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Abstract 

 

The auditory steady-state response (ASSR) is advantageous against other hearing 

techniques because of its capability in providing objective and frequency specific 

information. The objectives are to reduce the lengthy test duration, and improve the 

signal detection rate and the robustness of the detection against the background noise 

and unwanted artefacts.  

 

Two prominent state estimation techniques of Luenberger observer and Kalman filter 

have been used in the development of the autonomous ASSR detection scheme. Both 

techniques are real-time implementable, while the challenges faced in the application of 

the observer and Kalman filter techniques are the very poor SNR (could be as low as 

−30dB) of ASSRs and unknown statistics of the noise. Dual-channel architecture is 

proposed, one is for the estimate of sinusoid and the other for the estimate of the 

background noise. Simulation and experimental studies were also conducted to evaluate 

the performances of the developed ASSR detection scheme, and to compare the new 

method with other conventional techniques. In general, both the state estimation 

techniques within the detection scheme produced comparable results as compared to the 

conventional techniques, but achieved significant measurement time reduction in some 

cases. A guide is given for the determination of the observer gains, while an adaptive 

algorithm has been used for adjustment of the gains in the Kalman filters. 

 

In order to enhance the robustness of the ASSR detection scheme with adaptive Kalman 

filters against possible artefacts (outliers), a multisensory data fusion approach is used 

to combine both standard mean operation and median operation in the ASSR detection 

algorithm. In addition, a self-tuned statistical-based thresholding using the regression 

technique is applied in the autonomous ASSR detection scheme. The scheme with 

adaptive Kalman filters is capable of estimating the variances of system and background 

noise to improve the ASSR detection rate.    
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1 . Introduction 

To begin with this introductory chapter, motivations are given for the techniques that 

will be developed in the forthcoming chapters of the thesis. In Section 1.2, an overview 

of the human auditory system and a brief classification of impairment are presented. 

Section 1.3 describes the essentials of having early hearing detection and the follow-up 

rehabilitation treatments. It includes fitting hearing aids and cochlear implants. Both 

subjective and objective hearing assessment techniques to obtain hearing thresholds 

estimation will also be described in Section 1.3.  

 

Main challenges encountered are stated in Section 1.4, and with Section 1.5 presenting 

the research objectives of this thesis. The methodologies chosen for the thesis will also 

be briefly described in Section 1.5. An outline and an overview of the different chapters 

of the thesis will be given in Section 1.6. 

 

1.1 Motivation of Research 

The ability to hear and process sounds is crucial for an appropriate development of 

speech, language and cognitive abilities. However, at least one in a thousand worldwide 

and around 840 newborns each year in the UK suffer from permanent bilateral hearing 

loss (The Hearing Research Trust, 2005). Therefore, early diagnosis and rehabilitation 

are vital to reduce the handicap of hearing loss in those children. If the outcome of the 

initial hearing screening test is abnormal, the infant is to be referred for further hearing 

threshold diagnosis. However, the standard behavioural observation assessments are not 
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applicable for infants. This is because of the nature of these hearing assessments which 

require reliable responses from the subjects. Thus, objective audiometric techniques 

appear to be suitable options for hearing assessments which are able to quantify test 

results more objectively and not influenced by sleep or sedation of the subject. As a 

result, the objective audiometric techniques are vital to the ―difficult-to-test‖ population, 

which mainly consists of infants, children and patients with disabilities (Fulton and 

Lloyd, 1969; Picton, 1991)    

 

Nowadays the most commonly used objective audiometric techniques for young infants 

are otoacoustic emissions (OAE), click-evoked audiology brainstem response (ABR) 

and auditory steady-state response (ASSR). The OAE approach is to test cochlear status 

(mainly hair cell function) founded by Kemp (1979), and it is only limited for hearing 

screening purposes because of its frequency-specificity that is not correlated with 

threshold of the observed subject and also not observable at hearing losses for 40dB HL 

and higher (Luts and Wouters, 2004). Meanwhile, click-evoked ABR is generally used 

for hearing screening and hearing threshold estimation but the technique is limited in 

identifying the degree of hearing loss and providing essential frequency specific 

information required for any rehabilitation treatment, for instance, fitting a hearing aid 

or surgical need for a cochlear implant (Luts et al., 2006). In response to the 

shortcomings of these techniques, the ASSR was developed to provide vital frequency-

specific hearing threshold estimation that is highly correlated with the standard 

behavioural observation assessments and to perform within an acceptable duration of 

time typically at approximately 60 minutes (Luts and Wouters, 2004; Ahn et al., 2007). 

 

The ASSR also has its drawbacks. Since the ASSR is a faint auditory evoked responses 

(AEP), the technique is very susceptible to noise and artefacts which disrupt the 

measurement and pro-long the recording time. Recent studies revealed that a reliable 

ASSR based hearing threshold estimation for adults are approximately an hour and 

could last for hours if tested on newborns (Luts and Wouters, 2004). This thesis will 

introduce several approaches with the aim to reduce ASSR measurement time and to 

increase its robustness against background noise and artefacts. 
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1.2 Hearing and Hearing Impairment 

Hearing is one of humans‘ five senses, and commonly refers to the ability to detect 

sound. Surprisingly, humans extract more information from sound than any other 

senses. Although human primates are known as visually oriented animals, speech and 

music carry more of culture and societal meaning than sight or other senses. Moreover, 

humans suffer more from deafness than with other sensory losses (Clopton and Viogt, 

2006). This section provides a brief survey of essential parts of the auditory system and 

the classification of hearing impairments. 

 

1.2.1 Human Auditory System 

The human auditory system can be divided into two main sections, the peripheral 

auditory system (including outer ear, middle ear and inner ear) (see Figure 1.1) and the 

central auditory pathways (see Figure 1.2) (Yost, 2000).  

 

 

Figure 1.1: Schematic of peripheral auditory system (Seikel et al., 2000). 
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Figure 1.2: Central auditory pathways (Bess and Humes, 1995). 

 

Human hearing process consists of a sequence of complex sound transformations as the 

sound travels through peripheral auditory system and central auditory pathways. The 

sound energy enters the outer ear through the ear canal and causes the tympanic 

membrane to vibrate, thus the acoustical energy is converted into mechanical energy. 

The mechanical vibration energy is then transmitted by the ossicles (human‘s smallest 

bones, i.e. malleus, incus and stapes) in the middle ear to the oval window. This induces 

motion in the fluids of the cochlear, also known as auditory filter bank (see Figure 1.3) 

(Moore, 2003). This would then causes a wave-like movement of the basilar membrane 

and its surrounding structures (see Figure 1.4). 

 

 

Figure 1.3: Positions of the base and apex ends relative to different frequencies (in Hz) 

in basilar membrane (adapted from Sherwood, 1993). 
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Figure 1.4: Cross section of the cochlear (Seikel et al., 2000). 

 

With this mechanism, the hair cells are moved relative to the tectorial membrane and 

the hairs on top of the hair cells are then bent. The displacement of the hairs leads to 

excitation of the hair cells and thus creates the generation of actions potentials in the 

neurons of the auditory nerve (Pickles, 1988; Northern and Downs, 1991). Therefore, 

the mechanical vibrations are transformed into electrical events and then transmitted to 

the central auditory pathways by the auditory nerve. However, both the cochlear and the 

auditory nerve represent only the first initial stages of information extraction of auditory 

signal. Electrical events are transmitted to neurons at higher levels of the central 

auditory pathways for further extraction of information, and the responses of these 

neurons are more complex yet not well defined so far (Nolte, 1988). These pathways are 

not be discussed in this thesis, but detailed information can be found in Clopton and 

Viogt (2006). 

 

1.2.2 Classification of Hearing Loss 

Hearing loss can be classified into three attributes, which are the degree, type and 

configuration of the hearing loss. The degree of hearing loss refers to the severity of the 

loss (range of intensities that one able to hear) and commonly groups into, normal 

hearing (0―25dB HL), mild hearing loss (26―45dB HL), moderate hearing loss 

(46―70dB HL), severe hearing loss (71―90dB HL), and profound hearing loss (above 

90dB HL), as shown in Figure 1.5. The hearing level (HL) suffix is a relative scale with 



6 

 

its zero defined by the standard audiograms of a group of normal hearing young adults 

(International Organization for Standardization, 1998). 

 

 
Figure 1.5: A typical audiogram template for hearing test (adapted from Yetter, 2006). 

 

Next, classification of the type of hearing loss is based on the auditory anatomical 

location of the impairment. If the sound is attenuated (sound level reduced) through the 

outer and middle ear, conductive hearing loss occurs. On the other hand, if the inner ear 

or the auditory nerve pathway is damaged, common sounds are not only attenuated but 

also distorted, thus sensorineural hearing loss is present. However, only conductive 

hearing loss can be corrected by medicine or surgery, but sensorineural hearing loss is 

permanent and neither medication nor surgery is effective. The last type of hearing loss 

is called mixed hearing loss, which occurs with a combination of both conducive and 

sensorineural hearing losses (Hall, 1992; Haughton, 2002). 

 

Lastly, the configuration of hearing loss often refers to the extent of the hearing loss in 

particular frequency ranges. In general, possible configurations are high-frequency/low-

frequency hearing loss, flat hearing loss and a cookie-bite configuration. A bilateral 

hearing loss refers to that both ears are affected, while unilateral hearing loss means just 

one ear is affected. In a symmetrical hearing loss, the degree and configuration is the 

same in each ear, in contrast with asymmetrical hearing loss (Hall, 1992; Haughton, 

2002). 

 

Normal 

Mild 

Moderate 

Severe 

Profound 
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1.3 Hearing Detection and Intervention 

This section discusses the importance of early hearing diagnosis (or screening) and with 

appropriate follow-up intervention for hearing impaired subjects. An early detection is 

vital particularly for children, because language development will be delayed if the 

hearing problem is not remedied. On the other hand, hearing loss can cause adults 

feeling socially isolated and compromise personal achievements. This section also 

describes two possible rehabilitation approaches, i.e. fitting hearing aids and cochlear 

implants.  

 

1.3.1 Essentiality of Early Detection 

At least one in a thousand newborns worldwide suffers from permanent bilateral 

hearing loss (Mason and Herrmann, 1998; Dalzell et al., 2000). Hearing loss in children 

is a silent, hidden handicap. If undetected and untreated, it can lead to delayed speech 

and language development, learning, social and emotional problems (Northern and 

Downs, 1991). The development of the auditory nervous relies partly on auditory input, 

while language acquisition in human requires a critical period of good hearing capacity 

which spans the frequency range of human speech (between 300−3000 Hz). The critical 

period is from birth until approximately 12 months of age. The longer auditory language 

stimulation is delayed because of an undetected hearing loss, the less efficient will be 

the language facility, because there is a critical period for the development of language 

(Northern and Downs, 1991). Moreover, the study conducted by Yoshinaga-Itano et al. 

(1998) demonstrated that significant better language development is associated with 

identification of hearing screening and intervention within 6 months of age. 

 

Since undetected hearing loss has crucial impacts on the development of language 

abilities and communicative competence of infants or young children, American Joint 

Committee on Infant Hearing (JCIH) was established and is responsible in making 

recommendations concerning the early identification of children at-risk for hearing loss 

and newborn hearing screening (Joint Committee on Infant Hearing, 2000). In 2000, the 

committee endorsed screening of all neonates‘ hearing using objective physiologic 

measurers named Universal Newborn Hearing Screening (UNHS). The 

recommendations of the UNHS are summarised as: 

 All infants should undergo hearing screening before 1 month of age. 
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 An appropriate audiological and medical diagnosis should be made before age of 

3 months if one failed the previous stage of hearing screening. 

 All infants with confirmed permanent hearing loss should receive 

multidisciplinary intervention by age of 6 months. 

 

The screening procedures suggested in UNHS consist of a combined non-invasive 

objective approach using both OAE and ABR testing. In general, the ABR test is a 

measurement of the response to sounds from the lowest part of the brain (the 

brainstem). The auditory system is stimulated by a brief acoustic signal via air (with 

earphones) or bone (with bone vibrator) conduction. The resulting neuro-electric 

activity is then recorded by surface electrodes placed on the head, and its response is 

accessed based on the identification of the components within the waves, their 

morphology and the measurement of absolute and interwave latencies (University of 

Michigan Health System, 2003). Unlike the ABR, the acoustic emissions are sounds 

generated by the outer hair cells in the cochlear of a person with normal hearing or with 

mild hearing loss. The OAE are measured by a probe (small microphone) which is 

placed in the ear canal after direct acoustic stimulation from the probe and perceived by 

the cochlear (University of Michigan Health System, 2003). In the United Kingdom, the 

UNHS equivalent hearing screening assessment is carry out under the National Health 

Service (NHS) under Newborn Hearing Screening Programme (NHSP). The screening 

protocol is similar to the UNHS and all infants are scheduled to be screened before the 

first 5 weeks from their birth and to receive appropriate rehabilitation support within the 

following six months (NHS, 2008). 

 

1.3.2 Overview on Hearing Test 

There are generally two approaches to test hearing, subjective and objective hearing 

tests. Subjective testing requires a behavioural response from the subject. These tests 

are done in the test booth by watching the baby‘s responses to sound or by playing a 

―Listening game‖ with the child. There are three subjective hearing test methods 

(University of Michigan Health System, 2003): 

 Behavioural observation audiometry (from birth to seven months). 

 Visual reinforcement audiometry (from seven until thirty months). 

 Conditional play audiometry (thirty months and above). 
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On the other hand, objective hearing tests (e.g. OAE, ABR and ASSR) do not require 

responses or cooperation from the child. In many situations, these infants may be 

unwilling or unable to participate in any of the conventional behavioural (subjective 

approaches) auditory tests at their early age. Although the ABR and OAE have been 

well established in both clinical and research areas for at least 20 years, there are 

limitations within these hearing tests (Brookhouser et al., 1990; Hall, 1992 and 2000; 

Luts et al., 2004). The limitations are: 

 Lack of frequency specific information for click-evoked (transient) ABR 

especially below 1000 Hz, which is required in determining the configuration of 

hearing loss. Although tone-burst ABR could overcome the problem, it is still 

difficult to record and observe at near threshold levels (particularly at lower 

frequencies). 

 The subjective nature of assessing responses of ABR, which requires visual 

detection of waveform peaks, latencies and morphology by highly experienced 

examiner to undertake and interpret the results accurately. Thus, ABR cannot be 

classified as 100% objective test. 

 Only limited information can be provided by either click-evoked or tone-burst 

ABR for hearing loss greater than 90dB HL. Therefore, it could be hard to 

discriminate severe-to-profound threshold for hearing impaired children and to 

provide accurate advice when it comes to hearing aid fitting or cochlear implant. 

 A lengthy test duration is required by the ABR due to multiple recordings at 

various intensity levels and at multiple frequencies to estimate the degree of 

hearing loss. 

 Since OAE testing does not correlate to behavioural thresholds and only use to 

indicate the normality function of outer hair cell. Therefore, limited information 

is available about the configuration, type or degree of hearing loss. 

 

In recent years, the ASSR had gained considerable attention and some excitement by 

audiologists, especially those who are involved in the assessment and subsequent 

hearing aid fitting for very young infants with hearing disability. It is believed, 

compared to commonly clinically used objective AEP methods (i.e. the click-evoked 

ABR), that the ASSR has some interesting features (Aoyagi et al., 1994; Cone-Wesson 

et al., 2002a; Stueve and O‘Rourke, 2003; Swanepoel and Hugo 2004): 
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 More frequency specific auditory stimulus in activating the desired part of 

cochlear to produce response. 

 Information is available on profound levels (greater than 90dB HL) of hearing 

impairment, thus making the procedure of fitting a hearing aid less challenging. 

 Fully objective detection method could be applied compared with the visual 

inspection method needed by ABR. 

 Minimally affected by sedation as compared to ABR, which is crucial in some 

cases. 

 Further reduction of test time by simultaneous multiple stimulus presentation 

(i.e. multiple ASSR stimuli). 

 

1.3.3 Follow-up Intervention 

The decision on whether a hearing aid or a cochlear implant to be fitted as part of the 

rehabilitation depends on the initial hearing screening assessment, to provide 

sufficiently accurate information about the hearing loss so that hearing evaluation can 

be graphically represented by an audiogram. As described in Section 1.3.2, these can be 

carried out by either subjective or objective approaches. Some permanent hearing 

impairment cases can be treated through surgery or medication. Alternatively, the use of 

a hearing aid and a cochlear implant can be implemented. A hearing aid is commonly 

use in cases of mild to severe hearing loss, records sound signals in the acoustic 

environment through one or more microphones (Dillon, 2001). These sound signals are 

often a mixture of a speech and unwanted noise. The recorded signals are then amplified 

by a loudspeaker according to the user specific hearing thresholds to the user ear canal 

(Dillon, 2001). 
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Figure 1.6: Cochlear implant devices (Clark, 2003). 

 

On the other hand, a cochlear implant is used to bypass the hair cell by stimulating the 

auditory nerve directly for cases of profound hearing loss or deafness. The implant may 

restore the perception for the subject who has much severe hearing loss, but the auditory 

nerve is still intact (Clark, 2003). A cochlear implant device (see Figure 1.6) consists of 

a microphone that picks up sound from the environment, a signal processor which 

selects sounds picked up and transforms them into electrical signals, a transmission 

system that transmits the electrical signals to the implanted electrodes, and an electrode 

or an electrode array (multiple electrodes) is inserted into the cochlea to collect the 

impulses from the stimulator and sends them to the auditory nerve (Loizou, 1998). 

Detailed description on functionality of these instruments will not be covered in this 

thesis. 

 

1.4 Key Challenges 

The interest to implement ASSR as an essential part of hearing diagnostic assessment 

has increased significantly worldwide, with recent experimental studies demonstrated 

that the ASSR technique can estimate a frequency specific hearing threshold faster than 

ABR technique. Unfortunately, the technique is very susceptible to background noise 

and artefacts that disrupt the measurement. This is because ASSR signal is a very weak 

AEP response with extremely low signal-to-noise ratio (SNR). It is embedded in strong 

background noise mainly represented by electroencephalogram (EEG). Besides, with 

the implementation of the present ASSR detection method that involves artefacts 

rejection protocol, signal averaging and the use of fast Fourier transform (FFT) with 
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employment on statistical test, this can be a very lengthy test procedure in conducting a 

reliable hearing test for infants or young children. This is because the infant needs to be 

asleep or otherwise sedated in order to reduce the background noise level and to avoid 

any interruption by the infant during the test to minimise the occurrence of artefacts. 

Further delay can be caused by discarding the recorded epochs that contaminated with 

artefacts, because this is vital in order to ensure the reliability of the latter processing 

stages (i.e. averaging, FFT and statistical test). In additional, extra waiting time is 

required in order to have sufficient recorded data available for averaging and FFT to 

ensure meaningful output resolution. Moreover, by combining averaging and FFT, it 

therefore cannot be operated in real-time principally. It is believed that, a less complex 

medical instrument will be welcomed by hospitals globally and could also be an 

alternative solution for the expansion of the adoption of UNHS globally, especially in 

developing countries. 

 

1.5 Research Objectives 

To address problems stated in Section 1.4, this study has aimed to develop an on-line 

automatic ASSR detection scheme based on the state estimation techniques. These 

algorithms should improve the time efficiency of the screening assessment and still be 

capable of providing accurate thresholds estimation without test-controlled 

environments (i.e. using a test booth). These objectives have been achieved with the 

following activities:  

 To investigate the use of state estimation techniques, such as Luenberger 

observer and Kalman Filter (KF), in estimating single/multiple ASSRs (Chapter 

3 and 4). 

 To introduce an observer-based thresholding approach (ASSR decision making) 

via amplitude-based and power-based evaluation (Chapter 3).  

 To extract ASSR signals from AEP (low SNR) using adaptive Kalman filter 

(AKF), and develop an on-line adaptive ASSR detection scheme based upon 

thresholding approach (Chapter 4). 

 To investigate the use of artefact-resilient method such as median operator, to 

improve the robustness of the ASSR detector against possible artefacts within 

the AEP (Chapter 5). In addition, to improve the ASSR detection in terms of 

efficiency and robustness, multisensor data fusion (MSDF) technique is used to 

provide combined data outputs (Chapter 5).  
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 To develop an objective ASSR evaluator by implementing a linear regression 

technique to model the background noise, thus could further improve the ASSR 

detection rate (Chapter 6). Moreover, to further enhance the accuracy of the 

objective ASSR evaluator when dealing with possible outliers, robust regression 

technique is used to model the background noise (Chapter 6). 

 

1.6 Thesis Outline and Contributions 

The remainder of the thesis is arranged in the following manner: 

 

Chapter 2 introduces the theoretical concepts of the ASSR in terms of its history, 

physiological model, stimulus parameters, recording and analysis approaches. The 

chapter also briefly describes other existing ASSR detection algorithms.   

 

Chapter 3 develops an alternate ASSR detection approach using Luenberger observer 

(continuous state estimation approach) for its merit in simplicity for single-channel 

ASSR recording. This state estimation approach is based upon the idea of estimating or 

filtering the ASSR signal from the background noise. Two ASSR detection schemes 

(via amplitude-based or power-based evaluation) are introduced as part of the observer-

based method. Several simulation platforms were developed to evaluate the 

performances of the proposed algorithms with synthetic data. Besides the simulation 

studies, experimental data recorded from the BIOPAC data acquisition system were 

used for the preliminary studies on the ASSR. The experimental data were also used in 

testing and evaluation of the proposed observer method.  

 

Chapter 4 develops a discrete version of the state estimation approach which operates 

adaptively. An on-line adaptive ASSR detection scheme based on the AKF is proposed. 

It has the advantages in estimating the ASSR with unknown AEP‘s SNR and noise 

statistics. The idea is to estimate the noise statistics adaptively and thus extracting the 

ASSR from recorded AEP in real-time with suitable gain parameters. As for the 

decision making in detection rate, a thresholding method is proposed by using an 

empirical pre-defined level to determine the existence or non-existence of the ASSR. 

Simulation studies with synthetic data were used to evaluate the performances of the 

proposed ASSR detector in terms of accuracy and speed of convergence in the detector. 

BIOPAC recorded data with single and multiple ASSRs were also used to test the 
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practicality of algorithms towards real-world data. In order to further reduce the test 

duration, an approach consisting of ASSR‘s multiple harmonics (includes not only its 

fundamental frequency component) is used in detection.  

