133 research outputs found

    Real-time detection of auditory : steady-state brainstem potentials evoked by auditory stimuli

    Get PDF
    The auditory steady-state response (ASSR) is advantageous against other hearing techniques because of its capability in providing objective and frequency specific information. The objectives are to reduce the lengthy test duration, and improve the signal detection rate and the robustness of the detection against the background noise and unwanted artefacts.Two prominent state estimation techniques of Luenberger observer and Kalman filter have been used in the development of the autonomous ASSR detection scheme. Both techniques are real-time implementable, while the challenges faced in the application of the observer and Kalman filter techniques are the very poor SNR (could be as low as −30dB) of ASSRs and unknown statistics of the noise. Dual-channel architecture is proposed, one is for the estimate of sinusoid and the other for the estimate of the background noise. Simulation and experimental studies were also conducted to evaluate the performances of the developed ASSR detection scheme, and to compare the new method with other conventional techniques. In general, both the state estimation techniques within the detection scheme produced comparable results as compared to the conventional techniques, but achieved significant measurement time reduction in some cases. A guide is given for the determination of the observer gains, while an adaptive algorithm has been used for adjustment of the gains in the Kalman filters.In order to enhance the robustness of the ASSR detection scheme with adaptive Kalman filters against possible artefacts (outliers), a multisensory data fusion approach is used to combine both standard mean operation and median operation in the ASSR detection algorithm. In addition, a self-tuned statistical-based thresholding using the regression technique is applied in the autonomous ASSR detection scheme. The scheme with adaptive Kalman filters is capable of estimating the variances of system and background noise to improve the ASSR detection rate

    Newborn EEG connectivity analysis using time-frequency signal processing techniques

    Get PDF

    Adaptive techniques for signal enhancement in the human electroencephalogram

    Get PDF
    This thesis describes an investigation of adaptive noise cancelling applied to human brain evoked potentials (EPs), with particular emphasis on visually evoked responses. The chief morphological features and signal properties of EPs are described. Consideration is given to the amplitude and spectral properties of the underlying spontaneous electroencephalogram and the importance of noise reduction techniques in EP studies is empnasised. A number of methods of enhancing EP waveforms are reviewed in the light of the known limitations of coherent signal averaging. These are shown to oe generally inadequate for enhancing individual EP responses. The theory of adaptive filters is reviewed with particular reference to adaptive transversal filters usiny the Widrow-Hoff algorithm. The theory of adaptive noise cancelling using correlated reference sources is presented, and new work is described which relates canceller performance to the magnitude-squared coherence function of the input signals. A novel filter structure, the gated adaptive filter, is presented and shown to yield improved cancellation without signal distortion when applied to repetitive transient signals in stationary noise under the condition of fast adaption. The signal processing software available is shown to be inadequate, and a comprehensive Fortran program developed for use on a PDP-11 computer is described. The properties of human visual evoked potentials and the EEO are investigated in two normal adults using a montage of 7 occipital electrodes. Signal enhancement of EPs is shown to be possible oy adaptive noise cancelling, and improvements in signal to noise in the range 2-10 dB are predicted. A discussion of filter strategies is presented, and a detailed investiyation of adaptive noise cancel liny performed usiny a ranye of typical EP data. Assessment of the results confirms the proposal that substantial improvement in sinyle EP response recoynition is achieved by this technique

