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Abstract 

A problem in Software Reuse (SR) is to find a software component appropriate to a given 

requirement. At present this is done by manual browsing through large libraries which is 

very time consuming and therefore expensi ve. Further to this, if the component is not the 

same as, but similar to a requirement, the component must be adapted to meet the 

requirements. This browsing and adaptation requires a skilled user who can comprehend 

library entries and foresee their application. It is expensive to train users and to produce 

these documented libraries. The specialised software design domain, chosen in this thesis, 

is that of Field Programmable Gate Arrays (FPGAs) programs. FPGAs are user 

programmable microchips that have many applications including encryption and control. 

This thesis is concerned with a specific technique for FGPA programming that uses 

Evolutionary Computing (EC) techniques to synthesize FPGA programs. 

Evolutionary Computing (EC) techniques are based on natural systems such as the life 

cycle of living organisms or the formation of crystalline structures. They can generate 

solutions to problems without the need for complete understanding of the problem. EC has 

been used to create software programs, and can be used as a knowledge-lean approach for 

generating libraries of software solutions. EC techniques produce solutions without 

documentation. To automate SR it has been shown that it is essential to understand the 

knowledge in the software library. In this thesis techniques for automatically documenting 

EC produced solutions are illustrated. It is also helpful to understand the principles at work 

in the reuse process. On examination of large collections of evolved programs it is shown 

that these programs contain reusable modules. Further to this, it is shown that by studying 

series of similar software components, principles of scale can be deduced. Case Based 

Reasoning (CBR) is a problem solving method that reuses old solutions to solve new 

problems and is an effective method of automatically reusing software libraries. These 

techniques enable automated creation, documentation and reuse of a software library. 

This thesis proposes that CBR is a feasible method for the reuse of EC designed FPGA 

programs. It is shown that EC synthesised FPGA programs can be documented, reused, 

and adapted to solve new problems, using automated CBR techniques. 

VIII 



1. Introduction 

1. Introduction 

This thesis proposes that Case-Based Reasoning (CBR) is a feasible method for the reuse 

of Evolutionary Computing (EC) designed Field Programmable Gate Array (FPGA) 

programs. It is shown that EC synthesised FPGA programs can be documented, reused, 

and adapted to solve new problems automatically, using CBR techniques. 

FPGA programs are a restricted form of software. An important objective of software 

development is to enable greater productivity and quality in the development process. One 

solution to the problem is to develop tools and techniques that reuse existing, established 

software components, analyses, designs and documentation (Mili, 1995), providing a level 

of automation. 

A large cost in Software Reuse (SR) is the creation and maintenance of software libraries. 

Automated generation of software artefacts and an automated generation of the 

understanding of the potential reuse of these software artefacts are required to avoid having 

engineers manually encode software artefacts and information on their potential for reuse 

(Mili, 1995). Further to this, a retrieved software component may not exactly match the 

desired specifications. In this situation a browsing tool alone is not sufficient and tools for 

adapting the retrieved software component to meet the required specifications must be 

provided. This work looks at automated generation and comprehension of software 

artefacts and their automated reuse. 

The aim of this research is to automatically generate a software library of FPGA programs 

and to produce an automated method for FPGA program reuse. This aim involves the 

development of a method for automatic extraction and application of principles that can be 

used for SR. SR is a domain that is characterised by complex examples. The complex 

system is that of software programs generated by the evolutionary computing technique, 

Cartesian Genetic Programming (CGP). In the case study presented here the software is 

intended for use on FPGAs. In this work CBR techniques have been applied to the 

problems involved with SR in this field. 

Using EC techniques to generate software programs for the FPGA is computationally 

expensive. EC techniques grow prohibitively computationally expensive for larger FPGA 

programs. The FPGA programs in this research are limited in their mechanics compared to 

notion of traditional software programs, as they have no loops or states (memory). FPGA 

programs are a limited form of program consisting of a feed forward network of primitive 
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logic functions. In this thesis evolved FPGA programs are reused to create an initial Case

Base to allow CBR techniques to create larger FPGA programs at reasonable 

computational expense. 

An automated method for FPGA program reuse could be achieved by automatically 

identifying the principles of design that emerge from examination of large collections of 

small FPGA programs, and applying these principles to create larger, more complex 

programs. 

The field of software reuse can be generally split into two areas of reuse. These two areas 

are the reuse of software products and processes. In this thesis an examination of the reuse 

of products generated by EC techniques is presented. It is shown that EC techniques can be 

used to create a software library that can be reused by the use of CBR techniques, in an 

automated fashion. 

CBR is an alternative to rule-based and model-based reasoning and has several advantages: 

it can provide answers to problems in poorly understood complex domains; it does not 

require a domain model or domain rules; and it can provide an explanation of its reasoning. 

The reuse of old solutions to solve new problems is the problem facing software reuse, as 

many old solutions need to be identified and adapted to suit new problems. CBR can 

provide selection, retrieval and adaptation of old software solutions to solve new problems. 

Presented in this work is an investigation of CBR, EC and SR methods, which supports the 

creation, understanding, reuse, and adaptation of software artefacts in automated software 

programming. 

This thesis shows the development of methods to enable the latest advances in CBR 

automated adaptation techniques to be applied to the reuse of software Cases that have 

been automatically generated by EC. These Cases have unstructured solutions and have no 

obvious reuse or design components encoded into them. Techniques for automated 

identification and application of reuse principles are presented as new techniques in 

software reuse. This is a significant advance over existing applications of these techniques 

to Cases with simple numerical atomic and linear solutions, or solutions that have a clear 

design and understanding built into them. 

The high level aim of this thesis is to show how CBR could be applied to EC Software 

Reuse, its strengths and weaknesses. The ease with which these techniques can be applied 

to new fields is a subject for future work. This aim intends to illustrate how the 
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1. Introduction 

evolutionary process could help automate a reasoning process, introducing the idea of 

evolutionary reasoning. It is of interest to determine how much effort may be required to 

prepare such a system to work in a new software domain as this gives a measure of 

portability and the generality of the technique. 

In this thesis EC techniques are used to automate the synthesis programs for Field 

Programmable Gate Arrays (FPGAs). In Chapter 2 section 2 it is shown that there is no 

complete set of techniques for designing any FPGA program and that EC provides the 

most general technique for FPGA program design. These programs are processed to create 

a software library in the form of a Case-Base (CB). This CB is then subjected CBR 

techniques to provide retrieval, understanding, principle extraction, adaptation and reuse. 

Figure 1 shows how EC techniques are used to synthesise FPGA programs that are used to 

construct a CB of programs that can be retrieved and adapted in an automated way to 

produce programs that are too large to evolve by EC techniques alone. In this thesis a 

combination of EC and CBR are used to solve these problems. 

r::luti~ Evolvro FPGA 

~ c:::> L...-llil_ign_S_OI_utI_·ons_ ..... 
~ 
~ 

D 
CllieB~of 

Feedback 
Constrain 

Store Results ~ ~ 

1.1. Conclusion 

~ ~ 
~ 
~ 

Figure 1. Reusing Evolved Designs using CBR. 

This thesis shows that CBR techniques are a feasible way of reusing evolved FPGA 

programs. Through the construction and analysis of a CB it is shown that evolved FPGA 

programs are modular in design. It is argued in this thesis that by studying evolved designs 
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1. Introduction 

of gradually increasing scale, it may be possible to identify new, efficient, and 

generalisable principles of design. It is shown that by studying evolved designs of 

gradually increasing scale, that it is possible to design new efficient programs through the 

reuse of existing solutions. 

There are several reasons for why this research area is novel. The software reuse domain 

(evolved programs) is more complex than any domain that has had the technology of 

automated principle extraction and application, applied to it before. Specifically the Cases 

involved represent multi-attribute compound problems and solutions, where solutions can 

be based upon a single or multiple Cases, and the attributes of the Cases are highly 

interactive. 

It is argued in this thesis that CBR is most suited to solving problems in the SR domain. 

The complexity of the SR domain provides the CBR researcher with a suitable testing 

ground for improving the adaptation in the CBR technique. 

Chapter 2 introduces the subject areas involved in this thesis. A specific area SR, that of 

FPGA programming, is described. Current research and practices in SR are reviewed. Next 

the problem of knowledge acquisition is described to show the utility of EC to FPGA SR. 

The background of EC is discussed in Chapter 2 where it is shown how EC can be a more 

general design technique than conventional techniques. CBR is then introduced as a 

technology that when combined with EC can provide a mechanism for automated FPGA 

program reuse. The ideas behind combinations of EC and CBR are briefly described and 

then a summary of the thesis is given. 

The Chapter 3 discusses a hybrid CBR and EC approach that is intended to improve the 

adaptation capabilities of the CBR technique. Ee provides a knowledge-lean search 

facility that can produce solutions where CBR fails due to a lack of knowledge (Tanaka et 

al.,1994). 

In chapter 3, CBR is reviewed and examples of CBR and EC hybrids are given. Following 

this, conventional methods of FPGA programming are reviewed and then the use of EC for 

FPGA programming is reviewed. In Chapter 3 section 2, the ideas involved in CBR 

adaptation are reviewed showing the connection between automated principal 

identification, reuse and CBR adaptation. This is followed by an overview of CBR-EC 

hybrids. 
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1. Introduction 

In Chapter 4 details of EC and practical issues of FPGA programming are discussed. 

Chapters 5, 6 and 7 discuss and examine EC and CBR techniques for automated FPGA 

program design and reuse. Chapters 6 and 7 show advances made by this work in 

combining EC and CBR techniques for FPGA programming. Finally Chapter 8 gives 

conclusions and suggestions for future work. 
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2. From Software Reuse to automated FPGA programming 

2. From Software Reuse to automated FPGA programming 

This chapter discusses the problems in software reuse (SR) and the specialised domain of 

FPGA SR and techniques and problems in designing FPGA programs are discussed. 

Conventional techniques and an EC approach to FPGA program design are discussed. 

2.1. Software Reuse 

SR encompasses any technique that reuses software development work that has already 

been done. When a high level of SR is achieved the costs of development decrease. Also, 

due to new software being based on tried and tested software, the quality of the software is 

high, yielding lower maintenance costs. The high quality of the software reduces testing 

and debugging. SR has been the subject of much research for the past thirty years. As yet 

no single SR approach has become standard due to the complexity of the problem. SR 

itself has not become standard practice in software engineering (Krueger, 1992). Most 

recent research work into SR has concentrated on organisational level issues, and on reuse 

in High Level Languages, or application specific software generators. Both of these 

techniques require the costly development of software libraries or knowledge bases to 

operate (SEKE, 1999). 

Mili (1995) emphasises the reuse of both products and processes and analyses the SR 

problem from this perspective. Krueger (1992) examines each of these techniques through 

their reusable "artefacts" and the way in which these artefacts are "abstracted, selected, 

specialised and integrated". 

The effectiveness of a reuse technique is judged via a rule-of-thumb that Krueger (1992) 

calls cognitive distance and is "an intuitive gauge of the intellectual effort required to use 

the technique". This judgement can then be compared to how much intellectual effort 

would be required to build the system from scratch. 

In general, from a domain point of view, the narrower the domain, the more successful the 

reuse system; the more general the domain coverage the more reuse is sacrificed. Also, the 

larger the most suitable artefact for reuse is, the more efficient the reuse becomes. It is 

easier to reuse one large software artefact than it is to reuse many small artefacts that 

require assembly. 

All of the approaches to reuse benefit as the techniques mature through use and experience. 

6 



2. From Software Reuse to automated FPGA programming 

SR encompasses many techniques. In general these techniques fall into one of the 

categories give in Table 1. Each technique aims to reuse existing knowledge as much as 

possible whilst minimising the amount of new work required to produce a satisfactory 

solution (Krueger, 1992). 

SR covers a very wide area, so this review is limited to a discussion of reusing software 

artefacts themselves. This review does not cover organisational infrastructure or institution 

wide reuse policies. The following review is aimed at providing an overview of current 

reuse technologies from an individual or small team of software engineers' perspective. 

Three major research papers on software reuse Krueger (1992), Mili (1995) and 

Biggerstaff (1992) provide an extensive and exhaustive examination of the subject. 

The Table 1 summarises the techniques that have been applied to the problem of software 

reuse, as classified by Krueger (1992): 

Krueger (1992) Mili (1995) Biggerstaff (1992) 
High-Level Languages ~ ~ 
Design and Code Scavenging ~ 
Source Code Components ~ ~ ~ 
Software Schema ~ ~ 
Application Generators ~ ~ ~ 
Very High-Level Languages ~ ~ ~ 
Transformational Systems ~ ~ ~ 
Software Architectures ~ 

Table 1. Reuse technologies. 

These categories are not clean-cut but give a general view of each area. Mili (1995) 

emphasises the reuse of both products and processes, and analyses the SR problem from 

this perspective. Krueger (1992) examines each of these techniques through their reusable 

"artefacts" and the way in which these artefacts are "abstracted, selected, specialised and 

integrated". Krueger compares the effort required to produce a solution using a SR 

technique to the effort required to produce a completely new solution, as a measure of the 

level of reuse. Biggerstaff (1992) views the subject from a scale and domain point of view, 

that the narrower the domain, the more successful the reuse system, the more general the 

domain coverage the more reuse is sacrificed. All of the approaches will benefit as the 

techniques mature through use and experience. 

Details of the categories of reuse technologies given in Table 1 are given in Appendix 1. 
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2. From Software Reuse to automated FPGA programming 

There are several problems in making software reuse systems. The following points 

highlight the difficulties involved in any SR system. Two main problems with SR are that 

issues of scale have not been successfully resolved and that most effort has been put into 

small details and correctness, not into improving productivity and quality (Mili, 1995). 

• Knowledge acquisition, specification and evaluation 

It is difficult to specify requirements, difficult to create complete libraries of code, 

architectures, reuse knowledge and it is difficult to represent this complex 

information. 

• Domain generality trades-off with level of abstraction and performance 

The level of abstraction dictates the effectiveness of the reuse system, as there is a 

trade-off between horizontal (broad domain) versus vertical reuse, between defining 

what has to be done and how it must be done, and between specification and 

implementation. 

• Finding reusable artefacts in good time 

There is a lack of assistance in finding the relevant artefacts. 

• User and machine understanding of the software reuse system present problems: 

How much do users and machines need to know about the artefacts and reuse 

system? There is a lack of assistance in understanding the reusable artefacts and 

system, and most systems do not have a good system for describing the behaviour of 

the reusable software artefacts to the user and machine. 

• Integrating and adapting the reusable artefact 

This problem is alleviated by reducing the need for integrating and adapting and by 

providing assistance in integrating and adapting the reusable artefact. 

• Debugging the reusable artefact: 

Reducing the need for debugging by reusing fewer and larger artefacts, and by 

assisting in debugging the adapted reusable artefact, including the reuse of previous 

debugging experience. 

• Acquisition of new knowledge as additional problems are solved. 
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2. From Software Reuse to automated FPGA programming 

This enables the solving of increasingly more complex reasoning tasks through the 

assessment and evaluation of new Cases and knowledge. 

Applying SR to FPGAs 

The best solution to the above problems would require a system that uses aspects of all of 

the reviewed techniques. The system would be able to reuse software artefacts from the 

code levels through to design levels and even analysis and debugging levels. The main 

problem would be to create sufficient machine knowledge to enable this. It is difficult to 

gauge when sufficient knowledge exists to achieve a high level of general SR. One 

approach would be to use an evolutionary system that can improve iteratively with use and 

experience of past problems. It would also be most beneficial if the system could justify 

any of its actions to the programmer, and the reuse system is easy to understand for any 

competent programmer. 

A suitable system would use general and domain specific adaptation knowledge, and also 

learn products and processes (Mili, 1995). Completion rules and adaptation rules (Wilke et 

ai., 1996), are similar to the Adaptation specialists and strategies (Smyth, 1996), both of 

which suggest a two tier approach to the adaptation problem. 

Lastly, it is expected that software reuse systems will benefit with the experience of use 

(Biggerstaff, 1992), but little research has been done into the evolutionary aspects of SR 

systems as opposed to the evolution of software systems in general. 

This thesis examines a specific area of SR in the programming of FPGAs. The FPGA 

programs under examination are evolved using EC techniques, they are not designed by 

humans using conventional techniques. To understand and reuse the evolved programs 

CBR techniques will be applied to the problem. CBR is explained in detail in Chapter 3. 
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2. From Software Reuse to automated FPGA programming 

2.1.1 Field Programmable Gate Arrays and programs 

This thesis examines a specific area of software reuse in the programming of Field 

Programmable Gate Arrays (FPGAs). An FPGA is a programmable microchip that takes as 

a program a representation of a digital logic circuit. The FPGA takes on the digital circuit 

configuration given to it as a program. FPGAs have the advantage over Gate Arrays in that 

they do not have to be manufactured for a specific purpose. This greatly speeds up 

research, development, testing and deployment of products. FPGAs can also be quickly 

reprogrammed to fulfil a new specification, whereas non-programmable Gate Arrays 

cannot (Xilinx, 1996). 

FPGAs are used in a wide variety of applications from signal processing to security e.g. the 

Sbox, used in automated teller machines for encryption when transmitting financial 

information. FPGAs are also widely used for control systems such as robots and for 

providing a flexible interface to other hardware devices e.g. PCI cards, PCMCIA devices 

(Xilinx, 1997). 

The FPGA programs under examination in this thesis are evolved using the EC technique 

of CGP (Miller et al., 1999a), they are not designed by humans using conventional 

techniques. In order to understand and reuse the evolved programs, CBR techniques have 

been applied to the problem. CBR is explained in detail in Chapter 3. 

An important application of this work is to produce a highly automated design method that 

produces more efficient digital circuits than those generated by conventional techniques, in 

terms of size i.e. the number of cells used on an FPGA, in design areas like signal 

processing circuits (digital filters). It is shown that this can be achieved by using a 

knowledge-lean technique from EC for designing the circuits and then CBR for 

understanding and reusing them. The EC techniques used to evolve the FPGA programs 

and the programs themselves are described in Chapter 4. 

It is intended that this work will also overcome the limitations of CGP, in design areas like 

signal processing (digital filter circuits). The EC techniques used to evolve the FPGA 

programs and the programs themselves are described in Chapter 4. 

10 
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2.2 Conventional logic synthesis 

Logic programming can be seen as a specific kind of software programming. Gate Arrays 

are microchips that require a logic program to perform a function. FPGAs are a specific 

type of gate array that is user programmable, and can be reused by reprogramming it with a 

new program. Normally Gate arrays are programmed once and then discarded after use. 

Conventional logic synthesis techniques have been used to partially create programs for 

FPGAs. It is beyond the scope of this thesis to give a complete description of Boolean 

algebra (Devadas et al., 1994; Lala, 1996). PLA files (PLA stands for programmable logic 

array) commonly specify combinational logic functions. A PLA file is a truth table with 

additional information about the numbers of inputs, outputs and products of the target 

program, and uses the format shown in Table 2. A PLA file differs from a truth table in 

that a PLA file need not have all outputs or inputs specified. 

Inputs 3 
Outputs 2 
Products 8 

000 00 
001 01 
010 01 
011 10 
100 01 
101 10 
110 10 
111 11 

Table 2. An example PLA file for a three variable function, the I-bit adder with carry. 

In Table 2 the three inputs are A, B and Carry in. The two outputs are the sum and the 

carry. The eight products are the eight different sets of binary numbers that can be 

produced at the outputs (sum and carry) when each of the eight different sets of inputs are 

presented at each of the inputs (A, B and Carry in). 

The main aim of logic synthesis is to represent a logic function in the simplest manner 

possible. There exists no complete method for synthesis of any logic function. A complete 

method for synthesis could synthesise any logic function using any primitive logic 

operations (AND, OR, NOT, EOR, NOR, NAND) and is not limited to synthesis of a 

specific function or set of functions, or limited to a specific set of primitive logic 

operations. The main reason is that the techniques suffer from exponential growth in the 

effort required to solve a synthesis problem as the number of inputs increases. The next 
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2. From Software Reuse to automated FPGA programming 

most common limitation is that most methods for logic synthesis can only use a limited set 

of primitive logic gates to represent a given logic function leading to inefficient 

representations for many problems. 

Canonical and Two-level Boolean functions only use AND, OR and NOT to synthesise 

logic functions, the ESPRESSO technique (Brayton et al., 1984) only applies to two-level 

AND-OR representations. NAND-NAND and NOR-NOR representations allow any 

Boolean logic function to be constructed using either NAND or NOR gates. Methods like 

De Morgan's theorems can be used to convert NAND gates in expressions to OR gates, and 

also NOR gates to AND. These limited sets of logic gates make these methods very 

inefficient for some problems. In addition to this there are some functions e.g. The Achilles 

Heel function (Brayton et al., 1984), parity functions and the n-bit multiplier that grow 

exponentially in difficulty with the number of input variables. 

Karnaugh maps are a graphical technique used to simplify logic functions. This method 

can be used in conjunction with the Quine-McCluskey Algorithm, (Quine, 1952; 

McCluskey, 1956) but both techniques are only practical for functions with small numbers 

of input variables (Davio et al., 1983). 

Multilevel Boolean Functions enable multilevel representation of a logic function that 

allow factoring and decomposition into sub-functions. In general all of these classical 

representations are impractical, as their size is exponentially dependent on the number of 

inputs. 

Binary decision diagrams (BDD) Lee (1959) and Akers (1978) suffer from the problem 

that their size is dependent on the variable ordering. There have been many heuristics 

devised to find a good ordering including evolutionary algorithms (Brace et al., 1990; 

Friedman and Supowit, 1990; Fujita and Matsunaga, 1993; Drechsler et al .• 1996). 

Many other types of decision diagrams have been proposed which can provide smaller 

more efficient representations of Boolean functions. Again, like the classical methods. 

representations like ordered Kronecker functional decision diagrams are limited to XOR 

and OR gates (Drechsler et al., 1994a). Further to this it has been proven that certain 

functions have Ordered-BDDs (OBDDs) that have exponential numbers of vertices as 

functions of the number of input variables. The n-bit multiplier is an example of this 

(Bryant, 1991) and also the Devadas function (Devadas, 1993). 
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Depending on the design problem Exclusive-OR Logic including Reed-Muller form uses 

Exclusive-OR gates to implement Boolean logic efficiently where the canonical Boolean 

logic form does not. The worst case of this efficiency difference being the n-parity 

functions which can be implemented with n - 1 XOR gates only but which require 2 n - 1 - 1 

OR gates and a large number of AND gates. Evolutionary algorithms have also been used 

to improve the Reed-Muller representations, (Miller et al., 1994; Drechsler et al., 1994b; 

Sasao, 1993; Thomson and Miller, 1996). 

It has been shown here that the conventional techniques of logic synthesis are limited by 

the range of functions they are applicable to; the set of primitive logic operations that they 

may use and by the number of input variables of the function to be synthesised. The next 

section shows how EC can be used for logic synthesis, and how it overcomes several of the 

limitations of the conventional techniques. 

2.3. Evolutionary Computation for Programming Field Programmable Gate Arrays 

Automated knowledge acquisition IS an important issue in SR as the creation and 

maintenance of software libraries is expensive. It can be achieved by several methods. 

Experts can compile knowledge manually, automated techniques like Natural Language 

Processing (NLP) can extract knowledge from Natural Language documents and other 

data-mining techniques can produce knowledge e.g. by Filtering or mapping legacy 

databases to new uses. Many Artificial Intelligence techniques suffer from the 'knowledge 

acquisition bottleneck' - the difficulty of gaining enough knowledge to enable these 

technologies to work (Bramer et al., 1996). Some techniques like EC are described as 

'Knowledge-lean' i.e. they require little knowledge to operate. 

Rule-induction systems, like ID3, suffer from scaling-up to large numbers of rules. 

Techniques such as the expanding window method reduce the scaling problem in ID3 but 

cannot be guaranteed to continuously produce good decision trees. They also suffer from 

the 'knowledge acquisition bottleneck', as they require carefully constructed training sets. 

Other approaches e.g. PRISM (Cendrowska, 1987) generates rules instead of decision 

trees, but still suffer from the above problems. Further problems with Induction methods 

are that they can be over-fitted, or applied to irrelevant attributes and noise in the data can 

lead to difficulties in selecting one decision against another (Bramer et al., 1996). 

EC can be used as an automated knowledge acquisition technique. EC has several 

advantages in Data Mining when compared to rule-based induction approaches. EC 

13 
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techniques produce a wider range of results, as they are not restricted by a search strategy, 

they are naturally parallel and require less user interaction. However, EC does not 

currently have the ability to directly exploit domain knowledge. EC can produce multiple 

answers for one data set and EC requires a lot of computing power (Bramer et al., 1996). 

As EC techniques are power hungry they are limited by the available computing power. 

CBR has been used to enable EC to exploit domain knowledge, enhancing the performance 

of EC (Louis et al., 1992). 

Quantum theory provides an explanation for the diversity in the range of results produced 

by EC Quantum theory is now accepted and it is no longer a question of correctness, but a 

question of why the theory is correct - John Wheeler (McEvoy et al., 1996). The theory 

contends that everything in our universe is the result of random processes at the quantum 

level. The far reaching consequences of the theory can be seen as it explains e.g. the 

periodic table, the stability of DNA and the operation of lasers and microchips. So this 

diversity and sophistication emerges from randomness, creating a diverse environment. 

Even if quantum theory is upturned as theories often are, it is clear that the effects of 

random events can be traced back to the limits of what is understood about the universe 

today. The mutation operator explained in Chapter 3 section 3, central to the EC technique 

used in this thesis, is also a random process, in addition to this operator the concept of 

'survival of the fittest' is also used in EC 

EC is based on biological systems and has three important components: 

• A phenotype which represents a living individual organism in a biological system or a 

solution for a problem, 

• A genotype, which is an encoding of the information (e.g. a Case in a Case-Base) which 

is used to produce the phenotype, 

• A fitness function which is used to ascertain the quality of each individual. 

EC techniques have been successfully used for knowledge-lean data mining (Maher et ai., 

1996). For this reason EC techniques can be used to generate knowledge where the human 

expertise is not available. EC is therefore suitable for partially automating the reasoning 

process. 

One method of programming a FPGA is to use EC The conventional methods are limited 

automatic methods for designing digital circuits. The only fully automatic method (Quine -
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McCluskey algorithm) can only use AND, OR and NOT gates as the components for the 

circuit, and this can lead to very inefficient designs, as for example it is inefficient to build 

an EOR (Exclusive OR) gate from AND, OR and NOT gates. 

The symbols used to represent logic gates are given in Figure 2. The truth tables defining 

the function of the logic gates are given in Tables 3 and 4. 

=D-
OR AND XOR MUX 

Figure 2. Binary circuit symbols used to represent logic gates in circuit diagrams. Note that 

the small circles that can appear on some of the inputs and outputs of these gates in figures 

throughout this thesis indicate inversion (logical NOT). 

