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Abstract 

 

Scalp electroencephalography (EEG) monitoring in early life is providing vital assistance to clinical 

management during diagnosis and treatment of developing brain disorders. It is also a useful tool 

for predicting long-term neurological outcomes of perinatal injuries. Continuous evolution of 

cerebral structures during early brain maturation imposes salient changes in the temporal 

morphology of newborn EEG patterns. Therefore, dealing with neonatal EEG signals is technically 

very challenging. The current dominant approach to newborn EEG assessment is based on visual 

inspection of EEG recordings by an expert. This process is highly subjective and also, very time-

consuming. More importantly, it requires a high level of expertise for appropriate interpretation. On 

the other hand, neonatal intensive care units (NICUs) in most countries do not have ready access to 

high-level EEG expertise. The development of automatic newborn EEG analysis systems is 

therefore vital to improve international newborn health.  

This dissertation is focused on developing scalp EEG connectivity analysis methods for objective 

monitoring of newborn EEG signals. Three important characteristics of the signals are taken into 

consideration for the proposed methodologies: time-varying behavior, directional relationships 

between channels and frequency-specific fluctuations of amplitudes. It leads to a more 

comprehensive insight into the scalp-level electrical interactions between different cortical areas of 

the newborn brain in time and/or frequency domains. Two types of newborn brain abnormalities 

including seizures and intra-ventricular hemorrhage (IVH) and their impact on scalp EEG 

connectivity are investigated. Also, neonatal electric resting state networks (eRSNs) are 

characterized using EEG recordings of healthy fullterms, healthy preterms and preemies with IVH 

as well as a set of newborn functional magnetic resonance imaging (fMRI) datasets.   

The first contribution of this research is a new time-frequency based approach for estimating the 

generalized phase synchrony (GePS) among multichannel newborn EEG signals using the linear 

relationships between their instantaneous frequency laws. Since the underlying signals are usually 

multicomponent, a decomposition method like multi-channel empirical mode decomposition is used 

to simultaneously decompose the multi-channel signals into their intrinsic mode functions (IMFs). 

The results confirm that the GePS value within EEG channels increases significantly during ictal 

periods. A statistically consistent phase coupling is also observed within the non-seizure segments 

supporting the concept of constant inter-hemispheric connectivity in the newborn brain during inter-

ictal periods. 

The second contribution is a time–frequency method for measuring directional interactions over 

time and frequency from scalp-recorded newborn EEG signals in a way that is less affected by 

volume conduction and amplitude scaling. The time-varying generalized partial directed coherence 

method is modified, by orthogonalization of the strictly causal multivariate autoregressive model 

coefficients, to minimize the effect of mutual sources. The novel measure, generalized 

orthogonalized PDC (gOPDC), is tested first using two simulated models with feature dimensions 

relevant to EEG activities. The method is then used for assessing event-related directional 

information flow from flash-evoked responses in neonatal EEG. For testing statistical significance 

of the findings, a thresholding procedure driven by baseline periods in the same EEG activity is 

followed. The results suggest that the gOPDC is able to remove common components akin to 
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volume conduction effect in the scalp EEG, [1] handles the potential challenge with different 

amplitude scaling within multichannel signals, and [1] can detect directed information flow within a 

sub-second time scale in nonstationary multichannel EEG datasets. 

The third contribution is a novel RSN analysis framework for studying the presence of long-range 

spatial correlations in spontaneous brain activity of newborn cortex using scalp EEG recordings. 

The spatial correlations of EEG signal are found to follow a robust bimodality: during high 

amplitudes (high mode), the brain exhibits strong widespread correlations that disappear during low 

amplitudes (low mode). Moreover, a clear spatial structure with frontal and parieto-occipital sub-

networks appears only towards term age. No temporal bimodality is observed in the fMRI 

recordings under the proposed analysis paradigm, suggesting that early EEG activity and fMRI 

signal reflect different mechanisms of spatial coordination. The results suggest that the early 

developing human brain exhibits intermittent long-range spatial connections that likely provide the 

endogenous guidance for early activity-dependent growth of brain networks. 

In summary, the techniques proposed in this dissertation contribute to the field of digital signal 

processing with applications to newborn EEG connectivity analysis and computer-assisted neonatal 

brain abnormality assessment.  
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Chapter 1 

1. Introduction 

 

 

The human brain can be considered as a complicated structure with lots of networks dynamically 

interacting with each other. The situation gets even more sophisticated when it comes to the level of 

newborn brain development processes during which the brain is changing on a daily basis. An 

infant is born with billions of unconnected or sparsely neurons within the cortex which become 

gradually more connected, a process modulated through new sensory and emotional experiences. 

The ability of the brain to conduct high level sensory and cognitive functions will strongly depend 

on underlying interactions between different cortical areas. Surface electroencephalographic (EEG) 

signals, projections of cortical electrical activity on the scalp, reflect useful information about 

interrelations between cortical areas. Researchers and clinicians commonly use EEG to study 

normal functionality and/or abnormalities of the developing brain due to its non-invasive nature, 

high temporal resolution and low cost of the recordings [2-4].  

Time-varying behavior of the early cortical networks is crucial for endogenous brain wiring at the 

developmental period (mainly last trimester of gestation), when the connections between cortical 

areas have not still been established by the exogenous stimuli [5, 6]. Therefore,  a bimodal behavior 

can be observed in the electrical activity of these networks characterized by two alternating modes: 

the high mode associated with the self-organizing, locally generated spontaneous activity transients 

(SATs, also known as bursts) and the low mode representing low-amplitude intervals between 

SATs [7-11]. Newborn EEG bimodality gradually attenuates by becoming more mature with 

continuous activity from the preterm period to term age [10]. In addition, the characteristic cellular 

level network mechanisms underlying interactions within the healthy/unhealthy brain cortical areas 

in  neonates differ from the ones seen in the more mature brain [12]. Some features of adult 

abnormal brain functionality may be normal features in the newborn and vice versa [13, 14]. 

The study of electrical and structural brain connectivity during the perinatal period has developed 

from a pure medical interest to pioneering research insights being provided by engineers, 

mathematicians and physicists. In fact, developing neural pathways within the immature brain can 

be characterized from different perspectives, each of which sheds light on a certain aspect of brain 

functionality. However, the dominant method of outcome assessment that relies on clinical 

assessment in neonatal brain clinical trials is still highly subjective, mainly because it suffers from 

the lack of rigorous quantitative descriptions for normal/abnormal cortical interrelations. This 
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shortcoming will be addressed throughout this thesis by incorporating a multitude of temporal, 

spectral and spatial scales obtained from different characteristics of newborn EEG signals.   

In this dissertation, novel methodologies are developed for studying newborn brain functionality 

through scalp EEG connectivity analysis. The proposed methods account for three aspects of 

neonatal scalp EEG signals: (i) time-varying behavior, (ii) directional relationships between 

channels and (iii) frequency-specific fluctuations of amplitudes This approach leads to a more 

comprehensive insight into the electrical interactions between different cortical areas of the 

newborn brain extracted from time and/or frequency domains. In this way a narrow view on the 

problem of newborn EEG connectivity analysis and its different dimensions has been avoided. 

Studies of newborn EEG seizures and intra-ventricular hemorrhage (IVH) have been described 

using different connectivity analysis techniques. Neonatal electric resting state networks (eRSNs) 

have also been characterized using EEG recordings of healthy fullterm babies, healthy preterm 

babies and preterm babies with IVH and also with newborn functional magnetic resonance imaging 

(fMRI).   

This chapter describes the background and rationale of the thesis which precedes a description of 

the significance, objectives and overall contributions of the work. It concludes with an outline of the 

whole thesis.  

 

1.1 Background and rationale 
 

1.1.1 Essential definitions 

For the sake of clarity throughout this thesis, definitions of general concepts are given here, while 

the definitions of more specific concepts are provided within the relevant chapters: 

   

Gestational age (GA – also known as menstrual age), usually expressed in weeks + days: the time 

difference between the first day of the last normal menstrual period and the day of delivery [15]. 

 

Conceptional age (CA): the time difference between the day of conception and the day of delivery 

[15]. When the CA is known, the GA is approximately calculated by adding 2 weeks to the CA 

[15].  

 

Preterm baby: an infant born before  37 completed weeks of GA [16, 17]. 

 

Term baby: an infant born at 38-42 weeks GA[16]. 
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Neonatal intensive care unit (NICU): an intensive care unit (ICU) with special equipment for 

caring of sick or preterm babies.   

 

International 10-20 system: an internationally recognized standard which defines a universal 

arrangement procedure for EEG electrode placement over the scalp.  

 

Cerebral cortex: the folded outer layer of the brain formed by gyri and sulci and composed of 

several lobes over two hemispheres. It is the predominant source of electrical activity that is then 

projected onto the scalp and recorded by EEG electrodes.     

 

Scalp EEG: projection of the cortical electrical activities over the scalp which is non-invasively 

recorded by surface electrodes. 

 

EEG Symmetry: spatial correspondence of EEG patterns on left and right hemispheres with respect 

to the sagittal plane.   

 

EEG Synchrony: temporal coincidence of EEG patterns between channel recordings.   

 

 

1.1.2 Newborn EEG connectivity analysis  

Brain connectivity can be described as either functional connectivity or effective connectivity [18]. 

Functional connectivity is described as the “temporal correlations between remote 

neurophysiological events”, whereas effective connectivity is defined as “the influence one neural 

system exerts over another” [18]. Consequently, measures of functional connectivity deal with the 

statistical directional/non-directional relationships of neurophysiological signals that include EEG, 

magnetoencephalography (MEG) and fMRI. In contrast, measures of effective connectivity quantify 

the interactions between neuronal systems. Investigating the dynamic characteristics of human brain 

connectivity is not as straightforward as the situation in anatomical studies where post-mortem 

tissues can be directly studied. In fact, a significant part of our knowledge about newborn and adult 

brain functionality originates from animal experiments [17]. However, non-invasive measurements 

of the human brain activities such as scalp EEG recordings and fMRI provide a rich source of 

information reflecting many important aspects of brain development.     

EEG signals originate from ionic current flows within the cortex and include spatial averaging of 

electrical activity over cortical areas. It has been shown that long-range connections within the 

immature brain are developed much earlier than short-range cortico-cortical connections [17].  
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Therefore, unilateral autonomous cortical activity in the most preterm babies is dominant with no 

significant inter-hemispheric relationship observed at this stage [17]. However, expansion of new 

neuronal pathways through the corpus callosum, establishment of the thalamo-cortical loops and 

emergence of cortical gyri/sulci in the newborn brain imposes fundamental changes on the 

morphological characteristics of the EEG signal during the first months after birth [17].  

Newborn EEG during early brain development  shows a spontaneous, intermittent behavior 

resulting in a discontinuous (‘trace discontinue’ [19]) appearance with an alternating combination of 

bursts (a.k.a SATs [11]) and low voltage activity (usually referred to as ‘inter-burst intervals’) [20]. 

This pattern needs to be distinguished from EEG burst-suppression which is abnormal when 

observed in more mature infants where it is associated with major cerebral impairments [20]. Burst 

events arise from simultaneous firing of pyramidal neurons within neural networks of the 

developing cortex, when triggered by external sensory stimuli [17]. It leads to inter-connections 

between cortical areas through excitatory synapses. Thus the occurrence of SATs in the preterm 

brain can be directly related to newborn EEG connectivity during brain maturation.  

SATs play an important  role in the establishment of neuronal connections between immature brain 

areas [16]. The earliest SATs appear focally at the EEG electrodes over the sensory cortices at 

about 24 weeks GA, the earliest stage at which  a preterm born baby is likely to survive in the 

NICU [17]. SATs become more widespread over the cortex  as the newborn approaches full term. 

The discontinuous morphology of the EEG gradually becomes more continuous towards term age 

(from 25 to 40 weeks of GA) by merging more complex electrical activity patterns with higher 

amplitudes between SATs (‘tracé alternant’ [19]). Reduction of the SAT amplitudes during this 

period is probably associated with dispersion of the orientation of cortical electrical fields through 

the ongoing gyration process and expansion of the cortical areas with coherently active SATs [17]. 

Existence of distinctively high amplitude bursts in the signal at this stage may reflect brain 

dysfunction [17]. From this point of view, two concepts of newborn brain connectivity and 

abnormality can be linked through characterization of newborn EEG bursts and inter-burst intervals. 

Developing interconnections within the immature brain at about 30 weeks gestation causes a rough 

temporal co-occurrence of SATs between the two hemispheres. Inter-hemispheric synchrony then 

becomes more consistent and more localized as 35 weeks GA is approached [17]. Large thalamo-

cortical and cortico-cortical networks are involved which may or may not be connected through the 

corpus callosum [17]. The presence, absence or synchronization of SATs in newborn multichannel 

EEG in preterm and term infants may lead to promising prognostic and diagnostic tool in the NICU.   

A typical SAT waveform is characterized by a dominant low frequency envelope (0.1-0.5 Hz) 

combined with several higher frequency oscillations nested on it [17]. Although the majority of 

information obtained from EEG signals during early ages comes from the   band, higher 
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frequencies can convey important aspects of rapid oscillations within the cortex. Also, higher 

spectral bands (  and  ) are represented more in later ages resulting in a dramatic decrease in the 

amplitude of SATs and distribution of the EEG power over a wider frequency span. Considering 

this multiband nature and the nonstationary behaviour of newborn EEG signals during brain 

development, time-frequency analysis techniques may be very useful in analyzing cortical 

interconnections in the neonatal brain [21, 22]. Reciprocal relationships between the frequency 

domain and phase domain allow useful information about unilateral/inter-hemispheric synchrony of 

SATs regardless of the difference between their amplitudes. Time-varying multivariate 

autoregressive (tv-MVAR) modeling has shown its applicability for connectivity analysis of 

biosignals in different signal domains. A MVAR process is able to represent interactions between 

EEG channels in the form of linear difference equations and allows the direction of information 

flow between channels including direct and indirect influences. 

Some newborn brain abnormalities such as inter-hemispheric asymmetry/asynchrony are associated 

with a global change of connectivity patterns over scalp EEG channels. Pair-wise comparison of 

surface EEG recordings is a potential method to evaluate their inter-relationships. A bivariate 

measure, however, is unlikely to capture the key feature of abnormal newborn EEG connectivity 

characterized by a global disruption in multiple locations. By using the MVAR representation of 

EEG signals, not only can the direction of the information flow between channels be inferred, but 

also the direct or indirect influences detected. 

The effect of volume conduction is important in connectivity analysis of scalp EEG because a given 

brain source is often reflected in several EEG channels leading to inaccurate results for EEG 

connectivity. This is particularly problematic with the MVAR-based connectivity measures that are 

sensitive to volume conduction effects. A potential solution is to perform the EEG/MEG 

connectivity analysis at the source level, although this would require sufficiently reliable source 

localization. Combining orthogonalization at the MVAR coefficients level and the imaginary part of 

coherence has the potential to reduce spurious co-variability, the common result of volume 

conduction effects.  

Functional connectivity within resting-state networks (RSNs) has recently been established. RSNs, 

discovered by Biswal et al [23], are spatially long-range brain networks synchronized in time 

through low-frequency (<0.1 Hz) fluctuations of blood oxygen level-dependent (BOLD) signals, 

while subjects are apparently resting [24-26]. Numerous resting-state relationships can be detected 

between different cortical areas of the adult brain including the visual cortex, sensorimotor areas 

and auditory areas using fMRI signal analysis [27]. In other words, the brain during rest is not idle, 

but it conducts spontaneous, intrinsic activities – both endogenous and sensory driven - associated 

with human behavior [28, 29],  pain [30, 31] and diseases [1, 32, 33]. In fact, large-scale RSNs are 



 

6 

 

developed across anatomically remote, but functionally integrated cortical regions [34, 35]. The 

emergence of RSNs is tightly linked to cortical and thalamo-cortical development in the newborn 

brain [10, 24, 36-38]. fMRI studies on sleeping human newborns, including preterm babies, have 

shown inter-hemispherically developing RSNs analogous to those seen in older subjects [24, 37, 

38]. Investigation of the spanning RSNs within the newborn brain in the presence of neuronal 

deficits helps to understand the establishment of these networks during abnormal brain maturation 

processes.  

 

1.2 Significance and motivation 
 

The preterm birth rate has increased over  the last two decades in Australia [39]. This trend is 

expected to be even higher based on the predictions of World Health Organization [40] and 

Australian Institute of Health and Welfare [41]. According to the Australian Government’s 

authoritative information and statistics released in 2012, around 8% of newborns in Australia are 

born preterm each year and approximately 15% of babies are admitted to Neonatal Intensive Care 

Units (NICUs) [42]. Preterm birth is known to interrupt vital brain development processes, 

diminishing future cognitive abilities in babies [43]. Cortical brain regions associated with social 

and emotional processing are less developed in the preterm infants in contrast to fullterms at term 

equivalent age [43]. In addition, follow-up studies on adults have revealed that preterm  babies are 

much more prone to bipolar disorder, depression and psychosis during their adulthood compared 

with full-term babies [44]. Therefore, design of early intervention tools for preterm babies is 

efficacious in controlling the occurrence of abnormal neurodevelopmental outcomes. It reveals the 

magnitude of studies on the developing brain cortical networks as infrastructure of cognition, 

language and other mental abilities.  

This thesis is concentrated on advancing the field of newborn brain monitoring through scalp EEG 

connectivity analysis using time-frequency signal processing techniques. Significance of the work 

falls within two major categories: 

 

A. Significance of newborn scalp EEG monitoring: assessment of scalp EEG early in life is 

useful for predicting long-term neurological consequences and in reducing the 

mortality/morbidity rate in more mature groups [45]. The current dominant approach to newborn 

EEG assessment is based on the visual inspection of the EEG recordings by an expert. This 

process can be very subjective, requires high levels of expertise and usually takes a lot of time 

(especially for long-length EEG recordings) [3]. Therefore, developing computer-assisted 

clinical tools in NICUs for continuous and objective monitoring of newborn EEG was another 

motivation for this research. Neonatal EEG seizures and IVH with respect to their impact on the 
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interactions between cortical areas were targeted in this thesis. Both these abnormalities are 

known to have significant effect on newborn well-being [46, 47]. Although the applicability of 

newborn EEG for seizure characterization has been well established, there is still disagreement 

on the usefulness  of continuous EEG monitoring in treating IVH [47]. Therefore, the findings of 

this research on IVH and its relation to newborn EEG will address a significant research 

question.        

A further challenge in studies of newborn scalp EEG connectivity analysis arises from volume 

conduction between brain and scalp through cerebrospinal fluid (CSF) and skull as well as the 

effect of mutual brain sources on scalp EEG recording where a given brain source activity is 

often reflected in several channels. Consequently, their similarity may be falsely perceived as 

‘connectivity’ by the analysis paradigms. This is particularly problematic with the directional 

connectivity measures that are very sensitive to volume conduction effects. Moreover, the 

numerical problem associated with possibly different variances of signal amplitudes has to be 

taken into account. This thesis aims to develop novel measures for extracting partial and directed 

information flow between surface EEG electrodes in the presence of volume conduction and 

effect of mutual sources.  

 

B. Significance of newborn brain connectivity analysis: interactions within early brain networks 

are of crucial importance for the survival of young neurons and their functional segregation [6, 9, 

10]. Characterization of the cortical inter-relations through brain connectivity analysis methods 

sheds light on the mechanisms behind early brain wiring, before they are driven by sensory 

experiences. Fundamental aspects of immature brain functionality and their links to growing 

brain spatial networks can be effectively explored using the capacities of advanced signal 

processing and multivariate signal connectivity analysis techniques. Since human brain is a time-

varying dynamical system, the potential of time-frequency analysis for solving neonatal brain-

related research questions is considerable [3]. In contrast, the dominant approach to analyzing 

brain interrelations has relied on the simplifying assumption of stationarity. Hence, time-

frequency analysis has the important capacity to address current limitations in this area of 

research [3]. For example, the classical partial directed coherence function on a multichannel 

newborn EEG signal shows a number of peaks at different frequencies representing spectral 

relationships between channels. But, it does not provide any clue about how these inter-

dependencies behave over time. This type of information is highly significant for the 

neuroscience community when the time-varying cortical interactions are going to be investigated 

within the immature brain’s evolving environment. Therefore, methodological development of 
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newborn EEG connectivity analysis tools in the T-F domain was the main motivation for this 

research. 

Intermittent network activities within newborn RSNs are tightly linked to the system-level 

cortical connectivity during the normal/abnormal brain maturation process. This significant fact 

motivated us to also design a practical framework for studying newborn RSNs through scalp 

EEG signals.    

The significance of the methodological approaches taken in this thesis extends beyond this PhD 

research topic. There are important potential applications to the field of brain source localization. 

