs used in design environments are StateCharts,
Petri nets, hierarchical communicating finite state machines, synchronous data
flow and KPN [Marwedel, 2011]. Application developers choose the MoC that
best fits their application domain. Due to their suitability for embedded sig-

21 2.2 MPSoC programming models

nal processing and multimedia applications, KPN has been adopted widely as a
programming model in MPSoC design frameworks such as DOL [Thiele et al.,
2007], MAPS [Ceng et al., 2008] and Daedalus [Nikolov et al., 2008]. These
design environments incorporate also tools to convert an application specified as
a sequential C program into a KPN-based specification.

Considering the case of programming a fixed platform, in addition to these
MoC-based approaches, there have been some other approaches that extend ca-
pabilities of sequential languages with features that exploit the available parallel
computation power in multi-core platforms as well as heterogeneous platforms
consisting of CPUs and GPUs. Some of these extensions aim at providing a fixed
API that hide the intrinsic platform details from the programmer, thus enhanc-
ing code reusability such as OpenMP (an API based on shared memory model)
[Dagum and Menon, 1998], POSIX threads (a multi-threading API based on
shared memory model) [Nichols et al., 1996], MPI (an API for message passing
in high performance computing clusters) [Pacheco, 1996], MCAPI (a API stan-
dardization effort for multi-core communications) [The Multicore Association,
2011] and CUDA (an API for Nvidia GPUs exploiting data and task parallelism)
[Nvidia, 2014]. In addition, OpenCL (Open Computing Language) is an open
royalty-free standard that consists of an API for coordinating parallel compu-
tation across heterogeneous processors; and a cross-platform programming lan-
guage that supports both data-/task-based parallel programming models [Howes
and Munshi, 2014].

The underlying MPSoC architecture and its memory organization (e.g., shared
vs. distributed, NUMA vs. NORMA) plays an important role when choosing the
programming model. The multi-core APIs such POSIX, MPI and MCAPI deal with
concurrency at a low abstraction level. Therefore using them is more tedious
than adopting an MoC by which parallel programs can be generated correctly
by construction. However these APIs can be used to implement MoC semantics
on supported platforms. In fact, the KPN middleware described in section 3.2.2
is built on top of an MPI-like interface. The strength of the GPU programming
models such as CUDA and OpenCL lie in their ability to exploit fine-grained data
parallelism. In the case of a GPU-based platform, a KPN process can leverage this
ability by being implemented in CUDA or OpenCL. In fact such efforts aiming at
generating data parallel programs for GPUs from KPN models are present Balevic
and Kienhuis [2011].

The selection of MPSoC architectural template, memory organization and
programming model has a deep impact on the type of problems to be addressed
during the design flow and on the way the mechanisms for system adaptivity
and fault tolerance may be implemented. For example, in the case of the NUMA

22 2.3 Kahn Process Networks

model, data distribution and affinity-based scheduling problems are relevant
[Nikolopoulos et al., 2001]; whereas in the NORMA model, the corresponding
problems are communication minimization and task mapping. As another ex-
ample, when implementing task migration in the NUMA model, a task’s state is
reachable from the destination node; whereas in the NORMA model, it has to be
explicitly transferred to the destination node. The reference architecture used in
this thesis, which is based on the NORMA model, is described in chapter 3.

In this thesis, we adopt the PPN MoC, which is a subset of KPN. The KPN
and PPN models will be described more formally in the next two sections based
mainly on [Jantsch, 2003] and [Verdoolaege, 2010], respectively.

2.3 Kahn Process Networks

When creating distributed programs, nondeterminism poses a great challenge
due to the different delays that may occur in computation and communication
when the program is run on the final platform. Being an untimed MoC based on
asynchronous message passing, Kahn Process Networks guarantees functional
correctness independent of timing. A KPN is an arbitrary composition of con-
current processes connected through channels: each channel may have a single
writing and a single reading process. The basic piece of data exchanged via chan-
nels is called a token. Each channel carries data of a specific type (e.g., integer,
boolean, complex data types etc.). The channels are unbounded FIFOs which
can be written in a non-blocking manner. However the reading process blocks
when there is no token in the channel’s FIFO. Figure 2.1 shows a KPN process
example with one input and one output channel. Defining the history of a chan-
nel as the stream of tokens that passes through it, a process function is said to be
determinate if the histories of its output channels depend only on the histories
of its input channels. It is important to note that the process function is not a
mapping from input token values to output token values, rather from histories
of token values to histories of token values. Therefore processes can be stateful.
A KPN process should also satisfy the continuity and monotonicity properties.

More formally, let D be the set of all possible token values and Dw be the set
of all finite and denumerably infinite streams over D, a KPN process with k input
and l output channels is a mapping P : (Dw)k→ (Dw)l .

Defining the prefix ordering relation between two streams S, S′ ∈ Dw by

S v S′⇔ S is an initial segment of S′,

23 2.3 Kahn Process Networks

P

S = [s1, s2, ..., si, ...] P (S) = [t1, t2, ..., ti, ...]

Figure 2.1. A KPN process with single input and output channels

a process P is monotonic if

S v S′⇒ P(S)v P(S′).

Monotonicity implies that a process can start producing output without wait-
ing for all the inputs to be available. The new input will only add new output to
what has already been processed.

The prefix ordering relation is a partial order on Dw with empty stream ([]) as
the minimal element. Any increasing chain C = {Ci : Ci v Ci+1,∀i > 0, Ci ∈ Dw}
has a least upper bound, represented by l im(C). This makes Dw a complete partial
order.

A monotonic process P is continuous if

P(l im(C)) = l im({P(Ci) : Ci ∈ C})

Continuity implies that, when processing infinite input streams, a process must
be able to process finite substreams without requiring to read infinite streams in
order to produce output. Continuity is a stronger restriction on the process than
monotonicity. A continuous process is always monotonic.

These properties can be generalized for KPN processes with multiple input
and output channels by extending the definition of the prefix ordering relation
for a pair of stream lists, S = [Si : 1 ≤ i ≤ k] and S′ = [S′i : 1 ≤ i ≤ k] as the
following

Sv S′⇔ Si v S′i ∀i, 1≤ i ≤ k.

KPN processes are closed under arbitrary composition. Meaning that, a net-
work of such processes results in the final KPN to be determinate, monotonic and
continuous as well.

KPN model has several advantages. The scheduling of processes does not ef-
fect the functional behavior, in fact, KPN can be self-scheduled in a data-driven
manner. It is suitable for stream processing and allows exploiting task-level par-
allelism, thus making it favorable for mapping onto distributed multi-processor
platforms. However the unbounded FIFO requirement hinders its applicability

24 2.4 Polyhedral Process Networks

in system design since it would require, in the worst case, a memory of infinite
size. Therefore several variations of KPN have been proposed (e.g., Synchronous
Data Flow [Lee and Messerschmitt, 1987b] and Polyhedral Process Networks
[Verdoolaege et al., 2007]) in order to increase the analysis and synthesis capa-
bilities when using the KPN model.

2.4 Polyhedral Process Networks

Polyhedral Process Networks is a variant of KPN in which buffer sizes of the chan-
nels can be determined at design time, unlike the case of general KPN programs.
The pn-compiler [Verdoolaege et al., 2007], which generates a PPN from a given
sequential code that is composed of static affine nested loops, can derive for each
channel a buffer size which guarantees deadlock-free execution of the PPN. For
a theoretical background on the derivation of a PPN model from static affine
nested loop programs,

Similar to KPN, a PPN is a graph defined as a tuple (P ,C), where:

• P = {P1, ..., PN} is a set of processes;

• C = {ch1, ..., chK} is a list of FIFO channels.

Each process P ∈ P has a set of input channels ICP and output channels OCP .
PPN processes communicate and synchronize using these FIFO channels. The
PPN semantics forces a process to block on read, when trying to get a token from
an empty FIFO, and block on write, when trying to write a token to a full FIFO.
The processes which write into ICP are the predecessors, the processes which
read from OCP are the successors. The producer process, which writes data to
a channel ch, and the consumer process, which reads data from it, are denoted
respectively as prod(ch) and cons(ch).

All PPN processes have the same code structure, an example of which is given
in figure 2.2(b). Nested loops iterate, for a given number of times, the body of
the process, which is split in three main parts. First, the process reads the input
data tokens from (a subset of) the input channels. This is represented by the read
statements in the figure. Second, the process function (F) produces the output
tokens by processing the input tokens. Finally, the output tokens are written to (a
subset of) the output channels (write statement). The read and write statements
can be guarded by conditions that can be defined only in terms of the iterator
values (e.g., i, j) and loop parameters (e.g., M , N). Therefore, control flow of
PPN processes is static, meaning that the token consumption and production

25 2.5 KPN for MPSoCs

Figure 2.2. Example of a PPN (a) and structure of process P2 (b).

rates should not depend on the input data stream. All loop bounds, conditions,
array index expressions, if any, should be representable as affine constraints.
The process function should be pure, meaning that values of iterators or arrays
cannot be changed. Given that these requirements are met, such processes can
be analyzed by means of polyhedra. A polyhedron is a set of rational values
described by affine constraints. That is, x ∈Qn | Ax≥ b represents a polyhedron
in n-dimensional space where A is a m × n matrix and b is a m-dimensional
vector of integers. The iterator domain of a process is the set of all possible
values that its iteration vector can have. For a process Pi ∈ P that has d nested
loops (i.e., d iterators), the iterator domain can be represented as a polyhedron
Di = {x ∈ Zd | Ax ≥ c}. For example, the iterator domain of the process P2 in
figure 2.2(b) is defined by D2 = {(i, j) ∈ Z2 | 0≤ i < M∧0≤ j < N}where M and
N are constant integers. The conditions guarding the read and write statements
on a channel add additional constraints to the iterator domain and define the
target and source domain of the channel, respectively. Such a formalization of
the PPN processes allows design time analysis (e.g., buffer size computation)
[Verdoolaege et al., 2007] and HW/SW co-design of PPN applications [Nikolov
et al., 2008].

2.5 KPN for MPSoCs

Previous research on the use of KPN for multiprocessor embedded devices mainly
focused on the design of frameworks which employ them to model the applica-

26 2.5 KPN for MPSoCs

tion [Stefanov et al., 2004; Nieuwland et al., 2002; Kwon et al., 2008], and which
aim at supporting and optimizing the mapping of KPN processes on the nodes
of a reference platform [Bacivarov et al., 2010; Haid et al., 2009]. In [Stefanov
et al., 2004; Nieuwland et al., 2002], different methods and tools are proposed
for automatically generating KPN application models from programs written in
MatLab or C/C++. More specifically, the pn-compiler tool [Verdoolaege et al.,
2007] is used to automatically convert static affine nested loop programs to par-
allel PPN [Verdoolaege, 2010] specifications and to determine the buffer sizes
that guarantee deadlock-free execution. Design space exploration tools and per-
formance analysis are then usually employed for optimizing the mapping of the
generated KPN processes on a reference platform. A design phase usually fol-
lows in which software synthesis for multi-processor systems [Kwon et al., 2008;
Haid et al., 2009], or architecture synthesis for FPGA platforms [Stefanov et al.,
2004] is implemented. A survey of design flows based on the KPN MoC can be
found in [Haid et al., 2009].

The trend from single core design to many core design has forced to consider
inter-processor communication issues for passing the data between the cores.
One approach is synthesizing the software relying on the high level APIs provided
by the reference platform for facilitating the programming of a multiprocessor
system. One of the emerged message passing communication API is Multicore
Association’s Communication API (MCAPI) [The Multicore Association, 2011]
that targets the inter-core communication in a multicore chip. MCAPI is the light-
weight (low communication latencies and memory footprint) implementation of
message passing interface APIs such as Open MPI [A High Performance Message
Passing Library, n.d.]. However these MPI standards are not quite fit for the KPN
semantics and building the semantics on top of their primitives is less efficient
compared to platforms with dedicated FIFO support.

The communication and synchronization problem when implementing KPNs
over multi-processor platforms without hardware support for FIFO buffers has
been considered in [Nadezhkin et al., 2009] and [Haid et al., 2009]. In [Nadezhkin
et al., 2009] the receiver-initiated method has been proposed and evaluated for
the Cell BE platform. On the same hardware platform, [Haid et al., 2009] pro-
poses a different protocol, which makes use of mailboxes and windowed FIFOs.

In [Nejad et al., 2009] the problem of implementing the KPN semantics on a
NoC is addressed. However, in their approach the NoC topology is customized to
the needs of the application at design time and network end-to-end flow control
is used to implement the blocking write feature. Therefore it cannot support the
online remapping of tasks.

An approach to guarantee blocking write behavior is also used in [Almeida

27 2.6 Mapping applications to NoCs

et al., 2009]. That work uses dedicated operating system communication prim-
itives, which guarantee that the remote FIFO buffer is not full before sending
messages through a simple request/acknowledge protocol.

2.6 Mapping applications to NoCs

With the emergence of NoCs the problem of optimally mapping tasks on top of
NoC architectures has been the subject of a significant amount of research [Singh
et al., 2013]. While the optimal distribution of tasks on a given MPSoC architec-
ture at design time (static mapping) is a research problem that has been addressed
and solved by several authors [Lei and Kumar, 2003; Thiele et al., 2007; Amory
et al., 2011], the optimal online task mapping (dynamic mapping) presents a sig-
nificant amount of challenges that still need to be fully addressed by researchers
[Walter et al., 2009; Chou and Marculescu, 2011]. This is particularly true in the
case of the onset of runtime permanent faults in the processing elements, when
a redistribution of the tasks executing on the faulty cores is needed in order to
provide a graceful degradation of the performance of the platform.

In most of the related work (e.g., [Lei and Kumar, 2003; Jena and Mahanti,
2008]), the problem of static task mapping has been addressed in two phases.
The first phase addresses the partitioning problem, taking as input the task graph
and a list of IPs and providing as output the core communication graph (CCG).
A vertex in the CCG represents a core where one or more tasks of the given task
graph are merged into one with a schedule. This step is usually performed by
exploring the design space through genetic algorithms for selecting the mapping
that, given some assumption of the average system delay, optimizes the compu-
tation [Lei and Kumar, 2003]. The second phase is the core mapping. It tries
to optimally bind the vertices of the CCG to specific nodes of the NoC, selected
amongst the group of IPs that can execute the specific task. Core mapping prob-
lem starts with the CCG and results in a mapping of cores to tiles. Goal of this
second phase is usually to minimize the communication cost.

ILP-based solutions to similar problems have been proposed in the case of
contention-aware application mapping on NoCs [Chou and Marculescu, 2008];
floor-planning and topology generation for NoCs [Srinivasan et al., 2006]; task
mapping and scheduling on multi-core architectures [Yi et al., 2009]; task map-
ping on shared memory bus-based heterogeneous MPSoCs [Erbas et al., 2006].
It is possible to classify the previous work in terms of the tackled problem (core
mapping, task mapping, partitioning, allocation, scheduling, routing, topology
generation); optimization goals (execution time, delay, communication, power,

28 2.7 Task migration

robustness, contention, flexibility); optimization techniques (heuristics, evolu-
tionary algorithms, exact solutions); architectural platform (fixed/free NoC topol-
ogy, fixed/free routing).

The optimal mapping of application tasks on MPSoC platforms is also targeted
in [Thiele et al., 2007] and [Le Beux et al., 2010]. Both proposed approaches
apply an optimization based on the use of genetic algorithms for automatically
exploring the design space; the former optimizes the total execution time and
communication load; the latter optimizes the throughput, area and flexibility.

Other than the optimal solutions, several work have proposed as possible
solution to the optimization problem the use of heuristics [Hu and Marculescu,
2003; Murali and De Micheli, 2004; Hu and Marculescu, 2005; Marcon et al.,
2005; Wang et al., 2010], evolutionary algorithms [Ascia et al., 2004; Zhou et al.,
2006; Jena and Mahanti, 2008; Bhardwaj and Jena, 2009; Walter et al., 2009;
Fekr et al., 2010] and a mix of both [Srinivasan and Chatha, 2005; Modarressi
and Sarbazi-Azad, 2007]. Heuristics are in fact needed when the dimension of
the NoC increases. The ILP formulation is too time-consuming to be solved with
current ILP solver software tools, in particular when considering its possible use
at runtime for calculating the remapping of the tasks running on a processor that
becomes faulty. The usual approach followed in the mentioned related work is
to compare the performance of the proposed solutions with each other, or with
a solution found by applying simulated annealing [Ababei and Katti, 2009].

2.7 Task migration

In this thesis, we view fault tolerance as an aspect of run-time management and
aim at achieving it by remappping of tasks using task migration. Process migra-
tion mechanisms [Smith, 1988; Milojičić et al., 2000] have been widely studied
and implemented in the context of distributed computing systems to enable dy-
namic load distribution, fault resilience, improved system administration and
data access locality. In recent years, run-time management of multiprocessor
systems has gained popularity also in the embedded systems research area. This
domain imposes tight constraints such as cost, power, and predictability that
should be carefully taken into account by run-time management mechanisms.
In [Nollet et al., 2010], a survey of run-time management applications in state-
of-the-art academic and industrial MPSoC solutions is presented together with
a generic description of run-time manager features and implementation alterna-
tives. One of the highlighted research challenges, which is the concern of this
thesis, is run-time system adaptation for fault tolerance.

29 2.8 Fault tolerance

Task migration is a specific component of run-time management strategies.
Several previous work address the implementation of task (or process) migra-
tion in MPSoCs. Task migration approaches are explained and quantitatively
evaluated in [Bertozzi et al., 2006] and [Acquaviva et al., 2008]. Dynamic task
remapping is achieved at user-level or middleware/OS level respectively. In both
of these approaches, the user needs to define checkpoints in the code where the
migration can take place. This can require some manual effort from the designer.
Moreover the inter-task communication realization exploits a shared memory
system.

The closest to our work is [Almeida et al., 2009], in which the goals of scal-
ability and load balancing are achieved through a distributed task migration de-
cision policy over a purely distributed-memory multiprocessor. Similar to our
approach, their platform is programmed using a process network MoC. In their
approach the actual task migration can take place only at fixed points, which
correspond to the communication primitive calls. This method assumes that the
computation relies on a strict consumer/producer model where no internal state
is kept from iteration to iteration. This translates in the fact that there cannot
be any dependencies between two adjacent computed data chunks. We adopt a
similar application model (see section 3.2.1) in the recovery technique proposed
in section 5.3 and adaptation techniques proposed in chapter 6.

One of the implementation decisions for task migration is the migration of
task’s code. In the code replication approach [Pittau et al., 2007], each node
stores a copy of tasks’ code. Whereas in the code recreation approach [Almeida
et al., 2009], code of the tasks is also migrated alongside their state. The former
approach requires additional memory but it reduces the migration time.

2.8 Fault tolerance

In this section, we strive to provide some background on hardware fault tolerance
followed by the related work. For more details on fault tolerance, readers can
refer to the excellent books by Koren and Krishna [2007]; Mukherjee [2008];
Sorin [2009].

Fault tolerance consists of two steps: detection and recovery. Detection iden-
tifies the presence of a fault or an error. Recovery transforms a system state
affected by one or more errors (due to the underlying presence of faults) into a
state without detected errors (error recovery) and such that previously detected
faults will not be activated again (fault handling) [Avizienis et al., 2004]. In
essence, tolerance to hardware faults is achieved by means of redundancy either

30 2.8 Fault tolerance

in time, hardware or information regardless of the abstraction level at which it
is being used.

A vast amount of research effort has been spent on hardware fault tolerance
which addressed it at different levels of abstraction. A survey of techniques up to
the processor level can be found in [Koren and Krishna, 2007]. Gizopoulos et al.
[2011] presents a survey of fault tolerant architectures in multi-core systems. In
the following, firstly in section 2.8.1 and 2.8.2, we provide some background on
fault detection and error recovery techniques, respectively. In section 2.8.3, we
survey related work on system-level fault tolerance in embedded systems. Lastly,
in section 2.8.4, we look at the related work with respect to lifetime reliability.

2.8.1 Fault detection

There are mainly four detection approaches for processor faults, namely, redun-
dant execution, dynamic verification, built-in self-test (BIST) and anomaly de-
tection [Gizopoulos et al., 2011]. They vary in terms of their hardware cost,
performance overhead, detection latency, targeted faults and fault coverage. Re-
dundant execution can be used as an architectural solution (e.g., lockstep cycle-
by-cycle checking, redundant multi-threading in a single core or a multi-core
setting) or as a software-based solution (e.g., duplicated instructions). Dynamic
verification employs concurrent checking of specific invariants such as control
flow, data flow and computation via dedicated hardware checkers [Meixner et al.,
2007; Ananthanarayan et al., 2013]. When targeting permanent faults, the use
of concurrent detection techniques, which target permanent as well as transient
faults, is an overkill. However it comes with the benefit of detecting faults with
a small detection latency. BIST and anomaly detection techniques impose a
longer detection latency which creates a window for error propagation. Soft-
ware anomaly detection monitors symptoms of faults in the form of anomalous
software behavior such as hardware fatal traps, kernel panics and application
aborts [Li et al., 2008]. BIST is a design-for-testability practice used for manu-
facturing testing. Test patterns are applied to the device under test by dedicated
testing hardware units. Software-based self-testing is a low cost alternative as
it removes the need for test pattern generation and storage by means of a self-
testing routine. Software-based self-testing has been used recently in an online
and periodical manner to detect operational permanent faults [Constantinides
et al., 2007].

31 2.8 Fault tolerance

2.8.2 Error recovery

Error recovery techniques can be classified into two categories: forward error re-
covery (FER) and backward error recovery (BER). In FER, the system continues
to make forward progress by masking the fault and correcting the error without
any re-execution of data preceding the fault [Pradhan and Vaidya, 1994; Xu and
Randell, 1996]. This is mainly achieved by spatial redundancy techniques such
as N-modular redundancy (NMR) or fail-over. Although implementation of these
techniques is rather easy, the overhead associated with them are substantial. On
the other hand, BER makes use of redundancy in time by returning to a state
saved in a stable storage before the occurrence of the fault and continuing oper-
ation by re-executing from that point (checkpoint and rollback) [Elnozahy et al.,
2002]. Although its implementation is more tedious in general, it helps avoiding
higher overheads of the FER techniques. BER has been studied widely in shared
memory systems [Sorin, 2009] as well as message-passing systems [Elnozahy
et al., 2002].

In the case of shared memory multiprocessor systems, checkpointing-and-
rollback recovery has been implemented in software or hardware. Software-
based solutions take checkpoints at the application level [Bronevetsky et al.,
2004] or in an application-indifferent manner (known as system level check-
pointing) [Litzkow et al., 1997; Dieter and Lumpp Jr, 1999; Hargrove and Duell,
2006]. Hardware-based solutions take a global system-wide checkpoint stored
in the main memory [Prvulovic et al., 2002] or local, coordinated checkpoints
stored in special log buffers [Sorin et al., 2002]. These solutions have been cou-
pled with various fault detection mechanisms such as online software-based self-
testing in [Constantinides et al., 2007] and software-based anomaly detection in
[Sastry Hari et al., 2009]. The performance overhead as well as the additional
memory required for checkpoints depend on the checkpointing interval and the
application.

In the case of message-passing systems, BER has been implemented in soft-
ware and mostly for long running scientific applications in high performance
computing [Schulz et al., 2004; Bouteiller et al., 2006]. BER techniques have
a few variations. In uncoordinated checkpointing, processes decide to take a
checkpoint by themselves. However, when a fault occurs, finding the set of con-
sistent checkpoints that reflects a snapshot of the entire system (called a recov-
ery line) requires an online algorithm which would increase the recovery time.
Moreover, it is prone to the domino-effect which may lead to rolling back all the
way to the beginning of the computation. Most importantly, each process has
to keep several checkpoints, which would result in a memory overhead. Coor-

32 2.8 Fault tolerance

dinated checkpointing, on the other hand, relies on storing a single consistent
checkpoint by means of a coordination protocol where a coordinator initiates
a global checkpoint by synchronizing other processes. Again, this coordination
mechanism leads to an overhead in the steady-state operation of the system. Al-
ternatively, in log-based BER, each process can take a checkpoint without any
coordination but they store the history of all incoming messages after a check-
point. Upon fault detection, an online algorithm is used by each process to find
the checkpoint to rollback to by coordinating with its predecessors. Differently
than normal operation, instead of resuming execution by exchanging messages,
the processes play the logged messages to create the exact state at the time of
the fault without having to synchronize on the messages from other processes.
Therefore a faster recovery can be achieved at the expense of the memory over-
head required to log the messages. When adopting checkpoint-based rollback
recovery systems, several implementation issues arise such as what to check-
point, how to take a checkpoint for a given processing core and where to check-
point. The final overhead is determined by aggregating the effects of the answers
to these questions. Checkpointing support at the processor, compiler or kernel
level can result in a more efficient and easy implementation. However, the size
of the checkpoint increases at lower abstraction levels making application-level
checkpointing more favorable [Schulz et al., 2004].

2.8.3 Related fault tolerance approaches in embedded systems

Although BER and FER solutions explained in the previous section are valid for
message passing systems in general, when applied to more constrained systems
such as embedded multicore platforms, the resource overhead has to be con-
sidered more carefully because they may impose quite large overheads both in
performance and power due to checkpointing or replication.

In the following, the related work on fault tolerance that target embedded
systems are presented, in particular, focusing on system-level approaches and
their recovery techniques.

Task-level active spatial redundancy

Fault tolerant mapping of applications on MPSoCs has attracted some attention
recently [Saraswat et al., 2010; Huang et al., 2011; Stralen and Pimentel, 2012;
Bolchini and Miele, 2013; Kang et al., 2014a,b]. Most of these approaches focus
on transient errors and consider real-time applications, hence they address both
mapping and scheduling problems.

33 2.8 Fault tolerance

Bolchini and Miele [2013] propose a reliability-driven system-level design
methodology for mixed-critical embedded systems against transient faults. The
approach aims at implementing a performance-optimized hardened implemen-
tation of the system by means of a DSE process that selects the appropriate
technique (or set of techniques), possibly exploiting also the fault management
features provided by the target architecture. Three criticality levels that can
be assigned to a task are fault-tolerance, fault-detection and fault-ignorant. A
task is hardened according to its criticality requirement either by a task-level
redundancy technique such as task duplication and NMR, or by mapping it on
a HW resource hardened by fault-tolerant fabric, concurrent error detection or
checkpoint-and-rollback capabilities. The genetic algorithm based DSE evaluates
design points only in terms of execution time metric by associating some penalty
delays to actions such as voting and rollback.

In [Kang et al., 2014a], a design space exploration for the mapping of mixed
critical applications on MPSoCs is proposed which achieves fault tolerance by
three techniques: task level NMR (refered to as active redundancy), duplex with
spare (refered to as passive redundancy), and re-execution. Re-execution as-
sumes that an error is detected at the end of each execution of a task. Since
transient errors are instantaneous, this requires some sort of concurrent error de-
tection. However no reference is made to a particular error detection technique.
Tasks are specified by a reliability constraint (in terms of failures in time). The
DSE results in hardened applications optimizing power, reliability and real-time
behavior. In [Kang et al., 2014b], same authors add the capability of dropping
non-critical tasks in order to keep satisfying the deadlines of higher criticality
tasks when errors occur. This capability is added as an extension to the scheduler
on each processor and is built on top of the static hardening scheme described in
their previous work. The exploration framework relies on analytical models and
uses genetic algorithms.

Analysis and optimization of fault-tolerant task scheduling for multiprocessor
embedded systems is also addressed by [Huang et al., 2011]. System-level reli-
ability in the presence of software/hardware redundancy is computed through
the implementation of a Binary Tree Analysis based on a set of existing fault-
and process-models. The Binary Tree Analysis is integrated into a multi-objective
evolutionary algorithm which performs the reliability-aware design optimization,
providing as result the mapping of tasks to processing elements, the exact task
and message schedule, and the fault-tolerance policy assignment. Different than
the abovementioned approaches, this approach addresses permanent faults by
integrating static schedules computed at compile time for all permanent fault
scenarios. The number of these schedules increases dramatically with problem

34 2.8 Fault tolerance

size similar to [Lee et al., 2010].

Pinello et al. [2008] demonstrate a design flow that achieves fault tolerant
distributed deployment of safety critical embedded software for automotive ap-
plications. They address permanent and transient faults. In doing so, they pro-
pose a new fault tolerant data flow model that expresses redundancy through
replication of one or more tasks.

Task re-execution

Apart from the exploration frameworks mentioned earlier [Bolchini and Miele,
2013; Kang et al., 2014a]which also support re-execution, Izosimov et al. [2012]
use re-execution as the recovery technique for scheduling and optimizing fault
tolerant systems with transparency/performance trade-offs. They focus on mul-
tiple transient errors. The recovery overhead includes the time that is needed in
order to restore task inputs, clean up the processing node’s memory, and restart
task execution. Transparency of faults between dependent tasks is achieved by
allowing a long enough time to recover from errors such that the schedule of
consumer tasks is not affected. The approach assumes the availability of an er-
ror detection technique that detects a transient error at each execution of a task.
Similarly, Mossé et al. [2003] propose to leave sufficiently long gaps between
tasks so that faulty tasks, which experience transient faults, can be rescheduled
for re-execution without violating deadline guarantees.

Checkpointing and rollback

In a similar context to ours, Stralen and Pimentel [2012] aim at achieving toler-
ance to transient errors when running KPN applications in MPSoCs. They present
a framework that explores fault-tolerant mappings using genetic algorithm based
on a simulation model. It evaluates the impact of task redundancy (with TMR
and DMR) on the number of dropped frames, which represents a measure of
performance and reliability combined, and power figures of a given application.
TMR achieves fault detection and correction at the same time while, in the case
of DMR, an error is detected by the mismatch in DMR’s checker, and error recov-
ery is done by a checkpoint-and-restart method that is used within the DMR-ed
subnetwork. This approach requires for each redundant task the presence of a
message cache that is able to store all the messages in between checkpoints.

35 2.8 Fault tolerance

Drop and forward recovery

Error tolerant computing aims at exploiting the capability of an algorithm to tol-
erate errors that occur during computation [Li and Yeung, 2007]. When running
error-tolerant applications, some errors can be simply allowed to propagate. In
[Lee et al., 2008], authors propose a cross layer approach in order to mitigate
transient errors occuring in data caches when running multimedia applications.
In particular, they explore a Drop and Forward Recovery mechanism that drops
a current encoding frame and moves forward to the next frame once an error is
detected in a mobile video encoding system. Using error detection codes at the
hardware layer combined with failure handling capabilities implemented at the
middleware and application layers allows achieving better performance, energy
and reliability trade offs compared to the use of error correcting codes in the data
cache, which is a pure hardware approach. In [de Kruijf et al., 2010], authors
extend the instruction-set architecture of a processor and the programming lan-
guage to support recovery blocks which are executed if a soft error is detected
during the execution of the preceding code block encapsulated by a relax state-
ment. Beside supporting a retry statement in the recovery block that re-executes
the relax block, they also enable roll-forward recovery by allowing an erroneous
value to propagate as the result of the code block or by escalating the error to the
function caller. This is possible only in a functional programming style in which
the relax block does not have side effects.

Core remapping

Core remapping (or core sparing) has emerged firstly as an architecture-level
defect tolerance technique for the purpose of increasing the yield after manufac-
turing testing of the chip by replacing defective cores with spares [Greene and
El Gamal, 1984; Collet et al., 2011; Zhang et al., 2008]. This approach has later
been extended as a run-time management technique in order to address per-
manent faults occuring in operational conditions [Ababei and Katti, 2009; Chou
and Marculescu, 2011]. These core remapping approaches remap a core (i.e., a
scheduled set of tasks mapped on the same processing node, as described in sec-
tion 2.6) as a whole to a spare processing element. Considering the related work
specifically addressing strategies for increasing fault tolerance in case of faulty
cores in NoCs, in [Ababei and Katti, 2009], authors investigate the use of adap-
tive remapping for moving tasks running on a core found faulty on a different
spare processing element. Their approach aims at minimizing the communica-
tion volume after remapping.

36 2.8 Fault tolerance

In [Chou and Marculescu, 2011], a system-level fault-tolerance technique for
application mapping which aims at optimizing the entire system performance
and communication energy consumption is proposed. In particular, authors ad-
dress the problem of spare core placement and its impact on system fault-tolerance
properties, and propose a run-time fault-aware technique for allocating the ap-
plication tasks to the available, reachable, and fault-free cores of embedded NoC
platforms.

Although core remapping is a way of tolerating permanent faults, it is not a
complete fault tolerance solution by itself. It has to be accompanied with proper
fault detection and recovery techniques. The abovementioned approaches fall
short of addressing these problems.

Core salvaging

Apart from the system-level techniques presented above, we find it worthmen-
tioning that a few hardware-based reconfiguration techniques have exploited in-
herent intra-core and cross-core redundancy at micro-architectural and architec-
tural levels. From microarchitectural standpoint, some approaches make use of
the redundant resources available inside a core by disabling defective execution
pipelines [Schuchman and Vijaykumar, 2005] or scheduling operations on fault-
free intra-core resources [Meixner and Sorin, 2008; Shivakumar et al., 2003;
Srinivasan et al., 2005; Bower et al., 2004]. Especially in the case of complex
superscalar architectures, which contain non-essential components (e.g., branch
prediction unit), it is possible to avoid using a defective unit or carry out its func-
tion via some other units. The core is still able to implement its instruction set
architecture, though with degraded performance. These techniques introduce
modifications to the microarchitecture of the core, hence increasing its complex-
ity.

Architectural core salvaging techniques exploit cross-core redundancy. Core
cannibalization [Romanescu and Sorin, 2008] and StageNet [Gupta et al., 2008]
approaches allow shared use of some pipeline stages between faulty and fault-
free cores. In [Powell et al., 2009], the threads are relocated to another core
when encountering instructions that use a defective unit in the core. The remap-
ping policy aims at finding a mapping that minimizes the number of migrations
between the defective core and fault-free cores. Authors also propose policies
that take into account the type of defective units. For example, considering a de-
fective branch predictor, the remapping policy assigns to the defective core the
threads for which branch prediction performs badly. Although core salvaging
techniques allow using defective cores, they work if the defects appear only in

37 2.8 Fault tolerance

specific units of the core, hence resulting in a small fault coverage. Therefore
they require additional techniques to implement full coverage.

Task remapping

The approach adopted in this thesis is task remapping. It is a graceful perfomance
degradation technique that relies on using as much as possible the slack time
available in the computational resources to compensate for the faulty processing
element by redistributing its tasks to fault-free nodes. Unlike core remapping, it
does not require spare cores. It is based on core disabling (i.e., turning off and
isolating defective cores). The system continues operation with a lower number
of cores.

Scheduling is a widely researched topic in general purpose distributed com-
puting systems [Casavant et al., 1988]. In that context, we encounter the earliest
examples of a similar problem in [Chou and Abraham, 1983; Patnaik and Iyer,
1986; Singh et al., 1991] where loads are re-scheduled in presence of faulty
computing nodes. Fault tolerant scheduling in homogeneous real-time systems
is surveyed in [Krishna, 2014]. These approaches are not sufficiently generic
to be applicable in our case. Their system models are fundamentally different
in several aspects such that tasks do not have precedence relations, computing
nodes are homogeneous or only load balancing is taken into account.
[Lee et al., 2010] proposes a task remapping technique for multi-core em-

bedded systems aiming at minimizing the throughput degradation, based on an
intensive compile-time analysis for all possible failure scenarios. Pre-computed
remapping information is stored and retrieved at run-time for remapping the
tasks following the decision taken at compile-time. However, in the case of a
restricted amount of local memory in the NoC tiles, or for complex fault scenar-
ios in NoCs of a significant size, the amount of memory needed for storing the
remapping information may make this technique not applicable.

Task mapping in the case of defective tiles has been investigated in [Amory
et al., 2011], where the generation of a task mapping is evaluated in terms of
energy consumption and execution time. This is not a real task remapping ap-
proach because it aims at finding a static mapping for a NoC platform which is
known to contain defective tiles.

In the particular case of process networks, a fault tolerant process network
model is proposed in [Ceponis et al., 2008]. A fail-stop error model is assumed,
that is, a process stops execution after experiencing a fault. Failed processes
are detected by their predecessor and successor processes via time-outs when
blocked on empty or full FIFO channels. Recovery is achieved by merging the

38 2.9 Application-level self-adaptation for quality management

function of the failed process into one of its successor processes. The approach
does not clarify some important issues, such as how the data lost during failure
are compensated using default values, how the error is contained and how it is
guaranteed that the system would not deadlock due to missing data. Since the
approach is realized only as a multi-threaded simulation of a simple application,
the authors do not provide an evaluation of its performance.

2.8.4 The lifetime reliability aspect

The online task remapping technique enables the system to survive with possibly
some performance degradation. This capability of the system increases the num-
ber of faults that should occur in order to make it fail, thus increasing its lifetime
reliability. In this section, the previous studies that treat lifetime reliability as an
optimization goal during task mapping are surveyed.

Due to the ever-increasing possibility of incurring in run-time permanent
faults in processors and MPSoC components - faults caused for instance by wearout
effect [Borkar, 2005] - system lifetime reliability has been proposed as an explicit
metric to be taken into account during the task allocation phase [Huang et al.,
2009]. In [Huang et al., 2009], the problem is addressed by generating a unique
task schedule with maximum lifetime reliability for a single-mode embedded sys-
tem. With regard to previous work, [Huang et al., 2009] takes into account aging
effects of processors in the calculation of system reliability. In [Huang and Xu,
2010], the same authors extend the methodology proposed in [Huang et al.,
2009] by minimizing energy consumption of a MPSoC platform in the case of a
given lifetime reliability constraint. In both approaches, task allocation is gen-
erated at design stage and a unified task schedule for each execution mode is
constructed for all the products. In [Huang, Ye and Xu, 2011], initial schedules
generated at design stage are optimized separately with online adjustment at
regular intervals for lifetime reliability and/or energy-efficiency improvement.

2.9 Application-level self-adaptation for quality man-
agement

Systems are usually expected to operate with a certain quality when delivering
their services. Similar to fault tolerance, management of quality of service has
benefited from the increased attention to run-time management in MPSoCs. Ac-
cording to [Nollet et al., 2010], which surveys several approaches from academia
and industry that address different aspects of run-time adaptation, one of the

39 2.9 Application-level self-adaptation for quality management

two components of a generic self-adaptive run-time environment, other than a
resource manager, is the quality manager. In our work, we incorporate quality
management support into the NoC-based platform through an application-level
self-adaptation framework. Quality management support may reside alongside
other self-adaptation services such as the fault-tolerance support described in
chapters 4 and 5. In this thesis, we focus particularly on the adaptation of
application-level parameters to meet application’s performance goals. In the fol-
lowing, we provide an overview of the related work, firstly, on application-level
adaptation and secondly, on quality management in multimedia systems.