A B AORB A B AANDB A B AXORB 
0 0 0 0 0 0 0 0 0 
0 1 1 0 1 0 0 1 1 
1 0 1 1 0 0 1 0 1 
1 1 1 1 1 1 1 1 0 

(a) (b) (c) 

Table 3. Truth tables defining the logical operation of (a) OR, (b) AND, (c) XOR in 

Figure 2. 

A B C MUXe.g. 
AANDNOTCORB ANDC 

0 0 0 0 
1 0 0 1 
0 1 0 0 
1 1 0 1 
0 0 1 0 
1 0 1 0 
0 1 1 1 
1 1 1 1 

Table 4. A truth table defining the logical operation of a MUX (Figure 2). The MUX 

effectively acts as a switch, the C input being used to select either A or B as an output. 

These limitations mean that digital circuits which require gates other than AND, OR and 

NOT, must be designed by hand. EC is an alternative automatic method of designing 
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digital circuits. Further to this EC is capable of producing circuits that are more efficient 

FPGA programs in terms of the number of two input gates used, than the best human

designed equivalent. An example of this efficiency is discussed in section 4.2.1.3. 

It is important to note that a CBR-EC hybrid could be capable of producing many different 

kinds of programs, not just FPGA programs, this versatility is discussed in section 3.2 of 

this chapter. 

What has become apparent in the field of EC being used for design purposes is that design 

principles, not previously known by human digital circuit designers, are being evolved by 

Ee. Also, design principles that were previously known to human digital circuit designers 

have been evolved. An example is the 2-bit ripple-carry adder (Figure 3), where two I-bit 

carry adder circuits are ripple-chained together. The ripple-chain is so named as many I bit 

carry adders can be connected together in a chain to produce an n-bit carry adder, where n 

is also the number of carry adder units required. The carry from the first I bit adder 

'ripples' to the next. This process continues until the last Ibit adder unit in the chain. This 

ripple-chain principle of connecting two or more identical simple circuits together to solve 

a large problem has also been observed in the evolved design for a 2-bit cellular multiplier. 

ADD ADD 

Figure 3. 2-bit ripple-carry adder. 

The first problem with evolving digital circuits is the problem of scale. The examples used 

in this thesis (see Appendix 2 for example PLA files) involve a small number of input and 

output bits as larger numbers of bits require much larger circuits, and this gives an 

exponential growth in the number of computations required to evolve a correct circuit. 

Four sizes of carry-adder, from I-bit to 4-bit, were designed to show the effect that 

increasing the number of input variables has on computational cost, for the EC method 

discussed in detail in Chapter 4. Table 5 gives the average number of generations required 

to evolve 100% functionally correct Carry-Adder units for Carry Adders of increasing 
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scale. As the scale increases the number of computations required for one generation 

increases as the size of the program also increases. The 4-bit Carry-Adder takes 

approximately 10 times longer than a 3-bit Carry-Adder for each generation. So it is 

necessary to extract the evolutionary principals from collections of the best FPGA program 

solutions produced by a EC, to enable the CBR design of much larger circuits using much 

larger numbers inputs and outputs. The complexity of the problem also effects the size of 

the required circuit. The Sbox problem (Chapter 1 section 3) has a relatively small number 

of input and output bits (PLA file) but the circuit required to solve the problem appears to 

be many times the size of a multiplier circuit of a similar sized PLA file (see Appendix 2). 

Carry-Adder Scale A verage number of generations 
I-bit < 50 (sample 500) 
2-bit 321,393 (sample 500) 
3-bit 1,953,056 (sample 500) 
4-bit 5,153,533 (small sample) 

Table 5. An Example of the Scaling Problem in Carry-Adders. As the scale increases the 

average number of generations required to achieve a 100% solution increases. 

In Chapter 2 section 3.2 it is shown that an evolutionary algorithm provides a mechanism 

for a process referred to in this thesis as assemble-and-test, and is an engine for 

discovering new designs. These designs are often radically different from those produced 

by top-down, human, rule-based approaches. Here these ideas are tested in the context of 

designing digital circuits, particularly arithmetic circuits. It is shown in Chapters 6 and 7 

that, by studying evolved designs of gradually increasing scale it is possible to discern 

new, efficient, and generalisable principles of design. 

The concept of the evolutionary algorithm to gradually improve the quality of a design has 

been adopted in the field of Evolvable Hardware (Sipper et al., 1997) where the task is to 

build an electronic circuit. Here the circuits are encoded in genotypes which can be simply 

translated into circuits or phenotypes. They are then tested in a computer simulation or in 

physical hardware. Note: the biological terminology used in the field of evolutionary 

computation serves as useful terminology and as a reminder of the ideas that it is based 

upon. Evolvable hardware research can be divided into two main categories: intrinsic 

evolution and extrinsic evolution. Intrinsic evolution refers to an evolutionary process in 

which each phenotype is built in electronic hardware and tested. Extrinsic evolution 

simulates a hardware model in software. 
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Each of these categories can be further sub-divided into analogue, digital or mixed 

analogue-digital domains. Intrinsic evolution in the analogue domain has recently become 

possible because of the availability of reconfigurable analogue devices (Motorola, 1997; 

Grundy, 1994). Researchers have begun to explore the possibilities for automatic design 

that reconfigurable analogue devices can facilitate (Murakawa et al., 1998; Flockton and 

Sheehan, 1998; Zebulum et al., 1998; Stoica et al., 1998; Zebulum et al., 1999; Stoica et 

al., 1999; Flockton and Sheehan, 1999). 

Thompson (1997) used a reconfigurable digital platform, the Xilinx 6216 FPGA. In his 

research Thompson produced a timer circuit that used fewer components than conventional 

design mechanisms stated as the minimum. Thompson discovered that this evolved design 

exploited the physical properties of the specific individual Xilinx 6216 FPGA that it had 

evolved on. Further to this Thompson showed that this design was not portable to every 

other Xilinx 6216, only to some, due to uncontrollable and minute physical differences 

between 6216s of 'identical' human design. And so it was seen that the evolutionary 

algorithm could produce circuit designs further outside the conventional design space than 

previously expected, that are more efficient than those produced by conventional 

techniques (Thompson et al., 1999). 

Koza (1994) has pioneered the extrinsic evolution of analogue electronic circuits. By using 

evolutionary algorithms (genetic programming, specifically) combined with the SPICE 

simulator Koza has automatically generated circuits which are competitive with those of 

human designers. Systems like the SPICE simulator require expert training to use, 

otherwise the simulator produces results that do not closely represent the behaviour of the 

a real physical circuit (Zebulum et al., 1998). 

Thompson (1997) and Kajitani et al. (1998) have pioneered intrinsic evolution for purely 

digital systems. However most researchers are content with extrinsic evolution (Miller et 

al., 1997; Iba, 1997). An advantage of extrinsic digital evolution is that non platform

specific representations of circuits can be created which are then portable to many 

platforms. Extrinsic digital evolution overcomes the problem of chip-specific designs 

encountered by Thompson (1997). Extrinsic evolution also permits relaxing and 

constraining of the simulator parameters, which facilitates the study of the effect of 

specific parameters on the evolutionary process. 

This thesis is only concerned with the extrinsic evolution of digital combinational (non

sequential) circuits. The thesis specifically examines arithmetic digital functions. 
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Arithmetic functions were chosen (addition and multiplication) for several reasons: 

1) They are modular in conventional construction. 

2) There are well-established conventional methods of building them. 

3) They are fundamental building blocks of many digital devices, and as digital filters. 

Even-parity functions have been studied in addition to arithmetic functions and together 

are sufficient to explore the efficiency of the techniques and the novelty of new designs. 

Even-parity functions were chosen for two reasons: 

1) It is well established that these functions are difficult to find by random search when the 

operators are constrained to the following set: {AND, NAND, OR, NOR} (Koza, 1992). 

2) They have been used extensively to test the effectiveness of various algorithms (Poli, 

1999). 

Together they afford a study of The Fundamental Question (TFQ): 

"By evolving a series of sub-systems of increasing size, is it possible to extract the general 

principle and hence discover new principles?" 

It is argued that the general principle of scalable design can be automatically identified in 

the case of designing arithmetic circuits. 

An example of such discoverable and scalable principles can seen in the way that the 

principle of the ripple-carry adder follows as a consequence of examining the best evolved 

designs for the one and two-bit adders with carry. 

2.3.1. Applications of Evolutionary Computation 

The application of EC to FPGA programming is examined in detail in Chapter 4. A full 

review of EC is beyond the scope of this thesis. EC techniques have been used for design 

and optimisation in fields including airfoil design, scheduling, nuclear reactor reload 

design, retail dealership relocation and oil production scheduling (Schoenauer, 1998). In 

this thesis a specific field of Genetic Programming (GP) (a branch of EC), Cartesian GP, is 

examined. 
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2.3.2. Exploring the Space of AU Representations with EC techniques 

This section shows how the use of an evolutionary algorithm implementing assemble-and

test could be used to explore over a much larger area of design space than that possible 

using a top-down rule-based design algorithm. Figure 4 shows a particular case of this for 

the problem of fmding efficient representations of Boolean functions and it illustrates one 

of the fundamental concepts of this thesis. 

The space of all 
truth tables of 

n or less variables 

The space of all 
representations 

n or less variables 

Applying 

Applying 

Figure 4. How" assemble-and-test " reaches the space of all representations. Canonical 

boolean space only covers logically correct representations with NOT, AND, OR as can 

Reed-Muller, but with XOR instead of OR 

The analysis in Figure 4 was developed in Miller et al., (2000a) to show how" assemble

and-test " reaches the unknown regions of the space of all representations. Conventional 

logic design begins with a precise specification in the form of a truth table, PLA file, 

binary decision diagram, symbolic expression etc. The expression is manipulated by 

applying canonical Boolean rules (AND, NOT, OR) or Reed-Muller algebraic rules (AND 
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NOT XOR). It is not possible to escape from the space of logically correct representations. 

The methods though powerful in that they can handle large numbers of input variables are 

not adaptable to new logical building blocks and require a great deal of analytical work to 

produce small optimisations in the representation. Assembling a function from a number of 

component parts begins in the space of all representations and maps it into the space of all 

designs. The evolutionary algorithm then gradually pulls the specification of the circuit 

towards the target truth table (shown as a small dark ellipse). Thus the algorithm works in 

a much larger space of functions many of which do not represent the desired function. It is 

one of the contentions of this thesis that this is the only way to discover radically new 

designs. 

It has been shown that by the process of assemble-and-test that Ee can automatically 

produce novel and efficient designs. The use of assemble-and-test for producing novel 

designs is now commonplace in the practice of Evolvable Hardware (Sipper et al., 1997; 

Thompson et al., 1999). As these evolved designs can come from a much larger design 

space than conventional rule-based methods can cover, the diversity of the resultant design 

solutions is greater and they are therefore much more difficult to interpret. 
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Big box 
of parts 

Space of all designs 

Small box 
of parts 

Figure 5. Conventional design versus evolutionary design with assemble-and-test. 

It is argued that traditional design techniques take a top-down approach beginning with a 

precise specification and through the application of complex rules and principles the 

design is implemented. The top-down design approach is very different from the 

mechanisms that produced the stars, elements and life on earth. In nature an extraordinary 

diversity and sophistication in living creatures can be seen. There is evidently a natural 

mechanism that produces these complex designs. 

For complex organisms, e.g. for humans, a process of natural selection comes into play. 

Natural selection provides the environment that allows such organisms to evolve. 

Evolutionary computation is based on our understanding of this process. In evolutionary 

computation the design starts as a set of instructions encoded in a manner based on what is 

known of real DNA. In nature, DNA is translated into the assembly of building blocks 

upon which life forms are based. In EC DNA or chromosomes, are translated into the 
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phenotype by applying a model of the problem. Whether or not the organism remains in 

existence and evolves further is dependent on the environment it lives in. As organisms 

evolved so larger numbers of building blocks were assembled together into more complex 

organisms. These organisms continue to exist if they can survive in their environment. The 

environment effectively tests the organism design. EC uses a fitness function to directly 

test a chromosome or organism. The chromosomes that are poor in fitness are discarded 

from the evolutionary process in favour of those chromosomes of higher fitness. 

This evolution in an environment process is referred to as assemble-and-test. The idea of 

assemble-and-test fed back into itself produces Evolutionary Computation. Figure 5 

illustrates this concept in the general space of designs. The top-down rule-based space of 

designs is shown in grey as a small sub-region in the much larger space of all possible 

designs. When humans discover a new design method this space can be widened to cover 

more of the general space. Top-down rule-based design will always give solutions in a sub

region of the general design space as this approach is inherently blind to alternative 

solutions e.g. they will usually give the same answer for any given data set regardless of 

whether or not there are other potentially better solutions. 

The fact that conventional human design methods follow specific systems of rules and 

principles also limits the choice of building blocks that can be used in any of the 

conventional techniques. As these systems of rules and principles do not exist in natural 

evolution, evolutionary computation techniques can use any of the building blocks 

available. 
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2.4 Summary 

Software reuse aims to minimise the effort required to create a new solution by reusing 

existing knowledge. FPGAs are programmable microchips that require programs that 

represent digital logic circuits. Conventional techniques for creating FPGA programs are 

limited in the size of the programs that they can create and by the logical components and 

rules that they can use to synthesise an FPGA program. EC is an alternative method of 

synthesising an FPGA program that is not restricted in the logical components it can use or 

by any system of rules. 

EC is capable of synthesising FPGA program designs that cannot be synthesised by any 

other method. EC can explore the space of all designs, which includes the design spaces of 

the conventional techniques. 

By combining EC and CBR it may be possible to create larger FPGA programs than those 

that can be synthesised with EC alone. Further to this, it is proposed that it may be possible 

to discern new, efficient and generalisable principles of design by studying evolved 

designs of gradually increasing scale for specific problem classes e.g. arithmetic 

multiplication. 
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3. CBR for Software reuse 

Software Reuse (SR) is a domain where knowledge is represented by software artefacts 

and expert experience. These software artefacts make a good basis on which to make Cases 

for a Case-Base. Expert experience can be captured by a CBR-SR system as the system is 

used, thereby learning from use. Software reuse requires methods to find, retrieve, adapt 

and retain existing artefacts to solve new problems (Krueger, 1992; Mili, 1995; 

Biggerstaff, 1992). CBR provides methods to find, retrieve, adapt and retain Cases. 

Additionally CBR is suited to domains where the domain theory is weak i.e. there are 

usually no explicit or best methodes) of solving any given software problem and large 

amounts of domain experiences exist e.g. software artefacts (Krueger, 1992; Mili, 1995; 

Biggerstaff, 1992). 

CBR cannot however solve a problem if it does not have any suitable Cases in its Case

Base. Evolutionary Computation is a knowledge-lean problem solving technique that can 

be used to evolve solutions with little knowledge about solving any given problem. 

This Chapter discusses how CBR can solve problems in Software Reuse. Next, an example 

of the CBR methodology is given. The example is followed by a discussion of hybrid 

CBR-EC techniques to show how EC can be used to solve problems in CBR and vice 

versa. 

A review of current CBR literature has shown that CBR does not appear to have been 

applied to a domain with the complexities of FPGA Software Reuse with automated 

adaptation. CBR provides many of the facilities required by SR, and CBR mechanisms 

themselves are similar to those used in SR. 

The following points illustrate the application of CBR to SR: 

• CBR is good in a domain where there is plenty of experience representing the domain 

even if the domain theory is weak. 

• CBR is a technique that can retrieve, specialise and learn with use. 
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Gibbs et ai. (1990) compares reuse of past experience and continuously evolving effort in 

the legal field to the requirements of software development and maintenance. Case-Based 

Reasoning is an AI technique that uses past experience and captures new experience and so 

continuously learns as it is used. This comparison is made as two of CBR's primary 

components are retrieval of past knowledge and specialisation of this knowledge to solve a 

new problem. This means that CBR can provide a tool that can solve two of the major 

problems in software reuse, finding reusable artefacts and specialising those artefacts . 

• CBR facilitates knowledge acquisition 

Another problem in software reuse is that of knowledge acquisition. In CBR knowledge is 

stored as Cases, in a form a human would relate the knowledge to another human. This 

aids the problem of user understanding of the CBR system. The CBR system is an 

evolutionary one, facilitating knowledge acquisition as the system improves through use. 

This also facilitates maintenance and debugging. Knowledge acquisition is also superior in 

CBR over other AI techniques as it is easier to produce Cases in experience-rich domains 

that lack theories, than it is to formalise rules, for example Gibbs et ai. (1990) . 

• CBR supports specification, maintenance and debugging 

CBR has also been used extensively to support the descriptions of new problems, and can 

therefore be used to support the production of software requirements that allow the reuse 

of software artefacts (Maguire et ai., 1995). CBR has been used successfully in the 

retrieval of software components through the system CAROL, a Case Assisted Object 

Library reuse system (Maguire et ai., 1995). Many Help-desk applications have also 

successfully used CBR, which demonstrates CBR's applicability to the debugging 

problem. 

• CBR is scaleable through and across multiple domains and improves with use 

The problem of scale and domain coverage can also be greatly alleviated by using CBR as 

many different types of knowledge have been represented and used in CBR (Gibbs et al., 

1990 ). For example, MEDIC, a lung disease diagnosis system, CHEF, (Kolodner, 1993) a 

recipe creator, CLAVIER system used to generate autoclave layouts, and the legal domain 

where new Cases are developed from previous ones (Giraud-Carrier, 1996), Much work 

has been put into using large numbers of Cases, indexing and retrieval methods are simple 
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to implement in a parallel or distributed fashion. It has also been shown that much of the 

CBR processing can be moved away from the user-time and Cases can be pre-processed to 

prepare them for use beforehand (Leake, 1996) . 

• CBR can use previous experience to solve new problems 

Hierarchical CBR, which supports representations of Cases at various levels of abstraction, 

has shown success in the combination of Cases to provide a solution (Smyth, 1996), and so 

the integration and adaptation problem in software reuse can also be tackled . 

• Problems that CBR cannot solve in SR 

CBR is limited by the knowledge in the case-base. If the case-base contains no knowledge 

pertaining to a problem, it cannot solve that problem. This problem is where the facilities 

of EC can be applied. EC techniques can produce a solution to a problem without specific 

knowledge of the domain that it is searching for a solution. EC techniques achieve this by 

guessing solutions, testing them to see how good they are and then recombining these 

solutions and re-testing until a satisfactory solution is found. 
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3.1. CBR 

~ Matching 

Learning 

Figure 6. The basic CBR process. 

The basic Case-Based Reasoning process shown in Figure 6 begins with a Problem 

description. The user describes their new problem, which could be a free text description 

or a complex design incorporating textual and diagrammatic specifications or 

partial/complete filling in of a template/form. For example, cases can be simple attribute

value pairs such as: 

Attribute 
Food 
Weight 
Cooking time 
Tern erature 

Value 
Turkey 
4kg 
???? 
???? 

A problem Case would have one or more attribute(s) without value(s), such as temperature 

or cooking time. 

In CBR terminology, a Case usually denotes a problem situation. A Case is a previously 

experienced situation, which has been characterised and stored in a way that it can be 

reused in the solving of future problems. An unsolved Case is the description of a new 

problem to be solved. Case-based reasoning is a cyclic and integrated process of solving a 

problem, learning from this experience, solving a new problem, and so on (Barletta, 1991; 

Kolodner, 1996; Richter, 1998). 

Problem solving is not necessarily the finding of a concrete solution to an application 

problem, it may be any problem put forth by the user. For example, to justify or criticise a 

solution proposed by the user, to interpret a problem situation, to generate a set of possible 
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solutions, or generate expectations in observable data are also problem solving situations 

(Barletta, 1991; Kolodner, 1996; Richter, 1998). 

Next, Matching (Figure 6), is the process of comparison of the problem Case with existing 

Cases in the Case Base. This can be simple, word counting, numerical value matching, or 

complex matching based on e.g. 00 structure. Techniques like Hierarchical Case Base 

Reasoning (HCBR) (Smyth, 1996) are designed to facilitate indexing and retrieval by 

organising the Cases into a hierarchy where specific Cases are indexed under more general 

Cases. This means a general match can quickly be found and then further specialised Cases 

are found under the general match. 

Any Case-Based Reasoning system is dependent on the structure and content of its 

collection of Cases, known as its Case-Base. As CBR problem solving is achieved by 

retrieving previous Cases, the search and matching processes must be accurate and time 

effective. As new solutions are generated they must be retained to support the learning 

process, and so the integration of a new Case into the Case-Base must also be effective and 

time efficient (Barletta, 1991; Kolodner, 1996; Richter, 1998). 

It is clear that the primary problems in CBR are: the problem of deciding what to put in a 

Case; finding an appropriate structure for describing Case contents; and deciding how the 

Case memory should be indexed for effective retrieval and reuse. An additional possibility 

involves the problem of integrating general domain knowledge into the Case-Base 

(Barletta, 1991; Kolodner, 1996; Richter, 1998). 

The next stage of CBR (Figure 6), Retrieving, involves selecting the Cases that you have 

matched to the problem Case. Two example Retrieval methods are Standard retrieval that 

simply selects the closest match and Adaptation Guided Retrieval (AGR) (Smyth, 1996). 

AGR finds existing Cases in the Case-Base that can be best adapted to solve the problem, 

rather than simply retrieving the closest Case to the problem Case. 

A new problem is solved by finding a similar past Case, and reusing it in the new problem 

situation. This can involve Adapting (Figure 6), the retrieved Case(s) using knowledge of 

the domain and knowledge from other Cases. Adaptation can be for example: Substitution, 

which in tum can be Simple, where the substituted component is independent of Case 

under adaptation or Complex, where the substituted component is dependant on context 

and Case under adaptation; Model guided, where a structured system is used to adapt; or 
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adaptation can be performed using domain knowledge that could be for example, Rules or 

Cases (Barletta, 1991; Kolodner, 1996; Richter, 1998). 

The last stage in the basic CBR model is Learning (Figure 6). Learning involves storing 

the new problem-solution pair (Case) in the Case-Base. Two major advantages of CBR are 

that a new Case can be added without concern for existing Cases and that CBR systems 

can evolve with use, in the workplace. 

The Solution (Figure 6), may be a single specific solution with explanation, if necessary 

an interpretation of a problem situation or a set of possible solutions, or a list of 

expectations in some observable data. The Solution is only stored if the new Case has new 

information that does not already exist in the Case-Base. 

Maintenance of the Case Base is necessary to remove old or unusable material, e.g. the 

removal of duplicate Cases, or the removal of errors or out of date Cases. Maintenance also 

involves the addition of new Cases, perhaps from another CBR system and the rebuilding 

of indexes or storage structures e.g. examining the history of the systems use to spot 

problem areas, such as bottlenecks and areas with insufficient Cases (Barletta, 1991; 

Kolodner, 1996; Richter, 1998). 

There are two main types of CBR systems, problem solving and problem interpretation. 

Problem solving is used in design and planning where a solution is derived from retrieving 

approximately matching Cases and adapting them to the new problem. Problem 

interpretation is used, for example, in legal and diagnosis fields where new problems or 

situations are explained and illuminated using closely matching Cases of previous 

experiences (Barletta, 1991; Kolodner, 1996; Richter, 1998). 

An example of problem solving with Cases in a Case-Base for solutions to cooking 

problems follows. This example is adapted from an example of Case-Based Reasoning rule 

extraction given by Hanney (1996). 
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The food cooking problem. 

Attribute Value Attribute 
Case Id A Case Id 
Food Turkey Food 
Weight 2 Weight 
Cooking time 1 Cooking time 
Temperature 200 Temperature 
Form Whole Form 

Attribute Value Attribute 
Case Id C Case Id 
Food Salmon Food 
Weight 3 Weight 
Cooking time 2 Cooking time 
Temperature 250 Temperature 
Form Steaks Form 

Rule generation could be implemented as follows: 

First find Cases that are almost identical: 

» A and B, C and D 

Comparison of Case A with Case B gives rule Rl: 

» If Weight changes from 3 to 2 

» Then reduce Cooking time by 1 

Comparison of Case C with Case D gives rule R2: 

» If Form changes from Whole to Steaks 

» Then reduce Temperature by 50 

Value 
B 

Turkey 
3 
2 

200 
Whole 

Value 
D 

Salmon 
3 
2 

300 
Whole 

Given a new food to evaluate Cooking time and Temperature for: 

Attribute Value 
Case Id X 
Food Salmon 
Weight 2 
Cooking time ? 
Temperature ? 
Form Steaks 

Matching: Match this problem Case X to existing Cases and rank them in order (Nearest 

Neighbour matching). 

Case A 

CaseB 

CaseC 

CaseD 

1 - A match with Attribute Weight = 2 

O-No match 

2 - A match with Attribute Food = Salmon, Form = Steaks 

1 - A match with Attribute Food = Salmon 
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Retrieval: Case C is the closest match, this gives an estimated cooking time of 2 and an 

estimated temperature of 250. 

Adaptation: A rule exists that can cope with a weight change from 3 to 2, Rl: 

If weight changes from 3 to 2 Then reduce Cooking time by 1 

As Case X has a weight of 2 and Case C has a weight of 3 apply Rl to adapt Case C's 

cooking time of 2 to a cooking time of 1. This value (1) could be derived from a more 

complex formula, for example a formula that is scaled or proportional to the weight change 

could mean that we half the Cooking time as the Cooking time has halved in the matching 

cases, giving a Cooking time of 1. For simplicity more complex methods are not discussed 

further in this example. 

Domain knowledge could be added in the form of rules e.g. If it is known that Beef 

generally cooks faster than Turkey, then add the rule R3 to the system: 

If Food changes from Beef to Turkey Then increase cooking time by 1 

Learning: Now there is a new Case, Case X that could be added to the Case-Base. 

However this Case contains no new information that was not already in the Case-Base so it 

would not be an advantage to add it to the Case-Base. 

Before this particular Case is discarded it is necessary to confirm that the estimated 

cooking time and temperature are good estimates. For example, if this food is cooked for 

the estimated time of 1, but during cooking it required an extra time of 0.5, then Case X is 

updated to reflect this. In this event Case X would be added to the Case Base as it now 

contains new information 

Then a new rule could be generated, R4: 

If Food changes from Turkey to Salmon Then increase cooking time by 0.5 

CBR can also make use of Cases of failed examples. An unsuccessful cooking experience 

could be used to avoid repeating the same mistake. 
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These rules are not guaranteed to be applicable in every situation. These rules are based on 

the differences between two very similar Cases, not on every Case that may contain 

information on a particular rule. These rules rely on their context to an extent, therefore it 

is important that they are derived from Cases that closely match the problem Case, to 

increase the likelihood that the rule will be applicable. The idea of principle identification 

and reuse extends the idea of generating rules from Cases, explored in Chapter 5. 