 

Chapter 5 considers the problem of the robustness of the ASSR detection against 

extreme values or artefacts in measurement. Although the AEP measurement is 

assumed to be pre-bandpass filtered to avoid highly non-Gaussian and noise interfered 

regions, artefacts (e.g. muscle movement, eye blinking and etc.) or sometimes known as 

extreme values or outliers may still occur by chance in AEP. The proposed ASSR 

detector in Chapter 4 is not robust against artefacts contaminated measurements, even 

one extreme value would have the detection biased. As a result, to improve the 

robustness of the ASSR detector against unprecedented artefacts, a more robust 

approach is integrated into the detection. However, sample mean (non-robust) and 

sample median (robust) both have their advantages depending on the normality or non-

normality (e.g. skewness, kurtosis and asymmetrical) of the data sampled 

(measurement). In general, sample mean operates better (higher output efficiency) if the 

sample data is normal and symmetric, whereas the sample median performs better if the 

data is skewed (existence of significant value of outlier within the data distribution). 

Since no a priori knowledge is available regarding if any of the measurement is to be 

corrupted with artefacts or not, combining these two approaches would in theory 

produce an output which hav best of both statistical operations. The MSDF strategy is 

used to fuse the estimates from multiple AKFs (one with sample mean operator and the 

other with median operator) in order to produce a better ultimate ASSR detector.  

 

Chapter 6 presents an objective ASSR decision making approach through a comparison 

between the estimated ASSR and its background noise estimated. Regression modelling 

is used to predict the expected noise component that has same frequency to the ASSR 

based on the neighbouring noise estimates. The ASSR detection rate via the 

thresholding method (proposed in Chapter 4) is based on time domain, whereas the 

noise estimation via regression modelling is based on frequency domain but able to be 

converted into the time domain through an evaluation module. In addition, the 

thresholding approach can be seen as a ‗semi-objective‘ decision making approach 

because its threshold level needs to be empirically pre-defined, whereas the regression 

based approach is completely automatic in determination of ASSR existence. In order to 

improve the robustness of estimating the background noise, robust regression approach 
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is used instead of linear regression modelling. The ordinary least square method is 

commonly used in the linear regression but it is not robust against outlier contaminated 

data. On the other hand, there are several methods available for robust regression, the 

interactive reweighted least-squares technique (with Tukey‘s Bisquare weight) is chosen 

because of its reliable outlier-robustness performance and computation moderate.   

 

Chapter 7 comprises a general conclusion of the research and with an overview of future 

research directions. 
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2 . An Overview on Auditory Steady- 

State Responses  

 

2.1 Introduction 

This chapter describes the fundamentals of auditory steady-state responses (ASSRs) and 

gives an overview of the existing detection techniques. The aim of Section 2.2 is to 

cover the theoretical aspects of the ASSR, which includes its history, terminology, 

stimulus methodology, recording and processing methods. A brief description of the 

current commercially available ASSR detection system is also presented in Section 2.2. 

An overview of its clinical applications is provided in Section 2.3. Concluding remarks 

for the Chapter made in Section 2.4. 

 

2.2 Theoretical Overview of ASSR 

2.2.1 History and Terminology 

An ASSR is an evoked potential ‗whose constituent discrete frequency components 

remain constant in amplitude and phase over infinity long time period‘ (Regan, 1989). 

The ASSR is a type of the auditory evoked potential (AEP) and recorded when stimuli 

are presented periodically. The resulting response often resembles a sinusoidal 

waveform whose fundamental frequency is the same as the stimulation rate. In other 

words, the stimulus drives the human brain‘s auditory response. Human steady-state 
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evoked potentials are not new, in fact first recorded in 1960 from the scalp of a human 

in response to visual stimuli (Regan, 1966). The averaging method was developed and 

used to extract these steady-state responses from the background electroencephalogram 

(EEG) (Geisler, 1960).  

 

However, the main trigger for the extensive research into human ASSR came with the 

publication by Galambos et al.(1981) concerning that the response is very predominant 

at stimulus rates near 40 hertz (Hz) or known to be 40-Hz ASSR. It was also found that 

the response was smaller (decrease) when the subject was drowsy or asleep (Galambos 

et al., 1981; Linden et al., 1985; Cohen et al., 1991) and very difficult to record in 

infants (Suzuki and Kobayashi, 1984; Stapells et al., 1988; Rance et al., 1995). Studies 

investigating the neural sources of 40 Hz response have concluded that the response is a 

combination of both brainstem and cortical generators (Herdman et al., 2002). 

According to the study by Rickards and Clark (1984), the ASSR can be recorded in 

different stimulus rates, and the amplitude of the responses decreases with increasing 

stimulus rate. In addition, stimulus rates greater than 70 Hz were not affected by sleep 

(Cohen et al., 1991). To date, there has been relatively little study and discussion of the 

nature and origins of 70―100 Hz or simply known as 80-Hz ASSR. Many studies 

investigating the neural sources of 80-Hz ASSR for both humans and animals indicate 

they originate primary from brainstem structures (Herdman et al., 2002; Kuwada et al., 

2002). Although no final conclusion was made, researchers believe that 80-Hz ASSR 

corresponds to the actually auditory brainstem response (ABR) wave V, to rapidly 

presented stimuli. This is also known as brainstem ASSR. An extensive overview of the 

historical development of ASSR can be found in (Picton et al., 2003 and 2006). 

 

2.2.2 Physiological Model  

Pre-defining how the cochlear transducer works is essential for the understanding of the 

underlying principle of ASSR. A physiological model for ASSR can be described as 

compressive rectification of the signal waveform (Lins and Picton, 1995; Lins et al., 

1996). Sinusoidal amplitude modulated tone (stimulus) has no acoustic energy at the 

modulation frequency, while containing energy at the carrier frequency and at two 

sidebands separated from the carrier by the modulation frequency (as shown in left hand 

side of Figure 2.1). This means that the stimulus only activates limited or specific part 

of the cochlear, centred at the carrier frequency. A process of rectification occurs when 
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the stimulus (sound) is captured by the ear and a transduction occurs in the cochlear to 

which is further discharged (depolarized) in the auditory nerve fibres. Only 

depolarization causes the auditory nerve fibres to transmit action potentials. The 

rectified signal now contains energy both at the frequency of the original signal and at 

the modulation frequency (as shown on the right hand side of Figure 2.1). The neurons 

in the brainstem then synchronize either to the carrier frequency to generate a 

frequency-following response (FFR) or to the modulation frequency to produce the 

envelope-following response or known to be ASSR.  In other words, FFR is a steady-

state response to the carrier frequency, whereas the ASSR is a response to the 

modulation frequency (or envelope) of the modulated tone. The disadvantage of using 

FFR is that it cannot be easily recorded at low intensity or at frequencies higher than 

1000 Hz, whereas the envelope-evoked ASSR can be recorded for all carrier 

frequencies and at intensities near to hearing thresholds. 

 

 
 

Figure 2.1: A simple model for comprehensive rectification (Picton, 2006). 

 

2.2.3 Stimulus Paradigms 

Although the ASSR can be evoked by various stimulus types such as clicks, tone burst 

or sinusoidal amplitude or/and frequency modulated tones, modulated tones stand out 

with their frequency specific characteristics (Picton et al., 2003a). Several aspects on 

selection or presentation of stimulus are to be discussed as follows. 
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Carrier frequency 

The carrier frequency determines the activation area of the basilar membrane in the 

cochlear. Although octave frequencies from 125―8000 Hz are commonly assessed in 

audiometric tests, only the frequencies between 500―4000 Hz that are particularly 

important for human speech understanding are assessed with the audiogram (Petitot et 

al., 2005; Tlumak et al., 2007). A typical example of an audiogram is shown in Figure 

1.5, with the x-axis representing the range of carrier frequencies to be used and the y-

axis representing the intensity at a particular frequency.  

 

Modulation frequency 

The modulation rate of the presented stimulus defines the characteristic of the ASSR 

response. As the ASSR is embedded in the EEG, the amplitude of the ASSR is 

measured as the amplitude at the modulation rate, which is the sum of the signal 

amplitude and the residual EEG noise. Typically, the ASSR amplitude decreases with 

an increasing modulation rate (see Figure 2.2).  However, in certain regions, there is an 

enhancement of the response above the general decline, especially at 40 Hz and 90 Hz. 

In other words, the detection rate of the ASSR relies on the characteristics of the EEG 

(main component of the background noise). The EEG consists of several simultaneous 

oscillations, which are subdivided into frequency bands such as delta (1―3 Hz), theta 

(4―8 Hz), alpha (8―12 Hz), beta (about 14―30 Hz) and gamma (around 40 Hz). 

When a response is recorded from the brain, the EEG itself is intermixed with other 

electrical activities from the scalp muscles, eyes, skin and tongue. However, the EEG 

activity decreases with increasing in frequency, where its activity is most prominent at 

frequencies below 25 Hz. Although, the response amplitude reduces at higher 

modulation rates, in fact the SNR is increasing (Picton et al., 2003a). As mentioned 

above, the 40-Hz ASSR response is influenced by both sleep and sedation, and it is much 

more difficult to measure from young children, because of the effect of the overlapping 

of the short latency responses from the brainstem and the middle latency responses from 

the primary auditory cortex.  In this context latency is a measure of the time taken for 

the auditory system to respond after a stimulus has been presented. 
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Figure 2.2: Example of measurement of signal and noise at different ASSR frequencies 

(adapted from Picton et al., 2003a). 

 

Intensity 

The intensity of the stimulus has significant effects on the recording of individual 

response with regard to the presentation of single or multiple stimuli. Generally, as the 

intensity of the stimulus increases, the amplitude of the response increases and the 

latency decreases (Galambos et al., 1981; Stapells et al., 1984; Picton et al., 2003). 

 

Types of Modulation 

The commonly utilized stimuli to evoked ASSR are sinusoidal amplitude modulated 

(SAM) tones, simply known as amplitude modulation (AM). These stimuli have a 

simple spectrum, containing spectral energy at the carrier frequency and in two 

sidebands on each side of the carrier frequency. The formula that represents AM is: 

where   is the amplitude of the stimulus,   is the time,    is the modulation frequency 

of AM,    is the carrier frequency, and    is the depth of AM (ratio of the difference 

between the maximum and minimum amplitudes of the signal to the sum of the 

maximum and minimum amplitudes). As    increases, the spectral energy at the carrier 

frequency decreases and the energy at the sidebands increases. A modified AM tone can 

be achieved by replacing the normal amplitude modulation envelope by an exponential 

envelope. This is known as exponential modulation (AM
m

) (John et al., 2002) and can 

be represented mathematically as: 

                                 (2-1) 

Signal 

Noise 
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                 (2-2) 

where all the variables in  Eqn. (2-2) are similar to Eqn. (2-1) except that in this case the 

variable   is the required exponent, ranging from 2 and above.  If   =1, Eqn. (2-2) will 

then be the same as Eqn. (2-1), i.e. representing now the standard AM, rather than AM
m

. 

Exponential modulation causes both amplitude and latency of the auditory steady-state 

response to increase significantly with increasing index   . 

 

Frequency modulation (FM) tones can also be used to evoke ASSR, which involves 

changing of the frequency rather than the amplitude of the carrier in AM (Maiste and 

Picton, 1989). The FM depth is defined as the difference between the maximum and 

minimum frequencies divided by the carrier frequency. By increasing the depth of 

modulation, the amplitude of the frequency modulated tones is also increased. However, 

the specific frequency of the FM will decrease with increasing depth modulation, 

making it less attractive in ASSR stimulus selection. A combination of both AM and 

FM generates approximately 30% larger ASSR responses than conventional AM or FM 

tones (Cohen et al., 1991; John et al., 2001b), and this is referred to as mixed 

modulation (MM). MM involves the simultaneous modulation of both the amplitude 

and frequency of the stimulus, and it can be represented as: 

   
    

   
               (2-3) 

                                  (2-4) 

where    is the modulation frequency (both amplitude and frequency),    the frequency 

of the carrier,    is the depth of frequency modulation,    is the depth of amplitude 

modulation,   is the amplitude of the stimulus,   is the time, and phase delay   is set to 

     (    radians) for maximum correlation between stimulus amplitude and its 

frequency (John and Picton, 2000a).  

 

Several types of stimuli (presenting in both time and frequency domains) have been 

used to evoke an ASSR. Typical stimuli are shown in Figure 2.3.  Usually, the AM tone 

is used as the stimulus to evoke the ASSR while other more sophisticated tones (e.g. 

FM, MM, AM
m

 and etc.) can stimulate larger ASSR responses than achieved by the 

standard AM by approximately 30% (Maiste and Picton, 1989; Cohen et al., 1991; 

Picton et al., 2003a). However, the AM tone is widely accepted as a standard stimulus 

and implemented in the commercial equipment (e.g. MASTER)  
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Figure 2.3: Examples of stimuli used in evoking ASSR (Picton et al., 2003a). 

 

Single/ Multiple ASSRs 

A unique feature of the ASSR is that its stimuli can be presented in either single or 

multiple (simultaneously) forms (Lins and Picton, 1995; John and Picton, 2000a; John 

et al., 2001b; Stapells et al., 2004). Figure 2.4 shows an example of combining four 

individual single ASSR stimuli (i.e. AM tone) into multiple ASSRs stimuli (multiple 

AM tones).  

 

The advantage that the multiple ASSR has over the single stimulus scheme is that it 

facilitates the evaluation of several frequencies for both ears simultaneously. This leads 

to a further reduction in the hearing test time by a factor of two or three times (Lins and 

Picton, 1995). There are however some limitations when using the multiple stimulus 

technique, as follows: 

 Loss of ASSR amplitude because of the interaction of the combined stimuli in 

the auditory nerve (Picton et al., 2003a) or overlap on the basilar membrane 

(Lins and Picton, 1995). 

 These effects deteriorate when the stimulus intensities used are above 75dB 

sound pressure level (SPL) (Lins and Picton, 1995; Lins et al., 1996). 

 Similar effects will occur if the modulation frequencies used are less than 1.3 Hz 

apart. i.e if the carrier frequencies used are less than one octave apart (John and 

Picton, 2000a). 
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Figure 2.4: Time and frequency spectra of multiple ASSR stimuli (Stapells at al., 2004). 

 

2.2.4 Recording and Analysis Techniques 

The greatest drawback of the ASSR technique is the lengthy recording time needed for 

reliable hearing threshold estimation. In general, approximately 45 minutes to an hour is 

needed to record the measurements required for the hearing threshold diagnosis (Luts 

and Wouters, 2004; Van Dun et al., 2009). Due to its lengthy test time, the acceptance 

of the ASSR technique (by the audiology community) as a hearing screening tool is 

poor and impractical even considering its advantages compared to other screening 

methods, e.g. the OAE and ABR. The general detection methodology of ASSR can be 

divided into two main parts. Firstly, a stimulus or a set of stimuli generated by an 

auditory stimulator is used to evoke the ASSR response that is to be picked up by the 

surface electrodes on the scalp. Secondly, the response is recorded and then amplified 

and further processed by a series of signal processing techniques before finally being 

sent for display (Mason, 1993). 

 

Although, there are several types of modulation that can be used as a stimulus (see 

Section 2.2.3), the AM stimulus is more commonly used to evoke ASSR response. In 

order to shorten the recording time, the multiple stimuli approach can be an advantage 

over the single stimulus approach (John et al., 2001b; Luts and Wouters, 2004). In order 

to record the evoked potentials, surface electrodes are place on the scalp. There are 

however two approaches, single-channel (also including dual-channel) (Lins et al., 
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1996; van der Reijden et al., 2005) and the multichannel ASSR recording (Malmivuo 

and Plonsey, 1995). Although the multichannel recording approach does have some 

advantages in terms of analysis, the measurements collected by the single-channel 

recording approach are still comparable (with no significant differences) to those 

obtained by the multichannel approach with optimal electrode placements, but with less 

complex recording system (Picton et al., 2003a). Thus, the electrode placements 

implemented within all the experimental study in this thesis are based on the single-

channel recording approach. For standard single-channel ASSR recording, the non-

inverting electrode is mostly placed at the vertex (Cz) or high forehead (not 

recommended for adults). The inverting electrode is placed at the ipsilateral mastoid in 

the case of monotic stimulus presentation or at the neck for the case of dichotic stimulus 

presentation. The positioning of the reference electrode can be more flexible, this can be 

placed on the contralateral mastoid, i.e. the neck position inion (Oz) or the clavicle (Pz). 

As shown in Figure 2.5.where the electrode placement position mentioned can be seen 

from a typical 10-20 standard of electrode placement. 

 

 
Figure 2.5: International 10-20 standard of electrode placement (Sharbroug et al., 1991). 

 

ASSRs are faint electrical signals embedded within the much stronger EEG signals. The 

EEG itself typically has a signal magnitude in the range 10 μV to 100 μV, whilst the 
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ASSR level lies typically in the much smaller range of 10 nV to several μVs.  Thus an 

amplification gain of at least 10k is needed before further detection procedure can be 

utilised. As the ASSR is recorded in conjunction with EEG activity (referred to as 

‗background noise‘), the SNR becomes a very important aspect of the signal 

abstraction/detection process. The low SNR can be improved by pre-filtering together 

with artefact rejection and time-domain averaging. Typically, a low-pass or band-pass 

filter will be placed just after the amplification stage, only to bypass the required 

frequencies. Artefacts originating from the external source, e.g. electromagnetic 

interference (Picton and John, 2004) or from the patient, such as potentials related to 

patient movement (e.g. muscle movement and eye-blinking) that are not part of the 

ASSR response (Hall, 1992). These artefacts can be removed from the previously 

filtered input if the signal exceeds a chosen preset voltage threshold, and this is known 

as ―artefact rejection‖ (John and Picton, 2000a). On-line artefact rejection will discard 

epochs or sweeps that have been contaminated with artefacts to ensure the processing 

reliability, where these extreme artefact values could easily bias the detection. In 

addition, to ensure the effective artefact rejection (optimal rejection by individual 

subject tailored), the procedure is to be conducted offline with no artefacts rejected on 

the pre-recorded AEP (Luts and Wounter, 2005; Van Dun et al., 2009).  

 

After lowpass/bandpass filtering and artefact rejection of the recorded signal, 

waveforms are averaged in the time domain repeatedly to reduce the noise level in the 

recording. The averaged data can now be transformed from the time domain to the 

frequency domain by fast Fourier transform (FFT) (see example in Figure 2.6), thus 

information of the amplitude and phase of each frequency is then provided by FFT and 

then followed by statistical analysis to reveal the existence of ASSR. By its nature, the 

method of combined averaging and FFT cannot operate in real-time. Moreover, this 

technique is effective only with the availability of long strings of recorded data to 

ensure reasonable output resolution. This gives rise to a very lengthy procedure that is 

particularly troublesome in hearing tests for infants, because during the tests babies 

need to be in sleep or otherwise sedated. Consequently, if the subject is not relaxed, this 

would cause an increase in artefact activity, which could further delay the ASSR 

detection because some measurements may have to be discarded as part of the artefact 

rejection. Before the popularity in the use of FFT processing in this application field, 

the Fourier Analyzer was the key option (Regan, 1989). This method operates by 

multiplying the recorded signal by the sine and cosine of the stimulus frequency and 
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filters the resultant products to obtain the real and imaginary components of the 

responses (Stapells et al., 1984). However, this method is limited in analysing a single 

response at a time, whereas the FFT approach provides a spectrum that includes the 

responses and the background noise.     

 

 

Figure 2.6: Example of multiple ASSRs recorded corresponding to multiple stimuli 

(Staples et al., 2004). 

 

According to Regan (1989), both the amplitude and phase of a steady-state response are 

constant and could be used to determine the availability of the response (to determine 

the existence of ASSR signal). The most two common statistical analyses utilized are 

the phase coherence and the F-test. The phase coherence method assesses similarity in 

phase across replications, a response is considered present if its phase remains stable 

over time rather than varying randomly (Stapells et al., 1987; Rance et al., 1995; John 

and Picton, 2000b). On the other hand, the F-test evaluates the difference between the 

amplitude and phase of the response at the stimulus frequency with those of the noise at 

the adjacent frequencies (Lins et al., 1996).  

 

At present, there are some commercially audiometric instruments available which 

operate on the basis of the detection principles outlined above. Among them, MASTER 

(Multiple Auditory STEady-state Responses) is a popular research audiometric 

instrument developed by Rotman Research Institute at Toronto University (John and 

Picton, 2000a). MASTER was first introduced eleven years ago. Several advanced 
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processing techniques based on single-channels recording were developed following the 

introduction of the use of averaging technique (Geisler, 1960). Examples include, 

weighted averaging (John et al., 2001a), averaging with phase-locking (Parker and 

Matsebula, 1992; Picton et al., 2001) and nonlinear signal processing (McNamara and 

Ziarani, 2004). These methods are used to improve the SNR. As for the methods 

developed using multichannel recording, Independent Component Analysis (Van Dun et 

al., 2007a) and the Wiener Filter (Van Dun et al., 2007b) were proposed. Although the 

technology of ASSR has improved since first introduced, the ASSR test might still 

require 45―60 minutes to obtain a four-frequency audiogram for both ears (Van 

Maanen and Stapells, 2005) using the existing instruments. Hence, the ASSR testing 

remains a challenge with the length procedure as the main technical obstacle in its 

widespread adoption for clinical use. This is particularly the case when used as a 

screening tool where fast detection is highly desirable. 

 

2.3 Clinical Applications 

In general, the use of ASSR could be in several clinical areas, such as in audiometric 

(e.g. hearing screening test and hearing thresholds diagnosis), anaesthesia and 

neurologic applications. Health care for adults and particularly infants having hearing 

impairment will benefit from the developments of ASSR usage in clinical practice and 

from the research conducted in recent years (Lins et al., 1996; Heardman and Stapells, 

2001 and 2003; Perez-Abalo et al., 2001; Drimitrijevic et al., 2002; Cone-Wesson et al., 

2002b; Picton et al., 2003a and 2005; van der Reijden et al., 2006). Potential 

applications of ASSR in the anaesthetics community are to search for effective 

monitoring of surgical unconsciousness depth, and 40-Hz ASSR could be the answer 

(Plourde and Picton, 1990; Plourde et al., 1998; Picton et al., 2003b). The use of the 

ASSR has not been extensively evaluated in patients with neurologic disorders. 

However, in recent years there are signs of an increase in research interest in this area 

and it is hoped that this interest will further develop (Brown, 2005). 