2.9.1 Adaptation of application-level parameters

An application can be adapted in a number of ways, for example, by changing the
value of a variable that appears in a function, or by using a conditional variable
to select the concrete implementation of a function. Such parametric adaptations
can allow the system to operate at different trade-off points in terms of system’s
objectives. In order to enable parametric adaptations, the parameters need to be
identified and changed consistently throughout the application.

There is a body of work that strives to embed dynamicity into the mod-
els of computation in order to increase their expressive power. It is mainly
motivated by advanced signal processing applications that require multi-mode,
multi-standard, variable data rate or other kinds of adaptable operation. [Bhat-
tacharyya et al., 2013] surveys dataflow models of computation that embrace
dynamicity to different extents. These MoCs are namely Boolean dataflow, CAL
actor language, parameterized dataflow, enable-invoke dataflow, dynamic poly-
hedral process networks, scenario aware dataflow, and a stream-based function
actor model. Of particular relevance to us is parameterized PPN.

In P3N [Zhai et al., 2011], a parameterized polyhedral process network model
is defined to support run-time parametric adaptations. It uses similar concepts
defined in parameterized SDF [Neuendorffer and Lee, 2004] such as quiescent
points and reconfiguration ports. Quiescent points are the execution points at
which a parameter is reconfigurable. A reconfiguration port is bound to a pa-
rameter of its task and tokens received through the port reconfigure the param-
eter. P3N enforces through a design time analysis and a run-time checker the
consistent changing of multiple parameters by making sure the production and
consumption rates of the channels remain equal as a result of the reconfiguration.

By operating at the MoC level, the adaptation of the application can be car-
ried out in an application independent manner. Contrarily, ad hoc solutions may
be used to coordinate the reconfiguration in multiple components based on bar-

40 2.9 Application-level self-adaptation for quality management

rier synchronization as examplified in Cholla [Bridges et al., 2009]. In Cholla,
barrier members are adaptable components or different portions of adaptable
components. The barrier locations in all its members need to be determined ac-
cording to the application. Moreover, barrier synchronization implies that all the
members of the barrier are blocked until they are synchronized and reconfigured.

2.9.2 Quality management in multimedia systems

Self-adaptation has been used in distributed systems for the management of QoS
mostly through adaptive middleware mechanisms and custom adaptation man-
agement protocols. A control theoretical approach to QoS is proposed in [Li and
Nahrstedt, 1998] and [Li and Nahrstedt, 1999]. In the first paper, the authors
introduce a passive adaptation task mechanism, located in the middleware level
to support application-specific adaptation. Basically, passive adaptations can be
viewed as transformations of the data input stream incoming into a task (e.g. a
software component) to fit a required QoS. The middleware performs adaptation
without a feedback loop between applications and the transport layer based on
certain QoS metrics. In the second paper, the same authors extend and improve
their technique by means of proportional/integral/derivative (PID) control and
fuzzy control models in order to balance and support both application-specific
adaptations and system-wide requirements, such as stability and agility of the
adaptation and fairness among multiple applications. Cholla [Bridges et al.,
2009] presents a Linux-based prototype implementation of a software architec-
ture that controls and coordinates adaptation policy decisions inside network
protocols and multimedia applications. Adaptation controller is defined by rule
sets each of which implements a portion of the adaptation policy. If rule sets
conflict when determining an output variable, additional coordination rules are
used for resolution. Rule sets, which are predicate-action pairs, support fuzzy
control techniques.

In [Al-Ali et al., 2004] an approach for managing quality of service in grid
systems is presented: system resources are managed in an adaptive way both
to satisfy the quality of service requirements and to use the resources efficiently.
Thus, self-adaptivity is in the process management software included in the op-
erating system of each node. In [Foster et al., 2000] a similar approach is used
to provide network quality of service. The self-adaptivity is included in the net-
work routers and it allows the system to efficiently use the network bandwidth.
In both aforementioned examples the control system is composed of sensors, a set
of decision procedures, and actuators. [Hafid and v. Bochmann, 1998] presents
two protocols for QoS adaptation that allow to recover from QoS violations by

41 2.9 Application-level self-adaptation for quality management

changing the distribution of QoS levels assigned to the network components in
distributed multimedia applications.

Video coding and decoding applications have been the subject of a number of
studies that investigate the control of quality and bitrate via application’s param-
eters. Grant et al. [1997] investigate a fuzzy logic-based video rate controller
aimed at regulating the data rate of compressed video at a constant transmission
rate without objectionable quality degradation. In a similar effort, Rezaei et al.
[2006] propose a fuzzy video rate controller designed for real-time variable bi-
trate applications with buffer constraints. Quality and bitrate are controlled by
modifying the quantization scale. In [Cornbaz et al., 2005, 2007; Jaber et al.,
2008] several techniques for fine-grained QoS control of multimedia applications
are presented. Based on the estimates for the worst-case and average execution
times for different levels of quality gathered by using timing analysis and pro-
filing techniques, the proposed methods generate a controlled application that
meets given QoS requirements from an input application software. The con-
troller monitors the progress of the computation in a cycle and chooses the next
action to run and its quality level, guided by safety and optimality constraints for
the system.

42 2.9 Application-level self-adaptation for quality management

Chapter 3

Reference Platform

In this chapter, we aim at providing the preliminaries of this thesis by describ-
ing the baseline platform on which we have implemented the fault tolerance
and self-adaptivity techniques described in the following chapters. The base-
line platform equipped with the architectural features described in section 3.1
is generated with the SHMPI builder tool [Meloni et al., 2010] by DIEE, Univer-
sitá degli Studi Cagliari. This choice derives from the MADNESS EU FP7 Project
(No. 248424). The initial platform has been further developed by contributions
from LIACS, University of Leiden and ALaRI, Faculty of Informatics, University
of Lugano. The collaborative work leading to the creation of the reference plat-
form, which includes the software support described in section 3.2, has been
partially published in [Cannella et al., 2011; Derin, Diken and Fiorin, 2011; De-
rin and Diken, 2010]. Section 3.3 describes the overall fault tolerance approach
adopted in the MADNESS project by detailing the fault model and the fault de-
tection mechanism.

3.1 Architectural support

In this thesis, the system architecture is seen as a network of tiles, interconnected
by means of an NoC communication infrastructure. In order to provide an ac-
tual experimental platform (rather than just a simulated one) we made use of
a mesh-based 2 × 2 NoC multiprocessor architecture such as the one shown in
figure 3.1 consisting of Microblaze processors implemented by means of a Xil-
inx Virtex6 FPGA; this choice does in no way detract from the generality of our
solution. The methods and algorithms described in this work can be applied to
NoCs with generic topologies. We consider an embedded system architecture
composed of heterogeneous cores. Every tile contains a processing element and

43

44 3.1 Architectural support

Port A

Data Memory

Port B

message−passing
handler

DMA

Port A

interrupt

s
e
n
d
()/re

c
v
()

p
a
ra

m
e
te

rs

Port B

Processing Element

Network
Adapter (NA)

tag
Tag Decoder

Initiator/Target NI

FLIT−out FLIT−in

Tile 2

Tile 4Tile 3

NoC

Tile 1

Instruction Memory

R

RR

R

Local Bus

Figure 3.1. A general overview of the baseline tile architecture

its related local memory. Our platform implements pure message passing with
the No Remote Memory Access (NORMA) model [Carara et al., 2007]. According
to this model, tasks only have access to the local memory and there is no shared
address space. Communication is performed through low level-message passing
routines supported by the network interfaces of the NoC.

The processing element architecture is not fixed. Any kind of RISC or ASIP
processor with standard bus-based signal interface can be easily integrated. No
instruction set extensions are needed, since communication and synchronization
mechanisms are managed by accessing memory-mapped registers at the network
interfaces. The template allows the connection of peripheral controllers that can
be connected as network nodes and receive transactions initiated by processing
elements. It is also possible to integrate non-programmable cores (i.e., custom
processing elements) implementing specific dedicated algorithms, such as those
used for audio or video encoding/decoding, or complex cryptographic functions.

The platform relies on a packet-switched source-based NoC, implementing a
wormhole control flow. Without loss of generality, we consider in our experi-
ments a XY routing algorithm. However, our formulation is valid for any deter-
ministic routing scheme. Deterministic routing allows us to infer the communi-
cation binding from the task mapping (i.e., the task mapping is the only degree
of freedom).

The communication network is built by using an extended version of the the
×pipes-lite library of synthesizable components [Dall’Osso et al., 2003]. The

45 3.1 Architectural support

topology can be completely arbitrary, since it includes a fabric of routers and
links that can be almost entirely customized. Network access points are net-
work interfaces (NIs), that are in charge of constructing the packets on the basis
of the communication transactions requested by the cores. NIs, placed at the
interface between processing elements and the communication network, have
been extended with support for message-passing communication model. A pro-
grammable message manager with direct memory access (DMA) capabilities is
integrated with the NI inside a module called Network Adapter (NA) described
more in detail in section 3.1.1.

3.1.1 Message passing support

Reference primitives implementing message-passing communication are built,
according to the general definition of such model, upon two base functions:
send() and receive(). These two primitives are implemented in C, and interact
with the hardware structures. According to the usual message-passing signa-
tures, to send a message with a send(), the programmer has to specify the address
(SendAddress hereafter) inside the private memory that contains the information
to be sent (message data), a tag assigned to the message (SendTag), the size of
the transfer (SendDim), and the ID of the destination processor (or process, in
the case of multi-context execution in the processing elements - SendID). The re-
ceive() parameters are the tag of the expected message (ReceiveTag), the sender
ID (ReceiveID) and the address where the received message data has to be stored
(ReceiveAddress). Two implementations of the receive() are provided, with block-
ing and non-blocking behaviour, respectively.

The NA architecture is depicted in figure 3.1.To achieve higher performances,
both the instruction and data private memories of the processor have two access
ports (this feature is natively available in FPGA devices), in order to allow the
processor to keep on accessing code and data from one instruction and one data
port, while, at the same time, the other ports can be used to directly load/s-
tore data from/to the memory in the case of message send/receive. In this way,
communication and computation can overlap, potentially leading to a significant
speed-up. The NA integrates a local bus, that, according to the address requested
by the processor interface, enables access to the private memory, a module called
DMA message-passing handler (MPH), and a set of performance counters that keep
statistics about the application execution.

The local bus is also in charge of managing the bus arbitration, when using
single-port memories. The MPH embeds a set of memory-mapped registers that
are programmed by the processor, to control send and receive operations, setting

46 3.1 Architectural support

the previously described parameters.
It also includes an address generator in charge of generating the addresses

when the private memories must be accessed from the port reserved for message
passing.

When the processor wants to call a send(), the code that implements the prim-
itive stores the required values into the send-related memory-mapped registers.
As soon as the registers are programmed, the address generator starts to load
SendDim words from the memory, starting from address SendAddr, and propa-
gates them to the NI. The destination address requested for the network trans-
action is obtained by the address generator according to the content of SendID,
translating the destination process ID into the network address of the destination
processor private memory.

At the other end of the communication, the processor needs to execute a
receive() to complete the transaction. It may happen that the receive() has not
been called at the moment the packets composing the message actually arrive
to the destination network node. In this case the message data are stored in
the memory, inside a (configurable) memory buffer reserved for such a purpose.
The identification fields related to the incoming message (sender, tag, buffer
address) are stored inside an event file, in order to enable the receive() primitive
to retrieve the message from the memory when it will eventually be executed.
The receive() code, as a first step, stores the parameters inside three memory-
mapped registers. Once such registers are programmed, the processor must keep
accessing the DMA, scanning the event file locations, to check if the message
under reception is already inside the buffer. In the case of a match, the processor
copies the message data from the buffer to the ReceiveAddress. If the message is
not found in the event file, the processor keeps polling the DMA handler, where
a dedicated circuitry is in charge of comparing the incoming messages with the
contents of the three registers. In the case of a match, the message data are
stored in memory, directly at the location identified by ReceiveAddress. In order
to allow partial buffer de-fragmentation, the buffer is treated as a list.

3.1.2 Inter-processor interrupt generation support

A tag decoder has been instantiated inside the NA. It is in charge of detecting a set
of predetermined tag configurations, that are reserved for the purpose of remote
interrupt generation. In case of matching, the tag decoder triggers an interrupt
signal that is connected to the processor interrupt controller. This feature can be
used to allow a processor in the system to generate an asynchronous event on
another processor. The number and the range of reserved tag configurations are

47 3.2 Software/Middleware infrastructure

PPN task

NORMA-based NoC multiprocessor

Run-time Environment

PPN middleware

Multi-Threaded Operating System Message passing and interprocessor interrupt support

PPN application

Figure 3.2. Software stack in the reference platform

configured at design time. By default, the tag is 16 bits wide, and 16 different
configurations generate a different interrupt signal to the processor. This means
that 16 comparators and 16 registers are instantiated inside the NA netlist after
synthesis. If the interrupt signal is generated directly by the comparing logic,
some spurious fluctuations can be generated at the receiving of the message,
during the transient of the circuitry switching. Being the interrupt controller set
to be sensitive on rising edge of the interrupt signal, in order to avoid such fluc-
tuations to generate an interrupt in the processor, the interrupt signal is buffered
in a register before being forwarded to the interrupt controller. This hardware
overhead can be customized reducing the number of reserved tags according to
the application features.

3.2 Software/Middleware infrastructure

Each tile of the system described in section 3.1 is endowed with the software/mid-
dleware stack depicted in figure 3.2. The application level resides at the top of
the software stack. In the MADNESS project, applications are specified by using
the PPN MoC. The application model is described below in section 3.2.1.

At the bottom of the software stack, the multi-threaded operating system (MTOS)
provides basic functionalities such as process management (process creation/dele-
tion, setting process priorities) and multitasking capabilities. We have used Xilk-
ernel [Xilinx, 2010] and associated libraries as provided by Xilinx. The scheduler

48 3.2 Software/Middleware infrastructure

P

......

[s1, s2, ..., sN ,]

su1 suM P (su1)

[s′1, s
′
2, ..., s

′
N ′,]

P (suM)

Figure 3.3. Example of a streaming application.

has been modified by University of Leiden to support a data-driven scheduling
policy. When multiple processes are mapped on the same tile, the OS schedules
the processes in a data-driven fashion. This means that a process runs until it
blocks in reading/writing to/from a FIFO buffer. Then, it yields the processor
control to the next process in the queue.

PPN middleware provides a communication API to the tasks by implementing
the PPN semantics on top of the message passing support described previously
in section 3.1.1. The details of PPN middleware are described in section 3.2.2.

3.2.1 Application model

A streaming application processes input data streams, possibly of infinite length,
and produces output data streams. In this thesis (in particular in section 5.3
and chapter 6), we are interested in a specific type of streaming applications
for which one can define stream units that can be processed independently by
the application. Figure 3.3 exemplifies such an application where input stream
units, sui, are processed by the application, P, to produce the output stream units,
P(sui). The application does not have a state resulting from previously processed
stream units. Mathematically, for such applications, it holds that

P([su1, ..., sun, ...]) = [P(su1), ..., P(sun), ...]

Polyhedral Process Networks is a model of computation that is well suited
to model such applications. In fact, such an application can be obtained as a
composition of PPN processes such that each PPN process iterates over the stream
units by means of their outermost loop. The beginning of the outermost loop (line
5 in figure 2.2(b)) corresponds to the execution point at which processing of a
stream unit is finished, and the processing of the next stream unit has not been
started. No state related to previous executions is stored in any process variable
or any token in self-edges except the iterator value of the outermost loop. The

49 3.2 Software/Middleware infrastructure

P C
ch

B

NI

R

NI

R

P CB
P

B
C

NoC

HW

SW

tile0 tile1

PEPE

Figure 3.4. Producer-consumer pair with FIFO buffer split over two tiles.

fundamental advantage of using PPN is that this execution point is exposed for
each process and exists for all applications conforming to our application model.
This is the main enabler of the fault tolerance and self-adaptivity mechanisms
described in the following chapters. It also facilitates separation of concerns
by allowing the incorporation of programmatical changes to the PPN process
structure in order to support fault tolerance and adaptivity.

3.2.2 PPN middleware

Based on the message passing support described in section 3.1.1, the PPN com-
munication API provides a set of primitives which allow the execution of appli-
cations modeled as PPNs on NoC-based MPSoC platforms. In particular, this API
must enforce the semantics of the PPN model of computation over NoC imple-
mentations with no direct remote memory access. Namely, the blocking read and
blocking write primitives are implemented by the middleware.

The communication and synchronization problem when mapping PPNs on a
NoC is depicted in figure 3.4. Consider a producer P and a consumer C connected
through an asynchronous communication FIFO buffer B. If both the producer
and the consumer can directly access the status register of this FIFO buffer, to
check whether it is empty or full, implementing the PPN semantics is straightfor-
ward. However, in NoC implementations with no direct remote memory access,
processes can exchange tokens only via the network. Thus, we have to split
the buffer B in BP and BC , one on the producer tile and one on the consumer
tile. We want to implement the PPN semantics without a dedicated support from
the underlying architecture that allows checking for the status of the remote
queues. If size(B) is the minimum buffer size that guarantees deadlock-free ex-
ecution of the original PPN graph, the size of BP and BC must be set such that

50 3.2 Software/Middleware infrastructure

size(BP) + size(BC)≥ size(B).

We do not require support for multiple hardware FIFOs on each NoC tile.
The only hardware buffer of a tile resides in the NI. We just rely on the ability to
transfer tokens, in both directions, from this buffer to the software FIFOs which
implement the channels of our PPN.

Considering again figure 3.4, even if the consumer process C can only access
the status of BC , implementing the blocking read is trivial because every time
process C wants to access BC and this buffer is empty, the consumer just has
to wait until tokens arrive from the producer tile. However, since the producer
process B can only access the status of BP , implementing the blocking on write
behavior is more difficult. The producer must know that the remote buffer BC

is not full before sending tokens to C over the NoC. There are several ways to
notify the producer about the status of the buffer on the consumer side.

Furthermore, we want the communication API to take care of the distribution
of processes among the NoC tiles with no influence on the application designer.
This means that we want to maintain the code structure of the PPN application
processes, an example of which is shown in figure 2.2(b). In particular, we want
the communication primitives (read, write) of PPN processes to remain generic,
without the notion of process mapping or platform details. These generic primi-
tives are then translated by the communication API implementation in mapping-
and platform- dependent function calls.

System adaptivity in the form of online task remapping is taken into account
by using dedicated middleware tables that list, among other information, the
source and destination tile for each channel of the PPN graph. For instance,
when a process is ready to send a packet to the consumer via a specific channel,
the implementation of the write primitive will look up the current destination of
that channel in the middleware table. Then, it will place the packet in the NI
output buffer, with the appropriate destination field of the header. As described
in chapter 5 , these middleware tables are updated at run-time to allow online
remapping of application processes over the tiles as a part of the fault recovery
mechanisms.

We describe several methods to implement the PPN communication over
NoC-based MPSoCs in [Cannella et al., 2011], namely Virtual Connector, Virtual
Connector with Variable Rate, and Request-driven. The Request-driven communi-
cation approach is adopted as it leads to an easier implementation of the fault
recovery mechanism, thanks to the reduced number of synchronization points
between the processes in this approach.

51 3.2 Software/Middleware infrastructure

P C

ch1
B1

NI NI

P

tile1 tile2

ch2
B2

requests

tokens ch1, ch2

C
B1

B2

C

C

B1
P

B2
P

PE PE

Figure 3.5. Request-driven inter-tile communication implementation

for(i=0; i<M; i++){
 for(j=0; j<N; j++) {

 read (in1, CH1);

 out = F(in1);

 write (out, CH3);
}}

 PPN Process

1 if (fifo[CH1] is empty)
2 send_request(CH1);
3 while (fifo[CH1] is empty)
4 process_NI_msgs();

5 fifo_get(in1, fifo[CH1]);

 read(token, ch)

1 while(fifo[CH3] is full)
2 process_NI_msgs();

3 fifo_put (out, fifo[CH3]);
4 process_NI_msgs();

 write(token, ch)

Figure 3.6. Pseudocode of the R approach.

Request-driven approach (R)

This method is similar to the approach used in Nadezhkin et al. [2009] for re-
alizing the FIFO communication on the Cell BE platform. In this approach, the
transfer of tokens from the producer tile to the consumer tile is initiated by the
consumer. This means that every time the consumer is blocked on a read at a
given FIFO channel, it sends a request to the producer to send new tokens for
that channel. The producer, after receiving this request, sends as many tokens as
it has in its software FIFO implementing that channel.

Since also in this case we need to store tokens both on the producer side
and on the consumer side, we need software FIFO structures on both sides. The
size of these buffers is set, for each channel i, to match the size of the queue in
the original PPN graph (Bi), such that for all channels Bi in the original graph,
BP

i = BC
i = Bi. This condition guarantees deadlock-free execution on the NoC.

The structure of a producer-consumer pair using the R approach is shown in

52 3.3 Fault-tolerance support

figure 3.5. Since the consumer buffer of a channel is empty when a request is
made, and given that the FIFO buffers for that channel have the same size on
both sides, there is always enough space to store tokens sent by the producer as
a consequence of the request.

Figure 3.6 shows the pseudocode of this communication approach. Both the
read and write primitives use an auxiliary function, process_NI_msgs(), that is
used when blocking on read or on write. This function checks the status of the NI
buffer for incoming packets. If the buffer is not empty, this function processes one
packet at a time, until all the incoming packets are consumed, in the following
way. If the packet is an incoming token for channel i, it stores the token in
the software FIFO which implements channel i. If it is a request message for
channel j, it sends immediately all the tokens contained in the software FIFO
that implements channel j.

The blocking on read behavior is implemented in lines 1-4 of the read primitive
in figure 3.6. When the software FIFO of the calling channel is empty, a request
is sent to the producer tile of that channel, and the processor keeps executing
process_NI_msgs() until a packet of tokens for the calling channel arrives. The
blocking on write is implemented in lines 1-2 of the write primitive in figure 3.6.
When the FIFO of the calling channel (in the example, CH3) is full, the processor
keeps executing process_NI_msgs() until a request for that channel arrives.

3.3 Fault-tolerance support

The MADNESS project focuses on the development of fault-tolerance solutions
which are not dependent on a technology-related low-level fault model, but
rather on technology-abstracting functional-level error models. The implemented
fault-tolerance approaches focus on the detection of run-time faults and on the
use of reconfiguration strategies at different levels. In the MADNESS framework,
three main types of components are considered, i.e., processing cores, storage el-
ements, and NoC modules. The NoC components and memories are assumed to
be designed so as to grant continuity of service even in the presence of (a pre-
determined set of) faults such that they exhibit a much smaller IP-level failure
rate. In fact, the work done on fault-tolerant NoCs within the MADNESS project
[Fiorin and Sami, 2013] or elsewhere [DeOrio et al., 2012] achieve designs that
can survive a high number of faults in the interconnect with considerably small
area overhead. Therefore, in this work, the NoC is considered to have a much
longer lifetime than processing elements and still to be able to guarantee reli-
able communication services even in the case in which one or more processing

53 3.3 Fault-tolerance support

elements stop working correctly. Memories are assumed to be protected against
faults by employing standard fault tolerant techniques based on the use of Error
Correcting and Detecting codes [Koren and Krishna, 2007].

Fault tolerance consists of fault detection and recovery phases. In this thesis,
we describe the work done to enable continuity of service by recovering from
permanent faults in processing elements when running PPN applications on NoC
multiprocessors. The fault model is detailed in section 3.3.1. We assume the pres-
ence of a fault detection mechanism that makes use of online software-based self-
testing [Gizopoulos, April-June 2009] and the self-testing module as described
in section 3.3.2.

3.3.1 Fault model

With regard to the fault model adopted, this work considers errors in a processing
element derived from permanent faults (either logic or delay faults occurring in
the combinational logic or registers of processing elements). Adopting as level of
abstraction the processor-memory-interconnect level, we adopt the single fault
assumption, that is, one processing element at a time can fail and that recovery
is completed before possibly a new fault appears in another processing element.
If a processing element is found by the fault detection mechanism to produce
incorrect results, it is excluded from the normal system activity and the recovery
mechanism is invoked.

Traditionally fault tolerance techniques for processing elements have been
employed in mission critical systems such as space missions or highly available
applications [Gaisler and Catovic, 2006; Reick et al., 2008]. These are mostly
hardware techniques at micro-architectural or gate level. The handling of the
fault is not escalated to the software level. In the context of non-mission critical
applications that make use of standard processing elements, the main philosophy
of our approach is exploiting the redundant processing power available in the
multi-core platform in order to compensate for the absence of faulty processors
by leveraging run-time techniques in software.

Rather than relying on fault-tolerant hardware, cross-layer approaches em-
brace faulty hardware and allow the elevation of errors to the software level.
There has been increasing attention to understand the interplay between hard-
ware faults and application-level errors. Such application-specific hardening
techniques, which have focused mostly on transient faults, adopt a top-down
[Schmoll et al., 2013] or a bottom-up [Yetim et al., 2013] approach. The former
investigates the susceptibility of the application to errors and aims at identifying
critical parts of the application and hardening them, while the latter evaluates

54 3.3 Fault-tolerance support

the impact of hardware faults on the application by means of a fault injection
campaign and aims at identifying critical parts of the hardware to be hardened
to minimize application-level errors.

Fault injection is an important design activity that helps finding out the classes
of error that can be observed and gives statistically a rate of their occurrence.
Such an analysis needs to be done for every processor type in the platform and
can be a tedious and complicated task even for a simple processor. Moreover,
it requires one to have at hand the design of the processor as a netlist, which
is not the case, in particular, for the proprietary Microblaze processor that have
been used in our reference platform and more in general for many units pro-
posed as IPs to be inserted in complex Systems-on-Chip (SoCs). Therefore we
refrained from doing the analysis of the fault and error models at the gate level.
Instead we refer to the insights obtained by previous work [Li et al., 2008; Pel-
legrini et al., 2012]. Pellegrini et al. [2012] investigated the impact of perma-
nent stuck-at and path-delay faults on five SPECInt 2000 benchmark applications
via 50,000 fault injection experiments carried out on the OpenSPARC processor.
Possible outcomes of system’s behavior have been categorized and measured as
follows: masked (60.7% for stuck-at, 65.3% for path-delay), detected via soft-
ware anomaly detectors (30.4% for stuck-at, 29.4% for path-delay), time-out
mostly due to hanging (7.8% for stuck-at, 4.2% for path-delay), silent data cor-
ruptions (0.82% for stuck-at, 0.75% for path-delay) and other anomalous out-
comes (0.2% for stuck-at and 0.4% for path-delay). In the case of silent data
corruptions (SDCs), the application finishes but its output differs from the ex-
pected one. Authors note that a vast majority of SDCs are concentrated in units
that compute data values for the program such as floating point unit, multiplier,
divider (in particular, floating point unit had the highest SDC rate at 7.55% for
stuck-at faults and 10.47% for path-delay faults).

As the above results reveal, 80.2% of the unmasked faults can be detected
by software anomaly detectors. Some of the anomaly types are hardware fatal
traps, kernel panics and application aborts. Since these are detected at software
level, a recovery process can be initiated by signaling the fault to the fault han-
dler. If one has to handle remaining faults as well, SDCs (∼2% of the unmasked
faults) and time-outs (∼16% of the unmasked faults) which are representative
of processor hangs (e.g., due to infinite loops or stuck program counter) should
also be considered.

In our setting where the processor is not alone but exchanges messages with
others, hangs and SDCs can be elaborated further. First, we take a top-down
approach and analyze errors from the PPN application’s perspective. We define
two main error classes as the following:

55 3.3 Fault-tolerance support

• E1: application is blocked

1. process hangs (e.g., due to an infinite loop caused by wrong evalua-
tion of a conditional branch)

2. there is an incorrect number of tokens in the FIFOs due to abnormal
read / write rates in the channels (e.g., a process blocks forever on
reading an empty channel or writing to a full channel)

3. a process is blocked reading from a non-existing channel

4. a process is blocked writing to a non-existing channel

• E2: application continues with unlimited error propagation

1. the number of tokens in FIFOs is correct but the associated values are
wrong

In case E2.1, thanks to the PPN model, the application will not be blocked due
to wrong token values because they do not determine the control flow. If that was
the case, for example as in dynamic dataflow models such as KPN, it might have
been possible for the corrupt data to be used by the successor task to define its
iteration boundaries. Then, the successor task might have ended up executing
a greater or lower number of iterations and producing incorrect computation
results. In the former case, the successor task would have eventually blocked
waiting for more data while, in the latter case, it would have finished early with
unconsumed data in the input queues.

We take then a bottom-up approach and analyze the corruptions that may
lead to the above defined error classes. Note that these corruptions occur with
small probability as most faults exhibit more relevant symptoms detectable by
aforementioned software anomaly detectors [Pellegrini et al., 2012].

• C1: process-level corruptions

1. corruptions in process function: When running the process function, a
permanent fault may lead to an SDC resulting in the wrong calculation
of a token value (leading to E2.1). The application output will be
corrupt (e.g., incorrect pixel values will appear in a video application)
as long as the fault is not handled.

2. corruptions in read or write: read and write operations are affected by
corruptions in the middleware level and FIFO operations (see below).
In addition to them, a fault may cause reading from a wrong channel
which will lead to E1.3 or E1.2 (as discussed in C2.1). Similarly, it

56 3.3 Fault-tolerance support

may cause writing to a wrong channel which will lead to E1.4 (as
discussed in C2.5).

3. corruptions in FIFO operations: get and put operations on the FIFO
data structure may be corrupt in several ways. On the one hand,
similar to C1.1, a wrong token value may be written in the FIFO buffer
due to a corrupt argument (leading to E2.1). On the other hand, other
variables of a FIFO such as read pointer, write pointer and size may
be corrupt effectively resulting in a FIFO with smaller capacity or lost
tokens. This will block execution (leading to E1.2).

4. corruptions in the iteration construct: The process body may execute a
wrong number of iterations due to corrupt iterator values or bounds,
or due to wrong evaluation of a conditional branch. For instance, the
process may break its main loop early leading to a similar situation as
blocking of the process. Since iterators and iterator bounds capture
the control flow of the application, their corruption will most likely
block the application either causing an infinite loop (E1.1) or chang-
ing the read/write patterns of the process (E1.2) by corrupting the
target/source domains of the input/output channels.

• C2: middleware-level corruptions

1. wrong value of the receive tag: If the wrong value of the tag does not
correspond to an existing channel, the PE will be blocked forever lead-
ing to E1.3 (since FIFO channels are defined by tags). If the wrong
receive tag happens to be a value of an existing channel, then the to-
kens destined for a different channel and currently residing in the NI
buffer will be transfered to a wrong FIFO. The task will be consuming
data that is not intended for it. Producer of the actual channel that
should have been read will be blocked on write and the actual con-
sumer of the wrong channel will be blocked on read forever (leading
to E1.2).

2. wrong value of the receive processor ID: The faulty PE will be blocked
forever waiting for an input from a wrong processor (leading to E1.3).

3. wrong value of the memory location where the received message is stored:
The received message may be copied to a wrong memory location
corrupting the data in that location. The process will continue as if
new tokens had been copied in the FIFO buffer. Since that is not
the case, it will continue with wrong token values that remained in

57 3.3 Fault-tolerance support

memory from earlier tokens (leading to E2.1). Alternatively, trying
to access a wrong memory location may raise a segmentation fault
causing the process to abort (leading effectively to E1.1).

4. wrong value of the size of the message to be received: If the value of size
is smaller than it should be, then a shorter message will be received
which leads to writing an incomplete token value in the FIFO buffer.
This translates as a corrupt token similar to case C1.1, thus leading to
E2.1. If the value of size is bigger, then it may practically mean that
the receiving task is blocked until that many bytes are received on
that specific channel. However this may create a deadlock (leading
to E1.2).

5. wrong value of the send tag: The faulty PE will send the message to
a wrong and possibly non-existent channel. The successor task will
be blocked because it will never receive a message on the expected
channel. The producer task on the faulty PE will also block due to a
full channel that is never read by a consumer task (leading to E1.4).

6. wrong value of send processor ID: The faulty PE will send the mesage
to a wrong processor. The successor task will be blocked because it
will never receive a message. The producer task on the faulty PE will
also block due to a full channel that is never read by a consumer task
(leading to E1.4).

7. wrong value of the memory location of the message to be sent: The faulty
PE will send a wrong message, that is, corrupt tokens. It will lead to
E2.1 similar to case C1.1.

8. wrong value of the size of the message to be sent: A shorter or longer
message will be sent over the network. In the case that the sent mes-
sage is shorter, then the successor task will block because it will not
have received a properly sized token (leading effectively to E1.2). In
case the sent message is longer, then there may not be enough space
in the destination tile’s NI buffer to store the message, which will cre-
ate an overflow error in destination tile’s NI. Even if the extra long
message is stored successfully in the destination, the extra portion of
the message will be read as wrong tokens in future iterations of the
successor task, thus it will lead to E2.1.

9. corruption in requests: Corruption in a request may cause either an
appearance or a disappearance of a request on a channel. The former
case is harmless, the request will be served by sending the tokens

58 3.3 Fault-tolerance support

of the channel if there are any. However, the latter will cause the
successor task to block forever on read as it will never receive any
tokens due to the request never being served (leading to E1.2).

• C3: OS-level corruptions

The scheduler may fail to schedule a task for execution even though it
should not be blocked on read or write, possibly due to a corruption in
yielding or in the priority levels of the processes (leading to E1.1).

An application interacts with its environment (outside world process) by read-
ing input data and producing output data. Ideally a fault tolerant system should
not deliver a wrong output even in the presence of faults. The problem of making
sure that the data do not contain any error is called the output commit problem
[Sorin, 2009]. Although the BER techniques described in section 2.8.2 allow to
remove internal errors, the error that has propagated to the outside world can-
not be undone (e.g., errors on the paper printed by a printer, errors in images
displayed by a monitor). The common solution to this problem is to buffer a suf-
ficient amount of the input and output data at the expense of additional memory
so that they can be rolled back during recovery [Nakano et al., 2006; Sastry Hari
et al., 2009]. A very important constraint in our platform is the memory size. The
free space in the memory of each tile is not large enough to store a whole stream
unit. This limitation is fundamental for the fault recovery mechanisms proposed
in this thesis. Given the results reported by the checkpointing and rollback tech-
niques in [Constantinides et al., 2007; Sastry Hari et al., 2009], hundreds of
kilobytes of memory requirement per core for logging purposes is not feasible in
our platform which provides only 64 KB of data cache per core. Furthermore we
relax the output commit problem and allow limited error propagation due to the
nature of the multimedia applications that are adopted as use case applications.

3.3.2 Online self-testing support

Although this thesis focuses on the recovery problem rather than detection, we
provide some details on the fault detection support. If the application is not
critical and a limited amount of error propagation is acceptable, a self-testing
routine can be executed by the processing element to detect its permanent faults
[Gizopoulos et al., 2008; Foutris et al., 2010; Scholzel et al., 2012]. Due to the
costs associated with concurrent checking techniques, we adopt online software-
based self-testing. However the recovery techniques proposed in this thesis can
be used in combination with other fault detection techniques. More specifically,

59 3.3 Fault-tolerance support

Comparator

module

parallel

CRC

Timer

from_pu_addr

from_pu_rd/wr

data

MUX

enable

data

enable

enable

data

enable

data

enable

slv_timer_limit

slv_timer_start

slv_start_stop

slv_signature

slv_data_in

crc_calc_enable

comparator_enable

fault_detected

from_pu_data

from_pu_enable

mismatch

expired

rst

clk

start_stop

to_pu_accept

Controller

Figure 3.7. Overview of the STM architecture

the rollback based recovery technique proposed in section 5.2 can be used in com-
bination with other detection mechanisms (e.g., [Ananthanarayan et al., 2013])
that have short detection latencies (in comparison to the duration of one iter-
ation of a task) so that errors do not escape the faulty core. On the contrary,
the roll-forward based recovery technique proposed in section 5.3 does not have
such a constraint.

A hardware unit is needed in each tile to help with self-testing. The Self-testing
Module (STM) checks the results of the software testing routines and signals the
detection of a fault. The STM is in charge of collecting the outputs of the proces-
sor when executing the software routine, calculating the signature of the outputs
of the processor, and checking it against the expected signature, in order to verify
the correctness of the routine execution. The signature is calculated by applying
a cyclic redundancy check (CRC) algorithm to the obtained outputs of the pro-
cessor [Koren and Krishna, 2007]. The testing routine, as well as the signature
of the expected results, are stored directly in the processor local memory. Results
of the execution of the software routine are written directly into the STM.

Figure 3.7 shows the architecture designed within the MADNESS Project for
supporting the execution of the software testing routines, which is intended to
work as a wrapper around the processor for helping detecting permanent faults
in it. The STM is memory-mapped on the tile’s system bus and it can be directly
accessed by the processor. In the prologue of the software testing routine, the
expected signature is copied in the slv_signature registers. Then, the STM is acti-
vated, by writing into the slv_start_stop register. When active, the STM samples
the outputs of the device under test (i.e., the processor) and copy them in the
slv_data_in registers. For each new data inserted in the slv_data_in registers, the

60 3.3 Fault-tolerance support

CRC parallel module calculates immediately the value of the signature for the
samples received up to that moment. At the end of the execution of the soft-
ware routine, the STM is stopped by writing into the slv_start_stop register. The
STM compares the value stored into the slv_signature registers with the final sig-
nature calculated by the CRC parallel module. If the two values do not match,
the fault_detected signal is set to ‘1’ for a clock cycle. The STM also supports
detecting hang errors (e.g., halting of the program counter or blocking forever
at an execution point). Such errors would result in the processor not executing
the self-testing routine, which is executed frequently under normal conditions.
A watchdog timer is introduced inside the STM to detect such errors. If the
self-testing routine completes (inferred by a write into the slv_start_stop regis-
ter) within a time limit defined by slv_timer_limit, the timer is reset. Otherwise,
a hang error is assumed and the fault_detected signal is raised. The time limit
should be chosen according to the workload of the processing node.

Although the self-testing module has been designed within the MADNESS
Project by other colleagues, it was not integrated into the platform at the time
the fault recovery experiments in chapter 5 had been performed. Therefore,
when carrying out the experiments, the fault_detected signal is raised directly by
setting a memory-mapped register in the process body.

Chapter 4

Fault-aware Online Task Remapping

Fault-aware online task remapping deals with finding the new processing nodes
where the KPN tasks shall continue their execution upon detection of a perma-
nent fault in a processor. The main problems tackled in this chapter are the
remapping strategy that finds the new nodes to be allocated for the tasks run-
ning on the faulty node and the impact of the fault-aware online task remapping
approach on the lifetime reliability of the system. The results presented in this
chapter have been published partially in [Derin, Kabakci and Fiorin, 2011; De-
rin, Cannella, Tuveri, Meloni, Stefanov, Fiorin, Raffo and Sami, 2013; Derin and
Fiorin, 2014].