CBR differs from other Artificial Intelligence-Machine Learning technologies in several 

ways. It does not rely solely on general knowledge of a problem domain, or making 

associations along generalised relationships between problem descriptors and conclusions. 

CBR is able to utilise the specific knowledge of previously experienced, concrete problem 

situations (Cases). And lastly, a new problem is solved by finding a similar past Case, and 

reusing it in the new problem situation (Barletta, 1991; Kolodner, 1996; Richter, 1998). 

Some of the organisations using CBR include: the US government for automated text 

analysis; IDM for customer support e.g. Help Desks; VISA International for quality 

assurance; British Telecom for design and fault diagnosis; British Airways for aircraft 

design & maintenance; NASA for process planning e.g. Autoclave layout plans for high 

performance aircraft parts, and for decision support. Many Companies provide or use CBR 

software, services and commercially available CBR tools. These companies include: 

AknoSoft; Cognitive Systems Inc; Inference Corporation; Tecinno; Daimler-Benz; BMW. 

A review of CBR-SR literature shows that there is a close relationship between the 

applications that CBR has been used for and the Software Reuse problem. The following 

points cover most of the significant areas pertinent to the EC - CBR software reuse 

problem: 

• CBR can be used as an adaptive reuse system in poorly understood domains, see 

CLAVIER in Kolodner (1993). 

• A successful software reuse system must be able to evolve and learn from use. CBR 

evolves and learns from use (Mili, 1995). 

• CBR is suitable for performing adaptation in complex systems with high variance in 

problems e.g. software reuse (Krueger, 1992). 
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• Cases are easier to create than e.g. rule bases, and provide better justification than rules, 

alleviating the Knowledge acquisition problem. 

• Knowledge of failed solution attempts can be instructive. Failures can be learned to 

enable the CBR system to avoid them in the future (Kolodner, 1993). 

• Knowledge should be represented at several levels in CBR and SR (Mili, 1995). Several 

researchers have achieved results by splitting knowledge into two main types: Domain 

specific adaptation knowledge e.g. Specialists (Smyth, 1996), specialisation (Bergmann et 

al., 1996), rules (Leake, 1993) and General adaptation knowledge e.g. Strategies (Smyth, 

1996; Leake, 1993), Generalisation (Bergmann et al., 1996). Further knowledge that may 

be included is knowledge of software engineering techniques, an extension of Strategies 

(Smyth, 1996). 

An important approach to CBR adaptation that appears to be arising from present research 

is to reduce the amount of adaptation that is done. This is achieved through approaches like 

Adaptation Guided Retrieval (Smyth, 1996). These approaches reduce the number of steps 

taken to adapt a Case. This means that fewer possibilities for introducing errors or failures 

occurring, increasing the probability of a successful solution being produced. 

Learning is the best way to successfully deal with adaptation as it enhances the quality and 

flexibility of the process (Fuchs et al., 1996). This is particularly true for more complex 

domains where it is difficult to assess the scope of the knowledge coverage, and therefore 

learning is essential as it facilitates knowledge acquisition. 

3.2. Adaptation and CBR 

The recent work on CBR adaptation, relevant to this project, has been carried out by 

Hanney (1996), Smyth (1996) and Giraud-Carrier (1996). Hanney (1996) presents two 

algorithms, the first for automatically learning adaptation rules from Cases and the second 

for automatically applying these adaptation rules to new problems. Giraud-Carrier (1996) 

and Hanney (1996) have both achieved automated rule extraction and adaptation in simple 

domains. To date the algorithms in Hanney (1996) have not been applied to a domain as 

complex as software reuse proposed in this project. Smyth (1996) has achieved adaptation 

in structured software, but has not automated adaptation rule extraction and application. 

This is an area of focus of this Ph.D. Hanney (1996) has applied the above mentioned 
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algorithms to Cases with numerical atomic solutions and achieved good results. This thesis 

shows how these ideas can work with complex structured solutions. 

An example based on Case-Based rule extraction methods devised in Hanney (1996) was 

given in Chapter 3 section 1. 

Using ideas similar to the algorithms given by Hanney (1996), it may be possible to find 

principles of FPGA program design that can be extracted from sets of example adaptations 

from the field of FPGA programming. It is shown in Chapters 5, 6 and 7 that the scaling 

problem might be overcome using the combinations of EC and CBR techniques. The aim 

here is to select the most generally applicable of the extracted principles and to produce a 

mechanism for handling the complexity of the task. The primary method for handling the 

complexity seen in current research is to use multiple levels of abstraction over the 

knowledge being used, and to decompose and recompose the problem Cases (Louis, 1993; 

Smyth 1996). This involves creating and using abstract representations for the code 

artefacts themselves as well as using general and specific adaptation principles. 

It has been shown that where possible, domain knowledge should be used to create initial 

rules and Cases, where this knowledge is simple to encode as Cases (Hanney, 1996). This 

is partly the case in FPGAs and digital circuit design, as domain knowledge is weak and it 

has been shown that existing rules and methods are not as useful as EC. Therefore it is of 

interest to determine the mechanisms by which EC produces solutions. 

This thesis investigates the following questions: 

• How much human intervention is necessary, what advantages does this technology have? 

• How Scaleable is the approach? 

• How portable (to other domains) is the approach? 

• Do EC techniques improve the performance or technology? 

CBR-SR involves all types of classification knowledge, target elaboration knowledge, role 

substitution knowledge, sub-goaling knowledge and goal interaction knowledge (Hanney, 

1996). 

Measuring how the size of the CB affects rule production is an important exercise to 

determine if rules can be generated, and then to reduce the case-base. If this can be done 
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then this could facilitate adaptation in domains where only a small number of Cases are 

available, if these rules are domain independent enough to be applicable to the new 

domain (Hanney, 1996). 

Hanney (1996) aims to reduce the CB size and recalculating the rules from the reduced 

CB. If the principles are portable to many domains this could drastically reduce the 

knowledge elicitation bottleneck for implementing new domains. A number of Cases 

versus number of rules experiment can be done to determine how many rules are general 

to software reuse and how many rules can be reused. If there are a small number of rules 

for a large number of cases then the knowledge acquisition bottleneck is reduced for new 

domains with few Cases. 

Hanney (1996) shows the correlation between the number of Cases and the error rate, but 

recalculates the rule base for the new reduced CB each time, and does not measure the 

effect of keeping the same rule base, which is important for re-scaling to a large scale 

system. As a point of efficiency a Case may be removed from the CB if it provides no 

additional information. Once rules have been extracted it may be useful to examine which 

Cases contribute to the CB and rule base to refine the domain coverage. 

It has been shown that adaptation seems to have a far stronger relationship to Case Base 

size than retrieval does (Hanney, 1996). This finding may be domain specific. 

Another possible exercise is to determine what rules can be created from exact matching 

features in highly similar Cases, e.g. where the independent rules have been extracted, 

what dependency information is there? This is already handled partly by the fact that Cases 

are matched in the first place i.e. their context is similar. Context can be imposed by 

adding to a rule that it can only be applied if the subject Case for adaptation matches the 

context (the bits that made the original Cases that the rules were extracted from similar or 

matched). 

Hanney (1996) says that in the property domain the rule set can be reduced without 

significant drop in accuracy, because combinations of rules can be used to solve target 

problems where no single rule exists. Hanney (1996) uses two different methods of 

selecting Cases from which to generate rules and concludes that generalisation does not 

improve adaptation accuracy in the test domains. 

The experimental approach of Hanney (1996) is as follows: 
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• Rule generalisation (not abstraction) 

• Different methods of selecting Case pairs for comparison 

• Rules with short antecedents versus long antecedents 

• Case based size versus prediction accuracy 

• Methods of adaptation rule learning 

• Guidelines for the method of adaptation rule learning 

In this thesis the experimental approach examines principle identification, a more general 

version of rule extraction, and methods of comparing case pairs. 

EC techniques often produce solutions that do not have obvious components. As they do 

not have a mechanism for exploiting domain knowledge, they require additional 

mechanisms to produce an automated reasoning method. One technology that uses domain 

knowledge is Case-Based Reasoning (CBR). CBR has the advantage that it can use domain 

knowledge in the form of problem-solution pairs, called Cases; no additional domain 

knowledge e.g. rules, models are required, so EC results can be fed directly into a CBR 

system without user interaction. This simple knowledge capture mechanism produces a 

highly automated process. 

CBR is a problem solving method that reuses old solutions to solve new problems. CBR is 

an alternative to rule-based and model-based reasoning as rules or models do not need to 

be explicitly defined. CBR has several advantages: it can provide answers to problems in 

poorly understood complex domains; it does not require a domain model, domain rules, or 

general domain knowledge; and it can provide an explanation of its reasoning. 

The main advantage CBR has over other techniques is that its knowledge is represented by 

Cases that represent specific experiences of experts working in any given domain. This 

means that expert knowledge can be entered almost directly into the Case-Base, no rules or 

models are required. Further to this new Cases can be added to the Case-Base simply, 

without the need for updating of the existing data in the Case-Base. So knowledge 

acquisition, updating and maintenance are simpler than other techniques. 

3.3. CBR and EC Hybrids 

CBR-EC hybrids are systems that combine CBR and EC methods to solve problems, either 

technology being used to support the other. Existing CBR-EC hybrid systems are reviewed 

37 



3. CBR for Software reuse 

to examine the ways in which these technologies have been combined and applied. The 

most significant work in this area is that of knowledge-lean techniques. This enables the 

generation of knowledge where little or no knowledge exists for the target domain. 

This section examines systems that combine CBR and EC to solve problems in each 

technology. Some of the following techniques can be applied to software reuse by 

increasing the capabilities of CBR technology using Ee. 

There are several possible combinations of CBR and Ee. Firstly CBR can be used to 

initialise the EC population before the execution of the EC (Figure 7). In this procedure 

CBR is used to select potentially useful data to create a starting population for EC instead 

of the EC using the conventional technique of random initialisation of the starting 

population (Maher et ai., 1996, Tanaka et ai., 1994). CBR selects a cases from its case

base that provide the best solutions to the EC problem by evaluation the EC fitness 

function (problem to be solved) and these cases become the starting population for the Ee. 

Problem Solution 
description 

\ 

I I Initialise Case-Based Evolutionary .. Matching .. 
Reasoning ... Population .... Computation 

Cases -

Figure 7. Use of CBR for initialising an EC population based on a problem description. 

Louis (1993) combines CBR with EC for digital circuit design. In Louis (1993) CBR is 

used to monitor the EC during the EC process, and extract and re-inject potentially useful 

genetic information (Figure 8). This method keeps track of the successes and failures of 

these injections of material into the EC population, and the context in which these 

occurred. This information is then used to improve the accuracy of the extraction and re

injection process, thereby improving the performance of the Ee. 
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Case-Based 
Reasoning 

Evolutionary Computation 

Inject and 

Extract 

Figure 8. CBR interacts with the population of the EC during evolution. 

In Figure 8 cases or individuals can be injected or extracted from and to the Case-Base to 

improve the EC population. Individuals from a population intended to solve a single 

problem can then be stored for use on different problems. This reuse can be implemented 

by an inject-and-test mechanism so that the effectiveness of injecting a given individual 

into a population for a particular problem can be stored as part of that individuals' Case. 

The system can then learn when it is best to inject which Cases as individuals into the 

population for a new problem. This form of hybrid has been investigated by Louis (1993). 

A solution to the problem of knowledge acquisition is to use a 'knowledge-lean' method of 

solution generation, e.g. the use of EC Algorithms for the sub-task of adaptation (Maher et 

al., 1996), (see Figure 9). EC algorithms require less knowledge than other AI approaches 

(see Chapter 1 section 4) to produce an acceptable result. Maher et al. (1996) uses a simple 

EC Algorithm to provide this solution. 

Matching 

Learning Retrieving 

Evolve to adapt Jr--l~ 

Figure 9. Using EC as a knowledge lean method of achieving adaptation in CBR. 
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EC techniques are 'knowledge lean' because they can produce new solutions from small 

bits of solutions without the need for knowledge of how to generate a solution in that 

particular domain. The only knowledge that is required is that of the fitness function, 

which gives the evolving population a target to compete for. 

To use EC for engineering design problems the representation of the object to be designed 

(phenotype) must be converted into a genotype representation. The traditional EC 

operators of crossover and mutation can then manipulate this genotype representation. The 

result of this is a population of individuals that represent solutions to design problems. 

Each of these individuals then becomes the basis of a Case in the CBR system. The Case 

design is discussed in Chapter 6. In this way Cases in a Case Base Reasoning system can 

be represented as individuals in an evolving population. The EC process proceeds as in 

Figure 8. 

Another hybrid approach is to use EC to create a Case-Base for CBR. Figure 10. gives an 

example of how CBR could be integrated with EC in this way. This last hybrid is the 

approach taken in this thesis. In this approach EC is used as a knowledge-lean technique to 

provide CBR with a Case-Base, similar to the use of EC as a knowledge-lean adaptation 

mechanism as seen in Maher et al. (1996). 

I Problem I 

J Evolutionary Evolved Initial Case-Based .. ... ----1 Solution I Computation Population ... Case-Base ... Reasoning 

J~ 

.... Feedback , 
"'" mformatIOn 

Figure 10. EC is used to generate an initial Case-Base for CBR. 

In Figure 10 Information gained from the CBR process can be fed back into the EC to 

improve its capabilities. For example, an analysis of the initial case-base could show that 

the evolved solutions are modular, and these modules could then be used by EC to reduce 

the processing time required to design solutions. 

3.3.1. Phenotype to genotype mapping 
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The following example of a phenotype to genotype mapping is based on the representation 

used in Miller et al. (1998a). The phenotype in this example is a digital logic circuit 

(Figure 11). This phenotype implements the truth table given in Table 6 and is represented 

in a Case by the genotype shown in Table 7. This representation is a simplification of that 

used in this thesis. 

The digital circuit in Figure 11 is an example of the phenotype of an FPGA program 

created by BC: 

3 
P3 

8 
0 Al 
2 PI 

A2 P4 
2 BI 

0 Al P2 

3 B2 

Figure 11. An evolved 2-bit multiplier (a Phenotype) (Miller et al., 1998a). 

The unusual features shown in Figure 11 are examples of why the evolved solutions are 

difficult to understand. In the conventional 2-bit multiplier PI would is not used as an 

input to P3 and P2 is not used as an input to P4. These features illustrate some 

unconventional design properties. 

Inputs Outputs Input Output 
Binary Binary Decimal Decimal 
0000 0000 OxO 0 

: : : : 
1111 1001 3x3 9 

Table 6. lllustrated truth table used for evaluation of potential solutions. 

The genotype representation of the phenotype shown in Figure 11 is obtained as follows. 

The genotype (Table 7) is an ordered array of cells, each containing 3 integers, followed by 

cells with a single integer that represent output connections (Table 7). The structure of an 

individual cell is represented as a series of three integers. The first two integers in each cell 

represent the cell inputs and the third represents the cell function, see Table 7. Truth tables 

represent the functionality of a program, (see the shaded area of Table 6). Here, the third 
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integers in Table 7 (in bold), can be seen inside the gates in Figure 11. This number 

represents the gate types: -logical A AND B, A AND NOT B and A XOR B, (6, 7 and 10 

respectively). The shaded cells in Table 7 represent the cell numbers from which outputs 

PI-P4 (Figure 11) are taken. 

The phenotype in Example one is represented by the genotype in Table 7: 

1 - 3 - 6 0-2-6 1-2-6 0-3 - 6 
4-5-7 6 - 7 -10 6-9-7 5 

9 8 10 

Table 7. Genotype for an evolved 2-bit multiplier, an example of a program for a FPGA 

(Miller et al., 1997 ). 

This ordered array of cells in Table 7. is indexed left to right, top to bottom, the inputs 

from the truth table are numbered as indices 0 to 3 (as there are 4 inputs, see Figure 11). 

So, this genotype in Table 7. has cells with indices 4 to 15 (see the numbers outside each 

gate in Figure 11), where cells 11 to 14 (Shaded) represent output connections and cell 15 

is unused. These output connections are represented by PI to P4 respectively, in Figure 11. 

Table 8 illustrates the meaning of the gate types used in Table 7. The above genotype is a 

slight simplification of that used by Miller et al. (1998a) as the gates in this circuit only 

have two inputs, not three as in Miller's representation, so the third input in each cell is 

irrelevant in this case, and has been removed from this example. 

Representation Logical statement 
6 aANDb 
7 a AND NOT b 
10 a Exclusive-OR b 

Table 8. Example Adapted from Miller et al. (1997). 

The numbers 6,7 and 10 are fixed for each logical gate type and are assigned their values 

from a simple table giving a number for each operator. These numbers are taken from a 

larger set of logical statements available in Miller's representation. 

Many evolutionary computation techniques implement two operators, crossover and 

mutation. Each of these operators is used to change genotypes, in order that they might 

improve in some desired quality. 
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Crossover is a matter of taking two genotypes, selecting one or more crossover points, and 

swapping over the resulting sections of the genotypes to create a new genotype. Here is a 

simplified example using two cells: 

11 I 3 I 6 I 
"Crossover point 

and 

With a single crossover point, produce two more genotypes: 

And 

Mutation 

Mutation is a simple operation, an element is chosen at random and that element is 

changed to a randomly chosen number from the allowed set of numbers, e.g. the following 

cell (The first cell in the genotype in Table 7). 

mutated could become: 

So the original cell representing an AND gate (the number 6) connected to inputs 1 and 3 

(see the top-left gate in Figure 11) has now been mutated to an AND gate with inputs 2 and 

3. The mutation could equally have been the second input or the function itself, e.g. the 

AND gate (the number 6) could be mutated to an 'a AND NOT b' (gate number 7, Table 

8). 

Crossover and mutation are used to randomly change the cells of the genotype. In this way 

the functionality of the FPGA program can be changed. The new genotype is then 

evaluated (see section 3.3.3) to determine whether or not it has improved. 

Miller's representation, algorithm and the constraints involved in the operation of the EC 

technique employed are discussed further in Chapter 4. 
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3.3.2. Genotype to Phenotype mapping 

Genotype to Phenotype mapping is the same as the above but in the opposite direction, so a 

program (phenotype) is created from the genotype e.g. the genotype in Table 7. would be 

used to create the example program in Figure 11. 

3.3.3. Evaluation and selection of genotypes 

There are several ways in which evaluation of the genotype can be achieved. The simplest 

method is to compare the phenotype solution to the required solution. In the FPGAs the 

functionality of the phenotype solution is compared to a truth table, e.g. a truth table 

representing 4-bit multiplication (see appendix 2.1), allowing different circuits (different 

structure and behaviour) to be compared. The functionality, behaviour and structure are 

explained in Chapter 6. 

In the case of FPGAs an attempt is made to evolve a circuit that has the same functionality 

as the conventional solution, but one that is much more efficient, either in size, speed or 

both. The genotype shown above in Table 7, is an example of a software program used to 

program an FPGA. 

There may be more than one evaluation criterion. In addition to functional correctness, 

size, speed and cost may also be of interest. Additional evaluation criteria can be applied 

during the evolutionary process or after the first evaluation criterion of functionality has 

been met. A discussion of these additional costs is presented in section 4.2.1.5. 

A genotype is selected if it is evaluated to be better or equivalent to the genotype before 

mutation and crossover. The selected genotype can then be subjected to mutation and 

crossover, potentially improving it further. The processes of crossover, mutation, 

evaluation and selection are repeated until a solution is achieved. Chapter 4 further 

explains in detail how standard EC ideas are applied to the problem of logic design in this 

thesis. 

3.4. CBR and SR 

The SR domain is complex, as there are potentially an infinite number of software 

problems and solutions. Approaches to SR range from application specific generators to 

general programming languages e.g. Pascal, C++, KL-1. These reuse systems themselves 
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can vary greatly in their underlying model e.g. sequential, parallel. The complexity of the 

SR domain means that it is difficult to build a model of the domain. This is where CBR, 

specifically representing knowledge as Cases wins over other Knowledge Based (KB) 

techniques. This is also where EC can be used, as it is possible that not all of the 

knowledge required to solve any problem will be in the Case-Base, a knowledge lean 

approach to the problem is required. EC has been successfully applied to CBR systems to 

facilitate knowledge acquisition in this manner (Maher et ai., 1996; Tanaka et ai., 1994; 

Lenart et ai., 1994). 

A goal of this work is automated CBR adaptation. Hanney (1996) and Kolodner (1993) 

give taxonomies of adaptation transformations and adaptation methods, as discussed in 

Chapter 3 section 2. These taxonomies are general although not every application uses 

every adaptation technique, many do not perform any adaptation. The forefront of 

adaptation is in being able to automatically extract rules from Cases, and apply them to 

new Cases. Hanney (1996) gives two algorithms to achieve this, but they are simple and do 

not cover the more intricate aspects of adaptation. Table 9 shows the areas of importance 

to this project and which research has covered these areas. 

Researcher System Adaptation Hierarchical Software Automated Complexity 
Name Name Case-Base reuse rule of Case 

structures extraction 
& 
application 

Hanney ..J ..J Simple 
Smyth Deja Vu ..J ..J ..J Structured 
Wilkie INRECA ..J ..J 00 

Structures 
Giraud- FLARE ..J ..J Nominal 
Carrier and linear 
Fuchs ..J Avoidance 
Fox Leake ROBBIE ..J Simple 
Bergmann PARIS ..J ..J Limited 

Table 9. CBR-SR and CBR adaptation techniques research. 

These categories are not clean-cut but give a general view of each area. 

3.5. Summary 

A hybrid CBR-EC system gives an opportunity to develop a new method of designing 

digital circuits. EC is necessary, as the existing methods for digital circuit design are 
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insufficient. CBR techniques of matching, retrieving, adapting and learning are required in 

conjunction with EC techniques, as EC alone cannot produce large digital circuits due to 

the limits of computational power. CBR can overcome this EC limitation by extracting and 

applying the principles involved in the EC solutions. CBR is able to repair solutions to a 

given problem using parts of other solutions that are better, or perfect. 

Hunt (1995) has observed that solutions that have the same quality can be very different in 

structure, behaviour, and/or functionality. This provides a good source of knowledge for 

CBR principle extraction. 

This study of CBR applied to EC-produced software programs for the FPGA shows that 

CBR can be used to solve the problems of understanding, scaling and optimising solutions 

using all of the information gained from many individuals in the population. 

In Chapter 4 the encoding of a digital circuit into a genotype and the characteristics of the 

evolutionary algorithm are given. This evolutionary algorithm designs fully functional 

circuits. This evolved data is discussed in Chapter 4. Chapter 5 discusses the techniques of 

landscape analysis developed by Vassilev et al. (1997a1b, 1999a/b, and 2000) that show 

the principles by which an effective evolutionary search may be conducted. Vassilev's 

examination of the evolutionary search illustrates the processes involved. 

The process of discerning design principles from the evolved data can be seen as a form of 

data mining and is an examination of the products of the evolutionary process. This 

examination can make recommendations about useful components and sub-structures that 

feed back into the evolutionary algorithm and so improve the evolvability of the circuits in 

question and enhance our ability to understand the new designs. Further to this it is shown 

how this data mining can overcome the scaling problem in an automated manner. 

Chapter 4 shows how much human intervention is required in EC, namely the definition of 

the PLA file, the target geometry and a parameter to tell the evolutionary algorithm when 

to stop. Chapter 4 shows that EC techniques alone can out perform the conventional 

techniques and also cope with different classes of problems within the domain of FPGA 

programming. Chapter 5 examines the scalability of the evolutionary algorithm alone, 

showing limitations in the method. 
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4. FPGAs and digital circuit program design 

This chapter discusses an EC technique for digital circuit program design. It shows how 

EC can be used for designing FPGA programs and then discusses the practical aspects of 

program implementation. 

4.1. Digital Circuit Evolution 

The Section 4.1.1 shows how a FPGA program can be represented as a graph for Cartesian 

Genetic Programming (CGP). Then an evaluation method is given followed by a 

description of the CGP algorithm. 

4.1.1. Encoding a Digital Circuit as an Indexed Graph 

The encoding of a digital combinational circuit into a genotype, which is presented in this 

thesis, is based on earlier models that can be found in Miller et ai. (1997); Miller and 

Thomson (1998b); Miller and Thomson (1998a). A digital logic circuit is encoded as a 

more general graph based computational model called CGP (Miller, 1999a). CGP is a 

graph-based form of genetic programming. Other graph based genetic programming forms 

are Parallel Distributed GP (PDGP) proposed by Poli (1997) and Parallel Algorithm 

Discovery and Orchestration (PADO) (Teller and Veloso, 1995). CGP represents a data

flow graph (Banzhaf et ai., 1998). 

In CGP a digital electronic circuit is encoded as an instance of a program in which 

functional nodes are connected together to perform any given computational task on binary 

data. A CGP program is a rectangular array of nodes. These nodes each represent an 

operation on the data at its inputs or on the outputs of other nodes. Each node may 

implement any convenient programming construct (e.g. if, switch, OR, x etc.). 

The genotype is a linear string of integers and is characterised by three parameters: the 

number of columns, the number of rows, and levels-back. The first two are the dimensions 

of the rectangular array and the last is a parameter that controls the internal connectivity. It 

determines how many columns of cells to the left of a particular cell may have their 

outputs connected to the inputs of that cell. This parameter is also applied to the program 

outputs. The cells and outputs are maximally connectable when the number of rows is one 
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and levels-back is equal to the number of columns. Minimal connectivity occurs when the 

number of columns is one and levels-back is 1. 

In this thesis a particular form of CGP is adopted in which all cells are assumed to have 

three inputs and one output and all cell connections are feed-forward. In general CGP the 

cells may have multiple inputs and outputs and the numbers of these would be encoded 

into the genotype for the cell. Also in general, primary outputs could be treated as clocked 

inputs thus allowing the CGP programs to possess internal states. The genotype and the 

mapping process of genotype to phenotype are illustrated in Figure 12 (a and b). 

inputs 

1 @ G G 
---, r outputs 

_I 1 
-I C rrf" _I 1 ___ J 

@ @ @ 
---, 

_I 1 
-I C rrf" _I 2 ___ J 

@ @ @ 
---, 

_I 1 
-I C rrf" _I 3 ___ J 

----- at ----_. 
---, ---, ---, ---, 

_I 1 _I 1 _I 1 _I 1 
-I C r -I C r -I C r -I C", _I n1 _I n2 _I n3 _I n ___ J ___ J ___ J ___ J 

J 

cells ~ Internal connections 

(a) 

cells --""1,~-----:r.f ---------------~ 

A 

~ logic function 

I 
I 
I outputs 

L...===== input connections 
(b) 

Figure 12. The genotype-phenotype mapping: (a) an n x m geometry of logic cells with nj 

inputs and no outputs, and (b) the genotype structure of the array. 
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Letter Function Letter Function 
0 0 10 aEORb 
1 1 11 aEORNOTb 
2 a 12 aORb 
3 b 13 aORNOTb 
4 NOTa 14 NOTaORb 
5 NOTb 15 NOTaORNOTb 
6 aANDb 16 a AND NOT c OR b AND c 
7 a AND NOT b 17 a AND NOTc OR NOT bAND c 
8 NOTaANDb 18 NOT a AND NOTc OR b AND c 
9 NOT a AND NOT b 19 NOT a AND NOT c OR NOT bAND c 

Table 10. Available cell functions. 