 

2.4 Concluding Remarks 

This chapter has briefly described the important features of the ASSR technique, its 

applications and gives an overview of the current ASSR detection methods. There are 

several ways to reduce the test time, in terms of stimulus, recording and signal 

processing methods. Instead of the normal AM signal as stimulus, other types of 
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modulation can be used, for instance MM or AM
m

, which would evoke larger responses 

by a third, hence indirectly improve the ASSR detection. Besides, the multiple stimulus 

approach can improve the time efficiency by a factor of two to three compared to the 

single stimulus approach. For the purpose of objective assessment of hearing threshold, 

modulation rates around the region of 90 Hz are preferred. This is because the ASSR at 

lower frequencies is not reliably recordable particularly for infants since at these 

frequencies the detection is influenced by sleep and sedation. All the detection methods 

presented are based on single-channel recording. Among them, the most widely cited 

techniques, are averaging and weighted averaging with statistical analysis (e.g. F-test). 

Although both single-channel and multichannel recording approaches are comparable, 

the latter approach does provide some useful information that could lead to further 

diagnostic test time reduction. However, the characteristic of multi-channel methods 

will not be discussed further in this thesis. The focus of this thesis is thus on the ASSR 

detection approach, based on the single-channel recording strategy. 
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3 . Preliminary Study of ASSR using 

Observer Approach via BIOPAC 

 

3.1 Introduction 

As stated in Section 2.2.4, the most popularly used auditory steady-state response 

(ASSR) detection method does not operate in real-time in principle.  It is also 

complicated with a series of processing methods (e.g. artefact rejection, averaging, fast 

Fourier transform (FFT) and statistical test). As a result, this makes the hearing 

screening or diagnostic tests lengthy especially when conducting the tests on infants. An 

alternative technique, known as state estimation, which is believed to have better 

performances (e.g. reduced test duration, moderate complexity and real-time 

implementation) in detecting ASSR from the overwhelm background noise, is to be 

proposed in this Chapter.  

 

In general, the state estimation can be provided by Luenberger observer or Kalman filter 

(KF). In system theory, Luenberger observers are designed for deterministic systems 

whereas KF for stochastic system. They work as mechanisms in reconstructing the state 

variables of a dynamic system based on an analytical model of the system and 

measurements of partial or limited combination of the variables. Both observer and 
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filter can operate in real-time and have the same structure, similar synthesis and 

compatible performances, but different interpretations of the designs. Commonly, the 

Luenberger observer operates in the continuous time, while the KF operates in the 

discrete time.   

 

Section 3.2 introduces the theory of Luenberger observer and its design as a sinusoidal 

detector, and also describes the practical issues concerning its implementation as an 

ASSR detection scheme. Two ASSR detection schemes (via amplitude-based or power-

based evaluation) are introduced as part of the observer-based method. Initial simulation 

evaluations on the developed detection scheme are presented in Section 3.3. In Section 

3.4, ASSR validation studies are carried out with the detection scheme applied to real 

ASSR measurement recorded from a BIOPAC system. The BIOPAC system is a data 

acquisition unit developed by BIOPAC Company. This is a data acquisition system that 

made specially specializes for medical use. A short description of the BIOPAC system 

and its experimental setup also are presented in Section 3.4. Concluding remarks of the 

chapter are provided in Section 3.5. 

 

3.2 Observer-based Sinusoid Detector 

The ASSR detection problem can be viewed as tracking a sinusoidal signal corrupted by 

noise based on the assumptions that an ASSR signal is a sinewave like waveform with 

oscillating frequency the same as the stimulus applied and is embedded within noise 

elements. The proposed sinusoid detector can be divided into two stages, the processing 

stage (i.e. sinusoid extraction) and the decision stage (i.e. variables estimation and 

thresholding) as shown in Figure 3.1.  In the processing stage, the desired sinusoid-like 

ASSR signal for estimation is extracted from auditory evoked potential (AEP) by using 

an observer with the known stimulus frequency. Whereas the decision stage is 

responsible for evaluating the amplitude or power of the extracted sinusoid, in order to 

make a decision on the existence of the ASSR based on a pre-defined threshold. 

 

The proposed sinusoid detector is based on the use of a state observer (or Luenberger 

observer). An observer can be seen as an auxiliary system which provides estimation of 

the variables describing dynamics of a plant by using the knowledge of the plant‘s 

model together with measurement information about the plant (Luenberger, 1971). An 

ASSR can be considered as an output of a dynamic system described by a second-order 
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differential equation.  The proposed method uses observers to estimate the sinewave and 

its amplitude or power to identify the existence of the ASSR, and is motivated by the 

estimation method proposed by Hou (2005). The study here has further extended the 

approach and tailored it towards amplitude/power estimation of noisy sinusoidal signals 

in extreme low signal-to-noise ratio (SNR) environment with known inputs frequencies 

(mimicking ASSR application).  

 

 

Figure 3.1: Architectural block diagram of the sinusoid detector. 

 

3.2.1 Sinusoid Extraction 

The rationale behind the proposed approach is to consider the ASSR as a signal 

generated by a second order dynamic system with a known natural frequency  , as 

shown in Figure 3.1. Since the state observer reconstructs the sinusoid, it is necessary to 

determine the intensity of the wave. A natural way of doing it is to estimate the 

amplitude of the sinusoid. An adaptive observer is derived for this purpose.  

 

Suppose the measured signal      in Figure 3.1 is described by  

                (3-1) 

 

The sinusoid                 is the output of the second-order system because 

     satisfies the differential equation: 

                             (3-2) 
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where       stands for the second order derivative of     . This means that the second-

order system can be described by the transfer function of          . It can be 

assumed that this sinusoid is the ASSR with the known angular frequency   and 

unknown amplitude   and phase  . In real applications,   and   are assumed to be 

constants or slowly varying variables. Whereas      is a random variable representing 

the system and measurement noise. The objective is to extract the sinusoid      from 

     and then estimate the sinusoidal amplitude. 

 

Define            and            . A state observer for estimating       and       

is described by: 

                                (3-3) 

                                   (3-4) 

where        is the estimate of     , and        of       with the a priori known  .    and 

   are the observer gains. It can be easily verified that in the absence of noise, with 

suitable positive gains    and   ,        and        converge asymptotically to       and 

      respectively. Although the observer is designed according to the state observer 

method applied in a deterministic systems framework. The Luenberger observer has the 

same structure as the Kalman filter (Anderson and Moore, 1979), however the latter is 

more appropriate for stochastic systems that include random noise signals. For example 

when Eqn. (3-1) includes a random noise signal     , the gain matrices in Eqns. (3-3) 

and (3-4) need to be determined as the Kalman filter gain that generates minimum 

variance estimates of       and      . Since the statistical properties of the noise 

signals are assumed unknown, the optimal filter gain cannot be determined and a sub-

optimal gain must be used. As a result, the observer gains    and   , will be adjusted 

from simulation studies. 

 

According to the Eqns. (3-1) and (3-2), the continuous-time system model, yields  

    
  

    
           (3-5) 

 and the system is observable with  

      
  

    
 

     
                    

    
(3-6) 
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With the observability matrix being of full rank, stable eigenvalues of        can be 

assigned by    
  
  
  to the left hand side of the s-plane with      . These constraints 

are to ensure the stability of the eigenvalues remained via selection of positive gains    

and    for the detector. This can be justified through Eqns. (3-7)―(3-9), by denoting the 

characteristic polynomial: 

             
      

       
   (3-7) 

The characteristic equation of this system is determined as: 

                                  (3-8) 

Hence the characteristic equation roots {the eigenvalues of                 

  
       

          

 
 (3-9) 

For instance, if        and        (commonly used gains in Chapter 3), a stable pair 

of eigenvalues are obtained as                in the case      . This verifies 

the concept of gain selection for the observer-based detector.   

 

3.2.2 Variable Estimation 

Two observer-based evaluation approaches (via amplitude-based or power-based) are to 

be introduced in following as part of the proposed ASSR detection scheme. It is 

essential to obtain an estimate of amplitude or power, which will be presented in this 

section. 

 

Amplitude Estimation 

The sinusoid        is obtained from the observer (Eqns. ((3-3) and ((3-4)), and its 

amplitude   needs to be estimated.  Following a the similar treatment in Hou (2005), 

define a variable as 

          (3-10) 

and its time derivative is  

                                

                                              

                                       

                                             

(3-11) 
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Rewriting    equation as  

                   (3-12) 

where         is the unknown parameter to be estimated. If        is available, a 

standard adaptive observer for   and   is given by 

                                                             (3-13) 

                        (3-14) 

where   and   are positive numbers. In order to eliminate the term        in Eqns. 

(3-13) and (3-14), a change of variables is defined according to Hou (2005) as 

               (3-15) 

                  (3-16) 

 

It is straight forward to verify that   and   are governed by  

                               (3-17) 

                  (3-18) 

 

If   in Eqn. (3-17) is chosen to be equal to   ,  a simplified version of Eqns. (3-17) and 

(3-18) is obtained as  

                 (3-19) 

                   (3-20) 

 

Hence, Eqn. (3-16) is rewritten as 

                 (3-21) 

 

The estimation of    can be calculated from    as   

          (3-22) 

To apply the adaptive observer of Eqns. (3-19)―(3-22) to the amplitude estimation,   in 

Eqns. (3-19)―(3-21) needs to be replaced by its estimate        obtained from Eqn. 

(3-3). 
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Power Evaluation 

As an alternative to amplitude estimation, the power of        from the observer Eqns. 

(3-3) and (3-4) can be defined as 

            
 

   
    

  

 
       (3-23) 

where       can be seen as the average power over time   and to avoid numerical error 

when    ,   is set to be a small positive constant (i.e.       ). Denote        as the 

power of        when      is absent and       otherwise. It is expected that       

       for all    . 

 

3.2.3 Thresholding 

This section describes the proposed evaluation approaches, via amplitude and power 

estimation. 

 

Amplitude Thresholding 

Denote    as the amplitude of       when      is present and     otherwise. It is 

expected that       . Define detection rate as the percentage difference between the 

estimated amplitude in the presence and absence of the ASSR, as 

         
        

   
       (3-24) 

Since    and     are respectively amplitude estimates of ASSR and the background 

noise at the modulation frequency,       is actually a time-varying variable.       

can be used as an indicator of the degree of existence of      with a pre-defined 

threshold to determine the existence or non-existence of the sinusoid. 

 

Power Thresholding 

Denote        as the power of       when      is absent and       otherwise. Again, it 

is expected that              for all    . To indicate the percentage difference 

between the estimated power in the presence and absence of the ASSR, the detection 

rate defined as: 

         
              

      
       (3-25) 

is issued in a similar way as       to identify the existence of     . This implies that 

when an ASSR is present       should be distinctively greater than that when the 

ASSR is absent. 
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3.2.4 ASSR Detection Scheme 

The sinusoid detector illustrated in Figure 3.2 is presented schematically with the two 

evaluation methods. In practice only a single detection method is used at any one time, 

either using the amplitude-based or the power-based detection. The proposed detection 

scheme employs dual channels of identical observers. One observer has a noisy sinusoid 

as input and a sinusoid estimate as output. The other observer‘s input is the noisy 

sinusoid subtracted by the estimate offered by the upper observer. The output of the 

lower observer may be interpreted as the background noise filtered by the observer. 

Both estimated outputs from the observers are then used to estimate their amplitudes or 

powers. The degree of (i.e. amplitude or power) difference between both channels 

indicates the existence or non-existence of the sinusoid according to the pre-defined 

threshold. To clarify the scheme, only case of single sinusoid detection is explained. 

The method can be readily extended to detect multiple sinusoidal signals by duplicating 

the dual-channel detector as many as the number of sinusoidal signals. Use of the 

multiple dual-channel type of detector is preferred over a higher order observer for 

estimating multiple sinusoidal signals. In principle, duplicated dual-channel observers 

produce similar results as compared to the dual-channel higher order observers, but the 

design and structure of the dual-channel observers are simpler than those of higher-

order observers. 

 

Figure 3.2: On-line ASSR detection scheme acquiring AEP via BIOPAC system. 

 

To evaluate the proposed detection scheme, Matlab/SIMULINK simulations have been 

carried out for three cases as Figure 3.3. In the simulations, all the integral initial 

conditions were set to be zero. In the first simulation, a ‗noise-free‘ signal      

          is applied to the detection scheme (as shown in a noisy sinusoidal signal 
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                    , with      considered as a white noise signal with mean 

    and standard deviation      ,  is now applied (SNR= 6dB). The observer gains 

are held constant with    . Lastly, the same detection is applied to the noise      

     with the same statistical properties as the one before. The Gain   was reduced to 1 

in the last two scenarios for the purpose of having smoother convergence, thus 

indirectly improving the detection rate but with slower convergence. In other words, as 

the SNR decreases so does the gain   to counter the inaccuracy caused by the noisy 

AEP. The amplitude responses of the all three cases stated above are shown in Figure 

3.3.  

 

Figure 3.3: Simulation results of (i) clean sinusoid (ii) noisy sinusoid (iii) noise. 

 

 

Figure 3.4:  The detection rate in identifying the presence of sinusoid via amplitude and 

power-based approaches (a) and (b) SNR≈ 6dB (c) SNR≈ −30dB. 
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As illustrated in Figure 3.3, the amplitude estimate converged to the actual amplitude of 

1 volt in less than one second for the ‗noise-free‘ sinusoid and about 2s for the noisy 

sinusoidal signal. As for the noise only signal, the estimated amplitude (at the specified 

frequency) is far below the actual sinusoid amplitude. This is expected and meets the 

idea that any noise estimate should be significantly lower (depended on the SNR) than 

the sinusoid estimate. Figure 3.4a and Figure 3.4b illustrate the detection rates in terms 

of either amplitude or power percentage differences. The responses are distinctively 

higher if the sinusoid is present. A threshold of 50% is defined empirically which is 

used as a way to identify the existence or non-existence of sinusoid, whereas a threshold 

of 200% is chosen for power-based detection to determine the detection rate of the 

sinusoid using Eqns. (3-24) and (3-25). Both thresholds were determined based on the 

average responses obtained through 50 simulation trials in conditions where SNR is −30 

dB and noise generated with random seeding in each trial.  Although the power-based 

response is generally larger than the amplitude-based response, their detection rates are 

comparable at approximately at 0.1s, as illustrated in Figure 3.4a and Figure 3.4b. To 

further clarify the detection rate similarity, Figure 3.4c is used to illustrate that both 

their responses are significantly reduced to the level just above the pre-determined 

threshold as the SNR decreased significantly. As shown in Figure 3.4, the detection rate 

achieved even though the estimation has not yet converged to the expected true 

amplitude (as shown in Figure 3.3). In general, the detection rate response is more 

appropriate than the amplitude response as it provides a facility for objective decision 

making in terms of on-line sinusoid identification.  

 

3.3 Simulation Study 

Due to the difficulties in specifying the ASSR from its noisy environment in practice, 

synthetic data were generated with Matlab/SIMULINK and applied to the ASSR 

detector within simulation environment for preliminary validation of the performances 

(e.g. noise corrupted signal and gain tuning) of the proposed algorithms. 

 

3.3.1 Gain Tuning 

Both amplitude-based and power-based approaches performed satisfactorily and their 

detection rates are comparable as shown in Figure 3.4. The amplitude-based approach 

shows slight advantageous due to the availability of a tuneable parameter   that permits 
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design flexibility, according to the expected SNR. This parameter can be tuned; a larger 

  gives rise to a faster convergence for the case of a high SNR scenario. Alternatively, a 

smaller lower value of   has the effect of smoothing the convergence to get better 

accuracy, particularly for the low SNR scenario. Furthermore, the inclusion of   in Eqn. 

(3-23) is used to prevent initial numerical error which may still cause initial overshoot 

in the response. As a result, the amplitude-based detection scheme will be the focus for 

the remaining sections of the thesis. The flexibility of the amplitude-based detector with 

the extra gain parameter is compared with the power-based detector is illustrated in 

Figure 3.5. This illustrates the effect of the selection of the observer gains           on 

the performances of the noisy sinusoid detection of                     (a) SNR≈ 

6dB and (b) SNR≈ −15dB. As shown in Figure 3.5a, a faster convergence rate can be 

achieved by tuning the   ,    and by selecting a larger tuning parameter  . On the other 

hand, if the SNR is poor, smaller values of   ,    and   are preferable to ensure 

smoother convergence and improve the immunity to noise and in turn improving the 

accuracy, as shown in Figure 3.5b.  

 

 

Figure 3.5:  Tuneable gain parameters to improve the sinusoid responses (a) SNR≈ 6 dB  

(b) SNR≈ −15dB. 

 

3.3.2 Noisy Sinusoidal Signal (Low SNR) 

Several simulations were conducted to test the responses of the proposed algorithms 
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with respect to noisy sinusoids with different SNRs, and their results are illustrated in 

Figure 3.6. According to Figure 3.6, the time duration needed to achieve 50% threshold 

increases as the SNR worsens. In other words, the SNR is inversely proportional to the 

duration required to achieve a suitable detection rate for cases where sinusoids are 

present. Moreover, the gain parameters in Eqns. (3-3) and (3-4) are to be reduced if the 

SNR is poor. Typically during the simulation trials    and    are chosen to be less than 1 

if the SNR is less than 0 dB to ensure better sinusoid extraction from the background 

noise. As discussed in Section 3.3.1 the positive gain constant   affects the speed and 

smoothness of the amplitude estimation.  The smaller the gain the more insensitive the 

estimation is to noise corruption (smoother amplitude estimation), albeit with a slower 

convergence. The proposed algorithms encountered difficulties when processing and 

identifying sinusoids at SNR levels smaller than −35dB; their responses are either 

marginally floating around 40%―50% or worse. 

 

Figure 3.6: Detection rates of the different SNR scenarios. 

 

3.4 Experimental Validation Study 

In order to verify the simulation results conducted and the practical detection 

performances (e.g. reliability in detection, detection time required, correct indication of 

threshold evaluation and etc.), experimental studies are needed with the recording of 

real data from subjects. Several test scenarios were conducted, and they are as follows:  

 Relationship between ASSR (fundamental frequency) and its harmonics  

 Response to different intensity levels 
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 Response to different modulating frequencies   

 Response to the effects of sedation and non-sedation 

 Response to various types of modulation 

 Response to multiple ASSR stimuli 

The experimental test platform for recording ASSR, stimulus and recording parameters 

used are described this section. This test set-up remains basically the same for all 

studies described in Chapters 4 to 6 of this thesis. 

 

3.4.1 Experimental Setup 

The ASSR experiments were conducted in an ‗non-controlled environment‘ (at the 

Medical Engineering Laboratory at Hull University) with background noise level 

between 20―30 dB(A) sound pressure level (SPL). A common practice of ASSR 

recording is to conduct the test in a soundproof room with a Faraday cage since lower 

background noise is preferable, typically at 12 dB(A) SPL. A schematic diagram 

showing the apparatus setup for ASSR recording is given in Figure 3.2. The data 

acquisition unit used presently in this research is from BIOPAC, a company that 

specializes in electronic data acquisition equipment for medical use. The instrument 

enables more flexibility and customisation of experimental parameters.  

 

As mentioned in Chapter 2, the electrode placement approach is based on single channel 

method with non-inverting electrode positioned on the vertex of the scalp, the inverting 

electrode at the ipsilateral mastoid (where auditory stimulus applied), and the reference 

electrode at contralateral mastoid which acts as a ground. The electrodes were placed on 

the subject‘s scalp after the skin was abraded with abrasive skin prepping to reduce the 

resistive. Electrode gel and additional bandage support were used to keep the electrodes 

in place and to avoid impedances exceed 5 KΩ (no more than 10 KΩ). Only if the 

impedance is within acceptable range, were the tests undertaken. The gain of the 

amplifier for the recording channel was set to 10k. The analogue-to-digital conversion 

rate of 10 kHz was used for AEP recording via BIOPAC system.  

 

All the stimulus used throughout the experiments were generated using 

Matlab/SIMULINK with sampling rate of 20 kHz, pre-recorded and then played via 

standard PC sound card to a headphone for subject stimulation. All stimuli created were 

first measured using a Sound Level Meter 222A and typically stimulated between 
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39―64 dB SPL (32―57 HL) and having mean of 58.77 dB SPL (51.77 HL). Several 

types of modulated tones with various modulating frequencies were produced at the 

intensity range stated, with detailed descriptions of the stimulus used to be discussed in 

the following sections. The BIOPAC recorded data (bandpass filtered between 60—

200Hz) with SNR range between −25dB and −33dB were then down-sampled to 1k via 

zero order-hold and post-processed in Matlab/SIMULINK since the proposed detection 

algorithms operates in the continuous time. The parameters were selected to be    

       and        when carried out detection on experimental recorded data in the 

remaining Section 3.4. 

 

 

Figure 3.7: Schematic of the experiment setup for ASSR experiment (adapted from 

Luts, 2005). 

 

3.4.2 Fundamental Frequency and its Harmonics  

As discussed by Picton et. al (2003a), ASSR often consists of more than one harmonic 

responses but highly significantly at the stimulus frequency. However, so far majority 

of the ASSR detection are based upon detecting at the stimulus frequency and not its 

harmonics. Besides it is more significant at its fundamental frequency (stimulus 

frequency), higher computations are required if its harmonics are to be taken into the 

consideration of the detection. The calculation of harmonics might not be efficient 

though it is believed that the detection rate performance would be improved by 

combination of these harmonics and its fundamental frequency.   
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3.4.3 Intensity 

The purpose in carrying out detection for different intensity stimuli, low intensity of 

39―42 dB SPL and high intensity of 50―64dB SPL, evoked responses is to investigate 

the capability of the proposed detection scheme dealing with smaller evoked responses. 

This could be incorporating into the detection scheme in estimating hearing threshold 

where broad ranges of intensity level are required in the audiogram (see Figure 1.5). 

Figure 3.8 illustrates the non-sedated (subject) responses evoked by stimuli with 

modulating frequency at 40 Hz and 90 Hz, and carrier frequency of 1 kHz. In principle, 

the evoked responses of lower intensity stimuli produced smaller responses compared to 

the responses evoked from higher intensity stimuli, which is agreed with the studies by 

Picton et al. (2003a). 

 

Figure 3.8: Responses to various intensity stimuli. 

 

3.4.4 Modulating Frequency 

The purpose of the test is to investigate how the ASSR responses to different 

modulating frequencies and the effectiveness of the proposed detection model in 

detecting them with subject sedated (relaxed position and eye-closed) and non-sedated 

(be alert and eye-open). AM modulated stimuli were used with modulating frequencies 

of 40 Hz and 90 Hz, but having the same carrier frequency at 1 kHz. All four responses 

to 40 Hz and 90 Hz illustrated clear indication when ASSR are present (see Figure 3.9) 

when compared to a zero stimulus evoked (ASSR absent) cases, as shown in Figure 

3.10.  
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In order to verify the reliability of the results by the proposed detector, scenarios where 

no stimulus is generated is being used as a control scenario against the cases of ASSR 

existing. As illustrated in Figure 3.9 and Figure 3.10, the proposed ASSR detector 

successfully indicated a distinct difference in responses to the existence of ASSR, by 

using the thresholding. In general, the detection rate from these data displayed 

satisfactory accuracy (able to identify existence or non-existence of ASSR) within 

sensible time duration (less than 20s). In general, the responses evoked by stimulus with 

modulating frequency 40 Hz achieved higher and faster responses than the 90 Hz 

modulating frequency (Picton et al., 2003a; Stapells et al., 2004; Petitot et al, 2005).    