For example, external stimuli (tactile, visual, olfactory etc) have specific effects with time-varying 

spectral behaviour on the pre-defined brain areas. Applying the algorithms proposed in the thesis in 

conjunction with brain source localization methods on subjects with known brain abnormalities 

such as epilepsy could lead to better understanding of brain defects.       

 

1.3 The Aim and objectives  
 

The main aim of this thesis is to define newborn EEG connectivity during the maturation process 

and in the presence of brain abnormalities using time-frequency signal processing techniques. This 

may enable early detection of the abnormal signatures in neonatal cortical activity and possibly the 

development of diagnostic/prognostic tools for clinical use in NICUs. The methods will be suitable 

for any type of EEG recordings for the purpose of investigating cortical connectivity at the scalp 

level. Considering the fundamental differences between mature and immature brains and skulls, 

EEG connectivity analysis methods applied to the study of the adult brain are unlikely to be suited 

to neonatal brain research.  

The specific objectives of the research can be described as follows: 

 

Objective 1: Develop multivariate EEG connectivity measures that take into consideration the time-

varying nature of newborn cortical activities. 

Objective 2: Study the impact of newborn brain abnormalities (seizures and IVH) on EEG 

connectivity patterns. 

Objective 3: Investigate the capacity of scalp EEG recordings for neonatal RSN analysis with 

respect to fMRI time series analysis. 

Objective 4: Characterize the behavior of neonatal RSNs during brain development. 

Objective 5: Mitigate the confounding effect of volume conduction for scalp EEG connectivity 

analysis. 
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1.4 Proposed approach and methods 
 

Figure  1.1 depicts the analytic pathways taken in this thesis. The approach is two-fold: directional 

analysis versus non-directional analysis. Both approaches take into account the nonstationary and 

multivariate nature of EEG signals. However, the former approach also accounts for the directional 

relationships within multichannel EEG signals. Three methodological contributions are made:  

 

1. Measurement of tv-gOPDC in scalp EEG signals with respect to volume conduction effect:  

This is done by modifying the classical PDC measure by combining the idea of 

orthogonalization at the level of MVAR coefficients and taking the imaginary part of ordinary 

coherence. The capacity of the measure to reduce the effect of spatial smearing for surface EEG 

connectivity analysis is investigated and validated through simulations. Figure  3.2 (block 

diagram of the tv-gOPDC in Chapter 3) illustrates the block diagram of the tv-gOPDC method. 

2. Evaluation of GePS in multivariate nonstationary signals based on the concept of cointegration 

and Granger causality: 

Cointegrating relationships between IP as well as IF laws of a multivariate nonstationary signal 

are investigated using the Johansen test. Simulations are conducted for performance evaluation 

of the proposed approach.   

3. Correlation analysis of scalp EEG power envelopes (eRSN analysis): 

A framework (Figure  4.1 in Chapter 4) is designed to purify the true interactions between BAFs 

of newborn EEG signals through a non-uniform segmentation approach and extraction of the 

connectivity maps between EEG electrodes. Graph measures are then elicited from the maps 

and fed into various statistical tests.   

The following applications are introduced for the proposed methods: 

 

1. Application of the tv-gOPDC method to newborn steady-state visual evoked potential analysis, 

 

2. Application of the GePS paradigm for newborn EEG seizure characterization, 

 

3. Application of the proposed correlation analysis method for studying RSNs during the brain 

maturation process as well as in the presence of IVH in the preterm brain.  
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Figure  1.1: A schematic of the analysis pathways used in this thesis. 

 

 

1.4.1 Contributions 

Contributions of the thesis with regard to the research objectives in section 1.3 are listed below:   

 

Objective 1: two time-frequency methods (generalized phase synchrony assessment and 

orthogonalized partial directed coherence) are proposed in Chapter 2 and Chapter 3 for analyzing 

the relationships between newborn scalp EEG channels by taking the time-varying characteristics of 

the signals into account. The former method describes an approach for GePS assessment within 

multivariate signals in the time-frequency domain. The latter method introduces a time-varying 

version of the classical PDC function which is able to extract pure correlation between neighboring 

EEG electrodes after mitigating the effect of mutual sources. The eRSN analysis approach 

developed in Chapter 4 has deliberately assumed stationarity for under-investigated BAF envelopes, 

as the fluctuations within the networks have a very slow frequency (>0.1 Hz). 

 

Objective 2: Chapter 2 characterizes newborn EEG seizures by assessing generalized phase 

synchrony within multichannel EEG datasets. It is shown that GePS is significantly increased 

during seizures suggesting the capacity of this measurement for newborn EEG seizure 

characterization. Chapter 4 investigates the effect of IVH on the relationships between newborn 

EEG signals and studies the graph measures extracted from the affected neonatal eRSNs. The 

findings imply a significant difference between graph features between eRSNs of healthy preterms 

and preterms with IVH.  
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Objective 3: Chapter 4 reveals an important aspect of newborn EEG signals for RSN analysis 

which is not observed in fMRI time series. Newborn cortical electrical activity exhibits bimodal 

long-range spatial connections. But, no temporal bimodality is found in the fMRI recordings, 

suggesting that early EEG activity and fMRI signal reflect quite different mechanisms of spatial 

coordination.   

  

Objective 4: Chapter 4 studies the dynamics of spontaneous brain activity in premature and 

fullterm babies with EEG and fMRI. The spatial correlations between scalp EEG channels follow a 

robust bimodality: during high amplitudes (high mode), the brain exhibits strong widespread 

correlations that disappear during low amplitudes (low mode). Moreover, a clear spatial structure 

with frontal and parietooccipital subnetworks appears only towards term age. 

 

Objective 5: Chapter 3 presents an improvement for the classical partial directed coherence to deal 

with the volume conduction effect in newborn EEG and its application to directional connectivity 

analysis of neonatal steady-state visual evoked potentials. It is shown, using simulations and real 

EEG signals, that the proposed method intensifies true interactions between scalp EEG channels, 

whilst also suppressing spurious correlations due to the impact of mutual cortical sources on the 

surface electrical activity.  

 

 

1.5 Thesis structure 
 

This dissertation is organized as follows. Chapter 1 contains the significance, motivation and aims 

of the thesis and also briefly describes the neurophysiology of neonatal brain and newborn EEG as 

the realization of its cortical electrical activity. The next three chapters are associated with the 

methodology, innovations and comparisons of the approach to the problem of defining newborn 

brain connectivity at the scalp level. A relevant literature review has been provided within each of 

these chapters due to the multi-dimensional nature of this research. 

Chapter 2 presents the proposed time-frequency EEG connectivity analysis for neonatal EEG 

abnormality assessment and its performance evaluation using simulations as well as newborn EEG 

seizure/non-seizure datasets. The concept of generalized phase synchrony within multivariate 

nonstationary signals is discussed in this chapter.  

In Chapter 3, the suggested approach to extracting directional interactions between scalp EEG 

signals in the presence of volume conduction is reviewed and supported by simulations as well as 

estimates of newborn EEG signals.  
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Chapter 4 discusses bimodal functionality in the newborn EEG signals and its relation to the brain 

maturation process. Finally, the concluding remarks and suggestions for future work are given in 

Chapter 5.            
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Chapter 2 

2. A T-F multivariate phase synchrony measure and 

its application to newborn EEG abnormality 

assessment1
 

 

 

2.1 Introduction 
 

Phase synchrony has been used to investigate the dynamics of complex systems which result from 

time-varying interactions of several subsystems [48]. The human brain is such a complex system 

with different components interacting with each other dynamically. Therefore, studying the global 

coincidences within event-level EEG activities requires the use of multivariate phase synchrony 

measures which take the non-stationarity nature of EEG signals into account [49].  

The concept of analytic signals [3, 50] or complex Gabor wavelet filtering [51] are usually utilized 

to extract the instantaneous phase (IP) of a real-valued signal. A measure of phase synchrony can 

then be computed from the resulting phase information [51]. Several methods were proposed for the 

evaluation of phase synchrony for bivariate and multivariate signals including Mean Phase 

Coherence (also, sometimes referred to as Phase Locking Value) [50, 51], Evolution Map Approach 

[52], Instantaneous Period Approach [53], Mutual Prediction Approach  [53], General Field 

Synchronization  [54], EMD-based methods [55, 56] and frequency flows analysis  [57]. All of these 

methods are restricted by the assumption that the phase-locking ratio between signals is always 

rational. This restriction has been lately relaxed by proposing a generalized version using the 

concept of cointegration [58, 59] where the phase locking ratio is allowed to be irrational. Such 

generalization covers the classical definition as a special case, while it shares a broader view of 

phase interactions which can be observed in neuronal signals [59].   

To overcome the limitations of the existing measures, this chapter proposes a novel approach for 

measuring phase synchrony within nonstationary multivariate signals. The approach is based on an 

interpretation of the generalized phase synchrony (GePS) using linear relationships between 

instantaneous frequency [60] and phase (IP) laws. The proposed method is evaluated by simulations 

as well as a multi-channel newborn EEG seizure/non-seizure database acquired from five subjects.  

 

 

 
1
   This chapter is an extended version of the following publication: A. Omidvarnia, G. Azemi, P. B. Colditz, and B. 

Boashash, “A time–frequency based approach for generalized phase synchrony assessment in nonstationary 

multivariate signals,” Digital Signal Processing, vol. 23, no. 3, pp. 780-790, 2013. 
   



 

14 

 

2.2 Time-frequency analysis and if estimation: a brief review 
 

T-F signal processing allows signal analysis in both time and frequency domains simultaneously 

and is therefore an effective tool for dealing with nonstationary signals [3]. 

 

2.2.1 Quadratic TFDs 

Dealing with non-stationary signals whose frequency content changes over time is a common 

situation in many engineering areas including biomedical signal processing [53, 61, 62], radar [63-

65] and telecommunications [66, 67]. For the analysis of non-stationary signals, T-F distributions 

(TFDs) are the most suitable tools as they provide two-dimensional representations that reflect the 

time-varying spectral characteristics of the nonstationary signal and show how the energy of the 

signal is distributed over the two–dimensional T-F space. They also determine the number of signal 

components, the start and stop times and frequency range of an event in the signal. Quadratic TFDs 

(QTFDs) are the most commonly used TFDs and can be considered as smoothed versions of the 

Wigner-Ville Distribution (WVD) [3].  The discrete version of a QTFD with time-lag kernel 

       is given by [3]: 

            
   

        
 
          

                 ( 2.1) 

where * denotes the complex conjugation, the symbol  
 
 represents discrete convolution over time 

and        is the analytic associate of the real signal               , i.e.: 

                                 ( 2.2) 

with      being the Hilbert transform operator. The resulting         is an     matrix where   

is the number of frequency bins. In ( 2.2),       and       are respectively the instantaneous 

amplitude (IA) and IP of the signal. As RIDs have been shown to be efficient in the analysis and 

processing of EEG signals [60, 68, 69], three popular RIDs, spectrogram (SPEC), modified-B 

distribution (MBD) and Choi-Williams distribution (CWD), are used in this study for IF estimation 

[3]. Our selection is also based on the comparison of TFDs in [70] where SPEC, MBD and CWD 

are ranked within the first four high-resolution TFDs. Table  2.1 summarizes the discrete forms of 

the time-lag kernels and their parameters utilized in this study. 

Table  2.1: Time-lag kernels of the TFDs and their parameters utilized in this study. The parameters  ,    and      denote the time 

length of the segment in samples, the window function length and the lag window length, respectively. 

TFD 
Discrete form of the time-lag 

kernel        
Parameter(s) 
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SPEC              Rectangular window   (     ⁄ ) 

MBD 
        

∑          
   

       ,        ⁄  

CW 
√  

 | |
 

 
     

        ,        ⁄  

 

 

2.2.2 Instantaneous frequency definition and estimation  

The IF of a nonstationary signal shows how its frequency content changes over time. A signal may 

have one T-F component (called monocomponent signal) or multiple T-F components (called 

multicomponent signal). Following (2.2), the definition of IF of the real-valued signal     , i.e. 

      is defined as the derivative of the signal’s IP: 

        

             

  
 (2.3) 

where    is the sampling frequency. Several methods have been suggested to estimate the IF of 

monocomponent and/or multicomponent nonstationary signals [71-73].  Among these, the ones 

based on TFDs such as WVD [3], L-Wigner distribution [74], polynomial WVDs (PWVDs) [75] 

and complex-lag argument TFDs [76-78] have received a lot of attention, as they can disclose the 

multi-component nature of nonstationary signals.  

 

2.2.2.1 Phase derivative of the analytic associate 

 

The most straightforward way of extracting the IF is taking the derivative of the IP. To this end, the 

underlying signal is converted into its analytic associate using the Hilbert transform according to 

(2.2). Then, the phase angles are corrected using an unwrapping method to produce smoother IP 

traces. In this study, the MATLAB command unwrap was used to smooth the IP by adding 

multiples of     to the absolute jumps between successive points greater than or equal to   

radians. Finally, the IF is obtained based on its original definition as the derivative of the IP given 

by (2.3). 

 

2.2.2.2 TFD-based IF estimation 

 

The first order moment of a digitized QTFD         with respect to frequency (aka the normalized 

linear moment IF estimator) is defined as [79]: 
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∑            
   

∑           
   

  (2.4) 

Based on (2.4),       is the weighted mean frequency of the signal. In this study, three QTFDs were 

used for first order moment IF estimation: SPEC, MBD and CWD (see Table 2.1). 

 

2.2.2.3 Real base-band delay demodulator (RBBDD) 

 

For estimating the IF of the signal       in this method [80], it is first normalized, i.e.: 

       
     

|     |
               

(2.5) 

The block diagram depicted in Figure 2.1 is then used to extract the IF. The term      in the figure 

can be written as: 

                                                                      (2.6) 

which results in the estimated IF having the general form of (2.3). It is worth mentioning that 

although this approach results in the same estimation for the IF as the first derivative, it has the 

advantage of not requiring the computation of the IP of the signal which can be problematic.  

 

Figure  2.1: Block diagram of the real base-band delay demodulator 

 

 

2.2.3 Monocomponent signals vs multicomponent signals: necessity of signal decomposition 

for IF estimation 

In practice, the vast majority of real signals are multicomponent. In this case,       in ( 2.2) will 

represent an ambiguous or meaningless weighted squared average of the phases corresponding to 

different components of the signal [57]. Therefore, the definition of IF in ( 2.3), based on the Hilbert 

transform, become useless [81]. Filtering in the frequency domain to isolate T-F components may 

lead to distortion of the constituent waveforms. Therefore, IF estimation of the nonstationary 

signals requires a separation of the  T-F components prior to estimating the IFs [57]. Although there 

are other methods in the literature to deal with the multicomponent non-stationary signals (e.g, see 

[82, 83]), the EMD was adapted for decomposing the signals in the proposed approach. In contrast 
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to most existing methods, the EMD follows a fully data-driven scheme which does not need any a 

priori knowledge about the signal. The technique is an adaptive method which breaks down a 

nonstationary and nonlinear signal into its intrinsic mode functions (IMFs) [84]. Each IMF is a 

monocomponent signal which generates no interference in a QTFD [85]. In other words, the IMFs 

represent simple oscillatory modes with time-varying amplitude and frequency: 

     ∑        

 

   

      ( 2.7) 

where      is a real-valued multicomponent signal with   components and      is the residue [81, 

84]. By applying the Hilbert transform to ( 2.7), the analytic associate       can then be expressed as 

[81, 84]: 

      ∑   
   

       
   

   

 

   

 ( 2.8) 

where   
   

 and   
   

 are respectively the IA and IP associated with the  th IMF. Each IMF of a 

nonstationary signal contains a limited frequency content of the original signal, as EMD acts 

basically as a dyadic filter bank [86]. It turns out that with adequate length, an IMF satisfies the 

assumption of an asymptotic signal.  More details about the EMD process are given in Appendix A.  

Once the IMFs have been extracted, mono-component IF estimation techniques can be used to 

estimate the IF law of each component. In this study, the IF laws of monocomponent signals are 

estimated by taking the first order moments of three TFDs and also, by using a delay demodulator. 

The IF is also estimated according to ( 2.3). A detailed review of IF estimation algorithms can be 

found in [72, 73], while brief details are given below. 

 

2.3 Formulation and assessment of generalized phase synchrony 
 

2.3.1 Bivariate phase synchrony 

Let       and       be the analytic associates of two one-dimensional stochastic real-valued signals 

     and     , respectively; that is: 

             ̃                 ( 2.9) 

             ̃                 ( 2.10) 

where  ̃    and  ̃    are the Hilbert transforms of      and     , respectively. The original signals 

are assumed to be asymptotic signals [3]. The two signals      and      are said to be phase-locked 

of order       if [50]: 

                                ( 2.11) 
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Such a strict condition is rarely satisfied for real-life signals. Therefore, this condition is often 

replaced with a more relaxed condition called phase entrainment condition expressed by [50]:  

|               |         ( 2.12) 

The ratio     ⁄  is assumed to be rational. In the case of discrete signals and for the case       

  (phase-locking of order 1:1), the phase synchrony measure is given by [50]: 

  |
 

 
∑                

   

   

| ( 2.13) 

where   is the length of the two signals in samples. The measure   is often referred to as mean 

phase coherence (MPC) or phase locking value (PLV) [50, 51]. The value   can be rewritten in a 

simpler form as: 

  √〈           〉  〈           〉   ( 2.14) 

where < > represents the mean.   is restricted to the interval [0,1] where     reflects complete 

asynchrony and     implies a perfect synchrony between two signals.  

 

 

2.3.2 Generalized phase synchrony (GePS) 

The classical definition of phase synchrony for bivariate signals can be extended to multivariate 

signals using the concept of cointegration [87] using the following procedure. 

 

2.3.2.1 Cointegration concept 

 

A one-dimensional stochastic process is said to be integrated of order d (    ) if the reverse 

characteristic polynomial of its fitted multivariate autoregressive (MVAR) model has d roots on the 

unit circle in the  -complex plane [58]. The      process is unstable, but it can be converted into a 

stable one (    ) by d times differentiation [58]. Two or more integrated signals can be in a long-

run relation with each other if there is a linear combination of these signals that results in a 

stationary process [58]. In such case, the underlying signals are called cointegrated signals with 

cointegration rank  . The parameter    represents the number of cointegrating relationships among 

the signals. Multivariate Johansen test can be used to determine the cointegration rank and 

cointegrating coefficients across multivariate integrated processes [58, 88]. For more details about 

the Johansen test, refer to Appendix B. 
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2.3.2.2 Phase synchrony assessment based on the cointegration concept 

 

Two signals       and       are said to be in a generalized phase synchronous relationship if their 

phases satisfy the following condition [58, 59]: 

                              (2.15) 

where      is a normally distributed stationary stochastic process with finite second order moment 

and    and    are real-valued numbers. The relation presented in (2.15) reflects a cointegrating 

relationship between two phase signals       and      . Given                       as 

the multivariate phase signal associated with                       a multivariate real-

valued signal with   variables, such relationship can be generalized to a multivariate cointegrating 

relationship among   phase signals as follows:  

                                          (2.16) 

The Hilbert transform is used to obtain the phase of each signal component       separately. If the 

multivariate IP signal       is integrated of order  , there are   stationary linear relationships 

within       and the signal      is said to be in generalized phase synchrony of rank   [58, 59]. A 

higher rank implies a larger number of phase signals are involved in relationships and therefore, 

higher synchrony within channels. Based on (2.16), cointegrating coefficients         and the 

cointegration rank            are estimated using the multivariate Johansen test [88]. 

 

 

2.3.3 Proposed IF-Based generalized phase synchrony quantification 

The phase angle       in (2.2) usually exceeds the range –  to  , which results in unpredicted 

    jumps between some consecutive phase values [89]. This problem is due to the stochastic 

nature of the sampled signal where the angular distance between two successive samples may be 

multiples of   . Although one may use the unwrapping methods to deal with the problem, the use 

of the IF laws of the signals is proposed in this chapter instead of their IPs to skip the issue. We take 

advantage of the direct relationship between the IP and the IF to extract the cointegrating relations 

within phase signals by simply differentiating (2.16) with respect to time. A measure is then defined 

to quantify the level of interaction. 

 

 

2.3.3.1 Interpretation of the IF-based GePS 

 

Suppose      and      are two periodic signals, phase-locked of order       where both    and    

are integers. Let the two signals start from a similar point on the time axis. If the phase-locking ratio 

is rational, it implies that the two signals will cross each other periodically at the same initial 
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common value and this period is related to the least common multiple (LCM) between    and   . 

Therefore, the rational phase-locking order is associated with an intuitive physical meaning for 

periodic signals. In contrast, the two periodic signals never reach the same point with passing time 

in the case of irrational      ⁄ .  