Functions 16 to 19 in Table 10 are all binary multiplexers with various inputs inverted. The 

multiplexer (MUX) implements a simple IF-THEN statement (Le. IF c = 0 THEN a ELSE 

b). It is important to note that multiplexers can be considered to be atomic both formally 

and from an implementation point of view. They are atomic in that they are universal logic 

modules (Chen and Hurst, 1982) so that they can be used to represent any logic function. 

They are atomic in that some modern FPGAs now use a multiplexer based architecture so 

that all two input gates are synthesised with multiplexers. The specific FPGA that is used 

as a reference in this thesis, the Xilinx XC6216, uses a multiplexer based architecture and 

supports only the cell functions given in Table 10. It should be noted that several functions 

include inverters within the same cell, see functions 7, 8, 9, 11, 13, 14, 15 and the 

multiplexers 16 to 19. 

The genotype is a list of connections and cell functions shown in Figure 12 b. In general 

the connections can be thought of as addresses in data, thus provided the function set is 

appropriate for a particular data type, the genotype is data independent. 

It can be seen in Table 10 that only functions 16 to 19 use all three inputs and that some 

functions are actually constants with an output independent of the inputs (letters 0 and 1). 

Thus the genotype can contain completely redundant genes. This type of redundancy is 

referred to as input redundancy. Cells may also not have their outputs connected in the 

operating circuit between the primary inputs and outputs; these collections of genes (3 

connections, 1 function) are also redundant. This is called cell redundancy. Another form 

of redundancy called functional redundancy is more typical of genetic programming. This 

is where a number of cells implement a function that can be implemented using fewer 

cells. A specific instance of this kind of redundancy is behavioural redundancy, where two 

or more cells implement identical behaviour. 
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It is important to emphasize that cell outputs may be re-used and when a program is used 

to evolve the genotypes the amount of re-use of sub-calculations is determined entirely 

automatically. 

4.1.2. Calculating the Fitness of a Genotype 

All functions are specified by a truth table. The fitness of a genotype is the number of 

correct output bits. Thus for the one-bit adder with carry seen in Figure 13 there are 8 input 

cases and 4 output cases, each output case having 2 bits, this gives 16 output bits, shown in 

Table 11 (Cout and S in shade). A fully correct circuit would have fitness 16. In practice 

the fitness of a circuit is calculated using 32-bit arithmetic. Thus the binary data is handled 

as 32-bit unsigned integers and all the operations defined in Table 10 are 32-bit operations. 

A truth table with 3 input variables is then represented as a single line (Poli, 1999). For 

example the truth table of the I-bit adder with carry e.g. Table 11 is represented as Inputs: 

170224 240 Outputs: 232 150. 

1-----------
1 

A 

B 

~------------~c:> s 

Figure 13. One-bit adder with carry. 

A B Cin Cout S (sum) 
0 0 0 0 0 
1 0 0 0 1 
0 1 0 0 1 
1 1 0 1 0 
0 0 1 0 1 
I 0 1 1 0 
0 1 1 1 0 
1 1 1 1 1 

Table 11. Truth table for a I-bit carry adder. 
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Each column of a Truth table for the required function is divided into 32-bit sections, 

which are then represented by 32-bit integers. In Table 11 there are only 8 bits in each 

column, so each column is one 32-bit integer. For example, the first bit in column A 

becomes the least significant bit in the 32-bit binary number, the last bit being the most 

significant bit. In this case column A is now represented by a 32-bit number (170 decimal), 

where only the first 8-bits of the 32-bit number are used. Then for example the AND 

operation using 32-bit operands would be 170 AND 224 the result of which is then 

compared to the required output 232, effectively evaluating 32 binary input - output 

combinations simultaneously. 

Additional fitness functions can be added to further refine the evolutionary design. For 

example, to reduce the size of the program the number of gates in each program can be 

counted and a score based on the number of gates used could be combined with the main 

fitness function that favours functional correctness. 

This size scoring fitness function is used in this work to optimise the size of programs with 

respect to the number of gates used. Once 100% functional correctness has been evolved 

the number of gates in the evolving program is used to give an additional score to the score 

for 100% functional correctness. During evolution with this additional fitness function 

many of the attempts to improve (mutate) a program fail, producing a less than 100% 

functional solution. In this case the failed programs are discarded. Only programs that 

remain 100% functionally correct after a mutation receive an additional score for their size. 

This ensures that smaller programs achieve a higher fitness score and so the sizes of the 

programs are minimised. 

4.1.3. The evolutionary Algorithm 

The evolutionary algorithm, developed by Miller, used to produce all of the evolved circuit 

designs in this thesis is a simple form of (1 + A)-ES evolutionary strategy (Schwefel, 1981; 

Back et ai., 1991), in this work A is 4. (1 +A) represents the size of the population in the ES 

strategy and A can be any integer from 0 upwards. Experiments that were reported in 

Miller (1999a) indicated the efficiency of this approach. The algorithm is as follows: 

Step 1 Randomly initialises a population of genotypes *. 
Step 2 Evaluate fitness of genotypes. Stop if criterion reached. 

Step 3 Copy a fittest genotype into new population. 
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Step 4 Fill remaining places in population by mutated versions of fittest genotype *. 

Step 5 Replace old population by new and return to step2. 

* Subject to constraints that ensure the feed-forward nature of circuits and levels-back 

connectivity. 

The mutation rate was defined as a percentage of the genes in a single genotype that were 

to be randomly mutated *. It was necessary to adjust the mutation rate if the genotype 

length was too small, to prevent zero mutation. In this work a mutation rate which resulted 

in 3 genes being changed in each genotype was found to be suitable. A suitable population 

size was found previously by experiment using a two-bit multiplier circuit. The 

experimental parameters were as follows: 

• Number of rows - 1 

• Number of columns - 10 

• Levels-back - 10 

• Mutation rate - 8% (3 genes) 

• Number of generations - up to 150,000 

• Gates used - 6, 7, 10 (Table 10.). 

When the number of rows is 1 and the number of columns equals the 'levels-back' the 

FPGA program is minimally constrained with respect to the connectivity between gates 

and between program inputs and outputs and gates. This means that any gate can use any 

program input or gate that precedes it in the genotype as an input, and can connect it's 

output to the input of any gate that follows it in the genotype, or a program output. In 

contrast, if the number of rows was equal to 2 and the number of columns equal to 5 then 

no gate could connect directly to another gate in the same row. If the 'levels-back' was 

equal to 1 then no gate could connect to another gate or program input/output, that was 

more that 1 column from that gate, e.g. a gate in column 5 could only have gates in column 

4 as potential inputs. These constraints exist to allow FPGA programs to be designed to fit 

into specific areas of an FPGA. The need for constraints is discussed in Section 4.2. 

The minimum number of evaluations required to obtain a 0.99 probability of successfully 

obtaining a 100% functionally perfect solution (fitness equal to 64 in this case) was 

calculated by Miller et al. (2000a). Millers results, obtained for the 2-bit multiplier, show 

that the optimal population size was 4 and minimum number of evaluations was 81,608. 

This number of evaluations (81,608) was the number of evaluations required to give a 0.99 
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probability of successfully obtaining a perfect solution. This is a measure that gives the 

minimum amount of computational effort that is required to ensure a probability of 0.99 

that a 100% functionally perfect solution will be achieved (Koza, 1992). A probability of 1 

means that a 100% functionally perfect solution is guaranteed, whereas a probability of 

0.99 almost guarantees a 100% functionally perfect solution. A probability of 1 can never 

be achieved as evolutionary algorithms depend on random processes. Further measures of 

evolvability are given in Vassilev et al. (2000). 

4.2. Practical Aspects of Circuit Implementation 

One of the objectives of this thesis is to aim to evolve as novel and efficient digital logic 

circuits as possible. The table of logic functions Table 10 that has been used is modelled on 

the resources that are available on modem FPGA platforms. The experiments described 

have assumed that there are no practical constraints imposed by wiring. In practise the 

routing of connections between components is a significant factor in the successful 

implementation of a circuit (See Section 4.2.1.5.). Other representations of digital circuits 

in which the routing is explicitly taken into account have been devised (Miller and 

Thomson 1998b, 1998a). To improve the potential routability of circuits evolved using the 

techniques described here one can adjust the levels-back parameter so that it takes much 

lower values. The complete investigation of the influence of this on circuit routability is a 

subject for further work. It was shown by Miller and Thomson (l998b, 1998a) that the 

dominant factor in the evolvability of the circuits is the amount of functional resources that 

are available, however increasing this tends to produce less efficient circuits. Conventional 

logic synthesis techniques minimise the symbolic representation of a circuit and then carry 

out technology mapping. This is a process of trying to rewrite the symbolic logic into a 

form that can be implemented with whatever gates are available on the chosen platform. 

To do this efficiently is a non-trivial exercise. Such a process is unnecessary when 

evolving a circuit using the gates available on the device. 

4.2.1. Evolved Data and Interesting Problems 

It is clear that the number of input combinations in a truth table grows exponentially with 

the number of inputs. Thus it is not practical to evolve very large truth tables ( > 25 input 

variables). Conventional logic synthesis techniques (See Section 2.2) can handle hundreds 

of input variables. Thus the question arises: what is the point of evolving solution 

programs for truth tables by assemble-and-test? The answer is that interesting functions 

could be evolved. These interesting functions may be more efficient, using fewer 
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components or by being faster than their conventional equivalents. These are useful 

functions which can be series of functions of increasing scale but similar function. These 

functions can be reused to build larger circuits. Classic examples of this are arithmetic 

functions, namely, binary adders and multipliers. These smaller functions can then be 

combined to create larger circuits (e.g. digital filters). 

Another useful application of the use of evolution for digital circuit design is that of re

engineering. Often in industrial situations, existing solutions have to be replaced by new 

solutions that take into account small changes in the specification of the problem. In this 

case only a small area of the solution requires re-design, something that EC can probably 

achieve more efficiently using reuse techniques such as Lockdown discussed in Section 

5.2, and CBR discussed in Chapter 6. Conventional methods often require that the old 

solutions are completely re-engineered (Scherr, 2000). This manual re-engineering is a 

very inefficient approach that becomes more difficult as the differences increase between 

the original hardware platform and the new hardware platform. 

One further useful application stems from the fact that EC techniques can also carry out the 

technology-mapping phase of digital circuit programs. In an industrial situation programs 

are developed to fit onto a specific hardware platform. As technology progresses new 

hardware platforms replace the old ones and the existing programs do not map onto the 

new platforms. Conventional techniques require that a completely new program is 

developed from scratch and then mapped to the new hardware platform (Scherr, 2000). 

This again is inefficient whereas EC techniques could reuse existing programs and adapt 

them to the new platforms. 

As Digital circuit evolution suffers from exponential growth in complexity as the number 

of inputs increases, research has also been undertaken to reduce the complexity of the 

problem and to improve the efficiency of the evolutionary search. These ideas are 

presented in Section 5.6.2. 

If a particularly efficient adder or multiplier can be evolved this could be used as a 

building block for adders of any size. However there is another interesting reason to try to 

evolve arithmetic functions. A series of examples with increasing numbers of inputs could 

be evolved and then it may be possible to deduce the general design principle. If this is 

possible then by using this principle it may be possible to obtain new designs for arithmetic 

functions of any number of input variables. It is these principles that are employed in the 
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design of large arithmetic circuits. It is interesting to contrast conventional with evolved 

designs as the modularity of the evolved circuits can be examined. 

A number of key questions emerge: 

1. Can more efficient designs for arithmetic functions be found by evolution? 

2. Can general principles be extracted? 

3. How modular are the evolved circuits? 

Next, evolved circuits for one and two-bit adders with carry, and two and three-bit 

multipliers are shown. The even four-parity function was also studied as parity functions 

have received much attention from the genetic programming community and it is an 

interesting function to study as its fitness landscape changes dramatically with the choice 

of gates used to build it. 

In a simplistic view, term 'fitness landscape' refers to the idea that genotypes can be seen 

as points on a landscape from the point of view of its fitness. In this simplistic view the 

highly fit genotypes are points on mountain peaks and the low fitness genotypes are points 

in the valleys of the landscape. 

4.2.1.1. One-bit Adder with Carry 

Some FPGA manufacturers are adopting novel designs that have been evolved, e.g. the 

one-bit adder with carry Figure 13 (Miller et al., 1997). 

Any size of carry adder can be built with cascaded one-bit carry adders. This one-bit carry 

adder and the ability to cascade it, is an example of a general principle. It was seen in the 

paper by Miller et al. (2000a) that an evolved two-bit adder with carry is in fact the 

conventional two-bit adder with carry, through comparison of the evolved two-bit adder 

with the evolved one-bit adder with carry. In this way it was shown that it has been 

possible to re-discover the well-known principle of the ripple-carry adder Figure 3. Thus, 

in principle, an adder of any size could be constructed. 

4.2.1.2. Two-bit Multiplier 

Two-bit and three bit multipliers are shown here as examples of how and why evolved 

circuits can be 20% more efficient, in terms of the FPGA cells given in Table 10, than 

those designed by conventional techniques. The two-bit multiplier takes two two-bit 
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numbers and multiplies them to produce a four-bit number. The three-bit multiplier takes 

two three-bit numbers and multiplies them to produce a six-bit number. These can be 

implemented in block form by the 2-bit cellular multiplier shown in Figure 14. The AND 

gates carry out elementary one-bit multiplication and two one-bit adders with carry are 

required to calculate the product bits. The 2-bit cellular multiplier is cellular because it is 

composed of cells, two I-bit adders in this case. One-bit adders with a carry-in of zero can 

be reduced and one of the AND gates connecting to output P 3 can be eliminated and thus 

the final most efficient conventional circuit is obtained. It requires seven two-input gates. 

A1 ADD Sum 

Cout 
Cin 

80 

0 
Sum ADD 

8 1 Caut 

0 

Figure 14. Two-bit cellular multiplier. 

Some interesting circuits were evolved in Miller et al. (2000a). One circuit of particular 

interest, shown in Figure 15 a, uses only a single XOR gate yet still carries out two 

elementary additions. It re-uses sub-calculations in an unusual way. To create the second 

highest product (P 2) it re-uses the lowest product (P 0) and to create the highest product 

bit (P 3) it re-uses the second lowest product (P 1). The whole circuit sub-divides into two 

unconnected parts. The circuit is elegant but also counterintuitive which is more apparent 

when comparing it with the conventional two-bit multiplier Figure 15 b. It is clear that it is 

modeling multiplication in an unusual way. The choice of gates that are used to evolve 

circuits can have a dramatic effect on the ease of evolution. The effects of gate choice are 

reported in Section 5.4. 

P1 

P2 

P3 
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Figure 15. Most efficient (a) evolved and (b) conventional two-bit multipliers. 
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4.2.1.3. Three-bit multiplier 

The conventional three-bit multiplier is again modeled using the familiar process of long 

multiplication and is built as a cellular array of adders with the nine elementary products 

being implemented with AND gates. 

The evolved circuit uses only 21 gates (Figure 16). This is again 20% more efficient in 

gate usage than the best conventional alternative (see Figure 17) but is 30% better than the 

conventional as MUX gates are counted as elementary for the FPGA cells in Table 10. The 

circuit is difficult to understand and on sight it is not obvious whether it consists of 

identifiable sub-modules which are useful in building larger systems. It departs radically 

from conventional principles in that it does not directly synthesise the nine elementary 

products of the inputs. 

B1C=>--H~-----+--;\ 

Figure 16. Evolved 3-bit multiplier (21 gates - 14 two-input gates and 7 MUX). 
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B2 

B1 c::> P3 
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Bo 

Ao c::> P1 

Po 

Figure 17. Most efficient conventional 3-bit multiplier using 30 two-input gates (26 gates 

including 2 MUX). 

4.2.1.4. Even Four-parity 

The even-parity functions are difficult to evolve when using the logic gates AND, NAND, 

OR, NOR. The even-parity function returns a 1 if there are an even number of' Is' input to 

the function. Even-parity functions are difficult to evolve because even-parity functions are 

most easily implemented using XNOR gates and it is difficult to synthesise XNOR 

function using this set. The most efficient implementation of even four-parity requires 3 

XNOR gates (see Figure 18 a and b). This is an example of how gate choice can 

dramatically effect circuit evolution. 
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Figure 18. Two representations of the four-bit parity function with (a) gate XNOR and (b) 

gates AND, OR and NOR. 

4.2.1.5. Application to hardware platform 

If conventional logic synthesis techniques are used to create a program this program must 

then be mapped onto a specific hardware platform. This is a non-trivial exercise. Whilst 

the Cartesian Genetic programs presented here are general and platform independent, CGP 

is capable of producing platform specific programs, without the need for a separate process 

for mapping a design to the space available on a specific hardware platform. To make CGP 
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specific to a platform the fitness function requires additional cost criteria. The hardware 

platform would impose specific costs (Davio et ai., 1983) e.g. 

• Routing: the physical layout of an FPGA constrains the available interconnectivity of 

cells. 

• Gate times: each type of gate requires a specific amount of time to function. 

• Delay criterion: Gate times lead to propagation delays. Clocking ensures that gate times 

are accounted for, but it can effectively make every gate as slow as the slowest. 

In addition to costs that depend on the physical platform, there are financial costs: 

• Wire costs: Wires may have to be used to connect two gates together over areas of the 

platform, using additional materials and silicon area. 

• Gate costs: the number of gates used and the number of inputs to each gate. 

• Total silicon area, not just the number of devices in the area. 

• Additional Costs: Development, Maintenance and Testing. 

The cost functions that are used may also depend on design criteria in addition to the target 

platforms physical constraints, e.g. speed, size, and fault tolerance. If speed is important 

then it could be necessary to minimise number of gates in series. 

4.3. Summary 

It was shown in this chapter that a feed-forward digital circuit can be encoded as an 

indexed graph. The function of the target circuit is encoded as a PLA file with which the 

evolutionary algorithm calculates the fitness of a genotype. The algorithm developed by 

Miller (l999a) was given and the human inputs (experimental parameters) to the algorithm 

that are required in addition to the PLA file were discussed. 

The evolutionary process of design is very time consuming and circuits larger than the 

four-bit multiplier require unreasonable amounts of computing power at present. Some 
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evolved designs were 20% more efficient than the best conventional design for an FPGA, 

see Appendix 2 (The 4x3 - bit multiplier circuit evolved from the conventional design.) 

The challenge here is to evolve large enough circuits to enable the design principles to be 

identified through comparison of larger circuits to smaller circuits of the same problem 

class e.g. multiplication. Also larger circuits have greater potential for reuse within the 

circuit and so efficiency may increase with size. Further to this, if the evolved circuits are 

modular in nature then the larger circuits should contain a greater number of larger more 

efficient building blocks, making their identification simpler. The specific problem with 

designing larger digital circuits using evolutionary techniques is that as the number of 

inputs grows the time taken for fitness evaluation increases exponentially. 

In this thesis one of two different aspects of this problem was examined. 

One aspect examines the nature of the digital circuit fitness landscapes and attempts to 

understand the structure of these landscapes in terms of their smoothness, ruggedness and 

neutrality (Vassilev et al., 2000). It has been shown how these landscape characteristics 

should effect the evolutionary search and this has led to improvements in the efficiency of 

the evolutionary search itself. 

The second aspect, the subject of this thesis, which examines the nature of the phenotypes 

themselves and attempts to discover useful sub-structures and methods that can be reused 

to create larger circuits. This also facilitates understanding of the novel and efficient 

designs through derived explanations of how to design larger circuits by reuse of smaller 

circuits. 

These two investigations are an important part of the cycle of evolutionary discovery 

discussed further in Chapter 8 and illustrated in Figure 37. 

The techniques of landscape analysis developed by Vassilev et al. (l997b, 2(00) are used 

in finding principles that should lead to a better understanding of the nature of the problem 

of evolving digital circuits, and hence, effective evolutionary search. The process of 

discerning design rules and principles from the evolved data can be seen as a form of data 

mining, thus enabling recommendations to be made about useful components and sub

structures that can also be fed back into the evolutionary algorithm and hence improve the 

evolvability of the circuits. How this in turn enhances our ability to understand the nature 
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of new designs is discussed in Section 7.5. How design principles could be identified and 

reused to solve the scaling problem using CBR, is the subject of the next section. 
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5. Evolutionary eBR for Automated Design of digital circuit programs. 

It is argued that it might be possible to identify and reuse new, efficient, and generalisable 

principles of design by studying evolved program designs of gradually increasing scale. In 

this chapter this theory is explored in the field of digital arithmetic circuit programs. The 

design knowledge that is discovered can be reused to improve the evolutionary algorithms 

search capabilities and hence increase the likelihood of identifying new principles. These 

principles could explain how to build systems that are too large to evolve without using 

larger modules in place of the current atomic logic gates. The knowledge discovery 

process is realised through the combination of EC with Case-Based Reasoning (CBR). 

Arithmetic circuits evolved using the EC described in the prevIOus Chapter 4, are 

examined specifically because conventional design approaches exploit the modular nature 

of the arithmetic functions to build increasingly large functions from smaller building 

blocks. If these building blocks also occur in the evolved designs then it might be possible 

to identify them and their potential uses to build functions of any size. Further to this, by 

examining functions of increasing size, and comparing them it may be possible to identify 

a general design principle. 

Firstly, in Section 5.1 the research set-up is described, then an explanation of the 

modularity of digital circuit program evolution is followed by details of an attempt at error 

correction in flawed evolved programs. The effects of function choice on evolvability are 

then given, showing how the modular analysis can be fed back into the evolutionary 

process. Further techniques for enhancing the capabilities of the evolutionary technique are 

then given. Next an overview of the problem of identifying principles in evolved circuits is 

given followed by a description of how CBR can be used to solve these problems and the 

experiments carried out to illustrate these techniques are described. 

5.1. Introduction 

A population of FPGA programs is evolved using EC, to meet a given functional 

specification, which is used to assess the quality of the programs being evolved. This 

functional specification is represented by a truth table in the form of a pIa file (see Table 

2), allowing exact calculation of functional correctness (some problems e.g. signal 

processing, have no precise functional specification since they involve the conversion of 

analogue signals to digital signals). Researchers have been successfully evolving 

electronic circuit programs by adopting constrained or unconstrained methods. 
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Constrained methods either temporarily ignore the need for robustness, or constrain the 

available choice of sub-programs and interconnection topologies. Unconstrained methods 

give evolution maximum freedom to exploit the full repertoire of behaviours that the 

device can produce (Miller and Thomson, 1998a; Thompson, 1996). 

A common problem with evolving digital circuits is that of errors. The EC method does 

not always produce perfect solutions, and even if it does, perfect solutions are difficult to 

understand. As the size of the programs increases, the EC produces a lower percentage of 

perfect solutions. For a limited class of tasks, FPGAs do not require perfect solutions, e.g. 

a Digital Signal Processor may process Analogue signals, so there is no precise input 

specification. However, other tasks do require perfect solutions, e.g. in addition programs, 

a 'best' solution produced by EC may require repair, and the information required to do 

this may exist in another of the EC solutions. 

The remainder of this thesis describes on-going attempts at overcoming the above 

problems with evolving circuit programs by effective integration of EC and CBR 

techniques. This research aims to adapt and reuse genetically evolved FPGA programs, 

and the sub-programs within these programs, to create larger programs at a reasonable 

computational expense. 

5.2. Digital Circuit Evolution and modules 

The evolved circuit designs are produced by Cartesian Genetic Programming with 

truncation selection and mutation. The latter is defined as a percentage of the genes in a 

single genotype which are to be randomly mutated. The population consists of 1 + A 

genotypes where A is usually about 4. Initially the elements of the population are chosen at 

random (see Section 4.1). To update the population, the operator for mutation is applied to 

the fittest genotype, and thus an offspring is generated. The offspring together with the 

parent constitute the new population. This mechanism of population update has some 

similarities to that employed in other evolutionary techniques such as (1 + A) Evolution 

Strategy (Schwefel, 1981; Back et al., 1991) and the Breeder Genetic algorithm 

(Muhlenbein and Schlierkamp-Voosen, 1993). This algorithm has enabled the automatic 

discovery of highly efficient circuits that are unusual in construction. The one-bit adder 

that was used as an example, Figure 19, was evolved and it required two gates less than the 

conventional design. The MUX gate occurs in an unfamiliar configuration, implying that 

these gates are very useful building blocks for the construction of adder circuits. 
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Interestingly, this one-bit adder automatically emerged as a building block in an evolved 

two-bit adder. This suggested that it would be worth while attempting to evolve larger and 

more complex circuits, such as the two-bit and three-bit multipliers. Indeed it was found 

that some of the evolved three-bit multipliers were 20% more efficient than the most 

efficient conventional design. 

A 

B 

Figure 19. Evolved one-bit adder with carry. 

5.3. Errors in evolved solutions 
.. 

The prospect of error repair was investigated. This was done with the intention of 

developing a method to repair the best of the faulty solutions that resulted when the 

problem was too large and complex for cap to handle. In the case of multiplier circuit 

programs repair was possible in the 3x3-bit multiplier class when a perfect solution was 

known. By replacing the faulty areas of a non-100% fit program, with the relevant areas 

from a 100% program, a faulty solution could be fixed. This was done to see how difficult 

it was to repair faulty solutions. This approach worked but resulted in inefficient solutions. 

Faults tended to be the same in each program. This is because specific outputs are 

significantly more difficult to synthesise than any other part of the solution. This means 

that it was unlikely that a fix for one faulty solution could be found in another faulty 

solution, so it followed that creating one perfect program from two faulty programs was 

not a solution to the scaling problem in multiplier circuits. 

If a fix for a faulty solution was evolved especially to fix a specific fault, the small error fix 

tended to result in an increase in the size of the program by approximately 50%. This is 

again due to the faults tending to be in the most difficult to synthesise areas of the 

program. This may not be the same for all problem classes e.g. adders, filters. 

Repair involved retrieving the best of the faulty programs from the Case-Base and 

repairing it with the evolved fix to create a perfect solution. The result is shown for a 100% 

correct 3-bit multiplier program (Table 12). 
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Table 12. The genotype for a repaired evolved 3-bit multiplier program. 