 

Figure 3.9: Responses to 40Hz ASSR in relaxing and non-relaxing conditions. 

 

 

Figure 3.10: Responses to 90Hz ASSR in relaxing and non-relaxing conditions. 
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3.4.5 Relax and Non-relax 

By maintaining the same modulating frequencies and carrier frequency as in previous 

test (Section 3.4.2), this test is designed to study the ASSR responses in both relaxed 

and non-relaxed cases. Under the non-relax condition, the subject was in an alert state 

with eyes open, whereas the subject is in more relaxing mood and resting with eyes 

closed under the relaxed condition. According to the responses in Figure 3.9 and Figure 

3.10, it is clear that relaxation improves the ASSR responses in terms of reduction in 

background noise (better SNR) for both 40 Hz and 90 Hz modulating frequencies, as 

also indicated in Linden et al. (1985), Cohen et al. (1991) and Picton et al. (2003a). 

 

3.4.6 Types of Modulation Tones 

According to the results shown in Figure 3.9 and Figure 3.10, it can be said that 

although subject‘s relaxing or non-relaxing states affect the SNR of ASSRs, they were 

not interfering or affecting the operation of the proposed detection method. Hence, the 

following tests (including the tests in Chapters 4 to 6) were conducted without sedation, 

aiming to test the proposed detection scheme exposed to poor SNR responses. But to 

evoke responses with various non-conventional (more advanced) types of modulation 

stimuli, which some researchers believe to be ‗better‘ stimuli (Picton et al., 2003a; John 

et al.; 2002 and 2004) compared to pure AM modulated tones, the case with modulating 

frequency at 90 Hz and carrier frequency at 1 kHz are simulated and the results are 

illustrated in Figure 3.11 The idea to carry out this particular test is to show the 

effectiveness of various types of modulation that used throughout the literature besides 

the most commonly known amplitude modulation (AM). 

 

According to John et al. (2004), AM
2
 (exponential modulation,   = 2) and MM (mixed 

modulation) tones should evoke larger responses than normal AM tones. However, 

based on results shown in Figure 3.11, their responses were slightly lower compared to 

the AM tone response. In principle, AM
m

 and MM would evoke larger responses than 

normal AM. Hence, a combination of both AM
m

 and MM in principle would evoke 

much larger response. A stimulus, known as exponential-frequency modulation (EFM) 

is introduced here by combining equations Eqns. (2-2) to (2-4) as 

 

                      
                

 
 
 

                    (3-26) 
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where    is the frequency modulation (both amplitude and frequency),    the frequency 

of the carrier,    is the depth of frequency modulation,    is the depth of amplitude 

modulation,   is the amplitude of the stimulus,   is the time, and   which governed by 

phase delay        (    radians) (see Eqn. (2-3)) for maximum correlation between 

stimulus amplitude and its frequency, the characteristic of the stimulus is a combined 

character of both MM and AM
m

. MM, EM
4
 and EFM

4
 have faster evoked responses in 

exceeding 50% threshold (empirically pre-defined threshold level) compared to normal 

AM modulated tone to be detected by the detector. In summary, different types of 

modulations may evoke larger responses and the proposed ASSR detection method is 

capable of detecting all of them, which not only beneficial to ease the detection in low 

SNR environment but also improves the time required to achieve the 50% threshold for 

reliable analysis. 

 

 

Figure 3.11: ASSR responses to various types of modulation at 90 Hz modulated. 

 

3.4.7 Comparison between ASSR Detection Methods 

Multiple (simultaneous) stimuli evoked ASSR responses (raw AEP data) corresponding 

to pre-recorded data provided by MASTER (software developed by Rotman Research 

Institute). Table 3.1 illustrates the detailed selection of the multiple stimuli used for 

multiple ASSRs detection. The terminology behind the ASSR detection is to estimate 

the ASSR (sinusoidal-like signal) that oscillates at a specify frequency stimulated by the 

modulating frequency of the stimulus input.  
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Table 3.1: Multiple stimuli parameters. 

 

A comparison of the detection time required for multiple ASSRs stimuli recording 

approach between normal averaging, weighted averaging and the proposed observer-

based detection scheme is shown in Table 3.2 (without artefact rejection) and Table 3.3 

(with artefact rejection). 

 

 

Table 3.2: Comparison between various detection methods for multiple ASSRs stimuli 

(without artefact rejection). 
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Table 3.3: Comparison between various detection methods for multiple ASSRs stimuli 

(with artefact rejection at 80µV). 

 

 

 

Figure 3.12: ASSR detection rate (a) using observer-based thresholding approach, 

(b)−(e) normal averaging plus FFT. 

 

Figure 3.12 illustrates the ASSR detection rate response with respect to stimulus at 

91.797 Hz using the proposed method as compared to the normal averaging. As the 
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detection achieved at 23.1s using observer-based method, a clear decision is only 

confirmed at 49.152s using normal averaging as shown in Figure 3.12c. As the number 

of ‗sweeps‘ (data sample with length of 16.384s) used in averaging increased, the 

distinctive peak voltage of the ASSR appears in FFT spectrum, as shown in Figure 

3.12b―3.12e.  

 

It appears that the proposed detection scheme offers improved or at least comparable 

overall performance compared with the most widely used ASSR detection methods. The 

proposed method has the advantage not only of having a fast detection rate (shorter test 

duration) but and also the ability to perform the detection on-line by updating available 

data instantaneously without the need of pre-storing the data. Moreover, the proposed 

detection scheme needs neither sophisticated processing protocols nor complicated 

designs in terms of the hardware and data acquisition unit required. Typically, the 

selection of the small observer gains as stated before performs well for low SNR 

scenarios. The gains used here were designed empirically via earlier simulation trials to 

produced ‗fine tuned‘ gains that have a good balance between the two influential factors 

of fast detection rate and noise rejection, which is guided by the observer theory 

(Kwakernaak and Sivan, 1972). 

 

3.5 Concluding Remarks 

An alternate method for ASSR detection in real-time is introduced in this Chapter. The 

method is based upon the state estimation technique, known as Luenberger observer 

method. The proposed method views the ASSR detection from a different angle, the 

idea is to treat the ASSR problem as a classical filtering or signal estimation issue. This 

is because according to the literature, the ASSR is a faint sinusoidal like signal 

oscillating at a constant frequency and embedded within the noisy AEP (low SNR). In 

general, the Luenberger observer performs well both with synthetic data (via 

simulations) and BIOPAC recorded data (via experiments).  

 

This Chapter introduced two different types of detection, one based on amplitude-based 

and the second on power-based approaches. As presented in the proposed ASSR 

detector, the decision making in the detection rate of either       or       is based 

on an empirically pre-defined threshold to determine the existence or non-existence of 

ASSR within the recorded AEP. If the response exceeds the threshold, it means that the 
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ASSR is present or otherwise. As mentioned in Section 3.3.1, the amplitude-based 

detection is preferred because of its flexibility of the algorithm. Although the ASSR 

detection scheme performed well so far with observer gains being constant (chosen 

through empirical studies), this could lead to problems if the SNR assumptions are not 

reliable. Therefore, a better approach based on adaptive principles is to be presented in 

Chapter 4.  

 

To date there have been no other studies reported about research on ASSRs which are 

recorded using the BIOPAC data acquisition system. The results from the preliminary 

studies presented in this Chapter have confirmed capability of recording ASSRs from 

BIOPAC and matched with the research carried out on ASSRs using MASTER. This 

also clarifies the performance of the proposed ASSR detection approach and the 

suitability of the BIOPAC system for recording of ASSR. Moreover, BIOPAC provides 

a basis for the development of an adaptive ASSR detection approach which is presented 

in Chapter 4. 
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4 . On-line Detection of ASSR via 

Adaptive Kalman Filter 

 

4.1 Introduction 

Although the observer-based detection scheme described in Section 3.2 operated 

efficiently under simulated conditions (as shown in Sections 3.3 and 3.4), it does have 

drawbacks when applied to the real ASSR data. The main disadvantage of the observer-

based detection approach is the need for gain parameter tuning when the signal-to-noise 

ratio (SNR) condition is unknown and varying. In order to have satisfactory detection 

under various SNR scenarios, the gain needs to be manually tuned via trial-and-error or 

by a series of empirical studies. Manual gain tuning could be time consuming and may 

not be applicable to real world applications, this is particularly crucial in the ASSR 

based hearing test if the subjects are newborn and children. In general, this can be 

overcome by implementing the Kalman filter (KF) as this provides the optimal state 

estimate, provided all a priori model and statistical information are available. The 

standard KF theory is summarised in Section 4.2 and a comparison with the observer-

based ASSR detector (described in Chapter 3) is outlined. 
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Typically, an optimal Kalman filter can be implemented but only if all a priori 

information are available. For this particular application, limited a priori information is 

known or not available at all. As a result, the automatic gain parameters tuning facility 

is needed to provide reliable detection under the conditions of unknown and probably 

varying SNR. An alternative KF method which operates adaptively is known as an 

adaptive Kalman filter (AKF). An overview of AKF and the mathematical formulation 

of the AKF-based detection scheme are presented in Section 4.3, which also included its 

preliminary simulation results. Experimental validation of the adaptive detection 

approaches is described in Section 4.4. Chapter concluding remarks are provided in 

Section 4.5. 

 

4.2 Kalman Filtering 

The KF is a special type of observer that accounts for the presence of process and 

measurement noise, and its gain is determined by using statistical information on the 

system (Kalman, 1960; Kalman and Bucy, 1960). Therefore, it can be seen as an 

optimal state observer or sometime referred as a stochastic state estimator. The KF was 

initially used in the 1960s for aerospace applications. Widespread success of the KF in 

aerospace applications has led to attempts to apply it to more common industrial 

applications.  

 

The KF not only works well in practice, but also is theoretically attractive because, of 

all possible filters, it is the one that minimizes the variance of the estimation error under 

certain conditions. KFs are often implemented in embedded control systems because in 

order to control a process, good estimation of the process variables is essential (Gelb, 

1974; Anderson and Moore, 1979; Maybeck, 1979). The standard linear KF has two 

versions, one is for discrete time systems and the other for continuous time systems. 

However in practice, the first version is preferable because the discrete-time version 

best illustrates the recursive concept and is useful for digital implementation. A general 

insight into the structure of a standard KF (discrete time-varying) will be presented 

briefly.  The process of a KF can be described as a recursive estimation process utilizing 

a form of information feedback, for instance, the filter estimates the process state at 

some time and then obtains updated information in the form of (noisy) measurement.  
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To illustrate the implementation of discrete Kalman filtering in extracting sinusoidal 

signals from noise, consider a noisy sinusoid      that is similar to Eqn. (3-1) but with 

time index written as k (i.e.                       ). This can be viewed as a 

discrete-time output      of a second order dynamic system, with the output equation   

                (4-1) 

To develop a discrete model of the noisy sinusoid     , define a state vector as:  

        
            

            
   (4-2) 

where the amplitude  , the angular frequency  , sampling period   , phase   are 

constants and      is assumed to be a white noise signal satisfying a Gaussian 

distribution. Thus the         sample will be: 

      
                

                
   (4-3) 

which is written according to the trigonometry expansions as: 

                           

                            
(4-4) 

Eqn. (4-3) is now re-written as: 

               (4-5) 

where the transition matrix    is  

    
                 

                 
   (4-6) 

 

So far, Eqns. (3-1) or (4-1) describes the sinusoid-like ASSR corrupted with      from 

the measurement is obtained. There is however, a second way of describing how the 

signal can be modelled, which is believed to be more realistic to human physiology. The 

reason for introducing the process noise      into the signal model      of Eqn. (4-3) 

is that      is assumed to be corrupted by additional noise      a priori to      while 

in the process of generating      in responses to stimulus. Hence, adding a noise term 

to Eqn. (4-5) gives 

                      (4-7) 

where the process noise        is  

        
       

       
  (4-8) 
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where       and       are uncorrelated to each other, whereas the output equation in 

Eqn. (4-1) is now written as   

                 (4-9) 

with output matrix    as 

         (4-10) 

According to Eqns. (4-7) and (4-9), the system can be viewed as linear time-invariant 

(LTI) system. The system is observable with observable matrix (   ,  ) having full 

rank of 2. The random variables (Gaussian white)      and      represent the process 

and measurement noise (both noise statistics are uncorrelated), and with their means and 

covariances as: 

                                 

(4-11)                                    

                  

where      denote the expectation and       denotes the Kronecker delta function, with 

       , else         for     . Moreover, the initial state      is jointly 

independent to all individual elements of      and      over time  , where      

                   and                        .  

 

A recursive cycle (between time update and measurement update equations) of the KF 

can be described by the following set of equations with initialisation parameters. With 

the following notations 

       : a priori state estimate   

      : a priori covariance  

       : a posteriori state estimate 

      : a posteriori covariance   

     : covariance of process noise,      

     : covariance of measurement noise,      

 

and the equations of Kalman filtering are given as follows: 

Initialisation:   

                (4-12) 

                                  
 
  (4-13) 
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Time update: 

           
        (4-14) 

         
        

         (4-15) 

Measurement update 

            
     

      
          (4-16) 

                            
      (4-17) 

                 
     (4-18) 

The algorithms of the KF are separated into time update equations and measurement 

update equations. The time update equations are responsible for projecting forward (in 

time) the current state and error covariance estimate to obtain the a priori estimate for 

the next time step. Meanwhile, the measurement update equation is responsible for the 

feedback correction. To ease the implementation of the algorithms into 

Matlab/SIMULINK, the KF is expressed using one-step a priori KF equations (via 

combining a priori and a posteriori terms into a single equation) rather than the 

standard derivation as in Eqns. (4-14)―(4-18) (Simon, 2006).  

 

Denote a priori state estimate expression from Eqn. (4-14) with time index increased by 

one and a posteriori expression from Eqn. (4-17) is substituted into Eqn. (4-14) to 

obtain 

                                   
                           

      

 (4-19) 

This illustrates that the a priori state estimate can be computed directly without 

acquiring the a posteriori state in between. The same applies to the a priori covariance 

expression from Eqn. (4-15) with time index increase by one and a posteriori 

expression from Eqn. (4-18) is substituted into the above equation to obtain 

               
            

       
        (4-20) 

then gain expression from Eqn. (4-19) is substituted into Eqn. (4-20) to yield 

           
      

 

               
      

                                 
    

   
      

       (4-21) 
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The amplitude of the ASSR can be estimated by  

          
        

     (4-22) 

where    
     and    

     are posterior        obtained using Eqns. (4-19) and (4-21). 

The estimated amplitude can be coherently averaged over short time interval to produce 

smoother and more accurate estimation  

      
 

  
       

 

   

         

 

   

  (4-23) 

This is particularly vital for the evaluation module to indicate the existence of any 

ASSR signal within an AEP (low SNR) and to reduce the chances of false alarm which 

typically causes sudden artefact appearance. The length of the coherent averager is 

determined by M, in which sampled at j time step. In other word,       is updated every 

time step j, while remained the same within time step interval.      

 

Denote detection rate        as the expected batch amplitude of        when      is 

present and detection rate         otherwise. It is expected that                for all 

   . The evaluation module is design similar to Eqn. (3-24) as 

       
                

       
      (4-24) 

where        can be used as an indicator to evaluate the degree of existence of     , 

thus a threshold can be pre-defined to determine its existence. This implies that when a 

sinusoid is present        should be distinctively greater than that when it is absent. 

The pre-defined threshold is chosen from empirical trials and determined to be 200%. 

The level of threshold defined was based on the average response from 50 simulation 

trials with random seeding in the noise generated for each trial.  

 

From the theories described, both Luenberger observer and the KF share a lot in 

common, for instance both can operate in real-time, have a similar structure, and are 

compatible in performances. Typically the Luenberger observer is applied to 

deterministic cases, whereas the KF applies in stochastic environment. Due to the 

property of the minimum variance of estimation, the KF can perform optimally while 

tracking a sinusoid corrupted by noise. To compare the responses of the optimal KF and 

proposed observer-based algorithms from Chapter 3, a noisy sinusoidal signal       

                    at sampling rate of 1k, process and measurement noise 
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standard deviations of            and         , and mean          (SNR= 

−20dB) is applied to the observer-based algorithms with series of gain parameters 

chosen as           (as shown in Figure 4.1) and to KF with the parameters setting as 

follows: 

KF  Observer-based detection 

Term  Value  Term  Value 

        
 
 
          

 
 
  

       
    
    

     

  
 
  
  

   
   

   

    
     

  1000    

Table 4.1: Parameters setting for KF and observer-based detectors. 

 

 

Figure 4.1: Comparative between KF and observer-based detectors via (a) amplitude 

response and (b) detection rate.  

 

If the observer gains are tuned carefully, its detection rate is comparable to the optimal 

KF or better (via higher gains) as shown by final two examples (dotted and solid line 

responses) in Figure 4.1b. However, higher gains cost the smoothness of the amplitude 

convergence and more sensitive to noise interference, as illustrated by the last example 

(dotted line response) in Figure 4.1a. On the other hand, smaller gains improve the 
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smoothness of the convergence and more resilience to noise, but may results in slower 

detection rate if knowledge of SNR is unavailable (which is unknown in ASSR 

detection), as illustrates by the second example (dash line response) in Figure 4.1a and 

Figure 4.1b. This is due to, if the observer gain   (   and   ) is chosen so that        

has a stable eigenvalues, the observer may no longer providing good estimate under 

different noise situation. 

 

On the other hand, manual gain tuning is not required in the KF because it operates with 

the given a priori parameters information (e.g. variables in Table 4.1) and provides 

optimal estimation. Empirical gain tuning is time consuming, thus KF is preferable 

since optimal gain can be computed and suitable to implement in stochastic case study. 

In fact, the observer and KF are relatively similar if the observer gain   is chosen 

according to Algebraic Riccati equation, the observer then becomes a steady-state KF 

with known variances   and  . 

 

4.3 Adaptive Kalman Filtering 

4.3.1 Background 

An KF is a recursive algorithm developed to solve the state estimation problem of a 

known system based on the complete a priori knowledge about the system‘s 

mathematical model, input signal and noise statistics. However in practice, the exact a 

priori information required are seldom available, thus implementing KF may no longer 

be straight forward. The use of wrong a priori parameters or erroneous noise statistics 

in the design may yield poor results and even divergence of estimation errors. 

Therefore, the utilization of adaptive Kalman filter (AKF) is needed to reduce or at least 

bound these errors caused by ill known a priori information in the design. There are a 

number of different approaches in designing an AKF. Since in the targeted ASSR 

application study, the main source of uncertainty is due to unknown noise statistics, thus 

it is upmost important to identify or estimate the noise statistics. 

 

Several AKFs have been proposed for the identification of noise covariance matrices 

since 1960s and majority of the algorithms were originated in the 70―80s. The existing 

approaches so far can be briefly divided into four categories: Bayesian approach 

(Magill, 1965; Hilborn Jr and Lainiotis, 1969; Sage and Husa, 1969; Alspach and Abiri, 
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1974), Maximum likelihood estimation (Kashyap, 1970), covariance-matching 

techniques (Meyers and Tapley,1976; Morein and Kalata, 1990; Hsu et al., 1991) and 

correlation methods (Mehra, 1970a, 1971 and 1972; Scharf and Alspach, 1972; Carrew 

and Bellanger, 1973; Sinha, 1973; Belanger, 1974; Sinha and Tom, 1977; Dee et al., 

1985; Oussalah and De Schutter, 2000). Generally, the Bayesian and the Maximum 

likelihood methods demand more computations and mainly based on the assumption 

that the noise statistics are stationary. Covariance-matching techniques are mainly based 

on detection scheme to ensure that the filter residuals are consistent with their 

theoretical covariances, but this method may sometimes be restrictive. However, the 

correlation methods are the most fruitful ones among the four. The idea is to establish a 

set of equations relating the system parameters (noise statistics specifically) to the 

autocorrelation of the measurement or residual sequence. The resultant equations are 

then solved simultaneously for the unknown parameters. Besides the four types of the 

noise identification approaches, other methods in resulting AKF can be found in 

(Friedland, 1982, 1990; Moghaddamjoo, 1986; Niedwiecki, 1988, 1990). As mentioned 

earlier, the unknown noise statistics make it difficult to utilise the standard KF for the 

ASSR application. Thus, identification of the noise statistics is crucial. As a result, the 

correlation method is to be emphasised in the AKF-based ASSR detector because of its 

practically proven records, simplified structurally and lower computation requirement.  

 

The correlation methods have been deployed for noise estimation in time domain 

analysis for quite a long time. The correlation methods are mainly divided into, output 

correlation method (based on measurement     ) and innovation correlation method 

(based on residual          
    ). Many of these methods were originated from 

Mehra (1972). The fundamental idea of the correlation method is to correlate the output 

of the system directly or after a known linear operation. A set of equations are 

established to relate the system parameters to the measured autocorrelation function and 

then solved simultaneously for the unknown parameters.  These methods are commonly 

applicable to LTI system. Mathematical formulation of the proposed AKF-based 

detection scheme will be discussed in the following section. 

 

4.3.2 Development of On-line Adaptive ASSR Detector  

As presented on the system‘s parameters in section 4.2, the standard KF may not 

provide optimal estimation if the correct information is unavailable and an AKF is 
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needed.  The challenge of this topic of study is to determine the existence or non-

existence of the ASSR signal that embedded within an overwhelm background noise 

(SNR≈ −30dB), but with noise parameters varying between subjects and hearing test 

environments. The measurement noise      in Eqn. (4-9) is represents the main source 

of background noise, which mediates via human physiological fluctuations (e.g. EEG 

and electromyography (EMG)), equipment and power line interferences, but with 

predominates mainly by human EEG.  

 

Both      and      are assumed to be stationary and with slow varying statistics 

within the LTI model. Therefore, two tiers of sampling time intervals were introduced, 

where    is the standard as sampling rate at time step k and     is referred as adaptation 

rate at time step j (          with       . In other words,   number data points 

of noise statistics      and      within a batch and assumed to vary between     

instead of   . The advantages are to decrease the computation load and producing much 

accurate expectation of the covariances      and     , but still enable the filtering 

process to track the measurement noise statistics by producing a time-varying Kalman 

gain     . The following approach is considered as output correlation method because 

the input used for correlation is based on the measurement     . 