Explanation of phase synchrony for non-periodic signals is not such straightforward. It becomes 

even more difficult for nonstationary signals which by definition cannot be periodic. In this case, 

the concept of frequency flows [57] in the T-F domain may help to clarify the issue. The notion of 

phase synchrony in (2.12) is strictly equivalent to the concept of  frequency synchrony through the 

following formulation [57]: 

                               (2.17) 

which leads to  

 

  
               

  

  
            

  

  
                              (2.18) 

 

      
  

  
      

This means that the two signals have similar IF shapes. The condition becomes equality when 

        From this perspective, the concepts of phase synchrony and IF are connected  [3, 57]. If 

two signals have similar IF laws during a time interval, they are phase-locked of order 1:1 over that 

time period [57]. Consequently, a linear relationship between two IFs with rational gain (    ⁄ ) 

implies phase-locking of order      . Such a definition cannot explain GePS in the case where the 

linear relationships between phase signals can be irrational. Therefore, the following interpretation 

is proposed for generalized phase synchronization based on the concept of cointegration [59]:  

For a multi-channel nonstationary signal, if there is a linear relationship between the IF laws of a 

subgroup of channels during a reasonably long time period, they are said to be generally phase 

synchronized over that time period.  

In this case, there is no reason for the coefficients to be integer as the notion of phase-locked may 

not in general apply. Figure  2.2 illustrates an example of GePS within the IFs of three channels. As 

the figure shows, there is a linear relationship (see the shadowed area) for all three IF laws during 

the shadowed time interval. Such linear combination defines a generalized phase-locking between 

channels. Note that the new explanation reduces to the classical definition of phase synchrony for 

rational phase-locking orders. 
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Figure  2.2: An example of generalized phase synchrony within a three-channel signal (curves show IF ridges in the T-F domain. 

Shadowed area illustrates the phase-locking time period). 

 

2.3.3.2  Implementation of the proposed approach 

 

The proposed procedure of GePS assessment for a nonstationary K-dimensional signal      is fully 

described by the following steps: 

 

1. Each channel                 is decomposed into   IMFs    

                 using the 

EMD. The parameter   can be estimated by the EMD stoppage criteria [81] as   

                 where    is the number of IMFs in the  th channel. It is, then, kept the 

same for all channels. 

 

2. The analytic associate of each IMF for the  th channel is obtained using the Hilbert transform, 

  
          

             

        and its IP is extracted,    

         
     

   
   

   

   
   

 . The phases 

   

       are then corrected using an unwrapping method [89] to suppress phase angle jumps 

between consecutive elements and produce smoother phase traces. The IF    

       are then 

extracted by taking the derivative of the unwrapped phase signals    

      . The IF    

       may 

also be estimated using other IF estimates that bypass the problem of phase ambiguity (see 

section  2.2).  

 

3. IFs of all channels at each decomposition level   
        

   
      

   
  are divided into non-

overlapping time segments with adequate length. The minimum window length is determined 
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based on the requirement of the MVAR parameter estimation where the length should be 

significantly larger than     (  is the MVAR model order in the Johansen test) [90].   

 

4. The Johansen method (maximum eigenvalues test) [58, 88] is applied on each multivariate 

segment at the 99% confidence level and the linear relationships between IFs are extracted as 

follows: 

{
 
 

 
       

   
          

   
            

   
      

   
   

      

   
          

   
            

   
      

   
   

 

         

   
             

   
               

   
     

    

   
   

 ( 2.19) 

5. where    

   
    represents the  th segmented IF (       ) of the  th IMF (        , 

                 is the number of cointegrating relationships within the multivariate 

segment,                  is the  th cointegrating coefficient of    

   
    and   

       is the 

stationary residual of the  th cointegrating relationship at the  th IMF.  

 

6. The phase synchrony measure for each segment is defined as the normalized number of the 

cointegrating relationships      over the IMF components: 

   
    

 

   
∑     

 

   

  ( 2.20) 

This measure always takes values between zero and 1 where zero means no cointegrating 

relationship within IF laws and 1 implies complete phase locking within the multivariate segment. 

The cointegrating relations can also be investigated among the phase signals directly. In this case, 

steps 3-5 are repeated for the multichannel IP signal         leading to another measure    
    with 

similar definition of ( 2.20) in which      accounts for the number of cointegrating relationships 

between phases at the  th
 decomposition level.  

 

 

2.3.3.3  Statistical analysis 

 

The proposed method performance is evaluated using the receiver operating characteristic [91] 

curve to determine sensitivity and specificity. Suppose the multivariate signal      is divided into   

segments with          segments present generalized phase synchrony. True positive rate 

(TPR), true negative rate (TNR), false positive rate (FPR) and false negative rate (FNR) of the 

method are defined as: 
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The sensitivity and specificity of the method are then defined as follows: 

             
   

       
 

             
   

       
  

The ROC curve is obtained by plotting the sensitivity versus (1-specificity). The curve allows 

calculating the optimum threshold based on its area under curve.   

 

 

2.4 Results and Discussion 
 

This section evaluates the IF-based generalized phase synchrony assessment framework on both 

simulated and real newborn EEG signals. At the beginning, the GePS measure is tried on the 

Kuramoto model without incorporating EMD (step 1 of the procedure), as the model outputs have 

narrow frequency contents. Then, the entire procedure is applied on a more relevant simulated 

signal as well as the newborn EEG datasets using different IF estimation methods.  

 

  

2.4.1 Simulations 

2.4.1.1 The Kuramoto model 

 

The kuramoto model is a mathematical model of collective synchronization among a population of 

weak oscillators locked to a common frequency [92]. Realizations of this model in real-world 

systems are ranging from neural networks of the brain to arrays of lasers [92]. Due to the usefulness 

of this model for quantifying the synchronization within coupled oscillators (similar to what is 

observed within the cortex), it is used here to evaluate the performance of generalized phase 

synchrony framework.  

The model represents pair-wise phase relationships among a population of   oscillators: 

  ̇       
 

 
∑   (           )                   

 

   

 ( 2.21) 
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where   is the number of oscillators,     is the coupling strength, and    , 
  ̇

  
 and    are the IP, 

the IF and intrinsic natural frequency of oscillator  , respectively. The angular frequencies    

belong to a unimodal and symmetric distribution about a mean frequency  . Also, the coefficient 
 

 
 

in ( 2.21) guarantees a stable behavior for the model as   approaches infinity [92].  

To quantify the macroscopic characteristics of the Kuramoto model, a complex value            is 

defined as the collective phase congruency of the network [92]: 

           
 

 
∑       

 

   

 ( 2.22) 

where      is a measure of global phase coherence within the population and      represents the 

average phase. The coherence   is limited to the interval [0 1] where     reflects complete 

asynchrony and     implies a perfect synchrony between two oscillators. Combination of ( 2.21) 

and ( 2.22) leads to another form of the Kuramoto model revealing its mean-field character [92]: 

  ̇               (          )                  ( 2.23) 

 

2.4.1.2 GePS assessment using the Kuramoto model 

 

The Kuramoto model was simulated for      oscillators over a time span of 50 s and 20 ms step 

size (        ). The GePS measures     and     in ( 2.20) were then extracted from the simulated 

model through the Monte-Carlo method with 50 iterations. For each run, the natural frequencies    

were randomly selected from a Gaussian distribution of mean zero and variance of 0.1 rad. The 

coupling coefficient   was varied from 0 to 2 with 0.1 steps to ensure that it exceeds its critical 

value [92]. Also, the MVAR model order for both measures was set to 10. Figure  2.3 depicts 

temporal evolutions and final phases of a population of 10 oscillators at three different coupling 

coefficients as well as the performance of the measures on the simulated signals. As the figure 

suggests, both measures are able to follow a similar pattern with      during the synchronization 

process of the model. However, the IF-based measure     is more accurate for strong coupling, a 

situation which is commonly observed among EEG channels during seizure. Therefore,     was 

finally utilized for newborn seizure EEG analysis in the next stage.  
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(a) (b) (c) 

   

(d) (e) (f) 

 

(g) 

Figure  2.3: Simulation results for the Kuramoto model with 10 oscillators over a weak to strong coupling procedure. 

Top row (a-c) illustrates temporal evolutions of three oscillators at      ,       and    . Middle row (d-f) 

shows the final phases of the aforementioned oscillators at       . (g) depicts the global phase coherence      of the 

oscillators along with the two GePS measures     and     extracted from them using RBBDD (see sections  2.2.2 

and  2.3.3). 
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2.4.1.3 GePS assessment with an integrated signal  

 

In order to evaluate the performance of the proposed approach with different IF estimators for the 

nonstationary multivariate case, two 4-channel nonstationary signals with a length of 1000 seconds 

and unit amplitude at the sampling frequency of 100 Hz were simulated. For the asynchronous 

signal, the phase       of each channel   was defined as an integrated process of order two.  The 

phase       was therefore obtained as the output of a linear shift-invariant system whose impulse 

response has two poles on the z-plane unit circle: 

     
 

        
 ( 2.24) 

driven by a white noise process     . The discrete form of the process in the time domain is 

therefore given by: 

                             

              
( 2.25) 

where,          samples and              . It implies that the IF laws are integrated 

processes of order one (one pole on the z-plane unit circle – random walk). In other words, there is 

no cointegrating relationship within the IFs or equivalently, no generalized phase synchrony within 

the channels. The asynchronous signal         was then defined as: 

                         ( 2.26) 

where                     . A perfectly synchronous 4-channel signal with the same form 

of ( 2.26) was also simulated with random walk phase signals: 

                    

              
( 2.27) 

where        . It yields IFs with stationary trends with four cointegrating relationships. Both 

signals were divided into 4-sec segments and 100 segments were drawn out of the pool for each 

condition (synchrony/asynchrony). The dynamics of all phase signals was slowed artificially by a 

moving average process with the span of one second to magnify slow drift of the mean phase. Since 

the simulated signals are composed of multiple random frequency components, generalized phase 

synchrony can be observed within different intrinsic mode functions. Therefore, as described in 

Appendix A, an EMD sifting process was initially applied to decompose each channel of the 

segments into 5 IMFs. The proposed GePS measure was then extracted from the segments at each 

IMF, namely, 5 measures for each segment. The final measure for the segment was obtained by 

taking the average over 5 values. The MVAR model order for the Johansen test was set to 10 during 

the process. 
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Four IF estimation methods (RBBDD, SPEC, MBD and CWD – see section  2.2.2), along with the 

classical procedure of obtaining IF laws as the unwrapped phase derivative, were applied on the 

decomposed synchronous and asynchronous simulated signals. Figure  2.4 illustrates the ROC 

curves of the synchrony/asynchrony detection method associated with the IF estimators.  

 

Figure  2.4: ROC curves of the IF estimation methods used in this chapter to extract generalized phase synchrony within the simulated 

signals. 

  

In order to gain more insight into the performance of the IF estimators, the areas under the curve 

(AUCs) were computed for the ROC curves on the simulated signals. Table  2.2 summarizes the 

AUC of the ROC plots in Figure  2.4. As the results suggest, the CWD- and SPEC-based IF 

estimators showed the highest discrimination rate for estimating the GePS measure from the 

simulated signals.  

 

Table  2.2: Area under curve for the ROC plots of Figure  2.4 

IF estimator AUC (%) 

Phase derivative 79 

RBBDD 85 

CWD 88 

MBD 82 

SPEC 92 

 

The next section presents the GePS assessment with neonatal EEG signals in the presence and 

absence of seizure. 
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2.4.2 Newborn EEG analysis 

2.4.2.1 Datasets, preprocessing and segmentation 

 

Eight monopolar channels (F3, F4, C3, C4, P3, P4, O1 and O2) out of 14 channels recorded using  the 

10-20 standard [93] were selected from the EEG datasets of five newborns. Figure  2.5 illustrates the 

arrangement of the electrodes. These electrodes were chosen according to the symmetrical 

combination of electrodes from left and right hemispheres in order to enable inter-hemispheric 

phase synchrony assessment. The data was recorded using a Medelec Profile system (Medelec, 

Oxford Instruments, Old Woking, UK) at 256 Hz sampling rate and marked for seizure by a 

pediatric neurologist from the Royal Children’s Hospital, Brisbane, Australia. All signals were 

bandpass filtered within 0.5-30 Hz using a FIR filter of order 100. The filtered signals were 

inspected visually to remove highly artifactual segments. Artifact free intervals were then 

segmented into 4-sec windows. In this thesis, 100 non-overlapping ictal segments and 100 non-

overlapping interictal segments were extracted randomly from 27 min of artifact-free seizure signals 

and 39 min of artifact-free nonseizure signals obtained from 5 subjects. The window length (1024 

samples) was chosen to be larger than     where   is the MVAR model order for the Johansen test 

(here,    ) and   is the number of channels (here,    ) [90].    

 

Figure  2.5: arrangement of the electrodes. Large circles illustrate the utilized electrodes. 

 

 

 

2.4.2.2 Significant increment of the GePS measure during the seizure periods 

 

The procedure described in section  2.3 was applied on each 8-channel (4 left and 4 right) newborn 

EEG segment in order to analyze the generalized phase synchronization within both seizure and 

non-seizure groups. Figure  2.6 illustrates the Modified-B distributions (      ,        ⁄   and 

time traces of 5 IMFs extracted from 2 adjacent left-right electrodes (F3 and F4) for a random 
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seizure segment. The IFs of each multi-channel segment at each decomposition level (each IMF) 

are analyzed by the Johansen test. The cointegration ranks of the IMFs are then utilized for 

calculating the GePS measure of the underlying segment using ( 2.20). A vertical frequency shift can 

be observed between each two successive rows in Figure  2.6. This observation reflects the nature of 

the EMD sifting process as a dyadic filter bank [86]. As the figure suggests, the IMFs can be 

roughly linked to the EEG frequency bands: IMF5 covers the   band (up to 5 Hz), IMF4 covers the 

  and   bands (up to 10 Hz), IMF3 mostly covers the   and   bands (5-15 Hz), IMF2 mostly covers 

the   and   bands (10-20 Hz) and IMF1 mostly covers the   and   bands (above 20 Hz).  

 

  

(a) IMF1 extracted from F3 (b) IMF1 extracted from F4 

  

(c) IMF2 extracted from F3 (d) IMF2 extracted from F4 
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(e) IMF3 extracted from F3 (f) IMF3 extracted from F4 

  

(g) IMF4 extracted from F3 (h) IMF4 extracted from F4 

  

(i) IMF5 extracted from F3 (j) IMF5 extracted from F4 

Figure  2.6: T-F representations of the IMFs at five decomposition levels extracted from two adjacent left-right electrodes (F3 and 

F4). 

 

In order to evaluate the performance of the IF estimators for quantifying newborn EEG generalized 

phase synchrony, five methods (discussed in section  2.2) were employed. Figure  2.7 exhibits the 

ROC curves of the IF estimators on the seizure/non-seizure EEG segments. As the figure implies, 

the sensitivity is significantly higher than the false alarm (1-specificity) for all estimators. It 
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indicates increased GePS measures within the seizure segments compared to the non-seizure 

segments.  

 

 

Figure  2.7: ROC curves of the IF estimation methods used in this chapter to extract GePS within the seizure/non-seizure EEG 

segments. 

 

Table  2.3 contains the AUC values associated with the ROC curves in Figure  2.7. From the table, it 

becomes clear that most estimators are significantly different from the chance level (50%). 

However, the AUC values remain lower than what was obtained for the simulated signals (see 

Table  2.2). Unlike the simulated data analysis, performance of the TFD-based IF estimators on the 

EEG data is lower than the phase derivative and RBBDD.   

 

Table  2.3: Area under curve for the ROC plots of Figure  2.7 

IF estimator AUC (%) 

Phase derivative 75 

RBBDD 71 

CWD 65 

MBD 67 

SPEC 62 

 

A two-sample t-test was conducted on the newborn EEG results to evaluate the null hypothesis that 

two groups of GePS values estimated by the unwrapped phase derivative estimator are independent 

random samples with equal means against the alternative that the means are not equal. The resultant 

p-value at the 1% significance level was           implying that the mean GePS values of the 

seizure group are significantly higher than the non-seizure group 

(                                        ). 
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2.4.3 Discussion    

The results presented in this chapter show differences between the performances of IF estimators 

used in the simulated signals and newborn EEG. It was demonstrated that the EMD sifting process 

can be used in estimating the GePS measure to break down multi-component signals into 

monocomponent signals, containing relevant information for evaluation of the cointegrating 

relationships within the multivariate datasets. EMD provides a clearer physical interpretation for 

synchronization between broadband signals, as it does for the EEG datasets. This is of high 

importance, as the role of the selected frequency band is always crucial for EEG analysis 

applications. The IMFs extracted from newborn EEG can be roughly linked to the well-defined 

EEG frequency bands. The results indicate that the GePS assessment proposed in this chapter can 

be considered as a global evaluation of phase synchrony over all channels and all frequencies in a 

typical multi-channel newborn EEG signal. From this point of view, the choice of keeping a 

constant number of IMFs (here, five) during the whole EEG analysis is compatible with the nature 

of EEG signals. For the GePS measures derived from synchronization between simulated signals, 

maximum discrimination rates of 92% and 88% were obtained for the SPEC and CWD-based IF 

estimators, respectively. The highest rates for newborn EEG signals were 75% and 71% associated 

with the phase derivative and RBBDD IF estimators, respectively.  Unlike the simulations, the 

performance of TFD-based IF estimators on the newborn EEG data was lower than the phase 

derivative estimator and the RBBDD method. This observation may imply that the TFD-based IF 

estimators are more vulnerable to the unknown factors (which will remain in the real EEG signals 

after pre-processing) compared to the phase derivative and RBBDD. Higher performance of the 

phase derivative estimator for newborn EEG analysis also suggests that the IMFs extracted from the 

EEG channels satisfy the requirements of the asymptotic signals [3]. 

The statistical results also suggest that there is a constant inter-hemispheric connectivity within the 

newborn brain during the interictal periods as all of the             values are greater than zero. 

This is consistent with fMRI-based studies suggesting stable low-frequency, spontaneous 

fluctuations within the newborn brain during resting-state conditions, termed resting-state networks 

[24, 37]. This study also suggests that the inter-hemispheric connectivity increases during seizure 

periods in terms of the GePS. This is in agreement with previous neonatal EEG studies where EEG 

channels are more synchronized within the seizure periods than the non-seizure intervals [94].  

The effect of EEG montage is another important factor which needs to be investigated in all EEG 

phase synchrony assessments. While a monopolar montage has been used for the study presented in 

this chapter, other montages such as bipolar, average reference and Laplacian montages may give 

different results. In addition, it is worth exploring the effect of the number of electrodes in each 

group on the GePS measures. One, however, needs to be careful about selecting the number of 
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electrodes in EEG connectivity studies including phase synchrony assessment, as highly dense 

arrangement of the electrodes may increase the interfering effect of volume conduction between 

neighboring electrodes and affect the connectivity analysis results. Therefore, the effect of volume 

conduction needs to be explored in future work to assess its impact on the new measure of 

synchrony. 

The ratio of synchronous time periods in the whole newborn EEG signal can be used as an index of 

newborn brain asynchrony. Such a single number as a representative of asynchronous bursts within 

a long newborn EEG recording may be used as a qualitative measure of EEG inter-hemispheric 

asynchrony. This could provide an accurate quantitative measure of asynchrony in the neonatal 

EEG, and thereby significantly improves the current way of providing only a qualitative description 

of synchrony/asynchrony from the newborn EEG. Such an objective tool is required to supplement 

the highly subjective, visual assessment of EEG (see also [45]). 