In Table 12 the dark shaded cells represent the new cells of the repair and the light shaded 

cells represent existing cells reused by the repair. The white cells are cells from the 

original program that were unchanged. In this genotype each cell contains three integers. 

The first two of these integers represent the input connections and the third integer 6, 7, or 

10 represents the function type AND, AND NOT and Exclusive-OR, respectively. The 

cells containing one integer only represent output connections. An explanation of the 

genotype representation was given in chapters 3 and 4. The cells in the table are indexed 6 

to 32, starting at the top left (index 6), numbered from left to right and top to bottom. The 

output cells (containing single integers) to not have index numbers. Index numbers 0 to 5 

represent the indices for the inputs to the program. 

5.4. An Analysis of the effects of Function choice 

An examination of how the functions made available to the Cartesian Genetic 

Programming technique affect the evolutionary process was carried out. Expert 

recommended choices of gates were 6, 7 and 10. These were chosen because of their use in 

the conventional design, and because they simplify understanding of the evolved circuits. 

They were compared to selections of allowed gates. These selections were made based on 

the frequency occurrence of each gate. The frequencies of gates were counted over large 

collections of solutions, in this case, solutions for the two-bit carry adder. The frequencies 

of gates were not calculated simply from the number of times each atomic gate appeared in 

the solutions. Instead, the modularity of the evolved designs was allowed to influence the 

calculation. To capture this influence frequencies were counted from the number of times 

each gate appeared in a 2-into-l principles e.g. Figures 31, 32 and 33. 2-into-l principle is 

a general description of one of the simplest modules. 2-into-l principles are simply two 

gates of any type connected into one other gate of any type. (2-into-l principles are 
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discussed in detail in Section 6.4 and Chapter 7). These selections (Table l3.) were made 

as testing all possible combinations of allowed functions is unfeasible. 

Set number Allowed functions 
1 (Expert recommended functions) 6,7,10 
2 1O,11,l3 
3 6,1O,11,l3 
4 6,8,10,11,13 
5 6,8,1O,11,l3,14 
6 6,8,9,10,11,13,14 
7 6,7,8,9,1O,11,l3,14 
8 6,7,8,9,10,11,12,13,14,15 

Table l3. Allowed functions in each test. Functions selected were based on the functions 

appearance in a frequency count of 2-into-l principles for the 2-bit Carry Adder with 

allowed functions 6 to 15 inclusive. 

There were several tests: 

The first test was to examine the effect of allowed functions on the number of 100% 

solutions generated. As the number of different functions made available to the CGP 

increased it became easier to achieve a 100% solution, and so more 100% solutions are 

achieved (see Figure 20). This effect reached a plateau if 4 (sets 3 to 8) or more functions 

were allowed from the complete list of functions given in Table l3. This result simply 

illustrates the fact that some circuits are difficult to synthesise with certain allowed gates, 

as explained in Section 2.2 on conventional circuit design. A significant effect observed 

here was that the expert recommended set (set 1) of allowed gate choices gave rise to a 

large number of behaviourally duplicate 100% solutions. Approximately 50% were 

duplicates, compared to set 2 that gave approximately 10% duplicates (see Figure 21). 
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Figure 20. Graph of the number of 100% correct solutions produced by each set in Table 

13. 
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Figure 21. Graph of the number of unique 100% correct solutions produced by each set in 

Table 13. Unique solutions are those solutions left after behavioural duplicates have been 

removed. 

In the other tests it was discovered that set 2 was out performed by set 1 in the average 

fitness of all solutions produced (see Figure 22), and set 1 also required fewer generations 

(see Figure 24), but sets 3 to 8 out performed sets 2 and 1. Sets 3 to 8 gave a slightly higher 

average fitness by approximately 1%. Sets 2 to 8 gave rise to far fewer behavioural 

duplicates. In general the number of generations required to achieve 100% solutions 

decreases as the number of allowed gates increased. 
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Set 1 (the expert recommended set of allowed functions) was chosen for its use in the 

conventional design and to ease understanding of the resulting circuit. The only significant 

results were that Set 1 produced many more duplicate solutions than sets 2 to 8 (see Figure 

23), and that it was expected that the number of behavioural duplicates would decrease as 

the number of allowed functions increases, due to the greater number of possible 

combinations. However this is not the case. This is possibly because the amount of 

duplication created by sets 2 to 8 (See Figure 23) is not high enough to show this effect. 

So, overall, Set 1 favours the study of digital arithmetic circuits, as they are easier to 

understand and compare to conventional designs and it also gives rise to a smaller range of 

solutions. These results suggest that Set 1 produces a smaller search space; further 

examination is required to determine such a result. 
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Figure 22. Graph of the average fitness of the number of unique 100% correct solutions, 

produced by each set in Table 13. 
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Figure 23. Graph of the number of 100% correct solutions that were behavioural 

duplicates, produced by each set in Table 13. 
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Figure 24. The average number of generations used by unique solutions, using each set in 

Table 13. 

5.5. Seeding 

Seeding is an approach to CGP where instead of using a randomly initialised population at 

the beginning of the execution of the CGP, a predetermined program is given and the CGP 

attempts to improve upon this existing program. This seed program can be a partial 

solution e.g. known optimal program parts for the given problem, or it could be a complete 
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program of similar but not identical function. A particularly interesting method of seed 

selection is to seed the CGP with a known conventional solution to the given problem. 

5.5.1. Seeding with a conventional solution 

An effective way of obtaining the optimum solution for a circuit is to use a solution created 

using conventional techniques to seed the genotypes for the CGP. To generate an optimal 

circuit for a given problem, e.g. 3x3 multiplication, the CGP can be seeded with a 

conventional design for a 3x3-bit multiplier. This means that the CGP does not have to 

evolve a solution from scratch and can simply optimise the conventional solution. 

Solutions produced by this technique cannot be differentiated from purely evolved 

solutions. 

The CGP technique could be used to re-map an existing solution for a current hardware 

platform to a new hardware platform. An existing solution could also be optimised for size 

or speed. 

The conventional seed technique allows CGP to examine the entire search space (Figure 

4). In this thesis the only limitation to the search is that only improvements in size improve 

the fitness (Since the conventional seed is 100% functionally correct). In this way the 

space of 100% correct solutions that contains the conventional solution can be specifically 

searched, looking for more optimal circuits. Evolving large circuits from scratch rapidly 

becomes impossible as their size increases, so this is one effective method of obtaining 

evolved solutions of increasing size with which the study of the principles of scale can be 

further explored. 

A 4-bit multiplier has been evolved from the conventional design. It consists of 57 two

input logic gates and is 10.93% more efficient (in terms of the number of two input gates 

used, see the FGPA cells in Table 10) than the most efficient known conventional design 

(64 two-input logic gates). This evolved design can be seen in Figure A 2.5. 

In some cases it is known that some parts of a seed solution cannot be optimised further. 

For this reason it is much more efficient if the CGP is not permitted to attempt to optimise 

these parts of the seed. One technique to prevent this is 'Lock-down'. 

5.5.2. Lock-Down 
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It is possible to reduce the amount of work done by CGP by fixing the position, inputs and 

fitness of cells of the genotype to a configuration that is known in advance to be optimal. 

This is referred to as 'lockdown' and avoids CGP wasting valuable processing time. 

Lockdown is a technique that improves efficiency and is used in addition to seeding. With 

Lockdown, one or more of the cells of the seed chromosome are 'locked down' or fixed, so 

that the CGP does not attempt to mutate these cells. This means that these cells never 

change during the execution of the CGP. This speeds up the processes of the CGP as time 

is not spent selecting these cells for mutation or on rejecting a chromosome where one of 

these cells has be detrimentally mutated producing a less fit chromosome (Miller et ai., 

1997). 

The lockdown technique is very effective as larger circuits have larger areas that have 

obvious lockdown potential. A technique similar to lockdown was first shown by Miller et 

al. (1997). Miller pre-calculated the truth table into a form where the products of inputs 

were already assumed. This pre-calculation of the behaviour of the locked cells can further 

speed up the process. In this case the evaluation function does not have to recalculate the 

behaviour of the locked cells. This leads to a significant speedup. This specific method 

(Miller et al., 1997) cannot be applied to the general seeding technique, as it requires that 

the cells to be locked down start with the first cell in the program and are in a contiguous 

unbroken block. However, this is convenient, as the cells that are most obvious candidates 

for lockdown are those at the beginning of the program. In the case of multiplier problems 

these cells are nearly always AND gates giving the products of inputs. It can be observed 

from the statistics on input triples that this is nearly always the case in evolved solutions 

and conventional solutions. Further to this it is apparent, in the case of multiplier programs 

that PO and PI do not have more optimal representations than those shown in Figure 15 b 

do, and so these too can be locked-down. 

To examine the effects of lockdown an experiment was conducted. Firstly, one hundred 

4x3-bit multipliers were evolved from scratch (Table 14.) and secondly, one hundred 4x3-

bit multipliers were evolved using lockdown of ten cells (Table 15.). The ten cells locked

down in the seed used here were taken from an evolved 3x3-bit multiplier. They were the 

nine AND gates connected to program inputs and one additional cell required for 

producing output PI. An evolved 3x3-bit multiplier was used to obtain the seed for this 

experiment to show the potential for reusing existing evolved material to overcome the 

scaling problem. 

73 



5. Evolutionary CBR for Automated Design of digital circuit programs. 

It can be seen in Tables 14 & 15 that lockdown increases the number of 100% functional 

solutions. Lockdown also gives more optimal solutions (with respect to the number of two

input logic gates used). A locked-down program on average uses 38 cells whereas without 

lockdown the average number of cells used is 43 in this case. The number of 'generations' 

is defined to be the number of generations taken by an evolving solution to get to a given 

functionality-based fitness score, until 100% functionality is achieved, then increases in the 

fitness score reflect reductions in the number of cells used. The number of generations 

required to reach 100% functionality remains almost unchanged, but evolving using 

lockdown wastes no generations evolving or changing the already optimal 'locked down' 

cells. This means that it takes fewer generations to evolve a 100% functionally correct 

program so a greater number of generations can be spent optimising the size of the 

program. More generations are reported by 'all solutions' without lockdown as it takes a 

greater number of generations to converge towards a 100% solution. 

100 chromosomes (structural) reduced to 100 chromosomes 

There were 0 structural duplicates 

There are 9 100% fit chromosomes 

The average fitness is: 99.2556% standard deviation: 0.447214 

The average number of all solution generations is 24,780,863 with a standard deviation of 5,305 

The average number of 100% solution generations is 25,681,579 standard deviation of 21 ,555 

100 chromosomes (behavioural) reduced to 100 chromosomes 

There were 0 behavioural duplicates 

There are 9 100% fit chromosomes 

The average fitness is: 99.2556% standard deviation: 0.447214 

The average number of all solution generations is 24,780,863 with a standard deviation of 5,305 

The average number of 100% solution generations is 25,681,579 standard deviation of 21,555 

The smallest number of gates used was 42 by chromosome #24 

Table 14. Statistics for 100 4x3-bit mUltipliers evolved without using Lockdown. 
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100 chromosomes (structural) reduced to 100 chromosomes 

There were 0 structural duplicates 

There are 23 100% fit chromosomes 

The average fitness is: 99.625% standard deviation: 0.2 

The average number of all solution generations is 23,346,202 with a standard deviation of 5,321 

The average number of 100% solution generations is 25,487,594 with a standard deviation of 1,558 

100 chromosomes (behavioural) reduced to 100 chromosomes 

There were 0 behavioural duplicates 

There are 23 100% fit chromosomes 

The average fitness is: 99.625% standard deviation: 0.2 

The average number of all solution generations is 23,346,202 with a standard deviation of 5,321 

The average number of 100% solution generations is 25,487,594 with a standard deviation of 1,558 

The smallest number of gates used was 37 by chromosome #25 

Table 15. Statistics for 100 4x3-bit multipliers evolved usmg Lockdown. 

The increase in computing power required to evolve multipliers of increasing scale can be 

seen in Figure 25. Figure 26 shows the number of generations required to evolve multiplier 

circuits of increasing scale. 
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Figure 25. Time taken by a Pentium 200MHz computer to perform lO,OOO generations 

with a population of five elements for various multiplier circuits. 
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Figure 26. Number of generations required to evolve multiplier circuits of increasing scale. 

Lock-Down is also useful for producing pairs of increasingly large circuits that can be 

matched. Seeding the CGP with the smaller of the two required circuits and locking-down 

the complete circuit ensures that the resulting larger circuit contains the smaller circuit. 

This enables the evolution of expansions for the multiplier circuits. 

However, locking down a complete small circuit (e.g. a 2x2-bit multiplier) to use as a seed 

for a larger circuit (e.g. 3x2-bit multiplier) results in very inefficient results for the larger 

circuit. This is because parts of the smaller circuit need to be replaced by sub-circuits with 

additional functionality in order to produce efficient results. This is explained in detail in 

Chapter 7. 

5.6. Identifying Principles in Evolving Circuits 

The study of evolutionary design of digital circuits involves the examination of products 

and the processes. The processes can be considered as a search on a fitness landscape. The 

next section gives a brief outline of the current research into the processes involved in 

circuit evolution landscapes, and the following sections give a detailed analysis of the 

products produced by this process. 
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5.6.1. Fitness landscapes 

Miller et al. (2000b) showed that circuit evolution landscapes are quite different from 

many recently studied landscapes. The notion of a fitness landscape is an important 

concept in evolutionary computation. The metaphor is taken from biology and it expresses 

the idea that Evolution can be considered as a population flow on a surface in which the 

altitude of a point qualifies how well the corresponding organism is adapted to an 

environment. In addition to this Miller et al. (20oob) examined the role of neutrality and 

the importance of its role in the evolutionary search was progressed. The difference 

originates in the structure of the genotypes which are defined by internal connections, 

functions and outputs, not just one alphabet, but three (Miller et al., 2000b; Vassilev et al., 

2000). This gives rise to complicated relationships between the genes within the genotype 

which makes the study of the landscapes much more convoluted. 

In Vassilev et al. (1999a and 1999b) a model for studying the structure of circuit evolution 

landscapes was introduced. The model is employed to investigate the structure of circuit 

evolution landscapes in terms of the interplay between smoothness, ruggedness and 

neutrality. The smoothness and ruggedness are related to the fitness differences between 

neighbouring points whereas the neutrality refers to the flat landscape areas (Stadler, 1996; 

Reidys and Stadler, 1998). The study of the characteristics of these landscapes is an 

important concern in digital circuit Evolution both for their scalability and in the 

importance of choosing appropriate sets of logic functions used in the assembly of the 

digital circuits. The research (Vassilev et al., 1999a and 1999b, 2000) concentrates on 

landscapes associated with five digital circuits, a two-bit multiplier (Figure 15 a), two 

three-bit multipliers (Figures 16 and 17), and two four-bit parity functions which are 

evolved by evolutionary algorithms. The interplay of the landscape smoothness, 

ruggedness and neutrality is studied by an information analysis based on that given by 

Vassilev (l997b). It is shown that the digital circuit Evolution landscapes are characterised 

by vast and sharply differentiated landscape plateaux. It is also shown that the continuity of 

these landscapes depends on the scale and the set of logic functions used in the assembly 

of digital circuits. 

It is beyond the scope of this thesis to give a complete description of this examination of 

fitness landscapes. Further details can be found in Vassilev et al. (2000); Miller et al. 

(2000b). 
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5.6.2. A Problem of Scale and a possible Solution 

In the design process it has long been accepted that the best way to solve a problem is to 

decompose the problem into several simpler sub-problems and solve these sub-problems. 

One difficulty with evolving digital circuit programs is that it is computationally 

expensive, particularly for larger programs. Since more complex functions and larger 

numbers of inputs require exponentially larger circuits to produce a solution there is a limit 

to the size and complexity of a circuit program that can be evolved. This is referred to as 

the scaling problem. 

Chapters 6 and 7 describe efforts to overcome the scaling problem. The approach attempts 

to decompose the solution programs produced by the evolutionary algorithm. This involves 

extracting meaningful sub-programs, or design principles, from the evolved solutions, and 

using them to try to solve the scaling problem and also to help in understanding the way 

the evolved solutions work. 

Principle extraction and reuse is achieved by integration of Evolutionary Computation and 

CBR techniques. This section discusses the features of evolved programs that will facilitate 

creation of a Case-Base that will allow for adaptation and reuse of evolved Binary 

Cartesian Genetic programs, and the sub-programs within these programs, to create larger 

programs at a reasonable computational expense. 

It has been shown in Section 4.2.2 that arithmetic adder and multiplier circuits are modular 

in construction and so are useful functions to study and refine techniques of principle 

extraction. Modularity by definition allows very large systems to be constructed by 

connecting modules together. It is clear that as multiplication is a process of repeated 

addition, multiplication circuits can be built by using AND gates to perform elementary 

one-bit multiplication and then binary full-adders connected in an arrangement called a 

cellular array. When biologically inspired algorithms such as evolutionary algorithms are 

allowed to design the building blocks and assemble the parts an amazing number of 

potentially new designs may be created. The fundamental question (TFQ) stated in Section 

2.3, in one instance was positively answered by Miller et al. (1997) where it was shown 

that the principle of the ripple-carry adder could be inferred by studying evolved designs 

for one-bit and two-bit adders. This process of data-mining from evolved solutions 

potentially allows a complete cycle of principle extraction (Figure 2). The extracted 

principles by making recommendations as to useful components and sub-structures may 

feed back into the evolutionary algorithm. 
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These essential sub-structures when collected together and subjected to analysis might lead 

to the discovery of a new principle. Chapter 7 discusses a "finger printing" technique 

applicable to the genotype discussed previously that reveals the type and frequency of 

embedded sub-structures. Initial examination of the principle extraction problem showed 

that by using this finger printing technique it was possible to find known human principles, 

and additionally find hitherto unknown principles. 

5.7. Summary 

It was proposed in this chapter that through a combination of EC and CBR that it may be 

possible to extract generalisable principles of design from evolved solutions and use them 

to overcome the limitations of EC. The problems involved in repairing failed evolved 

solutions were discussed, showing why repair may not be a practical solution to the scaling 

problem. An analysis of the effects of function choice made available to the EC was given, 

showing that the expert recommended set of allowed functions favours the study of digital 

arithmetic circuits. 

Three methods, seeding, seeding with the conventional solution and lock-down were seen 

to reduce the scaling problem shown in Figures 25 and 26. A potential solution to the 

scaling problem through the combination of EC and CBR was then discussed. 

Chapter 6 covers a potential solution to the problems in the reuse of evolved circuit 

programs. The methods that are used to process the evolved programs to create a Case

Base are described in Section 6.2. Chapter 7 describes how CBR is a suitable technique for 

the automatic identification of principles. In chapter 7 results of the experiments and their 

analyses are presented. 
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6. CBR as a potential solution to the reuse problem 

This chapter examines the initial problems involved in reusing FPGA programs that have 

been evolved using CGP. Large collections of FPGA programs have been evolved, each 

collection being a collection of FPGA programs that solve a specific problem e.g. the 3x3-

bit multiplication problem, the 3-bit carry adder problem. The reuse of these collections of 

solutions to solve new and larger problems is not a trivial task. A significant problem here 

is the refinement and understanding of the unrefined and undocumented CGP generated 

FPGA programs. This chapter shows how the unrefined data can be refined and 

documented in an automated way, to build a useful Case-Base. 

A Case-Base is built to enable the implementation of a CBR system. This chapter shows 

that CBR can be used as a 'principle' identification technology. The notion of 'a principle' 

is defined in this research as being any knowledge that is generally applicable to at least 

one design problem, such as the 2-bit carry adder problem. Two examples of principles 

would be: the I-bit carry adder that can be ripple-chained to produce a 2-bit carry adder 

(Figure 3); and the '2-into-l' example (Figure 28), a common building module seen in 

evolved multiplier circuits, discussed in the next section. 

6.1. CBR as a Principle Identification Technology 

One potentially suitable solution to the scaling problem is to find a way to reuse evolved 

Cartesian Genetic Programming programs using CBR. CBR is an artificial intelligence 

technique that is designed to reuse past experiences to solve new problems. It can provide 

answers to problems in poorly understood complex domains; it does not require a domain 

model or rules; and it can provide an explanation of its own reasoning. 

CBR can provide selection, retrieval and adaptation of old software solutions to solve new 

problems and it has been successfully used as a reuse system for retrieving and adapting 

software artefacts (Maguire et ai., 1995; Smyth, 1996). Case-Based reasoning has already 

been successfully applied to the understanding of evolutionary produced designs (Hunt, 

1995; Maher et ai., 1996). This suggests that CBR could be used for understanding, 

retrieving and adapting evolutionary designs, to solve new problems. CBR also provides a 

scalable approach, and can be used to create designs larger than the designs that make up 

its source material (its Case-Base). CBR provides data mining, indexing, matching, 
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retrieval and adaptation, and these techniques should assist the process of principle 

identification and application. 

CBR can partly address the problem of scaling up evolved digital circuit programs. The 

scaling problem might be overcome by effective reuse of principles contained in the 

evolved programs. Identifying these principles is however a very complex task. CBR relies 

upon Cases that have known structure, e.g. attribute value pairs. Since evolved programs 

lack any "understanding" incorporated in their structure, all knowledge beyond their 

functionality must be identified before a useful Case-Base can be built. These principles 

might be able to be recombined and adapted to create new designs for new scaled-up 

problems. 

Evolutionary algorithms have been successfully used as a "knowledge lean" method to 

generate knowledge for a Case-Base in earlier research (Hunt, 1995). This thesis differs 

significantly from previous work as the phenotypes (programs in this work), used in 

previous evolutionary algorithms, have had clearly defined components that make 

generation of a Case Base simple. It was shown that an evolutionary algorithm is the only 

general method for producing efficient solutions. 

This evolutionary design approach raises several questions: 

1. What knowledge exists within the evolved programs that may be of use? 

2. How can this knowledge be automatically identified and utilised? 

3. How can this knowledge be reused? 

To answer these questions the following approach was taken. In human designs small 

programs are designed, and then linked together to make larger programs. For this reason 

collections of evolved programs were examined to see if such principle sub-programs 

could be identified (small reusable program blocks) with methods for assembling them 

into larger programs. This facilitates understanding of how the evolved programs work. In 

general these principles may consist of small sub-programs that have been extensively 

used throughout a large number of programs of different functionality, and the methods for 

assembling them into larger programs. An example of an identified sub-program that is 

used in a larger program is shown in Figure 27. 
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I----------------~ 

3 1 4 'i 
~~------~I~ : 

--.... 8: 
1 

1 
1 

Sub-program 

1 P 
: '_~ 0 

1-----------------1 Unusual reuse features 

o 

Figure 27. A novel sub-program and two unusual features of reuse in the evolved two-bit 

multiplier. The labels from 0 to 10 refer to the connection points in the corresponding CGP 

program. 

Each principle contains knowledge pertaining to a particular sub-program. Collections of 

principles form the Cases in the Case-Base. Case-Based retrieval is then used to retrieve 

appropriate principles based on specified requirements. Suitable adaptation techniques 

such as those developed by Hanney (1996), Giraud-Carrier (1996) could be applied to 

build larger and more complex programs that are too computationally expensive to be 

evolved. Since the required functionality of programs can be specified as a truth table, the 

sub-programs that make up the complete design obtained by Case-Based Reasoning can be 

tested automatically. 

An example of an identified sub-program that can be reused to create larger programs is 

shown in Figure 28. It can be seen in Figure 27 that gates 6, 7 and 9 are the same sub

program as the "2 into 1 example" shown in Figure 28, that has been used to form part of 

the larger program. 
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Sibling example~ __________ _ 
r---, 1 
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2 into 1 example 

Figure 28. Two examples of sub-program format shown here in the conventional 2-bit 

multiplier. The pIa file for the 2-bit multiplier is given in the appendix. 

Repair of faulty solutions can be achieved by Case-Based substitution. The parts of the 

solution program where error(s) have occurred are identified and replaced with error free 

substitutes from other Cases that do not display the errors. In a similar manner CBR may 

be used to optimise the evolved programs produced for specific purposes, e.g. routing, 

speed, size. 

6.2. Automatic Creation of a Case-Base for Reuse 

In this research, BCG programs were evolved from randomised starting populations and 

then processed to create a Case-Base. The best solution from each run of the CGP is added 

to the raw Case-Base. These raw programs are then processed to make a useful Case-Base. 

The following experiments do not examine the evolutionary technique itself, but 

investigate the solutions produced by the technique. The pre-processing is achieved in 

several stages. 

The preliminary stages involve refinement of the data to make the applications of CBR 

functions like matching and retrieval viable. These stages are: evaluation; removal of 

imperfect solutions; removal of duplicates; removal of redundant information; 

compression; normalisation; reduction and refinement rules; test evaluation; calculation of 
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behaviour; removal of behavioural duplicates; statistical measurements to aid user 

understanding. A detailed description of each stage follows. 

6.2.1. Evaluation 

The first stage, evaluation is the same as the fitness function used by the CGP used to 

evolve the circuits (Section 4.1.2.). 

6.2.2. Remove imperfect solutions 

Chromosomes (Cases) with less than 100% fitness are deleted for several reasons. The 

main reason is to speed up the subsequent processing. It is also possible that they are of no 

value to the problem solving process as they always contain less useful information than a 

perfect solution. This is made apparent when examining repair of these imperfect solutions 

as shown in Section 5.3. Imperfect solutions could be useful in Cases where no perfect 

solutions have been found for a given problem, as they may represent partial solutions, and 

could be combined with each other or with seeding and lockdown techniques to provide a 

perfect solution. 

In the case of multiplier programs it can be seen on analysis of the 'output chains', Section 

6.6, that one output is significantly more difficult to synthesise than all of the other 

outputs. This makes it probable that most, if not all, flawed solutions contain a flaw in the 

same output chain, in similar areas. This would mean that all flawed solutions have the 

same or similar flaw and could not therefore be used in combination to create a flawless 

program. This may not be the case for other problem classes, e.g. the Sbox problem (see 

Appendix 2). 

Imperfect solutions may contain interesting information about the evolution of digital 

circuits but a complete analysis of them would require an extensive amount of research too 

great to cover in this thesis. 

6.2.3. Removal of duplicate programs 

The CGP runs can produce structurally identical programs. These duplicates are removed 

to speed up the pre-processing and the CBR cycle. Although duplicates are of no use to the 

CBR cycle, it may be useful to know the frequency of occurrence of each structure found. 
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This information can be useful when examining the search space. The frequency data 

could also be useful to guide the CBR system into 'easier' territory, the hypothesis being 

that structures that are common are easier for the CGP to find and therefore may be easier 

to adapt, as the required adaptation may be easier to find. This notion of 'Fishing in a well

stocked pond', is a subject for future work. In order to compare the structures of the EC 

produced programs they must be processed to ensure that structurally identical programs 

have identical chromosomes (genotypes). To ensure this conformance several processes 

are required. Redundant cells are emptied, then the remaining cells are compressed and 

normalised. The empty cells left at the end of the chromosomes after these processes are 

not removed. This facilitates matching of chromosomes, as they are the same size, even 

when the programs they describe are different sizes. These processes are shown in Figure 

29 and explained in greater detail next. These steps simplify comparison of programs. 