 

Estimation of noise covariance       is much straight forward, according to the output 

correlation method by Mehra (1972). Denote      to be the ith lag autocorrelation of the 

output measurement (row vector)                           , which is 

a vector containing   numbers of data samples of      in batch. 

                    (4-25) 

Assuming      is stationary so that the autocorrelation is only a function of lag. The 

expression for       can be derived from a generalised case of Eqns. (4-7) and (4-9) 

(Mehra, 1972), thus 

      
        

           

    
       

     
   (4-26) 

where                   is the state covariance. Rewriting Eqn. (4-26) explicitly for 

       

 
    
    

         
   (4-27) 
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where number of   is chosen based on the system order (i.e. 2
nd

 order system) in order to 

balance both sides of equation. Whereas 

   
    

    
    (4-28) 

is a square matrix since    is a row vector.   is also a non-singular matrix because it is 

the product of the observability matrix and the non-singular transition matrix. Thus  

Eqn. (4-27) is then rewritten as 

      
      

    
    

   (4-29) 

Hence, estimate of covariance       can now be computed using Eqn. (4-26) (   ) as 

                    
    (4-30) 

If the sinusoid-like ASSR is described as a sinusoid corrupted with measurement noise 

     as stated in Eqn. (4-1), only measurement noise covariance       from Eqn. (4-30) 

is needed for the implementation of AKF. On the other hand, if the second idea is 

adopted where sinusoid-like ASSR is contaminated by two levels of noise, process 

noise      and measurement     , thus both process noise covariance      and 

measurement noise covariance      are required. With measurement noise covariance 

matrix obtained from Eqn. (4-30), only process noise covariance      remains, which 

can be viewed as a ‗waste basket‘ for unknown modelling errors. However, direct 

estimation of covariance      is not possible because of the immeasurable state vector 

     from the system or in this case from the human subject. Moreover, the optimal 

estimation of      (unique solution) is a very difficult task with specific conditions (e.g. 

system must be controllable and observable) to be satisfied and lengthy period may be 

required to achieve optimum steady state (Mehra, 1970 and 1972; Moghaddamjoo, 

1986). However, these conditions may be impossible or impractical in real applications, 

thus in practice the process noise covariance is usually made through empirical study, 

trial-and-error or simply a guess. In general, there is no universal solution to this 

problem.  

 

In order to estimate the process noise covariance     , the state covariance of the signal 

model                   needed to satisfy the steady-state Algerbric Riccati 

Equation  

       
     (4-31) 
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A numerical iterative gradient search technique (e.g. steepest descent method) is 

therefore been developed for solving state covariance  , which will lead to the 

computation of   (Mehra, 1970b). Firstly, initialised the     ,      and      . Then,  

               
              (4-32) 

where         (through built-in Cholesky Factorization in Matlab and   is non-

singular), which does not lose generality of the notation. With updated        now 

being substituted into together with      into Eqn. (4-32), hence 

               
        

          
      

        (4-33) 

New updated         can now be obtained through  

                          (4-34) 

The iterative cycle of Eqns. (4-32) to (4-34) with obtained via a user defined (typically 

small) step size of  . 

 

In order obtained                  that satisfy Eqn. (4-31), assumption were made in 

Eqn. (4-11) where     ,                         and 

                        are all jointly Gaussian and independent (uncorrelated). 

With the assumption made, denote              as 

                                                    

                                                    

                                 

(4-35) 

where      from Eqn. (4-7). The                    and               

    in Eqn. (4-35) are determine to be zero because of the                  and 

                are assumed uncorrelated for entire time step  . Thus Eqn. 

(4-35) is now    

                                                   (4-36) 

 

If the state covariance denoted as               ,  Eqn.(4-36) can be re-written as  

                        (4-37) 

In order for Eqn. (4-37) to achieve steady-state state covariance        
    of 

Eqn. (4-31), the process noise variance        is required to be stationary and the 

transition matrix    must be stable. As mentioned above, the process noise   is 

assumed to be constant but with a pair marginal stable eigenvalues of the transition 
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matrix    are obtained as 0.8443         (absolute value of 1) in the case of   

      and         . These eigenvalues do not change for different values of   or   . 

This is due to the natural characteristic of a sinewave (continuous time) where only the 

imaginary part exists and when this is converted into discrete form the discrete-time 

equivalent eigenvalue is located on the unit circle, leading to marginal stability. This 

does not satisfies the condition of a steady-state state covariance        
   , and 

the approach of solving   is not suitable in this case. Hence, the implementation of the 

AKF is not complete without the information of     . Since the optimum computation 

of      is not possible, the      is to be obtained empirically via simulations.   

 

Alternatively, a type of innovation correlation method which involves direct 

computation of the Kalman gain       uses only the residual information sequence 

              
     without the need to solve solve for      (Mehra, 1970: 1972) 

is implemented. Denote      as the ith lag autocorrelation of the innovation (residual) 

                          , is a vector containing   data samples of 

     in the batch:  

                    (4-38) 

Assuming      is stationary so that the autocorrelation is only a function of lag. Where  

      
        

                                                 

               
             

               
   (4-39) 

Where      is the state estimation error covariance,   is the identity matrix and      is 

the gain matrix of the AKF. Rewriting Eqn.(4-39) explicitly for         

               
               

         
       

                   
           

(4-40) 

where the number   is chosen based on the system order (i.e. 2
nd

 order system) in order 

to balance both sides of equation. Hence,       
  can now be expressed as  

      
                  

    

    
  (4-41) 

where  

      
    

                
  (4-42) 

is a square matrix and is non-singular.  
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Therefore, the estimate of covariance       of the innovation sequence can now be 

computed using Eqn. (4-39) (   ) as: 

                    
   (4-43) 

 

The advantage of using this particular method is that Kalman gain can be obtained 

without the need of process noise covariance     . The gain is computed via Eqn. 

(4-16) with time step of  . 

            
         

            
    

 

  

 (4-44) 

where        
        , according to Eqn. (4-39) when    . By substituting 

      
  from Eqn.  (4-41) into Eqn. (4-44), a recursive algorithm for the computation of 

the gain matrix with time step   is:  

                       
         

         
   (4-45) 

The gain matrix       obtained is held constant within the time interval  , whilst updated 

for every adaptation step  .  

 

To illustrate the performances between first and second AKF algorithms, simulations 

were conducted to validate their suitability in scenarios mimicking the ASSR (poor 

SNR). Figure 4.2a illustrate comparison between both AKF algorithms operating within 

a scenario where a noisy sinusoid                           at sampling rate of 

1kHz with SNR of 20dB, and the filter parameters were set accordingly to Table 4.2. 

The covariance   which is required by the first AKF algorithm (scheme 1) is defined as 

zero based on the first description of signal model where only measurement noise 

existed, detailed discussion on this will be presented in later section. According to the 

amplitude responses obtained via the two AKF algorithms in Figure 4.2a, both detectors 

performances are comparable either in cases with or without the present of a sinusoidal 

signal. To demonstrate the performances of these AKF algorithms in low SNR 

environment of −20dB that regarded as a typical SNR for ASSR detection. However, 

according to Figure 4.2b, the second AKF algorithm (scheme 2) suffers from difficulties 

in identifying the sinusoid amplitude correctly in a scenario in which a sinusoid is 

present. This was correctly identified under higher SNR environment in Figure 4.2a. 

Moreover, the second method is not capable of distinguishing between cases with and 
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without sinusoids, as shown in Figure 4.2b. Hence based on the simulation conducted in 

two distinct SNR environments, it is fair to comment that both AKF algorithms are 

comparable in performances under a high SNR condition, but the second AKF 

algorithm (scheme 2) is ineffective for a low SNR condition which makes it unsuitable 

for ASSR detection where SNR could be much lower than the SNR used in the trial 

(SNR≈ −30dB).     

 

Variable               

Index  
 
 
   

    
    

  1000 1000 

Table 4.2: Parameters setting of ASSR detector. 

 

 

Figure 4.2: Amplitude responses between both AKF algorithms in (a) SNR= 20dB and 

(b) SNR= −20dB. 

 

As illustrated in Figure 4.2, the second AKF algorithm (scheme 2) performs well under 

a high SNR environment, but has difficulty in detecting sinusoids from low SNR 

signals. Before stating the reason for its poor performance in low SNR, it is essential to 

understand the key concept of the algorithm. The main advantage of the second AKF 

algorithm compared with the first is that it does not require information about the 

covariance      in performing the detection, whereas it relies on the information about 

its residual in tuning its gain matrix. This gain tuning mechanism is based on the 

concept originated by Kailath (1968), where the Kalman gain can be tuned according to 

the level of randomness of its residual. The mechanism operates with the Kalman gain 
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to be tuned larger if the residual is correlated, whereas the tuning will be reduced once 

the residual is uncorrelated.  However, if this AKF mechanism performs poorly in 

determining the randomness of its residual, the poor performance will be due to 

inappropriate tuning of the Kalman gains.    

 

 

Figure 4.3: Autocorrelation plot for various test scenarios. 

 

As an illustration, Figure 4.2 shows the autocorrelation plots for both the low and high 

level SNR scenarios corresponding to the use of the second AKF algorithm. The plots 

show the randomness between the residuals and measurements. The autocorrelation plot 

is a common tool (Hayter, 2002) based on both autocorrelation and cross-correlation to 

check the randomness of a data set, its response will be close to zero if the data are 

random and its response will be significantly non-zero (either close to 1 or −1). The 

autocorrelation coefficient that is used to define the degree of randomness in an 

autocorrelation plot is given as: 

     
    

    
     (4-46) 
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where      and      are autocorrelation and cross-correlation and obtained via Eqns. 

(4-25) and (4-38). In fact, the recursive Kalman gain matrix from Eqn. (4-45) uses the 

autocorrelation coefficients of Eqn. (4-46) where     and   , which can be written as  

                       

                
    

                
    

  (4-47) 

 

The noisy sinusoid shown in Figure 4.3a has SNR of 20dB and is initially highly 

correlated between its measurement and residual, but the residual later indicates a 

randomness or whiteness, indicating a success in extracting the sinusoid from the noisy 

data. The autocorrelation coefficient close to zero is significantly different from its 

highly correlated measurement data. However, the second scenario of a noisy sinusoid 

with SNR of −20dB, as shown in Figure 4.3c, displays a high correlation between its 

autocorrelation coefficient at its measurement and residual. These responses are similar 

to the case of testing with a noise only sample as shown in Figure 4.3b. From this there 

is hence no way of telling if a measurement is a sinusoid corrupted with noise or just  a 

noise only measurement (without sinusoid) and the Kalman gain therefore cannot be 

tuned appropriately. Hence, the second AKF algorithm (scheme 2) is not suitable in this 

application, where the SNR is low.  

 

Figure 4.4 illustrates the first AKF algorithm (scheme 1) or on-line adaptive ASSR 

detection scheme with the signal description assuming the existence of only the 

measurement noise. 

 

 

Figure 4.4: Schematic of the proposed on-line adaptive ASSR detection scheme. 
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4.3.3 Simulation Results 

To demonstrate the performance of the proposed adaptive ASSR detector, synthetic data 

were initially used under simulation conditions. Trials conducted using experimental 

recorded data are presented in Section 4.4. In order to illustrate the capability of the 

ASSR detector in processing a noisy sinusoid signal                          

with sampling rate of 1kHz, and with the parameters given in Table 4.2. The parameters 

given in Table 4.2 are used throughout all the simulation experiments described in this 

section unless otherwise stated.   

 

Impact of process noise on the detection rate response  

As mentioned earlier, finding the optimal      is difficult and could be impossible 

particularly for this application since the actual ASSR signal is not measurable and also 

no AEP model is available so far.  However, two different assumptions of the ASSR 

model were made in the beginning of this chapter. If      is non-zero, it corresponds to 

the concept of modelling the ASSR with process noise added to     , whereas      is 

assumed to be noise-free if      is set to be zero. To illustrate the performance of using 

different   matrices (assumed stationary), several trials were conducted and their 

responses are presented in Figure 4.5. The process noise covariances are denote as:  

            
        

 , 

            
        

 , 

           
       

 , 

    
  
  

 . 

 

According to Figure 4.5a, various sets of   will eventually produce satisfactory 

detection rate response with the larger the value of   the faster the convergence rate to 

exceed the pre-defined threshold at 200% at SNR almost equal to 0 dB. However, for 

the case where the SNR is approximately equal to −30dB, the performances of all the 

choices of   are relatively close except    which tends to be less immune to large noise 

signals by having a poorer detection rate response. This is due to the fact that for larger 

values of   (representing larger process noise levels) there is a trade-off of high 

sensitivity to noise interference (e.g. low SNR) as shown in Figure 4.5b.  Hence, the 

idea is to balance between the factors of faster detection rate and higher noise immunity 
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particularly in the application where SNR is low, for instance in the ASSR detection 

problem. Having said that, it is still a challenge to select the  , when the ASSR model is 

unavailable. Therefore, the first concept of describing the ASSR is to be endorsed with 

the assumption that      or      are noise-free sinusoidal signals by choosing   

 
  
  

 . 

 

 

Figure 4.5: Output responses from process noise signals of (a) SNR 0dB and (b) SNR= 

−30dB. 

 

Comparison between optimal KF and AKF 

Since    
  
  

  is assumed, the adaptable gain now depends on only the 

measurement noise     . A comparison is made between the optimal KF and the AKF, 

in order to illustrate the performances in estimating a noisy sinusoid with a low SNR 

environment of −30dB, which is shown in Figure 4.6. The result presented in Figure 4.6 

is a typical response from 10 simulation trials. The simulation parameters are the same 

as provided in Table 4.2. In general, their performances in terms of amplitude response 

and detection rate are relatively close, with MSE between optimal KF and AKF is 

shown in Figure 4.6b. Since the MSE between these methods are relatively small, it 

would be no surprise that their detection rate responses are quite similar, as in Figure 

4.6c. Their close similarity in terms of their performances is because of the      

         
        

  used in optimal KF is relatively small as compared to the 
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  assumed in the AKF. If the      chosen in optimal KF is far bigger, it is 

expected that the optimal KF will be better performed. Due to the typically low SNR 

condition of the particular application that concern (mimicking ASSR detection), only 

limited range of   is suitable and also they output comparable detection rate responses 

(see Figure 4.5b). Although their performances are generally comparable, the optimal 

KF is not suitable due to the lack of a priori knowledge of the noise statistics and SNR 

conditions, whereas the AKF estimates these parameters on-line simultaneously within 

its filtering process.   

 

 

Figure 4.6: Comparative performance between optimal KF and AKF in detecting noisy 

sinusoid in SNR≈ −30dB. 

 

Effectiveness of the AKF-based adaptive ASSR detector   

As seen from the examples shown above, where the AKF with    
  
  

  is 

comparable the performance of an optimal KF under the constraints of ASSR detection.  

In terms of decision making as to whether a sinusoid or ASSR is present or absent 

within a given detection, a thresholding is used in a similar manner to the observer-

based detector in Chapter 3 where the decision making threshold is pre-defined as 50% 

in the detection rate plot. Therefore, a simulation trial was conducted to determine the 

benchmark threshold quantitatively. According to Figure 4.7a, the amplitude responses 

between detection of a sinusoid present and absent data are distinctively different and 

this result is applicable to all the trials tested. This verifies that the adaptive detector is 
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capable of estimating a particular sinusoid at a known frequency within a low SNR 

environment. For the detection rate plot in Figure 4.7b, the detection rate responses 

between existing and non-existing sinusoids are significantly different. The majority of 

the trials displayed close similarity to the detection rate responses as illustrated by the 

example 2 shown in Figure 4.7b.  Thus, the pre-defined threshold is determined at 200% 

based on the simulations.  

 

However, determining the threshold level for AKF may sometimes be tricky because 

some detection rate responses, for instance, case 1 (sinusoid present) in Figure 4.7b may 

occasionally peak above the 200% threshold benchmark even though its amplitude 

response can be well distinguished from the sinusoidal signal present in the response. 

Nonetheless, the responses obtained with these unexpected peaks are generally still 

significantly lower (general trend pattern lower than 200%) compared with cases where 

sinusoids are present, as similar to the example 1 in Figure 4.7b.   

 

 

Figure 4.7: Identifying the existence and non-existence of a sinusoid in a low SNR 

environment (SNR≈ −30dB). 

 

4.4 Experimental Results 

So far the proposed adaptive detection scheme is evaluated using synthetic data, and the 

results are satisfactory. In order to verify it practically, experimental recorded data using 

BIOPAC acquisition system were used.  
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ASSR identification in practice   

Figure 4.8a presents the estimated amplitudes of AEP with or without ASSR (oscillated 

at 90 Hz) at sampling rate of 1 kHz and with parameters settings as in Table 4.2, and a 

clear distinction between the responses where with existence or non-existence of ASSR. 

 

Typically, the detection rate responses between the case when the ASSR is present and 

when it is absent are distinctive, as shown in both ‗case 1‘ in Figure 4.8b. However, in 

some cases the ASSR identification may not be straight forward, for instances, the dash-

line response of case 2 (ASSR present) displays a similar amplitude response as the case 

1 (ASSR present) in Figure 4.8a. However in case 2 the pre-defined 200% threshold is 

not exceeded, although it is exceeded in case 1 (ASSR present). An explanation could 

be that the pre-defined threshold of 200% may not be adequate for each and every 

individual case, though it was determined based upon a series of empirical trials. In 

addition, case 2 (ASSR absent) in Figure 4.8b that peaked may complicate the empirical 

process of determining the threshold level. A bias in the process may have been 

artificially generated. Therefore, there are drawbacks of a thresholding approach that 

relies on the use of empirical trials. Hence, a more objective approach may be required 

to quantify the appropriate threshold levels adaptively for each individual case, without 

relying only on past trials.  In general, both AKF-based and observer-based approaches 

to ASSR detection perform satisfactorily with thresholding, whilst the example in 

Figure 4.8 displays clearly the drawbacks of thersholding in AKF-based detection.   

 

 

Figure 4.8: Determination of the existence and non-existence of ASSR. 
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Single vs Multiple Harmonics  

To further reduce the detection time, a combination of the fundamental frequency of 

ASSR and its first harmonic is to be detected. Figure 4.9a illustrates the responses of 

ASSR detection for both its fundamental frequency at 90Hz and its first harmonic at 

180Hz.  

 

 

Figure 4.9: Comparison between standard the ASSR (single harmonic) and combined 

ASSR (multiple harmonics) detection rate responses.  

 

According to Figure 4.9a, the responses to no existence of the ASSR are much smaller 

than when the ASSR is present. In addition, Figure 4.9b displays the combined 

responses (fundamental and harmonic frequencies) for both cases where the ASSR are 

present and vice versa. The original threshold is set to be 200% but with the combined 

responses, the threshold will now be 400%. Typically (according to the literature), in 

the standard ASSR detection, only a single harmonic (fundamental frequency) is 

considered because it is believed that the fundamental frequency response is 

significantly larger and distinctive to the surrounding background noise, so that neither 

the sole nor the combined ASSRs detection response will be significantly different 

(exceeding pre-defined threshold of 200%), as shown in Figure 4.9b. On the other hand, 

the combined detection approach would still be able to produce reliable and satisfactory 

results if the fundamental frequency response is poor without the user knowledge.  

However, this comes at a cost of more intensive computation because an additional 

ASSR detector is needed for estimating the same frequency. This could be non-practical 
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if large numbers of these detectors are needed, where issues like computational intensity 

and signal delay in processing will be involved. 

 

Comparison between AKF-based and observer-based detections 

So far, the proposed AKF-based detection scheme performs in a satisfactory manner. A 

comparison is made between the AKF-based and observer-based detectors, in order to 

study their relative performances. The parameter settings for these scenarios are give in 

Table 4.2 corresponding to observer gains of                     .   

 

 
Figure 4.10: Comparison of performances between observer-based and AKF-based 

ASSR detectors. 

 

The AKF-based detection in Figure 4.10b produced better amplitude estimation 

(approximately to     µV) as compared to the observer-based method (approximately 

to     µV). The comparison with the FFT response of        µV is shown in Figure 

4.10a. The detection rate responses for both detection methods indicates the existence of 

the ASSR because of the pre-defined thresholds (50% for observer-based and 200% for 

AKF-based detection) were exceeded, as shown in Figure 4.10c.  
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4.5 Concluding Remarks 

The key difference between this Chapter and Chapter 3 is the introduction of the 

adaptive ASSR detection scheme via Kalman filtering based approaches. In particular 

the AKF has been shown to have a near-optimal performance. In general, the 

Luenberger observer-based detection is structurally similar to KF.  However, the former 

usually operates in the continuous time domain and the latter in the discrete-time. 

Generally, the KF is often seen as the optimal state estimator based upon the a priori 

information. However, if a priori information (e.g. system parameters and noise 

statistics) is unavailable, thus KF is no longer optimal. On the other hand, an AKF can 

be used to estimate the unknown parameters followed by the standard filtering process. 

As a result, the adaptive Kalman filtering is used to detect ASSR where the only 

information available is that the signal is a sinusoidal wave like with a known 

frequency. In order to determine the existence or non-existence of the ASSR signal, the 

detection rate is based on a thresholding where the level of threshold is pre-defined 

empirically. If the signal‘s response is higher than the pre-defined threshold, thus ASSR 

considered existing or otherwise.  

 

Simulation studies were carried out to demonstrate the performances of the proposed 

on-line adaptive ASSR detectors with synthetic data. The studies are important to 

clarify the performances (e.g. detection rate, accuracy in signal extraction and detection 

rate) of the detector, since the ‗true‘ amplitude of ASSR is unknown in practice. In 

general, the proposed detector performs well with experimental recorded data, thus 

justifying the assumptions (e.g. system parameters and model) made within the 

detection scheme. Although the thresholding may in some cases indicated clear ASSR 

detection rate response, the majority of the tests show that the thersholding is acceptable 

performance-wise. This drawback is accentuated by the fact that a large number of trials 

are impossible to make in some cases (e.g. varying level due to subjects and test 

environments). Hence, an objective way of quantifying the levels of threshold variation 

for each individual scenario is desired. A statistical-based method for achieving this is 

proposed in Chapter 6.    
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5 . Improving the Robustness of 

ASSR Detection via Multiple Filters 

Fusion  

 

5.1 Introduction 

The adaptive detection scheme based on the adaptive Kalman filter (AKF) presented in 

Chapter 4 is able to detect the existence or non-existence of auditory steady-state 

response (ASSR). However, it is assumed that the probability of the noise satisfies the 

normal distribution, and the measurements are without any artefacts. As mentioned 

earlier, the auditory evoked potential (AEP) recorded from the human scalp consists of 

an ASSR signal together with the electroencephalogram (EEG). The EEG is 

predominately the background noise, and other noise elements exist, for instance, 

electromyography (EMG), powerline interference and etc. Pre-filtering (i.e. bandpass 

filtering) is commonly used to filter out the lower frequency components which are 

considered highly non-Gaussian and to bypass a limited spectrum of the AEP signal 

where the ASSR‘s frequency is located, thus to improve the signal-to-noise ratio (SNR). 