 

2.5 Summary and conclusions 
 

This chapter establishes the relevance of the GePS assessment for quantifying the global phase 

synchronization within multivariate nonstationary signals (such as newborn EEG). The 

contributions of this chapter can be summarized as follows. A novel framework for GePS 

assessment within nonstationary multi-channel signals has been described based on IP/IF estimation 

in the T-F domain. The approach has also been evaluated using different T-F methods to optimize 

its application to newborn EEG seizure detection. The significance of the proposed scheme is 

demonstrated by the finding that during seizure activity, greater synchrony is observed within 

multichannel EEG signal. A statistical analysis of the results obtained suggests that the GePS 

increases significantly during the ictal periods. This is in agreement with previous neonatal EEG 

studies where EEG channels were more synchronized during ictal periods than in the interictal 

periods [94]. The promising simulation results suggest the SPEC and CWD-based IF estimators as 

the most efficient IF estimators for GePS assessment. The TFD-based estimators, however, don’t 

keep their superiority over the phase derivative and RBBDD for the newborn EEG datasets used in 

this study. The measure may also be utilized as a multivariate EEG feature for newborn EEG 

seizure detection. However, its discriminating ability needs to be further analyzed and compared 

with the other existing newborn seizure detection methods. Also, the concept of generalized phase 

synchrony within the newborn brain calls for a more robust statistical conclusion on larger 

populations. Unlike classical phase synchrony measures, the proposed measure deals with the 

generalized phase synchrony in cases where the phase-locking ratio is not rational. This allows a 

more flexible view of synchronous cycles within the nonstationary multi-channel signals. The 
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statistical distribution of the GePS measure associated with the interictal (non-seizure) EEG signals 

of two hemispheres lies always above the zero level suggesting that there may be stable low-

frequency and spontaneous fluctuations within the newborn brain. The proposed framework may 

help quantifying the inter-hemispheric functional connectivity within multi-channel newborn EEG 

signals. Future work will  concentrate on improving the temporal resolution of the proposed 

approach, utilizing  multi-component IF estimation techniques [82], and recruiting more subjects to 

support the statistical analysis and quantifying other newborn EEG abnormalities such as EEG 

asymmetry/asynchrony in preterm babies using the proposed approach. The findings of increased 

synchrony in seizure EEG and variable synchrony in non-seizure periods warrant exploration of the 

approach in a range of newborn neurological disorders where biomarkers and prognostic indicators 

are essential to improving management for these babies.  
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Chapter 3 

3. Measuring time-varying information flow in scalp 

EEG signals: Orthogonalized Partial Directed 

Coherence2
 

 

 

3.1 Introduction 

The human brain performs its sensory and cognitive functions by dynamically employing highly 

complex and interlaced neuronal networks. Better understanding of these network functions may 

open insights into pathophysiological mechanisms of neurological development and disease [13]. 

Due to its non-invasive nature, high temporal resolution and low cost, scalp EEG is often used as 

the basis for studying brain connectivity [95-101]. A wide range of EEG connectivity analysis 

methods (like the GePS approach presented in Chapter 2) do not consider the direction of 

information flow within multichannel scalp EEG signals. However, inter-dependences between 

surface EEG electrodes are of particular importance when neural communications within cortex 

such as visual feedback system [102] or evoked response potentials [103] are investigated. Several 

methods have been developed for assessing directed interactions from EEG (or MEG) signals 

(reviewed in [104]). Among these, multivariate autoregressive (MVAR) models have been widely 

used for neurophysiological signal analysis [21, 98, 99, 105, 106]. An MVAR process is able to 

model interactions between EEG channels in the form of linear difference equations and allows the 

direction of information flow between channels including direct and indirect influences [106]. The 

concept of Granger causality [107], is widely used to investigate the flow of information within the 

coupled dynamical networks based on MVAR models. A dynamical process X is said to Granger-

cause a dynamical process Y, if the prediction of the process Y is enhanced using the information of 

the past of process X compared to the knowledge of the past of process Y alone [99]. This 

definition incorporates the lagged effects only from one channel to another, hence it is also denoted 

as lagged causality [99]. The immediate effect of a channel on the other channels at the zero delay 

is called instantaneous causality [99]. The combination of the concepts of lagged and instantaneous 

causality leads to the general form of extended causality [99]. In this paradigm, the classical MVAR 

models accounting only for the lagged causality are called strictly-causal MVAR models, while the 

models also considering the zero-lag effects are denoted as extended MVAR models [99]. The 

instantaneous effects built in the strictly-causal MVAR models are reflected in the non-diagonal 

 
2 This chapter is based on the following publication: A. Omidvarnia, G. Azemi, B. Boashash, J. O' Toole, P. Colditz, and S. Vanhatalo, “Measuring 

time-varying information flow for scalp EEG signals: orthogonalized partial directed coherence,” to appear in IEEE Transactions on Biomedical 

Engineering, 2013. 
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elements of their noise covariance matrix. Therefore, they can be converted into the extended 

models using the Cholesky decomposition of their uncorrelated noise covariance matrix [99].  

Strictly-causal and extended MVAR models provide the basis for several measures of directional 

influence in multivariate systems, such as Granger Causality Index (GCI)  [108], Directed 

Coherence [109], Multiple Coherence [110], Partial Directed Coherence (PDC) [109], extended 

PDC (ePDC) [99], generalized PDC (gPDC) [111], Directed Transfer Function [31, 110], and direct 

DTF (dDTF) [112] which have been validated using simulated models [99, 106, 109, 113, 114]. 

Since the focus of this chapter is on the linear approach of time-varying MVAR modelling, we 

deliberately avoide mentioning the existing non-linear measures here and instead, refer the 

interested reader to [104, 105, 115, 116].   

Ordinary coherence quantifies the linear relationship between two signals in the frequency domain. 

In a multichannel dataset, the linear relationship between two channels in absence of all other 

channels is measured by the partial coherence function. In fact, the function removes linear 

influences from all other channels in order to detect direct interaction between channels   and   

[109]. Multiple coherence describes the proportion of the power of the  th
 channel at a certain 

frequency which is explained by the influences of all other channels  [110]. These coherence 

measures provide a symmetric representation of the relations between channels, namely, the 

extracted interrelationship matrix is always symmetrical. Directed coherence is defined as a unique 

decomposition of the ordinary coherence function and represents the directed interaction between 

channels. This measure is obtained by spectral decomposition of the cross-spectral density matrix 

and channel-wise normalization of each element in the matrix [109]. Although the directed 

coherence has a straightforward physical interpretation in terms of signal power transferred from 

one process to another, it cannot distinguish between direct and indirect causal effects within the 

channels. DTF and PDC account for the activity flow in a given direction as a function of 

frequency/time-frequency. In particular, the PDC inherits useful characteristics of both directed 

coherence and partial coherence at the same time. While the DTF shows all direct and cascade 

flows together (e.g. both propagations 1→2→3 and propagation 1→3 are reflected in it), dDTF 

[112] can separate direct flows from indirect flows [9, 10]. The two frequency domain approaches 

to connectivity analysis (PDC vs. DTF) are designed to assess different properties in the signal with 

each having its own advantages and disadvantages [22, 101, 106, 109, 113]. The measure gPDC 

[111] combines the idea of DTF (to show the influencing effects) and PDC (to reflect influenced 

effects) between channel i and channel j. Also, GCI [108, 113] is a time-domain connectivity 

measure based on the concept of Granger causality.  The original versions of the previously 

discussed measures assume that the underlying signals are stationary and their interactions are 

constant over time, which has made their use challenging for EEG - a known  time-varying (non-
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stationary) signal  [117, 118]. This has prompted the development of time-varying MVAR-based 

connectivity measures for EEG signal processing [100, 106, 114].  

A further significant challenge in connectivity analysis  of scalp EEG (or sensor space MEG) is the 

effect of volume conduction where a given brain source is often reflected in several EEG/MEG 

signals, and consequently, their similarity may be falsely perceived as ‘connectivity’ by the analysis 

paradigms [119]. This is particularly problematic with the MVAR-based connectivity measures that 

are  sensitive to volume conduction effects (for example, see page 94 in ref [120]). A potential 

solution is to perform the EEG/MEG connectivity analysis at the source level [121], although this 

would require sufficiently reliable source localization [122]. An intriguing idea for an alternative 

solution was provided by a recent study that mitigated the effect of volume conduction in the 

analysis of spatial EEG amplitude correlations [123] by orthogonalizing signal powers. A well-

known related procedure is use of the imaginary part of the (ordinary) coherence function [119], 

which renders the estimate insensitive to instantaneous effects between two signals. In the present 

chapter, the ideas of the dual extended Kalman filter (DEKF)-based time-varying PDC analysis 

[21], orthogonalization and imaginary part of coherence function are combined leading to an 

orthogonalized version of the classical PDC, which is hereafter called orthogonalized PDC (OPDC). 

It is proposed here that combining orthogonalization and the imaginary part of coherence has the 

potential to reduce spurious co-variability, the common result of volume conduction effects. 

Moreover, its generalized version (called gOPDC) is developed to handle the numerical problem 

associated with potentially different variance of signal amplitudes (known as ‘time-series scaling 

[111]). The novel OPDC paradigm is compared with the classical PDC and gPDC, first using 

simulated time-invariant and time-varying models, and then using task-related EEG data obtained 

from flash light-evoked EEG responses of newborn babies. Finally, stringent statistical testing is 

applied to assess significances of individual findings, and the time-frequency (T-F) connectivity 

maps are subsequently visualized in 3D directed graphs of the baby’s head to demonstrate the 

potential power of the proposed method in studying dynamical brain networks. 

 

3.2 Methods 

3.2.1 Multivariate autoregressive model 

For a given time series         with   number of samples (       ), a strictly-causal 

multivariate autoregressive (MVAR) model of order p is defined as [90]: 

[
     

 
     

]  ∑  [
       

 
       

]  [
     

 
     

]

 

   

 ( 3.1) 
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where            is a normally distributed real valued zero-mean white noise vector with 

diagonal covariance matrix    〈   〉          
   where 〈 〉 is the expected value operator and 

  denotes the number of channels. The assumption of diagonality for    ensures that there is no 

instantaneous effect within the MVAR model described in ( 3.1), as there is no non-diagonal 

element in    [99]. The matrices    are given by: 

   [
   

     
 

   
   

     
 

] ( 3.2) 

for        . The real valued parameter    
  reflects the linear relationship between channel   and 

channel   at the delay  . In the stationary case, the optimum order p of an MVAR model can be 

estimated using different methods such as Akaike Information Criterion (AIC) and Schwarz’s 

Bayesian Criterion (SBC) [101, 124].SBC has been shown to be preferable over AIC for time series 

analysis [125]. For a reliable estimation of the MVAR parameters, the number of data points 

available (  ) need to be significantly larger than the number of parameters (   ) or equivalently, 

the signal length ( ) should be much longer than    [90].  

 

3.2.2 Time-varying PDC Measure 

Partial and directed relationships in a network can be detected using the PDC measure. As an 

example, suppose channel 1 affects channel 2 and channel 2 affects channel 3, that is. 2←1, 3←2 

where the arrows show the direction of the information flow. In this case, channel 1 has a direct 

relationship with channel 2, while there is an indirect (partial) relationship between channel 1 and 

channel 3. It has been shown in previous studies that the PDC measure outperforms its MVAR-

based counterparts for connectivity analysis because it misses this partial relation [22, 109, 113]. 

The PDC measure is based on the concept of Granger causality [109]. The time-varying version of 

the PDC is  defined based on the time-varying version of the model given in ( 3.1) (in which 

matrices       are time-varying) as [114]: 

         
|        |

√  
             

 ( 3.3) 

where         is the  ’th column of        defined as:  

         ∑        |       

 

   

 ( 3.4) 

where   is the identity matrix and the frequency   varies within the range of 0 to the Nyquist rate. In 

( 3.3),          is the   ’th element of       ,   
  denotes the Hermitian transpose of the vector    

and | | represents the absolute value operator. The measure          takes values between 0 and 1 

where high values in a certain T-F bin reflects a directionally linear influence from channel   to 
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channel   at that bin (       ). Note that the measure is directional, i.e.,           is not equal 

to          necessarily. The scale invariance version of the classical PDC (called generalized PDC 

or gPDC) is obtained by incorporating the variances of the innovation processes       [99, 111]:  

 ̃        
   

  |        |

√  
        

         
  ( 3.5) 

where     are the diagonal elements of     The null hypothesis in the statistical significance test of 

the PDC-based connectivity analysis is then stated as: 

                  ( 3.6) 

where            is either          or  ̃       . Rejection of    implies a significant partial 

directed outflow of information from channel   to channel   [111].  

 

3.2.3 Time-varying orthogonalized PDC for reducing the effect of volume conduction 

The cortical electrical activity recorded by a scalp electrode is a space-averaged potential that is 

often considerably affected by spatial smearing  in the tissue layers between cortex and scalp [126]. 

This process, known as volume conduction, leads to co-variability in the EEG signal amplitude that 

is not due to true connectivity between underlying cortical activities. This effect needs attention in 

the pre-processing stage in any EEG connectivity analysis to differentiate presumably genuine brain 

interactions from those caused by smearing of EEG signal via volume conduction. To reduce the 

co-variability due to spatial smearing of the surface EEG signals, one can orthogonalize their power 

envelopes in the complex domain to remove the parallel components and extract the orthogonal 

parts [123]. The orthogonal components are then used in the connectivity analysis. Note that two 

signals can be orthogonal and still correlated [127]. The power envelope of a random signal 

represents the temporal evolution of its spectral power and can be derived using Morlet’s wavelets 

[123] or the Hilbert transform [128]. Parametric or non-parametric (FFT-based) methods are also 

used to explore the frequency content of the signal. It is known, however, that the FFT-based 

methods inherit performance limitations of the FFT approach. Namely, they are unable to provide 

high-frequency resolution and also suffer from the spectral leakage caused by the effect of 

windowing on the signal. Autoregressive (AR) model-based spectral estimation methods can 

overcome these limitations by fitting the observations to an AR model. These methods can be 

extended to multivariate signals using ( 3.1) leading to the power spectral density (PSD) matrix. 

Therefore, the MVAR model coefficients in ( 3.1) and ( 3.4) reflect the interactions within the 

channels and at the same time, they represent the spectral information of the signal power 

envelopes. The main idea behind the OPDC and gOPDC measures is that instead of performing the 

orthogonalization process at the signal level, it can be done at the level of MVAR coefficients to 

alleviate the effect of mutual sources [129].   
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Suppose scalp EEG channels are generated through a linear superposition of   independent source 

signals within the brain with instantaneous effect on the surface electrodes. This relationship can 

therefore be formulated in the frequency domain using Fourier transform as follows: 

      ∑         

 

   

  ( 3.7) 

Equation ( 3.7) can be re-written in its matrix form: 

           ( 3.8) 

where         is the multichannel EEG signal in the frequency domain,         is the 

multivariate source signal in the frequency domain, and        includes all source weights: 

  [

       

   
       

]. ( 3.9) 

Note that zero lag between the source signals and the sensor realizations ensures that the matrix   is 

real-valued. Assuming independence among sources, that is         
         〈|     | 〉 with  

    denoting the Kronecker delta, the cross-spectral density function        between       and 

     , i.e. : 

               
      ∑       

 

   

〈|     | 〉 ( 3.10) 

is necessarily real-valued [119]. Now, let us fit a strictly-causal MVAR model on the multichannel 

EEG signal      in the time domain according to ( 3.1) and transform it into the frequency domain. 

We have: 

     ∑   
               

 

   

               ( 3.11) 

where  

     ∑   
      

 

   

  ( 3.12) 

       ∑   
        

 

   

  ( 3.13) 

Combining ( 3.8) and ( 3.11), we have: 

                    ( 3.14) 

Then, the cross-spectral density matrix of     , namely      can be computed as: 

     〈         〉  〈(              )(                  )〉  ( 3.15) 
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where the superscript   denotes the Hermitian operator. Assuming the source signals and noise 

processes are statistically independent, ( 3.15) is written as: 

     〈(                     )〉  〈         〉  ( 3.16) 

Therefore,        in ( 3.10) can be obtained based on ( 3.16) as: 

       〈 ∑ ∑ ∑ ∑     
       

         
     

   
      

    

 

    

 

    

 

    

 

    

〉  〈       
    〉  ( 3.17) 

Since    
    and    

    are independent, all terms including 〈   
      

    〉       are zero 

resulting in: 

       ∑ ∑ ∑     
       

            |     | 
 

   

 

    

 

    

 〈       
    〉  ( 3.18) 

 True interaction between channels, independent from the pure effect of mutual sources (that is, 

relations in which the effect of mutual independent sources has been excluded) is reflected in the 

imaginary part of       . Since         |     |  and 〈       
    〉 are necessarily real-valued, 

    {      } will be written as: 

    {      }  ∑ ∑ ∑ {        |     |     {    
       

    }}

 

   

 

    

 

    

  ( 3.19) 

Therefore, the terms     {    
       

    } are associated with the true interactions between 

channels devoid of the effect of mutual sources and given by: 

    {    
       

    }  ∑ ∑     

      

     (          )

 

    

 

    

 ( 3.20) 
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( 3.21) 

Thus the orthogonalized components of    
                            at different delays, 

i.e. the real part    
           and the imaginary part    

            play a salient role in 

estimating the true relations between channels, when the effect of mutual sources has been 

excluded. In fact, the orthogonalized components at different delays do not share the trivial co-

variability caused by linear superposition of independent sources. Based on this rationale, the 

orthogonalized version of the classical time-varying PDC (called OPDC) is proposed as a 

combination of the orthogonal components of the MVAR coefficients in the time-frequency domain 

given by: 



 

42 

 

         
|∑ ∑    

        
                         

 
    

 
    |

  
             

 

 
|∑ ∑     {   

             }        
               

    
 
    |

  
             

  

( 3.22) 

( 3.23) 

Summation of the weighted sine and cosine terms in ( 3.22) imposes a trend varying appearance to 

the OPDC measure along the frequency axis. It is straightforward to show that ( 3.22) and ( 3.23) are 

equivalent with the following decomposition of          in ( 3.3): 

         
|              |

√  
             

 
|              |

√  
             

                          ( 3.24) 

Since each factor in ( 3.24) is greater than zero and less than         , the measure          will 

always take values between zero and 1. In analogy to the definition of gPDC, the OPDC can be 

extended to the gOPDC  ̃        by taking the effect of time series scaling into consideration: 

 ̃        
 

   
 

|              |

√  
        

         
 

|              |

√  
        

         
                         ( 3.25) 

In the next sections, the proposed measures are evaluated on two simulated models consisting of a 

time-invariant as well as a time-varying strictly-causal MVAR model affected by a linear 

superposition of independent sources.  

 

3.3 Testing the gOPDC Paradigm  
 

To evaluate the performance of the OPDC and gOPDC measures against the performance of the 

classical PDC and gPDC, two independent simulations were conducted covering both time-

invariant and time-varying circumstances. The basic form of the time-invariant model was used in 

[109] to reflect the superiority of the PDC to the DTF. Also, the time-varying one has been 

previously used in [114] to extract time-variant directed influences during Parkinsonian tremor. The 

models were then manipulated by adding random interactions between channels to test the integrity 

of the proposed connectivity analysis framework.  

 

3.3.1 Time-invariant simulated model  

The model is a 5-dimensional time-invariant strictly-causal MVAR[1]-process plus a linear 

superposition of sparse uniformly distributed random sources with approximately 50% nonzero 

entries within the interval [0 3], given by: 

                ( 3.26) 

where      is a strictly-causal MVAR model of order 3 with 5 channels and      is its distorted 

version with some confounding instantaneous interferences between channels defined by       , 
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a time-constant random mixing matrix and      the intermittent interactions between channels 

given as a 6-channel sparse uniformly distributed random matrix with 50% nonzero entries. The 

matrix   is a weighting matrix whose element in the     position represents the random interaction 

between the     and      component of     . In fact, it has assumed that six sparse and instantaneous 

relationships are being imposed randomly on     . The distorted matrix      is finally used for 

connectivity analysis. The elements of   were selected from the interval [0, 1] through a uniformly 

distributed pseudorandom generator. The MVAR process                   
  is expressed as (see 

also [109]): 

{
  
 

  
                 √                              

                             
                            

                            √             √                 

               √             √               
                        

 ( 3.27) 

where                   
  is a normally distributed white noise vector with different variances 

for its entries. The model is simulated for        samples at the sampling frequency    

      . 

 

 

3.3.2 Time-varying simulated model  

The model is a 3-dimensional time-varying strictly-causal MVAR[1]-process plus a linear 

superposition of sparse uniformly distributed random sources with approximately 50% nonzero 

entries within the interval [0 1], given by ( 3.26) where        is a time-constant mixing matrix 

and      represents the intermittent interactions between channels. Similar to the time-invariant 

case, the elements of   were selected from the interval [0, 1]. The MVAR process             
  

is denoted as (see also [114]): 

{

                                                                 
                                         
                                         

 ( 3.28) 

where             
  is a normally distributed white noise vector. For a model of length 

       samples and the sampling frequency          , parameters      and      are 

depicted in Figure  3.1. For MVAR parameter estimation, the model order is fixed to 2 throughout 

the process. 
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Figure  3.1: Time course of the time-varying parameters in the simulated model (see also [114]). 

 

3.3.3 Newborn EEG data 

20-channel EEG recordings of four full-term newborns were obtained from EEG archives in the 

Department of Children’s Clinical Neurophysiology (Helsinki University Central Hospital, 

Finland). The signals were recorded during sleep with sampling rate of 256 Hz using a NicoOne 

EEG amplifier (Cardinal Healthcare, USA) and EEG caps (sintered Ag/AgCl electrodes; 

Waveguard, ANT-Neuro, Germany) with positioning according to the international 10-20 standard 

(see [130] and http://www.nemo-europe.com/en/educational-tools.php  for further details of the 

newborn EEG recording method). To capture connectivity in the brain network associated with 

visual processing (postcentral) driven by the visual stimuli, ten monopolar channels were selected 

(Cz as the reference - see also Figure  3.7) and divided into two groups representing left 

(O1,C3,P3,T3,T5) and right (O2,C4,P4,T4,T6) hemispheres. The analysis of functional connectivity 

was then performed on each hemisphere (group) separately. Visual stimuli were delivered with the 

routine flash stimulator of the NicOne EEG system at 1 Hz for 5 minutes (thus a total of 300 times). 