The remainder of this chapter is organized as follows. Section 4.1 discusses
the contributions of this dissertation with respect to the state-of-the-art. Sec-
tion 4.2 presents the ILP formulation for the mapping problem based on an an-
alytical model for throughput and communication cost. Section 4.3 extends the
ILP formulation for the remapping problem and also proposes a set of heuris-
tics for online task remapping. Section 4.4 proposes an analytical model for
estimating the lifetime reliability of a system that adopts the fault-aware online
task remapping technique. N-modular redundancy technique is also considered
for comparison purposes. Section 4.5 presents several case studies and results
obtained both analytically and experimentally on the actual platform.

4.1 Contributions with respect to the state of the art

The fault-aware online task remapping problem is closely related to the task
mapping problem. The task mapping solutions proposed by the related work
overviewed in sections 2.6 and 2.8.3 have some shortcomings.

61

62 4.1 Contributions with respect to the state of the art

Most approaches deal with application-specific synthesis of a NoC-based sys-
tem. The final system is designed and optimized to execute a specific application.
Since this problem involves designing also the hardware platform, the problem
is divided into several steps such as partitioning, scheduling, mapping, routing,
topology generation etc. Even if each of the individual sub-problems can be
solved optimally, a globally optimal solution cannot be guaranteed with such an
approach.

The problem dealt with in this work adopts the platform-based design ap-
proach. Rather than synthesizing a new hardware system for the application, an
application is mapped onto an existing platform possibly by some customizations
and tailoring. Choosing among the platform-based design and platform synthesis
approaches is not just a matter of preference. The decision is influenced by the
availability of a platform for the application at hand and, to a larger extent, by
the expected volume of sales due to the current costs of manufacturing semicon-
ductor products. Although the adopted platform may not be the ideal platform
for the application, platform-based design enables economically viable solutions.
TI OMAP [Cumming, 2003], NXP Nexperia [Oliveira and van Antwerpen, 2003]
and ST Platform 2012 [Melpignano et al., 2012] are some platform examples
designed for a wide range of embedded multimedia applications.

When adopting the platform-based design approach, the design problem is
reduced to mapping and scheduling the application tasks on a NoC-based plat-
form that has a number of IP cores mapped already on the nodes of the NoC. The
optimization of computation and communication, which is done in two steps con-
sisting of partitioning and core mapping, is merged into a single task mapping
step, thus allowing the simultaneous optimization of both metrics.

In our endeavour for a fault-aware online task remapping solution, firstly, we
present a method for finding an optimal solution to the task mapping problem
aiming at maximizing application throughput (by minimizing the total execution
time) and minimizing the communication volume on the network, given NoC-
based platforms with generic topologies and deterministic routing algorithms.
Then, the optimal mapping method is extended for the task remapping problem.
Such an optimal solution constitutes the basis for assessing the quality of the
online remapping methods that are proposed.

Within the context of KPN applications, a simple but accurate analytical model
is adopted which can estimate the metrics of interest given the mapping on a
NoC-based platform. The optimization is based on the analytical model rather
than measurements via simulations or directly by emulations of the platform
due to the fundamental reason that the online remapping decisions are taken by
heuristic methods. Simplicity of the analytical model also leads to lightweight

63 4.1 Contributions with respect to the state of the art

heuristics. The alternative approach (e.g. [Lee et al., 2010]), which would make
optimal remapping decisions based on an offline (design-time) analysis may pro-
vide more predictable and faster recovery times, but it has some drawbacks. First,
it would require a considerable amount of effort to evaluate all fault scenarios.
Second, it would require a large memory overhead for storing the remapping
decisions to be used at run-time. Finally, the actual working conditions of the
system may be different than those used during the offline analysis (e.g. the
processor performance may change due to frequency scaling or the running ap-
plication may be different) which would lead to non-optimal decisions.

In the case of synthesis-based flows, which employ fully static scheduling, a
possible show-stopper for achieving fault tolerance by remapping tasks is the re-
scheduling problem. The static schedule represents the processor assignments,
iteration period and firing times of each task. When a remapping is needed
due to a fault occurrence, determing the new processor assignment as well as
computing the new schedule, which are heavy computations even at design time,
would cause a large run-time overhead and result in a schedule far from optimal.
Adopting a dynamic scheduling policy such as the data-driven scheduling as in
our case, the re-scheduling problem reduces to a remapping problem. According
to data-driven scheduling, a KPN task is executed until it is blocked on a read
or a write. Another task which has input data available to process is scheduled
next. The analytical model used in our solution is valid for such a scheduling
policy.

As mentioned in section 2.8.3, one of the approaches for fault-aware map-
ping is using spare cores. In this approach, application components running on
a faulty core are migrated as a whole to one of the available unemployed spare
cores. This approach is suitable for the application-specific synthesis flow de-
scribed previously. It is an extension to the core mapping problem where a core,
which refers to scheduled tasks bound to a core type, is mapped to a node of
the NoC. In this approach, same tasks are simply run with the same schedule
on a spare core after the remapping. The solutions that adopt such an approach
mainly deal with optimizing communication by deciding on the placement of
spare cores and the selection of the spare core for the remapping [Ababei and
Katti, 2009; Chou and Marculescu, 2011]. Our work is fundamentally different
in that the remapping is done on a task basis, i.e., each task can be remapped on
a different processing node. Although the computational overhead becomes not
equally predictable, the cost of adding unemployed spare cores is avoided; this is
a basic aspect in our case, since cost is in general a strict constraint for embedded
systems. Remapping at the granularity of tasks allows better utilization of the
platform resources than core-level granularity.

64 4.1 Contributions with respect to the state of the art

We also investigate the reliability aspect of the fault-aware online task remap-
ping technique by looking at its impact on the lifetime of the system. Previous
work [Huang et al., 2009; Huang and Xu, 2010; Huang et al., 2011] sought to
achieve a similar goal by estimating the lifetime of real-time systems. In such
systems, the scheduling of tasks running on a processor is fixed. Therefore the
thermal profile of the processor, which represents the change of temperature in
time, can be obtained which would be then fed into a wear-out model to obtain
an MTTF value for the processor. This is unfortunately not applicable when deal-
ing with throughput-oriented systems using the data-driven scheduling policy as
in our case. Morever, in the fault-aware remapping scenarios, the tasks running
on a core are dynamic unlike the static mapping assumed by the mentioned pre-
vious work.

Since our focus is on the use of software based solutions for fault tolerance,
we adapt the N-modular redundancy (NMR) [Koren and Krishna, 2007] technique
to be used at the application level. Similarly, we propose a method to estimate
the MTTF of NMR-ed applications and compare it against the online remapping
technique.

Design space exploration relies fundamentally on an exploration engine and
on estimators that are able to evaluate a design point with regard to the metrics of
interest. Given an application and its optimization goals, the exploration engine
identifies the designs that better satisfy the goals. A reliability-aware DSE is able
to employ a reliability metric as a goal in the design. Fault tolerance techniques
such as OTR and NMR expose to DSE tools a new dimension to be explored. The
reliability estimation methods proposed for OTR and NMR enable such a DSE.

Our contributions in this field are

• defining an analytical model for estimating performance metrics (i.e., exe-
cution time and communication cost) of KPN applications running on NoC-
based platforms,

• proposing a method for optimal mapping and remapping of KPN applica-
tions on NoCs,

• proposing online remapping heuristics reacting to run-time faults that min-
imize degradation,

• defining an analytical model for estimating the lifetime reliability achieved
by means of the fault-aware online task remapping and N-modular redun-
dancy techniques,

65 4.2 ILP formulation of the mapping problem

• evaluating the quality of the heuristics by comparing the results against the
optimal ones,

• validating the quality of the heuristics by measurements on an actual NoC-
based platform,

• evaluating the calculation time of the heuristics on an actual NoC-based
platform,

• evaluating the impact of the remapping technique on the lifetime reliability
of the system in comparison to NMR.

4.2 ILP formulation of the mapping problem

For convenience, table 4.1 summarizes the basic notation that will be used here-
after. With these notations, the problem presented in this paper can be described
by the following elements:

• a task graph gt = (Vt , Et) is composed of tasks t ∈ Vt and data dependencies
e ∈ Et ⊆ Vt × Vt;

• an architecture graph ga = (Va, Ea) is composed of processing nodes n ∈ Va

and bidirectional communication links l ∈ Ea ⊆ Va × Va;

• a task mapping function β(t) : Vt → Va is an assignment of tasks t ∈ Vt to
nodes n ∈ Va;

• a data dependency mapping function β(e) : Et → E i
a is an assignment of

data dependencies e ∈ Et to paths of length i in the architecture graph ga.
A path p of length i is given by i-tuple p = (l1, l2, ..., li);

• path : (Ea, Ea)→ E i
a is a function that implements a deterministic routing

algorithm and returns a path between two given nodes. Path set P is the
set of paths between all node pairs:

P = {pk : pk = path(ni, n j),∀ni, n j ∈ Va ∧ ni 6= n j} (4.1)

Initial and final nodes of a path can be obtained by source and sink func-
tions.

pk = path(ni, n j)⇒ source(pk) = ni ∧ sink(pk) = n j (4.2)

66 4.2 ILP formulation of the mapping problem

Table 4.1. Table of notations

Symbol Meaning

gt task graph
Vt task set
Et data dependency set
ga architecture graph
Va processing node set
Ea communication link set
β(t) task mapping
β(c) communication binding

P path set
di required bandwidth between two tasks
li bandwidth between two nodes
C types of core available in the platform

X N T incidence matrix denoting the mapping of tasks
onto the nodes

Y PE incidence matrix denoting the mapping of data
dependencies onto the paths

M T E oriented incidence matrix relating tasks to data
dependencies

M N P oriented incidence matrix denoting the relation
between paths and nodes

M P L incidence matrix denoting relation between all paths
and the composing links

M T C
cap

incidence matrix denoting which core can execute
a specific task

T T C
cap

matrix denoting the completion time of all
tasks on all core types

M NC incidence matrix denoting the core type of a
node

T N vector denoting the sum of execution times of the
tasks on a node

• the task graph can be annotated with demand values where demand di on
a data dependency ei ∈ Et , denotes the required bandwidth between the
two tasks. Demand values are application specific and can be calculated
by profiling the application with a test input;

• the architecture graph can be annotated with capacity values where capac-

67 4.2 ILP formulation of the mapping problem

ity on an architectural link li ∈ Ea, ci, denotes the maximum bandwidth of
the communication link between two architectural nodes;

• core type set C consists of core types Ci and lists the types of cores available
in a given NoC platform.

We aim at minimizing the total network traffic and the computation time.

4.2.1 Minimization of the communication cost

In order to formulate the problem, we define several incidence matrices, namely
the ones related to decision variables X N T , Y PE; and parameters M T E, M N P and
M P L.

X N T is an incidence matrix of size |Va|×|Vt | that denotes the mapping of tasks
onto the nodes and it consists of the main decision variables of the problem.

X N T
i j =

�

1, if t j ∈ Vt is bound onto node ni ∈ Va

0, otherwise
(4.3)

Y PE is an incidence matrix of size |P| × |Et | that denotes which path realizes
which data dependency. Y PE depends on the task mapping, hence it constitutes
the second set of our decision variables.

Y PE
i j =

�

1, if e j ∈ Et is mapped to pi ∈ P
0, otherwise

(4.4)

M T E is an oriented incidence matrix of size |Vt |× |Et | that relates the tasks to
the data dependencies. For a given task graph, M T E is known.

M T E
i j =







1, if ∃tk, e j = (t i, tk) ∈ Et ∧ i 6= k
−1, if ∃tk, e j = (tk, t i) ∈ Et ∧ i 6= k

0, otherwise
(4.5)

M N P is an oriented incidence matrix of size |Va|×|P| that denotes the relation
between the paths and the nodes that the path connects. For a given routing
algorithm and architecture graph, M N P is known.

M N P
i j =







1, if source(p j) = ni

−1, if sink(p j) = ni

0, otherwise
(4.6)

M P L is an incidence matrix of size |P|×|Ea| that denotes the relation between
all paths resulting from a given deterministic routing algorithm and the links that

68 4.2 ILP formulation of the mapping problem

make up the path. For a given routing algorithm and architecture graph, M P L is
known.

M P L
i j =

�

1, if l j ∈ pi

0, otherwise
(4.7)

It is to be noted that the transpose of the incidence matrices are expressed
by swapping the letters that appear in their superscripts. For example, X T N =
(X N T)T , Y EP = (Y PE)T , M LP = (M P L)T .

Constraint 1 (routing): we have derived the following linear equation that
constrains the task mapping and the communication binding with each other.
Such a constraint arises from the deterministic routing algorithm implemented
in the NoC.

X N T M T E = M N P Y PE (4.8)

Constraint 2 (task mapping): a task can be mapped exactly on one node.

X T N1|Va| = 1|Vt | (4.9)

where 1m is a matrix of size m× 1 with all elements equal to 1.
Constraint 3 (data dependency mapping): a data dependency can be mapped

at most on one path.
Y EP1|P| ≤ 1|Et | (4.10)

Constraint 4 (capacity): total bandwidth demand on a link l j should not
exceed the capacity of the link c j.

M LP Y PEd ≤ c (4.11)

Objective 1 (minimization of the communication cost): the total traffic on the
links can be calculated as the sum of all demands di on the links of the paths that
arise according to a given mapping with the following equation.

Minimize dT Y EP M P L 1|Ea| (4.12)

This is a static model that has also been used in [Murali and De Micheli, 2004]
and disregards the congestion on the links. However, at low load conditions, it
is argued that it is a good approximation.

Note that the communication cost takes into account the inter-tile commu-
nication done over the NoC between tasks and not the intra-tile communication
when communicating tasks are mapped onto the same node. The latter is usually
much faster compared to the former.

Therefore, the objective for communication is the minimization of the total
traffic (equation 4.12) subject to routing algorithm constraints (equation 4.8),

69 4.2 ILP formulation of the mapping problem

mapping constraints (equation 4.9, 4.10) and capacity constraints (equation 4.11).
Since the equations are linear, this problem can be solved with an integer linear
programming (ILP) solver.

Given our analytical cost model, it is obvious that when communication cost
is taken as the only objective, the resulting mapping will always be that all tasks
are mapped on a single node. However, the low parallelism produced by this
solution will reflect badly on the computation time. Therefore, we introduce a
conflicting second objective that favors tasks to be placed on separate nodes.

4.2.2 Minimization of the total execution time

Application throughput, as a measure of performance, is the amount of data pro-
cessed over a period of time. Minimization of the total execution time maximizes
the application throughput. In order to formulate this objective we define addi-
tional parameters in matrix form, namely M T C

cap, T T C
cap and M NC .

M T C
cap is an incidence matrix of size |Vt | × |C | that denotes which core types

are capable of realizing which tasks. Programmable cores would be capable of
realizing different kinds of task functionalities, whereas non-programmable cores
would have dedicated functions.

M T C
capi j

=

�

1, if t i ∈ Vt can be realized by C j ∈ C
0, otherwise

(4.13)

T T C
cap is a matrix of size |Vt | × |C | that denotes the computation time of all

tasks on all core types for a test input. This value is obtained by multiplying
the number of times the task body is executed by the time it takes to process at
each firing. Given an application and architecture, this matrix can be obtained
by offline profiling.

T T C
cap i j

=

¨

computation time of t i on C j, if M T C
capi j

= 1

0, if M T C
capi j

= 0
(4.14)

M NC is an incidence matrix of size |Va|× |C | that denotes the core type of the
architectural nodes. Given an architecture, M NC is known.

M NC
i j =

�

1, if ni ∈ Va is of core type C j ∈ C
0, otherwise

(4.15)

The execution time T N T
cap i j

of task t j if assigned to node ni can be calculated

in matrix form as
T N T

cap = M NC T C T
cap (4.16)

70 4.2 ILP formulation of the mapping problem

T N is a vector of size |Va|×1. T N
i denotes the sum of execution times of tasks

that are mapped on the same node, ni. It can be calculated as

T N = (T N T
cap · X

N T) 1|Vt | (4.17)

where the dot(·) operator represents element-wise matrix multiplication.
Constraint 5 (capability): all tasks should be mapped on cores that are ca-

pable of implementing those tasks.

M T C = X T N M NC ≤ M T C
cap (4.18)

Objective 2 (minimization of the total execution time): we calculate the total
execution time of the application by finding the maximum of the sum of the
execution times of tasks mapped on the same core.

Minimize max(T N) = max((T N T
cap · X

N T) 1|Vt |) (4.19)

where max is a function that returns the maximum value in a given vector.
This is a static model which has also been used in [Thiele et al., 2007]. It dis-

regards context switching times and it is valid for acyclic task graphs. We also as-
sume that the application is computation-dominated (rather than communication-
dominated), that is, the application throughput is not limited by the link band-
widths but only by the computation on the cores. As argued by Thiele et al.
[2007], this model has a reasonable accuracy for typical streaming applications.
Moreover, this static model holds for the simple data-driven scheduling of KPNs,
thus it sets us free from the scheduling problem.

The computation objective is the minimization of the total execution time
(equation 4.19) subject to capability constraints (equation 4.18). The objective
function in equation 4.19 is not linear due to the max function. However, there
is a linearization technique that transforms this equation to its linear counterpart
by introducing new variables.

Linearization of max() can be done by introducing a new variable:

Minimize max(x , y, z)⇒Minimize t subject to t ≥ x , t ≥ y, t ≥ z (4.20)

4.2.3 Multi-objective optimization with ILP

We have defined two ILP problems that optimize two objectives separately. What
we actually need is the multi-objective optimization of the combined problem
that should result in a Pareto curve representing optimal solutions with different
trade-offs for the two objectives. This is done by employing the ε-constraint

71 4.3 OTR: Online task remapping

method [Chankong and Haimes, 1983]. This method relies on adding one of the
objectives as a constraint by requiring it to be smaller than a chosen threshold. By
solving the ILP problem several times for different values of the threshold and for
a single objective, we obtain a Pareto curve. It is worth noting that the solutions
found by the multi-objective ILP optimization are absolute optima unlike what
would be obtained by employing evolutionary algorithms.

4.3 OTR: Online task remapping

Our overall goal is to enable the execution of KPN applications on NoC platforms
in a fault tolerant manner. Chapter 5 describes in detail our approach to fault
tolerance, specifically the recovery phase. The recovery phase enables isolation
of the fault and continuity of operation, possibly with a degraded performance.
The problem we are considering in the present chapter comprises one aspect of
the recovery problem, that is, the algorithm that decides on the new task as-
signment configuration. This has to be a very fast algorithm, in order not to
disrupt operation for long. We are mainly concerned with minimizing perfor-
mance degradation. While achieving that we also aim at developing a solution
that results in a short recovery time. The task remapping algorithm can work
in two ways: limited task migration where only the tasks on the faulty core are
migrated to other cores; and unlimited task migration where any task, even those
on fault-free cores, can be migrated. The former will have a shorter reconfigu-
ration time due to less number of tasks being migrated. However it will most
likely result in a more degraded performance. The latter will certainly require
a longer reconfiguration time while having a higher chance of less (or, ideally,
non-) degraded performance.

We propose an optimal solution to the online task remapping problem based
on our ILP formulation for both limited and unlimited task migration cases, and
then present five different heuristics for the limited task migration case. Ob-
viously the ILP solution cannot be applied at run-time. However, it makes it
possible to measure the quality of the heuristic methods.

4.3.1 Optimal task remapping

In the case of unlimited task migration, we are able to obtain the Pareto curves
for all single fault scenarios by adding the faulty core constraint given here below
to the original ILP formulation.

72 4.3 OTR: Online task remapping

Constraint (faulty core): Given a faulty node n f , a new constraint is added
to the ILP formulation that forbids mapping of tasks on the faulty node n f .

|Vt |
∑

j=1

X N T
f j = 0 (4.21)

In the case of limited task migration, the below constraint should be added
as well.

Constraint (migrate only tasks on the faulty core): given a faulty node n f and
an initial task mapping M N T , a new constraint is added to limit the reconfigura-
tion just to the tasks that are running on the faulty node n f .

X N T
i j = M N T

i j , 1≤ i ≤ |Va|, 1≤ j ≤ |Vt |, i 6= f (4.22)

For a totally heterogeneous NoC with all IP cores being different from each
other, there can be |Va| successive single faults, eventually leading to no remain-
ing fault-free cores. In the case of unlimited task migration, the total number of
different architectural configurations NF , from all fault-free cores to one fault-
free core is

NF =
|Va|
∑

i=1

�

|Va|
i

�

− 1= 2|Va| − 2 (4.23)

It means that we will need to calculate NF Pareto curves for all these different
scenarios. It is a heavy task even if it is done offline. One way of implementing
the task remapping algorithm is by means of a look-up table [Lee et al., 2010]
where we keep the resulting optimal mappings for all Pareto curves of the NF

different configurations. Assuming we have p points in a Pareto curve, encoding
such information would cost B bits calculated as

B = (2|Va| − 2) p |Vt | dlog(|Va|)e (4.24)

For a case with |Va| = 9, |Vt | = 12, p = 5, we have B = 14.94 Kbytes. As
the number of cores of same type increases and also depending on their place-
ments in the NoC, this number decreases due to the occurrences of symmetrical
configurations. In case the local memory in the tiles is restricted and/or the size
of the NoC and the problem increases, this memory requirement may make it
prohibitive to apply the look-up table technique.

4.3.2 Center of Gravity heuristic (CoG)

This heuristic places the task to be migrated in a core that resides in between the
other tasks it communicates with by considering the amount of communication.

73 4.3 OTR: Online task remapping

This heuristic takes into account only communication cost. More formally, let L j

be the set of tasks assigned to core n j and let L f be the set of tasks that reside
on the faulty core n f . Let peers be a function that returns the list of tasks that
a given task communicates with. Let demand be a function that returns the
bandwidth demand between two given tasks. Let dist be a function that returns
the Manhattan distance between two given nodes. The capability M T N

cap i j
of node

n j being able to execute task t i can be calculated as

M T N
cap = M T C

capM CN (4.25)

The peer tasks of t i that do not reside on the faulty node, ex t_peers(t i), are
defined as

ex t_peers(t i) = {t j ∈ peers(t i) : β(t j) 6= n f }. (4.26)

Algorithm 1 CoG Algorithm

Require: initial mapping L, faulty node n f

Ensure: new mapping L
1: for all t i ∈ L f do
2: find a task t i ∈ L f such that

∑

t j∈ex t_peers(t i)
demand(t i, t j) is maximum.

3: find nk ∈ Va ∧ nk 6= n f ∧ M T N
cap ik

6= 0 such that
∑

t j∈peers(t i)
dist(nk,β(t j))demand(t i, t j) is minimum.

4: Lk← Lk ∪ {t i}, L f ← L f \{t i}
5: end for
6: return L

If there are tasks that communicate with each other and reside in the faulty
node, the resulting mapping will depend on which order such tasks are being
migrated. In algorithm 1, line 2, tasks are sorted with respect to their total band-
width demands on their edges connected to the tasks on the non-faulty nodes
and then migrated in descending order. In line 3, the algorithm selects the new
node for t i in such a way that the amount of communication due to t i is mini-
mized. The new node has to be of a core type that can realize the task t i and it
has to be a non-faulty core. In the event that there are still more than one candi-
date nodes equally satisfying the conditions, we choose the node with minimum
computational load.

For the special case of mesh-based NoCs, the problem can be transformed to
that of finding the center of gravity of masses by considering the communication
demands as the masses of the external peer tasks. The center of gravity node can
be found at once mathematically reducing the complexity from O(n) to O(1). Let

74 4.3 OTR: Online task remapping

coord be a function that returns the (x,y) coordinates of a given node in mesh-
based NoC. The new node ni for task t i ∈ L f will have coordinates coord(ni)

coordi =

∑

t j∈peers(t i)
coord(β(t j)) demand(t j, t i)

∑

t j∈peers(t i)
demand(t j, t i)

(4.27)

It is most likely that coordi will not have integer values, so we round it to
obtain actual coordinates.

coord(ni) = bcoordi + (0.5,0.5)c (4.28)

4.3.3 Nonidentical Multiprocessor Scheduling (NMS)

The objective regarding computation is equivalent to the scheduling of inde-
pendent tasks on nonidentical processors in order to minimize the makespan
(defined as the last finishing time of the given tasks). We adopt three heuris-
tics (namely NMS-A, NMS-B and NMS-C) that have been proposed in [Ibarra
and Kim, 1977] for this problem. They are slightly different from each other
and it has been shown that there are examples in which each of them is su-
perior to others. In terms of the number of processing nodes (m) and tasks
on the faulty node (n), NMS-A/B/C have different orders of complexity, that
is, O(mn), max(O(n log n), O(mn)), O(mn2), respectively. When remapping the
tasks, these heuristics take into account only the total execution time. It may be
the case that the resulting remapping does not satisfy the capacity constraints
(equation 4.11).

NMS-A: Let L j be the set of tasks assigned to core n j. L f is the set of tasks
to be migrated from the faulty node n f . T N

j is the sum of the execution times of
tasks assigned to node n j. T T N

cap i j
is the execution time of task t i if assigned to

node n j. NMS-A is given in algorithm 2. In line 2, the task t i ∈ L f is remapped
on the core that minimizes its finishing time.

NMS-B: For each task t i ∈ L f , NMS-B algorithm first orders the tasks in L f

according to decreasing min{T T N
cap i j

: 1≤ j ≤ |Va|}, and then calls NMS-A.

NMS-C: This algorithm iteratively remaps the tasks by choosing a task from
L f that gives the least finishing time as shown in algorithm 3. The order of tasks
to be remapped is not known a priori as in NMS-A or NMS-B. As shown in line 2,
the task and its new node are searched simultaneously.

75 4.3 OTR: Online task remapping

Algorithm 2 NMS-A Algorithm

Require: initial mapping L, n f , T N before fault, T T N
cap

Ensure: new mapping L
1: for all t i ∈ L f do
2: find the smallest j such that T N

j + T T N
cap i j

≤ T N
l + T T N

cap il
for all 1 ≤ l ≤ |Va|,

l 6= f
3: L j ← L j ∪ {t i}, L f ← L f \{t i}
4: T N

j ← T N
j + T T N

cap i j
5: end for
6: return L

Algorithm 3 NMS-C Algorithm

Require: initial mapping L, n f , T N before fault, T T N
cap

Ensure: new mapping L
1: while L f 6= ; do
2: find a task t i ∈ L f and a node n j ∈ Va ∧ n j 6= n f such that

T N
j + T T N

cap i j
≤ T N

j + T T N
cap k j

for all tk ∈ L f and T N
j + T T N

cap i j
is minimum.

3: L j ← L j ∪ {t i}, L f ← L f \{t i}
4: end while
5: return L

4.3.4 Localized NMS Heuristic (LNMS)

The heuristics proposed above take into account either communication or com-
putation. In order to develop a heuristic that performs well for both objectives,
we limit the region of nodes where we employ the NMS heuristics. This algo-
rithm is called the Localized NMS (LNMS), and communication cost is bounded
by selecting a remapping region for each task that falls in between the peer tasks.

We define a parametrized region(t i, s) function that takes an integer s and
returns the set of nodes that have at most Manhattan distance s to the node at
the center of gravity of the peer tasks of the given task t i.

region(t i, s) = {n j ∈ Va : dist(n j, CoG(L, n f)i)≤ s} (4.29)

For s = 0, LNMS reduces to CoG (i.e., LN MS(0) ≡ CoG) and for s = smax

such that region(t i, smax) = Va, it reduces to NMS (i.e., LN MS(smax) ≡ N MS).
Therefore we should be able to obtain a sub-optimal Pareto curve for the range
1 ≤ s ≤ smax that represents different trade-off points between communication
and computation.

76 4.4 The reliability aspect

All three NMS heuristics can have localized versions such as LNMS-A(s),
LNMS-B(s) and LNMS-C(s). Rather than rewriting the whole pseudocode, we
highlight the differences in each case:

• LNMS-A(s) and LNMS-B(s): in line 2, instead of 1 ≤ j ≤ |Va|, we have
n j ∈ region(t i, s);

• LNMS-C(s): in line 2, instead of n j ∈ Va, we have n j ∈ region(t i, s).

4.4 The reliability aspect

This section focuses on the reliability aspect of the fault-aware online task remap-
ping technique. We also look at N-modular redundancy [Derin, Diken and Fiorin,
2011], an alternative technique that makes use of concurrent self-checking by
executing redundant application tasks. We consider the problem at the level of
application abstracting from the underlying hardware solution. In our study, we
adopt as a reliability metric the MTTF. For each technique, we propose an ana-
lytical model for calculating the MTTF of the overall system. We use the same
notation presented in table 4.1.

4.4.1 Reliability estimation for online task remapping

Reliability when applying online task remapping is estimated by building a fault
tree of the application and by calculating a corresponding value for the MTTF.

Creating the fault tree

In order to calculate the reliability of a system provided with online task remap-
ping ability, we build a fault tree [Vesely et al., 1981] starting from the application
and the platform specifications (see algorithm 4). Given information about the
tasks that each core can execute, and the type of core in each node, the algorithm
creates a fault tree based on the idea that the application will fail when there will
be no fault-free cores left for any of the core types required by the application.

In fault trees, leaf nodes, intermediate nodes, and the root node represent
basic events, complex events and the top event, respectively. Basic events are
denoted by circles, and complex or top events by rectangles as shown in fig-
ure 4.1(b). In our algorithm, failed node events correspond to basic events (rep-
resented as ni in algorithm 4). The algorithm creates complex events at two
levels in a bottom up manner. First complex event type is the failed core type

77 4.4 The reliability aspect

Algorithm 4 create_fault_tree(M T C
cap, M NC)

Require: M T C
cap, M NC

Ensure: E f aul t_t ree

1: BoolExp E f aul t_t ree = f alse
2: for all i ∈ [1..|Vt |] do
3: BoolExp Et i

= t rue
4: for all j ∈ [1..|C |] do
5: BoolExp EC j

= t rue
6: if M T C

capi j
= 1 then

7: for all k ∈ [1..|Va|] do
8: if M NC

k j = 1 then
9: EC j

= EC j
∧ nk

10: end if
11: end for
12: end if
13: Et i

= Et i
∧ EC j

14: end for
15: E f aul t_t ree = E f aul t_t ree ∨ Et i

16: end for
17: return E f aul t_t ree

event (EC j
in line 5). A conjunctive set of failed nodes belonging to the same core

type leads to a failed core type event (line 9). Second type of complex event is
the failed task event (Et i

in line 3). A task fails when no core type is left that
can execute that task, thus a failed task event occurs when that conjunctive set
of failed core type events occurs (line 13). Finally, the algorithm creates the top
event, E f aul t_t ree, representing the failure of the application. The application fails
when any task fails, as denoted with the disjunctive set of all failed task events
(line 15). Figure 4.1(b) shows the fault tree that results from the case of an
application with four tasks running with online task remapping fault tolerance
technique on a 2× 2 NoC platform shown in figure 4.1(a). The core types (Ci)
capable of running each task (t j) are presented as a table in the figure.

Calculating MTTF from the fault tree

As a second stage, we calculate the MTTF of the application on the given platform
starting from the created fault tree. In doing that, we adopt the binary decision

78 4.4 The reliability aspect

t1

t2

t3

t4

t1

t2

t3

t4

C1

C1, C2

C1, C2

C3

n3 C2 n4 C3

n1 C1 n2 C1

(a)

t2

n2n1

C1 C2

n3n2n1

C1

n2n1

C1 C2

n3

t3

failure

t1 t4

n4

C3

(b)

Figure 4.1. A 2× 2 NoC, a simple task graph and a table listing tasks and the
core types capable of executing the tasks (a), and the corresponding fault tree
(b)

diagram (BDD) based approach [Sinnamon, 1996] which does not suffer from
the approximation errors due to the multiple occurring events (MOEs) in the
fault tree when it is evaluated with the Kinetic Tree Theory [Vesely, 1971]. Given
the procedure in algorithm 4, the resulting fault tree is prone to having MOEs
when there are core types that can execute different tasks or when there are
more than one instances of a task. In the BDD-based approach, the fault tree,
which is actually a boolean expression, is captured as a BDD. The set of all the
paths leading to 1s are called satisfying paths, Sat. A satisfying path assigns
values to nodes as 1 (ni, failure) and 0 (n̄i, non-failure). The probabilities of
satisfying assignments are summed in order to calculate the overall probability
of failure (Qs ys(t)). Given the probability that processing node ni will fail at
time t, Pni(t), the path probabilities are calculated by multiplying the failure
(Pni(t)) or non-failure probabilities (1−Pni(t)) of the BDD nodes depending on
their assignments.

Qs ys(t) =
∑

si∈Sat

(
∏

n j∈si

Pn j(t)
∏

n̄k∈si

(1− Pnk(t))) (4.30)

M T T Fs ys =

∫ ∞

0

Rs ys(t)d t (4.31)

where reliability of the system, Rs ys(t) = 1−Qs ys(t).

79 4.4 The reliability aspect

(a)

voter

fork

RISC DSP RISC

 DSP NPC DSP

RISC DSP RISC

t12

t32t22

t3

n2 n3

n4 n5 n6

n7 n8 n9

t1

n1

(b)

Figure 4.2. Example of a KPN application composed of three software tasks (a),
and a mapping of the example application using the TMR pattern onto a 3× 3
NoC (b)

As a result, we are able to calculate the MTTF of an application on a given
platform that supports online task remapping. This can help us in designing a
platform for our application in a reliability-aware manner by properly selecting
core types (M T C

cap) and core mapping (M NC).

4.4.2 Reliability estimation for N-modular redundancy

N-modular redundancy (NMR) is based on the idea of transforming the original
task graph by replicating some of the tasks N times. Outputs of the replicated
tasks are collected and given to a majority voter, which decides on the final result
according to the most recurrent value at its input. Unlike online task remapping,
the NMR technique described below allows various reliability levels, even if the
platform is fixed, by applying some patterns that introduce redundancy at the
application level and by exploiting different mappings of tasks on the platform
[Derin, Diken and Fiorin, 2011].

80 4.4 The reliability aspect

true true true true

failure

n2 n4 n2 n4

t1 fork t2 t3

t32t22t32t12t12 t22

n6 n6

voter

(a) The case of safe failure

t3

n8

failure

t12

t2

t1 t22

n1 n5 n2 n4 n6

fork

n5

t32 voter

(b) The case of unsafe failure

Figure 4.3. The fault trees corresponding to the mapping in figure 4.2(b)

In the case of a single task, parallel instances of the task are created on dif-
ferent cores along with fork tasks for every input channel, and majority voter
tasks for every output channel. Figure 4.2(b) exemplifies the transformation of
the task graph in figure 4.2(a) with the NMR pattern. A fork task creates a copy
of the incoming message for each redundant instance and forwards each copy to
the input channels of those instances. A majority voter task reads a token from
all of its input channels and finds out the most recurrent token and sends it to its
output channel. If a different input token is detected, the voter can signal that
the core producing that token is faulty.

There are various ways to apply the NMR pattern to electronic circuits and
systems [Koren and Krishna, 2007]. In the case of task graphs, one strategy,
that we call NMR-per-single-task, is to encapsulate single tasks within fork and
voter tasks. The other strategy, that can be named NMR-per-multiple-tasks, is to
encapsulate multiple tasks within fork and voter tasks. In the former case, the
number of forks and voters will be greater than the latter case, thus leading to
more overhead in communication cost. However, the former case is expected
to yield better reliability. In this work, we investigate therefore the first strategy
and provide algorithms to calculate the reliability metric of applications for which
NMR is applied distinctly on each task.

Creating the fault tree

In order to calculate the reliability of a KPN application that is transformed with
the NMR pattern and mapped onto a NoC platform, we derive a fault tree by an-
alyzing all fault cases that lead to failure. In order to make our approach clear,

81 4.4 The reliability aspect

Algorithm 5 create_fault_tree algorithm (safe failure - inability to provide
checked results)

1: BoolExp E f aul t_t ree = f alse
2: for all t i ∈ Vt do
3: BoolExp Et i

= f alse
4: if t rans f orm(t i) = t i then
5: Et i

= t rue
6: else
7: for all t j

i ∈ t rans f orm(t i) do
8: BoolExp Econ_i = t rue
9: for all tk

i ∈ t rans f orm(t i) do
10: if tk

i 6= t j
i then

11: Econ_i = Econ_i ∧ β(tk
i)

12: end if
13: end for
14: Et i

= Et i
∨ Econ_i

15: end for
16: end if
17: E f aul t_t ree = E f aul t_t ree ∨ Et i

18: end for
19: return E f aul t_t ree

we consider an example application in which three tasks t1, t2 and t3 are con-
nected as a pipeline. The TMR pattern is applied to t2 leading to three instances,
namely t1

2, t2
2 and t3

2 along with a fork and a majority voter. As shown in fig-
ure 4.2(b), this application is mapped onto a 3× 3 NoC-based platform with a
specialized node n5 that hosts the fork and voter tasks implemented in hardware
as non-programmable cores.

In the case of an NMR-ed application, there can be two types of failure: safe
failure and unsafe failure. A safe failure is the failure of the system to provide
checked results. Unsafe failure is the failure of the system to provide correct re-
sults. A safe failure happens if there is only one instance left of any task type. The
example in figure 4.2(b) is already in failing mode if evaluated from the point
of view of safe failures because t1 and t3 have single instances and their results
are not checked. Figure 4.3(a) shows the derived fault tree that results from the
mapping shown in figure 4.2(b) when considering safe failure.

Let gR
t = (V

R
t , ER

t) be the task graph that results from the the application of
self-checking patterns to gt . Let t rans f orm(t) : Vt → V R

t be a function that

82 4.5 Experimental results

returns the set of redundant instances in gR
t of task t. The procedure to obtain

the fault tree related to the failure of providing checked results is listed in algo-
rithm 5.

Basic events (ni inside a circle in figure 4.3(a)) correspond to the failure
of the processing node ni. The algorithm creates complex events at two levels
in a bottom up manner. A complex event at the first level represents a failed
redundant task instance due to the failure of its processing node.

The second level represents task type failures (Et i
, in line 3). If there exists

at least one task without redundant instances, it leads to a fault tree that always
evaluates to true (line 5). For a task with redundant instances, the failure of the
task type is implied when there remains no longer a pair of redundant instances
running on two different fault-free nodes (lines 6–16).

Finally, the top event represents the failure of the application when any one
of the task types fails (line 17). Due to the assumption of highly fault-tolerant
interconnection network, the failure characteristics of the overall application can
be obtained by evaluating the derived fault tree given only the failure character-
istics of the processor cores.