    Development and Characterization of Ear-EEG for Real-Life Brain-Monitoring

    Get PDF
    Functional brain monitoring methods for neuroscience and medical diagnostics have until recently been limited to laboratory settings. However, there is a great potential for studying the human brain in the everyday life, with measurements performed in more realistic real-life settings. Electroencephalography (EEG) can be measured in real-life using wearable EEG equipment. Current wearable EEG devices are typically based on scalp electrodes, causing the devices to be visible and often uncomfortable to wear for long-term recordings. Ear-EEG is a method where EEG is recorded from electrodes placed in the ear. The Ear-EEG supports non-invasive long-term recordings of EEG in real-life in a discreet way. This Ph.D. project concerns the characterization and development of ear-EEG for real-life brain-monitoring. This was addressed through characterization of physiological artifacts in real-life settings, development and characterization of dry-contact electrodes for real-life ear-EEG acquisition, measurements of ear-EEG in real-life, and development of a method for mapping cortical sources to the ear. Characterization of physiological artifacts showed a similar artifact level for recordings from ear electrodes and temporal lobe scalp electrodes. Dry-contact electrodes and flexible earpieces were developed to increase the comfort and user-friendliness of the ear-EEG. In addition, electronic instrumentation was developed to allow implementation in a hearing-aid-sized ear-EEG device. Ear-EEG measurements performed in real-life settings with the dry-contact electrodes, were comparable to temporal lobe scalp EEG, when referenced to a Cz scalp electrode. However, the recordings showed that further development of the earpieces and electrodes are needed to obtain a satisfying recording quality, when the reference is located close to or in the ear. Mapping of the electric fields from well-defined cortical sources to the ear, showed good agreement with previous ear-EEG studies and has the potential to provide valuable information for future development of the ear-EEG method. The Ph.D. project showed that ear-EEG measurements can be performed in real-life, with dry-contact electrodes. The brain processes studied, were established with comparable clarity on recordings from temporal lobe scalp and ear electrodes. With further development of the earpieces, electrodes, and electronic instrumentation, it appears to be realistic to implement ear-EEG into unobtrusive and user-friendly devices for monitoring of human brain processes in real-life

    Anesthetic-induced unresponsiveness: Electroencephalographic correlates and subjective experiences

    Get PDF
    Anesthetic drugs can induce reversible alterations in responsiveness, connectedness and consciousness. The measures based on electroencephalogram (EEG) have marked potential for monitoring the anesthetized state because of their relatively easy use in the operating room. In this study, 79 healthy young men participated in an awake experiment, and 47 participants continued to an anesthesia experiment where they received either dexmedetomidine or propofol as target-controlled infusion with stepwise increments until the loss of responsiveness. The participants were roused during the constant drug infusion and interviewed. The drug dose was increased to 1.5-fold to achieve a deeper unresponsive state. After regaining responsiveness, the participants were interviewed. EEG was measured throughout the experiment and the N400 event-related potential component and functional and directed connectivity were studied. Prefrontal-frontal connectivity in the alpha frequency band discriminated the states that differed with respect to responsiveness or drug concentration. The net direction of connectivity was frontal-to-prefrontal during unresponsiveness and reversed back to prefrontal-to-frontal upon return of responsiveness. The understanding of the meaning of spoken language, as measured with the N400 effect, was lost along with responsiveness but, in the dexmedetomidine group, the N400 component was preserved suggesting partial preservation of the processing of words during anesthetic-induced unresponsiveness. However, the N400 effect could not be detected in all the awake participants and the choice of analysis method had marked impact on its detection rate at the individual-level. Subjective experiences were common during unresponsiveness induced by dexmedetomidine and propofol but the experiences most often suggested disconnectedness from the environment. In conclusion, the doses of dexmedetomidine or propofol minimally sufficient to induce unresponsiveness do not render the participants unconscious and dexmedetomidine does not completely abolish the processing of semantic stimuli. The local anterior EEG connectivity in the alpha frequency band may have potential in monitoring the depth of dexmedetomidine- and propofol-induced anesthesia.Anesteettien aiheuttama vastauskyvyttömyys: aivosähkökäyräpohjaiset korrelaatit ja subjektiiviset kokemukset Anestesialääkkeillä voidaan saada aikaan palautuvia muutoksia vastauskykyisyydessä, kytkeytyneisyydessä ja tajunnassa. Aivosähkökäyrään (EEG) pohjautuvat menetelmät tarjoavat lupaavia mahdollisuuksia mitata anestesian vaikutusta aivoissa, sillä niitä on suhteellisen helppo käyttää leikkaussalissa. Tässä tutkimuksessa 79 tervettä nuorta miestä osallistui valvekokeeseen ja 47 heistä jatkoi anestesiakokeeseen. Anestesiakokeessa koehenkilöille annettiin joko deksmedetomidiinia tai propofolia tavoiteohjattuna infuusiona nousevia annosportaita käyttäen, kunnes he menettivät vastauskykynsä. Koehenkilöt herätettiin tasaisen lääkeinfuusion aikana ja haastateltiin. Koko kokeen ajan mitattiin EEG:tä, josta tutkittiin N400-herätevastetta sekä toiminnallista ja suunnattua konnektiivisuutta. Prefrontaali-frontaalivälillä mitattu konnektiivisuus alfa-taajuuskaistassa erotteli toisistaan tilat, jotka erosivat vastauskykyisyyden tai lääkepitoisuuden suhteen. Konnektiivisuuden vallitseva suunta oli frontaalialueilta prefrontaalialueille vastauskyvyttömyyden aikana, mutta se kääntyi takaisin prefrontaalisesta frontaaliseen kulkevaksi koehenkilöiden vastauskyvyn palatessa. N400-efektillä mitattu puhutun kielen ymmärtäminen katosi vastauskyvyn menettämisen myötä. Deksmedetomidiiniryhmässä N400-komponentti säilyi, mikä viittaa siihen, että anesteettien aiheuttaman vastauskyvyttömyyden aikana sanojen prosessointi voi säilyä osittain. Yksilötasolla N400-efektiä ei kuitenkaan havaittu edes kaikilla hereillä olevilla henkilöillä, ja analyysimenetelmän valinnalla oli suuri vaikutus herätevasteen havaitsemiseen. Subjektiiviset kokemukset olivat yleisiä deksmedetomidiinin ja propofolin aiheuttaman vastauskyvyttömyyden aikana, mutta kokemukset olivat usein ympäristöstä irtikytkeytyneitä. Yhteenvetona voidaan todeta, että deksmedetomidiini- ja propofoliannokset, jotka juuri ja juuri riittävät aikaansaamaan vastauskyvyttömyyden, eivät aiheuta tajuttomuutta. Deksmedetomidiini ei myöskään täysin estä merkityssisällöllisten ärsykkeiden käsittelyä. Frontaalialueen sisällä EEG:llä mitattu konnektiivisuus alfataajuuskaistassa saattaa olla tulevaisuudessa hyödyllinen menetelmä deksmedetomidiini- ja propofolianestesian syvyyden mittaamiseksi