Any unexpected artefacts within the recorded AEP (post-filtering) can be devastating to 

the ASSR detection and significantly bias the output results. Therefore, incorporating 
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robust functionality, in this case robustness towards artefacts is particularly crucial for 

the detection scheme proposed in Chapter 4. Since the reliability of the proposed 

detector is governed by having reliable estimation of the covariance      (     

assumed to be zero as described in Chapter 4) where it is assumed to represent all 

background noise, thus the idea is to improve the robustness in estimating the 

measurement covariance  . A brief description of possible artefacts within AEP and the 

statistical approaches (e.g. sample median operator) taken to improve the robustness of 

the noise covariance   are presented in Section 5.2.   

 

In accordance to the estimated covariance       of Eqn. (4-30) of the proposed ASSR 

detection algorithms, the correlation function obtained via Eqn. (4-25) played a key role 

in determining the sensitivity of the estimation of      . In general cases, the sample 

mean operator (similar to Eqn. (4-25)) which is seen as the non-robust method is more 

efficient in producing outputs with smaller deviations from artefact-free data, whereas 

the sample median operator that is a known robust method works better when the data 

are contaminated with artefacts. Due to no prior knowledge of whether or not any 

artefact exists during the recording, combining both methods could improve the 

accuracy of the detector in any scenarios. The way to combine both methods can be 

implemented via multisensor data fusion (MSDF), which is to be discussed in the 

second half of the chapter. An introductory of its historical background and applications 

of the approach are to be presented in Section 5.3. In addition, the section will also 

describe the existing class of techniques used in MSDF and the development of an 

ASSR detection scheme with enhanced robustness against artefacts using MSDF. To 

illustrate the advantages of having the newly developed detection scheme compared to 

the previous version without MSDF, simulation and experimental studies were 

conducted as described in Section 5.4. The concluding remarks of the Chapter are given 

in Section 5.5. 

 

5.2 Artefact-Robust Detection  

5.2.1 Background 

An outlier (i.e. artefact) is generally defined as an observation that ―lies outside some 

overall pattern of distribution‖ (Moore and McCabe, 1999) or similarly, Johnson (1992) 

stated that ―an outlier as an observation in a dataset which appears to be inconsistent 



78 

 

with the remainder of that set of data‖. In this study, the occurrences of outliers are to be 

considered to arise within observation noise from unwanted artefacts or unanticipated 

disturbances. The artefacts in the AEP measurement are electric activities that are not 

part of the AEP response and that should not be included in the further processing of the 

recorded data. These artefacts can be electromagnetic (e.g. powerline interferences, 

electrode cable movement and etc.) or electrophysiology (muscle activity, eye blinks 

and etc.) from the subjects (Hall, 1992). The detection and analysis of the ASSR is very 

vulnerable to these unwanted artefacts, because they can significantly degrade the 

performance of the detector in terms of detection rate and time duration, especially 

when the ASSR is to be extracted from a low SNR recorded measurement. Although the 

AEP measurement is pre-filtered by a narrowband bandpass filter which is a standard 

practice in avoiding non-Gaussian noise regions especially at the lower frequency 

spectrum, an artefact-free AEP measurement is not guaranteed. So far, the proposed 

adaptive ASSR detection scheme operates well under artefact-free measurement, but the 

detection will be heavily influenced and biased with the artefacts infested data. 

Therefore, an artefact-robust facility was integrated into the adaptive ASSR detector 

from Chapter 4.  

 

So far, one of the most effective existing techniques robust against the artefact proposed 

for ASSR detection is through removing of the recorded data (in batch) infested with 

artefacts before averaging via artefact rejection method. A set of pre-defined upper and 

lower bounds (thresholds) to reject any data batch that exceed the boundaries which 

kept fixed throughout the recording (John and Picton, 2000a). However, this approach 

has some drawbacks, and the greatest concern is towards the pre-fixed bounds for the 

artefacts rejection. If the boundaries are generously broad, the detection could be biased 

with infiltration of unwanted artefacts and thus increase in false alarm of the detection. 

On the other hand, if the boundaries are set to be too narrow, it could lead to an increase 

of batches of recorded AEPs to be discarded and thus further pro-long the already 

lengthy test duration. In addition, having same pre-fixed bound sizes for all subjects 

may not be appropriate, because the AEPs recorded are different between subjects, thus 

so should be the gap interval between the boundaries. Moreover, a real-time artefact 

rejection approach may not be feasible if the boundaries are to be tailored tuned 

individually to accommodate each subject (John et al., 2001a).   
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The idea of removing or discounting the artefacts from the AEP data (measurement) is 

to be integrated into the readily developed AKF-based adaptive ASSR detector with 

minor modifications. Section 5.2.2 discusses briefly the background behind the 

statistical operators used to perform on-line outlier-robust detection. 

 

5.2.2 Artefact-Robust Detection of ASSR via Statistical 

Operators 

In the Chapter 4, the proposed adaptive ASSR detection is based on the AKF, but its 

performance degrades when the measurement (observation data) contains artefacts. This 

is due to the nature of adaptive filter (in real-time) without storing of past measurement 

data, hence the quality of the prediction will be less reliable if without the access to all 

pre-acquired measurements. Since no prior knowledge about noise statistics and AEP 

model available in ASSR detection, with only ASSR‘s frequency known, thus a simple 

and straight forward approach is taken to improve the robustness of the AKF-based 

ASSR detector via statistical operators. Since all possible artefacts are to occur only in 

AEP measurements, removing or discarding outliers from the measurement would be 

the intention of the robust mechanism.  

 

The correlation in Eqn. (4-25) contributed to estimate of covariance   Eqn. (4-30) is 

based on sample mean operation. With output measurements defined in row vector 

notation as                           , the autocorrelation is simply 

the summation of all the data points within a sample and divided by the number of data 

points, yielding: 

                    

      
 

 
     

 

   

 
(5-1) 

where      is the representation of data points within a sample of N-dimensional vector 

(containing N number of data points).  

 

In theory, if the probability density of the distribution is not exactly known, the true 

mean is impossible to obtain. This is particularly true of real-time applications because 

infinite long data need to be recorded. Therefore, sample mean is a commonly used 

statistical operator to produce an average or mean value from a given sequence of 
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sampled measurements (data population). However, as all the measurement values were 

treated equally (equal weights) by the sample mean operator, thus it is very sensitive to 

the existence of extreme values (artefacts) which could eventually distort its output 

accuracy. In ASSR detection, this would cause sudden rise in covariance   and leading 

to an unexpected drop in Kalman‘s gains. As a result, reduction in detection rate and 

increase of detection time are expected because of the unanticipated drop in 

convergence rates. 

 

To overcome the problem, an alternate robust approach is to use the sample median 

operator. The sample median can be defined as the middle number of a sequence of 

measurements arranged in numerical order within a sample of length N. If the number 

of data points (measurement points) within the sequence is odd, the sample median can 

found by picking the middle values within the sample as 

                         
   

 
 (5-2) 

where N is number of counts of measurement points. If the number of measurement 

points containing within a sequence is even, then the sample median is the sum of the 

two middle values i.e.   
 

 
    

   

 
  and divided by 2. Hence,   

                         
  

 
 
    

   
 

 

 
 

(5-3) 

The sample median operator is only computed from the middle values from the data 

samples, thus it is less affected by the artefact than sample mean operator which uses all 

available measurement points within a sampled sequence. Moreover, sample median 

operator is highly effective and robust against biased or skewed (non-symmetric) 

distributions within the sampled sequence of measurements than sample mean operator 

(Huber, 1981). To quantify the fact, the sample median can tolerate up to 50% of 

artefacts caused errors before it become arbitrarily large. For example, if a sampled 

sequence measurement with time interval of adaptation rate             (where 

       and each individual measurement points at time interval of sampling rate 

         ), thus the breakdown point of a sample median operator would required 

artefacts to occur at least       or longer than the interval         . On the other 

hand, the sample mean operator is not robust and a single significantly large outlier is 

enough to cause inaccuracy towards the computation of covariance      , because of its 

low breakdown points of 0%.  
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Instead of the sample mean operator used in the correlation of Eqn. (4-25) which led to 

estimate of covariance       of Eqn. (4-30) of measurement noise, sample median 

operator is chosen for its robustness against outliers. The first step to find the median 

would be to extract the diagonal elements to create a vector, denote 

                                         (5-4) 

      is a N-dimensional vector created from extracting the diagonal components from 

            and sorting the values of the components in order to ease the middle term 

selection. Whereas      is N-dimensional vector consisting batch of data points of 

                      with individual measurement point sampled at 

time-step  .  

 

With       obtained, the sample median can now be solve by locating the middle data 

point from vector       and treat the value as 

                    (5-5) 

as mentioned in Chapter 4, the      is operating at time-step  , with    , hence with 

only one median is obtained for each time step  .  

 

Under the assumption that the data samples are normal distributed and symmetrical, the 

samples mean and sample median operations should be equivalent. However, if the 

assumptions are violated, samples mean operator is no longer optimal and can perform 

poorly particularly in occurrence of extreme outliers (Hampel, 1971, 1974). With 

artefacts (outliers) infested data, sample median operator will have smaller deviation 

error than sample mean but higher error occurrence under normality distributed data 

(Huber, 1981; Staudte and Sheather, 1990; Wilcox, 2004). By modifying the sample 

mean operator in Eqn.(4-25) to Eqns. (5-4) and (5-5), this would improve the robustness 

of the measurement noise estimation as shown in Eqn. (4-30), thus making the proposed 

ASSR detector less affected by artefacts. As discussed above, both sample mean and 

median operators has their advantages and disadvantages relating to artefacts. In order 

to have the best of both operators, MSDF approach is used, which will be discussed in 

the following section. 
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5.3 Multisensor Data Fusion Strategy 

5.3.1 Overview 

MSDF is a process of combining sensory data or signal from multiple sensors (filters) in 

order to provide an estimation of the environment or process of interest (Llinas and 

Waltz, 1990; Chong et al., 2000). It is more accurate and robust compared with the 

estimation using a single sensor. Unlike many subjects (e.g. automatic control, robotics 

and etc.), MSDF does not form an individual sub-discipline but not until recent years 

where it has been recognized as a separate branch of research. Historically, data fusion 

methods were developed primarily for military applications, for examples, automated 

target recognition, guidance for autonomous vehicles, battlefield surveillance and 

automated threat recognition systems (Hall and Linn, 1991; Harris et al., 1998).  

However, in recent years these methods have been applied to civilian applications (e.g. 

remote sensing, robotics, finance, retail, automated manufacture and etc.), and there has 

been bidirectional technology transfer (Wright, 1980; Hall and Linn, 1991; Abidi and 

Gonzalez, 1992). The MSDF is being integrated into the monitoring system and 

operating together with detection or estimation techniques (e.g. KF and state observer) 

in order to reduce the effect of the uncertainty and obtain more complete knowledge of 

the state.  

 

There are several methods that are commonly used to implement the MSDF approach, 

and they are mainly based on probabilistic methods which are generally referred to 

Bayes‘ rule for combining prior and sensory information. Commonly used methods in 

practice are, for instances KF Extended Kalman filter, sequential Monte Carlo method, 

Bayesian networks and Dempster-Shafer. Detailed overview of the existing MSDF 

methods can be found in (Dario, 1988; Goodman et al., 1997; Hall and Llinas, 1997; 

Smith and Singh, 2006). Both linear and extended Kalman filtering techniques have 

established themselves well practically over a widespread of sensor fusion applications 

(Dunn et al., 1976; Willsky et al., 1982; Hashemipour et al., 1988; Rao et al., 1991; 

Gao and Harris, 2001).  

 

5.3.2 Kalman Filter-based Fusion Method 

The KF-based MSDF is among the most significant and the fusion method can be 

further divided into two sub-methods, they are the state-vector fusion and measurement 
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fusion (Roeckerand and McGillem 1988; Bar-Shalom and Li, 1995; Saha, 1996; Chang 

et al., 1997; Saha and Chang, 1998). The state-vector fusion typically uses a bank of 

multiple KFs as sensor arrays to obtain measurements    (  is number of 

measurements) and produce state estimates     (  is number of estimates) which are 

then fused to output a global improved joint state estimate    , as shown in Figure 5.1. If 

state-vector fusion approach adopted decentralization architecture, it can be referred as 

Decentralized Kalman filter fusion.  

 

 

Figure 5.1: Decentralization fusion architecture: State-vector fusion. 

 

 

Figure 5.2: Centralization fusion architecture: Measurement fusion. 

 

On the other hand, the measurement fusion method fuse the collected measurements    

(  is number of measurements) to obtain a combined measurement    and the final state 

estimate    is produced based upon the fused measurement via Kalman filtering, as 

shown in Figure 5.2. If measurements centralization architecture is adopted by the 
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measurement fusion approach, it can be known as Centralized Kalman filter fusion. In 

general, the measurement fusion method provides better overall estimation, but not 

without tradeoff. However, the state-vector fusion method is less computational intense 

and have the advantage of parallel implementation of local sensors (Qiang and Harris, 

2001).  

 

The development of state-vector-based decentralized fuser is the focus of the thesis (to 

be discussed in next section), because of its suitability to the ASSR problem by 

accommodating a bank of multiple adaptive Kalman filters (see schematic in Figure 4.4) 

with different statistical operators (e.g. sample mean and sample median operators) to 

ensure ‗optimum global estimate‘ in either artefact-free or artefact infested AEP.   

 

5.3.3 Development of Fusion-based ASSR Detector  

As mentioned earlier, sample mean and sample median operators have their strength 

and weakness depending on whether the recorded AEP is artefact-free or artefact 

contaminated, and whether the probability distribution of the data symmetrical or 

skewed. However, since none of these information are known precisely (e.g. AEP 

measurement is assumed to be normal distribution and symmetrical), having two 

operators for estimation seem to be ideal. In order to have best of both worlds, the 

MSDF approach can be used to combine or fuse these state estimates through an 

implementation of multiple KFs (local sensor arrays) in order to obtain a refined and 

improved state estimate than using a single sensor alone. In this way optimum fused 

estimates that satisfy different scenarios are generated. Figure 5.3 illustrates a schematic 

diagram of the MSDF-based ASSR detection scheme. Instead of multiple measurements 

   as in Figure 5.1, only single measurement    is used as the recorded AEP. This type 

of decentralization layout is also referred as single measurement multiple sensors 

(adaptive ASSR detectors in this case) as shown in Figure 5.3, where multiple 

estimations     and     are computed based on a single measurement   before producing 

a fused-estimate      . 

 

This MSDF-based adaptive ASSR detector is in principle operating similarly to the 

detection scheme proposed in Chapter 4 (see Figure 4.4), but with the replacing of 

single AKF (see schematic in Figure 4.4) with multiple AKF in arrays (see Figure 5.3). 

A bank of two local sensors (AKF-based ASSSR Detector) with each having their own 
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estimations (both denoised and residual paths) of     and     of   , associated 

respectively with the estimation error covariance    and   . All these local estimates 

are then passed to the global fuser. The state-vector fusion method is implemented as 

the global fuser to combine the local estimates and produce a better estimate (Qiang and 

Harris, 2001).   

 

Figure 5.3: Schematic of the adaptive ASSR detection scheme via MSDF. 

    

 For simplicity the following expression will only concern about the denoised path, but 

identical explanations can be applied to the residual path. The fusion-based approach is 

inspired by Decentralized Kalman filter (Brown and Hwang, 1997; Drolet et al., 2000).  

By using the weighted least square principle, the fusion of     and     is denote as 

             
        

       (5-6) 

where     and     can be either denoised signal or noisy signal, and    and    are 

associated respectively with the estimation error covariance. This fused estimation has 

an error covariance of  

        
     

      (5-7) 

 

Since each sensor (AKF-based ASSSR Detector) contributes to the global fuser in a 

way inversely proportional to its error covariance matrix as in Eqn. (5-6), thus the 

smaller error covariance of the estimate the larger its contribution to the global estimate. 

As a result, the fused estimate       is expected to have combined characteristic 
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performances in producing reliable ASSR indication as compared to using single KF. 

The rest of the detection operate similarly to the proposed detector in Chapter 4, thus 

details will not be mentioned here (see Section 5.2.3). The purpose of incorporating 

MSDF approach into the adaptive detection scheme is to further improve the reliability 

of the detector in both artefact-infested samples and non-artefact infested samples as 

compared to the implementation of a single ASSR detector alone, since no prior 

knowledge about the probability of any artefact occurring. The sample mean operator is 

to provide the ‗expectation value‘ from a given data sample, whereas median operator 

will act against any extreme artefacts that would occur.  

 

5.3.4 Simulation Results 

To illustrate the performances of the proposed artefact-robust ASSR detector, synthetic 

data were initially used for simulation, whereas evaluation based on real experimental 

recorded data will be presented in the next section. Outliers (mimicking artefacts) 

contaminated noisy sinusoid signal                          (see Figure 4.4), 

with sampling rate of 1kHz and with the simulation parameters used are the same as in 

Table 4.2 . Whereas, outliers contaminated noisy sinusoid is illustrated in Figure 5.4, 

and the parameters used for synthesizing these outliers are given as  

 

Outlier 
Occur at time 

(s) 

Duration it occur 

(s) 

Outlier’s 

variance 

1 10 0.1 4 

2 20 0.5 7 

3 30 0.5 4 

4 50 1 4 

5 70 3 2 

Table 5.1: Parameters setting of the synthesized outliers. 

 

According to Table 5.1, five outliers were added to the noisy sinusoid with SNR 

approximately −30dB, as shown in Figure 5.4. The second and the third columns of the 

Table 5.1 indicate when a particular outlier occurred and the duration that specific 

outlier lasted for each individual outlier specified in the first column. The amplitude 

responses of these outliers were determined by the last column of the Table 5.1 through 

synthesizing with different variances.   
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Figure 5.4: Synthesized noisy sinusoidal signal corrupted with outliers. 

 

The noisy sinusoid with outliers (see Figure 5.4) is applied to four adaptive ASSR 

detectors with schematic illustrated as in Figure 4.4, with two detectors operated with 

sample mean operators (see Eqn. (4-25)) where one with        and the other with  

      . Whereas, the remaining two adaptive ASSR detectors operated with sample 

median operators (see Eqn. (5-4)) where one with        and the other with 

      . Figure 5.5 display the estimated variances of measurement noises obtained 

via Eqn. (4-30) of all four ASSR detectors between cases when outliers are present and 

absent, Table 5.2 quantifying the error (in percentage) between different scenarios as 

     
                                        

                  
      (5-8) 

where                     represents the estimated variances when outliers are present, 

and                    is the estimated variance without outliers.  

 

Adaptive ASSR detectors‘ operator 
Outlier 1 

     

Outlier 2 

     

Outlier 3 

     

Outlier 4 

     

Outlier 5 

     

Sample Mean Operator 1 (      ) 27 234 195 855 780 

Sample Mean Operator 2 (      ) 6.4 57 43 210 398 

Sample Median Operator 1 (      ) 2 13 14 206 773 

Sample Median Operator 2 (      ) 0.1 3 3.7 29 132 

Table 5.2: Error e (%) between outliers present against outliers absent. 
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By comparing their error      in Table 5.2 to the      in Figure 5.5, any error 

percentage that below 100% are visually indistinctive between cases when outliers 

present and absent. In terms of measurement noise estimation, the adaptive detector 

used so far is based on sample mean operator (with       ) as proposed in Chapter 

4. According to Figure 5.5a, this type of operator is highly sensitive to outliers, but 

performed well against outlier 1 because of its small interfering duration of just 0.1s. In 

principle as mentioned earlier, the mean operator is not robust against any outlier since 

it has breakdown point of 0%. On the other hand, the sample median operator (with 

      ) performed better than the sample mean operator with resistivity against the 

first three outliers (outliers 1, 2 and 3) but unable to deal with outliers 4 and 5, as shown 

in Figure 5.5c. This is because the interfering durations of the last two outliers are far 

bigger than its breakdown point of 0.5s. In order to compensate the drawback of having 

short data sample  , longer length of sampled interval is used to improve the resistivity 

against outliers in the same way improving the estimation of       . Once again, the 

result of using sample mean operator with         show no sign of significant 

reduction against the outliers (see Figure 5.5b), but with some improvement against 

lower   (sample mean operator in Figure 5.5a) and comparable to the sample median 

operator (      ) of Figure 5.5c, as shown in Table 5.1. According to Table 5.1, the 

sample median operator with        displayed resistence to the highest error 

reduction and number of outliers except for outlier 5 (see Figure 5.5d), again because of 

the intefering duration is larger than its breakdown point of 2s.   
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Figure 5.5: Variance of measurement noise of sample mean and sample median 

operators. 

 

 
Figure 5.6:  Error difference Δe(%) between different statistical operators. 

 

Figure 5.6 illustrates a comparison between the use of different statistical operators in 

terms of their error rate      , when one type of operator is preferred over another 

when dealing with a particular outlier. In addition, the       can also be seen as an 

improvement achieved of one over another choice of operator. And denote as the 
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absolute different between two operators with      in Table 5.1. For instance, to 

compare the outlier 1,       between sample mean operator 1 (SMO1) and sample 

mean operator 2 (SMO2) is denote as 

                          (5-9) 

Where          and          are the      of sample mean operator 1 (SMO1) and 

sample mean operator 2 (SMO2).  

 

According to Figure 5.6, larger   of either sample mean operator or sample median 

operator in general produced higher Δe(%) which can also be viewed as percentage of 

improvement achieved. The third and the fourth scenarios in Figure 5.6 illustrate 

minimal improvement rate, because of the comparison are based between operators with 

larger   and sample median operator. To summary, sample mean operators show less 

resistive against outliers than the sample median operators by producing ‗peaks‘ in 

response to the presence of outliers (se Figure 5.5a) even when using longer length of 

data sample (four times longer) as shown in Figure 5.5b. Whereas the outcomes from 

the sample median operators are more outliers-resilience (se Figure 5.5c and Figure 

5.5d) and with smaller error as compared to when without the present of outliers as 

presented in Table 5.1, in particular the one with longer length in sample. 