In the case of unsafe failure, the procedure to obtain the fault tree is listed in
algorithm 6. For non-redundant tasks, task type failure occurs if the processor
that hosts the task fails (line 5). For redundant tasks, the failure of the task type
is obtained by conjugating failed redundant task instance events (lines 6–10).
The top event (i.e., the failure of the application) occurs if there is no instance
left of any task type (line 11). Figure 4.3(b) shows the derived fault tree that
results from the mapping shown in figure 4.2(b) when considering safe failure.
The application will fail if either of n1, n5, n8 fails or if all of n2, n4 and n6 fail.

In order to evaluate the MTTF of the fault tree, we adopt again the BDD-based
approach described in section 4.4.1. For the example in figure 4.3(b), the set of
all satisfying assignments is Sat = {n̄1n̄2n̄5n8, n̄1n̄2n5, n̄1n2n̄4n̄5n8, n̄1n2n̄4n5,
n̄1n2n4n̄5n̄6n8, n̄1n2n4n̄5n6, n̄1n2n4n5, n1}.

Assuming a Poisson distribution of faults with hazard rate λi for ni, we have
the probability that ni fails at time t as Pni(t) = 1 − e−λi t . In consequence,
the probability that ni does not fail at time t is given by Pn̄i(t) = e−λi t . In the
example, assuming λ= 10−5 for the RISC and DSP processors and λ5 = 10−7 for
n5 that hosts the fork-voter core, we obtain M T T Fs ys ≈ 103 t ime units.

83 4.5 Experimental results

Algorithm 6 create_fault_tree algorithm (unsafe failure - inability to provide
correct results)

1: BoolExp E f aul t_t ree = f alse
2: for all t i ∈ Vt do
3: BoolExp Et i

= t rue
4: if t i = t rans f orm(t i) then
5: Et i

= β(t i)
6: else
7: for all t j

i ∈ t rans f orm(t i) do
8: Et i

= Et i
∧ β(t j

i)
9: end for

10: end if
11: E f aul t_t ree = E f aul t_t ree ∨ Et i

12: end for
13: return E f aul t_t ree

4.5 Experimental results

For evaluating our proposals, we developed the maponoc tool1. It consists of
mainly two programs. The ILP-based mapper program solves the optimal remap-
ping problems by using the API of the IBM ILOG CPLEX optimizer [IBM ILOG
CPLEX Optimizer, n.d.]. Its flow is depicted in figure 4.4(a). Given input files
that describe the application (the task graph along with bandwidth demands of
data dependencies), the platform (architecture graph, core types, core mapping,
routing algorithm), offline profiling results (task workloads on the available core
types) and the fault scenario (the initial mapping and the set of faulty nodes),
the tool provides as output the Pareto-optimal remappings. It can also be used
for the mapping problem (i.e., without providing the fault scenario). It can oper-
ate in time-limited, gap-limited or unlimited modes. In the first mode, an upper
bound on the time to run each optimization is set by the user. In the second
mode, the optimizer returns the current best solution when it reaches a certain
proximity to the optimal solution (given as a percentage gap). In the third mode,
the execution of the tool is not limited by a time or a gap value. For all the results
reported in this section, we have used the unlimited mode.

The reliability metric, which was introduced in section 4.4 as a third objec-
tive to the mapping problem, is not linear. Therefore we implemented the genetic

1Available as open-source in https://github.com/derino/maponoc

https://github.com/derino/maponoc

84 4.5 Experimental results

(a) (b)

Figure 4.4. Tool flow for evaluating the fault-aware online task remapping with
the ILP-based mapper (a) and the reliability estimation with the genetic algorithm
based mapper (b)

algorithm based mapper program (based on NSGAII with constraints [Deb et al.,
2002]) that calculates the Pareto mappings for the three objectives: throughput,
communication cost and MTTF subject to the link bandwidth capacity constraints
and core capability constraints. Its flow, given in figure 4.4(b), is similar to the
one of the ILP-based mapper except that it requires the failure rates of each core
as input rather than the fault scenario. In addition, it incorporates an MTTF esti-
mator and a block that transforms the application using the NMR pattern. In the
genetic algorithm, a mapping represents an individual. The mutation operation
is defined by swapping the mapping of two randomly selected tasks, while the
cross-over operation merges the mapping of a random task set from one parent
with the complementary set from the other parent. The program also accepts the
size of the population (P), number of generations (G), mutation (M) and cross-
over (X) rates as input from the user. For the results reported in this section, we
have used the following parameter values: (P, G, M , X) = (1000, 100,0.001, 0.8).

85 4.5 Experimental results

t
2

t
3

t
4

t
5

t
6

t
7

t
8

t
1

e
1

t
9

t
10

t
11

t
12

2
e

e
3

4
e

5
e

6
e 7

e

8
e 9

e

10
e

11
e

12
e

13
e

14
e

(a)

n
1

l1

n

n
7

n
8

n
5

n

n
6

n
9

2 3

4

l

l5l4l3

l

l11 l12

l10l9

l7l6

2

8

n

RISC RISC

RISC

RISC RISCDSP

DSPDSP

DSP

(b)

Figure 4.5. An MPEG-2 encoder task graph with 12 tasks (a), and a 3×3 mesh-
based NoC with RISC and DSP processors (b)

4.5.1 Case study: the MPEG-2 decoder

To illustrate the problem formulation better, firstly we use as a running exam-
ple the widely used MPEG-2 decoder benchmark [Thiele et al., 2007], whose
task graph is shown in figure 4.5(a), and the XY-routing based NoC architecture
shown in figure 4.5(b). The throughput of the links of the NoC is 100 MBps. The
test video is 15 seconds long with a resolution of 704×576 pixels and the frame
rate is of 25 frames per second (fps).

M T E can be obtained from the task graph. Deriving M N P and M P L is trivial
given the architecture and the routing algorithm. The offline profiling data (T C T

cap)
and bandwidth demands of the data dependencies (d) are given in tables 4.2 and
4.3 respectively. Other parameters are listed as follows:

ci = 100 MBps, 1≤ i ≤ |Ea|

C = {C1, C2}= {RISC,DSP}

M T C
cap = 112×2

The MPEG-2 case study has been solved by using our ILP-based mapper. Fig-
ure 4.6(a) shows the Pareto curve obtained when all nodes are working. Con-
sidering that it was a 15 seconds long video clip, the solutions that satisfy the
frame rate requirement are those that have a total execution time of less than
15 seconds. One can choose the mapping among them by trading off the total
execution time and the communication load.

86 4.5 Experimental results

Table 4.2. Execution times (in seconds) of tasks on the available core types (T C T
cap)

Tasks
Core type

t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12

RISC 0.13 6.68 0.06 2.00 2.00 0.05 0.06 2.00 2.00 0.05 12.33 0.18
DSP 0.20 8.52 0.04 1.25 1.25 0.04 0.04 1.25 1.25 0.04 8.51 0.30

Table 4.3. Bandwidth demands (in MBps) of edges (d)

d1 d2 d3 d4 d5 d6 d7 d8 d9 d10 d11 d12 d13 d14

1.0 34.6 28.1 28.1 28.1 28.1 65.0 34.6 28.1 28.1 28.1 28.1 65.0 15.2

Figure 4.6(a) also shows the Pareto-optimal remappings in the case of faulty
n5 and unlimited task migration. We see that in the regions where the execution
time constraint is relaxed (e.g., execution time > 10s), the Pareto remappings
coincide with the Pareto points found for the case in which all the cores are fault-
free. The reason is that, for those Pareto points, tasks are mostly mapped onto
few nodes. Therefore, the absence of n5 is not relevant. But for the initial Pareto
points where the execution time is smaller than 10s, the degradation is visible,
meaning that the Pareto remappings do not coincide with the initial Pareto points.
This is due to the fact that for keeping the same execution time (8.51s), the
required parallelism is high, and thus almost every task should be mapped onto
a different node. In this case, the absence of n5 becomes critical. Moreover, since
n5 is the central node, the communication cost of alternative mappings increases.

The limited task migration case has also been considered. Starting with an
initial optimal mapping (t7, t8, t9, t10→ n1; t11→ n2; t3, t4, t5, t6→ n3; t1, t2, t12→
n5), the Pareto-optimal remappings have been calculated for the faulty n5 case.
Table 4.4 lists the Pareto-optimal remappings in the limited case along with the
performance degradation ratios with respect to the initial mapping situation prior
to the fault.

We have also calculated the remappings for the faulty n5 scenario by using the
CoG, NMS-A/B/C and LNMS-A/B/C(s) heuristics for 0< s < smax . Table 4.5 lists
these results providing also the degradation with respect to the initial mapping.
A subset of the results for the case of limited task remapping is also presented in
figure 4.6(b). It shows the proximity of the remapping results of 7 heuristics to
the metrics of the initial mapping and the Pareto-optimal remappings. The results
reveal that for each heuristic (except CoG) there is a remapping point close to
each optimal remapping point, thus showing that the proposed heuristics cover
various trade-offs among the objectives.

87 4.5 Experimental results

(a) Pareto-optimal mappings and remappings
(unlimited task migration)

(b) Comparison of results between heuristics,
optimal remappings and the initial mapping
(limited task migration)

Figure 4.6. Remapping results for the MPEG2 decoder case study on a 3 × 3
heterogeneous platform with a faulty node (n5)

Table 4.4. Degradation achieved by Pareto-optimal limited remappings for faulty
n5 scenario

faulty
mapping

exe.time com.cost degradation (%)
node (obj. 1) (obj. 2) obj. 1 obj. 2

none initial 8.51 283.6

n5

Pareto1 8.51 352.8 0 24
Pareto2 8.52 284.6 0 0
Pareto3 8.72 283.6 2 0
Pareto4 8.81 268.4 4 -5
Pareto5 10.79 200.2 27 -29
Pareto6 10.92 199.2 28 -30

4.5.2 A synthetic task graph

To evaluate the heuristics further, we created a synthetic task graph with 30 tasks
and considered a 4× 4 mesh NoC composed of homogeneous cores. By varying
the throughput constraint of the application we obtained 13 Pareto optimal ini-
tial mappings. For all the 13 initial mappings and all 16 single fault scenarios,
we obtained the Pareto optimal remappings as well as the remappings calculated
by the heuristics. We report the degradations incurred with respect to the initial
mapping in figure 4.7(a), averaged over all the initial mappings and all the fault
scenarios. By considering the execution time objective, it can be seen that the
average degradation keeps decreasing from one extreme (CoG) to another ex-

88 4.5 Experimental results

Table 4.5. Degradation achieved by proposed heuristics for faulty n5 scenario

faulty
method

exe.time com.cost degradation (%)
node (obj. 1) (obj. 2) obj. 1 obj. 2

none initial 8.51 283.6

n5

CoG 17.53 199.2 105.99 -29.76
NMSA 8.51 370 0 30.47
NMSB 8.51 384.2 0 35.47
NMSC 8.51 383.2 0 35.12
LNMS-A(1) 10.79 216.4 26.79 -23.7
LNMS-B(1) 10.79 216.4 26.79 -23.7
LNMS-C(1) 10.92 214.4 28.32 -24.4
LNMS-A(2) 8.52 300.8 0.12 6.06
LNMS-B(2) 8.52 300.8 0.12 6.06
LNMS-C(2) 8.52 370 0.12 30.47

treme (NMS), and vice versa for the communication cost objective. The results
obtained for the LNMS heuristics constitute the intermediate values, with the s
parameter ranging from 1 to 6. This confirms that the LNMS presents a trade-off
opportunity between the two objectives. For s = 2, the average degradations
for both objectives fall below 9%. As a conclusion, when applying these tech-
niques in practice, the s parameter can be searched at run-time. By starting with
the middle value of its range and checking the heuristic results against the con-
straints of the system (throughput and communication cost in this case), or the
allowed degradation levels, the search algorithm can try to increase or decrease
the values of s until the best acceptable result is achieved.

The quality of the heuristics can be assessed by evaluating the proximity of
their results to the optimal remapping decisions. In order to evaluate the distance
from the optimal remapping, we define a degradation distance metric. For an
initial mapping point with objective values i1 and i2, Li = (i1, i2), a Pareto-optimal
remapping point Lp = (p1, p2) and a heuristic remapping point Lh = (h1, h2), we
calculate the degradation distance δ as

δ =

√

√

(
h1 − p1

i1
)2 + (

h2 − p2

i2
)2 (4.32)

When calculating the degradation of a remapping point obtained by a heuristics
with respect to the Pareto-optimal remapping curve, we consider the Pareto point
that has the smallest degradation distance to the heuristic point. This is a logical
decision because it makes sense to compare solutions that adopt a similar trade-

89 4.5 Experimental results

(a) Degradation achieved by proposed heuristics with respect to the initial mapping

(b) Additional degradation incurred by proposed heuristics with respect to the closest
Pareto-optimal remapping (mean and 95 percentile are shown)

Figure 4.7. Remapping results for 30 tasks on a 4× 4 homogeneous platform
averaged over 13 initial mappings and 16 single fault scenarios

off among the objectives.
We report the degradation distances of the heuristics with respect to the opti-

mal remapping solutions obtained by the ILP-based mapper in figure 4.7(b). The
figure displays the average degradation and the 95 percentile evaluated over all

90 4.5 Experimental results

13 initial mappings and 16 fault scenarios. The figure shows that for all heuris-
tics the average degradation distance is smaller than 7%, and that in 95% of the
cases the degradation distance remains below 23%.

In addition to our heuristics, we implemented a routine that remaps tasks
randomly in order to assess whether the time spent to execute the heuristics
pays off and leads to better results than a purely random remapping or not. We
executed random remapping 10 times per fault scenario. In average, random
mapping leads to significantly worse results in terms of execution time compared
to the heuristics (32% degradation with respect to the initial mapping). In terms
of communication costs, it is comparable to LNMS(smax/2). This is simply be-
cause, in average, the random heuristic maps tasks within the region with radius
s = smax/2 (i.e., the expected value of a uniformly random number in the range
[1, smax]).

The total number of binary decision variables in the mapping problem are
|Vt | × |Va| + |Et | × 2

�|Va|
2

�

. In order to assess scalability of the ILP method, we
solved the optimal mapping problem of 2 and 3 MPEG-2 decoders onto a 3× 3
mesh NoC, which produced two more task graphs with 24 and 36 tasks. The time
for the ILP-based mapper to obtain these solutions was in average 0.78s, 27.87s
and 29 min per Pareto point for the cases with 12, 24 and 36 tasks, respectively.
With regard to the NoC size, for the two cases of a 4×4 NoC with 30 tasks and of a
6×6 NoC with 70 tasks, the average solution time of the Pareto remapping points
per fault scenario was 75s and 82.5 min, respectively. As mentioned earlier, the
ILP-based mapper can be operated in a time-limited or gap-limited manner if the
solution time becomes prohibitively long.

In order to assess the computation time of the remapping, that is, the execu-
tion times of the heuristics, we executed them on one typical embedded proces-
sor, i.e., a Xilinx Microblaze processors [Xilinx, 2010] with 64 KB of instruction
and data cache, running at 100 MHz, included as a core of a NoC platform. We
considered the case of a 4 × 4 mesh NoC with 30 tasks mapped onto its cores,
and evaluated the time needed for the execution of each heuristic for all the 16
single fault scenarios.

Figure 4.8 shows, in Millions of cycles (Mcc), the average time employed
by each heuristic. The first thing to notice from the results is that computation
time changes almost linearly with respect to the s parameter. Considering that
LNMS is composed of a call to CoG, and to the region() and NMS functions, the
increase in time can be accounted for by the increase in the computation time of
the region() and NMS functions given by the increase in the value of s. Secondly,
the results obtained for the NMS computation times are a slightly different than
the theoretical expectations. NMS-B takes longer than NMS-C. This is due to the

91 4.5 Experimental results

Figure 4.8. Computation times of the heuristics on the Microblaze processor

additional overhead of calling the qsort() function in the C standard library (used
when implementing NMS-B) which becomes more noticeable on the considered
use case that has a small average number of tasks on the faulty node.

4.5.3 Case studies on the platform

We chose as case studies two streaming applications in the multimedia domain,
i.e., an M-JPEG encoder and a H.264 decoder. We run them on the 2×2 mesh of
general-purpose processors, as detailed in section 3.1, implemented on a Virtex-6
FPGA board. The two applications are described below.

M-JPEG encoder

The PPN specification of the M-JPEG encoder is shown in figure 4.9. The size of
tokens ranges between 16 and 1024 bytes, and all of the channels are written
128 times, except the output of initVideoIn which is written only once per frame.
Figure 4.9 also shows how some processes have been merged to map the appli-
cation on the NoC platform, e.g. VLE and videoOut processes have been merged
into process M3. The numbers of clock cycles required for the execution of each
process of the M-JPEG application are summarized in table 4.6. Comparing these
numbers with the amount of inter-process communication it can be inferred that
this application has a high computation/communication ratio.

92 4.5 Experimental results

videoIn DCT Q

videoOutinitVideoIn

VLE

M0 M1 M2 M3

Figure 4.9. PPN specification of the M-JPEG encoder.

Table 4.6. Execution times of M-JPEG processes

Process Avg. execution time (c.c.)

M0 1923
M1 123626
M2 69254
M3 47989

H.264 decoder

The simplified PPN specification of this case study is shown in figure 4.10. In the
final implementation, the tasks get_data, parser, and cavlc have been merged
into a single process, H0. In this case study, the size of the exchanged tokens
ranges between 1 and 5000 bytes. The execution time of each process of the
H.264 decoder application are shown in table 4.7.

4.5.4 Evaluation of the remapping strategies on the platform

In this section, the quality of the heuristics is assessed through M-JPEG and H.264
case studies by evaluating the accuracy of the remapping evaluations obtained
by the NMS-A/B/C heuristics with respect to the actual measurements taken on
a real implementation.

M-JPEG remappings

Given a 2× 2 NoC-based platform with processing elements (t ile1 = n1, t ile2 =
n2, t ile3 = n3, t ile4 = n4) and an initial mapping of M-JPEG tasks I : M0 → n3,
M1 → n1, M2 → n2, M3 → n4 as shown in figure 4.11(a), we consider two
single fault scenarios for n1 and n2. As shown in figure 4.11(b), for the case
of n1 faulty, all possible remappings are R1 (M1 → n2), R2 (M1 → n3) and R3

(M1 → n4). Similarly, figure 4.11(c) shows the case of n2 faulty for which all
possible remappings are R1 (M2 → n1), R2 (M2 → n3) and R3 (M2 → n4). The

93 4.5 Experimental results

get_data

parser

cavlc idct deblock
intra

pred

H0 H1 H2 H3

printMB

H4

Figure 4.10. Simplified PPN specification of the H.264 decoder.

Table 4.7. Execution times of H.264 processes

Process Avg. execution time (c.c.)

H0 95643
H1 55775
H2 33645
H3 9724
H4 4075

total execution times of the M-JPEG application for all possible remappings, TRi
,

are measured on the platform and also calculated by the analytical model.
The performance degradation with respect to the execution time of the initial

mapping, TI , is calculated according to equation 4.33.

Performance degradation(Ri) =
TRi
− TI

TI
(4.33)

Measured and calculated values are used in equation 4.33 for calculating the
measured and analytical model degradation results shown in figures 4.12(a) and
4.12(b) for faulty n1 and faulty n2 cases, respectively. Note that in some cases, for
instance R2 in figure 4.12(a), the remapping can lead to a performance speedup.
In R2, this is because the reduction of the communication time over the NoC
overcompensates the increased computational workload on n3.

The optimal remapping is the one which yields the smallest performance
degradation. For the faulty n1 scenario, all of the NMS-A/B/C heuristics yield the
remapping R2 which is the optimal decision. For the faulty n2 scenario, it yields
the remapping R2 which is only .07% worse than the optimal one (R3). NMS-
A/B/C heuristics make the optimal decision according to the analytical model
and the discrepancy between the analytical model and the actual measurements
causes a very slightly sub-optimal decision in reality. However, as shown in fig-
ures 4.12(a) and 4.12(b), the analytical model estimates the degradation within

94 4.5 Experimental results

(a)

M1 M2

M0

(c)

M1 M2

M0

R1

R2

R3

fault

(b)

fault

R1

R3

R2

M1 M2

M0

tile1 tile2

tile3 tile4

tile1 tile1tile2 tile2

tile3 tile3tile4 tile4

M3 M3 M3

Figure 4.11. Initial mapping and the two single fault scenarios showing all pos-
sible remappings.

(a) (b)

Figure 4.12. Comparison of measured and calculated performance degradation
of all possible remappings when n1 is faulty (a) and when n2 is faulty (b) as
shown in figures 4.11(b) and 4.11(c), respectively.

3% of the measured values. The inaccuracy of the analytical model is due to the
latency introduced by the communication API (see section 3.2.2) and the unac-
counted context switching times when several tasks are running on a processor.

H.264 remappings

We use the same procedure to assess the NMS-A/B/C remapping heuristics in
the H.264 case study. The initial mapping is shown in figure 4.13(a). Then,
we consider the case of a fault occurring either in n1 or n2. In each of these
cases there are three possible remappings (R1 to R3), which are depicted in fig-
ures 4.13(b) and 4.13(c). In the case of a fault occurring on n1, all of the NMS-
A/B/C heuristics yield to the remapping R3, which is the optimal one as shown

95 4.5 Experimental results

(a)

H1 H2

H4

H0

(c)

H1 H2

H4

H0

R1

R2

R3

fault

(b)

fault

R1

R3

R2

H1 H2

H4

H0

tile1 tile2

tile3 tile4

tile1 tile1tile2 tile2

tile3 tile3tile4 tile4

H3 H3 H3

Figure 4.13. Initial mapping and the two single fault scenarios showing all pos-
sible remappings.

(a) (b)

Figure 4.14. Comparison of measured and calculated performance degradation
of all possible remappings when n1 is faulty (a) and n2 is faulty (b) as shown in
figures 4.13(b) and 4.13(c).

in figure 4.14(a). In the other considered case, faulty n2, all the heuristics sug-
gest the remapping R3. Also in this case, the suggested remapping represents
the optimal one, as can be deduced by figure 4.14(b). Similar to the M-JPEG
experiments, the inaccuracy of the analytical model is due to the abstraction of
the overheads related to context switches and communication over the platform.

To evaluate the computation time of the heuristics, the two remapping scenar-
ios given in figures 4.11 and 4.13 are used for M-JPEG and H.264 applications.
The NMS-A/B/C heuristics, which aim at minimizing the throughput degrada-
tion, are implemented on the platform with some optimizations such as static
memory allocation (as opposed to the results reported in figure 4.8 which used
dynamic memory allocation). Their computation times are displayed in table 4.8.

96 4.5 Experimental results

Table 4.8. Computation times of remapping heuristics

Method
Avg. execution time (c.c.)
M-JPEG H.264

NMS-A 8198 8172
NMS-B 19608 19603
NMS-C 6403 6664

4.5.5 Reliability evaluation

In order to exemplify the use of our reliability estimation technique on a case
study, we use once more the MPEG-2 decoder application described in section 4.5.1.
We consider again an input video of 15 seconds long with a resolution of 704×
576 pixels and the throughput goal is to achieve a frame rate of 25 fps. The
XY-routing-based NoC architecture shown in figure 4.2(b) is considered. It in-
cludes RISC and DSP cores, both capable of executing all the tasks of the appli-
cation. NoC links are assumed to provide a bandwidth of 1 GBps. T C T

cap and d are
given in tables 4.2 and 4.3 respectively. The NoC platform has a fork-voter non-
programmable core at n5. The fork and voter tasks are assumed to execute much
faster than the tasks of the application, thus, fork-voter node is not the critical
node in terms of throughput. However, since all fork and voter tasks are mapped
on this single fork-voter core, the links connected to the fork-voter node are ex-
pected to be more overloaded than the rest of the links. Moreover, the fork-voter
core is assumed to have a much smaller failure rate. Since it is a simple core, it
can indeed be designed in a fault-tolerant manner and can occupy a small area.
For the RISC and DSP processor cores, we assume constant failure rates equal
to 10−5 and 10−6, respectively. For simplification purposes, these rates are taken
as constants although failure rates are known to increase with wear-out [Huang,
Yuan and Xu, 2011]. Note that the approach would allow also incorporating a
time-varying failure rate function λ(t) into our model. Adopting such a failure
rate would not be essential to the present work, so we chose not to experiment
with it and leave the extension to a future work.

In the case study, we make use of the NMR-per-single-task strategy and apply
the TMR pattern to all the tasks of the MPEG-2 decoder giving us a task graph
with 64 tasks. Using our genetic algorithm based mapper tool, we computed
the Pareto mappings of the described case study with respect to the throughput,
MTTF and communication objectives as shown in figure 4.15 for the original task
graph, NMR-ed task graph (in the case of safe and unsafe failure) and the online
task remapping technique. As the original task graph is not redundant, its MTTF

97 4.5 Experimental results

 5

 10

 15

 20

 25

 30

 35

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2

c
o
m

p
u
ta

ti
o
n
 t
im

e
 (

s
)

MTTF (10
6
 time units)

α
ω

γ

original (unsafe)
NMR-ed (safe)

NMR-ed (unsafe)
OTR

(a) Computation time vs. MTTF

 0

 1000

 2000

 3000

 4000

 5000

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2

c
o
m

m
u
n
ic

a
ti
o
n
 c

o
s
t
(M

B
p
s
)

MTTF (10
6
 time units)

α

ω

γ

original (unsafe)
NMR-ed (safe)

NMR-ed (unsafe)
OTR

(b) Communication cost vs. MTTF

Figure 4.15. Comparison of the Pareto points of original and NMR-ed task graphs
as well as the OTR design points

values are obtained using the model for unsafe failure.
Considering the case of unsafe failure, it can be seen that the NMR pattern

leads to a number of new Pareto mappings with better MTTF values for the same
or better throughput values than the original task graph. In the case of the origi-
nal task graph, the design point that satisfies the throughput constraint of 25 fps
in 15 seconds and that has the maximum MTTF value is at (0.5×106, 11.36, 214)
and marked as α. The Pareto point that would be chosen after the NMR transfor-
mation is at (0.92× 106, 14.09, 2947.4) and marked as ω. Both of these points
satisfy the throughput constraint but ω is 84% more reliable than α.

Figure 4.15(b) shows the same design points in figure 4.15(a) plotted with
respect to the communication cost and MTTF. It can be seen that the communi-
cation costs for NMR-ed task graphs are significantly higher than the original. In
the case of ω and α, the difference is by an order of magnitude.

If online task remapping is used, MTTF is calculated as 2083707 t ime units.
The performance cost of supporting the online task remapping technique is two-
fold. On the one hand, the total execution time of each core will be increased
by the number of invocations of the self-testing routine times the execution time
of a single invocation of the self-testing routine. A second contribution to the
overhead is due to the additional code executed in the task bodies even in absence
of faults in order to support fault recovery. However, our experiments on the
real platform show that the performance overhead can be as small as 1.5% (see
section 5.5). Therefore, for the same mapping represented by α, the design point
given by OTR, which is shown in figures 4.15(a) and 4.15(b) by γ, is at (2.08×
106, 11.53, 214). The OTR design points plotted in figure 4.15 correspond to

98 4.6 Summary

different initial mappings. With optimal remapping decisions, the performance
is expected to degrade along those points during the lifetime of the application
as the nodes become faulty.

In the case of safe failure, NMR serves to detect and possibly mask transient
and permanent faults. Instead OTR, which uses self-testing as the fault detec-
tion techique, tolerates only permanent faults and requires the application to
allow limited error propagation until the recovery is completed. If tolerance to
permanent faults is aimed at and benchmark applications allow limited error
propagation, as it is the case in this thesis, OTR outperforms NMR by leading
to better design points for all three metrics as shown in figure 4.15 (NMR-ed
(safe) vs OTR). OTR yields an MTTF value that is at least two times more than
that of TMR (safe). Even if NMR is considered with unsafe failure, which does
not guarantee correct results to be produced by the application, OTR keeps out-
performing NMR (NMR-ed (unsafe) vs OTR). The MMTF of OTR is almost 50%
more than the maximum MTTF that can be achieved with TMR (unsafe).

4.6 Summary

We formulated the optimal task mapping problem for NoC-based multiprocessors
with generic topologies and deterministic routing as an integer linear program-
ming (ILP) problem with the objective of minimizing the communication traffic
in the system and the total execution time of the application. We used it to ob-
tain optimal task remappings in presence of faults in processing cores. Several
heuristics have been proposed and their results have been compared with respect
to the optimal remappings. Our results showed that LNMS heuristics provide a
parameterized solution that can accommodate different trade-offs. Comparing
the results of heuristics with the optimal solutions, we have found that they are
in average within 7% proximity in terms of degradation distance.

We also showed with two real-life case studies that the NMS heuristics are
able to find near-optimal remappings. Moreover, the experimental results show
that the overhead in terms of execution time due to the execution of the remap-
ping heuristics is almost negligible compared to the execution time of the whole
application. This means that the proposed heuristics can be used in a fault re-
covery mechanism without a substantial impact on the user experience.

Our solution has been demonstrated with use-case applications for several
fault scenarios on a mesh-based platform adopting an XY-routing strategy. How-
ever the proposed solution can be applied to platforms with any topology and
any deterministic routing strategy.

99 4.6 Summary

In dynamic environments where the applications that will execute on the plat-
form are not a-priori known, overwhelmingly the case for mobile platforms, the
approach where remapping decisions are made offline and for which exact degra-
dation profiles are calculated a priori, cannot be applied anymore. Therefore we
have to resort to online remapping decisions. Unfortunately the degradation
bounds in such a case cannot be guaranteed and can be beyond the tolerances of
the application. This calls for self-adaptive systems with adaptation capabilities
that go beyond run-time task mapping, thus allowing the compensation of the
degradation through other mechanisms such as the self-adaptation of application
level parameters as described in chapter 6.

NMR is a concurrent self-checking technique for fault tolerance that can be
applied at the KPN level. Our results show that NMR can turn the original appli-
cation into a more reliable one and achieve the same throughput levels. How-
ever, it comes at the expense of a huge overhead in terms of the communication
taking place in the network. Although we have not evaluated different number
and placement of fork-voter cores, it can be argued that increasing the number
of fork-voter cores can help to reduce the communication overhead of NMR-ed
applications.

On the other hand, online task remapping is a much cheaper technique capa-
ble of yielding to a two-fold reliability increase compared to NMR, at the expense
of a small overhead due to the fault detection technique (such as the execution of
an online self-testing routine) and the fault recovery support via task remapping.

100 4.6 Summary

Chapter 5

Recovery Support in the Fault-aware
Run-time Environment

Fault recovery is the stage starting from the detection of the fault till the point in
which the application continues operating on fault-free nodes. In this chapter we
focus on the description of the mechanisms that are defined for achieving fault
recovery via run-time migration of processes among tiles. With the implemented
fault recovery support, we aim to show the feasibility of the fault-aware run-
time environment approach proposed in this dissertation. The results presented
in this chapter have been published partially in [Derin, Cannella, Tuveri, Meloni,
Stefanov, Fiorin, Raffo and Sami, 2013; Cannella et al., 2012].

The remainder of this chapter is organized as follows. Section 5.1 discusses
the contributions of this dissertation with respect to the state-of-the-art. Sec-
tions 5.2 and 5.3 present the two techniques proposed for fault recovery based
on fine-grained checkpointing-and-rollback (CRR) and roll-forward (RFR), re-
spectively. Each section details the required changes at the application, RTE and
hardware layers. Section 5.4 presents results obtained experimentally on the
platform and compares the two techniques in terms of their overhead in time
and area.

5.1 Contributions with respect to the state of the art

The previous studies on task migration have some shortcomings and are not ap-
plicable in our fault recovery scenarios. First of all, the approaches proposed in
[Bertozzi et al., 2006] and [Acquaviva et al., 2008] are for shared memory sys-
tems which makes them inapplicable for purely distributed memory platforms
such as ours. Secondly, even when a task migration approach is proposed for

101

102 5.1 Contributions with respect to the state of the art

purely distributed memory multiprocessors such as the one proposed in [Almeida
et al., 2009], it cannot be sufficient by itself to recover from faults. Because addi-
tional mechanisms should be put in place to manage fault recovery, for example,
by coordinating a global checkpoint and rolling back to it. What to checkpoint in
the case of fault recovery and of non-fault related task migration differs signifi-
cantly. In the task migration case, checkpointing the state of the task is sufficient.
Instead, in the fault recovery case, a snapshot of all the tasks should be check-
pointed.

Thirdly and most importantly, task migration techniques mentioned above
are all purely software-based. Execution of such techniques involves operations
performed by the processor that hosts the tasks to be migrated. Obviously, in
the fault recovery case, that processor is faulty and cannot be trusted with the
remapping of the tasks. Instead, in our approach, we introduce a task migration
hardware module that carries out the basic funtionality required by the faulty
processor. Proactive fault management techniques [Salfner et al., 2010; Lan and
Li, 2008] would not require such a task migration hardware module because
tasks, which are running on a core that is likely to fail during the next time win-
dow, would be migrated before the fault occurs. However, to this date, there is
no perfect failure predictor that achieves correct prediction of all failures (i.e.,
a recall rate of 1) with reasonable precision. Furthermore, most proactive fault
management techniques [Salfner et al., 2010] are for large-scale processing sys-
tems, and they cannot be adopted in a straight-forward manner for SoCs without
statistical data and models.

If migration is to be supported in a programming model agnostic manner, the
state to be migrated consists of the processor state with all of its internal registers’
values and the application state at the migration point stored in the memory.
This state should be fully transfered to the new processor. When migration is
done between processors of different types, the state should also be adapted
for the new processor. The size of the transferred state as well as the need to
adapt it brings an overhead to the migration procedure. By adopting PPN as the
model of computation in our approach, this overhead is partly avoided because
the state of a PPN process is known independently from the application at the
beginning of the iterated process body. This is, in fact, exploited by the proposed
techniques described in this chapter. The approach presented in [Stralen and
Pimentel, 2012] is similar in that sense. However, the memory requirement of
the global checkpoint, which involves storing all of the tokens processed by a task
in between two checkpoints, makes this approach too prohibitive to be adopted
in our platform. Therefore, in one of our recovery techniques, we resort to fine-
grained checkpointing and rollback which can also be referred to as re-execution

103 5.2 CRR: Fine-grained checkpointing and rollback based fault recovery

[Kang et al., 2014a; Izosimov et al., 2012].
As mentioned in the previous chapter, there has been some work done on

system-level fault tolerance in NoC-based platforms based on spare cores or
task remapping. Some of those techniques propose the allocation of spare cores
[Chou and Marculescu, 2011; Ababei and Katti, 2009; Khalili and Zarandi, 2012],
while others investigate fault-aware remapping on fault-free cores of tasks run-
ning on faulty processing elements [Lee et al., 2010]. However, none of these
techniques deal with the recovery problem and they only address the remapping
problem (i.e., the selection of the new cores that execute the tasks of the faulty
core) without an actual implementation on a real platform.

Our work in this chapter is fundamentally novel in the aspect that it realizes
fault-aware run-time management on an NoC-based platform and demonstrates
two fault recovery techniques by reporting their results.

Our contributions in this field are

• a fault recovery technique that allows limited error propagation by check-
pointing at the beginning of each iteration and rolling back to the beginning
of the iteration in case of fault detection.

• a fault recovery technique that allows limited error propagation by rolling
forward to a future point in the processed stream.

• implementation of the techniques on the platform by incorporating the re-
quired changes in the application, RTE and the tile architecture.

• evaluation and comparison of the techniques in terms of their steady-state
performance overhead, recovery time and area overhead.

5.2 CRR: Fine-grained checkpointing and rollback based
fault recovery

The proposed solution encompasses support for fault recovery via online task
remapping. It involves hardware and software modifications on top of the MTOS,
message-passing support, and the NORMA-based NoC platform. The fine-grained
checkpointing and rollback based fault recovery technique (CRR) is based on
rolling back the execution at the granularity of a single iteration of a PPN pro-
cess. Fault detection relies on executing the self-testing routine at the end of each
iteration of a process. If the test is successful, the results of the current iteration,

104 5.2 CRR: Fine-grained checkpointing and rollback based fault recovery

which are to be written to the output FIFO channels of the process, are guaran-
teed to be correct. If the test fails, the recovery mechanism is started with the
help of the task migration hardware (TMH), which is responsible for notifying
the run-time manager (RM) and for transferring the state of the tasks (i.e., the
iterators of the tasks and the tokens in the input and output FIFO channels). The
way that we have implemented fine-grained checkpointing guarantees recovery
with limited error propagation for the majority of faults described in section 3.3.1
excluding those that lead to a wrong number of tokens in input or output FIFOs
(E1.2). Alternatively, a complete hardware-level checkpointing of the NI buffer,
input/output FIFOs and the iterators as well as a write operation implemented
in hardware which is called directly by the STM upon a successful self-test could
cover all possible corruptions. However, the additional overhead of such a so-
lution would be an overkill for the small extra coverage that would be gained.
It is a trade-off we have made between performance and fault coverage. In the
remainder of this section, the fault recovery mechanism is explained in detail by
describing the changes done at the application, run-time and hardware levels.

5.2.1 Modifications to the PPN processes

A part of the fault tolerance support involves the modification of process bodies.
Algorithm 8 shows how the basic process body shown in algorithm 7 is modified
to support the fault recovery mechanism.

Algorithm 7 A basic PPN process
1: for (i=0 ; i <M; i++) do
2: for (j=0 ; j <N; j++) do
3: read(in, CH1);
4: out = f(in);
5: write(out, CH2);
6: end for
7: end for

All PPN processes have the same code structure (as shown in algorithm 7).
Nested loops iterate, for a given number of times, the body of the process, which
is split into three main parts. First, the process reads the input data tokens from
(a subset of) the input channels. This is represented by the read() statements in
the algorithm. Second, the process function (f) produces the output tokens by
processing the input tokens. Finally, the output tokens are written to (a subset
of) the output channels represented by the write() statements.

105 5.2 CRR: Fine-grained checkpointing and rollback based fault recovery

Algorithm 8 The PPN process template for the proposed fault tolerance mecha-
nism
1: if (migration) resumeState;
2: for (i=i0 ; i <M; i++) do
3: for (j= j0 ; j <N; j++) do
4: acqData(CH1);
5: read(in, CH1);
6: setTimer();
7: out = f(in);
8: selfTest();
9: write(out, CH2);

10: relSpace(CH1);
11: end for
12: reset j0;
13: end for

According to algorithm 8, when the thread starts, it checks if the migration
flag is set (line 1). If the migration flag is false, it means that the process starts
from scratch, with empty input and output FIFOs and i0 = j0 = 0. Otherwise, it
means that a migration has been performed, so the process state is reloaded.

Since the PPN model definition requires a stateless process function (for ex-
ample f in algorithm 7, i.e., a function that does not possess any hidden variable
that depends on the previous iterations), the state of a PPN process is represented
only by:

• the content of its input and output FIFOs;

• its iterator set, namely the values of the nested loop iterator variables, see
(i, j) in algorithm 8, lines 2 and 3;

In functions requiring to have a state, the function state is represented in the PPN
model by a stateless function with FIFO self-edges.