The continuous multichannel EEG recordings were then segmented into one-second non-

overlapping epochs each of which included one of the 1 Hz visual stimuli. Use of these anonymized 

EEG recordings has approval from the Ethics Committee of the Hospital of Children and 

Adolescents, Helsinki University Central Hospital. 

 

3.3.4 Pre-processing prior to the OPDC analysis 

The following sequence of pre-processing was applied on the continuous raw EEG data using 

EEGLAB functions [131]:  independent component analysis [132] was used to remove ECG 

artifact, mains noise (50 Hz) as well as potential artifacts introduced by the flash stimulator directly 

to the EEG electronics. All 20 EEG electrodes were used at this stage to maximize the reliability of 

ICA operation [1]. The signal was band-pass filtered between 0.1 Hz and 30 Hz (using a Finite 
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Impulse Response -FIR- filter of order 200). Periods of the EEG with exceedingly high artifacts 

were then visually identified, marked manually, and excluded from the later analysis. The 

remaining epochs were submitted for further analysis (212±28.6 average number of epochs per 

hemisphere). 

 

3.3.5 Statistical testing of EEG responses  

In order to evaluate the significance of the tv-gOPDC results, statistical hypothesis testing was 

employed for each individual pair-wise connection within a multichannel EEG dataset using a null 

distribution generated from the signal itself. The null hypothesis is stated as statistical similarity 

between the baseline condition and post-stimulus activation. In other words, it was tested whether 

the gOPDC measure after flash light stimulation is statistically different from the gOPDC measure 

without brain activity triggered by the flash. This approach acknowledged the idea that brain areas 

may interact spontaneously in the absence of external stimulation leading random connectivity 

between EEG channels. Hence, the statistically significant event-related information flow can be 

estimated by comparing it to the level of interactions that take place between those same electrodes 

in the absence of stimulation. Studies on event related oscillatory activity often use ‘baseline’ 

subtraction at the trial level [133]. Figure  3.7-a illustrates an example of the clear difference 

between the baseline (last 400 ms after flash light stimulation) and stimulus-induced components 

(first 400 ms interval) in a newborn visual evoked potential (VEP) signal. However, it was searched 

for additional statistical power and analytical stability by generating a null distribution from a larger 

set of baseline epochs. The statistical approach used is conceptually straightforward and 

computationally efficient compared to the sample shuffling, that in the used multivariate dataset 

needed up to 10 hours computation time per baby (using a Windows-based PC of 2.66 GHz Core2 

Duo CPU with 8 GB of RAM).  

To this end, the null distribution was constructed using the last 400 ms interval of the one-second 

inter-stimulus EEG epochs, which was found to be beyond all obvious components of VEPs (see 

also Figure  3.7-a), hence considered as the ‘baseline’ (typical  EEG activity known as 

“background”). The tv-gOPDC measures were extracted from the first 400 ms of each epoch and 

compared with a distribution of the same measures extracted from the last 400 ms intervals for all 

epochs. The procedure of obtaining a T-F thresholding plane for each group (either left or right 

hemisphere) of each subject is as follows: 

1. tv-gOPDC measures are extracted from the whole length (one second) of each epoch. If   is the 

number of epochs for subject i obtained from either right or left hemisphere,   time-frequency 

representations of the gOPDC measures are obtained at the end of this step. 
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2. Each time-frequency representation is divided into two parts: the first one covering the 

beginning 400 ms interval and the second one covering the last 400 ms interval. First intervals 

over epochs provide the original estimates and the second intervals build the null distribution’s 

library.  

3. The highest score at the 99
th

 percentile of the distribution of each T-F bin over epochs is 

computed. With the resolution used in this study (3.9 ms × 0.5 Hz), this yields a threshold plane 

(or matrix) with 102 time bins (0.4 s,        Hz) and 60 frequency bins (        Hz), thus 

altogether 6120 threshold values in the thresholding plane that covers the whole T-F graph. 

Figure  3.2 illustrates the above procedure for constructing the thresholding plane that determines 

significance level of the T-F bins in the gOPDC graph. The statistical testing procedure was applied 

on the pre-processed data of each subject at each group (hemisphere) to obtain a subject-dependent 

thresholding plane. To find the T-F bins with significant values over the first 400ms time interval, a 

T-F threshold was applied to each epoch Average of the thresholded gOPDC plots was computed as 

the mean connectivity representation of the subject in the under-investigated hemisphere (see 

Figure  3.2). At the end, each subject had two average multichannel representations, one for each 

hemisphere. 

 

3.3.6 Implementation of the DEKF-based OPDC measure for the EEG signals 

In this chapter, the coefficients       in ( 3.4) are estimated using the dual extended Kalman filter 

(DEKF) [134]. Time dependent parameters       account for the nonstationary behavior of the 

signals. The DEKF is employed to estimate time-varying MVAR parameters fitted on the 

multichannel EEG signals. It leads to a time resolved gOPDC measure quantifying the time-varying 

directed influences within channels in the T-F plane. The resulting DEKF-based T-F plane is 

constructed on a sample-by-sample basis. Therefore, the time resolution is defined by the sampling 

step size and the frequency resolution is determined by the number of frequency bins in the gOPDC 

measure (here,         Hz leading to 3.9 ms steps and          leading to 0.5 Hz spectral 

steps). The MVAR model order determines the frequency resolution of the estimates: low-order 

MVAR models cannot capture low-frequency components due to their short memory [135]. On the 

other hand, high-order MVAR models are able to represent rapid changes in the signal, but reliable 

estimation of their numerous parameters needs lengthy signals. If the signal is known to be 

stationary (which is not generally true for EEG), the optimum order p can be estimated using 

different methods such as the Akaike information criterion (AIC) or the Schwarz’s Bayesian 

criterion (SBC) [124]. The model order selection is not straightforward for time-varying MVAR 

models, as it may vary over time. In this study, the optimal model order is estimated by evaluating 

the SBC for a range of p values over the entire data using the ARFIT toolbox [124] and is kept 
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constant during the process. Since the MVAR parameters needed to be inferred from a short EEG 

segment in this study (one second), the order of the model was kept as low as possible (   ). The 

whole procedure of extracting the tv-gOPDC values from the multichannel newborn EEG datasets 

is depicted in Figure  3.2. The two hemispheres were analyzed as separate groups of electrodes, and 

quantitative 3-D maps of directed influences were plotted using customized MATLAB functions of 

eConnectome toolbox [136].  

 

(a) 

 

(b) 

Figure  3.2: a) The block diagram of implementing the DEKF-based gOPDC measure and the null distribution from 

N multichannel epochs of the newborn VEP responses. The thresholding plane in the last stage will be used to determine the 

significant values of the OPDC measures in the T-F domain. b) The procedure of constructing the thresholding plane for the tv-

gOPDC measures. Each white square represents a tv-gOPDC representation associated with the last 400 ms of an epoch. The 

histogram of each T-F bin (small black squares) over all epochs of a group is obtained and its highest score at the 99th percentile is 

extracted. The estimated value is then used as the threshold of that T-F bin in the thresholding plane. 
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3.4 Results 
 

The comparison between different methodologies is based on visual inspection (Figure  3.4 and 

Figure  3.5)  analogous to the original PDC study [109]. This was found sufficiently revealing to 

conclude that there were considerable differences between methods. However, a quantitative 

measure with statistical testing was used for an objective comparison of the EEG results in which 

the average tv-gOPDC values over predefined T-F planes were computed (see Figure  3.7). 

 

 

3.4.1 Time-invariant simulation 

The corresponding PDC, gPDC, OPDC and gOPDC measures for the time-invariant model given 

by ( 3.26) and ( 3.27) are plotted in a matrix layout in Figure  3.3. In the ideal case, it is expected to 

see the immediate impact of channel 1 to channels 2, 3 and 4 as well as the reciprocal effect 

between channels 4 and 5 (that is, non-zero values for       ,       ,       ,        and       , 

while the other flows are zero). Because of the effect of mutual sources, the classical PDC 

(Figure  3.3-a) shows an erroneous reflection of the true connections (considerable effect of channel 

1 on the other channels) in addition to the spurious leakages among some other channel pairs. The 

distinctive role of channel 1 in contrast to the other channels refers to its large noise variance. This 

problem is tackled to some extent by the gPDC (Figure  3.3-b), although leakage due to the effect of 

mutual sources still exists. The OPDC measure (Figure  3.3-c) alleviates the leakage problem, but is 

not able to confront the issue of different amplitude scaling. Namely, considerable non-zero values 

due to the large noise variance of channel 1 are observed for        and        in Figure  3.3-c. 

The gOPDC measure (Figure  3.3-d) takes both the issue of time series scaling and information 

leakage into consideration and provides the most desired presentation of the information flows.  

 

  

(a) (b) 
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(c) (d) 

Figure  3.3: Diagrams of the mutual influences within the multichannel time-invariant model given by ( 3.26) and ( 3.27): a) PDC, 

b) gPDC, c) OPDC and d) gOPDC. The diagonal plots (effect of each channel on itself) are excluded from the matrix layouts. 

 

 

3.4.2 Time-varying simulation 

Comparison of the tv-gOPDC measures to tv-gPDC measures on the time-varying simulated model 

described in ( 3.26) and ( 3.28) demonstrates that gOPDC can effectively remove the intermittent 

interactions between variables (Figure  3.4). In this study, the optimal model order was estimated by 

evaluating the SBC for a range of p values over the entire data using the ARFIT toolbox [124] and 

kept constant during the process for all simulations as well as EEG signal analysis. Both measures 

are able to successfully reflect the oscillatory partial connectivity from channel 2 to channel 1 

( ̃       ,  ̃       ) as well as the ramp-shaped strength influence from channel 3 to channel 1 

( ̃       ,  ̃       ) (see Figure  3.4). According to the model, there is no direct coupling from 

      to       and      , from       to      , and also from       to      . This is reflected well 

in the corresponding gOPDC graphs with negligible activity. However, the corresponding gPDC 

graphs for  ̃       ,  ̃       ,  ̃        and  ̃        represent high false positive values. 

Another large difference can also be observed: the residual connectivity values after removing the 

effect of mutual sources reveal much smaller magnitude than the gPDC values (note the color bars 

in Figure  3.4). This observation originates directly from the orthogonalization step in the gOPDC 

measure where the spurious connectivity caused by the mutual sources is attenuated.  
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(a) (b) 
Figure  3.4. The connectivity measures extracted from the simulated model. a) time-varying gPDC, b) time-varying gOPDC. The  

diagonal plots (effect of each channel on itself) have been excluded from the matrix layouts. 

 

 

3.4.3 Newborn EEG data 

Because the MVAR parameters need to be inferred from a short EEG segment (one second), the 

order of the model should be kept as low as possible (   ). Many coefficients of a high-order 

MVAR model cannot be reliably estimated from a short length signal. Therefore, the optimum 

model order was selected conservatively as the lowest order at which a near constant plateau 

appears in the information criterion diagram of the SBC method. On the other hand, low-order 

MVAR models cannot capture low-frequency components, as they have short memory [135]. 

Therefore, low-frequency results of this study (below 1-2 Hz) were excluded from the 

interpretations.   

To make sure that the EEG results are not substantially affected by different amplitude scaling in 

scalp EEG electrodes (see Figure  3.7-a), the gOPDC was used for EEG connectivity analysis and its 

performance was compared with the gPDC. The time-varying results (Figure  3.5) were obtained for 

the scalp EEG electrodes of the left hemisphere after thresholding as described above. As shown in, 

the gPDC levels are notably high and spread across the whole T-F plane with emphasis on low 

frequency components, whereas gOPDC levels are clearly emphasized around 10 Hz. In particular, 

the low frequency content (lower than 3 Hz) associated with the mutual components of the newborn 

EEG signals have been almost eliminated in the gOPDC plots.  
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(a) (b) 

Figure  3.5: Time-varying connectivity analysis of the scalp EEG electrodes from the left hemisphere. A) gPDC measure, b) gOPDC 

measure. 

 

The time-invariant measures (Figure  3.6) can be readily obtained by temporal averaging of the 

corresponding time-varying values (Figure  3.5). They show a clearly dominant hump at around 7-

10 Hz. In contrast, the gPDC plots show strikingly high levels towards both higher and lower 

frequency components. It is reasonable to assume that these frequency components represent 

mainly the “common mode” effect of reference electrode that is unavoidably present in monopolar 

recordings, which is effectively attenuated by orthogonalization at the level of MVAR parameters. 

  
(a) (b) 

Figure  3.6: Time-invariant connectivity analysis of the scalp EEG electrodes from the left hemisphere. A) gPDC measure, b) gOPDC 

measure. 

 

The conventional time-locked averaging of the EEG showed canonical shape visual evoked 

responses in both hemispheres and in all babies (Figure  3.7) with little difference in timing and 

shape of components between scalp locations. The first components always started before 200ms, 

and no consistent response components were seen beyond 400ms post stimulus. Notably, all 

components of this response have a strong spatial decay towards central (C3 and C4) and temporal 

(T3 and T4) sites, with maximal amplitude in the occipital electrodes (O1 and O2). Based on these 

observations, the tv-gOPDC analysis was limited to a rectangular time-frequency area from 100ms 
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post stimulus onwards and within the frequency range of 5-15 Hz (Figure  3.7-d). Grand-mean T-F 

maps of directional interactions between EEG channels at each hemisphere over subjects are 

demonstrated in Figure  3.7-b and c. The 3-D connectivity maps of the grand mean interactions at 5-

15Hz band were then created from 2-D averaging of the T-F gOPDC values within three different 

time spans:    =100-200 ms,    =200-300 ms and    =300-400 ms  (see Figure  3.7-e, f and g, 

respectively).  

 
  

(a) (b) (c) 

 

   

(d) (e) (f) (g) 

Figure  3.7: a) Average VEPs of a typical subject - responses of the right group of electrodes, b,c) Average tv-gOPDC measures 

across four subjects for the occipital-temporal-parietal areas from 100 ms to 400 ms post-stimulus at the left and right hemispheres, 

respectively. The direction of the information flow is presented on top of each map. d) Rectangular T-F compartments over which the 

gOPDC measure was averaged. e,f,g) Color-coded 3-D directed graphs representing the grand-mean information flow at    =100-

200 ms,    =200-300 ms and    =300-400 ms, respectively, after the stimulus onset within the frequency range of 5-15 Hz. Note the 

substantial decrease of information flow in the last time window compared to the first two time windows. Each color-coded arrow 

shows a directed interaction between two electrodes. 

 

An overall inspection of the results in Figure  3.7-b,c suggests that there are preferential frequencies 

and directions of information flow in the T-F domain. To quantify the visual interpretation of the 

results, the total mean gOPDC value was calculated for each plot. The pair-wise gOPDC maps, i.e. 

two maps for each electrode pair (one for each direction) can be interpreted as the pure directional 

‘coherence spectrogram’ between the two electrodes, when the effect of volume conduction is 

removed. Notably, most directed information flow appears to take place at 5-15Hz frequency band, 

with a general decrease in frequency over time. This change in frequency is, indeed, compatible 

with the respective changes in the intrinsic frequency content of the average waveforms (Figure  3.7-
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a) which show a clear attenuation of interactions towards the end of the 400ms analysis window. 

The grand mean gOPDC maps (Figure  3.7-b,c) reveal strong interrelations between the occipital 

and central areas at the left hemisphere and between the occipital and temporal areas at the right 

hemisphere around the central frequency of 10 Hz (most dominant interactions are O1←C3 and 

O2←T4). In both matrix layouts (left and right – 40 maps in total), the dominant electrode pairs 

involve the occipital and parietal electrodes as the sink of information (e.g. P3←T3, O2←T4, 

O1←C3). In addition, relatively high T-F interactions originate from the temporal lobe and 

discharge into the occipital and parietal lobes (e.g. P3←T5, P3←T3, O2←T4). 

 The 3-D plots are compatible with the observations from the time-frequency gOPDC graphs in 

Figure  3.7-b,c that show attenuation of the interactions in the network  over time. In the earliest 

time window (100-200ms), most connections are active, whereas the interactions weaken towards 

the end of the analysis time. The 3-D maps also show the long connections from the occipital lobe 

to the central regions. 

 

3.5 Discussion  
 

It was demonstrated that directional information flow can be assessed in the T-F domain from 

multivariate EEG datasets, and it can be statistically tested at the level of each individual 

connection. The method described here stems from combining multiple independent streams of 

prior analytical development: the core of the OPDC measure and its generalized version is grounded 

on the T-F representation of MVAR processes and the notion of Granger causality. To render the 

estimate insensitive to instantaneous effects between two scalp EEG signals, the well-known idea of 

taking the imaginary part of the coherence function has been used [119]. In this chapter, the idea of 

time-varying PDC analysis [21] was combined with orthogonalization at the level of MVAR 

parameters,   as considering the imaginary part of the coherence function lead to an orthogonalized 

version of the classical PDC. Moreover, its generalized version (called gOPDC) was developed to 

handle the numerical problem associated with varying amplitude scaling between signals. The 

performance of the gOPDC measure was evaluated using a simulated model and real newborn EEG 

signals. 

The major properties of the tv-gOPDC paradigm and their relationship with the previously 

published measures can be summarized as follows: 

A. The gOPDC approach is based on the strictly-causal MVAR model given in ( 3.1) which does 

not consider the instantaneous interactions between EEG channels. An extended MVAR model 

which takes into account the instantaneous effects will be similar to ( 3.1) with      for     

[99]. In this case, the gOPDC measure given in ( 3.25) can be extended in a similar way as 

presented in [99] where the MVAR coefficients are modified in the presence of zero-lagged 
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effects. However, it is shown in [99] that if a strictly-causal MVAR model is inaccurately fitted 

on an extended MVAR process, true instantaneous influences are likely to be reflected as 

spurious lagged interconnections among the model inputs.    

B. In contrast to ordinary coherence, partial coherence, multiple coherence and similar to the DTF, 

dDTF, PDC and gPDC, the proposed gOPDC method is able to extract direction of the 

information flow and differentiate between direct/indirect interactions.  

C. it inherits all characteristics of the classical PDC which makes it superior to the DTF and dDTF. 

D. as opposed to GCI, it can extract both temporal and spectral interactions. 

E. in comparison with the PDC and gPDC for the specific application of scalp EEG analysis, it is 

able to alleviate the distorting  effect of volume conduction within multichannel EEG signals.    

One should note, however,  that the inverse spectral matrix elements employed in the family of 

PDC-based measures makes physical interpretation of their results difficult in terms of power 

spectral density.  

It was demonstrated that tv-gOPDC using DEKF is able to track changes associated with transient 

couplings and remove the effect of mutual independent sources within the multivariate 

nonstationary signals. Most of the existing EEG connectivity analysis methods assume stationarity 

of interactions in the underlying signals, while EEG signals are well-known to be nonstationary 

[117, 118]. Also, the effect of volume conduction and the differences in amplitude scaling between 

EEG signals can pose challenges. The present work introduces a time-frequency framework for 

functional EEG connectivity analysis to deal with both confounders, and extracts the sequence of 

nonstationary information flows between EEG channels within sub-second segments and at the lack 

of scale invariance. This approach obviously requires sufficient signal to noise ratio, which can be 

achieved by averaging over a larger number of trials. The effects of other sources of constant noise 

or artefacts, such as mains noise and its harmonics, can be mitigated by efficient artefact handling 

(see pre-processing steps) and by employing statistical testing of the kind presented in this chapter. 

The method of generating null distributions from the original EEG segments will directly affect the 

statistical testing. There are several customized versions of classical surrogate data methods to 

estimate significance in PDC connectivity analysis [137, 138]. Their application to each epoch in a 

multivariate dataset (multichannel newborn EEG in this study) is, however, often computationally 

challenging, and no specific advantages were seen to their use compared to the conceptually 

straightforward method in this chapter. As an alternative, the null distribution of the presented 

hypothesis testing (cortical connectivity vs. no connectivity) can be generated using the background 

EEG in the given experiment, which is also automatically “normalized” with respect to spontaneous 

(as opposed to event-related) brain connectivity as well as technical variances (for example. 
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external noise or inter-individual variations in the recording constellation). The method presented in 

this chapter is conceptually straightforward and computationally efficient.   