 

Although the sample median operator with        seems to be the better choice 

among the four, larger   operators as shown in Figure 5.7a produced slower 

convergence rate because of the longer data sample (measurements) required for 

computation, thus the tradeoff of encountering processing delay is inevitable with better 

outlier-robust performance. Since no a priori information is available regarding any 

possibility of the existence of outliers in practical ASSR detection, in order to have 

faster convergence rate and yet still be able to have satisfactory outlier-robust 

performance, MSDF approach is often seen as a method to combine the best of both 

worlds by fusing the performances of time-efficient sample mean operator (      ) 

and the outlier-resistive sample median operator (      ). Its response illustrated in 

Figure 5.7 indicates a fast convergence that close to those operators with         

and also achieved small mean-square error (MSE) which is less sensitive to outliers 

compared to other operators, as shown in Figure 5.7b in particular to the first two 

outliers. The MSE in Figure 5.7b present averaged error square between the estimated 

amplitudes in Figure 5.7a against its true amplitude of 0.015V over ten trials. In terms 
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of detection rate response as shown in Figure 5.8, the response by using MSDF showed 

combine properties between sample mean and median operators.   

 

 

Figure 5.7: Comparative responses between detection using different operators via (a) 

amplitude response and (b) their mean square error. 

 

 

Figure 5.8: Detection rate response between different operators. 

 

5.4 Experimental Results 

To demonstrate the practical performances between the MSDF-based ASSR detector 

and previously proposed ASSR detector in Chapter 4, detection was conducted on the 
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experimental recorded AEPs. Figure 5.9 illustrates two sets of recorded AEPs, one with 

artefact contaminated (Figure 5.9a, c and d) and one artefact-free responses (Figure 

5.9b, d and f).  

 

The MSDF-based detection indicated minor improvement by having slightly larger 

amplitude responses against artefacts contaminated AEP as compared to the non-fused 

detector, as illustrated in Figure 5.9c. In the case where artefacts occurred at the 

beginning of the recording process, this would slow down the initial detection rate as 

can be seen in the synthesized scenario in simulation. Therefore, it is essential to have 

artefact-resistive mechanism to deal with these uncertain extreme outliers. In general, 

the MSDF-based detection displayed slight improvement in terms of higher response 

and detection rate. Although the improvement might be minor than expected in these 

cases (scenarios in Figure 5.9), adopting MSDF method into the detection can only 

enhance its performance in general than solely rely on non-fused detection.   

 

 

Figure 5.9: Comparative responses between fused and non-fused algorithms in ASSR 

detection. 
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5.5 Concluding Remarks 

To improve the ASSR detection against possible artefacts in AEP, the real-time 

adaptive ASSR detector is modified to enhance its artefact-resistive capability. 

However, as mentioned in Section 5.4, the sample median operator is more robust but 

less efficient in terms producing outputs with smaller deviation error than the sample 

mean operator, which was used in the earlier version of the ASSR detector. In order to 

have the better out of these two operators, MSDF (specifically the state-vector fusion 

method with decentralization architecture) is used to combine the output responses from 

both detectors to provide better ASSR estimation. As demonstrated through simulation 

and experimentation, the MSDF-based approach performs better than the non-fused 

approach if the AEP is contaminated with artefact. Therefore regardless of the possible 

existence of artefacts within any recorded AEP, the MSDF-based detector operates in 

the same way as the proposed detection scheme in Chapter 4, but with the advantages of 

higher efficiency and more insensitivity to artefacts than the non-fused detector.    
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6 . Automatic ASSR Detection 

Scheme via Regression Modelling 

 

6.1 Introduction 

As presented in Chapter 4, the auditory steady-state response (ASSR) decision-making 

of the proposed detection is based on thresholding, where an ASSR threshold level is 

pre-determined based on empirical studies to indicate the existence or non-existence of 

ASSR signals. This thresholding is a partially automated approach with dependency of 

the pre-defined threshold via empirical trials, thus can be seen as a kind of qualitative 

approach. As shown in Chapter 4, the thresholding is so far effective and reliable in 

detecting the ASSR signals from the auditory evoked potential (AEP). However, there 

is one concern regarding the approach. If the signal-to-noise ratio (SNR) of a test is 

different from its expected value, it is unclear whether or not the pre-defined ASSR 

threshold would still be applicable. Due to the fact that, the pre-defined ASSR threshold 

is an expected value from empirical studies and remained constant for all tests. As a 

result, this could delay the identification of the presence of the ASSR when the actual 

SNR is higher than the expected threshold or could lead to an increase in false alarm in 

detection when the actual SNR is lower than expected threshold. Therefore, a statistical 

based decision-making approach is needed, which would quantify the outcome by 
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tailored specific to each individual test and be implemented as a fully automatic 

indicator as part of the ASSR detection scheme. Simple linear regression is used to 

model the unobserved background noise and to compare with the ASSR estimates in 

order to determine the existence of the ASSR objectively. Development of an automatic 

ASSR detection module using simple linear regression is presented in Section 6.2. 

However, linear regression normally associated with ordinary least-squares (OLS) is 

highly vulnerable to outliers. Therefore, this would result unreliability in detection rates 

or pro-long the ASSR detection time. A more advanced method known as robust 

regression (e.g. Interactive Reweighted Least-Squares (IRLS) with Tukey‘s Bisquare 

weight) is used because of its effectiveness against outliers is discussed in Section 6.3. 

Simulation studies of both methods against the proposed thresholding and their 

performances on the experimental data are to be shown in Section 6.4. The concluding 

remarks of this Chapter are presented in Section 6.5. 

 

6.2 Automatic ASSR Detection 

6.2.1 Regression Analysis 

Before going straight into the discussion on the integration of regression into the 

proposed ASSR detector, a brief overview on the regression analysis techniques is 

presented. Regression analysis, or simply known as regression, is a statistical technique 

used to investigate the relationship between variables and to estimate the conditional 

expectation of the dependent variable, with the given independent variables which 

usually constant (Hayter, 2002). There are several types of regression analysis models, 

for instances, Bayesian, robust, nonlinear, multiple linear, simple linear regressions. 

Selection of the types of regression model will depend and vary on the applications. 

Typical application ranges from chemical process to biomedicine studies, and also 

widely used in financial sectors (Draper and Smith, 1981).  

 

Due to the nature of the implementation approach taken, simple linear regression is 

chosen for its simplicity structurally (since the ASSR detection only involves two sets 

of variables) and suitability fitted to the idea of predicting the expectation of the 

background noise (unobservable measurement) at a specify frequency similar to the 

ASSR signal, where it is unavailable for direct evaluation. As compared to the pre-

determined thresholding, the regression-based approach can be viewed to be a self-tune 
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thresholding module that operates automatically, without the need of subjective ASSR 

indication (e.g. constant human decision making) and nor the need of any pre-

determined thresholds. 

 

Although the simple linear regression operates well generally, with the existence of 

outliers the regression model may be biased, thus robust regression is preferred for its 

robustness against outliers. Robust statistics act as the core functionality in robust 

regression and provide an alternative approach to the classical statistical method. The 

motivation is to produce estimators that are more resistive to outlying observations from 

the model assumptions. There are basically three classes of robust estimator methods 

(i.e. M, L and R type) which commonly used in robust regression analysis (Huber, 

1981). As M-type estimator is most widely used, a robust least square approach from 

the M-type class that known as IRLS with Tukey‘s Bisquare weight is used in 

estimating the unobserved background noise. The method is more outlier-resistive than 

the linear least-squares method and yet still computationally moderate (Fox, 1997). 

 

6.2.2 Simple Regression Linear 

A simple linear regression is often viewed as a modelling technique relating two 

variables with two sets of data, in which the expected value of dependent variable is 

modelled as a linear combination of a set of explanatory variable (Hayter, 2002). 

Typically, a data set (or instantaneous sampled population) consisting paired of 

observations given as  

                                   (6-1) 

Where the    represent the dependent variable and    is the explanatory (independent) 

variable. To consider Eqn. (6-1) in terms of ASSR detection, the         pair of Eqn. 

(6-1) can be re-written as 

                                              (6-2) 

where    is represents a particular frequency of an estimated noise, and        would 

represent the noise amplitude estimated via an ASSR detector with the specific 

frequency   .       
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A general simple linear regression model is:  

                   (6-3) 

where the dependent variable        is composed of a linear function          of the 

independent variable    , and the error term    is generally taken to be an independent 

observation from a normal distribution       ). Thus, this implies that vector of 

                                    are the observations from the independent random 

variables of:   

                      
   (6-4) 

with   

                      (6-5) 

The unknown parameters of    (error variance),     (intercept parameter) and    (slope 

parameter), which determine the relationship between the dependent variable and the 

independent variable can be estimated via fitting the data set with a ‗best fit line‘ that 

best describes the model. Thus, the regression line is given by the equation:    

            (6-6) 

The fundamental technique used for determining these unknown parameters is the OLS. 

These parameters are determined as to minimise the sum of squared residuals (SSR) and 

given as  

    
         

                

        
  

   

 

                                                 
   
   

 

(6-7) 

where    and      are the mean of their set variables. While:  

              (6-8) 

and 

    
                     

  
   

   
 

                                              
   

   
 

(6-9) 

As a result, with all the unknown parameters found for the ‗bet fit‘ line of Eqn. (6-6), 

thus any of the expected value,        (estimated variables) data set can now be estimated 

by identifying a specific value of    (user defined variables).  
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Even if the OLS method is performed correctly, there is no guarantee that the estimated 

parameters are error-free in estimating the best-fitted straight line. In fact, such 

correspondence is highly unlikely, with the possibility of affected by inevitably 

sampling error. As a result, a pair of confidence intervals (CI) are constructed around 

the regression line by taking account of the possible errors.  

 

Denoting a particular of   
  of the independent variable, the regression line is:  

      
          

  (6-10) 

and for considering the interferences of the regression line, the     is the confidence 

level of the pair of confidence intervals for        
   with   as the error rate, which is 

the expected value for dependent variable for a particular   
  of the independent variable 

is:  

      
            

              
 

 
 

   
     

 

        
  

   

 (6-11) 

where the standard error is: 

            
      

 

 
 

   
     

 

        
  

   

 (6-12) 

and the          is taken from t-distribution table which can either be single or double 

sided index with     degree of freedom,   is the sample size. The simple linear 

regression model is based on the assumption that the distribution is normal but only if 

the sample size is large (    ). Otherwise, the student‘s t-distribution should be 

assumed (based upon the Sampling Theory) (Hayter, 2002), which is quite similar to the 

normal distribution but with heavy tails and if the sample size is infinity it will 

eventually equal to normal distribution.  

 

On the other hand, if the concern is not about the error or interferences of the regression 

line but the interferences of the instantaneous sampled population, constructing a set of 

maximum and minimum boundary is needed for any of the expected value of        with 

value of   . In other words, the pair of boundary can be seen as a confident interval (CI) 

that represents certain percentages of the sampled population, for example, 95% 

confident that all possible data fall within it. The boundaries can be obtained as: 
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              (6-13) 

and again, the          is taken from t-distribution table to determine the confident of 

percentages (e.g.            with single-sided index used for m equal to 30) in 

representation of the date set and with     degree of freedom.  

 

6.2.3 Development of Automatic ASSR Detector via Linear 

Regression 

As mentioned in 6.2.2, the unobserved background noise is to be estimated via using 

linear regression instead of relying on threholding approach. The main advantage of the 

regression approach is that of its automatic decision making in terms of ASSR 

detection. Moreover, it is easily expandable to detect multiple ASSRs with minimum 

increase in the data samples used for background noise estimation. The proposed ASSR 

detection so far in the thesis is based on time domain, whereas the linear regression 

approach is based on frequency domain but can be displayed in time domain via Eqn. 

(6-14).  

 

The idea of the method is to use the amplitude estimates (signal-channel only) from 

multiple AKFs at a range of frequencies surrounding the ASSR frequency, to obtain an 

expected background noise estimate at the same frequency as the ASSR. The operation 

of the proposed automatic ASSR detection scheme is to be discussed as follows and its 

schematic diagram of the detection scheme is illustrated in Figure 6.1. The detection 

scheme is divided into three main parts, and they are signal estimator, background noise 

estimator and the evaluator. The signal estimator mainly consists of adaptive ASSR 

filter which is represented by the ASSR detector proposed in Chapter 5 and its 

schematic of the filter design is illustrated in Figure 5.3 with the evaluation module 

assumed omitted. As discussed in Chapter 5, the filters-fused AKF has the advantages 

of having combined elements of artefact-robustness and output efficiency (smaller 

deviation error). The core part of the objective ASSR detection is about estimating the 

background noise component of the same frequency as the estimated ASSR, in order to 

make a direct comparison at the evaluator. 
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Figure 6.1: Schematic of the automatic ASSR detection scheme. 

 

Several individual fusion-based ASSR detectors (see schematic in Figure 5.3) are used 

to estimate the surrounding noise amplitudes of the ASSR signal, in order to provide the 

expected noise amplitude via the regression modelling. The regression used here is 

based on linear regression approach. With the noise amplitudes provided by a bank of 

multiple fusion-based ASSR detectors, an estimate of the noise amplitude at the targeted 

frequency can now be obtained through the regression model calculated via the ordinary 

least square. The estimated surrounding noise amplitudes is treated as        and the 

frequency band treated as   , are the two sets of variables are in Eqn. (6-2). These values 

are then substituted into the linear regression model (see Eqn. (6-3)) to estimate the 

expected value of the background noise (same frequency as the ASSR) through fitting 

of best regression line (see Eqn. (6-6)).  

 

Since the regression modelling is in the frequency domain and for easily comparison to 

the estimated ASSR, an evaluator is used to display the results from the regression 

module into the time domain that defined its detection rate via: 

                     
     
       

           
  

     

 
     (6-14) 
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where     is the confidence level of a pair of confidence intervals (single-sided index 

used) with   as the error rate,      
  is the estimated amplitude of ASSR,       is the 

estimated noise amplitude at the desired ASSR frequency of regression line and       is 

the estimated noise amplitude at the upper-bound of the 95% CI of the sampled 

population at same frequency as the desired ASSR.    is set to be 50 which represents 

the location of the regression line, where almost at the middle within the 95% CI of the 

sampled population (counting from the lower-bound of 95% CI of sampled population).    

 

For demonstration of the purpose Eqn. (6-14), Figure 6.2 illustrates examples on how 

the regression plot usually in frequency domain can be displayed into the time domain 

to ease the integration and implementation into the readily real-time ASSR detector 

proposed, through providing on-line display and decision making to determine the 

existence or non-existence of ASSR. Denote the generic parameters as: 

 

Variable                      
      

(blue) 

      

(green)  

      

(black) 

Index 0.1 0.07 0.06 0.05 0.12 0.07 0.05 

Table 6.1: Generic values used for demonstration of the example in Figure 6.2. 

 

 

Figure 6.2: Generic example of displaying regression frequency domain plot into time 

domain response. 
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According to Eqn. (6-14), the ‗blue estimate‘ that exceeded the 95% CI of the sampled 

population as shown in Figure 6.2a displayed its detection rate as 121.25% at 100s. For 

the purpose of identifying the existence or non-existence, once the detection rate 

exceeds 95%, thus ASSR is considered detected (existed). As for the ‗black estimate‘, 

where it is located below the regression line which is at the middle of boundaries of the 

95% CI sampled population in Figure 6.2a is display to be at the detection rate of 

38.125% in Figure 6.2b via Eqn. (6-14), in which correctly displaying the detection rate 

from initial frequency domain to the time domain and to be identify to be non-ASSR 

because it is lower than the 95% CI mark. In addition, the ‗green estimate‘ is also at a 

detection rate of 61.857% that identify as background noise. So far, the detection rate 

concern in Figure 6.2b is on the boundaries of the sampled population instead if the 

regression line. If the focus in onto the regression line, similar in steps to the 95% CI 

boundary are taken except the       in Eqn. (6-14) is now to replace by the        of 

the 95% CI of regression line. The ‗blue estimate‘ is 335% above the 95% CI of its 

mean on the regression line, other word meaning expected value of background noise, 

Hence, the ‗blue estimate‘ is not likely to be considered as a background noise based on 

the mean calculation. In addition, the ‗green estimate‘ is also not considered as the 

background noise because of its detection rate of 97.5% which is higher than the 

required 95% threshold (probability of being considered as background noise). On the 

other hand, the likelihood of the ‗black estimate‘ with detection rate of only 2.5% is 

lower than the expected value of background noise, thus the likelihood of the estimate 

to be considered as ASSR is very low.       

 

With this transformation facility in place, the regression approach can now be analysed 

in the time domain. As mentioned earlier, single ASSR detection module shown in 

Figure 6.1 is readily expandable for multiple ASSRs detection. This can be easily done 

by using   multiple (     in the study) ASSR detection modules of Figure 6.1 for 

each desired ASSR‘s frequency, as shown in Figure 6.3.  
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Figure 6.3: Schematic of objective of multiple ASSRs detection scheme. 

 

Although the multiple ASSR detection can be applied based on the schematic structure 

in Figure 6.3, an alternate way of structuring can further reduce number of automatic 

ASSR detector in noise estimation. Thus, it reduces design complexity and computation 

is less intense, but may suffer from a slight drop in terms of output performance. In 

general, both paths of structuring the multiple ASSRs detection are expected to perform 

similarly. For example, if eight ASSR signals are to be estimated, the number of AKF 

module for noise estimation should be      with      associated to each ASSR 

if according to approach presented in Figure 6.3. However, large numbers of AKF 

modules could potentially cause delay in processing and intense computational load. A 

mentioned, a scaled version would be the deployment lower number of AKF (    ) 

with carefully placing the noise estimates‘ frequencies around the desired ASSR 

signals‘ frequencies. The schematic layout of the scaled version of the automatic ASSR 

detection scheme is shown in Figure 6.4. Hence, this would significantly reduce the 

computation power and processing time, making this approach more appealing in terms 

of practical implementation.        
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Figure 6.4: Schematic of objective of multiple ASSRs detection scheme (scaled 

version). 

 

6.3 Outlier-Robust Automatic ASSR Detection 

6.3.1 Background 

Robust regression is a form of regression analysis designed to circumvent some of the 

limitation of conventional parametric and non-parametric methods. Unfortunately, the 

classical least-squares method used in the linear regression model is quite sensitive to 

outliers which may occasionally occur in real data (Huber, 1981). Therefore, statistical 

techniques that able to cope with or to detect outlying observations in order to produce 

better detection rate are to be discussed. This section is mainly concerned with the 

robust least-squares method in dealing with possible outlier infested data.  

 

The robust issue to be discussed in this section is different from the robust issue 

discussed earlier. In Chapter 5, the concern is about extracting the ASSR from AEP 

measurement that potentially contaminated with artefacts (outliers) and the robust 

method approach used can be seen as univariate robust method with the involvement 

single variable (covariance      of measurement noise). On the other hand, the 
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emphasis of the robust approach here is about robustly identifying the existence or non-

existence of ASSR via modelling its noise from an estimated set of neighbouring 

background noise. In order to ensure the accuracy and outlier resilience noise 

estimation, the linear regression approach is now replaced by a robust regression. This 

type of robust method is also known as multivariate robust approach because more than 

one variable (with the involvement of    and        variables) are taken into account.  

 

There are three basic classes of estimators which commonly used in robust regression, 

and they are M, L and S estimators. Among these classes, Least Median Square (LMS), 

Least Trimmed Squares (LTS) and IRLS are the commonly used estimation method in 

robust regression (Huber, 1981; Rousseeuw and Leroy, 1986). Although they are all 

outlier-robust, they operate under different principles. The LMS is about minimizing the 

median of ordered squares of residuals to obtain the regression coefficient, thus more 

resistive against possible outlier since median is the core of the calculation. On the other 

hand, the LTS eliminates potential outliers using the winsorized distribution or trimmed 

principle, thus the approach is robust with possible outliers discard prior to the 

calculation. The method to be implemented in the robust regression belongs to the 

widely used M-estimator, known as IRLS with Tukey‘s Bisquare weight. The IRLS 

does not operate in the same way as the former two approaches since the calculation 

takes into account all data samples but allocates weights to them, with heavier 

weighting on the values with smaller residual while smaller weight on values having 

larger residual in order to reduce their influences (Huber, 1981). The method is more 

robust against outlier than the classical least-squares algorithm and is computationally 

moderate compared to other robust methods.  

 

Despite their superior performance over least-squares estimation in many situations, 

robust methods for regression are still not widely used. Several reasons may explain 

their unpopularity (Hampel et al., 1986). For instance, there are several competing 

robust methods (without unification) and computation of robust estimates is much more 

computationally intensive than the least-squares estimation (less relevant nowadays as 

computing power has increased greatly). Moreover, some statisticians believed that the 

classical method is as sufficiently robust as the robust approaches may be as another 

vital reason.  But having said that, the robust regression approaches does perform better 

if the recorder data sample is contaminated with outliers especially those with extreme 

values 
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6.3.2 Robust Regression 

In robust regression, the M-estimators operate under the principle of maximum 

likelihood, and are widely used because of their high breakdown point and output 

efficiency (smaller deviation). A robust least-squares method known as IRLS with 

Tukey‘s Bisquare weight function is used to perform in the robust regression modelling 

(Huber, 1981).  The Bisquare weight function     is as below: 

     
     

   

 
      

     
 (6-15) 

where   is the standardized adjusted residual and   is standard deviation of   .   

   
  

   
 (6-16) 

with    being as adjusted residual,    is a tuning constant equal to 4.685,   the robust 

variance. The adjusted residual is initially computed using weighted least-squares and 

given as:  

   
  

      
 (6-17) 

where    is the residual from the least-squares calculation and     is the leverage that 

adjusts by down-weighting high-leverage data points, which could have a devastating 

effect on the non-robust resistive least-squares. Denote the robust variance,   as  

  
   

      
 (6-18) 

where MAD is the median absolute deviation of the residual of their median and the 

constant 0.6745 makes the estimate unbiased for the normal distribution (Huber, 1981).  

 

The process of the robust regression using built-in IRLS in MATLAB‘s Statistical 

Toolbox is to fit the regression model via the weighted least-squares method. With the 

residual obtained, the adjusted residual is then computed (see Eqn. (6-17)). The 

standardized adjusted residual then is obtained via Eqn. (6-16) with adjusted residual 

computed. Finally, the Bisquare weight is computed using Eqn. (6-15). The iterative 

cycle then restarts until the fit convergence is complete. In general, this iterative process 

is known as IRLS.  