    Brain Computer Interfaces and Emotional Involvement: Theory, Research, and Applications

    Get PDF
    This reprint is dedicated to the study of brain activity related to emotional and attentional involvement as measured by Brain–computer interface (BCI) systems designed for different purposes. A BCI system can translate brain signals (e.g., electric or hemodynamic brain activity indicators) into a command to execute an action in the BCI application (e.g., a wheelchair, the cursor on the screen, a spelling device or a game). These tools have the advantage of having real-time access to the ongoing brain activity of the individual, which can provide insight into the user’s emotional and attentional states by training a classification algorithm to recognize mental states. The success of BCI systems in contemporary neuroscientific research relies on the fact that they allow one to “think outside the lab”. The integration of technological solutions, artificial intelligence and cognitive science allowed and will allow researchers to envision more and more applications for the future. The clinical and everyday uses are described with the aim to invite readers to open their minds to imagine potential further developments

    Connectivity Analysis in EEG Data: A Tutorial Review of the State of the Art and Emerging Trends

    Get PDF
    Understanding how different areas of the human brain communicate with each other is a crucial issue in neuroscience. The concepts of structural, functional and effective connectivity have been widely exploited to describe the human connectome, consisting of brain networks, their structural connections and functional interactions. Despite high-spatial-resolution imaging techniques such as functional magnetic resonance imaging (fMRI) being widely used to map this complex network of multiple interactions, electroencephalographic (EEG) recordings claim high temporal resolution and are thus perfectly suitable to describe either spatially distributed and temporally dynamic patterns of neural activation and connectivity. In this work, we provide a technical account and a categorization of the most-used data-driven approaches to assess brain-functional connectivity, intended as the study of the statistical dependencies between the recorded EEG signals. Different pairwise and multivariate, as well as directed and non-directed connectivity metrics are discussed with a pros-cons approach, in the time, frequency, and information-theoretic domains. The establishment of conceptual and mathematical relationships between metrics from these three frameworks, and the discussion of novel methodological approaches, will allow the reader to go deep into the problem of inferring functional connectivity in complex networks. Furthermore, emerging trends for the description of extended forms of connectivity (e.g., high-order interactions) are also discussed, along with graph-theory tools exploring the topological properties of the network of connections provided by the proposed metrics. Applications to EEG data are reviewed. In addition, the importance of source localization, and the impacts of signal acquisition and pre-processing techniques (e.g., filtering, source localization, and artifact rejection) on the connectivity estimates are recognized and discussed. By going through this review, the reader could delve deeply into the entire process of EEG pre-processing and analysis for the study of brain functional connectivity and learning, thereby exploiting novel methodologies and approaches to the problem of inferring connectivity within complex networks
    corecore