The effect of EEG montage is another important factor in studies on EEG connectivity. While 

monopolar montage with Cz reference was used in this study, other montages like Laplacian or 

average referencing should be explored. Use of monopolar reference outside of the analyzed EEG 

signals may be perceived as neutral with respect to mixing sources among the analyzed signals; 

however it also leads to a significant common source in all signals that is technically identical to a 

serious volume conduction effect. We found it particularly encouraging to see that even such 

common source component could be alleviated by using the orthogonalization procedure. Using 

Laplacian or average reference montages would require a high number of recorded EEG channels. 

Hence, it seems intriguing that the proposed method may even open the possibility to analyze 

recordings with only few monopolar EEG signals, such as the routine clinical evoked potential 

studies. However, any effect of the number of electrodes also affects tv-gOPDC measures, and it 

needs systematic assessment in prospective applications for two reasons: first, higher electrode 

density implies increased mutual components caused by volume conduction. Second, quantitation 

of directional interactions between higher number of pair-wise comparisons can dilute the effect 

between each electrode pair, which calls for higher signal-to-noise ratio. These considerations imply 

that i) increasing the electrode density may be beneficial when it is used for spatial down-sampling 

(either at signal or at source space), while ii) the performance of tv-gOPDC improves by selecting a 

lower number of signal pairs as guided by a priori knowledge about assumed number of underlying, 

interacting sources. Indeed, such optimization is an inevitable exercise with all advanced analyses 

of brain interactions. 

The ability of the gOPDC in detecting interactions between sources within the cortex in the 

presence of volume conduction can be quantitatively measured using other simulated models like 

the one presented in [139] where the interactions at the source level are projected onto the scalp 

through a realistic lead field matrix. In the special case where source activities are governed by an 

MVAR process, a different version of ( 3.26) like            can be used for simulation purposes 

in which      is the multichannel scalp EEG,   represents the lead field matrix and      models the 

lagged source time traces in the form of an MVAR process. The simulation strategy of this study, 

however, was to look at the EEG connectivity problem from another perspective, namely fitting an 

MVAR model on the scalp EEG signals (not sources) in the presence of an additive interfering 

factor.   

The time-varying connectivity approach used in this chapter discloses longer range connections 

from occipital to temporal and central regions, which is strikingly compatible with previous steady 

state VEP studies in adults [140, 141]. Our proposed analysis methodology as well as the 
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stimulation paradigm (a routine flash light during routine clinical EEG recording) is directly 

applicable even for larger scale clinical testing. Notably, a directed information flow, often called 

‘travelling waves’ in the adult literature [142] is considered to be sensitive to changes in sub-

cortical structures [143]. In the clinical context, it raises the potential that the proposed paradigm 

could be used to assess integrity of the sub-cortical structures after acute brain injury, such as birth 

asphyxia, where diagnostic strategies have remained a challenge [144, 145]. The present paradigm 

may have applicability to follow change over time in response to therapy and prognostication of 

long term outcome. 

 

3.6 Summary and conclusions 
 

Estimating time-varying information flow in scalp EEG signals is not a straightforward task. This is 

due to the effect of volume conduction where a given brain source is often reflected in several 

EEG/MEG signals, and consequently, their similarity may be falsely perceived as ‘connectivity’ by 

the analysis paradigms. This chapter aimed to develop a T-F method for measuring directional 

interactions over time and frequency from scalp EEG signals in a way that is less affected by 

volume conduction and amplitude scaling. The tv-gPDC method was modified, by 

orthogonalization of the strictly causal multivariate autoregressive model coefficients, to minimize 

the effect of mutual sources. The novel measure, tv-gOPDC, was tested first using two simulated 

models with feature dimensions relevant to EEG activities. The method was then used for assessing 

event-related directional information flow from flash-evoked responses in neonatal EEG. For 

testing statistical significance of the findings, a thresholding procedure driven by baseline periods in 

the same EEG activity was followed. The results suggest that the gOPDC method 1) is able to 

remove common components akin to volume conduction effect in the scalp EEG, 2) handles the 

potential challenge with different amplitude scaling within multichannel signals, and 3) can detect 

directed information flow within a sub-second time scale in nonstationary multichannel EEG 

datasets. This method holds promise for estimating directed interactions between scalp EEG 

channels that are commonly affected by the confounding impact of mutual cortical sources. 
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Chapter 4 

4. EEG connectivity and resting state networks3
 

 

 

4.1 Introduction 
 

Analysis of brain functional connectivity within resting-state networks (RSNs) representing slow 

and spontaneous intrinsic brain activity has recently come into attention. RSNs, discovered by 

Biswal et al [23], are spatially long-range brain networks synchronized in time through low-

frequency fluctuations (<0.1 Hz) of blood oxygen level-dependent (BOLD) signals, while subjects 

are apparently resting [24-26]. It has been shown that numerous resting-state relationships can be 

detected between different cortical areas of the adult brain including the visual cortex, sensorimotor 

areas and auditory areas using fMRI signal analysis [27]. In other words, the brain during rest is not 

idle, but it conducts spontaneous, intrinsic activities – both endogenous and sensory driven - 

associated with human behaviour [28, 29], pain [30, 31] and diseases [1, 32, 33]. In fact, the large-

scale RSNs are developed across anatomically remote, but functionally integrated cortical regions 

[34, 35]. The emergence of RSNs is tightly linked to cortical and thalamocortical development in 

the newborn brain [10, 24, 36-38]. fMRI studies on sleeping human newborns, including preterm 

babies, have shown interhemispherically developing RSNs analogous to those seen in older subjects 

[24, 37, 38]. Investigation of the spanning RSNs within the newborn brain in the presence of 

neuronal deficits may help to understand the establishment of these networks after injury.  

Majority of adult/newborn RSN research has been conducted on fMRI signals. It is known that the 

networks observed in resting-state fMRI (rs-fMRI) recordings commonly reflect brain activities 

associated with changes in blood flow. Nonetheless, one expects to find spatial resemblance 

between the fMRI-based RSNs and those detected by electrophysiological signals such as EEG and 

MEG recordings due to a causal link between neuronal activity and fMRI signal [146]. This 

speculation has been verified in adult brain studies exhibiting robust spatial correlations between 

the frequency-specific power of EEG/MEG signals resembling the fMRI-based RSNs [121, 123, 

147, 148]. This, however, may not be the case for newborn brain which  changes significantly 

during the  weeks after preterm birth [17] and therefore, follows a fundamentally different 

neurophysiological mechanism from the more mature one [5-7]. The time-varying nature of the 

early cortical networks is crucial for endogenous brain wiring, particularly in the third trimester 

 
3 This chapter is an extended version of the following publication: A. Omidvarnia, P. Fransson, M. Metsäranta, and S. Vanhatalo, “Functional 

Bimodality in the Brain Networks of Preterm and Term Human Newborns,” Cerebral Cortex, May 2013, doi: 10.1093/cercor/bht120. 
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when connections between cortical areas are still forming under the influence of exogenous stimuli 

such as  sensory inputs [5, 6]. A bimodal behavior in the electrical activity of these networks is 

observed that is characterized by two alternating modes: the high mode associated with the self-

organizing, locally generated spontaneous activity transients (SATs, also known as bursts) and the 

low mode representing low-amplitude intervals between SATs [7-11]. This kind of bimodality 

gradually attenuates as EEG activity becomes more continuous [10]. In addition, the characteristic 

cellular level network mechanisms underlying interactions within the healthy/unhealthy brain 

cortical areas in neonates also differ from those seen in more mature brain [12]. Some EEG patterns 

which are considered as abnormal signs of adult brain functionality may be normal features in 

newborn brain [13, 14].  

The aim of this chapter is to define functional bimodality within neonatal EEG-based RSNs (also 

called electric RSNs or eRSNs [10]) of the preterm brain during brain development and also, in the 

presence of intra-ventricular hemorrhage (IVH), which is a condition characterized by bleeding into 

or around the preterm infant’s brain ventricular system [47]. The extent of IVH is imaged using 

ultrasound and it is associated with background and epileptiform EEG abnormalities [47]. However, 

still there is disagreement over the capacities of continuous EEG monitoring for qualifying IVH 

[47]. In this chapter, the proposed eRSN paradigm is firstly introduced in details. Then, it is 

evaluated for two groups of healthy preterms and fullterms to characterize the networks during 

brain development. Finally, the method is applied on EEG recordings of a group of healthy preterm 

babies and another group of preterm babies with IVH to measure cortical functional connectivity by 

spatial amplitude correlations between the frequency-specific band amplitude fluctuations (BAFs) 

computed from scalp EEG signals.  

 

 

4.2 Materials and methods 

4.2.1 EEG data acquisition 

For studying the development of bimodality within the newborn brain, 11 healthy human preterm 

babies (conceptional age 28.3-33.8 weeks) and 10 healthy fullterm babies (conceptional age 37.6-

43.5 weeks) were recruited. EEG signals of 6 human preterm babies with IVH (grade 2-4, bilateral) 

were further added into the analysis to investigate the eRSN characteristics in presence of IVH.  

All of the healthy babies had normal serial brain ultrasound examinations, with no diagnosed 

abnormalities, chronic illnesses or acute inflammations. They received no drug treatments likely to 

affect the EEG. A clinical neurophysiologist (Dr. Sampsa Vanhatalo) interpreted the data of IVH 

group as exhibiting significant unilateral/bilateral hemorrhage in all subjects. The signals were 

recorded during sleep with sampling rate of 256 or 512 Hz using a NicoOne EEG amplifier 
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(Cardinal Healthcare, USA) and EEG caps (sintered Ag/AgCl electrodes; Waveguard, ANT-Neuro, 

Germany) which included 28-64 channels with positioning according to the international 10-20 

standard (see [130] and http://www.nemo-europe.com/en/educational-tools.php, for further details 

of the newborn EEG recording method). For each subject, a 5-min continuous segment during quiet 

sleep was selected by an EEG expert (Dr. Sampsa Vanhatalo) to minimize potential artifacts. The 

use of these anonymized EEG recordings was approved by the Ethics Committee of the Hospital of 

Children and Adolescents, Helsinki University Central Hospital. 

 

4.2.2 fMRI data acquisition and preparation  

fMRI data of 18 fullterm newborns were acquired during natural sleep using a Philips Intera 

scanner at 1.5 T4. All babies had normal Apgar [149] score with no visible sign of abnormality in 

heir anatomical MR scans. More detailed information including age, age at scanning and head 

geometrical features can be found in [149]. Recordings were performed after obtaining written 

parental consent for each subject and had the approval of the local ethics committee in Stockholm. 

In total, 300 image volumes (10 minutes) of BOLD sensitive echo-planar images (TR/TE/flip = 

2000 ms/50 ms/80 degrees, matrix size = 64x64, field-of-view = 180x180 mm, 20 axial slices, slice 

thickness = 4.5 mm, spatial resolution 2.8x2.8x4.5 mm3) were obtained from the neonatal brain. 

However, only 200 adjacent EPI volumes for each infant were used for further analysis after 

movement correction. The entire fMRI pre-processing stage was performed by Dr. Peter Fransson 

using the SPM5 toolbox (Wellcome Department of Imaging Neuroscience, London, UK) and his 

own developed MATLAB scripts. 39 regions of interest [150] were defined over the neonatal cortex 

spanning auditory, visual, attention, default, saliency and sub-cortical networks and their 

corresponding fMRI time series were extracted. Full information of all ROIs is available at 

Supplementary document of [36]. In fact, the fMRI dataset of each subject was treated as a 

multichannel signal with 39 channels. All detailed information of the recruited babies including 

their gestational ages (roughly equal to the conceptional age plus two weeks) can be found in [149].   

  

4.3 Data analysis  
 

The eRSN analysis using BAF envelopes follows a multi-step procedure which is schematically 

illustrated in Figure  4.1. The analysis starts by pre-processing of the EEG signals, followed by 

extracting BAF envelopes at the frequency band of interest and evaluating their network 

characteristics within two modes of activity. The significance of the pair-wise relationships and 

 
4 The author of this PhD thesis wishes to appreciate Dr. Peter Fransson’s courtesy for providing the fMRI datasets. 
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their corresponding measures is assessed using surrogate signals as well as different statistical 

testings at individual and group levels as shown in Figure  4.1. The original eRSN process has been 

published in [10], but the block diagram in Figure  4.1 improves the existing analysis by adding 

some necessary modifications.   

 
Figure  4.1: block diagram of the eRSN analysis. 

 

4.3.1 Band-pass filtering, CSD conversion and channel repair 

Each continuous EEG segment underwent a sequence of pre-processing steps including band-pass 

filtering at 1-30 Hz, transforming into a reference-free Laplacian current source density (CSD) 

montage with 21 channels (         and    , see also [151]), repairing bad or missing EEG 

channels and finally, suppression of the volume conduction effect using orthogonalization. Due to 

the lack of reliable head models for neonatal EEG source reconstruction, analysis at the source level 

using scalp EEG signals doesn’t lead to precise results for neonates [152]. Therefore, the analysis 

was conducted at the scalp level after converting the surface EEG data into a Laplacian CSD 

montage [151] based on the spherical spline interpolation of the recorded surface potentials using 

the MATLAB-based CSD toolbox [153]. The resulting reference-free (a.k.a minimal smoothing) 

montage provides higher spatial resolution representing the leaving (sinks) or entering (sources) 

radial current flows at each electrode. Minimal smoothing in neonatal scalp EEG signals has been 

described  in [152]. Since the electrode positioning and quality of recording were not identical over 

all EEG datasets, a uniform arrangement of 21 electrodes were selected for all subjects by replacing 

bad or missing channels based on the information of their neighbour electrodes (function 

‘eeg_interp’ of EEGLAB [154]).  

 

4.3.2 Addressing the volume conduction effect 

Spatial smearing of the surface EEG signals was further suppressed by taking the orthogonal 

projection of each signal power onto the others to diminish common IA components [123]. Pair-
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wise orthogonalization of the multichannel EEG-BAF envelopes is a head model-free approach for 

reducing the spurious co-variability between signal powers. This step aims to reduce the effect of 

mutual sources on the newborn power envelopes in order to alleviate the volume conduction effect 

as much as possible. It has been shown in [10] that in contrast to the shallow spatial decay of 

Spearman’s rank correlation between original newborn EEG signal pairs, the correlation between 

adjacent orthogonalized signal pairs reduces strongly. The mathematical reasoning behind 

orthogonalization is as follows: 

Suppose scalp EEG channels   and   are generated through a linear superposition of   independent 

dipoles               within the brain with instantaneous effect on the surface electrodes. The 

spectral representations of   and  , i.e.      and      are then given by: 

     ∑   
      

 

   

 ( 4.1) 

     ∑   
 
     

 

   

 ( 4.2) 

where   
  and   

 
 are real coefficients and   is the frequency of interest. Considering the above 

assumptions on the mutual sources, it can be shown that the cross-spectrum between      and      

is necessarily real [119]: 

       〈         〉  ∑   
   

 |     | 
 

   

  ( 4.3) 

Equation ( 4.3) implies that the real part of the cross-spectrum function between two channels at a 

certain frequency is always associated with the pure effect of source interactions, while its 

imaginary part yields interaction of channels without volume conduction in the frequency domain 

[119].  

Now, let        and        be the power envelopes of the two channels   and   at the frequency 

of interest. The power envelope of a random signal represents the temporal evolution of its spectral 

power and can be derived using Morlet’s wavelets [123] or the Hilbert transform [128]. According 

to ( 4.3), the contribution of   to  , originated from the effect of mutual sources (denoted as    ), is 

the ratio of the real part of the cross-spectrum between two channels (                     to the 

power of        [123]:  

             {
             

|      | 
}           {

      

|      |
       }  ̂        ( 4.4) 

where  ̂        
      

|      |
 is a unit vector in the complex plane along with       , the superscript   

denotes the complex conjugate, | | is the absolute value operator and         takes the real part of a 



 

62 

 

complex number. The term     {
      

|      |
       } determines the strength of          alongside 

       in the complex plane (see Figure  4.2). The difference between        and          reflects 

the independent share of        from        [123]: 

             {      
       

|      |
}  ̂         ( 4.5) 

 ̂        
       

|      |
 ( 4.6) 

where   √   and  ̂        is a unit vector in the complex plane and orthogonal to the direction 

of   in clock-wise direction [123]. In other words,          and        are orthogonal and don’t 

share any common information, while the pure interaction between         and        is preserved 

in          and       . This property of the orthogonalization process makes it useful for 

assessing linear correlation between power envelopes. Figure  4.2 illustrates the relationships 

between       ,       ,          and          (see also supplementary information of [123]). 

 
Figure  4.2: Illustration of the signal projections in the orthogonalization process (see also supplementary Information of [123]). 

 

 

4.3.3 Extraction of the event-level EEG fluctuations 

The SAT events (or bursts) in the newborn EEG signal have a duration of up to several seconds 

consisting of high frequency oscillations (>5 Hz) nested on the low frequency fluctuations (<1 Hz) 

[11]. A band-pass filtering applied on the signal can indirectly represent the contribution of the 

higher frequencies in the occurrence of SATs [128]. Since the eRSN analysis is associated with the 

study of event-level brain activities, the envelopes of the SAT occurrences (i.e. BAFs) were 

extracted at the frequency bands of interest using the Hilbert transform [128] (see also 

supplementary information of [10] for more details). In fact, BAF envelopes represent the temporal 

evolution of the EEG signal’s spectral power. Frequency-specific BAF extraction was performed 
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using Hilbert transform within three frequency bands: 3-8 Hz, 8-15 Hz and 3-15 Hz using a set of 

3rd order Butterworth filters through a zero-phase digital filtering in both the forward and backward 

directions (MATLAB command filtfilt). The first two frequency bands correspond to the fairly 

distinct spectral components of SAT events in the preterm EEG [11] and the latter one provides a 

wide view of the nested high frequency oscillations in the EEG signals. The BAF envelopes were 

then defined as the amplitudes of the analytic associate of the filtered EEG signals        

calculated using the Hilbert transform: 

       |         ̂     |  √         ̂       ( 4.7) 

where  ̂      is the Hilbert transform of        and   √  . Since the majority of the normalized 

mean power spectral density (PSD) of BAF envelopes extracted from preterm EEG signals is 

limited to very low frequencies (<1 Hz, see also [10]), a sampling rate of 2 Hz will be enough to 

preserve their information. Such significant decrease in the data sampling rate leads to a salient 

reduction in the computational load of further analysis. In order to alleviate the effect of mutual 

sources from the BAF signals, the orthogonalization method is utilized. Orthogonalized BAF 

envelopes are obtained through a pair-wise orthogonalization process to reduce the spurious 

correlation caused by the effect of volume conduction. To this end, the following process is applied 

on each pair of channels      and      in a multichannel EEG dataset: 

(A)  The channels      and      pass through a zero-phase band-pass filter within a certain 

frequency band    (e.g., 3-8 Hz) leading to the frequency-specific filtered signals        and 

      , respectively. 

(B) The analytic associates         and         are calculated using the Hilbert transform: 

                 ̂      
( 4.8) 

                 ̂      

where  ̂      and  ̂      are the Hilbert transforms of        and       , respectively. 

(C) The orthogonal projections           (the component of         orthogonalized to        ) 

and           (the component of         orthogonalized to        ) are extracted as follows: 

                      
  

      

|       |
  

( 4.9) 

              {       
  

      

|       |
}  

(D) The orthogonalized BAF envelopes             and             are obtained as the absolute 

value of the orthogonalized signals           and          , respectively: 

            |         | ( 4.10) 
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            |         |  

(E) The orthogonalized BAF signals are downsampled to the sampling frequency 2 Hz. 

 

4.3.4 Calculation of the connectivity matrices 

Spatial correlation analysis using linear measures such as the Pearson product-moment correlation 

coefficient (PPMCC) is widely used for investigating the RSN characteristics of fMRI time series as 

well as EEG/MEG signals [37, 38, 121, 148, 155]. Evaluation of PPMCC is meaningful only if the 

joint distributions of the underlying signals follow a bivariate normal behavior [150]. On the other 

hand, BAF envelopes represent highly skewed, Rayleigh-like distributions [10]. Therefore, PPMCC 

doesn’t seem a proper candidate for evaluating the pair-wise linear dependence between 

multichannel BAF signals. An alternative strategy would be to compute Spearman’s rank-

correlation coefficients [150]. However, highly asymmetric scatter plots of newborn EEG-based 

BAF amplitudes tending towards the near-zero (EEG background) values preclude any linear 

correlation analysis [10].  In fact, most of the high-amplitude values at the SAT events are simply 

reduced to ‘outliers’ by conventional linear correlation measures, while they play a significant role 

in the brain maturation process [11, 156]. In order to retain the contribution of the SAT occurrences 

during each pair-wise comparison, 19 slices were generated from the first underlying BAF signal by 

dividing its distribution into twenty equidistant 5% quantiles, projecting each slice on the second 

signal and computing the mean of all amplitude values under that slice. It led to a rescaled plot for 

each signal pair in which the x-axis represents the 5% steps and the y-axis represents the mean 

values of the second signal with respect to the slices of the first signal. The rescaling procedure 

converted the corresponding bivariate scatter plot to a bimodal non-linear curve which consists of a 

nearly flat region (low-amplitude range: 5-50%) followed by a fairly steep gradient (high-amplitude 

range: 70-95%) [10]. Unrealistically high amplitudes (95-100%) and very near-zero amplitudes (0-

5%) were excluded from the analysis. The y-axis was also normalized with respect to the 95
th

 

percentile. The      row of the connectivity matrix (              : number of channels) was 

then filled by fitting a line within each mode of the BAF envelope of channel   and the 

orthogonalized BAFs of all other channels to channel  . The detailed procedure of obtaining the 

connectivity matrices at the individual level is as follows [10]: 

 

(A)  The BAF envelopes                    of each subject are computed for all EEG 

channels according to ( 4.7) and form a matrix called         . 

