4 research outputs found

    Incorporating characteristics of human creativity into an evolutionary art algorithm

    Get PDF
    A perceived limitation of evolutionary art and design algorithms is that they rely on human intervention; the artist selects the most aesthetically pleasing variants of one generation to produce the next. This paper discusses how computer generated art and design can become more creatively human-like with respect to both process and outcome. As an example of a step in this direction, we present an algorithm that overcomes the above limitation by employing an automatic fitness function. The goal is to evolve abstract portraits of Darwin, using our 2nd generation fitness function which rewards genomes that not just produce a likeness of Darwin but exhibit certain strategies characteristic of human artists. We note that in human creativity, change is less choosing amongst randomly generated variants and more capitalizing on the associative structure of a conceptual network to hone in on a vision. We discuss how to achieve this fluidity algorithmically

    Incorporating characteristics of human creativity into an evolutionary art algorithm (journal article)

    Get PDF
    A perceived limitation of evolutionary art and design algorithms is that they rely on human intervention; the artist selects the most aesthetically pleasing variants of one generation to produce the next. This paper discusses how computer generated art and design can become more creatively human-like with respect to both process and outcome. As an example of a step in this direction, we present an algorithm that overcomes the above limitation by employing an automatic fitness function. The goal is to evolve abstract portraits of Darwin, using our 2nd generation fitness function which rewards genomes that not just produce a likeness of Darwin but exhibit certain strategies characteristic of human artists. We note that in human creativity, change is less choosing amongst randomly generated variants and more capitalizing on the associative structure of a conceptual network to hone in on a vision. We discuss how to achieve this fluidity algorithmically

    Improving the Evolvability of Digital Multipliers Using Embedded Cartesian Genetic Programming and Product Reduction

    No full text
    Abstract. Embedded Cartesian Genetic Programming (ECGP) is a form of Ge-netic Programming based on an acyclic directed graph representation. In this paper we investigate the use of ECGP together with a technique called Product Reduction (PR) to reduce the time required to evolve a digital multiplier. The results are compared with Cartesian Genetic Programming (CGP) with and without PR and show that ECGP improves evolvability and also that PR im-proves the performance of both techniques by up to eight times on the digital multiplier problems tested.

    Improving the Evolvability of Digital Multipliers using Embedded Cartesian Genetic Programming and Product Reduction

    No full text
    Abstract. Embedded Cartesian Genetic Programming (ECGP) is a form of Genetic Programming based on an acyclic directed graph representation. In this paper we investigate the use of ECGP together with a technique called Product Reduction (PR) to reduce the time required to evolve a digital multiplier. The results are compared with Cartesian Genetic Programming (CGP) with and without PR and show that ECGP improves evolvability and also that PR improves the performance of both techniques by up to eight times on the digital multiplier problems tested.
    corecore