 

With the robust regression line obtained via the IRLS, its confident intervals for the 

regression line is:  
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 (6-19) 

and the boundaries to represent the specific percentages of the sampled data are: 

      
            

              (6-20) 

where the          is taken from t-distribution index with      degree of freedom,   

is the sample population size. As mentioned earlier, the t-distribution index is used 

rather than the normal distribution for any sample size (normally distributed like) 

smaller than 30 samples. The way of implementing the robust regression in modelling 

the unobserved noise is similar to the linear regression, as shown in Figure 6.3 and 

Figure 6.4.   

 

6.4 Evaluation 

To demonstrate the performance of the automatic ASSR detection (via regression) and 

thresholding based ASSR detection, simulations and experimental work were carried 

out, and their results are illustrated in the following sections.   

 

6.4.1 Simulation Results 

To compare the detection rate between the thresholding and the regression approaches 

in term of ASSR detection. A noisy sinusoidal signal                           

at sampling rate of 1kHz with initialisation parameters given in Table 4.2, and is 

corrupted with noise (SNR≈ −30dB) is applied to the ASSR detectors.  

 

Figure 6.5a illustrates the amplitude responses of the sinusoid and the noise estimates 

obtained via thresholding and by regression methods. Both noise estimation methods 

produced satisfactory results with clear distinctive separation between the sinusoid and 

the noise estimates. In terms of detection rate response, the thresholding method 

indicates detection of sinusoid (identified the present of sinusoid) at 20s at pre-defined 

threshold of 200% (as shown in Figure 6.5d). Whereas the regression method confirmed 

the detection based upon two different yet interrelated concepts, that is one by 

comparing the ASSR to the expected (mean) noise value based on the surrounding 

background noise via Eqn. (6-11), and the other approach considering whether the 

estimated ASSR is legitimately belong to the sampled population of the background 
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noise via Eqn. (6-13). Single-sided index is taken from t-distribution table in this case 

with the assumption that the desired sinusoid or ASSR in particular can only occurred 

on the positive side of the regression line, where the regression line computed from 

Eqn. (6-6), and both Eqns. (6-11) and (6-13) are used to compute the error intervals 

(95% CI) surrounded the regression line. 

 

  

Figure 6.5: Relationship between thresholding and linear regression detection rate 

responses. 

 

The former approach shown in Figure 6.5b indicated detection rate of 95% achieved at 

13s, meaning that at a probability of 95% confident that the ASSR cannot be part of the 

background noise but with 5% chances of error, hence the 95% mark can be seen as a 

threshold. Although the 95% CI is defined as the threshold, the threshold is non-

stationary but varying from between time interval depending only on the error deviation 

of the estimated noise amplitudes.  

 

Meanwhile, the second approach displayed detection rate of 95% in Figure 6.5c at 14s, 

which indicates that the estimated sinusoid is 95% unlikely to be part of the sampled 

background noise, and again only 5% chances that the decision could be inaccurate.  
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In other word, both approaches attempt to produce a statistical hypothesis to indicate the 

likelihood of the estimated sinusoid is not part of the background noise, thus indirectly 

means that the estimation is a genuine desired signal. In general, both proposed 

detection methods (i.e. thresholding and regression) are able to distinct the existence 

and non-existence of the sinusoid at low SNR condition. However, a desirable 

automatic approach is developed using statistical regression approach, and without a 

priori defined thresholds which is time consuming and can be impractical in some 

applications.  

 

 

Figure 6.6: Comparative performances between linear and robust regression methods in 

detection of outlier-free noisy sinusoid and with contamination of outliers. 

 

As seen from Figure 6.5, the linear regression performs satisfactory in identifying the 

existence of the sinusoid. To demonstrate the performances between the linear and 

robust regression methods in a more extreme scenario, noisy sinusoidal signals      

                     were generated where one consisted of outliers as shown in 

Figure 5.4 (having synthesized parameters as in Table 5.1) and the other is outlier-free 

(similar to Figure 5.4 but without outliers). As illustrated in Figure 6.6, the responses 

were smaller for the synthetic data with outliers when either of the approach was used in 

determining the existence of the sinusoid, as in Figure 6.6a and Figure 6.6b. 

Nonetheless, both regressions methods show capability in identifying the existence of 

the sinusoids, even in scenario where outliers existed. However, the response via the 

robust regression method shows close similarity to the response by the linear regression 
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method without being significant apart from each other in the study. In principle, the 

robust regression would perform better than the linear regression when outliers exist. 

This could be because of the background noise estimators were placed symmetrically on 

both sides of the desired sinusoid (or ASSR) signal, thus the effects of outliers would 

have been diminished or reduced. In addition, with the fusion-based ASSR detector 

(from Chapter 5) used instead of the AKF-based ASSR detector (from Chapter 4), 

improvements were made since the former detector consist of robust capability.      

 

6.4.2 Experimental Results 

To illustrate the performances of both thresholding and regression methods practically, 

real ASSRs data recorded via BIOPAC system were tested. The outcomes from the tests 

confirmed the simulation remarks regarding the faster detection speed of the regression 

approaches (linear and robust) and the similarity responses obtained from either linear 

or robust regression, as shown in Figure 6.7. 

 

As mentioned in Chapter 4, though the thresholding performs satisfactory in identifying 

the ASSR existence, but with a drawback of the need of empirical trials to pre-

determine the level of threshold. Despite the fact that it is time consuming, the threshold 

may sometimes be viewed as ‗too general‘ in a sense it may not properly represent a 

specific case. No doubt that the estimated ASSR is significantly different from its 

estimated noise via thresholding as in Figure 6.7a, yet its detection responses (see 

Figure 6.7d), is close to but yet to exceed or reach the 200% which is the pre-defined 

threshold via empirical study. On the other hand, the regression approaches provide a 

self-tune thresholding capability that tuned according to each individual case and 

without the need or any pre-determined threshold. Moreover, both regression 

approaches in Figure 6.7b and Figure 6.7c indicate the existence of ASSR in less than 

5s, whereas the thresholding is four times slower before pre-defined threshold of 200% 

is achieved at approximately at 20s.      
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Figure 6.7: ASSR determination via linear regression and by thresholding. 

 

The results presented so far were based on single ASSR detection (using the layout in 

Figure 6.1), whereas a comparative of multiple ASSRs (8 stimuli are presented 

simultaneously) detection between the proposed approach (using the layout in Figure 

6.4) and the commonly used techniques is illustrated in Table 6.2. These multiple 

ASSRs data used in the comparison and the simulation of both the averaging techniques 

(normal and weighted averaging) were obtained from MASTER Demo Tutorial package 

provided by Rotman Research Institute (2001). Only the linear regression method is 

presented, because of the insignificancy different between the robust and the linear 

regressions and yet more complex calculation involved. The linear regression approach 

used is based on the schematic shown in Figure 6.4, which is a scaled version that 

reduces the number of ASSR detectors used, thus less computation intense. As 

mentioned earlier in the chapter, there are two ways of indicating the existence of the 

ASSR statistically via regression approach, one is based on the concept of exceeding the 

mean of the surrounding noise by the estimated signal and the second approach is based 

on estimated signal to be located far from the sampled population of background noise, 

thus hypothetically the likelihood of the estimated signal is not noise but the expected 

ASSR. For example, if the desired signal achieves 95% marking in the second 

approach, it will definitely exceed the first approach as it concern is sample noise 

population than their mean value.  
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In addition, the second approach is not only used as to identify the existence of ASSR, it 

also acts as a representation of the estimated signal within the regression boundaries in 

the time domain instead of the frequency domain. According to the statistical method 

(F-test) used within MASTER, an expected (average) value is used based upon the 

surrounding noise. Hence, in principle the first approach proposed which based on the 

finding the noise amplitude from the regression line with 95% CI is similar to the 

statistical method used in MASTER, and therefore a more suitable choice for 

comparison than the boundaries created via 95% CI of the sampled population.   

 

The comparison used is based on the first concept of identifying ASSR on the basis of 

exceeding the expected (mean value) of the background noise, since this approach can 

be viewed to be in principle similar to the F-test used by both averaging methods from 

MASTER. According to Table 6.2, the proposed linear regression method outperforms 

the averaging methods by 6 out 8 ASSR detections for the second and third data set but 

was poor against the first set of data. The key reason for its poor performance is mainly 

because of the occurrence of excessive extreme artefacts. These were significantly 

larger in duration which might exceed the limits of fused sample mean (N=1000) and 

median (N=5000) operators. Therefore, extreme outliers like these would have caused a 

significant decrease in Kalman gains within the detector and consequently reduced its 

convergence rate.  
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Stimulus (Hz) 

MASTER 

Normal Averaging 

Time, (s) 

MASTER 

Weighted Averaging 

Time, (s) 

Automatic ASSR 

Detector (Linear 

Regression, 95%) 

Time, (s) 

N=1k and 

5k 

N=5k 

and 5k 

 Data set 1 

78.125 180.244 147.456 NA 145 

80.078 65.536 81.92 120 24 

83.008 65.536 32.768 30 30 

84.961 16.384 16.384 18 24 

86.914 16.384 16.384 22 26 

89.844 16.384 16.384 7 38 

91.797 65.536 65.536 NA 54 

94.727 32.768 32.768 NA 20 

 Data set 2 

78.125 16.384 65.536 7 12 

80.078 49.152 98.304 23 24 

83.008 16.384 16.384 12 12 

84.961 32.768 32.768 40 25 

86.914 16.384 16.384 12 12 

89.844 32.768 32.768 45 35 

91.797 49.152 49.152 14 14 

94.727 114.688 131.072 80 90 

 Data set 3 

78.125 196.608 196.608 60 87 

80.078 163.384 131.072 57 63 

83.008 16.384 16.384 17 17 

84.961 32.768 32.768 24 25 

86.914 16.384 16.384 5 7 

89.844 16.384 16.384 4 18 

91.797 16.384 16.384 24 27 

94.727 49.152 32.768 43 45 

Table 6.2: Comparison between proposed method and other conventional methods. 

 

In order counter these artefacts or outliers, the sampled length N (adaptation step size) 

of Eqn. (4-25) can be increased to allow more data points to be used to improve its 

variance estimation, thus indirectly improve its resistive against these unanticipated 

extreme values. According to Table 6.2, improvement were made via increasing N but 

with a drawback of slower initial convergence rate because of sufficient data points 

were required before any reliable variance can be estimated. This limits some early 

detection results obtained when using lower N, but does lead to significant detection 

rate improvements in some cases where the use of a lower N operator is impossible.  
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As a result, in extreme cases like data set 1, having larger adaptation step size means 

improve the detector‘s breakdown point with larger sampled data point would improve 

the robust AKF robustness and indirectly making the proposed algorithm more artefacts 

resilient. 

 

6.5 Concluding Remarks 

As shown in this chapter, an automatic ASSR detection can be achieved by using 

regression modelling to estimate the unobserved background noise, thus to allow direct 

comparison with the estimated ASSR signal. This is seen as an objective approach 

because no a priori pre-defined threshold is required and it is adaptively self-tuned in 

real-time. In order to improve its accuracy and reliability in possible outlier-

contaminated data sample, robust regression is used instead of linear regression 

modelling. The robust issue in this Chapter is different from Chapter 5.  Chapter 5 is 

concerned with the existence of outliers when processing the ASSR estimate within an 

adaptive Kalman filter. On the other hand, the focus here is about improving the 

reliability in estimating background noise from the regression module.     

 

Although in theory the robust approach should have had the upper hand compared with 

linear regression, the simulation study does not indicate much difference between both 

methods. In addition, the linear regression has been selected after taking into account 

the complexity of the robust regression. The results from the linear regression-based 

ASSR approach are generally comparable to the averaging methods but with 10 out of 

24 trials performing better when using higher data numbers N, as shown in Table 6.2.  
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7 . Conclusions and Future Research 

Intentions 

 

7.1 Summary and Conclusion 

The ASSR technique is a reliable way to assess hearing thresholds objectively. The 

most important merit of this technique compared with other objective hearing threshold 

methods is its frequency specificity. Currently, the technique is mainly used as a follow-

up diagnostic protocol of the hearing screening (e.g. OAE or ABR technique) for the 

―difficult-to-test‖ group which mainly are from infants. The technique employed in the 

follow-up protocol provides some vital information for further appropriate measures to 

be taken, for examples, for middle ear surgery, the application of a hearing aid or the 

implantation of a cochlear implant. Due to the availability of frequency specific 

information, hearing aids can be fitted in a more optimal way for subjects with limited 

or no echo feedback. Unfortunately, the ASSR technique is not without drawbacks. In 

general, the ASSR amplitudes (in nV) are very small compared to the EEG or seen as 

the background noise (in uV) where the ASSR is embedded in the measured signal. In 

addition, the detection of ASSR is more difficult than the ABR detection (hundreds of 

nVs). Therefore, the duration of the ASSR detection can be quite lengthy due to the 

nature of the responses and the contamination of unwanted background noise (e.g. EEG 
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and instrumental interferences) and artefacts (e.g. muscle movement and eye blinking). 

However, the use of long recording and processing sessions may not always guarantee 

reliable hearing detection, especially if the subject is not relaxing or non-sedated. Faced 

with these challenges, proposing a hearing screening protocol based on the ASSR 

technique can be challenging and not practical, mainly because of its lengthy test 

duration. Therefore, the focus of the thesis is to develop an ASSR detection technique to 

reduce the lengthy recording time, increase its robustness against potential occurrence 

of artefacts and yet without or minimal in compromising its detection rate. Several 

attempts were conducted in order to tackle the challenges mentioned, which led to the 

development of automatic ASSR detection scheme which operates adaptively in real-

time, artefacts-robust and automatic in identification.  

 

Chapter 1 introduced and addressed the importance of the ASSR technique and the 

challenges faced for its limited use so far. In order to understand the ASSR, an overview 

on the topic is provided in Chapter 2 and together with the discussion on the existing 

conventional detection methods. The most popularly use combination of approaches or 

detection protocol so far is based upon artefacts-rejection, averaging, FFT and statistical 

test. This combined detection protocol performs better among other existing methods, 

but the issue regarding the lengthy test time remains an open research topic with rooms 

for improvements.  

 

A new route is taken to further improve the ASSR detection by addressing the detection 

from the viewpoint of filtering or state estimation. The detection of the weak ASSR 

embedded within an overwhelm background noise (including potential artefacts 

interferences) is seen as detection of a noisy sinusoid oscillating at a known frequency 

as the ASSR is a sinusoid-like signal. Chapter 3 initially presented the simulation trials 

with synthetic data conducted using the observer-based detector to validate its 

performance and followed up with the detection with experimental recorded AEP. 

BIOPAC data acquisition system is used for AEP recording in the project and has not 

been reported so far its usage in ASSR recording elsewhere. In general, BIOPAC data 

acquisition had been used in many education and research institutions, and it is a 

reliable system at moderate costs. Preliminary studies on the ASSR in responses to its 

variable characteristics (e.g. relation to stimulus intensity, modulation frequency and 

etc.) are carried out by using BIOAPC data acquisition system and processed by the 
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observer-based ASSR detector. The purpose is to verify and evaluate the performances 

of both the BIOPAC system and the proposed observer-based ASSR detection scheme. 

 

Chapter 4 introduced an adaptive state estimation technique (discrete type) known as 

adaptive Kalman filtering into the ASSR detector. The key advantages of this approach 

to the observer-based method are its adaptive gain tuning and noise statistic estimation 

capability. This is vital in practical AEP processing, where the background noise 

statistics is unknown and may be time-varying. Both the observer and Kalman 

techniques are structurally equivalent and comparable in terms of performances, with 

one commonly implemented in continuous time (observer-based) and the other in 

discrete time (KF-based). However, the discrete version enables easier adaptable 

parameters updating for digital implementation in modern days applications. According 

the results presented in Chapter 4, the AKF-based ASSR detection scheme performed 

satisfactory in determining the existence and non-existence of ASSR. Moreover, by 

combining the output responses of both ASSR (fundamental frequency) and its 

harmonic (first), thus this can further reduce the test time needed.  

 

An artefacts-robust ASSR detection based on MSDF method was developed in Chapter 

5. The concept of this approach is to fuse the output responses from the ASSR detection 

scheme in Chapter 4 with respectively the sample mean operation and sample median 

operation. In nature, the sample mean operator is more efficient in producing higher 

consistency outputs (less deviation from the true mean) than the sample median 

operator if the data samples are without outliers, whereas the sample median is highly 

robust against artefacts (outliers) as compared to the sample mean. The breakdown 

point of the sample mean is 0% which means its measurement is very vulnerable even 

to a single extreme value or outlier. On the other hand, the sample median has a 

breakdown point of 50%. This means that at least half of the data points must be 

artefacts for its measurement to be inaccurate and biased. Since both operators have 

their advantages and disadvantages, the MSDF approach is used in order to obtain the 

best from the two. Through fusion, the MSDF-based ASSR detection achieved faster 

detection rate and more artefact-robust as compared to the non-fused ASSR detection 

algorithm in Chapter 4.  

 

In Chapter 6, a regression modelling based method has been developed to provide an 

automatically tuned threshold level. Before that, determination of the existence or non-
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existence of ASSR had been based upon empirically pre-defined constant threshold 

level throughout a test. The approach generally works well under the assumption that 

the background noise statistics and its SNR are stationary, but this is not without 

drawbacks. If the assumption is violated, the ASSR detection is no longer operating 

appropriately (assumed slight variation) due to the fact if the SNR is lower than 

empirically expected and if the threshold remained unchanged, this would cause an 

increase in false alarm in detection. On the other hand, if the SNR is higher than 

initially expected, this would lead to delay in detection or identification. Therefore, the 

proposed automatically tuned thresholding is adaptively tuned on-line, thus objective 

thresholding can be achieved. Generally speaking, linear regression approach is reliable 

and performs well but a more outlier-resistive method known as robust regression is 

introduced. The performance of the robust regression method is comparable to the linear 

regression if the data set is not contaminated with outliers or when the number of data 

samples used is large (with limited numbers of outliers). If otherwise, the robust 

regression approach should be more suitable because of its robustness against outliers. 

However, no significant difference as initially expected for these cases had been 

observed in the simulations carried out in this study. 

 

In accordance to the results obtained in this thesis, it is clear that the proposed real-time 

ASSR detection algorithm based on the combination of AKF and MSDF is comparable 

to if not better than the most widely used averaging approach (i.e. used in MASTER). 

The proposed detector has its advantages in terms of 

 Real-time adaptability- operates in real-time with shorter ‗window‘ or data 

length in estimating the noise covariance. On-line covariance estimation 

allowed adaptive detection via self-tuneable gains. 

 Detection rate- improved the detector‘s ability to operate under very poor SNR 

environment and yet with reliable response.  

  Artefact-robustness- improved the robustness of noise covariance estimation 

again unprecedented artefacts that could bias the reliability of the detection.   

 Objective decision making-ability to automatically identify the existence or 

non-existence of ASSR objectively via self-tuning threshold. 

On the other hand, the existing sequence of methods used in MASTER required 

sophisticated processing protocol in terms of hardware and acquisition unit. Moreover, 

the averaging and FFT involved demanded specific minimum length of recorded data 

for reasonable output resolution.   
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Although advanced signal processing techniques (e.g. detection scheme proposed in this 

thesis) improve the ASSR detection rate and reduce the test time required, others factors 

(e.g. types of stimuli chosen, choices of electrodes placement, selection of test 

environments and etc.) may also affect the ASSR detection. As a result, to further 

enhance the detection rate of the ASSR, all possible influencing factors have to be taken 

into consideration while conducting ASSR assessment through combining different 

approaches (e.g. advanced signal processing techniques, types of stimuli modulation 

and etc.) and optimising their conditions (e.g. use of multiple stimuli, control test 

environment and etc.).  

 

As discussed in the thesis, ASSR technique shows promising merits against other 

objective hearing tests due to its valuable frequency specific information. So far, the 

ASSR is mainly used as a hearing diagnostics tool because of the lengthy test duration 

needed, and still the time required in running the audiometric diagnosis is lengthy. In 

order to implement the ASSR as a hearing screening tool, the lengthy test time is the 

primary concern. This thesis aims to reduce the ASSR test duration, and to improve its 

robustness against background noise or unwanted artefacts with reliable detection rate, 

by developing an autonomous ASSRs detection scheme that performs in real-time. In 

addition, sophisticate hardware requirements that normally associated with the standard 

averaging method are avoided, which would ensure structurally simpler ASSR detection 

system to be implemented. To summarise, the implementation of the ASSR technique 

as a hearing screening tool will become a reality with the long standing challenges faced 

overcome. As a result, patients from the ―difficult population‖ will be directly benefited. 

    

7.2 Future Research Direction 

Although the proposed ASSR detection framework (single-channel measurement) 

demonstrated improvement in shortening the test duration while being robust against 

possible artefacts, there is still room for improvements. Further research intentions are 

addressed as follows. 

 

AEP modelling: Due to the challenges faced in ASSR detection and the nature of its 

response, generation of an ASSR model will help to predict the pattern of the response 

more effectively, such a model can also be used in the development of new detection 
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algorithms. Thus, further reducing the lengthy test time and improving the capability of 

ASSR detection are possible.    

 

Generalization of the detection algorithm: The ASSR detection problem can be seen 

as a classical signal estimation or filtering. This means the proposed ASSR detection 

scheme can be applied to other applications through specific ad-hoc modification 

tailored to particular applications. The key merit of the proposed detection algorithm is 

of its detection rate performance within low SNR condition (i.e. −30dB).  

 

For instance, the current proposed ASSR detection scheme can also be adapted and 

tailored specifically to detect distortion product otoacoustic emission (DPOAE) which 

is also a type of objective hearing screening technique, but its main focus is to screen 

human cochlear function in which is the main source of senserineural hearing loss. In 

general, DPOAE and ASSR both provide frequency specific and quantitative 

assessment of the hearing capability. With the acoustically measured DPOAEs evaluate 

the activity of the cochlea‘s outer hair cell (OHC), whereas the electrically measured 

ASSRs evaluate the responses of the auditory nervous system. DPOAE test is often 

view as a fast, efficient and reliable test of cochlear function. In addition, the DPOAE 

are steady-state responses evoked using two tones of frequencies    and   , where    < 

  ,          , and the most robust DPOAE appears at the frequency           . 

The greatest advantage of DPOAE compared to ASSR is its fast detection and is widely 

accepted as part of a standard hearing screening tool. However, its biggest concern 

would be its robustness against background noise, where typically DPOAE is one of 

few hearing tests conducted under non-controlled environments.    

 

Other potential applications of the detection algorithm are for examples in extracting 

electrocardiogram (ECG) from noise interferences (e.g. power-line and other 

physiological noise), and deploy as an estimator in the field of brain-computer interface 

(BCI) to detect human physiological signal (e.g. muscle movement) that is vital in bio-

feedback or rehabilitation in healthcare applications.  
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