Due to the request-based flow control policy used for implementing the KPN
semantics on the NoC platform, the pending requests on the outgoing channels
from the faulty processing element also constitute in addition part of the state to
be recovered. All the three state components listed above are transferred from
the faulty tile to the run-time manager upon fault detection.

Lines 2 and 3 differ from the basic process structure in algorithm 7 because
the iterators inside the for loops do not start from zero in case of migration.
Instead, they start from the values i0 and j0, which represent the iteration at
which the process was interrupted by the fault detection while running on the
source tile. After the first complete execution of the inner for loop, starting from

106 5.2 CRR: Fine-grained checkpointing and rollback based fault recovery

j0 , the value of j0 is set to zero in line 12 such that the next execution of the
inner loop starts correctly with j = 0.

The read communication primitive is different from the one used in the basic
process structure. It is split into three separate operations (see lines 4, 5, 10).
First, the input channel (CH1) is tested to verify the presence of an available data
token, using the acqData() function in line 4. Then, the token is copied from
the software FIFO to the input variable which will be processed by the process
function f. The copy operation is performed in line 5. However, differently from
the normal read primitive, the memory locations occupied by the read token are
not released immediately. The actual release, which consumes the data from the
FIFO by increasing the read pointer, takes place only in line 10 (relSpace(CH1)).
In this way, if a fault is detected before the release instruction, the process can be
correctly resumed on the destination tile since it will read again the same input
token, because the read pointer is not changed. Note that, in case of multiple
input or output channels, the release operations should be grouped together and
placed right after the main body of the process, in order to guarantee a consistent
process state.

In order to tolerate crash errors, which result in processor hangs (e.g., due
to infinite loops or stuck program counter), a watchdog timer is set to expire
within a time limit (line 6). This time limit is greater or equal to the sum of the
worst case execution time of process function (f) and the self-testing routine. In
the case that the program counter reaches the end of the self-testing routine, the
timer is reset before it times out. Otherwise, the timer signals the crash error to
the TMH module by raising the fault_detected signal.

The faults can be more subtle and may result in computational errors, which
are known as silent data corruptions. Such faults are detected by running a self-
testing routine as shown in line 8. In the case that the self-testing routine pro-
duces a different output than expected, it is detected by the self-testing module,
which in turn signals the fault detection to the TMH.

If a crash occurs between the end of the self-testing routine (line 8) and set-
ting of the timer (line 6), it cannot be detected. Moreover, if a fault occurs just
after executing a self-test successfully (line 8), it may result in a corrupt data
to be written to the channel while executing line 9. However, it can be argued
that the time window (thus the probability) for such cases is very small as the
majority of the time will be spent in executing the process function f and the
self-testing routine.

107 5.2 CRR: Fine-grained checkpointing and rollback based fault recovery

5.2.2 Fault-aware remapping support

The actors involved in the fault recovery procedure are the following: (i) pro-
cessing element of the source tile (i.e., the tile that experiences the fault); (ii)
self-testing module in the source tile; (iii) task migration hardware module in the
source tile; (iv) run-time manager which runs on one of the fault-free tiles; (v)
predecessor and successor tile(s): the tile(s) which has a producer or a consumer
task of any of the tasks on the source tile; (vi) new tile(s): the tiles that will run
at least one of the tasks on the source tile after fault recovery; (vii) other tile(s):
the fault free tile(s) that are neither the source tile, a new tile, a predecessor or
a successor tile.

After executing the self-testing routine, if a fault is detected in the source tile,
the STM issues a fault detection signal to the TMH. The TMH isolates the faulty
processor. The TMH reports the fault to the RM by sending a fault detection
message. The RM calculates the new mapping of the tasks using the remapping
heuristics (see chapter 4). The RM informs the predecessor/successor tile(s) and
the other tiles about the new mapping of the tasks to update their middleware
tables. The predecessor/successor tiles send a flush message to the faulty node
to make sure that there are no tokens or requests still travelling to the faulty tile.
Upon the reception of flush messages from predecessor/successor tiles, the TMH
responds with a flush message to make sure that there are no tokens or requests
still travelling to predecessors or successors. Then the TMH sends to the RM the
state of the tasks, which consists of (i) the iterators of the loops in the case of PPN
tasks, (ii) the information of the FIFO channels (pending requests and number
of tokens in the FIFO channels), (iii) the tokens in the input and output FIFO
channels. After the RM receives the tasks’ state from the TMH, the RM sends
these data to the new tile(s) according to the new mapping decision. Then the
RM sends to the new tiles a task activation message along with the new mapping
information allowing updating of their middleware tables and the activation of
migrated tasks. This finalizes the fault recovery procedure.

Decentralization of the Run-time Manager

Centralized techniques represent a single point of failure and thus they should be
avoided in fault tolerance mechanisms. The RM is the main actor coordinating
the recovery process. Therefore it is important that the RM is not centralized. As
a solution to this problem, the RM is run as a dormant thread on each processing
element. Any tile can act as the RM when it receives an interrupting fault detec-
tion message. The closest fault-free tile is chosen as the RM of a tile. The TMH

108 5.2 CRR: Fine-grained checkpointing and rollback based fault recovery

of a faulty tile sends the fault detection message to the RM instance assigned
to its tile. Given the single fault assumption (see section 3.3.1), when a fault
occurs, every fault-free tile is informed about the faulty tile and updates its local
information about the fault status of other tiles. If the faulty tile is the currently
assigned RM tile of any tile, such tiles re-select their RM.

5.2.3 Task migration hardware module

As shown in figure 5.1(a), the base NoC tile architecture, composed of the pro-
cessing element (PE), local memories, and Network Adapter (NA), is extended
with two hardware modules supporting the implemented fault tolerance tech-
nique: the Self-Testing Module (STM) and the Task Migration Hardware module
(TMH).

As explained in section 3.3.2, the STM (shown in grey in figure 5.1(a)) sup-
ports the execution of testing routines in the processing element of each NoC tile.
At the end of the execution of the software routine, the STM checks whether
the signature of the outputs of the routine (calculated by using a CRC algo-
rithm) matches the one previously stored in one of its registers, activating the
fault_detected signal connected to the TMH in the case of a negative answer.

The task migration hardware (TMH) module is mainly responsible for ex-
tracting the critical data from the faulty tile. As shown in figure 5.1(a), the TMH
resides alongside the Network Adapter of each tile. It receives as input a fault
detection signal from the STM. Upon the detection of the fault, the TMH carries
out the following actions:

1. the TMH isolates the faulty processing core,

2. the TMH notifies the run-time manager (RM) running on the fault-free core
with the nearest bigger index,

3. the TMH receives the flush messages from all predecessor and successor
tiles,

4. the TMH sends the state of all tasks and channels (pending requests and
FIFO tokens) to the RM,

In step 3, TMH waits for all flush messages, thus guaranteeing that the tokens
(from the predecessor tiles) and the requests (from the successor tiles), which
may be in transit on the NoC at the time of fault detection, are received at the
faulty node before TMH sends the migration data to the RM.

109 5.2 CRR: Fine-grained checkpointing and rollback based fault recovery

Port A

Data Memory

Port B

message−passing
handler

DMA

Port A

interrupt

s
e

n
d

()/re
c
v
()

p
a

ra
m

e
te

rs

Port B

Processing Element

Network
Adapter (NA)

tag
Tag Decoder

Local Bus

Self Testing Module

fault detected

Fault tolerance support

Initiator/Target NI

FLIT−out FLIT−in

stall

Task Migration Hardware

Tile 2

Tile 4Tile 3

NoC

Tile 1

Instruction Memory

R

RR

R

send() paramaters

flush_from_tile*

(a) Fault tolerant tile

Register

 file

dma_done

rst

clk

rstclk

rstclk

from_pu_data

from_pu_addr

fault_detected

rstclk

data

addr

r/w

en

from_pu_select

from_pu_r/w

sel

Mux

Mux
sel

flush_from_tile1

flush_from_tile2

flush_from_tile3

flush_from_tile4
Controller

from_REGFile_data

from_TMHCtrl_data

sel_TMHCtrl_REGFile

from_TMH_addr

from_TMH_r/w

from_TMH_en

sel_PE_TMH
dest

size

tag

4

addr

data

to_pu_data

to_pu_accept

to_dma_size

to_dma_tag

to_dma_dest

to_pu_stall

dma_send_recv

to_dma_enable

to_dma_addr

to_dma_data

registers_enable

send registers

(b) Task migration hardware module

Figure 5.1. Interfaces and internal block diagrams

The TMH module carrying out this functionality has been designed and inte-
grated into the platform. The main figure of merit adopted when designing this
module has been circuit complexity, so as to guarantee that failure rate will be
much lower than that of the processing core.

The interface and the internal block diagram of the TMH are shown in fig-
ure 5.1(b). The interface consists of ports allowing (i) to receive the fault detec-
tion signal from the self-testing module (fault_detected), (ii) to isolate the pro-
cessor (to_pu_stall), (iii) to be read/written by the processing element from/to
the register file inside the TMH (from/to_pu_*), (iv) to send data via the NoC

110 5.3 RFR: Roll-forward fault recovery

(to_dma_*), (v) to receive the flush messages from predecessor and successor
tiles. It consists of a control unit implementing the finite state machine, a register
file, a multiplexer and send registers. The register file contains memory-mapped
registers which store (i) a pointer to the fault detection control message stored
statically in the main memory, (ii) the tile ID that acts as the RM for the tile, (iii)
the size of the control message, (iv) the special tag value used to send data car-
rying interrupt messages over the NoC, (v) the tasks mapped on the tile, (vi) the
pointer to the array storing task states, (vii) the size of the task state, (viii) the
special tag value used to send task states to the RM, (ix) the channels mapped
on the tile, (x) the special tag value used to send channel data to the RM, (xi)
a reduced middleware table containing for each channel the pointer to the soft-
ware FIFO, the number of tokens in the channel, the size of the token type and
a pending request flag.

When an application is launched, the PE initializes the TMH registers. During
normal execution (when the PE is not faulty), whenever there is a read or a
write, the number of tokens is updated in the TMH register for the corresponding
channel. The read and write operations of the TMH each take only a clock cycle
in order to reduce the overhead of the update operation. After fault detection,
TMH carries out a number of send operations by using the programmable DMA to
notify the RM, and sending states of mapped tasks and data of mapped channels.

5.3 RFR: Roll-forward fault recovery

In streaming applications that conform to the application model described in
section 3.2.1, the stream is composed of a sequence of stream units with in-
creasing indices. The main idea behind the technique proposed in this section
is to perform a roll-forward to the next stream unit upon the detection of the
fault in the processor. At the time of fault detection, the stream unit will be pro-
cessed partially and an incomplete output will be produced. When, eventually,
the recovery is completed and the following stream unit is processed, the output
will start being error-free as expected. Therefore, the proposed mechanism is
applicable only if, for a limited time, such incomplete or incorrect output is al-
lowed. However, this is typically the case of multimedia streaming applications,
in which the loss of few stream units does not significantly influence user experi-
ence, or of non-critical sensing applications, in which processing of a sample can
be omitted. The RFR technique guarantees recovery with limited error propaga-
tion against all kinds of corruptions described in section 3.3.1. Fault tolerance
consists of fault detection and recovery phases. The fault-tolerance mechanism

111 5.3 RFR: Roll-forward fault recovery

Register

 filefrom_tmh_addr

from_tmh_r/w

from_tmh_en

rstclk

addr

dest

size

tag

to_dma_addr

to_dma_size

to_dma_tag

to_pu_data

rstclk

to_dma_dest

from_pu_data

from_pu_addr

en

sel

Mux

rst

clk

dma_done

fault_detected

rstclk

addr

r/w

en

to_dma_enable

to_pu_accept

4

from_pu_select

from_pu_r/w

Controller

dma_send_recv

to_pu_stall

send registers

Figure 5.2. Block diagram of the task migration hardware

relies on online periodical software-based self-testing and a self-testing module
for detecting faults [Gizopoulos, April-June 2009]: incorrect results would prop-
agate to the user until the next invocation of the self-testing routine that detects
the fault and initiates the recovery. The proposed recovery technique, which is
the main focus of this section, involves the implementation of a fault-aware dis-
tributed run-time environment, some modifications to the PPN process template
and addition of a task migration hardware module into the tile architecture of
the NoC.

5.3.1 Task migration hardware module

The fault tolerant tile architecture for the RFR scheme is similar to the one of CRR
shown in figure 5.1(a) with slight differences in the STM and major differences
in the TMH modules.

Differently from the STM described in section 3.3.2, in the RFR case, the
timer works in a periodical fashion. The period, which is equal to the self-testing
period, is written once at boot time into the slv_timer_limit register. It is started
only once via the slv_timer_start register. Then the timer counts down. At the
time it reaches zero, a check is done by monitoring the start_stop input of the
timer whether there has been a self-testing routine execution during the count
down. If so, the timer is reset again to the slv_timer_limit value and starts count-
ing down again. Otherwise, a crash error is assumed and fault_detected signal is

112 5.3 RFR: Roll-forward fault recovery

raised.
The TMH is responsible for isolating the processor (in order to avoid further

error propagation) and for notifying, as explained in detail in section 5.3.2, the
run-time manager (RM), in charge of managing the task remapping procedure.
The structure and the function of TMH in the case of RFR are much simpler than
the case of CRR because it is only responsible for isolating the processor when
the fault is detected, then reporting the fault to the run-time manager through
an interrupting message. Figure 5.2 shows the internal structure of TMH which
is similar to that of CRR but the size of the register file is smaller. The TMH uses
four internal registers (address, destination, size and tag) which corresponds to
the parameters of the send() message passing primitive of the platform . There
are no flush_from_tile* signals since there are no flush messages to receive. In
addition, there is a send data register, which stores the memory address of the
fault detection message to be sent, as the fault detection message is not required
to be stored inside the TMH.

Smaller area of the STM and TMH modules as well as their less frequent use
with respect to the processor decreases the likelihood of their failure before the
processor. Nevertheless, the STM and TMH modules should be hardened against
faults in order to avoid single points of failure.

5.3.2 Fault-aware remapping support

The actors involved in the fault recovery procedure are the following: (i) the pro-
cessing element (PE) of the source tile (i.e., the tile that experiences the fault); (ii)
the self-testing module (STM) in the source tile; (iii) the task migration hardware
(TMH) module in the source tile; (iv) the run-time manager (RM), which runs
on one of the fault-free tiles; (v) the tile of the source task: the tile which runs the
tasks that feeds the stream to the rest of the application; (vi) the predecessor and
successor tile(s): the tile(s) which has a producer or a consumer task of any of
the tasks on the source tile; (vii) new tile(s): the tiles that will run at least one of
the tasks on the source tile after fault recovery; (viii) other tile(s): the fault free
tile(s) that are neither the source tile, a new tile, a predecessor or a successor
tile.

When the RM receives the fault detection message from the TMH, the tasks on
the fault-free PEs would be either executing their processing functions or being
blocked on a read or a write. Some tokens of the tasks could be waiting to be
sent on the software FIFOs or to be received in the NI buffer, or even travelling
in the NoC. Similarly, pending requests, which are sent from consuming tasks to
the producer tasks, might have been already received or might be still travelling

113 5.3 RFR: Roll-forward fault recovery

along the NoC. Given such possibilities, at fault detection the RM takes a number
of steps to flush the current state from all the tiles and makes the tasks ready to
continue executing the next stream unit.

Firstly, it sends a FLUSH_TASK interrupting message to the tile hosting the
source task. Upon receiving this interrupt, the interrupt handler of the source
tile sets a flag (isTaskToBeFlushed) requesting the flushing of the source task. The
process bodies and PPN communication primitives are modified as explained in
section 5.3.3 to respond to such requests. In the special case of the source task,
the source seeks the stream forward to the next stream unit and responds back to
the RM with the index of the next stream unit (next_stream_unit_index). The RM
continues sending the FLUSH_TASK(next_stream_unit_index) interrupting mes-
sages to all other tiles that run at least one task (except the faulty tile). This in-
terrupt message sets the isTaskToBeFlushed flag for all the tasks on the tile. It also
marks the iterator values to be updated (isStreamUnitIndexToBeUpdated) when
the tasks are resumed after the recovery is finished. The purpose of flushing all
tasks is to delete the state of the current stream unit by removing the tokens in
all input and output FIFO channels and by resetting pending requests. However,
serving the flush request is not straightforward due to tokens or requests still
travelling on the NoC. Therefore, a channel flush mechanism is employed in or-
der to guarantee that all the state (tokens and requests) are received by the tiles
and the NoC buffers are emptied of such information.

The channel flush mechanism is based on the idea that the NoC transmits
the packets in order. Therefore, if a special CHANNEL_FLUSH token is sent by a
source tile and is received by a destination tile, it is guaranteed that any data that
have been sent by the source tile before the special token would have been al-
ready received in the NI buffer of the destination tile. Given a PPN task graph, the
channel flush mechanism should guarantee that at least one CHANNEL_FLUSH
token is sent from the source tiles to the destination tiles for every channel of the
PPN task graph (except those channels in/from/to the faulty PE and those that
are inside the same tile, i.e., source and destinations tile are the same).

Algorithm 9 shows the channel flush mechanism carried out by each PPN
process as a part of serving the flush request for the task (serveFlushRequest()).
In lines 3–5, firstly, each task sends a CHANNEL_FLUSH token to each destination
tile of its output channels, given that the destination tile is not the faulty tile and
that the destination tile is not the same tile that runs the task. In lines 6–13,
each task receives a CHANNEL_FLUSH token from each source tile of its input
channels, given that the source tile is not the faulty tile and that the source tile
is different than the tile of the task. In order to let other tasks on the same tile
execute their functions during the channel flush process, the task relinquishes

114 5.3 RFR: Roll-forward fault recovery

Algorithm 9 The channel flush mechanism inside serveFlushRequest() of task t
1: CHI (t) : input channels of task t
2: CHO(t) : output channels of task t
3: for all ch ∈ CHO(t) and cons(ch) is not faulty and prod(ch) 6= cons(ch) do
4: send(token, 1, cons(ch), CHANNEL_FLUSH_TAG);
5: end for
6: while all CHANNEL_FLUSH messages are not received do
7: for all ch ∈ CHI (t) and prod(ch) is not faulty and prod(ch) 6= cons(ch) and !isFlushed(ch)

do
8: if nonblocking_recv(token, 1, prod(ch), CHANNEL_FLUSH_TAG) then
9: isFlushed(ch) = true;

10: end if
11: end for
12: yield();
13: end while
14: return

the processor by calling yield() while polling on the CHANNEL_FLUSH tokens.

In the case of requests, the flushing procedure is a bit different due to the
fact that the requests are sent in the reverse direction of a channel (i.e., from the
consuming task to the producing task). The channel flush mechanism should
also make sure that a CHANNEL_FLUSH token is sent in the reverse direction
of every channel. This can be achieved by slightly modifying the algorithm in
algorithm 9 by replacing prod with cons and vice versa.

After the completion of the channel flush mechanism, the task flushing oper-
ation for each task continues by transferring the tokens in the NI buffer to the
FIFO channels and by clearing all the tokens in the FIFO channels as well as the
requests in the NI buffer. As a result, the resources used by the current stream
unit are recovered and no residual state remains which would likely cause neg-
ative impacts in the future operations. Finally, each task communicates to the
RM that its task flushing operation has been completed and waits for a resume
message from the RM before continuing execution.

Then, the RM calculates the new mapping of the tasks on the faulty PE using
a remapping heuristic presented in section 4.3 Each tile has to store an up-to-
date copy of the middleware table which is used to look up the tile of a task.
Therefore, the RM updates the middleware table of all tiles except the faulty
tiles. Then, it activates the tasks on their new processors. Finally, it sends all
other tasks the resume messages to let them continue their execution.

The decentralization of the RM as explained in 5.2.2 is also valid for RFR.

115 5.4 Experimental results for CRR

Figure 5.3. The modified read(token, channelID) primitive

1: if fifo[channelID] is empty then
2: sendRequest(channelID);
3: end if
4: while fifo[channelID] is empty do
5: if serveFlushRequest() then
6: return
7: end if
8: process_NI_msgs();
9: end while

10: fifoGet(token, channelID);
11: return

5.3.3 Modifications to the PPN processes

As a part of the fault recovery support, the process bodies and the PPN communi-
cation primitives have to be modified. Algorithm 10 shows how the basic process
body template shown in algorithm 7 is modified.

In the case that a process is activated on the new tile, the checking of migra-
tion flag (line 1) will allow the process to start execution from the correct stream
unit index.

In the case that a process is not on the faulty tile, it receives a FLUSH_TASK
request. This request is eventually checked in the modified read() primitive (in
figure 5.3 line 5) or in the modified write() primitive (in figure 5.4 line 2). The
serveFlushRequest() function carries out the channel flush mechanism by clear-
ing the FIFO channels and requests as explained in section 5.3.2. It also sets
isStreamUnitIndexToBeUpdated and yields in a loop until the resume message is
received. If a flush request is served inside serveFlushRequest(), it returns true.
Therefore, the blocking read (in algorithm 10 line 10) or blocking write (in algo-
rithm 10 line 15) calls return immediately after the flushing of the task, thanks
to the modifications in figure 5.3 line 6 and figure 5.4 line 3. The check on is-
StreamUnitIndexToBeUpdated in algorithm 10 line 11 and 16 allows the process
to break execution of the current stream unit and reach line 5 where it starts the
execution of a new stream unit with the updated stream unit index.

5.4 Experimental results for CRR

In this section, we describe a set of experiments that we performed in order to
evaluate the implemented CRR scheme. The application case studies are de-

116 5.4 Experimental results for CRR

Algorithm 10 The modified PPN process template
1: if migration then
2: i0 = newStreamUnitIndex;
3: end if
4: for (i=i0 ; i <M; i++) do
5: if isStreamUnitIndexToBeUpdated then
6: i0 = newStreamUnitIndex;
7: isStreamUnitIndexToBeUpdated = false;
8: end if
9: for (j=0 ; j <N; j++) do

10: read(in, CH1);
11: if isStreamUnitIndexToBeUpdated then
12: break;
13: end if
14: out = f(in);
15: write(out, CH2);
16: if isStreamUnitIndexToBeUpdated then
17: break;
18: end if
19: end for
20: end for
21: return

Figure 5.4. The modified write(token, channelID) primitive

1: while fifo[channelID] is full do
2: if serveFlushRequest() then
3: return
4: end if
5: process_NI_msgs();
6: end while
7: fifoPut(token, fifo[channelID]);
8: process_NI_msgs();
9: return

scribed in section 4.5.3. We map these applications onto a 2×2 mesh of general-
purpose processors, as detailed in section 3.1, implemented on a Virtex-6 FPGA
board. We present a remapping process, exploiting the fault recovery mechanism
described in section 5.2.

5.4.1 Fault recovery time overhead

To assess the performance of the fault recovery mechanism, we evaluated it with
a single fault scenario (initial mapping shown in figure 5.5(a) and the fault on

117 5.4 Experimental results for CRR

Tile1

DCT

Tile2

Q

Tile3

SRC

Tile4

V LE

(a) Initial mapping

Tile1 (faulty PE) Tile2

DCT

Q

Tile3

SRC

Tile4

V LE

(b) First fault

Tile1 (faulty PE) Tile2 (faulty PE)

Tile3

SRC

Tile4

DCT

Q

V LE

(c) Second fault

Figure 5.5. A fault scenario example

Figure 5.6. Execution times of fault recovery actions

t ile1 as shown in figure 5.5(b).
Figure 5.6 shows the finishing time of each phase of the fault recovery mech-

anism averaged over several experiments. Time 0 corresponds to the fault detec-
tion time, i.e., activation of the TMH. The average fault recovery time is 38, 115
clock cycles. 46% of this time is taken by the phase in which the state of tasks
and channels from the TMH is received by the RM. In this particular scenario,
the RM is also the new tile where DCT is being remapped to. Therefore, the
phase of transfering the state to the new tile does not take as much time. It is
worth noting that several actions of the recovery process happen in parallel, thus
reducing the recovery time. For example, the data transfer from the TMH to the
RM overlaps with the execution of the heuristics by the RM.

The experiment shows that the execution time of the fault recovery procedure
is comparable with the duration of the software-based migration that can be used
in fault-free systems. In both cases the overhead is negligible when compared
with the execution time of the whole application. The increase is mostly due to

118 5.4 Experimental results for CRR

Figure 5.7. Performance overhead with respect to the duration of the self-testing
routine

some additional synchronization actions that had to be introduced in the fault
recovery mechanism, to handle possible corner cases in the management of the
software FIFOs. The results also reveal that the execution time of the remapping
heuristic constitutes a relatively small portion of the fault recovery time.

5.4.2 Steady-state performance overhead

There is a performance penalty that is paid in order to support fault tolerance,
even in the absence of faulty processors. This is mainly due to the modifications
that are done in the process bodies, in particular, the execution of the self-test
at each iteration of each process. Therefore the duration of the self-testing rou-
tine influences the overhead of the technique during normal operation. Since
we have not implemented real self-testing routines for the Microblaze processor,
we report analytical results of this overhead with respect to various execution
times of the self-testing routine ranging from 10k to 100k cycles. The mapping
used in the calculations is the one of figure 4.11(a). As shown in figure 5.7, the
overhead is linear with respect to the self-test duration and changes from 7.7%
to 71%. Naturally designing a self-testing routine involves a trade-off between
its execution time and fault coverage ratio. Selecting 40k cycles as a typical du-
ration for the self-test (taken from [Gizopoulos, April-June 2009] for a processor
of supposedly similar complexity), we see that the overhead would be 29%. This
overhead is due to additional workload inflicted upon the critical node that de-
termines the throughput of the whole application.

119 5.4 Experimental results for CRR

Figure 5.8. Area occupation overhead in comparison to the baseline network
adapter due to the support for system adaptivity and fault-tolerance

5.4.3 Architectural support hardware overhead

Obviously, the circuitry implementing the support for adaptivity and fault-tolerance
at architectural level incurs an overhead in terms of area, power consumption
and critical path length. To evaluate the overhead, we consider the basic ×pipes
mesh as a baseline architecture. As mentioned earlier, with respect to the base-
line, the Network Adapter has been enriched with the DMA message-passing
handler (MPH). It provides all the message passing capabilities that are needed
to implement the inter-processor communication, the triggering of the migration
process and the migration process itself. Moreover, this module allows the possi-
bility of intra-processor multitasking. Controlling the local memory, to store the
incoming messages when a receive() has not been performed, the MPH allows, at
the producer side, scheduling a different task when waiting for requested tokens,
without stalling on a blocking receive primitive. Thus, the MPH can be consid-
ered as a first level of architectural support for adaptivity. The second level is
represented by the insertion of the STM and the TMH, that have to take care of
detecting faults and sending the migration data of the processes in the case of
faulty processing elements. In figures 5.8 and 5.9, an estimation of the overhead
due to the introduction of these modules is shown in terms of area occupation
and maximum working frequency, respectively. The implementation results are
obtained by means of the Xilinx tools during the prototyping phase.

It can be noticed that the overhead is not negligible. In terms of timing, the
baseline architecture can be more than 25% faster than the NA featuring full sup-
port for fault-tolerance, especially due to the introduction of the the MPH. During

120 5.4 Experimental results for CRR

Figure 5.9. Critical path length overhead related with support for system adap-
tivity and fault-tolerance

the design of the MPH architecture we tried to reduce as much as possible the la-
tency related with message passing operations. This required the introduction of
combinational logics which resulted in the mentioned frequency drop. A retiming
of the control circuitry inside the MPH could be used to improve the achievable
working frequency, at the price of an increment of the communication latency
for each packet. The overhead in terms of used logic is also significant. Such
overhead is mitigated when we consider the area of the entire tile, as shown in
figure 5.10. In this case the area overhead in a tile with full support for adap-
tivity and fault-tolerance is almost 60% with respect to a tile instantiating the
baseline NA. This overhead would be even smaller if we include also the area of
the memory modules in the calculation of the baseline tile area, not accounted
for in the presented plot.

Moreover, it is useful to point out that both the MPH and the TMH can be
customized at design time, according to the communication graph of the target
application, instantiating only the circuitry needed to control the required num-
ber of channels and tasks. As an example, we show how the TMH is customized
for the H.264 and the M-JPEG applications. In the first design case, the TMH
has to support 4 tasks and 4 channels, requiring 35 registers to be instantiated.
In the second, the circuitry must control 5 tasks and 8 channels, requiring 51
registers. In order to see the change in the area, we have synthesized the TMH
using Xilinx ISE for different number of channels (i.e., 4, 8, 16, 32). Figure 5.11
reports occupied slices (representative of total area), slice registers (representa-
tive of memory) and slice LUTs (representative of combinational logic). The area
of TMH increases almost linearly with increasing number of channels mainly due

121 5.5 Experimental results for RFR

Figure 5.10. Area occupation overhead in comparison to the baseline tile archi-
tecture due to the support for system adaptivity and fault-tolerance

Figure 5.11. TMH area for varying number of supported channels

to the increasing size of the register file. This could hinder the adoption of the
rollback based recovery scheme for applications with high number of channels.

5.5 Experimental results for RFR

We tested the proposed RFR technique in the case of an M-JPEG encoder and an
H.264 decoder application mapped on the 2× 2 NoC platform with Microblaze
as processing elements. The roll-forward position for M-JPEG is the beginning
of the next frame, whereas, in H.264, it is the beginning of the next I-frame.

122 5.5 Experimental results for RFR

Table 5.1. M-JPEG fault scenarios

scenario initial mapping (DCT, Q) 1st fault 2nd fault

1 (tile1, tile2) tile1 tile2
2 (tile2, tile1) tile1 tile2
3 (tile1, tile2) tile2 tile1
4 (tile2, tile1) tile2 tile1
5 (tile2, tile2) tile2 tile1
6 (tile1, tile1) tile1 tile2

Table 5.2. H-264 fault scenarios

scenario initial mapping (IDCT, IntraPred, Deblock) 1st fault

1 (tile2, tile4, tile4) tile2
2 (tile2, tile4, tile4) tile4

5.5.1 Fault recovery time overhead

We report the results of different fault scenarios. A fault scenario is identified by
the initial mapping and the order of fault injections on the different tiles. Our
implementation is general in the sense that it does not restrict the initial map-
ping and fault scenarios. However, since the source and sink tasks are generally
mapped to tiles that are connected to special I/O interfaces, their remapping is
not feasible. Therefore, such tiles are excluded from fault scenarios. They should
be hardened with lower level techniques. M-JPEG has four tasks. We consider
the scenario in which the source task (SRC) is mapped to t ile3 and the sink task
(VLE) to t ile4. Fault scenarios are obtained by considering all possible map-
pings of the DCT and Q tasks as well as all possible fault sequences on t ile1 and
t ile2 as shown in table 5.1. The first fault scenario for M-JPEG is depicted in fig-
ure 5.5. Faults are injected under the assumption that the second fault is injected
after recovery from the previous fault is completed. H.264 has five tasks. The
source task (GetData+Parser+Cavlc) is mapped to t ile1. The sink task (PrintMB)
is mapped to t ile3. Due to the memory limitations of the platform, only single
fault scenarios on t ile2 and t ile4 are evaluated with the initial mapping of IDCT
to t ile2; IntraPred and Deblock to t ile4 as shown in table 5.2.

Fault injections are simulated by activating the fault detection signal con-
nected to the TMH directly with the PE. Figures 5.12 and 5.13 show the finishing
times of each recovery action averaged over 10 different fault injection times for
the same fault scenario for M-JPEG and H.264, respectively. Time 0 represents

123 5.5 Experimental results for RFR

Figure 5.12. The time of fault recovery actions for M-JPEG

the instant in which the TMH is activated (i.e., fault detection instant). It can
be seen that the flushing of tasks takes the majority of the time in the case of re-
covery from the first fault and its duration may vary greatly for each experiment
with different fault injection times or different fault scenarios. This is mainly due
to the fact that the task may be executing its processing function before it gets to
serve the flush request. In the worst case, the flush request may arrive just after
a read() call, leading to a delay as long as the duration of the processing function
until the flush request is served in the next write() call. In the M-JPEG case, one
iteration of the heaviest task, i.e. DCT, takes around 132k cycles.

If the fault injection is done at the hardware level, the time between the occur-
rence of the fault and its detection would have to be added to the fault recovery
time. Since faults are detected via self-testing, the worst case fault detection
time would be equal to the period of the self-testing (in case the fault occurs
immediately after a successful self-testing). The shortest self-testing period for
the M-JPEG case would be equal to the processing time of one frame. In the case
that M-JPEG tasks are mapped one-to-one on the 2×2 platform, the execution
time of one frame is around 10× 106 clock cycles. The observed fault recovery
times in figure 5.12 would constitute only a small fraction of the total recovery
time. That is to say, the fault recovery time is fundamentally determined by the
self-testing period. Same observation applies to H.264 as well.

124 5.5 Experimental results for RFR

Figure 5.13. The time of fault recovery actions for H.264

5.5.2 Steady-state performance overhead

The self-testing routine can be executed at any desired frequency. Obviously, this
frequency would affect the overhead of the technique during normal operation.
Assuming a self-testing execution time of 40k cycles as a typical duration for the
self-testing routine (taken from [Gizopoulos, April-June 2009] for a processor
of supposedly similar complexity to Microblaze), the overhead with respect to
varying self-testing period (quantified by the number of frames processed within
the period) is shown in figure 5.14(a). It can be seen that the overhead due to
the self-testing routine diminishes completely when the period is greater than
7 frames. The converged overhead value of 1.07% for M-JPEG and 1.51% for
H.264 is due to the modifications done in the PPN processes to enable fault re-
covery.

Similarly, one can assess the overhead with respect to the duration of the self-
testing routine. Given that a self-testing action is executed for every frame, the
overhead by varying the self-testing duration is shown in figure 5.14(b). Increas-
ing the execution time of the self-testing routine by an order of magnitude (from
10k to 100k cycles) increases the overhead only slightly, from 1.1% to 1.9%.
This is a much lower overhead compared to the CRR-based technique presented
in section 5.2 for which it changes from 7.7% to 71% for the same range of self-
testing durations due to the fact that they do the self-testing for every iteration
of a task body. Considering the self-testing duration as 40k cycles, we see that
the performance overhead would be 1.37% for M-JPEG and 1.81% for H.264.

125 5.5 Experimental results for RFR

(a) (b)

Figure 5.14. Performance overhead with respect to the period of the self-testing
routine (a) and the duration of the self-testing routine (b)

Table 5.3. Area synthesis results of the TMH and STM modules as well as the
base tile architecture

Occupied Slice Slice
Slices Registers LUTs

Base tile 2632 6579 8985
Base tile + TMH 2717 6749 9051
Base tile + STM + TMH 2843 6912 9336

5.5.3 Architectural support hardware overhead

The area synthesis results of the TMH module obtained with the Xilinx ISE tool
are reported in table 5.3. The area overhead due to the STM and TMH modules is
only 8.0% as opposed to 20.7% in the CRR-based technique for M-JPEG described
in section 5.2. The STM and TMH modules are clearly scalable as their size
depends on neither the number of tiles of the platform nor the number of tasks
and channels of the application unlike the CRR-based scheme.

We could not experiment with larger NoC dimensions due to the size of the
FPGA at hand. However, we expect the recovery time to be scalable due to the
fact that main actors involved in the recovery such as the RM, the new nodes
and, if application tasks are mapped optimally, the successor/predecessor tiles
are likely to be located close to the faulty node.

In order to employ the proposed recovery technique in hard real-time sys-
tems, one can determine the worst case recovery time given a NoC that supports
bandwidth reservation. We consider this outside the scope of this work.

126 5.6 Summary

5.6 Summary

In this chapter, we have proposed two fault recovery mechanisms that both re-
quire modifications at the application, run-time and hardware levels. The envi-
sioned fault-aware run-time environment has been realized for PPN applications
running on NORMA-based NoC multiprocessor platforms. The techniques have
been evaluated with the M-JPEG encoder and H.264 decoder case studies.

The CRR mechanism is prone to having a significant steady-state performance
overhead due to the execution of the self-testing routine at each iteration of a
task body. Morever, it requires a more complex TMH module that incurs a large
overhead in area, which increases linearly with the number of channels in the
application running on the platform.

On the other hand, the RFR mechanism has a much lower steady-state perfor-
mance overhead due to the fact that self-testing is done less frequently with any
desired period. The period has an impact on the amount of error propagation.
Moreover it requires a much simpler TMH module that incurs a small overhead.
Most importantly, the area of the TMH in RFR mechanism is independent of the
application size.

For the considered multimedia use cases, both techniques had short recovery
times which allow the system to react to faults without a substantial impact on
the user experience.

Chapter 6

Application-level Self-adaptation for
Quality Management

Quality management is an activity aiming to make a system deliver the expected
quality when performing its actions. In our context, since we are dealing with
throughput-oriented systems, the quality refers to the throughput of the system.
This chapter focuses on realizing quality management via self-adaptation of some
application level parameters and addresses some of the challenges described in
section 1.1.1, namely, adaptation management, adaptation overhead and sepa-
ration of concerns. The results presented in this chapter have been published
partially in [Derin et al., 2012; Derin, Ramankutty, Meloni and Tuveri, 2013;
Derin and Ferrante, 2009].

The remaining part of the chapter is organized as follows. Section 6.1 dis-
cusses the contributions of this dissertation with respect to the state-of-the-art.
Sections 6.2 and 6.3 introduce the two proposed approaches for a self-adaptive
framework with implementation details of monitoring, controlling and adaptive
tasks. Section 6.4 gives details on how a self-adaptive M-JPEG encoder case study
is built using the two frameworks. Sections 6.5 and 6.6 give the results of the
case study with a comparison of the two approaches in terms of the steady-state
performance overhead and quality of the control.

6.1 Contributions with respect to the state of the art

As highlighted by [Nollet et al., 2010], run-time management techniques can be
devised for various aspects such as quality of service, power, temperature, vari-
ability and load balancing. With our work in this chapter, we aim at addressing
quality management via application adaptation. In fact, this work is comple-

127

128 6.1 Contributions with respect to the state of the art

mentary to the fault tolerance support described in the previous chapters and
it can be integrated orthogonally into a fault-aware run-time environment. The
quality management support may be beneficial to satisfy application goals if the
performance degrades beyond an acceptable quality level after a remapping due
to a fault. Beside such a benefit, our work is motivated by some shortcomings of
the previous work on application-level adaptability and quality management in
multimedia systems overviewed in section 2.9.