(B) For each          :   
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a. Lower and upper bands of successive 5% slices on the amplitude distribution are 

estimated. It leads to 20 double-edge binary masks dividing the whole amplitude range of 

          into equidistant portions.  

b. The BAFs of all other channels orthogonalized to           (i.e.               

          ) are extracted based on the procedure described in Eqs. ( 4.8)-( 4.10). 

c. Mean values of the segments under          's binary masks in each orthogonalized 

signal                          are computed. It leads to       nonlinear plots 

representing low and high modes.  

d.  Two lines are fitted on the low-amplitude range (5-50%) as well as the high-amplitude 

range (70-95%) of each plot using linear regression and their slopes are inserted into two 

separate matrices.  

(C)  Repeating step B for all channels, two connectivity matrices      and       of size       

associated with low and high modes are constructed for each subject. Each map provides a non-

symmetric representation of all pair-wise slopes between the reference signal           and 

projections of other channels on this signal for a certain mode.  

(D)  The connectivity matrices      and       are symmetrised by averaging the symmetric 

elements about the main diagonal: 

                         ( 4.11) 

where   is either      or      . Note that the main diagonal elements of the connectivity 

matrices are set to zero throughout the analysis. 
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Figure  4.3: (A) Workflow in the preprocessing of EEG signals, (B) extraction of BAF traces [135] from the band-pass filtered 

EEG signal, and an example of BAF signal after orthogonalization (black stippled line), (C) comparison of spatial decay of linear 

amplitude correlations before [135] and after (blue) orthogonalization demonstrates that orthogonalization mainly removes the 

correlation at nearby electrodes. 

   

Repeating the previous steps for all subjects in each group,         number of connectivity 

matrices are obtained where       is the number of subjects in that group. In the next stage, a 

statistical testing will be conducted at both individual and group levels to investigate whether the 

connectivity matrix elements differ from the chance level [10].     

Figure  4.3 demonstrates the EEG pre-processing workflow, extraction of BAF traces from a typical 

band-pass filtered EEG signal, and an example of BAF signal after orthogonalization. As the figure 

shows, comparison of spatial decay of linear amplitude correlations before and after 

orthogonalization demonstrates that orthogonalization mainly removes the correlation at nearby 

electrodes. The graph depicts Spearman correlation coefficient computed between all electrode 

pairs over the whole 5min EEG segment at frequency band 3-8 Hz. 



 

67 

 

4.3.5 Graph measures of eRSNs 

Previous adult EEG studies have shown that EEG-based RSNs represent spatially overlapping and 

temporally mixing characteristics [157, 158]. This is far from what is observed in the BOLD effect-

driven RSNs with spatially distinct and statistically independent behavior. Therefore, proper metrics 

need to be employed for investigating the dynamics of newborn eRSNs. Graph theoretical measures 

seem to be suitable candidates as they are widely used for quantifying the structural features of 

complex networks, such as those extracted out of multichannel EEG datasets [157-159]. To this 

end, each EEG channel (or fMRI’s ROI) was considered as a node in the network and the pair-wise 

linear regression slopes between this node and other nodes were taken as its connected edges (see 

Figure  4.4). This is a common procedure which has been recently used in older children and adults 

studies [123, 132, 157, 160-162].   

 
Figure  4.4: (A) amplitude distributions, scatter plots and re-scaled scatter plots of a preterm newborn EEG dataset and a typical 

fMRI time series. As panels suggest, a clear bimodality is observed for the EEG signals, while the fMRI signals represent unimodal 

behavior. (B) Detailed components of the eRSN analysis block in Figure  4.1 at the individual and group levels. 

For the eRSN analysis described in this chapter, the weighted measures of clustering coefficient (CC), path-length and the Optimal 

Community Structure and Modularity (OCSM) were computed using freely available Brain Connectivity Toolbox [163]. The 

weighted clustering coefficient expresses the weighted likelihood that neighbors of a given node are connected. Averaging CC over 

all nodes results in an average, whole brain, weighted CC that reflects the level of local organization of the network. Average 

weighted CC was also examined separately from the precentral and postcentral brain regions to see if there is any structural 

difference between the occipital and frontal networks (see also [36, 164]). Global network’s communication capacity was assessed by 

computing the weighted characteristic path length [19], namely a path for which summation of its inverse link weights is minimized. 

Network modularity - a key feature in early network development – was evaluated by computing OCSM [163, 165] quantifying the 

degree to what extent the network has been subdivided into clearly delineated sub-networks. Finally, small worldness (S = CC/PL; 

see [132]) was assessed to investigate whether this aspect is emerging in the brain at early ages of life. Before computing group level 

statistics or comparisons between groups, all graph measures were normalized at individual level through dividing the absolute graph 

value by the mean of 50 surrogate values obtained from random shuffling of the given network [132]. The normalization procedure 

facilitates a fair comparison between individuals, between modes and across age groups. 
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4.3.6 Thresholding and statistical analysis 

In order to evaluate the significance of a phenomenon in a signal through hypotheses testing, many 

realizations of the null hypothesis with the same statistical similarities to the original signal are 

generated; while an appropriate set of features have been removed from it. To eliminate linear 

dependencies between EEG-BAF signals, one can shuffle the order of time samples or phase 

information [166]. In the case of spatial correlation analysis using EEG power signals, however, the 

shuffled BAF envelopes are too different from the original signals and may cause high false 

positive/negative error rates in the pair-wise comparisons. Therefore, surrogate connectivity 

measures were generated by keeping one signal (i.e.          ) in the electrode pair and time-

shifting of the other one (i.e.            ) by 6 s steps (i.e. 1:50 of the whole 300-s signal) leading 

to 49 surrogates for a 300 s continuous BAF envelope. Then, the null distribution for statistical 

testing within each mode was constructed by computing the linear regression slopes between each 

BAF envelope and all time-shifted versions of each orthogonalized BAF envelope. Finally, a three-

dimensional array of the size          was obtained under this scenario at each mode and its 

95
th

 percentiles along the third dimension built a       thresholding map for each subject. The 

individual connectivity matrices were then thresholded with this 95% significance level. An 

averaging over subjects in each group (either healthy or IVH) gave two thresholded connectivity 

matrices for that group which represented all possible pair-wise grand mean slopes between 

channels for each mode. We also used ‘reorder_matrix’ function in Brain Connectivity Toolbox 

[163] to re-arrange the matrices such that their elements are squeezed around the main diagonal 

using a version of simulated annealing. 

For connectivity analysis at the group level, a pool of binary masks was constructed based on the 

thresholded individual connectivity matrices and a binomial testing at the 5% probability of success. 

The pool can be considered as a gray-level matrix in which each element shows the number of 

successes for its corresponding electrode pair over all subjects. To minimize the error rates of 

multiple binomial comparisons (            simultaneous tests), false discovery rate (FDR) 

controlling at 5% level was applied leading to a group-level binary mask for thresholding the grand 

average of individual connectivity matrices. Another comparison was also conducted between two 

groups at high mode using pair-wise Wilcoxon rank sum test and FDR controlling at 5% 

significance level. Comparison between two modes at each group was also done using pair-wise 

two-sided sign tests at the same significance level. Figure  4.5 shows the schematic procedure of 

surrogate data generation for the eRSN analysis. 
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Figure  4.5: Generation of time shifting surrogates by splitting the signal into   segments (    ) and shifting one segment at a 

time from the end to the start of the signal. This yields 49 surrogate signals with temporal structure shifted but otherwise identical 

with the original signal (see also [128]). 

 

 

4.3.7 Testing of global similarity with Mantel test 

Mantel test [167] was used for assessing global similarity of connectivity matrices between the two 

age groups (preterm vs. fullterm) and functional modes (low vs. high). The test evaluates similarity 

of two matrices by measuring pair-wise relationships of matrix elements. The test is commonly 

used in ecology for estimating distances, for instance, between species and organisms [168]. Given 

two distance matrices   and   with the diagonals filled with zero, the test statistic   is based on the 

cross-product of the matrix elements: 
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 ( 4.12) 

where                is the number of elements in the distance matrices. Similar to other 

product-moment coefficients,   ranges from -1 to 1, and with larger number of elements (>40),   

can be transformed to   statistic, as was done in the analysis of this chapter.  

 

4.4 Results and discussion 
 

This section represents the results of the proposed eRSN analysis on brain development as well as 

IVH abnormality assessment. The concept of newborn EEG bimodality is also investigated by 

conducting two experiments. 

  

4.4.1 Bimodal functionality: a genuine behaviour of newborn EEG-BAFs   

It is known that the amplitude distribution of a complex random variable with normal real and 

imaginary parts follows a Rayleigh distribution [169]. Since the BAF envelopes are generated by 

taking the amplitude of complex analytical signals, one may ask if their Rayleigh-like distributions 

arise from the adopted computational procedure only. To make sure that bimodality of newborn 
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EEG signals are their built-in behavior, two sets of experiments were conducted using random noise 

processes as well as randomized newborn EEG signals. In the first experiment, a uniformly 

distributed pseudorandom signal with 21 channels and 1200 samples (similar length with the down-

sampled 5-min BAFs) was generated and underwent exactly the same procedure of EEG-BAF 

extraction. It was checked if the computational process imposes a bimodal nonlinear shape on the 

rescaled plot of random signals similar to what is observed for the BAF envelopes of each healthy 

preterm baby. As Figure  4.6-A illustrates, the rescaled traces are quite flat with no modality 

distinction. In the second experiment, it was tested if bimodality of the BAF envelopes is a subject-

free feature and independent from the arrangement of EEG electrodes. A pool of single-channel 

BAFs was produced from EEG channels of all healthy preterm babies (length of 1200 samples, 11 

subjects times 21 channels in total) and 21 channels were drawn from this pool randomly. The 

randomized multichannel EEG signal was then fed into the BAF extraction process (Figure  4.3) and 

the rescaled connectivity plots were obtained (see Figure  4.6-A). As the figure suggests, again the 

dominant trend of the plots is completely flat. It is therefore concluded that the bimodal behavior of 

healthy preterm newborn EEG datasets appears through the nature of the signals as well as the 

interconnections governing them. The most left panels of Figure  4.6-B depict the BAF amplitude 

histograms of all single channels for two typical EEG datasets from the healthy preterm group and 

the group of preemies with IVH. The general morphology of two sets of histograms is quite similar. 

It is also confirmed by the most right panel which shows the grand mean root mean squared 

estimates of two groups. However, the eRSN analysis results in the following sections can represent 

a clear difference between healthy preterms and preemies with IVH. This is also the case for the 

groups of healthy fullterms versus healthy preterms as well as newborn EEG signals versus fMRI 

time series (see also Figure  4.4).  
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Figure  4.6: (A-from left to right) comparison of re-scaled scatter plots of a multichannel uniform noise, a randomized 

multichannel preterm EEG signal and a normal preterm EEG dataset. All signals contain 21 channels and 1200 samples. (B-from left 

to right) comparison of the BAF amplitude histograms and grand mean root mean squared estimates of healthy preterms and 

preemies with IVH. 

 

 

4.4.2 Bimodality and newborn brain networks 

In analogy to the adult EEG studies (e.g.; [121, 147]), BAF amplitudes at distinct frequency bands 

were obtained through a combined procedure of band-pass filtering and Hilbert transform (see 

Figure  4.3). This was done for BAFs within a broad frequency band (3-15Hz), as well as by using 

narrower frequency bands (3-8 Hz and 8-15 Hz) that were previously shown to represent relatively 

independent oscillations within SAT activity (see also [128]), the main component of high 

amplitudes in the proposed eRSN analysis. Figure  4.7 suggests that frequency spectra of BAF 

signals can be down-sampled at 4 Hz while still conveying its full time-domain behavior (see also 

[128]). Analysis of epoch durations after segmenting the EEG signals into low and high modes 

showed that over 80% of all epochs lasted more than 250 ms, and more than half of the epochs 

lasted more than 500 ms. 
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Figure  4.7: (A) Normalized mean power spectral density (PSD) of BAF signals in healthy preterm and full-term babies. 

(B) Durations of low and high modes in both age groups. 

 

The common method in analyzing functional connectivity within or between different RSNs is 

based on computing pair-wise linear (Pearson product-moment) correlation coefficients between 

two fMRI time series or EEG/MEG power envelopes (also termed seed-ROI based correlation 

analysis), followed by group statistics using Fisher r-to-z-transformation [155]. This procedure 

builds on the assumption that the samples are comparable, independent, and belong to a bivariate 

normal distribution. None of these is the case with neonatal BAF signals where distributions are 

highly asymmetric with long tails towards higher amplitudes (see Figure  4.4 and Figure  4.6), 

resembling the Rayleigh distributions typically seen in power time series. Formal testing with 

Kolmogorov-Smirnov also confirmed non-normality of BAF distributions (K-S 0.51, p<0.01), 

while the rs-fMRI time series exhibited reasonably normal distribution (K-S 0.13; p=0.09). The 

heavy clustering of low amplitude values seen in the EEG-derived BAF scatter plots (Figure  4.4) 

implies an unavoidable bias in linear correlation analyses. A straightforward technical rejection of 

high amplitude values as “outliers” was precluded by the prior neurophysiological knowledge that 

the high values represent genuine and developmentally crucial brain activity, the SAT events [11, 

128]. Therefore, the possibility of non-linear spatial relationships between BAF signals across the 

amplitude scale was tested. To test this hypothesis, the amplitude in each BAF signal pair was 

quantized into 20 quantiles (5% cumulative percentiles each). Inspection of such re-scaled scatter 

plots (Figure  4.4) suggests that the linear relationship between BAF amplitudes is negligible at the 

lower amplitude range (hereafter called “low mode”: percentiles 5-50%), while there is a steep 

relationship at the upper amplitude range (hereafter called “high mode”; percentiles 70-95%). In full 

agreement with the prior neurophysiological literature [5-7, 17], this finding implies that functional 

network connectivity in the newborn brain is expressed as two different modes of neuronal 

communication with significantly different degree of amplitude dependence. A comparison of all 

available BAF signal pairs (25 channels, i.e. 300 comparisons in each baby) demonstrated that 
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bimodality in spatial correlations of this kind seemed to be a nearly global feature (Figure  4.8 and 

Figure  4.9).  

 
Figure  4.8: Topological visualization and metrics of emerging eRSN. A and B: The three-dimensional visualization of analysis  

of connectivity demonstrates a robust difference between activity modes, and suggests a developmental organization during late 

gestation at both lower (3-8 Hz; A) and higher (5-18 Hz; B) frequency oscillations. Each link between nodes depicts the connection 

strength, and the graphs within each frequency band are shown at the same scale. Note the virtual absence of networks in the low 

modes, the apparently random connectivity in the high activity mode in the preterm babies, as well as the visually conspicuous 

frontally and occipitally prominent clustering in the high activity mode in the fullterm newborns. The blue and red squares in the 

lower right figure depict the group of precentral (blue) and postcentral [135] nodes used in the spatial comparison in section C of this 

figure. (C) Graph analysis of network structure shows salient spatially selective developmental trajectories. Average clustering (CC) 

increases in the precentral and decreases in the postcentral areas, and it is stronger at lower frequencies, however is significantly 

stronger at the higher frequencies. 

 

 

Strikingly, such bimodality was not observed in the fMRI data, which showed a remarkably 

monotonic, linear correlation across all amplitudes (Figure  4.4) and between all rs-fMRI time series 

(see Figure  4.9 including the results of the frequency band 3-8 Hz). Low mode activity in the 

electric domain (eRSN) shows very low levels of correlations, which dramatically increase when 

the brain shifts into high activity mode. The difference between modes is statistically significant in 

nearly all cells of both age groups. Notably, similar analysis with rs-fMRI demonstrates much less 

significant correlations and hardly any different between high and low regimes.  
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Figure  4.9: Group average of connectivity matrices demonstrate robust differences between low and high activity modes.  

Each element in the connectivity matrix shows the grand average magnitude (slope) of linear relationships across the whole subject 

group, and the non-significant cells (at group level) are depicted with black cells.  

 

 

Matrices are reorganized using a method based on simulated annealing to aid visual interpretation 

[163]. Figure  4.10 illustrates the results of the other two frequency bands 8-15 Hz and 3-15 Hz. 

Note how the overall finding is similar (see also Figure  4.9) at all frequencies, with the clear 

increase in connectivity strength in high mode, and clear statistical difference between modes. 

Notably, difference between modes is more widespread in the preterm babies. 
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Figure  4.10: Comparison of connectivity matrices at the higher (8-15 Hz) and broad (3-15 Hz) frequency bands. The matrices  

have een thresholded (black cells) to show only those links that exceed statistical threshold at the group level (see Figure  4.4-B).  For 

visual clarity, the matrices are reorganized using a method based on simulated annealing to squeeze the matrix elements along the 

main diagonal which results in somewhat different ordering of rows (channels/ROIs) between matrices [163]. 

 

 

In order to test whether the observed correlations are statistically significant, a conservative testing 

approach was employed using surrogate signals generated by repeated (n=49) time shifting of the 

same data. This procedure allows testing the null hypothesis that any BAF or fMRI signal with the 

given temporal behavior would give rise to comparable relationships between amplitudes, and 

group level testing using binomial statistics yielded connectivity matrices where each pair-wise 

relationship could be tested individually. 
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4.4.3 Comparison of low and high modes 

The results revealed a significant difference between low and high modes of newborn eRSNs 

(Figure  4.8, Figure  4.9 and Figure  4.10). A detailed, pair-wise comparison of connectivity matrices 

showed that the levels of amplitude relationship were significantly higher in almost every signal 

pair during high mode activity (Figure  4.9 and Figure  4.10). Global assessment of similarity 

between connectivity matrix patterning indicated an overall change from low to high modes in the 

preterm infants (Mantel statistics -0.32; p=0.99), while the overall pattern was stable across modes 

in the fullterm babies (Mantel statistics 0.55; p<0.01). These observations are fully compatible with 

the existing idea [5-7, 9] that network communication in the preterm brain predominately relies on 

the bursts (or SATs) that are represented as the high mode in the analysis presented in this chapter.  

 

4.4.4 Development of bimodality 

The early development of network activity is thought to begin with the  developmentally unique, 

intermittent activity patterns (i.e. the high mode) that will be gradually replaced by the continuous 

EEG oscillations [17]. Conceivably, this developmental trajectory should also be reflected in the 

spatial EEG correlations when the fetus develops from the preterm to fullterm age. Assessing next 

EEG recordings from ten fullterm newborns gave the possibility of studying developmental window 

that is characterized by a massive growth of long-range brain connections [170], hence providing 

the physical framework to support large scale neuronal interactions. 

The results showed that the difference between low and high modes is markedly reduced when the 

babies approach full term age (Figure  4.9), however one third of the signal pairs (34%; at 3-15 Hz) 

still showed a significantly higher amplitude relationships during the high mode. Such 

developmental reduction of bimodality is fully compatible with the idea that the nearly silent 

periods (low mode) of early brain activity will become replaced by the more organized ongoing 

spontaneous activity near term age [17, 171]. A significant change in global patterning of 

connectivity was only seen in the low activity mode (Mantel test -0.14, p=0.93; high mode 0.57, 

p<0.01), which is compatible with the idea that the spontaneous brain activity during low mode (i.e. 

inter-SATs) undergoes a significant qualitative, spatial organization towards fullterm age [8, 172].  

 

4.4.5 Spatial topology of correlated EEG activity 

The spatial topology of the pair-wise signal correlations was then explored in more detail using a 

graph theoretical approach [163, 173]. This aimed to characterize differences in spatial network 

organization between low and high activity modes, and how they develop during the last months of 

pregnancy. To this end, the nodes in the network graphs were represented by the electrodes and the 
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links were defined by the strength association between the nodes, the slope of linear relationship. 