Program chromosOIre created by EC: 

Redundant 
Cell 
Removal 1 X 1 X X 1 1 

Compression 1 / ~ 
_II 

Nonnalise 1 1 1 1 

X 

Key: 
• Used cell 
o Unused cell 
X Deleted cell 

Figure 29. Refining the chromosomes. 

6.2.4. Removal of redundant information 

This stage involves the removal of redundant information left over from the evolutionary 

process. Here redundant cells that are not connected to the rest of the program are 

removed. This is followed by compression and normalisation of the remaining programs to 

facilitate the CBR functions of matching, retrieval and adaptation. 
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6.2.5. Compression 

Compression involves removal of the spaces left in the genotype after redundant 

information has been removed, see Figure 29. This is done to increase the likelihood that 

chromosomes describing identical phenotypes will have identical chromosomes. This 

facilitates the removal of duplicates and the matching processes. For this same reason the 

chromosomes are also normalised, described next. 

6.2.6. Normalisation 

Normalisation reorders differently ordered cells within a genotype with the same function 

into a standard form. Example: 

Given the cell: 

19 18 16 

As 6 represents the AND function, it is obvious that the two inputs 9 and 8 can be 

reordered as: 

CGP could produce either of these cells, but they are identical in their function. 

Some functions e.g. 'a AND NOT b' (function 7) cannot have their inputs rearranged in 

this manner unless the cells referred to by the indices, 8 and 9 in this case, are themselves 

swapped over in their index positions. 

6.2.7. Reduce and refine (remove inverter pairs) 

It is possible for further reductions to be made. Firstly a cell may have identical inputs e.g. 

the cell: 

In this case the cell can be completely removed from the program and the connections of 

the relevant cells can be reconnected directly to cell 8. 

Next, inverter pairs may occur. This could happen, for example, when a NAND- (NOT a 

AND NOT B) gate is the second input to a type 7 gate (a AND NOT b). In this instance the 

NOTs cancel out and the NAND gate can be replaced with an AND gate, and the type 7 
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gate replaced with a type 6 gate (a AND b). This can only be done if no other cells 

reference the NAND gate as an input, unless that cell itself has an inversion on the relevant 

input, and then that inverter can also be removed. A full list of rules governing the removal 

of inverter pairs is given in Table 16. 

If the function is Then 
11 and input A is from type 15 change 15 to 6 and 11 to 10 
11 and input A is from type 9 change 9 to 12 and 11 to 10 
7 and input B is from t,YQe 11 change 11 to 10 and 7 to 6 
7 and input B is from type 9 change to 12 and 7 to 6 
7 and input B is from type 15 change 15 to 6 and 7 to 6 
14 and input B is from type 11 change 14 to 12 and 11 to 10 
14 and input B is from type 9 change 14 to 12 and 9 to 12 
14 and input B is from type 15 change 14 to 12 and 15 to 6 

Table 16. The table of rules used to remove inverter pairs. These changes are only applied 

if the fitness of the subject program is not affected. The numbers refer to the function types 

given in Table 10. 

6.2.8. Test evaluation 

The primary evaluation procedure used by the CBR is a modified extension to the 

evaluation procedure used by the CGP. The modification is that this evaluation uses I-bit 

arithmetic, not the 32-bit approach explained in Section 4.1.2. The extensions are the 

calculation of behaviour and the recording of errors found. The error recording procedure 

uses the I-bit instead of 32-bit approach to simplify error recording. When using the 32-bit 

approach the information regarding the position of the errors within the 32-bit word is not 

immediately available. 

6.2.9. Calculate Behaviour 

The behaviour of a BCG program is represented by the binary outputs of every cell for the 

given function. In Table 17 the structure (genotype) can be seen for an example of a 3x2-

bit multiplier, and the function and behaviour of this circuit can be seen in Table 18. 

87 



6. CBR as a potential solution to the reuse problem 

0416 2326 2416 1366 0366 1456 
8767 5110lO 11567 5806 6lO0lO 8 13 13 lO 
9162 lO 000 -1 000 -1 000 -1 000 -1 000-1 

000 -1 000 -1 14 17 12 15 
7 

Table 17. Structural knowledge in a program Case for a 13 gate 3x2-bit multiplier, evolved 

using gates 6, 7 and lO (see Table 10.). This representation follows that shown in Figure 7, 

but also shows the additional 3rd input used in Miller's representation. Note that even 

though the 3rd inputs are shown, none of the gate types used in this example use the third 

input, as only the MUX cell type (see Table lO) uses three inputs. As there are three inputs 

for each of these cells, the fourth number in each cell represents the gate type. 
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Inputs Behaviour of genotype from Outputs 
a2 al aO bl bO cell index 5 to cell index 24 p4p3 p2 pi pO 
00000 00000000000000000000 00000 
00001 00000000000000000000 00000 
00010 00000000000000000000 00000 
00011 00000000000000000000 00000 
00100 00000000000000000000 00000 
00101 00 I 00000000000000000 00001 
00110 0100000000 I 000000000 00010 
00111 0110000000 I 000000000 00011 
01000 00000000000000000000 00000 
01001 00000 I 0000 I 000000000 00010 
01010 00010011100000000000 00100 
01011 00010111101000000000 00110 
01100 00000000000000000000 00000 
01101 00100100001000000000 00011 
01110 01010011101000000000 00110 
01111 01110100000110000000 01001 
10000 00000000000000000000 00000 
10001 1000000 I 000000000000 00100 
10010 0000 I 0000000 I 0000000 01000 
10011 1000 I 00 I 0000 I 0000000 01100 
10100 0000000000000000000 00000 
10101 1010000 I 000000000000 00101 
10110 0100 I 00000 I 0 I 0000000 01010 
10111 11101001001010000000 01111 
11000 OOOOOOOOOOOOOOO 00000 
11001 10000 I 0 I 00 I 000000000 00110 
11010 00011011100010000000 01100 
11011 10011110011100000000 10010 
11100 00000000000000000000 00000 
11101 10100101001000000000 00111 
11110 01011011101010000000 01l1O 
11111 11111101010100000000 10101 

Table 18. Binary representation of inputs outputs and behaviour for the 3x2-bit multiplier 

program shown in Table 17. The behaviour column beneath cell index 5 gives the 

behaviour for the first cell in the genotype in Table 17. 

Due to the difficulty in interpreting large binary tables like that shown in Table 18, the 

columns are compressed into 8-bit base 10 integers, see Table 19. Each row in the 8-bit 

compressed representation represents a column of 4x8 bits from the binary representation. 

The first six rows (in the 8-bit compressed representation) represent the inputs to the 

program, and the last six rows are the outputs of the program. The rows in-between 

represent the output or Behaviour of each cell in the program. 

32-bit or 16-bit compression could be used instead of 8-bit compression, but these 

representations are not as easy to interpret as base ten 8-bit integers. This facilitates human 

understanding of the behaviour, and gives a speed up in processing over the binary case, as 

explained in Section 4.12. 
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Inputs 
a2 0 0 255 255 
a1 0 255 0 255 
aO 240 240 240 240 
b1 204 204 204 204 
bO 170 170 170 170 

Cell Behaviour 
No. 
5 0 0 170 170 
6 192 192 192 192 
7 160 160 160 160 
8 0 204 0 204 
9 0 0 204 204 
0 0 170 0 170 
11 0 76 0 76 
12 0 76 170 230 
13 0 76 0 68 
14 0 0 0 136 
15 192 106 192 106 
16 0 128 0 136 
17 0 128 204 68 
18 0 0 0 0 
19 0 0 0 0 
20 0 0 0 0 
21 0 0 0 0 
22 0 0 0 0 
23 0 0 0 0 
24 0 0 0 0 

Outputs 
p4 0 0 0 136 
p3 0 128 204 68 
~2 0 76 170 230 
pi 192 106 192 106 
pO 160 160 160 160 

Table 19. 8-bit compressed base 10 integer representation of behaviour shown in binary in 

Table 18. Each column in the binary representation is compressed into 8 bit integers shown 

in the rows above. 

6.2.10. Remove Behavioural Duplicates 

This stage of processing removes programs that have identical behaviour. If two programs 

are said to be behavioural duplicates it means that there is a one to one correspondence 

between behaviour rows (in the 8-bit view), although the rows may be in a different order. 

The behavioural match is a more powerful matching function than the structural match as 

it can find identical behaviours where structures are different. This because behaviours 

capture the context in which structures are used i.e. the binary states of a structure for a 

given set of inputs. 
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6.2.11. Behavioural reduction 

This stage examines the behaviour of the circuit to see if any two gates in the same 

program have the same behaviour, and then deletes the surplus one. This is made unlikely 

with the additional fitness function given in Section 4.1.2 that optimises the size of the 

circuit. The additional fitness function makes duplicate behaviour contribute to a poorer 

fitness value. 

6.2.12. Statistics 

The statistical measures (see Figure 30) can be invoked at any point during the pre

processing and CBR cycle to show the changes in the information in the Case-Base made 

by the different processing algorithms. The basic measures are: the number of perfect 

solutions in a test sample; the average number of generations required to produce a) all 

perfect solutions b) all solutions, and their standard deviations; the average fitness and 

standard deviation. 

500 programs (structural) reduced to 500 programs 

There were 0 structural duplicates 

There are 435 100% fit programs 

The average fitness is: 99.915% standard deviation: 0.0632455 

The average number of all solution generations is 102973 with a standard deviation of 1713 

The average number of 100% solution generations is 113912 with a standard deviation of 2071 

500 programs (behavioural) reduced to 152 programs 

There were 348 behavioural duplicates 

There are 129 100% fit programs 

The average fitness is: 99.8931 % standard deviation: 0.114708 

The average number of all solution generations is 106920 with a standard deviation of 4009 

The average number of 100% solution generations is 120910 with a standard deviation of 5057 

The smallest number of gates used was 13 by program #0 

Figure 30. An example of basic measurements made on a Case-Base of 500 3x2-bit 

multipliers. 

6.3. Smallest number of gates used 

This stage simply counts the number of gates used by each circuit and can deliver a top-ten 

of smallest circuits in a Case-Base. This is done on a first found basis, e.g. if there are 
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more than 10 equivalent sizes the first found are reported, see Figure 30 above. This is 

useful for locating individual programs for inspection. 

6.4. Two into One Principles 

The frequencies of specific instances of the two into one principle, counted over 

collections of solutions to problems, show modularity and common structures. These have 

been divided into two main types, input 2-into-l and internal 2-into-l. Input 2-into-l are 

those 2-into-l principles that consist of two inputs to the program and one gate. Internal 2-

into-l principles are those that consist of two gates feeding into 1 gate, as shown in Figures 

31 & 28. 

6.5. Sibling principles 

'Sibling principle' is the name given to two gates that share the same inputs, (see example 

in Figure 28). 

6.6. Extract chains 

Chains are the sub-programs that show the parts of the program that are responsible for an 

individual output only. These are useful for showing which outputs are most difficult to 

synthesise. This information could lead to a more effective evolutionary search being 

defined for a specific problem or problem class. 

6.7. The Case and indexing 

A program Case consists of function; structure; behaviour; fitness; frequency of occurrence 

(of the individual circuit), the number of gates used, and the number of generations taken 

when the last improvement occurred. A full example of a Case is given in Appendix 6. 

The programs in the Case-Base can be indexed by any of their attributes. This facilitates 

experimentation. The primary indices are the program function and fitness. There are 

additional indices that could be defined e.g. length (max. number of gates in series), depth 

(max. number of gates in parallel), These additional indices would be useful for optimising 

various costs e.g. speed, surface area used etc, see Section 4.2.1.5. An example of a Case is 

given in Appendix 6 - an example Case. 
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The indexing mechanism used to index cases in the case-base is a case-based index 

(Kolodner, 1993). In this thesis each program is part of a Case in the Case-Base. Each Case 

stores its own information pertaining to its similarity to all other Cases. This information 

relates to the following four indexes. The functional index uses the function type that each 

program was designed for e.g. 3x2-bit multiplier. The structural index uses the structure of 

the programs themselves e.g. see Table 17. The behavioural index uses the behaviour of 

each program e.g. see example Table 19. Matching of Cases is achieved using the Nearest 

Neighbour Matching function that gives the ranking of Cases (Kolodner, 1993). In this 

way the index needs only be calculated once, and additional Cases can be indexed in linear 

time proportional to the number of Cases in the base. Adaptation Guided Retrieval (AGR) 

(Smyth, B., 1996) is used when retrieving candidate Cases for adaptation. Using AGR 

means that the Case that can best be adapted to produce a solution is retrieved. In 

conventional retrieval the Case that most closely matches the problem definition is 

retrieved, regardless of what adaptation knowledge is available. In the approach presented 

in this thesis AGR is used to retrieve a Case that can be adapted by existing adaptation 

knowledge, to produce a solution. 

6.8. Summary 

In this chapter CBR was discussed as a principle identification technology. CBR can partly 

address the problems of scale through identification, reuse and adaptation of existing 

evolved solutions to solve new problems. The notion of the 'principle' or small reusable 

program block, and some of unusual features of evolved solutions were discussed. 

Next the automatic creation of a case-base was shown. Through the processes of 

evaluation, deletion of imperfect solutions and duplicate programs, removal of redundant 

information, compression, normalisation and refinement the evolved solutions are prepared 

for the case-base. Next, the behaviour of the programs is calculated and statistics of the 

case-base are derived. The 'two-into-one' and 'sibling' principles are then counted. The 

case structure and indexing mechanism were discussed. 

Chapter 7 discusses experiments that were done to identify reusable principles, showing 

that the evolved solutions are modular in nature and that it is possible to extract and reuse 

information contained in the evolved solutions. 
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7. Experiments to Identify Reusable Sub-programs 

This Chapter examines methods for identifying sub-programs that can be reused to build 

larger programs that may be more efficient than any conventionally designed alternative. 

In these experiments two types of arithmetic multipliers were examined: the 3x2-bit 

multiplier (3 bits by 2 bits) and the three-bit multiplier. Trying to extract principles by 

studying two and three-bit multipliers is a difficult problem because the 3x3-bit multiplier 

is considerably more complicated. The 3x2-bit multiplier provides a useful bridge between 

these two circuits and thus may assist attempts to find scalable principles of construction. 

Experiments were carried out to produce 50 perfect solutions for both the 3x2 and three-bit 

mUltipliers. The maximum number of cells allowed was equal to the number required in 

the most efficient conventional designs. In the case of the 3x2-bit multiplier 15 two-input 

gates are needed, while the three-bit multiplier requires 30. Two different sets of gates 

were used. The experimental set-up was as follows: 

Three-bit multiplier population size 5, mutation 3 genes on average, gates 6; 7; 10, 

geometry 1 x 30, levels-back 30. 

Three-bit multiplier population size 5, mutation 3 genes on average, gates 6 - 15, geometry 

1 x 30, levels-back 30. 

3x2-bit multiplier population size 5, mutation 3 genes on average, gates 6 - 15, geometry 1 

x 15, levels-back 15. 

MUX gates were not allowed in these experiments as they do not generally occur in the 

conventional circuits and also they make the comparison to the conventional circuits much 

more difficult. 

All of the programs examined were processed to make a basic Case-Base as outlined in 

Section 6.2. These experiments firstly involved an examination of sub-programs that are 

directly connected to inputs and secondly the examination of those that are not. Figure 31 

shows the connections between the gates in the 2-in to-l SUb-programs. When the 

frequencies of the 2-into-l sub-programs in a program are calculated a "fingerprint" for 

that program is defined. Fingerprints of evolved programs differ from those of human 

designed programs. These differences are shown in Figures 32, 33 and 34. One identified 
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sub-program is shown in Figure 28 (2-in to-I example). Sub-programs like the "sibling 

example", also shown in Figure 28, are the subject of future work. 

Figure 31. The 2-into-1 sub-program layout. 

The results of the experiment showed that the input sub-programs (the inputs are connected 

to the primary program inputs) closely followed the human design. In the programs studied 

the products of pairs of inputs are calculated. These products (the AND-gates on the left

hand side of the Figures that are directly connected to the inputs) can be seen in the 

examples of the two-bit multiplier for the evolutionary design and the human design shown 

in Figures 15 a and 15 b, respectively. 

The evolutionary designs are markedly different from the conventional designs in the way 

that they reuse parts of the circuit, for example, the unusual reuse of a product of two low 

significant bits directly in the output of a high significance product. These unusual features 

are shown in Figure 27. It can be seen that the output P 0 is reused to generate P 2, whereas 

in Figure 28 (the conventional human design) P 0 is not used in any other part of the 

circuit. 

Figure 32 shows the frequencies of 2-in to-I sub-programs, that are not connected directly 

to inputs, for 50 three-bit multiplier circuits, with expert recommendations for available 

gate functions 6, 7, and 10 that were intended to promote elegant solutions. The 'Sub

program type' numbers each of the 2-into-1 sub-program instances in order with the 

highest frequency first. The first six bars represent sub-programs: 6-6-10,6-10-10,6-10-6, 

6-6-6,6-6-7, and 6-7-10. The first bar in Figure 32 is the frequency of sub-program "2-in 

to-I example" in Figure 28 and it is used significantly more than the other sub-programs. 

The fifth bar in Figure 32 is the frequency of the sub-program shown in Figure 27. The 

sub-programs represented by the first four bars in Figure 32 are common in conventional 

designs. The sub-program shown in Figure 27 is novel and is not used in the conventional 

human design. It is clear that much of the evolutionary two-bit multiplier can be reused to 

build a three-bit multiplier. This implies that the larger solutions tend to contain the same 

sub-programs as the smaller solutions. 
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Figure 33 shows the frequencies of the 2-in to-l sub-programs, that are not connected 

directly to inputs, for 50 three-bit multiplier circuits using gates 6 to 15. In this experiment 

no assumptions were made about suitable gate functions. It was hoped that the experiment 

would reveal the fundamental building blocks of the multiplier circuits. There were 309 

different 2-in to-l sub-program types. The six most frequent sub-programs were 6-6-10, 6-

15-11, 15-15-10, 6-6-7, 15-6-11, and 15-6-13. It can be seen that the dominant sub

program is once again 6-6-10. This confirms that the conventional structures are most 

common. It is noteworthy that the gate function 15 occurs very often. This was unexpected 

as the use of a NAND gate is not familiar in conventional multiplier design. 

3 5 7 9 11 13 15 17 19 21 23 25 27 
Sub-program type 

Figure 32. The frequencies of 2-in to-1 sub-programs, that are not connected directly to 

inputs, counted for fifty three-bit multiplier circuits with expert recommendations for 

available gate functions 6, 7, and 10. The six most frequent sub-programs are listed. 

The graphs in Figures 32, 33 and 34 show how common or rare the different sub-programs 

are. The 'sub-program type' in each of the figures is simply an identification number. 
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Figure 33. The frequencies of 2-in to-l sub-programs, that are not connected directly to 

inputs, for 50 three-bit mUltiplier circuits without expert recommendations for gate 

functions, using gate types 6 to 15. The six most frequent sub-programs are listed. 
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Figure 34. The frequencies of 2-in to-l sub-programs, that are not connected directly to 

inputs, for 50 3x2-bit multiplier circuits without expert recommendations for gate 

functions 6 to 15. The six most frequent sub-programs are listed. 

In Figure 34 a total of 124 sub-programs were identified. The first six were 6-6-10, 6-15-7, 

6-6-7,6-15-11, 15-15-10, and 6-6-6. It should be noted that taken in isolation some of the 

sub-programs are equivalent. For instance, 6-6-10 and 15-15-10 could be considered to be 

logically identical however it may be that some of the internal connections are reused in 

another part of the circuit. Once again, the figure shows that 6-6-10 is dominant. At this 

stage it is not known which sub-programs are responsible for the efficiency of these 

designs. For instance, the sub-program 6-6-7 is here the third most frequently occurring 

and the fifth and the fourth in the previous two experiments, respectively. 

It has been seen that all multipliers largely use the same type of sub-programs. This shows 

that they could potentially be reused by a CBR system to design multiplier programs with 

more than three-bit multiplication. 

Preliminary experiments showed that the results were dependent on decisions made in 

evolving the programs using the EC. These decisions include the geometry of the FPGA 

program, the gates made available to the EC and the human knowledge used in specifying 

the requirements. Initial experiments allowed a wide variety of gates to be used by the EC. 

The CBR system showed that the EC only required a limited set of these gates for 

optimum performance. 

The aim of the experiments in the second investigation was to examine the evolved 

programs and show that these share some common sub-programs that can be used to build 

larger programs. Two different sub-programs were identified: those that are directly 

connected to inputs, and those for which this is not the case. The frequencies of 

occurrences of these two types can differ significantly. It is necessary to examine very 

specific types of sub-programs to avoid the combinatorial explosion of enumerating all 

possible SUb-programs. 

7.1. Comparison of circuits of different sizes 

This experiment involves the scaled matching of programs of different sizes, from the 

same class e.g. multiplication. When a match has been found between two programs of 

different sizes the difference between the programs is identified. 
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This identification of difference could be repeated for subsequently increasing sizes of 

program pairs. Then these differences would be examined to see if a general principle 

could be discerned in the increasingly large adaptations. 

To compare programs of different sizes the behaviour of a larger program is examined to 

see if the smaller program's behaviour exists as part of the larger program i.e. the 

behaviour of the larger program includes all of the behaviour of the smaller program. 

When two such programs are found, the identified difference between the two programs is 

the adaptation that needs to be applied to a program of the smaller size to make it 

equivalent to the larger one. 

The smaller program is easier to evolve and after adaptation it is equivalent to the larger 

program, therefore greatly reducing the time required to produce one of the larger 

programs. If the extensions themselves could be extended then automatic scaling could be 

achieved. If automatic scaling could be achieved a general principle for scaling that class 

could possibly be derived. 

Two experiments were conducted: 

• The first experiment derives an adaptation (extension) from a 3x2-bit multiplier and a 

3x3-bit multiplier (two solutions of the same class and a contiguous scale increase). This 

adaptation is referred to as adaptation 1. Two solutions were retrieved from the case-base 

that met the requirement that all of the behaviour of the smaller program (3x2) was part of 

the behaviour of the larger program (3x3). This is referred to as a 'scaled behavioural 

match'. An adaptation is then defined as being the sub-programs that must be added to the 

3x2-bit multiplier solution to make it behaviourally equivalent to the 3x3-bit multiplier 

program. Then adaptation 1 (Appendix 3) was applied to the same 3x2-bit multiplier to 

show that the adaptation contains all of the necessary information to adapt a 3x2-bit 

multiplier to a 3x3-bit multiplier. 

• The aim of the second experiment was to show that adaptation 1 could be applied to a 

3x2-bit multiplier that was not a scaled behavioural match with the 3x3-bit mUltiplier from 

which adaptation 1 was derived, to obtain a new 3x3-bit multiplier. 

Example: How to compare two circuits of different sizes: 
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The smaller circuit's truth table (See the 3x2-bit multiplier in Table 20.) is half the size (in 

terms of the length of the rows) of the next larger circuit's truth table (See the 3x3-bit 

multiplier in Table 21). 

On examination of the behaviours of these two sizes of programs it can be seen in Tables 

20 and 21 (shaded areas) that the 3x2, if it were a scaled behavioural match to a 3x3, 

would have a match for each of its behaviour rows in the first half of the behaviour rows of 

the 3x3. The second halves of the 3x3 behaviour rows mayor may not match. The rows 

that do match are referred to as symmetric and asymmetric. A 'symmetric' behaviour row 

is a row in the larger of the two programs that is identical about the center point of the 

behaviour column (see Table 21 index 11). An 'asymmetric' behaviour row is one where 

the second half of the row is not identical to the first half, but the first half does match with 

a behaviour row in the smaller program (see Table 21 index 17). Those that don't match 

are referred to as 'new' (see Table 21 index 10). The term 'new' means that this behaviour 

did not exist or partially exist (asymmetric) in the original3x2 program. For example a 3x2 

matches the following 3x3. The letters on the left-hand side in Table 21 are annotations 

made by the matching process (s = symmetric, n = new, a = asymmetric). The 3x3 has one 

more input than the 3x2, shown in Table 21 as '3x3 only'. 

This behavioural matching process also shows how to adapt the smaller program. The 

symmetrical matched rows should be preserved in the subject of the adaptation (a new 

3x2). The rows in the smaller program that match an asymmetric row in the larger one can 

be deleted, in the subject of adaptation, as they will be replaced by new cells that give the 

new asymmetric behaviour. Symmetric and asymmetric are identified by and necessary for 

the matching process. Rows that exist only in the 3x3 behaviour are new and have to be 

inserted by the adaptation. 

If a Case-Base of 3x2-bit multipliers is matched against a Case-Base of 3x3-bit multipliers 

several scaled behavioural matches are found (see Appendix 4). For example a 3x2 

matches the following 3x3. The letters on the left-hand side are annotations made by the 

matching process (s = symmetric, n = new, a = asymmetric). 
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Index Behaviour (converted from binary 
into 8 cells of 8-bit integers) 

0 0 0 255 255 
1 0 255 0 255 
2 240 240 240 240 
3 204 204 204 204 
4 170 170 170 170 

Table 20. An annotated behaviour table for a 3x2-bit multiplier. The FPGA program that 

produced the behaviour in this table can be seen in Table 17. 

In Tables 20 and 21, each behaviour box gives an 8-bit integer in decimal, each row in 

Table 20 contains 4 such boxes and each row in Table 21 contains 8. Each row represents 

the behaviour of one cell or gate in the program. 8-bit base ten integers are used instead of 

binary as a visual aid. The indices in brackets e.g. (00) to (0 4) or (0 5) show the cells that 

are used for outputs from the program. The shaded areas in each table represent the 

behaviour of the 3x2-bit multiplier. The fIrst parts of each table (20 and 21) show the 

inputs to the mUltiplier programs and are considered to be a special part of the behaviour. 

The inputs have been separated from the behaviour of the program itself for clarity. 
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Index Behaviour (converted from binary into 8 cells of 8-bit integers) 
0 0 0 255 255 0 0 255 255 
I 0 255 0 255 0 255 0 255 
2 240 240 240 240 240 240 240 240 
3 (3x3 only) 0 0 0 0 255 255 255 255 
4 204 204 204 204 204 204 204 204 
5 170 170 170 170 170 170 170 170 

Table 21. An annotated behaviour table for a 3x3-bit multiplier. 