Dynamic models of computation are intented mainly for applications requir-
ing dynamicity rather than self-adaptation. Therefore MoCs such as P3N [Zhai
et al., 2011] and PSDF [Neuendorffer and Lee, 2004] lack the monitor and con-
troller to make them self-adaptable; however, they can be easily extended as they
provide built-in support for consistent reconfiguration of application parameters.
We rely on concepts similar to quiescent points and reconfiguration ports as used
in P3N and PSDF for parameter reconfiguration.

Previous QoS control approaches for multimedia applications focus on the
control aspect of the problem. In fact, in our work, we also adopt fuzzy control
similar to [Grant et al., 1997; Rezaei et al., 2006]. On the down side, control-
centric approaches such as [Bridges et al., 2009; Grant et al., 1997; Rezaei et al.,
2006] address the adaptation problem in an ad-hoc and application specific man-
ner. As in the case of [Bridges et al., 2009], creating a barrier for synchronizing
all system components requires application knowledge to decide the barrier’s lo-
cation and may incur unnecessary blocking of portions of the system leading to
a loss of performance during parameter reconfiguration.

In comparison to [Cornbaz et al., 2005, 2007; Jaber et al., 2008], our work
differs in two aspects: firstly, we target applications running on MPSoCs in a
distributed manner, whereas these techniques consider single threaded applica-
tions; secondly, our controller is generic and requires minimal knowledge of ap-
plication characteristics as compared to these methods, which require exhaustive
profiling of each task of the application for all quality levels.

Adaptability in NoC platforms has been demonstrated by [David et al., 2011]
for hardware level parameters such as voltage and frequency on the Intel SCC
chip and by [Clermidy et al., 2011] for reconfiguring the mode of the 3GPP-LTE
application on the Magali chip. [Clermidy et al., 2011] presents an ad-hoc so-
lution only for the reconfiguration problem without incorporating an adaptation
control that satisfies a particular goal. Our work presents a framework by which
a complete self-adaptive application is realized in a NoC platform.

One of the self-adaptation schemes proposed in this chapter, namely MCA-
EI, requires the inter-processor interrupt (IPI) support from the platform. Some
emerging NoC-based multi-core architectures provide such support. For exam-

129 6.1 Contributions with respect to the state of the art

ple, Tilera’s Tile64 can deliver interrupts to notify user-space processes of mes-
sage arrival [Wentzlaff et al., 2007]. This allows it to support both polling and
interrupt-based message delivery. Intel’s SCC also provides a hardware message
passing mechanism that triggers an interrupt on the receiving core, before re-
turning from a write() call [Howard et al., 2011]. To the best of our knowledge
there is no work that evaluates the impact of the use of interrupts on the overhead
related to the self-adaptation of the system.

The self-adaptation mechanism proposed in this work relies on monitoring,
controlling and adaptation capabilities. For the monitoring and adaptation sup-
port, despite the fact that some general mechanisms such as monitoring and
adaptive functions are used, the methods are based on some advantages that
come with the PPN computation model. In this work, we deal specifically with
throughput monitoring and parametric adaptations. The PPN model facilitates
implementation of such monitoring and adaptation capabilities. For the former,
since PPN is composed of computational blocks and their explicit communication
with tokens over channels, monitoring the throughput (e.g., the rate at which
tokens are produced as well as the bit-rate on a channel) can be achieved in an
application independent manner. For the latter, the reconfiguration of the appli-
cation to work with a new value of an application parameter requires that the
relevant parts of the application are updated consistently. Consistency implies
that a token is processed by tasks throughout the application pipeline with the
right parameter value. PPN helps achieving that in two ways. First, it allows
identifying the execution point at which the parameter value can be changed.
Secondly, it allows synchronizing the updating of tasks via blocking channels.
These properties of the PPN model address the separation of concerns challenge
by relieving the programmer of such duties.

On the other hand, the fuzzy control approach is not specific to PPN and can
be used for controlling any self-adaptive system. Unlike the widely practiced pe-
riodic monitoring and control in conventional systems, this approach involves
monitoring in an event-based manner (e.g., at the end of processing of a data
unit). Such an approach is suited better for networked systems as it is less sen-
sitive to possible delays in the network and incurs less overhead on the amount
of data transferred on the network.

Our contributions in this field are

• a self-adaptation framework based on a monitor-controller-adaptor loop
that interacts with the application via blocking channels,

• a self-adaptation framework based on a monitor-controller-adaptor loop

130 6.2 MCA-EB: Self-adaptation with blocking channels

that interacts with the application via interrupting messages, which re-
quires a platform that supports inter-processor interrupts,

• investigation of fuzzy control as a generic adaptation management mech-
anism for self-adaptive systems,

• evaluation of the proposed approaches with a case study and their compar-
ison in terms of steady-state performance overhead and quality of control.

6.2 MCA-EB: Self-adaptation with blocking channels

This section presents our framework to build self-adaptive component based
applications by incorporating a distributed monitor-controller-adapter (MCA)
mechanism in the PPN application pipeline (as proposed in [Derin and Ferrante,
2009]). The application is augmented by special tasks that monitor, control,
adapt, and while doing so, communicate events with the blocking channel se-
mantics also used by application tasks. Therefore, we name this scheme as
event-based MCA using blocking channels (MCA-EB). Monitoring involves mea-
surements of various parameters to check whether the system meets the assigned
goals. The controller is capable of driving adaptations when goals are not met,
whereas adapters are in charge of performing adaptations. In case of PPN ap-
plications running on MPSoCs, various tasks of the application will be mapped
onto different tiles of the platform. Hence it is quite possible that the parame-
ter to be monitored is present in one tile, whereas the task to be adapted may
exist on a different tile. This forces the monitor, controller and adapters to be
implemented on different tiles in a distributed manner. For example in the case
of a video encoder application, bit-rate monitoring should be performed on the
tile where the sink task is present whereas the frame-size adapter logic has to
be present on the tile where the source task is located. Our framework repre-
sents a self-adaptive application in terms of the following entities: adaptive tasks
implementing adapter functions, monitoring tasks calling monitoring functions,
adaptation controller(s) and adaptation propagation channels that augment the
original task graph. Figure 6.1(b) depicts a simple PPN application and its self-
adaptive version based on our framework.

6.2.1 Adaptive task

In order to implement application specific adaptations, each task should expose
its adaptation space (set of adaptable parameters) to the external world. Adap-

131 6.2 MCA-EB: Self-adaptation with blocking channels

(a) PPN application (b) MCA-EB (c) MCA-EI

(d) Legend

Figure 6.1. Self-adaptation approaches for PPN applications on NoC.

tive tasks will have control channels and multiple optional adaptation propagation
channels in addition to nominal input/output data channels. Control channels
carry the control commands from the controller to adaptive tasks whereas adap-
tation propagation channels carry new parameter values from adaptive tasks to
other tasks which require these updated values. For example in case of an adap-
tive source task (which supports frame-size adaptation) in a video encoding ap-
plication, the control channel will carry the frame-size control command from
the controller, whereas the adaptation propagation channels will carry the new
frame-size to any other relevant tasks. The frequency at which these channels
will be read/written by the task depends on the application as well as the granu-
larity required for the control. In order to perform the adaptation, the task should
read the control command from the control channel and call the adapter func-
tions, with control command as the argument. It should also send the modified
values of the adapted parameter to other tasks which need these updated param-
eters. Figure 6.2 shows the modifications required (shown in blue) to transform
a PPN task into an adaptive PPN task.

Adapter functions

Adapter functions perform the actions needed to perform the adaptations. The
implementation of adapter functions are parameter dependent. An adapter func-

132 6.2 MCA-EB: Self-adaptation with blocking channels

Figure 6.2. An adaptive task

tion takes care of adapting a parameter by accepting a control command as its
argument. The control command can take one of the following values: a) −2:
modify the adaptable parameter so as to aggressively reduce the monitored pa-
rameter b) −1: modify the adaptable parameter so as to mildly reduce the moni-
tored parameter c) 0: maintain same value for the parameter d) +1: modify the
adaptable parameter so as to mildly increase the monitored parameter e) +2:
modify the adaptable parameter so as to aggressively increase the monitored
parameter. The adapter functions need to be implemented by the application
programmer with appropriate interpretation of the mild/aggressive changes to
the parameter.

6.2.2 Monitoring task

Monitoring refers to the measurement of a parameter in the system that is of
interest. The accuracy and timing of these measurements are critical, since it
impacts the overall quality of adaptation. A normal PPN task is converted to a
monitoring task by calling monitoring functions provided by the framework. Fig-
ure 6.3 shows a simple monitoring task obtained by modifying a typical PPN task
by adding calls to the monitoring functions (shown in blue). Our framework sup-
ports two types of throughput monitoring: bit-rate and token-rate. The granular-
ity of monitoring is application dependent and it is the application programmers
responsibility to insert calls to the monitoring functions at an appropriate place
in the code. Furthermore, the framework assumes support from the platform
to measure the current time. Monitoring task should also send the monitored

133 6.2 MCA-EB: Self-adaptation with blocking channels

Figure 6.3. A monitoring task

parameter values to the adaptation controller using monitor channels.

Monitoring functions

Following are the monitoring functions provided:
alignSlidingWindow: We propose sliding-window monitoring, which is trig-

gered by a call to the alignSlidingWindow function. Sliding window method is
deployed to find the average of the most recent few instantaneous values of a
monitored parameter. It is realized using two circular arrays of size equal to
monitor-width, which is configurable in the implementation. These arrays are
used to hold the values of the two arguments of this function, namely, the data
counter and the timestamp. When alignSlidingWindow is called (with the newly
captured data counter value and its timestamp as arguments), the windows are
adjusted such that the arrays contain the most recently monitored values.

calculateTokenRate: This function calculates the number of monitoring ac-
tions performed per unit time by the monitoring task. It is calculated using the
number of entries in the sliding window and the difference in timestamps be-
tween the latest and oldest entries. It can be used to measure the throughput in
terms of the token (or stream unit) rate produced or consumed by the monitoring
task.

calculateBitRate: This function calculates the throughput of the generated or

134 6.2 MCA-EB: Self-adaptation with blocking channels

consumed data in terms of its bit-rate. It is calculated by dividing the sum of all
entries in the monitoring window by the difference in timestamps between the
latest and oldest entries.

The sliding window enables computing the moving average of the monitored
values. It smooths out short-lived fluctuations and emphasizes long-term trends.
The size of the sliding window can be specified by the application programmer
using the monitor-width parameter. This parameter decides on the sensitivity of
the control mechanism (i.e., how fast the variations in the monitored variables
are perceived). If the monitor-width is too large the sensitivity will be low, that is,
the effect of a particular adaptation strategy will be reflected in the average value
only after many values got generated under that strategy. On the other hand, a
very small monitor window helps in detecting changes in the parameter very fast.
However, this may cause large ripples in the output since any adaptation strategy
needs some settling time before its effects are visible. Hence it is important to
choose a monitor-width value that leads to a good quality of adaptation. This
can be done by means of a DSE phase as will be done in section 6.5.

6.2.3 Controller

The most important entity of any adaptation scheme is the controller, because
it takes decisions to steer the monitored parameters towards their target values.
The correctness and speed of the decisions taken by the controller influence the
effectiveness of the adaptation mechanism. Hence controller is the most critical
entity in the design of self-adaptive systems. In order to free the application
developer from self-adaptivity concerns, our framework provides a generic fuzzy
logic [Zadeh, 1965] based adaptation controller that can be associated with a
goal given an adaptable parameter that has an effect upon that goal.

Fuzzy logic is a form of multi-valued logic that deals with reasoning in an
approximate way rather than precise. It is derived from the fuzzy set theory
which is based on the understanding that, every fact is present or not up to a
certain degree. Fuzzy control represents a formal methodology for presentation,
manipulation and implementation of human heuristic knowledge about how cer-
tain processes should be controlled by using a simple, rule-based "if X and Y then
Z" approach rather than attempting to model a system mathematically. For ex-
ample, instead of dealing with temperature control in precise terms, fuzzy con-
troller uses linguistic terms such as "if (process is too cool) and (process is getting
colder) then (heat the process)" or "if (process is too hot) and (process is heating)
then (cool the process quickly)". These terms are imprecise yet very descriptive of
what must actually happen. We chose to use fuzzy logic control since the math-

135 6.2 MCA-EB: Self-adaptation with blocking channels

Figure 6.4. A simple fuzzy control based system

ematical models of most application processes are unknown and would be very
difficult to build, yet it can easily be described linguistically such as - if process
is very hot and the temperature is increasing it is clear that the process has to be
cooled quickly.

Figure 6.4 depicts a simple fuzzy logic-controlled system. Here some pa-
rameter of interest within the system is monitored. The error signal (ε) is the
difference between the reference value (r) of the parameter and its monitored
value. The fuzzy control logic takes this error signal and its rate of change as
inputs and generates the control signal (u) as the output, which will be fed to
the adapter logic.

In the case of multiple goals for which the adapted parameters do not have
overlapping and conflicting effects on the monitored variables, we can associate
a separate fuzzy controller for each specified goal of the system. This also allows
controller tasks to be placed in tiles which are at optimum distances from the
corresponding adaptive and monitoring tasks, hence reducing the latency and
the amount of network traffic introduced by control data. The frequency at which
the controller should be run is application dependent. For example in case of a
frame-rate control in a video encoder, the algorithm can be run once for every N
video frames where N can be chosen by a DSE phase as will be done in section 6.5.

Our design of the fuzzy controller is based on the following parameters.
Error (ε): The difference between the monitored value of a parameter and

its target value.
Delta Error (∆ε): The difference between current error and previous error.
Control Settling Width: The duration for which the controller should wait

for a control decision to take its effect on the monitored parameter before taking
the next decision. In other words, settling width represents the duration between
two consecutive control decisions. For example, in the case of frame-rate control,
the settling width can be represented in terms of the number of frames between
two consecutive control decisions.

Error Threshold Low and Error Threshold High: Threshold values divide the
error axis into distinct intervals (i.e., error ranges). The decision taken by the
controller depends on which interval in the error axis the current error value

136 6.2 MCA-EB: Self-adaptation with blocking channels

Table 6.1. Error ranges for the fuzzy controller

Error Range Range Name

(Error Threshold High) < ε positive huge
(Error Threshold Low) < ε ≤ (Error Threshold High) positive large

0 ≤ ε ≤ (Error Threshold Low) positive small
-(Error Threshold Low) ≤ ε < 0 negative small

-(Error Threshold High) ≤ ε < -(Error Threshold Low) negative large
ε < -(Error Threshold High) negative huge

Table 6.2. Delta-error ranges for the fuzzy controller

Delta-error Range Range Name

(Delta Error Threshold) < ∆ε positive large
0 ≤ ∆ε ≤ (Delta Error Threshold) positive small
-(Delta Error Threshold) ≤ ∆ε < 0 negative small
∆ε < -(Delta Error Threshold) negative large

belongs to.
Delta Error Threshold: Similar to the error thresholds, delta-error threshold

divides the delta-error axis into sub-intervals (i.e., delta-error ranges). The in-
terval in which delta-error falls also influences the decision of the controller.

Error and delta-error values are assigned a range name depending on which
interval the value of error/delta-error falls. Tables 6.1 and 6.2 give all the pos-
sible ranges and the corresponding range names for errors and delta-errors, re-
spectively.

Our controller implements five discrete levels of control as detailed in ta-
ble 6.3. For example, to reduce the monitored parameter aggressively, controller
generates −2 as the control command. Similarly a +1 at the controller output
seeks for mild increase in the parameter. The interpretation of these discrete
outputs are parameter dependent and has to be done by the adapter functions.

The decision making algorithm of the controller is summarized as follows:

• If error range is positive huge then control command is−2 (i.e. if the current
value of the parameter is very much greater than the target value then seek
to decrease it aggressively).

• If error range is positive large and delta-error range is negative large then
control command is 0 (i.e. if the current value of the parameter is greater
than the target value and the error is decreasing at a very fast pace then

137 6.2 MCA-EB: Self-adaptation with blocking channels

Table 6.3. Control levels and their meanings

Control levels Meaning

−2 Aggressively reduce the monitored parameter
−1 Mildly reduce the monitored parameter
0 Maintain same value for the monitored parameter
+1 Mildly increase the monitored parameter
+2 Aggressively increase the monitored parameter

seek to maintain previous situation. This means that the decision taken at
the previous step was correct, so do not change anything).

• If error range is positive large and delta-error range is not negative large
then control command is −1 (i.e. if the current value of the parameter
is greater than the target value and the error is not decreasing at a very
fast pace then reduce the parameter mildly. This means that the decision
taken at the previous step was not effective enough and further reduction
of parameter value is needed).

• If error range is positive small and delta-error range is positive large then
control command is −1 (i.e. if the current value of the parameter is slightly
greater than the target value and the error is increasing at a very fast pace
then reduce the parameter mildly. This means that even though the error
is within the tolerance band it is deviating in the positive direction very
fast. So try reducing the parameter value mildly).

• If error range is positive small and delta-error range is not positive large then
control command is 0 (i.e. if the current value of the parameter is slightly
greater than the target value and the error is not increasing at a very fast
pace then seek to maintain previous situation. This means that the error
is smoothly maintaining its value within the tolerance limits, so no action
needed).

• If error range is negative small and delta-error range is negative large then
control command is +1 (i.e. if the current value of the parameter is slightly
lesser than the target value and the error is decreasing at an abrupt pace
then increase the parameter mildly. This means that even-though error is
within the tolerance band it is deviating in the negative direction very fast.
So try increasing the parameter value mildly).

138 6.3 MCA-EI: Self-adaptation using inter-processor interrupts

• If error range is negative small and delta-error range is not negative large
then control command is 0 (i.e. if the current value of the parameter is
slightly lesser than the target value and the error is not decreasing fast then
nothing needs to be changed. This means that error is smoothly maintain-
ing its value within the tolerance limits, so no action needed).

• If error range is negative large and delta-error range is positive large then
control command is 0 (i.e. if the current value of the parameter is much
smaller than the target value and the error is increasing at a very fast pace
then seek to maintain previous situation. This means that the decision
taken at the previous step was correct, so no action required).

• If error range is negative large and delta-error range is not positive large
then control command is +1 (i.e. if the current value of the parameter is
much smaller than the target value and the error is not increasing at a very
fast pace then seek to increase the parameter mildly. This means that the
decision taken at the previous step was not sufficient and further increase
of parameter is needed).

• If error range is negative huge then control command is +2 (i.e. if the
current value of the parameter is very much smaller than the target value
then seek to increase it aggressively).

Table 6.4 captures the behavior of the algorithm for all possible situations.
The operation of the controller can be summarized as below. For every new

received value of the monitored parameter, the controller decides whether to take
a new control decision depending on the settling-width. If this received value has
to be ignored for a parameter then the corresponding adaptive task will be asked
to maintain its previous situation (by sending 0 as the control command). On
the other hand, if the received value has to be considered for a parameter then
following actions are performed. Error and delta-error for that parameter are
calculated first. Then control algorithm will be run using these values to decide
the control command. The generated command will be communicated to the
respective adaptive task through the control channel.

6.3 MCA-EI: Self-adaptation using inter-processor in-
terrupts

In this section, we present another approach, event-based MCA using inter-processor
interrupts (MCA-EI), for implementing self-adaptive PPN applications on NoC-

139 6.3 MCA-EI: Self-adaptation using inter-processor interrupts

Table 6.4. Adaptation control algorithm

Delta-error
positive large positive small negative small negative large

Error

positive huge -2 -2 -2 -2
positive large -1 -1 -1 0
positive small -1 0 0 0
negative small 0 0 0 1
negative large 0 1 1 1
negative huge 2 2 2 2

based MPSoCs. Similar to MCA-EB, MCA-EI introduces an MCA feedback loop
into the application pipeline. The monitor (equivalent to sensors) measures var-
ious parameters to check whether the application meets its goals. The controller
takes decisions so as to steer the system towards the goal, whereas adapters
(similar to actuators) are in charge of actually performing adaptations. Since
processes are generally mapped to different resources on MPSoCs, it is quite
possible that the parameter to be monitored is present on one tile, whereas the
task to be adapted may exist on a different tile. This forces the monitor, con-
troller and adapters to be implemented on different tiles in a distributed man-
ner. Both MCA-EB and MCA-EI incorporate a generic fuzzy logic based adap-
tation controller and implement similar monitoring and adaptation techniques.
Similarly both use event-based control; which means the adaptation control is
triggered upon the occurrence of specific events in the system. However they dif-
fer based on how the MCA mechanism interacts with the application. MCA-EB
uses blocking-channels to this end, whereas MCA-EI is based on inter-processor
interrupts.

Similar to MCA-EB scheme, MCA-EI also represents a self-adaptive applica-
tion in terms of the following entities: monitoring tasks calling monitoring func-
tions, adaptive tasks implementing adapter functions, adaptation controller(s)
and adaptation propagation channels alongside the original task graph. A sim-
ple self-adaptive application pipeline built using MCA-EI framework is shown in
figure 6.1(c). The design and usage of monitoring functions, adapter functions
and fuzzy adaptation control algorithm are the same for both MCA-EI and MCA-
EB. Hence only the main differences of MCA-EI in comparison with the MCA-EB
are presented here.

Figure 6.5 depicts the pseudo-code representing a monitoring task in MCA-EI
scheme. The modification performed on a normal PPN task to convert it to a
monitoring task (by adding calls to monitoring functions) is colored in blue. In
this example the task is equipped with throughput (in terms of bit-rate) monitor-

140 6.3 MCA-EI: Self-adaptation using inter-processor interrupts

Figure 6.5. A monitoring task in MCA-EI scheme.

ing capabilities. The difference to be noted compared to MCA-EB is that, instead
of sending the monitored parameter value over blocking channel it is sent as an
interrupting message to the NoC tile where the controller is run.

As compared to MCA-EB (where the controller is a separate task), the con-
trol algorithm is run as part of the interrupt handler in MCA-EI. As shown in the
pseudo-code of the controller given in figure 6.6, the interrupt handler handles
two kinds of interrupts; a) monitor interrupts (MI) - from monitoring task’s tile
to adaptation controller’s tile, b) control interrupts (CI) - from adaptation con-
troller’s tile to adaptive task’s tile. Upon receiving an MI, the interrupt handler
runs the fuzzy control algorithm with the received monitored parameter value as
the argument to generate the control command. Subsequently it interrupts the
adaptive task’s tile (using CI) to send the control command. On the other hand,
CI is handled as follows; first the received control command will be cached so
that it can be processed by the adaptive task later, then a flag is set to inform the
adaptive task that a control interrupt had occurred.

An adaptive task in MCA-EI is shown in figure 6.7. It checks for any previous
interrupts from the controller tile at a fixed location in the task body. In case of
any previous interrupts the adaptive function will be invoked (with the cached
value of control command) to perform the required actions. Further it also sends
the modified values of the adapted parameter to other tasks (using APC) which
need these updated parameters. In PPN model, processes can receive external
input only via blocking FIFO channels. Checking the pending controller inter-

141 6.3 MCA-EI: Self-adaptation using inter-processor interrupts

Figure 6.6. Adaptation interrupt handler in MCA-EI scheme.

rupt flag is a non-blocking operation, thus it does not affect the liveness of the
application.

The functioning of MCA-EI can be summarized as follows. When the event
which triggers the adaptation control is generated, the monitoring task performs
monitoring and interrupts the adaptation-controller’s tile. The controller tile re-
ceives this interrupt and runs the control algorithm as part of the interrupt han-
dler. Subsequently, the controller interrupts the tile of the adaptive task to send
the control command. The interrupt handler of the adaptive task tile caches the
interrupts received, to be processed by the adaptive task later. When the adap-
tive task reaches the predefined point of execution, it checks the presence of a
cached interrupt and performs the required adaptations if present.

The MCA-EI approach increases the application throughput by using an in-
terrupt mechanism instead of blocking FIFO channels in the MCA feedback loop.
MCA-EI scheme has the advantage of not stalling the application pipeline since
the adaptive tasks never wait for blocking control commands from the controller.
This helps the system to attain higher throughput as compared to the MCA-EB
scheme.

In our work, the correctness of the reconfiguration relies on the PPN pro-
cesses reaching an execution point at which their state does not relate to any
computation done using the parameter to be updated. An adaptation command
via a control channel or an adaptation propagation channel can only be served at
such points. For a general KPN application, the identification of the adaptation
execution points and adaptation propagation channels is to be done manually
by the application programmer. It should be done carefully to guarantee a cor-

142 6.4 Case study: Motion JPEG

Figure 6.7. An adaptive task in MCA-EI scheme.

rect parameter reconfiguration. Otherwise, the functional correctness may be
compromised and also deadlocks may be introduced. In the specific case of PPN
[Verdoolaege, 2010], the state of processes reduce to the iterator values at the top
of the for-loops of each process. Therefore such locations, as shown in figure 6.7,
are ideal points for adapting PPN processes.

6.4 Case study: Motion JPEG

This section presents Motion JPEG (M-JPEG) [Lieverse et al., 2001], a popular
video compression standard, as a case study to demonstrate our framework. This
algorithm is selected because its processes are coarse-grained with high computa-
tion/communication ratio, a characteristic of an application suited for NoC based
MPSoCs. A typical M-JPEG encoder pipeline is shown in figure 6.8(a), where all
the components can be modeled as PPN tasks.

Video Source (SRC): This component captures the input video frame-by-frame
and feeds it to the succeeding components in the pipeline one block (8×8 pixels)
at a time.

Discrete cosine transform (DCT): This component performs discrete cosine
transform on each video block received from the SRC component and sends
it to the Quantizer for further processing. DCT is widely used for multimedia
compression algorithms such as MP3, JPEG and MPEG, where high frequency
components of small amplitude can be discarded without compromising quality.

Quantization (Q): Quantization refers to reducing the amplitude of a signal

143 6.4 Case study: Motion JPEG

SRC DCT Q VLEVLESRC Q
Data Data Data

Frame-size

(a) M-JPEG Encoder Pipeline

SRC DCT Q VLEVLE

BRC

FRC

SRC Q
Data Data Data

Frame-size

Bit-rate

Frame-rate

Frame-size

Frame-size

QMatrix

(b) MCA-EB

SRC DCT Q VLEVLE

BRC

FRC

SRC Q
Data Data Data

Frame-size

Bit-rate

Frame-rate

Frame-size

Frame-size

QMatrix

(c) MCA-EI

Figure 6.8. Self-adaptive M-JPEG encoders in MCA-EB and MCA-EI (refer to the
legend of figure 6.1(d))

to achieve compression. In M-JPEG, an 8×8 matrix of coefficients (QMatrix) is
used for this purpose and the resultant data is rounded off to the nearest integer.
The Quantizer also performs a 2D to 1D conversion of the quantized blocks by
doing a zig-zag scan.

Variable Length Encoding (VLE): VLE is the last stage of M-JPEG pipeline,
where entropy (Huffman) encoding is done on the received video blocks. VLE
also acts as the sink component, generating the final M-JPEG stream by inserting
headers/markers to indicate the start/end of each frame.

6.4.1 Self-adaptive M-JPEG with MCA-EB

In this section, we present the implementation of the self-adaptive M-JPEG en-
coder on our NoC-based platform using our MCA framework. This implementa-
tion supports autonomous control of bit-rate (BR) and frame-rate (FR) to match
the target values set by the user. Bit-rate adaptation is achieved by controlling
the quality of encoding (by scaling the QMatrix accordingly), whereas frame-size
scaling is used to control the frame-rate. The modifications done on the M-JPEG
pipeline to make it self-adaptive are shown in figure 6.8(b) and are as follows:

144 6.4 Case study: Motion JPEG

Table 6.5. Settling widths and error thresholds for controllers (Fraction parame-
ters shown in italic).

Controller parameter Value

Settling width (FR) Settling width factor (FR) × monitor-width
Error threshold low (FR) Error threshold low factor (FR) × target FR

Error threshold high (FR) Error threshold high factor (FR) × target FR
Delta error threshold (FR) Delta error threshold factor (FR) × target FR

Settling width (BR) Settling width factor (BR) × monitor-width
Error threshold low (BR) Error threshold low factor (BR) × target BR

Error threshold high (BR) Error threshold high factor (BR) × target BR
Delta error threshold (BR) Delta error threshold factor (BR) × target BR

Monitoring VLE

The VLE task is equipped with monitoring capabilities (for bit-rate and frame-
rate) by adding calls to the monitoring functions. Monitoring is done at the
frame-level, hence these function calls are made after the task has accumulated
all the blocks corresponding to one frame. Timestamp of a frame is measured by
reading the hardware timer register of the NoC platform. Every time a new frame
is generated, alignMonitorWindow() function is called with the frame-size and
timestamp arguments. Average values of the bit-rate and frame-rate are obtained
by calling calculateBitRate() and calculateTokenRate() functions, respectively.

Controllers

We decided to implement two independent controllers, one for frame-rate (FRC)
and the other for bit-rate (BRC). The design principles are as detailed in the
previous section. In our implementation the settling-widths are specified as a
fraction of the monitor-width whereas the threshold values of error and delta-
error signals are taken as a percentage of the target parameter values. These
fraction parameters are exposed so that they can be fine tuned. Calculation of
settling-widths and threshold values used in our implementation are shown in
table 6.5. For every newly generated frame, the controllers receive the monitored
values of bit-rate and frame-rate. Depending on the settling-width, they decide
whether to take a new control decision. If a new control decision is needed, the
fuzzy control algorithm is run using the error and delta-error values for the input.
The generated control-command for bit-rate is sent to the adaptive Quantizer
task, whereas the frame-rate control-command is sent to the adaptive Source
task.

145 6.4 Case study: Motion JPEG

Adaptive Quantizer

The quantization of the data has a direct impact on the generated bit-rate of
the encoder. The output bit-rate can be adapted to the required level by scaling
the QMatrix. For example, when the quantization coefficients are small, the
output of the quantizer has more nonzero values and hence the VLE component
will produce more bits per frame. On the other hand, when the input data is
quantized using large quantization coefficients, fewer bits will be generated per
frame. Figure 6.9(a) shows the output bit-rates for various scaling factors of
QMatrix in case of a slow, 128×128 pixel video.

To make the quantizer adaptive, adaptBitrate() function is implemented, which
takes the control command from the bit-rate controller as input. The imple-
mented bit-rate adapter logic supports two levels of scaling for the QMatrix -
aggressive and mild. The algorithm maintains three parameters (configurable
by the user) namely - QuantScaleCoeff, AggrQScaleFactor and MildQScaleFactor
to perform the adaptations.

QuantScaleCoeff (Quantization scaling coefficient): The coefficient by which
all QMatrix coefficients will be multiplied to produce its scaled version.
AggrQScaleFactor (Aggressive Quantization scaling factor): The constant by which
previous value of QuantScaleCoeff will be multiplied/divided to obtain its cur-
rent value in case of aggressive scaling.
MildQScaleFactor (Mild Quantization scaling factor): The constant by which the
previous value of QuantScaleCoeff will be multiplied/divided to obtain its cur-
rent value in case of mild scaling.

The bit-rate adapter works as follows. Before reading the data for a new
frame, the quantizer task reads the bit-rate control command from the controller
and calls adaptBitrate() function with this value. If the decision by the controller
is to aggressively decrease the bit-rate, the current value of the QuantScaleCoeff
will be multiplied by AggrQScaleFactor to obtain its new value. On the other
hand, if the adapter is asked to mildly increase the bit-rate, previous value of
QuantScaleCoeff will be divided by MildQScaleFactor to get its new value. The
value of QuantScaleCoeff will be left unchanged to keep the bit-rate at the cur-
rent level. Once the new value for the QuantScaleCoeff is decided, the scaled
version of the QMatrix is calculated by multiplying all its elements by this new
QuantScaleCoeff. For all the blocks of the frame, this scaled version of the QMa-
trix will be used. The quantizer task also sends the newly generated QMatrix to
the VLE through a dedicated adaptation propagation channel so that it can be
inserted in the frame header of the generated frame.

146 6.4 Case study: Motion JPEG

(a) Bit-rate vs. QMatrix scaling (b) Frame-rate vs. frame-size scaling

Figure 6.9. Impact of adaptation parameters on goal metrics

Adaptive Source

The output frame-rate is decided by how fast the encoder can complete the pro-
cessing of one frame. Since the processing time for a frame is proportional to
the amount of data contained in it, frame-rate can be controlled by scaling the
dimensions of the input video. Even though this will produce smaller images at
the output, target frame-rate can be easily achieved by using this method. Fig-
ure 6.9(b) shows the impact of the frame-size parameter on the output frame-
rate.

The source task is made adaptive by providing the adaptFramerate() func-
tion, which takes care of scaling the input frame size. The implementation of
frame-size scaling logic is based on the following configurable parameters:
CurFrameNumVBlocks: The number of vertical blocks in the current frame.
CurFrameNumHBlocks: The number of horizontal blocks in the current frame.
AggrFsScaleFactor (Aggressive frame-size scaling factor): The constant by which
current value of frame-size (number of vertical and horizontal blocks) will be
multiplied/divided to obtain its new value in case of aggressive scaling.
MildFsScaleFactor (Mild frame-size scaling factor): The constant by which cur-
rent value of frame-size (number of vertical and horizontal blocks) will be mul-
tiplied/divided to obtain its new value in case of mild scaling.

The algorithm works as follows. Similar to the bit-rate adaptation, the Source
task reads the frame-rate control command from the controller and passes this
value to the adaptFrameSize() function. If the decision by the controller is to ag-
gressively decrease the frame-rate, the previous values of the curFrameNumVBlocks
and curFrameNumHBlocks will be multiplied by AggrFsScaleFactor to obtain their
new values. Similarly, if the adapter is asked to mildly increase the frame-rate,

147 6.5 Results for MCA-EB

these parameters will be will be divided by MildFsScaleFactor to calculate their
new values. To keep frame-rate at the current level the number of blocks in the
frame will be left unchanged. The frame-rate adapter also sends the new value
of the frame-size to DCT, Q and VLE tasks using separate adaptation propagation
channels so that they know exactly how many blocks to be processed for the next
frame.

Adaptation propagation channels

Some additional channels need to be added to the pipeline to communicate the
changes done by the adaptive tasks to other tasks. A channel to send the scaled
version of the QMatrix from Quantizer to VLE is added. This is necessary because
the QMatrix used for a particular frame needs to be inserted in its header so
that the decoder can use the correct value while decoding the frame. Channels
to propagate new frame-size values are also added between Source - DCT and
Source - Q tasks. Quantizer and DCT should know the frame-size to calculate the
number of blocks to be processed for each frame. To send the frame-size values
from Source to VLE, we use the existing channel in the original task graph.

6.4.2 Self-adaptive M-JPEG with MCA-EI

We have also implemented the self-adaptive M-JPEG encoders on our 2×2 NoC-
based FPGA platform using the MCA-EI approach as shown in figure 6.8(c). Our
implementations support autonomous control of bit-rate (BR) and frame-rate
(FR) at run-time. Bit-rate adaptation is achieved by controlling the quality of
encoding (by scaling the QMatrix accordingly), whereas frame-size scaling is
used to control the frame-rate. The implementation of the sliding-window based
monitor, fuzzy-logic controller and the bit-rate/frame-rate adapters are same as
those in MCA-EB.

6.5 Results for MCA-EB

In this section, we present the results of running our self-adaptive M-JPEG en-
coder with MCA-EB on the reference platform described in chapter 3. In the ex-
periments presented in this section, we map all M-JPEG tasks as well as the adap-
tation controllers on the same core (i.e., SRC, DCT, Q, VLE, FRC, BRC→ t ile1).

As the criteria to evaluate our approach, we use steady-state adaptation over-
head and control quality. Adaptation overhead is measured as the reduction in

148 6.5 Results for MCA-EB

Table 6.6. Two step DSE for adaptation control. Selected controller configuration
is shown in the last column.

Parameter Values After step1 After step2

Monitor width 6, 12, 20 - 12
Settling width factor (FR) 0.1, 0.2 0.2 0.2
Error threshold factor low (FR) 0.1, 0.2 0.2 0.2
Error threshold factor high (FR) 0.2, 0.3 0.3 0.3
Delta-error threshold factor (FR) 0.05 0.05 0.05
Mild frame-size scaling factor 1.1, 1.2 1.1 1.1
Aggressive frame-size scaling factor 1.25, 1.4 1.25 1.25
Settling width factor (BR) 0.1, 0.2 - 0.2
Error threshold low factor (BR) 0.05, 0.1 - 0.05
Error threshold high factor (BR) 0.15, 0.2 - 0.2
Delta-error threshold factor (BR) 0.03 - 0.03
Mild Q scaling factor 1.1, 1.2 - 1.1
Aggressive Q scaling factor 1.4, 1.6 - 1.4

frame-rate and bit-rate, whereas control quality is quantified using rise-time/fall-
time (RT/FT) and mean-absolute-error (MAE). To calculate these two metrics for
a monitored parameter, the encoder is run for a fixed number of frames of a test
video with an initial value of the parameter. Then a target value is set and the
system is allowed to adapt. The time taken for the parameter to reach within a
tolerance band (±5%) about its target value is the rise/fall time. The absolute
error value for the parameter is calculated for all measurements starting from
where it reached the tolerance band till the last frame. The mean of these abso-
lute error values gives the MAE value.

As evident from the design of MCA framework, the quality of the adaptation
control is influenced by various parameters used inside the monitors, controllers
and adapters. In order to achieve smooth and fast adaptation, a careful selection
of these parameters is needed. To find such a combination, a DSE is performed.
Detailed results of the DSE are reported in [Derin et al., 2012]. In summary,
a design space composed of 3072 different controllers has been explored in a
greedy manner by evaluating 128 of them in two phases as shown in table 6.6.
95% of the design points have less than 5% bit-rate error, whereas the rise-time
of 90% of them are below 8 frames. Similarly, for frame-rate control, 80% of
the design points have less than 12% frame-rate error, whereas the rise-time of
84% of them are below 9 frames. This shows the generality of the proposed
controller, because even for non-optimal parameter configurations, the system is

149 6.5 Results for MCA-EB

(a) Average frame-rate and frame size variations(b) Average bit-rate and QM scaling factor vari-
ations

Figure 6.10. Results for initial FR = 8 fps, initial BR = 200000 bps and final
FR = 16 fps, final BR = 300000 bps

able to adapt fast while keeping the error within tolerable limits. The selected
Pareto point (shown in the last column of table 6.6) obtained from the DSE is
used to configure the controller for the experiments in the following sections.