The graph metrics were rendered comparable between age groups by normalizing them using 

surrogate graphs, The network metrics within the dominant 3-8 Hz frequency band were firstly 

studies [8, 20, 128, 171].  

As a first measure of local spatial eRSN organization, the normalized weighted clustering 

coefficients (CC) were compared between age groups. It was found that the CC measure during 

high mode is significantly increased during development (preterm: 1.02±0.01 (SD) vs. fullterm: 

1.04±0.02; p=0.001). In addition, fullterm babies showed a significant increase in CC when they 

shifted from low to high activity mode (1.02±0.01 vs 1.04±0.02, p<0.01). The normalized 

characteristic path-length, however, was not significantly changed during development or between 

activity modes. Functional modularity was measured with the metric Optimal Community Structure 

and Modularity (OCSM) to assess presence of clearly delineated sub-networks within the brain 

[163]. Despite of the substantial difference in connectivity levels between activity modes 

(Figure  4.8), modularity was found to be comparable between low and high modes within both age 

groups (preterm: low mode 0.41±0.04 versus high mode 0.58±0.10, p=0.19; fullterm low mode 

0.70±0.09 versus high mode 0.84±0.07, p=0.29). However, there was a significant developmental 

increase in modularity in both activity modes (low mode: preterm 0.41±0.04 vs. fullterm 0.70±0.09, 

p=0.01; high mode: 0.58±0.10 vs.0.84±0.07, p=0.04, Wilcoxon). Finally, evidence of small-

worldness was searched as a proxy of shifting from random towards more ordered networks [163]. 

While there was no developmental change, small-worldness showed a trend-level increase in the 

fullterm brain when shifting from low to high activity mode (p=0.07).   

While the above analyses are all global network measures, there is ample anatomical and functional 

evidence indicating a developmental fronto-occipital gradient [36, 91, 164]. Hence, potential 

topological differences in network clustering (CC) between pre-central and post-central regions 

were examined. It was found that pre-central CC increases while post-central CC decreases during 

late fetal development in both activity modes (Figure  4.8). A pre-centrally emphasized CC was also 

seen in the pair-wise comparisons (high mode: both preterm p<0.04 and fullterm p<0.01; low 

mode: fullterm p<0.01; Wilcoxon test).  Finally, the pre-central CC was significantly increased in 

both age groups when they shifted from the low to high activity modes (p<0.01, Wilcoxon test). 

These findings together are strikingly compatible with the notion of distinct developmental 

trajectories, and in particular a protracted developmental window of frontal brain areas in humans 

[170]. 
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4.4.6 eRSN at different frequency bands 

Prior studies in adults have shown that long range correlations in the electric brain activity may take 

place at a wide range of oscillatory frequencies, but they exhibit frequency-specific spatial 

patterning [121-123, 147, 148]. Prior work on neonatal EEG has reported spatial differences and 

developmental changes [8, 171, 172] in the frequency composition of early bursts/SATs. Therefore, 

it was examined whether eRSN could be frequency-specific by repeating all above analyses after 

first filtering the EEG signal into two frequency bands (3-8 Hz and 8-15 Hz) that cover functionally 

independent oscillatory entities within the SATs [128, 171]. It was found that a functional 

bimodality can be observed at all frequencies in a qualitatively comparable manner (Figure  4.9 and 

Figure  4.10).  

A detailed network analysis with graph metrics, however, revealed frequency-related differences. In 

contrast to the 3-8 Hz frequency band, the higher 8-15 Hz frequency band showed no differences in 

the mean CC between activity modes or between brain areas. Compared to the 3-8Hz frequency 

band, however, modularity at 8-15 Hz was more dynamic, and it was found to increase from low to 

high mode in both age groups (fullterm 0.67 ±0.08 vs. 1.41±0.13, p<0.01; preterm 0.34±0.05 vs. 

0.85±0.15, p<0.03). There was also a significant developmental increase in modularity at both low 

and high activity modes (p=0.01 and 0.02, respectively). These shifts from relatively random to 

modular structures consisting of anterior and posterior network entities can be clearly observed in 

the weighted graph images in Figure  4.10.  

 

4.4.7 Absence of bimodality in the newborn rs-fMRI data 

Earlier studies have reported consistent and robust RSN in newborns using rs-fMRI [36-38], which 

as a method implicitly assumes a linear correlation between two signals. In the present analysis 

procedure, such linear correlation over the whole amplitude range means no difference between 

higher and lower amplitudes, i.e. ‘unimodality’ in the amplitude relationship (see also the rescaled 

scatter plots in Figure  4.4).  Due to the lack of prior studies exploring how spatial fMRI correlations 

depend on instantaneous amplitudes (to the best of the author’s knowledge), it is possible that 

bimodality of this kind has only been ignored because of the widely used analysis procedures. In 

light of the EEG observations reported in this chapter, it was hence aimed to see if the network 

correlations in the newborn fMRI time series are genuinely linear, or could they potentially exhibit 

such bimodality that was seen in the electric brain activity. As expected from the inspection of 

scatter plots of raw fMRI time series, the re-scaled fMRI time series showed a clear linear 

relationship and no evidence of inflection of the regression line at the upper amplitude range akin to 

that seen with BAF signals (Figure  4.4). Moreover, a statistical comparison of lower and higher 
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amplitude quantiles (5-50% and 70-95%) confirmed the visual observation: There were very few 

(0.9%; 7 out of 741 comparisons) pair-wise differences in regression slopes between lower and 

higher amplitude ranges in each signal pair, constituting a strong case against bimodality in the 

amplitude relationships between newborn rs-fMRI time series.  

 

4.4.8 eRSNs of healthy preterms and preemies with IVH abnormality 

The proposed eRSN analysis approach was conducted on the EEG database of 6 newborns with 

IVH and the results were compared with the outcome of 11 healthy preterms. Figure  4.11, 

Figure  4.12 and Figure  4.13 illustrate grand mean connectivity matrices and 3D maps of EEG 

electrodes at 3-8 Hz, 3-15 Hz and 38-15 Hz frequency bands, respectively. Each element in the 

connectivity matrices shows the grand average magnitude (slope) of linear relationships across the 

whole subject group, and the non-significant cells (at group level) are have been blacked out.     
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Figure  4.11: grand mean connectivity matrices and 3D maps of EEG electrodes at 3-8 Hz for the group of healthy preterms and 

preterms with IVH. 
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Figure  4.12: grand mean connectivity matrices and 3D maps of EEG electrodes at 3-15 Hz for the group of healthy preterms and 

preterms with IVH. 
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Figure  4.13: grand mean connectivity matrices and 3D maps of EEG electrodes at 8-15 Hz for the group of healthy preterms and 

preterms with IVH. 

 

Figure  4.14, Figure  4.15 and Figure  4.16 represent high modes of two groups at three frequency 

bands and the difference map between them after backing out insignificant pairs. Box plots of the 

WD measures extracted from two groups are also illustrated in the figures.  
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Figure  4.14: Comparison between healthy and IVH groups (G1 vs. G2) at 3-8 Hz. A and B: original (weighted) connectivity 

matrices of healthy babies and babies with IVH, respectively, C: statistical comparison of weight dispersion values extracted from 

two groups, D: difference map between two groups. Insignificantly different cells have been blacked out. 

 
Figure  4.15: Comparison between healthy and IVH groups (G1 vs. G2) at 3-15 Hz. A and B: original (weighted) connectivity 

matrices of healthy babies and babies with IVH, respectively, C: statistical comparison of weight dispersion values extracted from 

two groups, D: difference map between two groups. Insignificantly different cells have been blacked out. 
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Figure  4.16: Comparison between healthy and IVH groups (G1 vs. G2) at 8-15 Hz. A and B: original (weighted) connectivity  

matrices of healthy babies and babies with IVH, respectively, C: statistical comparison of weight dispersion values extracted from 

two groups, D: difference map between two groups. Insignificantly different cells have been blacked out. 

 

    

Based on the statistical analysis on the graph characteristics of connectivity matrices at two modes 

(high/low) and two groups (healthy/IVH), weight dispersion of eRSN networks in the group of 

healthy preterms was significantly lower (           , Wilcoxon test) than the IVH group at 

high mode for three frequency bands. Increased weight dispersion (WD) in the group of babies with 

IVH implies that normal brain maturation is shifted towards more random functional networks in 

presence of IVH abnormality. Functional integration, quantified by shortest path length (PL) 

measure, significantly reduces in EEG high mode of healthy preterm babies compared to low mode 

at 3-15 Hz and 8-15 Hz frequency bands (           , Wilcoxon test). No meaningful 

difference was observed between shortest PL extracted from the eRSNs of two modes for IVH 

group. It suggests that functional integration is less developed within the eRSNs of IVH group in 

contrast to the healthy infants. For both groups, the OCSM measure significantly increased from 

low mode to high mode at 3-15 Hz and 8-15 Hz bands suggesting that IVH may not have an 

important impact on the modularity of eRSNs. In other words, the degree to which eRSNs may be 

subdivided into separate modules does not statistically change with IVH. 

 

4.5 Summary and conclusions 
 

This chapter aimed to investigate spatial relationships between cortical areas of the newborn brain 

by analyzing linear correlations between power time series of the EEG signals. Due to the inherent 
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nature of neonatal EEG signals, a novel analysis framework was developed and the findings were 

compared with comparable characteristics of fMRI time series obtained from other cohort of 

newborns.  

The spatial characteristic of eRSNs was studied through frequency-specific EEG fluctuations. The 

BAF envelopes of each subject were extracted for all EEG channels using Hilbert transform after 

band-pass filtering to a desired frequency band. A non-uniform segmentation was performed based 

on amplitude percentiles, and the pair-wise linear relationships between channels were computed.  

It led to a symmetric connectivity map (i.e. matrix) for each subject representing the amplitude 

correlations between EEG signals. To characterize the behavior of eRSNs during the brain 

maturation process, the proposed analysis paradigm was applied on all subjects in two EEG datasets 

of healthy babies (preterm,       and fullterm,      ) as well as a healthy fullterm fMRI 

database (     ). In addition, the effects of IVH abnormality on eRSNs were explored by 

comparing the group of healthy preterms and a group of preterm infants with IVH (   ). 

Statistical significances at individual and at group levels were calculated using surrogate data 

method. Finally the connectivity matrices were evaluated using different graph measures. 

The results suggested that two functionality modes can be observed in the spatial correlations in the 

preterm EEG datasets, and this dichotomic behavior fades towards fullterm age. Specifically, the 

preterm brain exhibits periods of “low mode” (low amplitude) without meaningful spatial 

correlations, and “high modes” (high amplitudes) with robust brain wide correlations.  No bimodal 

functionality was detected in the fullterm fMRI time series. IVH group showed significantly higher 

weight dispersion in contrast to the healthy preterm suggesting that normal brain maturation is 

shifted towards more random functional networks in presence of IVH abnormality. It was also 

inferred from the shortest PL measure that functional integration is less developed within the eRSNs 

of IVH group in contrast to the healthy infants. 

In conclusion, this chapter provides evidence of a dichotomic behavior of early developing brain 

networks, which as a concept is fully in line with the recently established ideas about early neuronal 

functions. It also shows that such behavior is not observed in the fMRI signal, which calls for a 

need to revisit the idea of a direct relationship between fMRI signal and neuronal activity. The 

significant impact of IVH on the preterm eRSNs can be used as a basis for developing EEG-based 

diagnosis tools for this brain abnormality.    
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Chapter 5 

5. Conclusions and perspectives 

 

 

5.1 Thesis summary  
 

In this thesis, a novel methodology for analyzing cortical connectivity using scalp EEG was 

developed and its applications to newborn brain abnormality assessment were explored. The 

proposed approach accounts for three aspects of neonatal scalp EEG recordings: time-varying 

behavior, directional relationships between channels and frequency-specific fluctuations of 

amplitudes. This approach has the potential to lead to a more comprehensive insight into the 

interactions between the different newborn EEG channels when signals are represented in a joint 

time-frequency domain. In this way, a narrower perspective of the problem of newborn EEG 

connectivity analysis and relevant methods was avoided. Two types of newborn EEG abnormalities 

including EEG seizures and intra-ventricular hemorrhage (IVH) in conjunction with the 

connectivity between different EEG channels were investigated. The impact of IVH on the neonatal 

RSNs was studied using groups of healthy and sick babies. The proposed paradigm of electric 

resting state network (eRSN) analysis in this thesis revealed a bimodal functionality within the 

networks of cortical regions, gradually attenuating during the brain maturation process. The analysis 

also found a significantly higher level of generalized phase synchrony during periods of neonatal 

EEG seizure.   

This research has made both theoretical and application-specific contributions to newborn scalp 

EEG assessment and connectivity analysis in the form of three novel methods: 

 The first method, measuring GePS as discussed in Chapter 2, allows for the assessment of 

generalized phase synchrony within non-stationary multichannel signals in the time-frequency 

domain and provides a basis for quantifying global phase disruptions within newborn scalp EEG 

signals during ictal periods.  

 The second method, discussed in Chapter 3, is based on a modified time-frequency version of 

the classical PDC function (called gOPDC) for estimating the partial and directed information 

flow between scalp EEG signals by taking the effect of volume conduction into consideration. 

The analysis of directional dependency within newborn EEG channels was based on the 
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assumption that multichannel EEG signals follow the general form of multivariate 

autoregressive (MVAR) models driven by Gaussian noise inputs. The appropriateness of this 

assumption was evaluated by studying propagation patterns of flash light-evoked EEG 

responses in a population of healthy term infants. The proposed method brings a key new 

perspective in effectively tackling the troublesome effect of volume conduction at the scalp 

level.  

 The third method (discussed in Chapter 4) was the evaluation of functional bimodality within 

the eRSNs of the newborn brain during development as well as in the presence of IVH. 

Although the extent of IVH in the preterm brain can be accurately delineated by ultrasound 

imaging, its functional consequences are more likely associated with background and 

epileptiform EEG abnormalities. However, there is still disagreement over the capacity of scalp 

EEG monitoring as guidance for effective treatment of IVH and its complications.  This study 

applied the proposed eRSN paradigm to EEG recordings of a group of healthy preterm babies 

and another group of preterm babies with IVH to measure cortical functional connectivity 

between the frequency-specific BAFs computed from scalp EEG signals. Whilst the EEG power 

envelopes of the two groups conveyed visually similar signatures, the underlying eRSNs were 

strikingly different. Distinctive characteristics of the neonatal eRSNs were found that 

differentiated preterm and term EEG.  

 

5.2 Main conclusions 

Using several simulations with feature dimensions relevant to neonatal EEG activity, it was shown 

that the proposed connectivity measures (i.e., GePS, and gOPDC) can quantify time-varying 

interactions in the joint time-frequency domain. These new metrics, along with the proposed 

paradigm of eRSN analysis, may provide a basis for development of diagnostic/prognostic non-

invasive brain monitoring tools in NICUs. For example, the eRSN analysis may help to estimate the 

proper time of ventricular drainage during post-IVH ventricular dilatation in order to reduce the 

potential risk of further brain damage caused by increased ventricular pressure. Another example 

would be the potential use of the proposed GePS assessment method for newborn EEG seizure 

characterization.  Prospectively, a combined outcome of the proposed connectivity methods during 

the first weeks after birth could be useful for predicting long-term neurological outcomes. 

The development, implementation and evaluation of the algorithms in this thesis have led to several 

major conclusions as follows: 
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A. Generalized phase synchrony based on the level of cointegration between EEG phase signals 

increases significantly during neonatal ictal periods. This finding could be adapted to assist in 

characterizing and/or grading neonatal EEG seizures.   

B. The effect of volume conduction affecting the newborn scalp EEG connectivity analysis can be 

mitigated by incorporating the ideas of orthogonalization at the level of MVAR coefficients and 

the imaginary part of the coherence function.   

C. In line with fMRI studies, long-range spatial correlations are observed within the eRSNs of the 

newborn brain at both preterm and term ages.  

D. Unlike the fMRI time series, BAFs of the newborn EEG signals behave in a bimodal manner 

alternating between a low mode of background activity and a high mode of spontaneous activity 

transients. This bimodality attenuates with brain maturation and in the presence of IVH. 

E. Graph analysis of the eRSNs on two age groups (preterm/term) reveals a shift from random 

towards more ordered networks in healthy babies. In particular, during late fetal development 

there is a tendency for fronto-occipital gradients and nodes in the cortical networks to cluster 

together.    

F. The group of preterms with IVH shows significantly higher weight dispersion in contrast to the 

healthy preterm suggesting that normal brain maturation is shifted towards more random 

functional networks in presence of IVH abnormality.   

 

5.3 Suggestions for future work  

There is plenty of room for research on newborn EEG abnormality assessment and connectivity 

analysis identified when developing the framework of this thesis. Areas for future work  include: 

 Improving the performance of the GePS measures in terms of time resolution to detect sub-

second changes in EEG signals. This calls for non-parametric estimation of cointegrating 

relationships between multivariate phase signals without using MVAR models, which are 

known to have limitations in tracking fast changes in short-length time traces. Multichannel 

EMD methods also constitute a potential alternative to one dimensional EMD utilized in this 

study. 

 Developing an integrated newborn EEG assessment system for NICUs by unifying different 

aspects of early brain dynamics and binding various features of neonatal EEG abnormalities 

together. A wide variety of clinical situations at different age conditions, ranging from 
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asymmetry, asynchrony, burst-suppression, neonatal seizures and clinical situations including 

IVH, periventricular leukomalacia and hypoxic-ischaemic and infective brain injury are known 

to be linked with later neuro-developmental disability. Further exploration of the EEG features 

in the outcome prediction of these abnormalities is needed. This system would have further 

application in defining the course of normal functional brain development, a step required 

before the development and clinical trialing of non-invasive interventions aimed at neonatal 

neurorehabilitation.  

 There is no consensus among neurophysiologists on how to precisely define the morphology of 

bursts and inter-burst intervals in a single-channel EEG recording and its normal/abnormal 

situations in connection to the other channels. This yields a highly subjective diagnostic 

paradigm taken by EEG experts for evaluation of some newborn EEG abnormal patterns such 

synchrony/asynchrony or symmetry/asymmetry at certain ages. More rigorous mathematical 

descriptions of newborn EEG abnormalities with respect to the global features over the channels 

are required.  
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Appendix A: Empirical Mode Decomposition 

(EMD) 
 

 

We used the following procedure to derive the EMD process [56, 81, 84] in this study: 

1. Let  ̃                              .  

2. Identify all the local maxima and minima of  ̃   . 

3. Connect all the local maxima together and all the local minima together by an interpolation 

method (e.g., spline) to obtain the upper envelope         and the lower envelope        . 

4. Update  ̃    as  ̃     ̃                         and go to step 2.  

5. Repeat steps 2-4 until a stoppage criterion is satisfied.  ̃    will then become an IMF. 

6. Separate the IMF      from the rest of the data by               ̃   . The residue         is 

then treated as the updated signal      and fed into the sifting process again (steps 1-5).  

The process is repeated until no more IMFs can be extracted, in other words, the residue becomes a 

monotonic function. Other predetermined criteria such as thresholding on the energy of the residue 

can also be used [81]. 
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Appendix B: Multivariate Johansen test 
 

 

The Johansen test is a procedure for testing the cointegrating relationships of several integrated 

processes of order zero or one [44]. Since the test evaluates more than one cointegrating 

relationship within the time series, it is applicable for multivariate signals such as multichannel 

EEG. The starting point of the test in this study is from an  -dimensional IF            as an 

multivariate MVAR model of order    given by [58, 174]: 

        ∑         

 

   

      (B.1) 

where         is the MVAR coefficient matrix at delay  ,           is the input white noise 

of the model and        is a constant term. The assumption here is that the variables of       are 

integrated processes of either order one (    ) or order zero (     or a stationary process). The 

MVAR model described in (B.1) can be re-written in terms of the differences between its 

successive delayed values as: 

                 ∑                

   

   

 

 (B.2) 

 

where  

            (B.3) 

    ∑   

 

     

 (B.4) 

and                            [58, 174]. Such transformed version of the MVAR 

models is called Vector error correlation model (VECM). If   is the rank of the coefficient matrix   

(   ), then there exist two full-rank matrices   and   (        ) such that         is 

stationary and      . The rank   determines the number of coefficient relationships between the 

dimensions of      . Cointergarting vectors of the process are also obtained from the columns of  . 

Based on the maximum likelihood estimation of   for a given  , the Johansen method performs two 

different likelihood ratio tests: the trace test and the maximum eigenvalue test. The former one tests 

a hypothesis    against an alternative   , where  
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For the latter one, the null and alternative hypotheses are defined as: 

                                                              

                                                                

In the special case of     (  has full-rank), all variables of the process are stationary and there is 

no conintegrating relationship between them [174]. In this study, the MATLAB implementation of 

the multivariate Johansen test provided in the Econometrics toolbox [175] was used.   
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