It can be seen that the shaded behaviour rows of the 3x2-bit multiplier shown in Table 20 

have matching behaviour rows in the 3x3-bit multiplier (shown in Table 21). The 3x3-bit 

multiplier (Table 21) has some behaviour rows, e.g. rows 13 and 14 that both behave in the 

same way as row 7 in the 3x2-bit multiplier (Table 20), but it row 14 is different to row 13 

in the second half of its behaviour row. Row 14 is asymmetric where as row 13 is 

symmetric around the center for the row. 

7.2. Extracting differences and expansions 

By extracting the differences of two different sized circuits of the same class the 

knowledge of how to adapt a smaller circuit into a larger is derived. 

To do this the annotated Table 21 is used. The transformation is built by identifying each 

gate type and its behavioural context. This is referred to as a Behavioural Context Triple 

(BCT), an example follows (see Figure 35). This is in keeping with the concept of the 2-
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into-1 principle, presented earlier. This BCT is an 'in context' 2 into 1 principle (see 

Figure 31). 

Starting at the top of the behaviour table (after the input lines) in Table 21, the first line of 

program behaviour is at index 6. The annotation here is's' for symmetric, so this line 

already exists in the 3x2 circuit and is not a difference between the two programs. The 

corresponding line in the 3x2 that is to be adapted, is preserved. Next at index 7, the 

annotation is 'n' for new, so this line is a difference between the two circuits and must be 

added to the adaptation. Looking at the genotype containing this cell, the second cell in 

Figure A3.1, it can be seen that the two inputs to this cell are inputs of indices 1 and 3. To 

create a Behaviour Context Triple (BCT) the behaviour of each of these inputs is taken, 

then the function type of the cell and the behaviour of the output (New output) of the cell is 

recorded. The BCTs are the components of an adaptation. 

Input Behaviour 
1 0 1 255 10 1 255 10 1 255 10 1 255 
3 0 10 10 10 1 255 1 255 1 255 1 255 

Figure 35. A Behavioural Context Triple (BCT), showing two behavioural inputs, a 

function and a Behavioural output. 

This recording process is repeated for all asymmetric and new cells. This process gives a 

collection of BCTs that constitute an adaptation that can be used to adapt a 3x2-bit 

multiplier to a 3x3-bit mUltiplier. 

In order to adapt a 3x2-bit mUltiplier to a 3x3-bit multiplier it is necessary to renumber the 

cells of the program to take the extra input into account. This is a simple task as this 

program is the same as the original program and it does not use the additional input. For 

this reason it should be noted that the 'unused input' 3x2 is symmetrical in its behavioural 

rows when expanded to use the 3x3-bit multiplier truth table. It is necessary to expand the 

3x2 to the 3x3 truth table in order to apply the adaptation to it. 

These BCTs, together forming an adaptation, can now be applied to another 3x2-bit 

multiplier program. This is done by matching the required input behaviours of each BCT in 

the adaptation, that are not available as outputs from other BCTs in the adaptation, to 

existing behaviours in the new 3x2-bit multiplier to be adapted to a 3x3-bit multiplier. This 

is how Adaptation Guided Retrieval is realised. Each BCT is applied to the 3x2 under 
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adaptation in the order that they were derived (starting at the first cell in the genotype). The 

outputs of each BCT become part of the behaviour of the partially adapted 3x2-bit 

multiplier as each new cell is added, thereby producing a new program adapted from a 

3x2-bit multiplier using the adaptation. 

The adaptation could also be applied to any program containing the necessary behaviour of 

the 3x2, e.g. a signal processing program where an old program needs to be scaled-up or 

re-engineered to meet a new specification. 

A full example is given in Appendix 3. This example shows the extracted adaptation 

applied to the 3x2 that the transformation was partly derived from. This was done to show 

that all of the necessary information was contained in the transformation. 

The next example in Section 7.4 shows the adaptation applied to a different 3x2 program 

that was not a behavioural match for the 3x3 or the 3x2 from which the adaptation was 

derived. The Adaptation shown in Table 24, was successful showing that the adaptation 

can be applied to other programs. 

Note: The observation that some cells of the 3x2 have to be replaced in the 3x3 shows that 

it is not appropriate to 'lockdown' (Section 5.5.2) an entire 3x2 to speed up the evolution 

of a 3x3. This would result in an inefficient solution. 

7.3. Identifying a principle 

By identifying the differences of extracted differences from circuits of increasing size a 

principle for scaling up circuits in a given class could be derived. An alternative to this 

could be to generate a schema hierarchy as given by Louis (1993) where the top schema on 

each tree is the most general description of a given cluster of differences. Schemas become 

increasingly specialised the lower in the hierarchy they appear until each schema 

represents a specific Case in the Case-Base. An investigation of the potential of this 

schema approach to principle extraction and scaling is the subject of future work. 

7.4. Applying an extracted principle. 

This stage uses the extracted principle to expand an existing evolved solution to a circuit 

with a greater number of inputs. 
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0416 2326 2416 1366 0366 1456 
8767 51101O 115 6 7 5806 610010 8131310 
916210 000-1 000 -1 000 -1 000 -1 000-1 

000-1 000 -1 14 17 12 15 
7 

A reproduction of Table 17, shown for clarity. 

Take the 3x2-bit multiplier from the example in Table 17. and renumber the cells to take 

the extra input into account: 

0506 2406 2506 1406 0406 1506 
9807 612010 12607 6906 71101O 914010 
10 170 10 000-1 000-1 000 -1 000 -1 000 -1 
000-1 000 -1 0 15 18 13 
16 8 

Table 22. The 3x2-bit multiplier from the behaviour example Table 19. with indices 

renumbered to take the extra input of the target 3x3-bit multiplier into account. The third 

inputs in each cell have been set to zero, as all of the gates in this example are two input 

gates. A new output is added and set to zero, to take the extra output of the target 3x3-bit 

multiplier into account. 

The numbers with underscores are the input connections of each cell that have been 

increased by 1 to make room for the new input. As the 3x3 has one more output than the 

3x2, an additional output is also added (p5) in Table 23 with a default index setting of O. 

The rows marked pO to p4 are the outputs of the original 3x2 and correspond directly to the 

output indices (15, 18, 13, 16, 8) given in the above structure. Then using the 3x3-bit 

multiplier PLA instead of the 3x2-bit multiplier PLA the following behaviour is produced: 

Index Behaviour 
0 (Jl5 -default) 0 0 255 255 0 0 255 255 
I 0 255 0 255 0 255 0 255 
2 240 240 240 240 240 240 240 240 
3 3x30nly 0 0 0 0 255 255 255 255 
4 204 204 204 204 204 204 204 204 
5 170 170 170 170 170 170 170 170 

6 s 0 0 170 170 0 0 170 170 
7 s 192 192 192 192 192 192 192 192 
8 s (pO) 160 160 160 160 160 160 160 160 
9 s 0 204 0 204 0 204 0 204 
10 s 0 0 204 204 0 0 204 204 
II s 0 170 0 170 0 170 0 170 
12 s 0 76 0 76 0 76 0 76 
13 s {P2) 0 76 170 230 0 76 170 230 
14 s 0 76 0 68 0 76 0 68 
15 s (p4) 0 0 0 136 0 0 0 136 
16 s (pi) 192 106 192 106 192 106 192 106 
17 s 0 128 0 136 0 128 0 136 
18 s (p3) 0 128 204 68 0 128 204 68 
19 Redundant 0 0 0 0 0 0 0 0 
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20 Redundant 0 0 0 0 0 0 0 0 
21 Redundant 0 0 0 0 0 0 0 0 
22 Redundant 0 0 0 0 0 0 0 0 
23 Redundant 0 0 0 0 0 0 0 0 
24 Redundant 0 0 0 0 0 0 0 0 
25 Redundant 0 0 0 0 0 0 0 0 

Table 23. The behaviour for a 3x2-bit multiplier with an extra input required by a 3x3-bit 

multiplier. This prepares the 3x2 for expansion to the 3x3. The rows marked as 

'Redundant' are not used in the program. Table 22. 

It can be seen that the 3x2 is symmetrical about the mid-points of its behavioural rows 

when expanded to use the 3x3 PLA file. This is expected as this program is the same as the 

original 3x2 program and it does not use the additional input. It is necessary to expand the 

3x2 to the 3x3 PLA file in order to apply an expansion to it. 

Next the adaptation is applied to this prepared 3x2. The relevant behaviour required by 

each BCf in the adaptation is found in turn. As the inputs to each BeT are found the gate 

or cell for that BCf is inserted into the expanding 3x2 program. This produces the 3x3-bit 

mUltiplier program (genotype) shown in Table 24. The circuit (phenotype) is shown in 

Figure 36. 

Table 24. The new 3x3-bit multiplier after adaptation from the 3x2-bit multiplier from the 

behaviour example Table 19. The white cells have not been changed during adaptation. 

The light shaded cells represent new cells inserted by the adaptation. The dark shaded cells 

represent cells that have been replaced by the adaptation. 
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Figure 36. An example of a 3x2-bit multiplier that has been adapted (scaled up) to a 3x3-

bit multiplier program. 

Figure 36 shows an example of an adapted program. The gates containing no letter are 

unchanged from the original 3x2-bit multiplier. The gates containing an 'a' are the 

asymmetric gates that have the behaviour of the 3x2-bit multiplier, but had to be replaced 

to give the full functionality required for the 3x3-bit multiplier. The gates containing 'n' 

are gates that are new in this adapted program. 

7.5. The Wee Ken evolved FPGA program reuse system 

The CGP-CBR software system that supports this research, known as 'Wee Ken', has been 

implemented. Wee Ken was implemented in C++ using the Borland 4.5 C++ compiler in 

Windows 95. The CBR components of Wee Ken are original code by the author. The CGP 

software used in this thesis to evolve the FPGA programs was adapted from the original C 

code developed by J. F. Miller. Wee Ken must be supplied with truth tables and parameters 

defining the target architectures of the digital circuit programs. In Wee Ken, all other 

functionality, including adaptation, is automated. 
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7.6. Summary 

This work has shown that it is possible to automatically extract and apply principles of 

design in the complex domain of Binary Cartesian Genetic programming. These principles 

contain knowledge pertaining to structured sub-programs, and give an understanding of the 

evolved programs. Previous work in this area has been in domains where the solutions 

produced by evolutionary algorithms had definite components that can be easily made into 

a Case-Base (Maher et ai., 1996). 

The work presented here addresses the difficult task of identifying components for Case 

building in a domain where these components are not obvious. The techniques developed 

are seen to produce digital circuits in the form of gate array programs that may be more 

efficient than their equivalent human design. The techniques developed also show how to 

adapt programs produced by EC, and how to learn the principles involved in EC generated 

digital circuit program designs, and apply them to new problems. 

Further analysis will involve examining different types of sub-program format from that 

shown in Figure 31, for example the "sibling example" in Figure 28. Interpretation 

becomes more difficult using a larger number of function choices, and it has been shown 

that the CBR system can automatically identify sub-programs that were known to human 

designers, and also identify novel sub-programs. This allows the CBR system to 

automatically suggest limited function types for the algorithms used in evolving new 

programs to improve performance. It may also be possible to use the CBR system to 

automatically seed the evolutionary algorithm, a technique proved by Maher et ai. (1996). 

Their approach uses evolution to adapt an existing solution to a new problem. This 

approach could be used to re-engineer small changes to existing programs, possibly using a 

technique similar to Lockdown (See Section 5.5.2). 

In the experiments reported here the maximum number of cells available to the CGP with 

which to evolve a program was equal to the number required to build the conventional 

circuit. It is already known that the larger the maximum number of gates allowed to 

construct the circuit the easier it becomes to evolve (Miller et ai., 1998a). This could imply 

that in these experiments the more conventional sub-programs are likely to dominate. 

Further experiments where the maximum number of cells available is less than the 

conventional should reveal whether or not conventional sub-programs also appear in more 

efficient evolved programs. 
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From the point of software reuse, this work shows that it is possible to achieve a high level 

of automation of software reuse in Binary Cartesian Genetic programming where precise 

requirements can be specified, and behaviour can be completely analysed. Future work 

could also examine the portability of the proposed approach to other software engineering 

problems. 

Experiments of a similar nature to those described in this section have been carried out on 

two-bit adders (See Appendix 5). The analysis showed once again that there were some 

sub-programs that were much more frequent than the majority of the sub-programs. In 

these experiments recommendations for atomic components were made to promote elegant 

solutions. These recommendations were compared to those suggested by the frequency 

analysis of the sub-programs and to those suggested by the frequencies of the atomic gates. 

The experiments showed that the expert recommendations gave rise to high numbers of 

duplicate solutions in the sets. Further to this the sub-program recommended atomic gate 

selections gave rise to fewer duplicate solutions and a slightly higher average fitness in 

each set. The average number of generations required to produce a solution remained close 

to that of the expert recommendation based set. The expert based results and the Case-Base 

based results were compared to results based on the frequencies of the atomic gates. The 

recommendations suggested by the frequencies of the atomic gates gave lower numbers of 

perfect solutions, larger numbers of duplicate solutions and a lower average fitness. This 

suggests that the solutions with the highest fitness tend to be modular in nature. It is 

expected that larger problems in the same class will show greater differences between the 

techniques. It is also possible that these results may not hold for all problem classes, as 

some problem classes are not currently known to have modular solutions. 
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8. Conclusions 

It has been shown that there are problems in software reuse. These problems are the creation 

and documentation of software libraries, and the identification and adaptation of software 

artefacts in these libraries to solve new problems. 

It was seen that BC techniques could be used to create software for a library in an automated 

fashion. By developing a Case-Base it was shown how these libraries could be automatically 

documented. Through the use of CBR techniques it was shown that artefacts in these 

automatically generated software libraries could be automatically identified and adapted to 

solve new problems. 

The modularity of the evolved programs was shown, and the mechanism by which these 

modules could be assembled to create larger programs was illustrated with the conventional 

techniques of logic synthesis. 

It was proposed that by examining examples of increasing scale from a given problem class 

that principles of scale for that problem class could be identified. Methods for identifying 

suitable material for deriving such principles have been shown, with additional methods for 

extracting and applying this knowledge. 

The main research problem was how to apply automatic identification, refinement and 

application of substitution rules to Cases with non-flat, structured problems and solutions. 

This involved research into developing the latest methods in CBR adaptation techniques, to 

apply these techniques to Cases with unstructured solutions, which was a significant advance 

over the application of techniques like these to Cases with simple numerical atomic solutions. 

The main contribution of this thesis was in the area of automatic extraction and application of 

principles in the complex domain of software reuse in FPGA programming. This means 

applying and enhancing the ideas given by Hanney (1996), and by Smyth (1996) to structured 

CBR Cases with complex interacting components with no obvious modules. 

The BC techniques shown were able to produce digital circuits in the form of FPGA programs 

that were more efficient than their equivalent human design, in a design area where there is 

very limited design knowledge. 
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The techniques developed show how to refine programs produced by EC, and how to learn 

principles involved in digital circuit design, and apply them to new problems. 

It was argued here in this thesis that a much larger space of possible designs can be explored 

by employing an evolutionary algorithm together with a process of assembling and test. This 

has been demonstrated in the case of digital circuit program design, in particular, arithmetic 

circuits. 

This thesis has examined some fundamental questions concerning the role of evolutionary 

algorithms as a novel methodology for design. It has tried to indicate a possible answer to the 

question: Can new principles of design be discovered by using a simulation of some of the 

processes of evolution? This leads on to the further question: In which type of design 

problems is it most likely that new principles might be discovered? Clearly since the search 

space of all possible designs is enormously enlarged compared with traditional rule-based 

methods, an extremely fast fitness function and a large amount of computation effort are 

required. It should be anticipated that tens of millions, even billions, of genotypes would have 

to be examined. Digital circuit design is an ideal candidate for novel principle extraction. The 

fitness function simply uses the bit wise operations that CPUs were designed for. For 

example, on a 450MHz PC one can evaluate 50,000 designs for a three-bit multiplier per 

second (in a 1 x 30 geometry). In spite of the extraordinary speed of fitness evaluation it is 

time consuming to evolve correct three-bit multiplier circuits. About 50 million genotypes 

need to be examined to achieve a high probability of success. Thus it becomes essential to 

understand more about the nature of the fitness landscapes. This work has been undertaken in 

Miller et al. (2000b) and Vassilev et al. (2000). Even with a computer that could deliver large 

numbers of correct designs the problem of data mining the evolved circuits to extract 

principles still exists. It is not feasible for an expert to study and compare hundreds of 

unconventional designs. An automated approach to this problem, using techniques of CBR, 

was shown. 

In Section 2.4 it was shown how an evolutionary algorithm together with a process of 

assembling and testing could be used to produce novel and efficient designs for digital 

arithmetic circuits. One of the central ideas was to look at the possibilities of identifying new 

principles which would allow the construction of efficient multiplier circuits of arbitrary size 

by studying evolved examples of two and three-bit multipliers. In one sense this problem is 

ideal for artificial evolution. Firstly, this is because the evaluation process for a genotype 

representing a circuit is extremely fast as it relies on precisely those simple bit-level 

operations that modem CPUs were designed for. Secondly, the binary nature of the evolved 
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circuits makes them relatively simple to understand. There are two ways in which it might be 

possible through artificial Evolution to try to build efficient large systems. One is to try to 

discover a general scalable principle of design. The second is to try to produce as efficient and 

large building blocks as possible. The work in this thesis develops an automated way of 

extracting sub-principles in evolved circuits. This was achieved through examination of the 

products of CGP. The second aspect concerns the process of CGP and the nature of the 

fitness landscapes associated with these digital circuits, examined by Miller et al. (2000b), 

and by Vassilev et al. (2000). An examination of the relationship between these two aspects 

shown in Figure 37, process and products, is the subject of future work. It is hoped that this 

will show when evolutionary techniques should be used and when CBR techniques could be 

applied. 

Identifying Principles 

I 
in Evolving Circuits 

I (Landscape Analysis) 

Evolutionary 
~ Evolved Data 

Algorithm 

L Identifying Principles ~ in Evolved Circuits 

(Data Mining) 

Figure 37. The principle extraction loop. 

The structure of fitness landscapes has been studied in terms of their smoothness, ruggedness 

and neutrality by Vassilev (1997b), and by Vassilev et al. (2000). This has been done using an 

information analysis on a time series that is obtained by sampling the fitness values on a 

random walk. A major impediment in studying the structure of circuit Evolution landscapes is 

that they originate from two completely different alphabets responsible for the gate 

functionality and the connectivity of the evolved digital circuits. It was shown that it might be 

better to consider these landscapes as a product of three subs paces associated with the gate 

functionality, internal and output connectivity of the gate array. Hence, the genotypes sub

divide into three chromosomes with different characteristics. It has been shown that the 

landscapes have vast neutral areas with sharply differentiated plateaux and these in turn are 
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related to the scale the objective function. The landscapes were found to become more 

continuous with increasing scale (Vassilev, 1997b; Vassilev et at., 2000). 

Even with a computer that could deliver large numbers of correct designs an expert would 

have the problem of examining all of the evolved circuits to extract principles. It has been 

shown that it is possible to automatically identify and apply the evolutionary design principles 

contained within the phenotypes. This greatly reduces the knowledge acquisition bottleneck, a 

primary factor in the creation of a Case-Base in any CBR system (Hanney, 1996). In previous 

work where evolutionary algorithms were used in conjunction with CBR the genotypes have 

had clearly identified modules (Maher et at., 1996), making the construction of the Case-Base 

simple. It was shown here that by examining the frequency of occurrence of small sub-circuits 

(2-in to-I) that a sort of program "fingerprint" could be constructed. This not only confirms 

the familiar conventional principles but also reveals novel sub-circuits that are good building 

blocks in the evolved circuits. It was shown that the principles identified in small-scale 

multipliers (two-bit) match those identified in two larger scale multipliers, the two-and-a-half

bit multiplier and the three-bit multiplier. This suggests that there are principles in these 

multiplier circuits that may hold true for all sizes of multipliers and as such may be used to 

create larger scale multipliers that are beyond the reach of current evolutionary processing 

power. 

Another important factor is that modular construction bypasses the necessity for testing of the 

truth table for the whole circuit, only the modules need be tested. For example the ripple carry 

adder principle shows that any number of one bit carry adder units may be chained together to 

produce a perfectly functional larger carry adder, like the conventional sixteen-bit carry adder. 

This reduces the problem of exhaustive testing of very large circuits. This identification of 

principles facilitates experts in understanding the nature of the evolutionary designed 

solutions. It is possible that a new carry adder principle may be discovered that produces more 

efficient carry adders. These processes enable the creation of a Case-Base, the foundation for 

a reasoning system that could be used to solve the scaling problem. This leads the way to the 

automation of the reasoning techniques of CBR. 

8.1. Future Work 

There is still a long way to go in this field. It is of interest to investigate why particular 

principal modules are evolved. These modules could be easier to evolve as they are more 

flexible e.g. more easily modified for multiple uses (more general). 
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Current results obtained were based on simple gate array circuit programs. Future work 

entails using the above techniques in the creation of programs that are too large to evolve. It 

is also of interest to examine the potentials for applying these techniques to programs with 

higher level functions, e.g. assembly language with states and loops. 

Future work could examine the frequencies of the BCTs themselves, giving the modularity of 

the programs from a behavioural (in context) point of view. New test problems could be 

defined which will potentially allow simpler generalisable principles to be identified. These 

problems could be for example, a 4x2-bit multiplier that could then be compared to a 4x3-bit 

multiplier and 3x3, 3x2-bit multiplier. 

Future work of interest could be to induce rules as given by Hanney (1996) by finding closely 

matching programs, of the same class, with small differences in fitness, and defining a rule of 

the form 'IF this change is made THEN this increase in fitness is achieved'. These rules could 

then be applied to programs of larger sizes to examine the possibility that some of these rules 

might be scale independent principles. 

Future work will attempt to generalise identified differences from circuits of increasing size in 

order that a principle for scaling up circuits in a given class could be derived. Further analysis 

will involve examining adaptations generated by pairs of programs from different classes that 

have similar components, e.g. multipliers, signal processors and carry adders. It may also be 

possible to use EC to adapt large program solutions created by CBR, i.e. using the CBR 

system to seed the EC, a technique demonstrated by Hunt (1995) and demonstrated in the 

'Lockdown' process in Section 5.5.2. This is using EC for the CBR sub-task of adaptation, 

supported by Maher et al. (1996). 
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Appendix 1 - Software Reuse strategies 

High-Level Languages (HLL's) (Krueger, 1992; Biggerstaff, 1992) 

In HLL's simple abstractions are used to represent multiple lines of assembly language code 
(see example below). The simple abstractions are easy to remember and to use them often 
only a few parameters need be specified. This technique is known to speed up software 
development approximately five times, and has been adopted in many areas of the software 
engineering community. The only drawback with this kind of system is that a large amount of 
analysis and design are required to create a system. This is due to the abstraction being only a 
level up from assembly language programming. 

The high level language statement: 

IF X == 0 THEN <Statement(s» 
ELSE <Statement(s» 

Replaces the following assembly language: 

10: LOADA 100 
11: JMPZRO 20 
12: ADDA 110 
13: ADDAI 111 

20: SUBA 110 
21: SUBAI 111 

An example of a High-Level Language statement and equivalent assembly language. 

The assembly language statements themselves are a similar level of abstraction above micro
code as HLL statements are above assembly language statements. Each assembly language 
statement represents a number of micro-code statements. 

Design and Code Scavenging (Krueger, 1992) 

Design and Code Scavenging involves reusing high-level language code fragments and is 
therefore a level of abstraction higher than high-level languages themselves. The reuse of the 
code fragments does require understanding of the code fragments and the code must be 
adapted to the new requirements manually. This can lead to highly successful reuse if large 
code fragments are found easily and require little adaptation. This technique is also potentially 
dangerous as it could take more time to find, understand, adapt and debug a scavenged piece 
of code than it would have taken to write the code fragment from scratch. (Mili, 1995) makes 
the important point that studies have shown that many users are able to successfully adapt and 
reuse components with only a rough understanding of the components workings. 

Source Code Components (Krueger, 1992; Biggerstaff 1992; Mili, 1995) 

Source Code Components are ready to use building blocks. These blocks are specifically 
designed for reuse, and vary greatly between domains. This means that no adaptation or 
debugging is required, the programmer need only locate and integrate the block of code. The 
programmer still requires an understanding of what the block does and how it works. This 
method works well in specific areas, but it is considered to be difficult to create a general set 
of source code components. If any editing of the component is required then adaptation and 
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debugging is required and the benefits are lost. It is noted here that Object Oriented 
languages, through the inheritance mechanism, afford a direct relationship with the software 
reuse notions of abstraction (super class) and specialisation (subclass). 

Software Schemas (Krueger, 1992; Mili, 1995) 

Software Schemas are a level above source code components in that they extend the 
components to include reuse techniques (specification, parameterisation, classification and 
verification). This technique has achieved success in domain specific areas, the prominent 
feature being the controlled parameterisation, so the programmer does not require great 
understanding of the component. This technique fails when scaling up to cover wider 
domains. Most domains are difficult to build into this technique and some components are 
difficult to describe, increasing the need for the programmer to understand the components' 
code. 

Application Generators (AG's) (Krueger, 1992; Biggerstaff 1992; Mili, 1995) 

Application Generators are like a programming language compiler but highly automated and 
highly domain specific. Within their domain Application Generators are extremely effective 
and are excellent for particular problems. However they are difficult to build and there are too 
few of them available to give any wider domain coverage. 

The abstractions used in Application generators are very high level, come directly from the 
Applications' domain and can be mapped directly into executable code. This technique 
requires little programming knowledge as most of the development is automated. 

Very High-Level Languages (Krueger, 1992; Biggerstaff 1992; Mili, 1995) 

Very High-Level Languages are an extension of High-Level Languages. The extension 
enables the programmer to generate code from an abstract specification. They are more 
general in domain than Application Generators but sacrifice the power that they have in order 
to achieve this. The VHLLs do use higher levels of abstractions than HLLs and a particular 
VHLL can be best suited to certain applications however, the level of abstraction can be 
difficult to use and this technique can also produce low performance code. 

Transformational Systems (Krueger, 1992; Biggerstaff 1992; Mili, 1995) 

Transformational Systems use a two-stage approach to development. Firstly the semantic 
behaviour of the program is described, and then the developers apply transformations to this 
specification to produce a program. These systems use rule-based expert knowledge to apply 
the transformations. These systems are general purpose and the level of abstraction is higher 
than that of VHLL's as the generated code is more efficient due to human guidance. This 
human guidance does entail understanding of the system and the program but these systems 
are expected to improve in time. 

There are few transformational systems in use. The most recent research has been into their 
usefulness for systems maintenance, where they are known to sustain the quality of the 
software under maintenance. 