6.5.1 Bit-rate and frame-rate adaptation tests

To demonstrate the effectiveness of our adaptation scheme we conducted various
experiments by setting different goals for bit-rate and frame-rate. All these tests
are carried out using a 128×128 video (for 200 frames). Figure 6.10 shows the
results when the encoder is run with initial BR = 200000 bps, initial FR = 8
fps, final BR = 300000 bps and final FR = 16 fps. The adaptation in terms of
quantization scaling coefficient and frame-size is also shown. It can be seen that
the scaling coefficient is reduced from its initial value of 1 to a value of 0.5 to
meet the initial bit-rate. But after frame 60, its value is further reduced to 0.35
to increase the bit-rate to its final value. Similarly, the frame-size is reduced
from its initial value of 16000 pixels to 9000 pixels in order to achieve the initial

150 6.5 Results for MCA-EB

frame-rate of 8 fps. But after frame 60, it is further reduced to about 4000 pixels
to increase the frame-rate to 16 fps. The rise time and mean absolute errors for
this scenario are: rise time (BR) = 6 frames, mean absolute error (BR) = 7684
bits (2.56%), rise time (FR)= 9 frames, mean absolute error (FR)= 0.33 frames
(2.06%).

6.5.2 Fast video vs. slow video

Figure 6.11 shows the results of evaluating the framework using slow (i.e., static
content) and fast video (i.e., dynamic content) inputs. Figure 6.11(a) charac-
terizes the two videos in terms of the number of bytes generated by the encoder
per frame (for 128×128 video), when there is no bit-rate and frame-rate control.
From figures 6.11(b) and 6.11(c), it can be seen that for both videos the targets
are achieved. Table 6.7 shows the quality metrics in the case of fast and slow
input videos.

Table 6.7. Comparison of adaptation quality for fast and slow videos

FR-RT (frames) FR-MAE (frames) BR-RT (frames) BR-MAE (bits)

Slow video 9 0.36 (2.25%) 6 7790 (2.59%)
Fast video 9 0.24 (1.5%) 5 10440 (3.48%)

The results reveal that for slow video the bit-rate control converges fast whereas
for fast video a lot of ripples are observed at the output, resulting in a higher
mean absolute error. In case of frame-rate control, the dynamicity of the input
does not have much impact and the frame-size converges to the same value in
both cases without ripples.

6.5.3 Cost of adaptation

To measure the steady-state overhead due to the introduction of the MCA feed-
back loop in the application pipeline, the following procedure is used. First, the
encoder is run with neither the feedback loop nor the adaptation propagation
channels to obtain the average value of frame-rate in absence of the MCA-related
changes. The experiment is repeated after introducing the MCA loop and the ad-
ditional channels to obtain the reduced frame-rate. In this case both bit-rate and
frame-rate control is turned off inside the controller, since only the overhead due
to the framework needs to be measured. Figure 6.12 depicts the outcome of
this test for a 128×128 test video. It is observed that the introduction of the

151 6.5 Results for MCA-EB

(a) Number of bytes generated per frame for
slow and fast video

(b) Frame-rate control (c) Bit-rate control

Figure 6.11. Results for bit-rate and frame-rate control of slow and fast videos

framework results in a frame-rate reduction of only 4% and a bit-rate reduction
of 3.5%. The reduction in the bit-rate and frame-rate is due to the increase in
the inter-arrival time between frames.

The overhead in terms of the additional control data introduced by our MCA
mechanism is minimal. For every video frame it sends a total of 72 additional
tokens over the network. This includes one token from monitoring task to bit-rate
controller, one token from monitoring task to frame-rate controller, one token
from bit-rate controller to Quantizer task, one token from frame-rate controller
to Source task, 64 tokens from Quantizer to VLE (to send the QMatrix), two
tokens from Source to DCT (to send the height and width of the frame) and two
tokens from Source to Quantizer (to send the height and width of the frame).
This is equivalent to 288 bytes of data - since a token is represented as integer
type by the middleware. For a single 128×128 frame the total video data to be
sent over the NoC is 49152 bytes. This includes the pixel data sent from Source

152 6.6 Comparison of MCA-EB and MCA-EI

Figure 6.12. Cost of adaptation in terms of reduction in FR (left) and BR (right)

Table 6.8. Comparison of steady-state overheads.

FR-Overhead (%) BR-Overhead (%)
MCA-EI 0.37 0.37
MCA-EB 6.78 6.78

to DCT, DCT to Quantizer and Quantizer to VLE. So the framework introduces
approximately 0.5% of additional control data.

6.6 Comparison of MCA-EB and MCA-EI

In this section, the MCA-EI approach is compared against MCA-EB by using the
same adaptation scenario. However, differently than the previous section, we
map M-JPEG tasks one-to-one on the processing elements as follows: SRC →
t ile3, DCT→ t ile1, Q→ t ile2, VLE→ t ile4. The controllers are mapped together
with the heaviest task in order to obtain the worst-case overhead results (i.e.,
FRC, BRC→ t ile1).

6.6.1 Adaptation overhead

To measure the overhead due to the introduction of the MCA feedback loop in
the application pipeline, the following procedure is used. First, the encoder is
run without the feedback loop as well as the adaptation propagation channels to
obtain the average values of FR and BR without the framework. The experiment
is repeated after introducing the MCA loop and the additional channels to obtain
the reduced values. In this case both BR and FR control is turned off inside the
controller, since only the overhead due to the framework needs to be measured.

153 6.6 Comparison of MCA-EB and MCA-EI

(a) Frame-rate adaptation (b) Bit-rate adaptation

Figure 6.13. Results for initial FR = 8 fps, initial BR = 200000 bps and final
FR = 16 fps, final BR = 300000 bps.

Table 6.8 compares the steady-state overhead (in terms of bit-rate and frame-rate
reduction) for MCA-EI and MCA-EB schemes. It can be seen that the overhead in
case of the MCA-EB is much more than MCA-EI because the application pipeline
is stalled at the end of every frame. Firstly, the tasks from adaptive tasks till the
monitoring task are stalled consecutively until the final frame block is processed
by the monitoring task. Only then, the monitoring can be performed and the
controllers can provide the control command required to unblock the adaptive
tasks. In case of MCA-EI the pipeline is never stalled, yielding higher throughput.
Also in MCA-EI, the adapter tiles will not be interrupted by the controller during
steady-state; while in MCA-EB, the adaptive tasks have to wait for the control
command for every frame even in the steady-state. The throughput reduction in
the MCA-EI scheme (0.37%) is due to the execution of the controller inside the
interrupt service routine (in our experiments, the controller is mapped on the
processor with the heaviest workload).

6.6.2 Control quality

Figure 6.13 shows how the framework adapts (using MCA-EB and MCA-EI) when
the encoder is run with initial BR = 200000 bps, initial FR = 8 fps, final BR =
300000 bps and final FR= 16 fps. Here the goals are changed from initial to final
at frame 60 and the framework is configured such that the control algorithm is
run for every third frame.

Table 6.9 compares the two schemes in terms of rise-time (RT) and mean-
absolute-error (MAE) for this experiment. It can be seen that the rise-time for

154 6.6 Comparison of MCA-EB and MCA-EI

Table 6.9. Comparison of control quality for MCA-EI and MCA-EB

RT-BR (s) RT-FR (s) MAE-BR (bits) MAE-FR (frames)

MCA-EI 0.364 0.364 6551 (2.2%) 0.57 (3.6%)
MCA-EB 0.579 0.579 7958 (2.7%) 0.63 (4.0%)

Figure 6.14. Effect of controller workload on adaptation overhead.

the MCA-EB scheme is considerably higher than MCA-EI due to the stalling of the
pipeline at the end of each frame. However, the MAE value is within tolerable
limits (±5% of final values) for both.

6.6.3 Adaptation overhead vs. Controller workload

Workload of the controller - represented as the calculation time of the control
decision, is simulated by introducing delay in the controller code. To obtain the
steady-state overhead, the M-JPEG encoder is run with the MCA feedback loop in
place but with the bit-rate and frame-rate control turned off. Figure 6.14 shows
the variation in the steady-state overhead (as percentage frame-rate reduction)
with respect to the controller workload for the MCA-EB and MCA-EI schemes. As
obvious, the overhead increases with increasing controller workload. But this in-
crease is far less in interrupt-based scheme as compared to the blocking-channel
case. In case of the MCA-EB scheme the entire encoder pipeline is stalled while
the control algorithm is run, irrespective of on which tile the controller is located.
The throughput reduction in the MCA-EI scheme is due to the controller stealing
several cycles from the application task that runs on its tile. These experiments
are carried out with the controller running on the processor with the heaviest
workload (i.e., the tile of DCT) and shows that the interrupt based approach is

155 6.7 Summary

much superior for complex controllers that consume more time. Furthermore,
the overhead can be almost eliminated in the MCA-EI scheme by running the
controller on a tile where no application task is present. However, such an im-
provement is not possible for the MCA-EB scheme.

6.7 Summary

In this chapter, firstly, we proposed the MCA-EB approach to implement applica-
tion level self-adaptation capabilities for PPN applications running on networks-
on-chip based MPSoCs. The proposed framework is based on introducing a
Monitor-Controller-Adapter mechanism in the application pipeline. Techniques
to add monitoring and adaptation capabilities to normal PPN tasks are discussed
along with the design of a generic fuzzy logic based adaptation controller. Finally,
we presented an adaptive M-JPEG case study on a FPGA based 2×2 NoC plat-
form. Our results show that even if the parameters of the fuzzy control are not
tuned optimally, the adaptation convergence is achieved within reasonable time
and error limits for most of the designed controllers. Moreover, the steady-state
overhead introduced due to the framework is low (6.78%) in terms of frame-rate
reduction. Since the controller is a generic one, this framework can be easily in-
tegrated to other applications also, requiring minimal modifications to the code.

We also presented the MCA-EI approach aimed at developing low-overhead
self-adaptive PPN applications on NoC-based MPSoCs. Compared to the MCA-
EB scheme, it makes use of inter-processor interrupts to increase the application
throughput. Results from the M-JPEG case study show that the MCA-EI scheme
outperforms MCA-EB in terms of overhead (0.37% vs. 6.78%) while offering
similar or better quality of control. The sensitivity of adaptation overhead to
controller workload is also much less in case of MCA-EI. However, MCA-EI re-
quires platform support to send data to remote tiles using interrupting messages
over the NoC. This support is implemented in the baseline platform by extending
the network interface with a tag decoder.

156 6.7 Summary

Chapter 7

Conclusion and Future Work

Keeping up with ever-increasing performance demands and at the same time
being curbed by low power constraints, one of the evolution paths for embed-
ded computing systems have been MPSoCs with growing number of processing
elements that are interconnected by a NoC. On top of that, a proper computa-
tion model and memory model is required in order to unveil the power of scaled
computation and communication capabilities. The complexity of underlying plat-
forms and the applications running on them has made some of the conventional
design methodologies obselete. A thorough design-time optimization of the sys-
tem is not possible due to unknown run-time conditions that will be faced by
the system. One of such situations is the failure of processing elements due to
hard faults, which are becoming a bigger concern with ever-decreasing technol-
ogy nodes. In this thesis, we make use of the self-adaptation paradigm in order
to tackle these challenges within the particular context of KPN-based streaming
applications running in NoC-based MPSoCs that adopt the NORMA model. We
demonstrate not only that fault tolerance and self-adaptivity can be achieved in
embedded platforms, but also it can be done so without incurring large over-
heads. In particular, this thesis tackled two main problems: (1) fault-aware
online task remapping, (2) application-level self-adaptation for quality manage-
ment. In addressing these problems, we developed techniques which have been
realized in the form of either a design tool, a run-time library or a hardware IP
core.

Beside introducing the baseline platform and general fault tolerance approach
adopted in this thesis, chapter 3 also presented the developed middleware sup-
port which enables execution of KPN applications in NoC-based platforms. This
was a major requirement in order to realize the self-adaptive run-time environ-
ment on the actual platform. Besides satisfying KPN semantics, the middle-

157

158

ware allows application tasks to be platform independent with regard to the on-
chip communication infrastructure. The middleware is solely based on message
passing primitives. The middleware was our initial step towards implementing
the application-level self-adaptation and fault-aware online task remapping con-
cepts.

Chapter 4 presented the formulation of the optimal task mapping problem for
NoC-based multiprocessors with generic topologies and deterministic routing as
an integer linear programming (ILP) problem with the objective of minimizing
the communication traffic in the system and the total execution time of the ap-
plication. We used this to obtain optimal task remappings in presence of faults
in processing cores. Several heuristics, which are geared towards run-time use,
have been proposed and their results have been compared with respect to the
optimal remappings by means of as a synthetic task graph. Our results showed
that LNMS heuristics provide a parameterized solution that can accommodate
different trade-offs. Comparing the results of the heuristics with the optimal so-
lutions, we have found that they are in average within 7% proximity in terms
of degradation distance. Our solution has also been demonstrated with real-
life use case applications for several fault scenarios on a mesh-based platform
adopting an XY-routing strategy. However the proposed solution can be applied
to platforms with any topology and deterministic routing strategy. The results
showed that the NMS heuristics are able to find near-optimal remappings with
a small run-time penalty, which confirms their adoptability for run-time use in
fault recovery mechanisms.

In chapter 4, we also presented an analytical model for estimating the reli-
ability achieved by means of the online task remapping and N-modular redun-
dancy techniques, operating at the application-level and thus abstracting from
the underlying hardware architecture (from which fault occurrence-related val-
ues are provided). We investigated and evaluated them with respect to the re-
liability metric (mean-time-to-failure), the overhead in computation (execution
time) and communication (amount of data transfer on the network). The ana-
lytical model is specific to applications represented as KPNs running on hetero-
geneous MPSoCs based on NoCs. By presenting a reliability estimator, we allow
the possibility to perform reliability-aware design space exploration. A case study
validated our technique by showing that the fault-aware online task remapping
technique is capable of yielding a two-fold reliability increase (much better when
compared to NMR), at the expense of a small overhead which has been assessed
in chapter 5.

Chapter 5 presented two techniques that enable fault recovery for PPN ap-
plications running on NORMA-based NoC multiprocessor platforms. Both tech-

159

niques required modifications to the platform at the application, run-time and
hardware levels. The techniques have been evaluated on the platform with the
M-JPEG encoder and H.264 decoder case studies through fault recovery experi-
ments making use of one of the proposed heuristics. The first technique named
CRR relies on the self-testing of the processor at each iteration of a process in or-
der to minimize the error propagation. Therefore it brings a large performance
overhead unless the processes have much longer execution times than the self-
testing routine. Furthermore, CRR checkpoints many state variables in the reg-
ister file of the TMH module, which results in a higher area overhead. On the
other hand, the second technique named RFR requires an application model in
which the processed stream consists of independent stream units. It relies on
rolling forward to the next stream unit upon a fault detection by the periodi-
cal self-testing of the processors. At the expense of a limited error propagation,
the RFR technique incurs a much lower performance and area overhead than
CRR due to the reduced register file of the TMH and much smaller number of
self-testing invocations.

Chapter 6 introduced two techniques in order to realize application level
self-adaptation capabilities for PPN applications running on NORMA-based NoC
multiprocessor platforms. Both techniques rely on hooking up the application
with a Monitor-Controller-Adapter mechanism that adapts application parame-
ters to meet throughput goals. The first technique, named MCA-EB, interacts
with the application through the same semantics as the application tasks (i.e.,
blocking channels). While the second technique, named MCA-EI, makes use of
inter-processor interrupts. Methods that add monitoring and adaptation capa-
bilities to normal PPN tasks are developed along with the design of a generic
fuzzy logic based adaptation controller. We experimented with both techniques
by realizing an adaptive M-JPEG case study on a FPGA based 2×2 NoC plat-
form. Our results showed that even if the parameters of the fuzzy control are
not tuned optimally, the adaptation convergence is achieved within reasonable
time and error limits for most of the designed controllers. Since the controller is
a generic one, this framework can be easily integrated to other applications also,
requiring minimal modifications to the code. Moreover, the steady-state perfor-
mance overhead introduced due to MCA-EB is low (6.78%) in terms of frame-
rate reduction. MCA-EI was proposed with the aim of reducing the steady-state
performance overhead even further. Results from the M-JPEG case study showed
that the MCA-EI scheme with a steady-state performance overhead of only 0.37%
outperforms MCA-EB while offering similar or better quality of control. The sen-
sitivity of adaptation overhead to controller workload is also much less in the
case of MCA-EI. However, MCA-EI requires that the platform supports sending

160

data to remote tiles using interrupting messages over the NoC. This support is
implemented in the baseline platform by extending the network interface with a
tag decoder.

The work presented in this thesis can serve as a foundation for further re-
search in several directions. We conclude the thesis by listing some of them
below.

Incremental improvements to the self-adaptive run-time environment:
The proposed techniques for the realization of a fault tolerant and self-adaptive
run-time environment can be extended with some incremental improvements.
Firstly, the fault tolerance support and application level self-adaptation support
can be integrated into the same platform which would allow better flexibility
for keeping up application goals via application level adaptations when proces-
sors experience permanent failures. Secondly, embedded platforms are designed
more often with dynamic voltage and frequency scaling capabilities in order to
support a broad spectrum of applications with different power consumption re-
quirements. Remapping problem can be extended to finding the new voltage and
frequency values per processing core such that performance degradation is min-
imized under low power consumption constraints. Thirdly, as embedded plat-
forms are being used more often to run multiple applications at the same time,
the mapping and remapping formulation can be extended with the consideration
of multi-application scenarios. Although modification of the analytical model for
computing the throughput per application is straightforward, remapping heuris-
tics would be more complicated in order to minimize performance degradation
for all (or a subset of selected) applications. Lastly, the analytical model for com-
puting throughput used in fault-aware remapping can be extended according to
the model recently proposed by Piscitelli and Pimentel [2012] in order to support
cyclic task graphs.

Integration of presented techniques into existing design methodologies:
In order to address fault tolerance not as a later add-on but rather as a major
aspect from the beginning of the design flow, fault tolerance techniques should
be embedded into existing design methodologies. A considerable engineering
effort is needed to make use of presented techniques in an automated design
methodology. Firstly, the design space exploration phase can be extended for
fault-awareness by evaluating the lifetime reliability of the system for a given se-
lection of platform components, and by evaluating the degradation of the system
under different fault-aware remapping scenarios. Secondly, the fault tolerance
related IP cores should be added to the IP repository and instantiated as part
of the tile template. Thirdly, the developed run-time support libraries should be
included in the run-time support packages. Finally, the process network com-

161

piler should be extended with a phase that transforms the tasks according to the
modified PPN task template.

Lifetime reliability estimation: The lifetime reliability estimation is a promis-
ing research topic which is currently limited by the insufficiency of analytical
models that capture the causes of faults comprehensively. Our reliability esti-
mation technique presented in section 4.4 lays the basis for further research in
system-level reliability-aware design. Present definition of failure in our tech-
nique can be improved by considering failure not as the failing of the last fault-
free processor, but as the inability to meet the performance goal of the appli-
cation. This involves carrying out an exhaustive analysis of fault scenarios by
varying the order that the processors fail. This task becomes computationally
complex and challenging when a heterogeneous platform is considered.

Real-time fault-tolerant scheduling for permanent faults: In our treat-
ment of fault tolerance, we focused on throughput-oriented non-real-time sys-
tems and thus elaborated on only remapping and not rescheduling, thanks to
the schedulability of KPNs in a data-driven manner. Previous studies that ad-
dress the rescheduling problem does so either in the case of independent tasks
[Krishna, 2014] or transient faults, in which case the rescheduling of tasks are
done without considering remapping of the tasks running on the processor that
experiences the transient fault [Kang et al., 2014b]. To extend the applicability of
our work to real-time systems, techniques are needed for real-time fault-tolerant
scheduling in the presence of permanent failures in the processing elements.

Proactive fault management: As the physics of phenomena that cause per-
manent faults is understood better, the predictability of faults becomes possible.
In such a case, the overhead of checkpointing and possible error propagation
can be avoided. Identification of relevant parameters and their continuous mon-
itoring pose serious challenges when embedded systems with low resources are
considered. If achieved, proactive fault management may become a reality also
for embedded systems. Designers have to assess the overhead of both approaches
and decide whether to adopt a proactive or, as presented in this thesis, a reactive
approach.

162

Bibliography

Ababei, C. and Katti, R. [2009]. Achieving network on chip fault tolerance by
adaptive remapping, Int. Parallel and Distributed Processing Symposium 0: 1–4.

Acquaviva, A., Alimonda, A., Carta, S. and Pittau, M. [2008]. Assessing task mi-
gration impact on embedded soft real-time streaming multimedia applications,
EURASIP J. Emb. Sys. 2008.

Adapteva Inc., . [2014]. E16G401 Epiphany 64-core Microprocessor Datasheet.
URL: http://www.adapteva.com

A High Performance Message Passing Library [n.d.].
URL: http://www.open-mpi.org/

Al-Ali, R., Hafid, A., Rana, O. and Walker, D. [2004]. An approach for qual-
ity of service adaptation in service-oriented grids: Research articles, Concurr.
Comput. : Pract. Exper. 16(5): 401–412.

Almeida, G. M., Sassatelli, G., Benoit, P., Saint-Jean, N., Varyani, S., Torres, L.
and Robert, M. [2009]. An Adaptive Message Passing MPSoC Framework,
International Journal of Reconfigurable Computing 2009: 20.

Amory, A. M., Marcon, C. A. M., Moraes, F. G. and Lubaszewski, M. [2011].
Task mapping on noc-based mpsocs with faulty tiles: Evaluating the energy
consumption and the application execution time., International Symposium on
Rapid System Prototyping, IEEE, pp. 164–170.

Ananthanarayan, S., Garg, S. and Patel, H. D. [2013]. Low cost permanent fault
detection using ultra-reduced instruction set co-processors, Proceedings of the
Conference on Design, Automation and Test in Europe, DATE ’13, EDA Consor-
tium, San Jose, CA, USA, pp. 933–938.

163

164 Bibliography

Ascia, G., Catania, V. and Palesi, M. [2004]. Multi-objective mapping for mesh-
based noc architectures, Int. Conf. on Hardware/Software Codesign and System
Synthesis, pp. 182 – 187.

Avizienis, A., Laprie, J.-C., Randell, B. and Landwehr, C. [2004]. Basic concepts
and taxonomy of dependable and secure computing, Dependable and Secure
Computing, IEEE Transactions on 1(1): 11–33.

Bacivarov, I., Haid, W., Huang, K. and Thiele, L. [2010]. Methods and Tools
for Mapping Process Networks onto Multi-Processor Systems-On-Chip, in S. S.
Bhattacharyya, E. F. Deprettere, R. Leupers and J. Takala (eds), Handbook of
Signal Processing Systems, Springer, pp. 1007—1040.

Bailey, B., Martin, G. and Anderson, T. (eds) [2005]. Taxonomies for the Develop-
ment and Verification of Digital Systems, Springer US.

Balasubramaniam, D., Morrison, R., Mickan, K., Kirby, G., Warboys, B., Robert-
son, I., Snowdon, B., Greenwood, R. M. and Seet, W. [2004]. Support for
feedback and change in self-adaptive systems, WOSS ’04: Proceedings of the 1st
ACM SIGSOFT workshop on Self-managed systems, ACM, New York, NY, USA,
pp. 18–22.

Balevic, A. and Kienhuis, B. [2011]. Kpn2gpu: An approach for discovery and
exploitation of fine-grain data parallelism in process networks, SIGARCH Com-
put. Archit. News 39(4): 66–71.

Bauer, L., Shafique, M., Teufel, D. and Henkel, J. [2007]. A self-adaptive exten-
sible embedded processor, SASO, IEEE Computer Society, pp. 344–350.

Benini, L. and De Micheli, G. [2002]. Networks on chips: a new soc paradigm,
Computer 35(1): 70 –78.

Bertozzi, S., Acquaviva, A., Bertozzi, D. and Poggiali, A. [2006]. Supporting task
migration in multi-processor systems-on-chip: a feasibility study, Proceedings
of the conference on Design, automation and test in Europe, DATE ’06, pp. 15–20.

Bhardwaj, K. and Jena, R. [2009]. Energy and bandwidth aware mapping of ips
onto regular noc architectures using multi-objective genetic algorithms, Int.
Sym. on System-on-Chip, pp. 27–31.

Bhattacharyya, S. S., Deprettere, E. F. and Theelen, B. D. [2013]. Dynamic
dataflow graphs, in S. S. Bhattacharyya, E. F. Deprettere, R. Leupers and

165 Bibliography

J. Takala (eds), Handbook of Signal Processing Systems, Springer New York,
pp. 905–944.

Bolchini, C. and Miele, A. [2013]. Reliability-driven system-level synthe-
sis for mixed-critical embedded systems, Computers, IEEE Transactions on
62(12): 2489–2502.

Borkar, S. [2005]. Designing reliable systems from unreliable components: The
challenges of transistor variability and degradation, IEEE Micro 25: 10–16.

Borkar, S., Jouppi, N. P. and Stenstrom, P. [2007]. Microprocessors in the era of
terascale integration, Proceedings of the Conference on Design, Automation and
Test in Europe, DATE ’07, EDA Consortium, San Jose, CA, USA, pp. 237–242.

Bouteiller, A., Hérault, T., Krawezik, G., Lemarinier, P. and Cappello, F. [2006].
Mpich-v project: A multiprotocol automatic fault-tolerant mpi, Int’l J. High
Performance Computing and Applications pp. 319–333.

Bower, F., Shealy, P., Ozev, S. and Sorin, D. [2004]. Tolerating hard faults in
microprocessor array structures, Dependable Systems and Networks, 2004 In-
ternational Conference on, pp. 51–60.

Bridges, P., Hiltunen, M. and Schlichting, R. [2009]. Cholla: A framework for
composing and coordinating adaptations in networked systems, Computers,
IEEE Transactions on 58(11): 1456–1469.

Bronevetsky, G., Marques, D., Pingali, K., Szwed, P. and Schulz, M. [2004].
Application-level checkpointing for shared memory programs, Proceedings of
the 11th International Conference on Architectural Support for Programming
Languages and Operating Systems, ASPLOS XI, ACM, New York, NY, USA,
pp. 235–247.

Brown, G., Cheng, B. H. C., Goldsby, H. and Zhang, J. [2006]. Goal-oriented spec-
ification of adaptation requirements engineering in adaptive systems, SEAMS
’06: Proceedings of the 2006 international workshop on Self-adaptation and self-
managing systems, ACM, New York, NY, USA, pp. 23–29.

Cannella, E., Derin, O., Meloni, P., Tuveri, G. and Stefanov, T. [2012]. Adaptivity
support for mpsocs based on process migration in polyhedral process networks,
VLSI Design 2012(Article ID 987209): 15 pages. Special issue on Application-
Driven Design of Processor, Memory, and Communication Architectures for
MPSoCs.

166 Bibliography

Cannella, E., Derin, O. and Stefanov, T. [2011]. Middleware approaches for adap-
tivity of kahn process networks on networks-on-chip, DASIP’11: Proceedings
of the Conference on Design and Architectures for Signal and Image Processing,
Tampere, Finland, pp. 1–8.

Carara, E., Mello, A. and Moraes, F. [2007]. Communication models in networks-
on-chip, RSP ’07: Proceedings of the 18th IEEE/IFIP International Workshop
on Rapid System Prototyping, IEEE Computer Society, Washington, DC, USA,
pp. 57–60.

Carter, N. P., Naeimi, H. and Gardner, D. S. [2010]. Design techniques for cross-
layer resilience, Proceedings of the Conference on Design, Automation and Test in
Europe, DATE ’10, European Design and Automation Association, 3001 Leuven,
Belgium, Belgium, pp. 1023–1028.

Casas, J. A., Moreno, J. M., Madrenas, J. and Cabestany, J. [2007]. A novel
hardware architecture for self-adaptive systems, AHS ’07: Proceedings of the
Second NASA/ESA Conference on Adaptive Hardware and Systems (AHS 2007),
IEEE Computer Society, Washington, DC, USA, pp. 592–599.

Casavant, T. L., Jon and Kuhl, G. [1988]. A taxonomy of scheduling in general-
purpose distributed computing systems, IEEE Transactions on Software Engi-
neering 14: 141–154.

Castrillon, J., Schürmans, S., Stulova, A., Sheng, W., Kempf, T., Leupers, R., As-
cheid, G. and Meyr, H. [2011]. Component-based waveform development:
The nucleus tool flow for efficient and portable software defined radio, Analog
Integr. Circuits Signal Process. 69(2-3): 173–190.

Castrillon, J., Velasquez, R., Stulova, A., Sheng, W., Ceng, J., Leupers, R., As-
cheid, G. and Meyr, H. [2010]. Trace-based kpn composability analysis for
mapping simultaneous applications to mpsoc platforms, Proceedings of the Con-
ference on Design, Automation and Test in Europe, DATE ’10, European Design
and Automation Association, 3001 Leuven, Belgium, Belgium, pp. 753–758.

Ceng, J., Castrillon, J., Sheng, W., Scharwächter, H., Leupers, R., Ascheid, G.,
Meyr, H., Isshiki, T. and Kunieda, H. [2008]. MAPS: an integrated framework
for MPSoC application parallelization, Proceedings of the 45th annual Design
Automation Conference, DAC ’08, ACM, New York, NY, USA, pp. 754–759.

Ceponis, J., Kazanavicius, E. and Ceponiene, L. [2008]. Handling multiple fail-
ures in process networks, Information Technology And Control 37(1): 19–25.

167 Bibliography

Chankong, V. and Haimes, Y. [1983]. Multiobjective Decision Making Theory and
Methodology, North-Holland.

Cheng, B. H. C., Lemos, R., Giese, H., Inverardi, P. and Magee, J. [2009]. Software
Engineering for Self-adaptive Systems: International Seminar, Dagstuhl Castle,
Germany, October 24-29, 2010 Revised Selected and Invited Papers, Springer
Berlin Heidelberg.

Chou, C.-L. and Marculescu, R. [2008]. Contention-aware application mapping
for network-on-chip communication architectures, IEEE Int. Conf. on Computer
Design, pp. 164–169.

Chou, C.-L. and Marculescu, R. [2011]. Farm: Fault-aware resource management
in noc-based multiprocessor platforms, Design, Automation Test in Europe Con-
ference Exhibition (DATE), 2011, pp. 1 –6.

Chou, T. C. K. and Abraham, J. [1983]. Load redistribution under failure in
distributed systems, Computers, IEEE Transactions on C-32(9): 799–808.

Clermidy, F., Cassiau, N., Coste, N., Dutoit, D., Fantini, M., Ktenas, D., Lemaire,
R. and Stefanizzi, L. [2011]. Reconfiguration of a 3gpp-lte telecommunication
application on a 22-core noc-based system-on-chip, Networks on Chip (NoCS),
2011 Fifth IEEE/ACM International Symposium on, pp. 261–262.

Collet, J. H., Zajac, P., Psarakis, M. and Gizopoulos, D. [2011]. Chip self-
organization and fault tolerance in massively defective multicore arrays, IEEE
Trans. Dependable Secur. Comput. 8(2): 207–217.

Constantinides, K., Mutlu, O., Austin, T. and Bertacco, V. [2007]. Software-based
online detection of hardware defects mechanisms, architectural support, and
evaluation, Proceedings of the 40th Annual IEEE/ACM International Sympo-
sium on Microarchitecture, MICRO 40, IEEE Computer Society, Washington,
DC, USA, pp. 97–108.

Cornbaz, J., Fernandez, J., Lepley, T. and Sifakis, J. [2005]. Fine grain qos control
for multimedia application software, Proceedings of Design, Automation and
Test in Europe, volume 2, pp. 1038 – 1043.

Cornbaz, J., Fernandez, J., Sifakis, J. and Strus, L. [2007]. Using speed diagrams
for symbolic quality management, IEEE International Conference on Parallel and
Distributed Processing Symposium - IPDPS, pp. 1 – 8.

168 Bibliography

Cumming, P. [2003]. The TI OMAP Platform Approach to SoC, in G. Martin and
H. Chang (eds), Winning the SOC Revolution, Kluwer Academic Publishers,
pp. 97–118.

Dagum, L. and Menon, R. [1998]. Openmp: an industry standard api for shared-
memory programming, Computational Science Engineering, IEEE 5(1): 46–55.

Dall’Osso, M., Biccari, G., Giovannini, L., Bertozzi, D. and Benini, L. [2003].
Xpipes: a Latency Insensitive Parameterized Network-on-Chip Architecture for
Multi-Processor SoCs, Proc. of the 21st Int. Conf. on Computer Design, ICCD’03,
Washington, DC, USA, pp. 536–.

Dally, W. J. and Towles, B. [2001]. Route packets, not wires: on-chip inteconnec-
tion networks, Proceedings of the 38th annual Design Automation Conference,
DAC ’01, ACM, New York, NY, USA, pp. 684–689.

David, P.-C. and Ledoux, T. [2003]. Towards a framework for self-adaptive
component-based applications, In DAIS’03, volume 2893 of LNCS, Springer-
Verlag, pp. 1 – 14.

David, R., Bogdan, P., Marculescu, R. and Ogras, U. [2011]. Dynamic power man-
agement of voltage-frequency island partitioned networks-on-chip using intel’s
single-chip cloud computer, Networks on Chip (NoCS), 2011 Fifth IEEE/ACM
International Symposium on, pp. 257–258.

de Kock, E. A. [2002]. Multiprocessor mapping of process networks: A jpeg
decoding case study, System Synthesis, International Symposium on 0: 68–73.

de Kruijf, M., Nomura, S. and Sankaralingam, K. [2010]. Relax: An architectural
framework for software recovery of hardware faults, Proceedings of the 37th An-
nual International Symposium on Computer Architecture, ISCA ’10, ACM, New
York, NY, USA, pp. 497–508.

Deb, K., Pratap, A., Agarwal, S. and Meyarivan, T. [2002]. A fast and elitist mul-
tiobjective genetic algorithm: Nsga-ii, Evolutionary Computation, IEEE Trans-
actions on 6(2): 182 –197.

DeHon, A., Quinn, H. M. and Carter, N. P. [2010]. Vision for cross-layer opti-
mization to address the dual challenges of energy and reliability, Proceedings
of the Conference on Design, Automation and Test in Europe, DATE ’10, Euro-
pean Design and Automation Association, 3001 Leuven, Belgium, Belgium,
pp. 1017–1022.

169 Bibliography

DeOrio, A., Fick, D., Bertacco, V., Sylvester, D., Blaauw, D., Hu, J. and Chen, G.
[2012]. A reliable routing architecture and algorithm for nocs, Computer-Aided
Design of Integrated Circuits and Systems, IEEE Transactions on 31(5): 726–739.

Derin, O., Cannella, E., Tuveri, G., Meloni, P., Stefanov, T., Fiorin, L., Raffo, L. and
Sami, M. [2013]. A system-level approach to adaptivity and fault-tolerance in
NoC-based MPSoCs: The MADNESS project, Microprocessors and Microsystems
37(6–7): 515–529.

Derin, O. and Diken, E. [2010]. A task-aware middleware for fault-tolerance and
adaptivity of kahn process networks on network-on-chip, ReCoSoC 2010: Pro-
ceedings of the 5th International Workshop on Reconfigurable Communication-
centric System-on-Chips, Karlsruhe, Germany, pp. 73–78.

Derin, O., Diken, E. and Fiorin, L. [2011]. A middleware approach to achiev-
ing fault-tolerance of kahn process networks on networks-on-chips, Inter-
national Journal of Reconfigurable Computing 2011(Article ID 295385): 15
pages. Selected Papers from the International Workshop on Reconfigurable
Communication-centric Systems on Chips (ReCoSoC’ 2010).

Derin, O. and Ferrante, A. [2009]. Enabling Self-adaptivity in Component-based
Streaming Applications, SIGBED Review 6(3). Special Issue on the 2nd In-
ternational Workshop on Adaptive and Reconfigurable Embedded Systems
(APRES’09).

Derin, O., Ferrante, A. and Taddeo, A. V. [2009]. Coordinated management
of hardware and software self-adaptivity, Journal of Systems Architecture
55(3): 170 – 179. Challenges in self-adaptive computing (Selected papers
from the Aether-Morpheus 2007 workshop), Accepted Manuscript, Available
online 29 July 2008.

Derin, O. and Fiorin, L. [2014]. Towards a reliability-aware design flow for kahn
process networks on noc-based multiprocessors, Proceedings of the 10th Work-
shop on Dependability and Fault Tolerance (ARCS/VERFE’14), Lübeck, Germany,
pp. 1–8.

Derin, O., Kabakci, D. and Fiorin, L. [2011]. Online task remapping strategies
for fault-tolerant network-on-chip multiprocessors, NOCS ’11: Proceedings of
the Fifth ACM/IEEE International Symposium on Networks-on-Chip, ACM, Pitts-
burgh, Pennsylvania, USA, pp. 129–136.

170 Bibliography

Derin, O., Ramankutty, P. K., Meloni, P. and Cannella, E. [2012]. Towards self-
adaptive kpn applications on noc-based mpsocs, Advances in Software Engi-
neering 2012(Article ID 172674): 13 pages.

Derin, O., Ramankutty, P. K., Meloni, P. and Tuveri, G. [2013]. A low overhead self-
adaptation technique for kpn applications on noc-based mpsocs, Proceedings
of the 3rd International Conference on Pervasive and Embedded Computing and
Communication Systems (PECCS) - Special Session on Self-Adaptive Networked
Embedded Systems (SANES), Barcelona, Spain, pp. 262–269.

Dieter, W. R. and Lumpp Jr, J. E. [1999]. A user-level checkpointing library for
posix threads programs, Proceedings of the Twenty-Ninth Annual International
Symposium on Fault-Tolerant Computing, FTCS ’99, IEEE Computer Society,
Washington, DC, USA, pp. 224–.

Dobson, S., Sterritt, R., Nixon, P. and Hinchey, M. [2010]. Fulfilling the vision of
autonomic computing, Computer 43(1): 35 –41.

Elnozahy, E. N. M., Alvisi, L., Wang, Y.-M. and Johnson, D. B. [2002]. A survey
of rollback-recovery protocols in message-passing systems, ACM Comput. Surv.
34(3): 375–408.

Erbas, C., Cerav-Erbas, S. and Pimentel, A. [2006]. Multiobjective optimiza-
tion and evolutionary algorithms for the application mapping problem in mul-
tiprocessor system-on-chip design, IEEE Tran. on Evolutionary Computation
10(3): 358–374.

Fekr, A. R., Khademzadeh, A., Janidarmian, M. and Bokharaei, V. S. [2010].
Bandwidth/fault tolerance/contention aware application-specific noc using
pso as a mapping generator, Proc. of The World Congress on Engineering,
pp. 247–252.

Fiorin, L. and Sami, M. [2013]. Fault-tolerant network interfaces for
networks-on-chip, IEEE Transactions on Dependable and Secure Computing
99(PrePrints): 1.

Foster, I., Roy, A. and Sander, V. [2000]. A quality of service architecture that
combines resource reservation and application adaptation, Quality of Service,
2000. IWQOS. 2000 Eighth International Workshop on pp. 181–188.

Foutris, N., Psarakis, M., Gizopoulos, D., Apostolakis, A., Vera, X. and Gonza-
lez, A. [2010]. MT-SBST: Self-test optimization in multithreaded multicore
architectures, Test Conference (ITC), 2010 IEEE International, pp. 1–10.

171 Bibliography

Gaisler, J. and Catovic, E. [2006]. Multi-Core Processor Based on LEON3-FT IP
Core (LEON3-FT-MP), DASIA 2006 - Data Systems in Aerospace, Vol. 630 of ESA
Special Publication, p. 76.

Garlan, D., Cheng, S.-W., Huang, A.-C., Schmerl, B. and Steenkiste, P. [2004].
Rainbow: Architecture-based self-adaptation with reusable infrastructure,
Computer 37(10): 46–54.

Geihs, K., Barone, P. and Eliassen, F. [2009]. A comprehensive solution for
application-level adaptation, Software – Practice & Experience 39(4): 385 – 422.

Gerstlauer, A., Haubelt, C., Pimentel, A. D., Stefanov, T. P., Gajski, D. D. and Teich,
J. [2009]. Electronic system-level synthesis methodologies, Trans. Comp.-Aided
Des. Integ. Cir. Sys. 28(10): 1517–1530.

Gizopoulos, D. [April-June 2009]. Online periodic self-test scheduling for real-
time processor-based systems dependability enhancement, Dependable and Se-
cure Computing, IEEE Transactions on 6(2): 152–158.

Gizopoulos, D., Psarakis, M., Adve, S., Ramachandran, P., Hari, S., Sorin, D.,
Meixner, A., Biswas, A. and Vera, X. [2011]. Architectures for online error de-
tection and recovery in multicore processors, Design, Automation Test in Europe
Conference Exhibition (DATE), 2011, pp. 1–6.

Gizopoulos, D., Psarakis, M., Hatzimihail, M., Maniatakos, M., Paschalis, A.,
Raghunathan, A. and Ravi, S. [2008]. Systematic Software-Based Self-Test for
Pipelined Processors, Very Large Scale Integration (VLSI) Systems, IEEE Trans-
actions on 16(11): 1441–1453.

Gjørven, E., Eliassen, F., Lund, K., Eide, V. S. W. and Staehli, R. [2006]. Self-
adaptive systems: A middleware managed approach, in A. Keller and J.-P.
Martin-Flatin (eds), SelfMan, Vol. 3996 of Lecture Notes in Computer Science,
Springer, pp. 15–27.

Grant, P., Saw, Y.-S. and Hannah, J. M. [1997]. Fuzzy rule-based MPEG video rate
prediction and control, Proceedings of the Eurasip ECASP Conference, pp. 211–
214.

Greene, J. W. and El Gamal, A. [1984]. Configuration of vlsi arrays in the presence
of defects, J. ACM 31(4): 694–717.

172 Bibliography

Gupta, S., Feng, S., Ansari, A., Blome, J. and Mahlke, S. [2008]. The sta-
genet fabric for constructing resilient multicore systems, Proceedings of the 41st
Annual IEEE/ACM International Symposium on Microarchitecture, MICRO 41,
IEEE Computer Society, Washington, DC, USA, pp. 141–151.

Hafid, A. and v. Bochmann, G. [1998]. Quality-of-service adaptation in dis-
tributed multimedia applications, Multimedia Systems 6(5): 299–315.

Haid et al., W. [2009]. Efficient execution of kahn process networks on multi-
processor systems using protothreads and windowed FIFOs, Proc. IEEE Work-
shop on Embedded Systems for Real-Time Multimedia (ESTIMedia), IEEE, Greno-
ble, France, pp. 35–44.

Haid, W., Huang, K., Bacivarov, I. and Thiele, L. [2009]. Multiprocessor SoC
software design flows, IEEE Signal Processing Magazine 26: 64–71.

Hargrove, P. H. and Duell, J. C. [2006]. Berkeley lab checkpoint/restart (blcr)
for linux clusters, Technical Report LBNL-60520, Lawrence Berkeley National
Laboratory.

Hawthorne, M. J. and Perry, D. E. [2004]. Exploiting architectural prescriptions
for self-managing, self-adaptive systems: a position paper, WOSS ’04: Proceed-
ings of the 1st ACM SIGSOFT workshop on Self-managed systems, ACM, New
York, NY, USA, pp. 75–79.

Howard, J., Dighe, S., Vangal, S., Ruhl, G., Borkar, N., Jain, S., Erraguntla, V.,
Konow, M., Riepen, M., Gries, M., Droege, G., Lund-Larsen, T., Steibl, S.,
Borkar, S., De, V. and Van Der Wijngaart, R. [2011]. A 48-core ia-32 pro-
cessor in 45 nm cmos using on-die message-passing and dvfs for performance
and power scaling, Solid-State Circuits, IEEE Journal of 46(1): 173 –183.

Howes, L. and Munshi, A. (eds) [2014]. The OpenCL Specification Version: 2.0
rev. 26, Khronos OpenCL Working Group.

Hu, J. and Marculescu, R. [2003]. Energy-aware mapping for tile-based noc
architectures under performance constraints, Proc. of the Asia and South Pacific
Design Automation Conf., pp. 233 – 239.

Hu, J. and Marculescu, R. [2005]. Energy and performance aware mapping for
regular noc architectures, IEEE Trans. on Computer-Aided Design of Integrated
Circuits and Systems 24(4): 551–562.

173 Bibliography

Huang et al., J. [2011]. Analysis and optimization of fault-tolerant task
scheduling on multiprocessor embedded systems, Proceedings of the seventh
IEEE/ACM/IFIP international conference on Hardware/software codesign and
system synthesis, CODES+ISSS ’11, ACM, New York, NY, USA, pp. 247–256.

Huang, L. and Xu, Q. [2010]. Energy-efficient task allocation and scheduling for
multi-mode mpsocs under lifetime reliability constraint, Proceedings of the Con-
ference on Design, Automation and Test in Europe, DATE ’10, European Design
and Automation Association, 3001 Leuven, Belgium, Belgium, pp. 1584–1589.

Huang, L., Ye, R. and Xu, Q. [2011]. Customer-aware task allocation and schedul-
ing for multi-mode mpsocs, Proceedings of the 48th Design Automation Confer-
ence, DAC ’11, ACM, New York, NY, USA, pp. 387–392.

Huang, L., Yuan, F. and Xu, Q. [2009]. Lifetime reliability-aware task allocation
and scheduling for mpsoc platforms, Proceedings of the Conference on Design,
Automation and Test in Europe, DATE ’09, European Design and Automation
Association, 3001 Leuven, Belgium, Belgium, pp. 51–56.

Huang, L., Yuan, F. and Xu, Q. [2011]. On task allocation and scheduling for
lifetime extension of platform-based MPSoC designs, Parallel and Distributed
Systems, IEEE Transactions on 22(12): 2088 –2099.

Huebscher, M. C. and McCann, J. A. [2008]. A survey of autonomic comput-
ing—degrees, models, and applications, ACM Comput. Surv. 40(3): 7:1–
7:28.

Ibarra, O. H. and Kim, C. E. [1977]. Heuristic algorithms for scheduling inde-
pendent tasks on nonidentical processors, J. ACM 24: 280–289.

IBM ILOG CPLEX Optimizer [n.d.]. http://www-01.ibm.com/software/

integration/optimization/cplex-optimizer/.

IEEE Standards Association [2012]. IEEE Std 1666-2011, IEEE Standard for Stan-
dard SystemC Language Reference Manual, IEEE Computer Society.

ITRS [2009]. International technology roadmap for semiconductors - design
chapter.
URL: http://www.itrs.net

Izosimov, V., Pop, P., Eles, P. and Peng, Z. [2012]. Scheduling and optimization of
fault-tolerant embedded systems with transparency/performance trade-offs,
ACM Trans. Embed. Comput. Syst. 11(3): 61:1–61:35.

http://www-01.ibm.com/software/integration/optimization/cplex-optimizer/
http://www-01.ibm.com/software/integration/optimization/cplex-optimizer/

174 Bibliography

Jaber, M., Combaz, J. and Strus, L. [2008]. Using neural networks for qual-
ity management, IEEE International Conference on Emerging Technologies and
Factory Automation - ETFA, pp. 1441 – 1448.

Jantsch, A. [2003]. Modeling Embedded Systems and SoC’s: Concurrency and Time
in Models of Computation, Morgan Kaufmann Publishers Inc., San Francisco,
CA, USA.

Jena, R. K. and Mahanti, P. K. [2008]. Design space exploration of network-on-
chip - a system level approach, Int. J. of Computing and ICT Research 2: 17–25.

Józwiak, L. [2006]. Life-inspired systems and their quality-driven design., in
W. Grass, B. Sick and K. Waldschmidt (eds), ARCS, Vol. 3894 of Lecture Notes
in Computer Science, Springer, pp. 1–16.

Kahn, G. [1974]. The semantics of a simple language for parallel program-
ming, in J. L. Rosenfeld (ed.), Information Processing ’74: Proceedings of the
IFIP Congress, North-Holland, New York, NY, pp. 471–475.

Kang, S.-H., Yang, H., Kim, S., Bacivarov, I., Ha, S. and Thiele, L. [2014a].
Reliability-aware mapping optimization of multi-core systems with mixed-
criticality, Proceedings of the Conference on Design, Automation & Test in Eu-
rope, DATE ’14, European Design and Automation Association, 3001 Leuven,
Belgium, Belgium, pp. 327:1–327:4.

Kang, S.-h., Yang, H., Kim, S., Bacivarov, I., Ha, S. and Thiele, L. [2014b]. Static
mapping of mixed-critical applications for fault-tolerant mpsocs, Proceedings
of the 51st Annual Design Automation Conference, DAC ’14, ACM, New York,
NY, USA, pp. 31:1–31:6.

Karsai, G., Lédeczi, Á., Sztipanovits, J., Péceli, G., Simon, G. and Kovácsházy, T.
[2001]. An approach to self-adaptive software based on supervisory control,
IWSAS, pp. 24–38.

Khalili, F. and Zarandi, H. [2012]. A fault-aware low-energy spare core allocation
in networks-on-chip, NORCHIP, 2012, pp. 1–4.

Kogel, T., Leupers, R. and Meyr, H. [2006]. Integrated System-Level Modeling of
Network-on-Chip enabled Multi-Processor Platforms, Springer Netherlands.

Koren, I. and Krishna, C. M. [2007]. Fault Tolerant Systems, Morgan Kaufmann
Publishers Inc., San Francisco, CA, USA.

175 Bibliography

Kramer, J. and Magee, J. [2007]. Self-managed systems: an architectural chal-
lenge, FOSE ’07: 2007 Future of Software Engineering, IEEE Computer Society,
Washington, DC, USA, pp. 259–268.

Krishna, C. M. [2014]. Fault-tolerant scheduling in homogeneous real-time sys-
tems, ACM Comput. Surv. 46(4): 48:1–48:34.

Kwon, S., Kim, Y., Jeun, W.-C., Ha, S. and Paek, Y. [2008]. A retargetable parallel-
programming framework for mpsoc, ACM Trans. Des. Autom. Electron. Syst.
13: 39:1–39:18.

Lan, Z. and Li, Y. [2008]. Adaptive fault management of parallel applications for
high-performance computing, IEEE TRANSACTIONS ON COMPUTERS 57(12).

Le Beux, S., Bois, G., Nicolescu, G., Bouchebaba, Y., Langevin, M. and Paulin, P.
[2010]. Combining mapping and partitioning exploration for noc-based em-
bedded systems, J. Syst. Archit. 56: 223–232.

Lee, C., Kim, H., Park, H.-w., Kim, S., Oh, H. and Ha, S. [2010]. A task remapping
technique for reliable multi-core embedded systems, Proc. of the Eighth Int.
Conf. on Hardware/software codesign and system synthesis, pp. 307–316.

Lee, E. A. and Messerschmitt, D. G. [1987a]. Synchronous data flow, Proceedings
of the IEEE 75(9): 1235–1245.

Lee, E. and Messerschmitt, D. [1987b]. Synchronous data flow, Proceedings of
the IEEE 75(9): 1235–1245.

Lee, E. and Sangiovanni-Vincentelli, A. [1998]. A framework for comparing mod-
els of computation, Computer-Aided Design of Integrated Circuits and Systems,
IEEE Transactions on 17(12): 1217–1229.

Lee, K., Shrivastava, A., Kim, M., Dutt, N. and Venkatasubramanian, N. [2008].
Mitigating the impact of hardware defects on multimedia applications: A cross-
layer approach, Proceedings of the 16th ACM International Conference on Mul-
timedia, MM ’08, ACM, New York, NY, USA, pp. 319–328.

Lei, T. and Kumar, S. [2003]. A two-step genetic algorithm for mapping task
graphs to a network on chip architecture, Proc. of Euromicro Symposium on
Digital System Design, pp. 180 – 187.

176 Bibliography

Lemos, R., Giese, H., Müller, H. A. and Shaw, M. [2013]. Software Engineering
for Self-adaptive Systems II: International Seminar, Dagstuhl Castle, Germany,
October 24-29, 2010 Revised Selected and Invited Papers, Springer Berlin Hei-
delberg.

Li, B. and Nahrstedt, K. [1998]. An Open Task Control Model for Quality of Ser-
vice Adaptation, Proceedings of the 14th International Conference of Advanced
Science and Technology (ICAST 98), Naperville, Illinois, pp. 29–41.

Li, B. and Nahrstedt, K. [1999]. A Control-Based Middleware Framework for
Quality-of-Service Adaptations, IEEE Journal on Selected Areas in Communica-
tions 17(9): 1632–1650.

Li, M.-L., Ramachandran, P., Sahoo, S. K., Adve, S. V., Adve, V. S. and Zhou, Y.
[2008]. Understanding the propagation of hard errors to software and impli-
cations for resilient system design, Proceedings of the 13th International Con-
ference on Architectural Support for Programming Languages and Operating Sys-
tems, ASPLOS XIII, ACM, New York, NY, USA, pp. 265–276.

Li, X. and Yeung, D. [2007]. Application-level correctness and its impact on
fault tolerance, Proceedings of the 2007 IEEE 13th International Symposium on
High Performance Computer Architecture, HPCA ’07, IEEE Computer Society,
Washington, DC, USA, pp. 181–192.

Lieverse, P., Stefanov, T., van der Wolf, P. and Deprettere, E. [2001]. System level
design with spade: an m-jpeg case study, Computer Aided Design, 2001. ICCAD
2001. IEEE/ACM International Conference on, pp. 31 –38.

Litzkow, M., Tannenbaum, T., Basney, J. and Livny, M. [1997]. Checkpoint and
migration of UNIX processes in the Condor distributed processing system, Tech-
nical Report UW-CS-TR-1346, University of Wisconsin - Madison Computer Sci-
ences Department.

Marcon, C., Calazans, N., Moraes, F., Susin, A., Reis, I. and Hessel, F. [2005].
Exploring noc mapping strategies: an energy and timing aware technique,
Proc. of DATE, pp. 502–507.

Marwedel, P. [2011]. Embedded System Design, Springer Netherlands.

Meixner, A., Bauer, M. E. and Sorin, D. [2007]. Argus: Low-cost, comprehensive
error detection in simple cores, Proceedings of the 40th Annual IEEE/ACM Inter-
national Symposium on Microarchitecture, MICRO 40, IEEE Computer Society,
Washington, DC, USA, pp. 210–222.

177 Bibliography

Meixner, A. and Sorin, D. [2008]. Detouring: Translating software to circumvent
hard faults in simple cores, Dependable Systems and Networks With FTCS and
DCC, 2008. DSN 2008. IEEE International Conference on, pp. 80–89.

Meloni, P., Secchi, S. and Raffo, L. [2010]. An fpga-based framework for
technology-aware prototyping of multicore embedded architectures, IEEE Em-
bedded Systems Letters 2(1): 5–9.

Melpignano, D., Benini, L., Flamand, E., Jego, B., Lepley, T., Haugou, G., Cler-
midy, F. and Dutoit, D. [2012]. Platform 2012, a many-core computing accel-
erator for embedded socs: performance evaluation of visual analytics applica-
tions, Proceedings of the 49th Annual Design Automation Conference, DAC ’12,
ACM, New York, NY, USA, pp. 1137–1142.

Milojičić, D. S., Douglis, F., Paindaveine, Y., Wheeler, R. and Zhou, S. [2000].
Process migration, ACM Comput. Surv. 32: 241–299.

Mitra, S., Brelsford, K. and Sanda, P. [2010]. Cross-layer resilience challenges:
Metrics and optimization, Design, Automation Test in Europe Conference Exhi-
bition (DATE), 2010, pp. 1029–1034.

Modarressi, M. and Sarbazi-Azad, H. [2007]. Power-aware mapping for recon-
figurable noc architectures, 25th Int. Conf. on Computer Design, pp. 417 –422.

Mossé, D., Melhem, R. and Ghosh, S. [2003]. A nonpreemptive real-time sched-
uler with recovery from transient faults and its implementation, IEEE Trans.
Softw. Eng. 29(8): 752–767.

Mukherjee, S. [2008]. Architecture Design for Soft Errors, Morgan Kaufmann
Publishers Inc., San Francisco, CA, USA.

Murali, S. and De Micheli, G. [2004]. Bandwidth-constrained mapping of cores
onto noc architectures, Proc. of the Design Automation and Test Europe Conf.,
Vol. 2, pp. 896–901.

Nadezhkin, D., Meijer, S., Stefanov, T. and Deprettere, E. [2009]. Realizing FIFO
Communication when Mapping Kahn Process Networks onto the Cell, Proceed-
ings of the 9th International Workshop on Embedded Computer Systems: Archi-
tectures, Modeling, and Simulation, SAMOS ’09, Springer-Verlag, Berlin, Hei-
delberg, pp. 308–317.

178 Bibliography

Nakano, J., Montesinos, P., Gharachorloo, K. and Torrellas, J. [2006]. Revivei/o:
efficient handling of i/o in highly-available rollback-recovery servers, High-
Performance Computer Architecture, 2006. The Twelfth International Symposium
on, pp. 200–211.

Neema, S. and Lédeczi, Á. [2001]. Constraint-guided self-adaptation, in
R. Laddaga, P. Robertson and H. E. Shrobe (eds), IWSAS, Vol. 2614 of Lecture
Notes in Computer Science, Springer, pp. 39–51.

Nejad, A. B., Goossens, K., Walters, J. and Kienhuis, B. [2009]. Mapping kpn
models of streaming applications on a network-on-chip platform, ProRISC
2009: Proceedings of the Workshop on Signal Processing, Integrated Systems and
Circuits.

Neuendorffer, S. and Lee, E. [2004]. Hierarchical reconfiguration of dataflow
models, Formal Methods and Models for Co-Design, 2004. MEMOCODE ’04. Pro-
ceedings. Second ACM and IEEE International Conference on, pp. 179–188.

Nichols, B., Buttlar, D. and Farrell, J. P. [1996]. Pthreads Programming, O’Reilly
& Associates, Inc., Sebastopol, CA, USA.

Nieuwland, A., Kang, J., Gangwal, O. P., Sethuraman, R., Busá, N., Goossens,
K., Peset Llopis, R. and Lippens, P. [2002]. C-heap: A heterogeneous multi-
processor architecture template and scalable and flexible protocol for the de-
sign of embedded signal processing systems, Design Automation for Embedded
Systems 7: 233–270. 10.1023/A:1019782306621.

Nikolopoulos, D. S., Ayguadé, E., Papatheodorou, T. S., Polychronopoulos, C. D.
and Labarta, J. [2001]. The trade-off between implicit and explicit data dis-
tribution in shared-memory programming paradigms, Proceedings of the 15th
International Conference on Supercomputing, ICS ’01, ACM, New York, NY, USA,
pp. 23–37.

Nikolov et al., H. [2008]. Daedalus: Toward composable multimedia MP-SoC
design, 45th ACM/IEEE Design Automation Conference, 2008 (DAC 2008).,
pp. 574–579.

Nikolov, H., Rao, A., Deprettere, E. F., Nandy, S. K. and Narayan, R. [2009]. A
h.264 decoder: a design style comparison case study, Proceedings of the 43rd
Asilomar conference on Signals, systems and computers, Asilomar’09, IEEE Press,
Piscataway, NJ, USA, pp. 236–242.

179 Bibliography

Nikolov, H., Stefanov, T. and Deprettere, E. [2008]. Systematic and Auto-
mated Multiprocessor System Design, Programming, and Implementation,
Computer-Aided Design of Integrated Circuits and Systems, IEEE Transactions on
27(3): 542–555.

Nollet, V., Verkest, D. and Corporaal, H. [2010]. A safari through the mpsoc
run-time management jungle, Signal Processing Systems 60(2): 251–268.

Nvidia [2014]. Compute unified device architecture (CUDA) C programming guide,
NVidia.

Oliveira, J. A. D. and van Antwerpen, H. [2003]. The Philips Nexperia digital
video platform, in G. Martin and H. Chang (eds), Winning the SOC Revolution,
Kluwer Academic Publishers, pp. 67–96.

Oreizy, P., Gorlick, M., Taylor, R., Heimbigner, D., Johnson, G., Medvidovic, N.,
Quilici, A., Rosenblum, D. and Wolf, A. [1999]. An architecture-based ap-
proach to self-adaptive software.

Pacheco, P. S. [1996]. Parallel Programming with MPI, Morgan Kaufmann.

Patnaik, L. M. and Iyer, K. V. [1986]. Load-leveling in fault-tolerant distributed
computing systems, IEEE Transactions on Software Engineering 12(4): 554–
560.

Pellegrini, A., Smolinski, R., Chen, L., Fu, X., Hari, S. K. S., Jiang, J., Adve, S. V.,
Austin, T. and Bertacco, V. [2012]. Crashtest’ing swat: Accurate, gate-level
evaluation of symptom-based resiliency solutions, Proceedings of the Conference
on Design, Automation and Test in Europe, DATE ’12, EDA Consortium, San Jose,
CA, USA, pp. 1106–1109.

Pinello, C., Carloni, L. and Sangiovanni-Vincentelli, A. [2008]. Fault-tolerant
distributed deployment of embedded control software, Computer-Aided Design
of Integrated Circuits and Systems, IEEE Transactions on 27(5): 906–919.

Piscitelli, R. and Pimentel, A. [2012]. Design space pruning through hybrid anal-
ysis in system-level design space exploration, Design, Automation Test in Europe
Conference Exhibition (DATE), 2012, pp. 781–786.

Pittau, M., Alimonda, A., Carta, S. and Acquaviva, A. [2007]. Impact of task mi-
gration on streaming multimedia for embedded multiprocessors: A quantita-
tive evaluation, Embedded Systems for Real-Time Multimedia, 2007. ESTIMedia
2007. IEEE/ACM/IFIP Workshop on, pp. 59–64.

180 Bibliography

Powell, M. D., Biswas, A., Gupta, S. and Mukherjee, S. S. [2009]. Architectural
core salvaging in a multi-core processor for hard-error tolerance, Proceedings
of the 36th Annual International Symposium on Computer Architecture, ISCA
’09, ACM, New York, NY, USA, pp. 93–104.

Pradhan, D. and Vaidya, N. [1994]. Roll-forward checkpointing scheme: a novel
fault-tolerant architecture, Computers, IEEE Transactions on 43(10): 1163–
1174.

Prvulovic, M., Zhang, Z. and Torrellas, J. [2002]. Revive: Cost-effective archi-
tectural support for rollback recovery in shared-memory multiprocessors, Pro-
ceedings of the 29th Annual International Symposium on Computer Architecture,
ISCA ’02, IEEE Computer Society, Washington, DC, USA, pp. 111–122.

Reick, K., Sanda, P. N., Swaney, S., Kellington, J. W., Mack, M., Floyd, M. and
Henderson, D. [2008]. Fault-tolerant design of the ibm power6 microproces-
sor, IEEE Micro 28(2): 30–38.

Renesas [2013]. Semiconductor reliability handbook.
URL: http://www.renesas.com

Rezaei, M., Akhbardeh, A., Hannuksela, M. and Gabbouj, M. [2006]. Fuzzy rate
controller for variable bitrate video in mobile applications, Communications,
2006. ICC ’06. IEEE International Conference on, Vol. 7, pp. 3197–3201.

Romanescu, B. F. and Sorin, D. J. [2008]. Core cannibalization architecture:
Improving lifetime chip performance for multicore processors in the presence
of hard faults, Proceedings of the 17th International Conference on Parallel Ar-
chitectures and Compilation Techniques, PACT ’08, ACM, New York, NY, USA,
pp. 43–51.

Salehie, M. and Tahvildari, L. [2009]. Self-adaptive software: Landscape and
research challenges, ACM Trans. Auton. Adapt. Syst. 4(2): 14:1–14:42.

Salfner, F., Lenk, M. and Malek, M. [2010]. A survey of online failure prediction
methods, ACM Comput. Surv. 42(3): 10:1–10:42.

Saraswat, P. K., Pop, P. and Madsen, J. [2010]. Task mapping and bandwidth
reservation for mixed hard/soft fault-tolerant embedded systems, Proceedings
of the 2010 16th IEEE Real-Time and Embedded Technology and Applications
Symposium, RTAS ’10, IEEE Computer Society, Washington, DC, USA, pp. 89–
98.

181 Bibliography

Sastry Hari, S. K., Li, M.-L., Ramachandran, P., Choi, B. and Adve, S. V. [2009].
mswat: Low-cost hardware fault detection and diagnosis for multicore sys-
tems, Proceedings of the 42Nd Annual IEEE/ACM International Symposium on
Microarchitecture, MICRO 42, ACM, New York, NY, USA, pp. 122–132.

Schantz, R. E., Loyall, J. P., Rodrigues, C. and Schmidt, D. C. [2006]. Control-
ling quality-of-service in distributed real-time and embedded systems via adap-
tive middleware: Experiences with auto-adaptive and reconfigurable systems,
Software–Practice & Experience 36(11-12): 1189–1208.

Schmeck, H. [2005]. Organic computing - a new vision for distributed embedded
systems, Object-Oriented Real-Time Distributed Computing, 2005. ISORC 2005.
Eighth IEEE International Symposium on, pp. 201–203.

Schmoll, F., Heinig, A., Marwedel, P. and Engel, M. [2013]. Improving the fault
resilience of an h.264 decoder using static analysis methods, ACM Trans. Em-
bed. Comput. Syst. 13(1s): 31:1–31:27.

Scholzel, M., Koal, T. and Vierhaus, H. [2012]. An adaptive self-test routine for
in-field diagnosis of permanent faults in simple risc cores, Design and Diag-
nostics of Electronic Circuits Systems (DDECS), 2012 IEEE 15th International
Symposium on, pp. 312–317.

Schuchman, E. and Vijaykumar, T. N. [2005]. Rescue: A microarchitecture for
testability and defect tolerance, Proceedings of the 32Nd Annual International
Symposium on Computer Architecture, ISCA ’05, IEEE Computer Society, Wash-
ington, DC, USA, pp. 160–171.

Schulz, M., Bronevetsky, G., Fernandes, R., Marques, D., Pingali, K. and
Stodghill, P. [2004]. Implementation and evaluation of a scalable application-
level checkpoint-recovery scheme for mpi programs, Proceedings of the 2004
ACM/IEEE Conference on Supercomputing, SC ’04, IEEE Computer Society,
Washington, DC, USA, pp. 38–.

Shivakumar, P., Keckler, S., Moore, C. and Burger, D. [2003]. Exploiting microar-
chitectural redundancy for defect tolerance, Computer Design, 2003. Proceed-
ings. 21st International Conference on, pp. 481–488.

Singh, A. K., Shafique, M., Kumar, A. and Henkel, J. [2013]. Mapping on
multi/many-core systems: Survey of current and emerging trends, Proceed-
ings of the 50th Annual Design Automation Conference, DAC ’13, ACM, New
York, NY, USA, pp. 1:1–1:10.

182 Bibliography

Singh, S., Han, J.-Y. and Stefanek, G. [1991]. A heuristic approach to load sharing
in fault-tolerant distributed systems, Circuits and Systems, 1991., Proceedings
of the 34th Midwest Symposium on, pp. 629–632 vol.2.

Sinnamon, R. M. [1996]. Binary Decision Diagrams for Fault Tree Analysis, PhD
thesis, Loughborough University.

Smith, J. M. [1988]. A survey of process migration mechanisms, SIGOPS Oper.
Syst. Rev. 22: 28–40.

Sorin, D. J. [2009]. Fault Tolerant Computer Architecture, Morgan and Claypool
Publishers.

Sorin, D. J., Martin, M. M. K., Hill, M. D. and Wood, D. A. [2002]. Safetynet: Im-
proving the availability of shared memory multiprocessors with global check-
point/recovery, Proceedings of the 29th Annual International Symposium on
Computer Architecture, ISCA ’02, IEEE Computer Society, Washington, DC,
USA, pp. 123–134.

Srinivasan, J. [2006]. Lifetime reliability aware microprocessors, PhD thesis, Uni-
versity of Illinois at Urbana-Champaign.

Srinivasan, J., Adve, S. V., Bose, P. and Rivers, J. A. [2005]. Exploiting structural
duplication for lifetime reliability enhancement, Proceedings of the 32Nd An-
nual International Symposium on Computer Architecture, ISCA ’05, IEEE Com-
puter Society, Washington, DC, USA, pp. 520–531.

Srinivasan, K. and Chatha, K. [2005]. A technique for low energy mapping and
routing in network-on-chip architectures, Proc. of the Int. Symposium on Low
Power Electronics and Design, pp. 387 – 392.

Srinivasan, K., Chatha, K. S. and Konjevod, G. [2006]. Linear-programming-
based techniques for synthesis of network-on-chip architectures, IEEE Trans.
Very Large Scale Integr. Syst. 14: 407–420.

Stefanov, T., Kienhuis, B. and Deprettere, E. [2002]. Algorithmic transformation
techniques for efficient exploration of alternative application instances, Pro-
ceedings of the tenth international symposium on Hardware/software codesign,
CODES ’02, ACM, New York, NY, USA, pp. 7–12.

Stefanov, T., Zissulescu, C., Turjan, A., Kienhuis, B. and Deprettere, E. [2004].
System design using kahn process networks: The compaan/laura approach,
Design, Automation and Test in Europe Conference and Exhibition 1: 10340.

183 Bibliography

Stralen, P. v. and Pimentel, A. [2012]. A SAFE approach towards early de-
sign space exploration of fault-tolerant multimedia MPSoCs, Proceedings of
CODES+ISSS, pp. 393–402.

The Multicore Association [2011]. Multicore communication API (MCAPI) spec-
ification v2.015.
URL: http://www.multicore-association.org

Thiele, L., Bacivarov, I., Haid, W. and Huang, K. [2007]. Mapping applications
to tiled multiprocessor embedded systems, Seventh Int. Conf. on Application of
Concurrency to System Design, pp. 29 –40.

Thies, W. and Amarasinghe, S. [2010]. An empirical characterization of stream
programs and its implications for language and compiler design, Proceedings
of the 19th international conference on Parallel architectures and compilation
techniques, pp. 365–376.

van der Wolf, P., Lieverse, P., Goel, M., La Hei, D. and Vissers, K. [1999]. An
mpeg-2 decoder case study as a driver for a system level design methodology,
Proceedings of the seventh international workshop on Hardware/software code-
sign, CODES ’99, ACM, New York, NY, USA, pp. 33–37.

Vangal, S., Howard, J., Ruhl, G., Dighe, S., Wilson, H., Tschanz, J., Finan, D.,
Singh, A., Jacob, T., Jain, S., Erraguntla, V., Roberts, C., Hoskote, Y., Borkar,
N. and Borkar, S. [2008]. An 80-tile sub-100-w teraflops processor in 65-nm
cmos, Solid-State Circuits, IEEE Journal of 43(1): 29 –41.

Vaughan, F. and Munro, D. [2000]. Self-adaptive compliant persisent archi-
tectures, Proceedings of the Seventh Integrated Data Environments - Australia
(IDEA’07) Workshop, pp. 5–10.

Verdoolaege, S. [2010]. Handbook on signal processing systems, Springer, chapter
Polyhedral process networks.

Verdoolaege, S., Nikolov, H. and Stefanov, T. [2007]. pn: A Tool for Improved
Derivation of Process Networks, EURASIP J. Embedded Syst. 2007: 19–19.

Vesely, W. E. [1971]. Reliability and fault tree applications at the NRTS, Nuclear
Science, IEEE Transactions on 18(1): 472 –480.

Vesely, W. E., Goldberg, F. F., Roberts, N. H. and Haasl, D. F. [1981]. Fault tree
handbook, Technical report, DTIC Document.

184 Bibliography

Vrba, Z., Halvorsen, P. and Griwodz, C. [2009]. Evaluating the run-time perfor-
mance of kahn process network implementation techniques on shared-memory
multiprocessors, Complex, Intelligent and Software Intensive Systems, 2009. CI-
SIS ’09. International Conference on, pp. 639 –644.

Walter, I., Cidon, I., Kolodny, A. and Sigalov, D. [2009]. The era of many-modules
soc: revisiting the noc mapping problem, 2nd Int. Workshop on Network on
Chip Architectures, pp. 43 –48.

Wang, X., Yang, M., Jiang, Y. and Liu, P. [2010]. A power-aware mapping ap-
proach to map ip cores onto nocs under bandwidth and latency constraints,
ACM Trans. Archit. Code Optim. 7: 1–30.

Wentzlaff, D., Griffin, P., Hoffmann, H., Bao, L., Edwards, B., Ramey, C., Mattina,
M., Miao, C.-C., Brown, J. and Agarwal, A. [2007]. On-chip interconnection
architecture of the tile processor, Micro, IEEE 27(5): 15 –31.

Xilinx [2010]. Embedded processor block in virtex-5 fpgas, http://www.

xilinx.com/support/documentation/sw_manuals/mb_ref_guide.pdf.

Xu, J. and Randell, B. [1996]. Roll-forward error recovery in embedded real-time
systems, Proc. Int. Conf. on Parallel and Distributed Systems, pp. 414–421.

Yetim, Y., Martonosi, M. and Malik, S. [2013]. Extracting useful computation
from error-prone processors for streaming applications, Proceedings of the Con-
ference on Design, Automation and Test in Europe, DATE ’13, EDA Consortium,
San Jose, CA, USA, pp. 202–207.

Yi, Y., Han, W., Zhao, X., Erdogan, A. T. and Arslan, T. [2009]. An ilp formulation
for task mapping and scheduling on multi-core architectures, Proc. of the Design
Automation and Test Europe Conf., pp. 33–38.

Zadeh, L. [1965]. Fuzzy sets, Information and Control 8: 338–353.

Zhai, J., Nikolov, H. and Stefanov, T. [2011]. Modeling adaptive streaming ap-
plications with parameterized polyhedral process networks, Proceedings of the
48th Design Automation Conference, ACM, pp. 116–121.

Zhang, J. and Cheng, B. H. C. [2006]. Model-based development of dynamically
adaptive software, ICSE ’06: Proceeding of the 28th international conference on
Software engineering, ACM, New York, NY, USA, pp. 371–380.

http://www.xilinx.com/support/documentation/sw_manuals/mb_ref_guide.pdf
http://www.xilinx.com/support/documentation/sw_manuals/mb_ref_guide.pdf

185 Bibliography

Zhang, L., Han, Y., Xu, Q. and Li, X. [2008]. Defect tolerance in homogeneous
manycore processors using core-level redundancy with unified topology, Pro-
ceedings of the Conference on Design, Automation and Test in Europe, DATE ’08,
ACM, New York, NY, USA, pp. 891–896.

Zhou, W., Zhang, Y. and Mao, Z. [2006]. Pareto based multi-objective mapping
ip cores onto noc architectures, IEEE Asia Pacific Conf. on Circuits and Systems,
pp. 331 –334.

Zrida, H., Abid, M., Ammri, A. and Jemai, A. [2008]. A yapi-kpn parallel model of
a h264/avc video encoder, Research in Microelectronics and Electronics, 2008.
PRIME 2008. Ph.D., pp. 109 –112.

	Contents
	List of Figures
	List of Tables
	List of Abbreviations
	Introduction
	Motivation
	The need for self-adaptation
	The need for fault tolerance

	Research framework
	KPN and PPN as the model of computation

	Dissertation contributions
	Organization of the dissertation

	Background and Related Work
	Self-adaptive systems
	Adaptation coverage
	Separation of concerns
	Adaptation management
	Adaptation requirements specification

	MPSoC programming models
	Kahn Process Networks
	Polyhedral Process Networks
	KPN for MPSoCs
	Mapping applications to NoCs
	Task migration
	Fault tolerance
	Fault detection
	Error recovery
	Related fault tolerance approaches in embedded systems
	The lifetime reliability aspect

	Application-level self-adaptation for quality management
	Adaptation of application-level parameters
	Quality management in multimedia systems

	Reference Platform
	Architectural support
	Message passing support
	Inter-processor interrupt generation support

	Software/Middleware infrastructure
	Application model
	PPN middleware

	Fault-tolerance support
	Fault model
	Online self-testing support

	Fault-aware Online Task Remapping
	Contributions with respect to the state of the art
	ILP formulation of the mapping problem
	Minimization of the communication cost
	Minimization of the total execution time
	Multi-objective optimization with ILP

	OTR: Online task remapping
	Optimal task remapping
	Center of Gravity heuristic (cog)
	Nonidentical Multiprocessor Scheduling (nms)
	Localized NMS Heuristic (lnms)

	The reliability aspect
	Reliability estimation for online task remapping
	Reliability estimation for N-modular redundancy

	Experimental results
	Case study: the MPEG-2 decoder
	A synthetic task graph
	Case studies on the platform
	Evaluation of the remapping strategies on the platform
	Reliability evaluation

	Summary

	Recovery Support in the Fault-aware Run-time Environment
	Contributions with respect to the state of the art
	CRR: Fine-grained checkpointing and rollback based fault recovery
	Modifications to the PPN processes
	Fault-aware remapping support
	Task migration hardware module

	RFR: Roll-forward fault recovery
	Task migration hardware module
	Fault-aware remapping support
	Modifications to the PPN processes

	Experimental results for CRR
	Fault recovery time overhead
	Steady-state performance overhead
	Architectural support hardware overhead

	Experimental results for RFR
	Fault recovery time overhead
	Steady-state performance overhead
	Architectural support hardware overhead

	Summary

	Application-level Self-adaptation for Quality Management
	Contributions with respect to the state of the art
	MCA-EB: Self-adaptation with blocking channels
	Adaptive task
	Monitoring task
	Controller

	MCA-EI: Self-adaptation using inter-processor interrupts
	Case study: Motion JPEG
	Self-adaptive M-JPEG with MCA-EB
	Self-adaptive M-JPEG with MCA-EI

	Results for MCA-EB
	Bit-rate and frame-rate adaptation tests
	Fast video vs. slow video
	Cost of adaptation

	Comparison of MCA-EB and MCA-EI
	Adaptation overhead
	Control quality
	Adaptation overhead vs. Controller workload

	Summary

	Conclusion and Future Work
	Bibliography