Software Architectures (Krueger, 1992) 

Software Architectures are an attempt to reuse large parts of designs and implementations. 
This technique looks at the subsystems and their interactions rather than reuse of algorithms 
and data structures. The architectural abstractions come directly from application domains and 
can be automatically mapped in to executable implementations. This is similar to having 
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mUltiple application generators in a schema type reuse system. These systems can be used to 
generate complete software systems or components of software systems. The major drawback 
in this type of system is that many architectures are required for general domain coverage, and 
they are difficult to create. 

These systems can be categorised into two main approaches to software reuse. Either they 
reduce the amount of work required to specify the system from the initial idea, or they reduce 
the effort required to produce executable code, once the specification is complete. 
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Appendix 2 - Example phenotypes (circuits) 

Figure A2.1 An evolved 2x2-bit multiplier 
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~------------r-------C=> Pz 

~--------------------------~c:> P1 

~~-----------------------------------~C:> Po 

Figure A2.2 An evolved 3x2bit multiplier circuit. 
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~------------------------~-7P2 

~--------------------------------------~~P, 

~*-------------------------------------------~=>Po 

Figure A2.3 An evolved 3x3-bit multiplier. 
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~------------------~C>~ 

B, c::>--tt-4H. 
~~------------------------------------~~ 

~------------------------------------------------~~ 

.80 =-----+-l ~----------------------------------------------------~~ 

Figure A2.4 An evolved 4x3-bit multiplier. 

128 



Appendix 2 - Example phenotypes (circuits) 

A3~~~·· r-----------------------------------,-------------~ 

6, 

80 =--=1=] 

;r--------= P, 

>--------------------------~=~ 

F-----------------------------------~~ 

~------------------------------------------~~ 

~~----------------------------------------------~~ 

r+----------------------------------------------------~~ 

Figure A2.5 An evolved 4x4-bit multiplier. 
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Appendix 2.1 - Example PLAfiles. 

PLA files: 

inputs 6 
outputs 1 
products 64 
000000 1 
000001 0 
000010 0 
000011 1 
000100 1 
000101 0 
000110 0 
000111 0 
001000 0 
001001 1 
001010 1 
001011 0 
001100 1 
001101 1 
001110 1 
001111 0 
010000 0 
010001 1 
010010 1 
010011 0 
010100 0 
010101 1 
010110 1 
010111 1 
011000 0 
011001 1 
011010 1 
011011 0 
011100 0 
011101 0 
011110 0 
011111 1 
100000 0 
100001 1 
100010 0 
100011 1 
100100 1 
100101 1 
100110 1 
100111 0 
101000 1 
101001 0 
101010 0 
101011 1 
101100 0 
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101101 0 
101110 1 
101111 0 
110000 1 
110001 0 
110010 1 
110011 1 
110100 1 
110101 0 
110110 0 
110111 1 
111000 0 
111001 1 
111010 1 
111011 0 
111100 0 
111101 0 
111110 0 
111111 1 
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Table A2.1 SBox 10 PLA 

inputs 3 
outputs 2 
products 8 
000 00 
001 01 
010 01 
011 10 
100 01 
101 10 
110 10 
111 11 
Table A2.2 The one bit carry adder. 

132 



Appendix 2 - Example phenotypes (circuits) 

inputs 5 
outputs 3 
products 32 
00000 000 
00001 001 
00010 001 
00011 010 
00100 010 
00101 011 
00110 011 
00111 100 
01000 001 
01001 010 
01010 010 
01011 011 
01100 011 
01101 100 
01110 100 
01111 101 
10000 010 
10001 011 
10010 011 
10011 100 
10100 100 
10101 101 
10110 101 
10111 110 
11000 011 
11001 100 
11010 100 
11011 101 
11100 101 
11101 110 
11110 110 
11111 111 
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Table A2.3 The 2-bit carry adder. 

inputs 4 
outputs 4 
products 16 
0000 0000 
0001 0000 
0010 0000 
0011 0000 
0100 0000 
0101 0001 
0110 0010 
0111 0011 
1000 0000 
1001 0010 
1010 0100 
1011 0110 
1100 0000 
1101 0011 
1110 0110 
1111 1001 
Table A2.4 The 2x2-bit multiplier. 
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inputs 5 
outputs 5 
products 32 
00000 00000 
00001 00000 
00010 00000 
00011 00000 
00100 00000 
00101 00001 
00110 00010 
00111 00011 
01000 00000 
01001 00010 
01010 00100 
01011 00110 
01100 00000 
01101 00011 
01110 00110 
01111 01001 
10000 00000 
10001 00100 
10010 01000 
10011 01100 
10100 00000 
10101 00101 
10110 01010 
10111 01111 
11000 00000 
11001 00110 
11010 01100 
11011 10010 
11100 00000 
11101 00111 
11110 01110 
11111 10101 
Table A2.5 The 2x3-bit multiplier 
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inputs 6 
outputs 6 
products 64 
000000 000000 
000001 000000 
000010 000000 
000011 000000 
000100 000000 
000101 000000 
000110 000000 
000111 000000 
001000 000000 
001001 000001 
001010 000010 
001011 000011 
001100 000100 
001101 000101 
001110 000110 
001111 000111 
010000 000000 
010001 000010 
010010 000100 
010011 000110 
010100 001000 
010101 001010 
010110 001100 
010111 001110 
011000 000000 
011001 000011 
011010 000110 
011011 001001 
011100 001100 
011101 001111 
011110 010010 
011111 010101 
100000 ()()()()()() 

100001 000100 
100010 001000 
100011 001100 
100100 010000 
100101 010100 
100110 011000 
100111 011100 
101000 000000 
101001 000101 
101010 001010 
101011 001111 
101100 010100 
101101 011001 
101110 011110 
101111 100011 
110000 000000 
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110001 000110 
110010 001100 
110011 010010 
110100 011000 
110101 011110 
110110 100100 
110111 101010 
111000 000000 
111001 000111 
111010 001110 
111011 010101 
111100 011100 
111101 100011 
111110 101010 
111111 110001 
Table A2.6 The 3x3-bit multiplier. 
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inputs 7 
outputs 7 
products 128 
0000000 0000000 
0000001 0000000 
0000010 0000000 
0000011 0000000 
0000100 0000000 
0000101 0000000 
0000110 0000000 
0000111 0000000 
0001000 0000000 
0001001 0000001 
0001010 0000010 
0001011 0000011 
0001100 0000100 
0001101 0000101 
0001110 0000110 
0001111 0000111 
0010000 0000000 
0010001 0000010 
0010010 0000100 
0010011 0000110 
0010100 0001000 
0010101 0001010 
0010110 0001100 
0010111 0001110 
0011000 0000000 
0011001 0000011 
0011010 0000110 
0011011 0001001 
0011100 0001100 
0011101 0001111 
0011110 0010010 
0011111 0010101 
0100000 0000000 
0100001 0000100 
0100010 0001000 
0100011 0001100 
0100100 0010000 
0100101 0010100 
0100110 0011000 
0100111 0011100 
0101000 0000000 
0101001 0000101 
0101010 0001010 
0101011 0001111 
0101100 0010100 
0101101 0011001 
0101110 0011110 
0101111 0100011 
0110000 00000oo 
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0110001 0000110 
0110010 0001100 
0110011 0010010 
0110100 0011000 
0110101 0011110 
0110110 0100100 
0110111 0101010 
0111000 0000000 
0111001 0000111 
0111010 0001110 
0111011 0010101 
0111100 0011100 
0111101 0100011 
0111110 0101010 
0111111 0110001 
1000000 0000000 
1000001 0001000 
1000010 0010000 
1000011 0011000 
1000100 0100000 
1000101 0101000 
1000110 0110000 
1000111 0111000 
1001000 0000000 
1001001 0001001 
1001010 00 10010 
1001011 0011011 
1001100 0100100 
1001101 0101101 
1001110 0110110 
1001111 0111111 
1010000 00000oo 
1010001 0001010 
1010010 0010100 
1010011 0011110 
1010100 0101000 
1010101 0110010 
1010110 0111100 
1010111 1000110 
1011000 00000oo 
1011001 0001011 
1011010 0010110 
1011011 0100001 
1011100 0101100 
1011101 0110111 
1011110 1000010 
1011111 1001101 
1100000 00000oo 
1100001 0001100 
1100010 0011000 
1100011 0100100 
11 00 1 00 0110000 
1100101 0111100 
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1100110 1001000 
1100111 1010100 
1101000 0000000 
1101001 0001101 
1101010 0011010 
1101011 0100111 
1101100 0110100 
1101101 1000001 
1101110 1001110 
1101111 1011011 
1110000 0000000 
1110001 0001110 
1110010 0011100 
1110011 0101010 
1110100 0111000 
1110101 1000110 
1110110 1010100 
1110111 1100010 
1111000 0000000 
1111001 0001111 
1111010 0011110 
1111011 0101101 
1111100 0111100 
1111101 1001011 
1111110 1011010 
1111111 1101001 
Table A2.7 The 4x3-blt multiplier 
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inputs 8 
outputs 8 
products 256 
00000000 00000000 
00000001 00000000 
00000010 00000000 
00000011 OOOOOOOO 
00000100 00000000 
00000101 00000000 
00000110 00000000 
00000111 00000000 
00001000 00000000 
00001001 00000000 
00001010 00000000 
00001011 00000000 
00001100 00000000 
00001101 00000000 
00001110 00000000 
00001111 OOOOOOOO 
00010000 ()()()()()()OO 
00010001 ()()()()()()O 1 
00010010 00000010 
00010011 00000011 
00010100 00000100 
00010101 00000101 
00010110 00000110 
00010111 00000111 
00011000 00001000 
00011001 00001001 
00011010 00001010 
00011011 00001011 
00011100 00001100 
00011101 00001101 
00011110 00001110 
00011111 00001111 
00100000 00000000 
00100001 00000010 
00100010 00000100 
00100011 00000110 
00100100 ()()()() 1 000 
00100101 ()()()() 10 10 
00100110 ()()()() 1100 
00100111 ()()()() 1110 
00101000 00010000 
00101001 00010010 
00101010 00010100 
00101011 00010110 
00101100 00011000 
00101101 00011010 
00101110 00011100 
00101111 00011110 
00 11 ()()()() 00000000 
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00110001 00000011 
00110010 00000110 
00110011 00001001 
00110100 00001100 
00110101 00001111 
00110110 00010010 
00110111 00010101 
00111000 00011000 
00111001 00011011 
00111010 00011110 
00111011 00100001 
00111100 00100100 
00111101 00100111 
00111110 00101010 
00111111 00101101 
01000000 00000000 
01000001 00000100 
01000010 00001000 
01000011 00001100 
01000100 00010000 
01000101 00010100 
01000110 00011000 
01000111 00011100 
01001000 00100000 
01001001 00100100 
01001010 00101000 
01001011 00101100 
01001100 00110000 
01001101 00110100 
01001110 00111000 
01001111 00111100 
01010000 00000000 
01010001 00000101 
01010010 00001010 
01010011 00001111 
01010100 00010100 
01010101 00011001 
01010110 00011110 
01010111 00100011 
01011000 00101000 
01011001 00101101 
01011010 00110010 
01011011 00110111 
01011100 00111100 
01011101 01000001 
01011110 01000110 
01011111 01001011 
01100000 00000000 
01100001 00000110 
01100010 00001100 
01100011 00010010 
01100100 00011000 
01100101 00011110 
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01100110 00100100 
01100111 00101010 
01101000 00110000 
01101001 00110110 
01101010 00111100 
01101011 01000010 
01101100 01001000 
01101101 01001110 
01101110 01010100 
01101111 01011010 
01110000 00000000 
01110001 00000111 
01110010 00001110 
01110011 00010101 
01110100 00011100 
01110101 00100011 
01110110 00101010 
01110111 00110001 
01111000 00111000 
01111001 00111111 
01111010 01000110 
01111011 01001101 
01111100 01010100 
01111101 01011011 
01111110 01100010 
01111111 01101001 
10000000 OOOOOOOO 
10000001 00001000 
10000010 00010000 
10000011 00011000 
10000100 00100000 
10000101 00101000 
10000110 00110000 
10000111 00111000 
10001000 01000000 
10001001 01001000 
10001010 01010000 
10001011 01011000 
10001100 01100000 
10001101 01101000 
10001110 01110000 
10001111 01111000 
10010000 OOOOOOOO 
10010001 00001001 
10010010 00010010 
10010011 00011011 
10010100 00100100 
10010101 00101101 
10010110 00110110 
10010111 00111111 
10011000 01001000 
10011001 01010001 
10011010 01011010 
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10011011 01100011 
10011100 01101100 
10011101 01110101 
10011110 01111110 
10011111 10000111 
10100000 00000000 
10100001 00001010 
10100010 00010100 
10100011 00011110 
10100100 00101000 
10100101 00110010 
10100110 00111100 
10100111 01000110 
10101000 01010000 
10101001 01011010 
10101010 01100100 
10101011 01101110 
10101100 01111000 
10101101 10000010 
10101110 10001100 
10101111 10010110 
10110000 OOOOOOOO 
10110001 00001011 
10110010 00010110 
10110011 00100001 
10110100 00101100 
10110101 00110111 
10110110 01000010 
10110111 01001101 
10111000 01011000 
10111001 01100011 
10111010 01101110 
10111011 01111001 
10111100 10000100 
10111101 10001111 
10111110 10011010 
10111111 10100101 
11000000 00000000 
11000001 00001100 
11000010 00011000 
11000011 00100100 
11000100 00110000 
11000101 00111100 
11000110 01001000 
11000111 01010100 
11001000 01100000 
11001001 01101100 
11001010 01111000 
11001011 10000100 
11001100 10010000 
11001101 10011100 
11001110 10101000 
11001111 10110100 
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11010000 OOOOOOOO 
11010001 00001101 
11010010 00011010 
11010011 00100111 
11010100 00110100 
11010101 01000001 
11010110 01001110 
11010111 01011011 
11011000 01101000 
11011001 01110101 
11011010 10000010 
11011011 10001111 
11011100 10011100 
11011101 10101001 
11011110 10110110 
11011111 11000011 
11100000 00000000 
11100001 00001110 
11100010 00011100 
11100011 00101010 
11100100 00111000 
11100101 01000110 
11100110 01010100 
11100111 01100010 
11101000 01110000 
11101001 01111110 
11101010 10001100 
11101011 10011010 
11101100 10101000 
11101101 10110110 
11101110 11000100 
11101111 11010010 
11110000 00000000 
11110001 00001111 
11110010 00011110 
11110011 00101101 
11110100 00111100 
11110101 01001011 
11110110 01011010 
11110111 01101001 
11111000 01111000 
11111001 10000111 
11111010 10010110 
11111011 10100101 
11111100 10110100 
11111101 11000011 
11111110 11010010 
11111111 11100001 
Table A2.8 The 4x4-bit multiplier. 

145 



Appendix 3 - Example Adaptation 

Appendix 3 - Example Adaptation 

Th 3 3 b· 1 . 1· ( f #95) e x - It mu tIplIer re . 
2546 13 16 0306 6876 4966 0526 
2336 1446 913210 0406 14607 11 1214 10 
71406 16 17 157 14193 10 81806 16 17 16 10 1596 
2466 7 15010 2025 196 10 21 19 10 8261610 2821 177 

2324710 20252410 000 -1 000 -1 000 -1 000 -1 
27 29 31 22 30 6 

Figure A3.1 

Is found to be a behavioural match with: 

Th 3 2 b· 1 . r ( f #30) e x - It mu tIplIer re. 
0416 2326 2416 1366 0366 1456 
8767 511010 11567 5806 610010 8131310 

916210 000 -1 000 -1 000 -1 000 -1 000 -1 
000 -1 000 -1 14 17 12 15 

7 
Figure A3.2 

Then an adaptation is identified: 
#1 
o 255 0 255 0 255 0 255 AND o 0 0 0 0 255 0 255 
o 0 0 0 255 255 255 255 

#2 
o 0 255 255 0 0 255 255 AND o 0 0 0 0 0 255 255 
o 0 0 0 255 255 255 255 

#3 
160 160 160 160 160 160 160 160 AND 000000 160 160 
#2 

#4 
204 204 204 204 204 204 204 204 AND 000000 128 128 
#3 

#5 
240 240 240 240 240 240 240 240 AND o 0 0 0 240 240 240 240 
o 0 0 0 255 255 255 255 

#6 
#3 EOR 020402040204 160 108 
o 204 0 204 0 204 0 204 

#7 
o 0 170 170 0 0 170 170 EOR o 0 170 170 240 240 90 90 
#5 

#8 

I!! I AND I 0 0 0 0 0 204 0 108 
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#9 

IL~,,-,;_6_0_7_6_0_7_6_0_7_6 _____ ---.J1 AND NOT I 0760680 1204 

#10 

IL~~6 __________ ---.JIEOR 
I 0 1280 1360 192 160 104 

#11 

IL:_~ __________ ---.JIAND 
I 0 0 0 0 0 0 0 108 

#12 
o 76 0 76 0 76 0 76 EOR 0761702302401889022 
#7 

#13 
#1 EOR 00204204025520451 
o 0 204 204 0 0 204 204 

#14 

IL:~~~~ _________ ----.JI AND 
I 000 1360 192 128 32 

#15 

I L#_4 __________ ---.JIEoR #11 
I 0 000 0 0 128 236 

#16 

I L#_2 __________ ---.JIEOR 
10001360192127223 

#14 

#17 

LI :_~_~ _________ ---.JI AND NOT I 000 1360 192 127 147 

#18 

IL:_~~~ _____________ ~IEOR I 0 128204 68 0 63 10891 

Outputs: #s:15. 17. 18. 12. original. original 

Then #30 (the 3x2-bit multiplier) is renumbered to take an extra input: 

(#30) - extra mput: 
0506 2406 2506 1406 0406 1506 
9807 612010 12607 6906 711010 914010 
1017010 000 -1 000 -1 000 -1 000 -1 000 -1 
000-1 000 -1 0 15 18 13 
16 8 

Next cells that are no longer needed (deletions and substitutions) are replaced by the first 
BeTs: 

(#30)- substitutions: 
10506 12406 12506 11406 10406 11506 
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9807 612010 2306 614010 12 1507 6906 
711010 916010 10 190 10 000 -1 000 -1 000 -1 
000-1 000-1 000 -1 000 -1 0 17 
20 13 18 8 

Then the geometry of the 3x2-bit multiplier (lx22) is expanded to that of the target 3x3-bit 
mUltiplier (lx26) and then rest of the BeTs are added: 

#30 d d -a ~te : 
0506 2406 2506 1406 0406 1506 
9807 1306 0306 81406 711010 41506 
2306 159010 618010 13 1906 122007 1922010 
142106 1220010 1310010 232606 1724010 1427010 
292407 2326010 28 30 31 25 
16 8 
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Adaptation example 2 

#56 
2436 0306 0466 1356 7806 8577 
1466 10937 2326 710210 681010 1113910 
1215910 000-1 000 -1 000 -1 000 -1 000 -1 
000-1 000 -1 9 17 14 16 
5 

#56 d d ~ - expan e or extra mput: 
2506 0406 0506 1466 8906 9607 
1506 111007 2406 811010 79010 12 14010 
13 16010 000-1 000-1 000 -1 000 -1 000 -1 
000-1 000 -1 0 10 18 15 
17 6 

#56 d d d d d . h d -expan e an a ~te usmg tea a~tatlOn ~ven: 
2506 0406 0506 1466 8906 9607 
1506 111007 2406 811010 79010 1214010 
13 16010 1306 0306 2306 213010 197010 
20606 249010 24306 192506 272006 2628010 
11 2207 1122010 3025010 322306 3223010 3325010 
352807 29 36 34 31 17 
6 
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Appendix 4 - Scaled behavioural matches 

A list of scaled behavioural matches found between a 3x2-bit multiplier Case-Base and a 3x3-
bit multiplier Case-Base. 

Case-base 1 Case-base 2 
2x3-bit multipliers 3x3-bit multiQliers 
16 136 
30 86 
30 95 
36 18 
56 102 
56 125 

Table A4.1. 3x2-bit multipliers that have a 3x3-bit multiplier scaled behavioural match. 

#16 
Ct' 14 t on ams ga es 
2336 1306 0306 2426 1486 0476 
5956 611510 7936 59410 111367 7 15 1410 
13 16 13 10 10121310 000-1 000 -1 000 -1 000 -1 
000-1 000 -1 13 17 18 14 
8 

#136 
C 27 ontams gates 
1346 0456 0546 2356 8926 1486 
2516 1576 0396 671110 111296 2456 
1615 147 13 178 10 10 159 10 1116210 891610 10 21 8 10 
1423176 1820810 2425 167 11 22 13 6 1427910 2122510 
2420277 283047 2527410 000 -1 000 -1 000 -1 
26 31 32 29 19 12 

#30 
C 13 ontams gates 
0416 2326 2416 1366 0366 1456 
8767 511010 11567 5806 610010 8131310 
916210 000-1 000 -1 000 -1 000 -1 000-1 
000-1 000 -1 14 17 12 15 
7 

#86 
Ct' 26 t on ams ga es 
0406 0366 0566 1556 1446 1386 
23116 25106 101377 611110 1214210 8 128 10 
24126 16 1777 3 19 166 10 17206 201537 7 13 167 
10 197 10 724 186 8 16 16 10 1524310 2223310 9182010 
21282610 2225210 000 -1 000 -1 000 -1 000-1 
31 30 27 26 29 13 

#30 
Contains 13 gates 

10416 12326 12416 11366 10366 11456 
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8767 511010 11567 5806 610010 8 13 13 10 
916210 000 -1 000 -1 000-1 000-1 000 -1 
000-1 000-1 14 17 12 15 
7 

#95 
C ° 26 ontams gates 
2546 1316 0306 6876 4966 0526 
2336 1446 913210 0406 14607 11121410 
71406 1617157 14193 10 81806 1617 16 10 1596 
2466 7 15010 2025 196 10211910 8261610 2821 177 
2324710 20252410 000 -1 000 -1 000-1 000 -1 
27 29 31 22 30 6 

#36 
C 14 ontams gates 
2406 0346 0446 2376 1436 89010 
8946 1386 6907 116117 71226 7 12 10 10 
13 1415 10 11163 10 000 -1 000-1 000 -1 000 -1 
000-1 000 -1 15 17 18 10 
5 

#18 
C t ° 27 onams gates 
0356 1426 15 16 1306 0566 0476 
2366 7 129 10 101326 9111310 2546 1213 147 
1415710 6787 2486 820196 820410 14 15 21 6 
19232010 10 13 410 62467 2125210 2125106 1828410 
1729 19 10 293077 24312810 000-1 000 -1 000 -1 
26 32 30 27 22 16 

#56 
C to 13 t on ams ga es 
2436 0306 0466 1356 7806 8577 
1466 10 937 2326 710210 681010 1113910 
1215910 000 -1 000-1 000 -1 000 -1 000 -1 
000 -1 000 -1 9 17 14 16 
5 

#102 
C 26 ontams gates 
2306 0446 1526 2436 0376 0536 
611110 61146 1466 89410 13 15 156 13 141610 
2516 1356 1214116 10 14 146 14 18 11 7 10161710 
7 175 10 20232210 221287 122223 10 2426510 1621 10 10 
252667 19282010 000 -1 000 -1 000 -1 000 -1 
29 30 31 27 15 18 
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#56 
C t' 13 t on ams ga es 
2436 0306 0466 1356 7806 8577 
1466 10 937 2326 710210 681010 1113910 
1215910 000-1 000 -1 000 -1 000 -1 000-1 
000-1 000 -1 9 17 14 16 
5 

#125 
C 26 ontams gates 
2306 0526 67310 2586 1376 2456 
1586 0336 9 13 126 1436 04146 81596 
1415 1610 159 157 1317510 13 18 186 10 163 10 8 19 15 10 
1112310 142221 7 2125107 18221 10 1923276 2125 13 10 
202627 27282410 000-1 000 -1 000 -1 000-1 
29 30 31 23 24 9 
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Appendix 5 - The 2-bit adder with carry, '2-into-1' frequencies 
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Figure A5.1 Frequencies of '2-into-l ' sub-programs for the 2-bit adder with carry, from a set 
of 500 chromosomes. Geometry: 1 row x 10 columns, gates allowed: 6-15. 

# Gate1 Gate2 Gate3 Frequency 
1 11 10 13 21 
2 10 10 6 21 
3 11 10 11 19 
4 11 10 8 19 
5 10 11 14 17 
6 11 11 9 17 
7 10 10 7 16 
8 11 11 13 15 
9 11 11 12 14 
10 12 14 6 14 
11 10 11 7 14 
12 10 11 11 14 
13 11 10 10 14 
14 10 11 12 14 

Figure A5.2 the top 14 '2-into-l' sub-programs for the 2-bit adder with carry, shown in 
Figure A5.1. 
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Appendix 6 - An example Case 

Index Behaviour (converted from binar into 8 cells of 8-bit integers) 
0 0 0 255 255 0 0 255 255 
1 0 255 0 255 0 255 0 255 
2 240 240 240 240 240 240 240 240 
3 0 0 0 0 255 255 255 255 
4 204 204 204 204 204 204 204 204 
5 170 170 170 170 170 170 170 170 

Table A6.1 An annotated example of the Inputs (Behaviour) in a Case. 

6 (00) 160 160 160 160 160 160 160 160 
7 0 0 0 0 0 255 0 255 
8 0 0 0 0 0 0 255 255 
9 0 0 0 0 0 0 160 160 
10 0 0 0 0 0 0 128 128 
11 0 0 170 170 0 0 170 170 
12 0 0 0 0 240 240 240 240 
13 0 204 0 204 0 204 0 204 
14 0 204 0 204 0 204 160 108 
15 0 0 204 204 0 0 204 204 
16 0 76 0 76 0 76 0 76 
17 0 0 170 170 240 240 90 90 
18 0 0 0 0 0 204 0 108 
19 0 76 0 68 0 12 0 4 
20 0 128 0 136 0 192 160 104 
21 0 0 0 0 0 0 0 108 
22 (0 2) 0 76 170 230 240 188 90 22 
23 0 170 0 170 0 170 0 170 
24 192 192 192 192 192 192 192 192 
25 0 0 204 204 0 255 204 51 
26 0 0 0 136 0 192 128 32 
27 (05) 0 0 0 0 0 0 128 236 
28 0 0 0 136 0 192 127 223 
29 (04) 0 0 0 136 0 192 127 147 
30 (0 1) 192 106 192 106 192 106 192 106 
31 (03) 0 128 204 68 0 63 108 91 

Table A6.2 An annotated example of the Behaviour in a Case. 

2546 13 16 0306 6876 4966 0526 
2336 1446 913210 0406 14607 111214 10 
71406 1617 157 14193 10 81806 1617 16 10 1596 
2466 7 15010 2025 196 10 21 19 10 8261610 2821 177 
2324710 20252410 000-1 000-1 000 -1 000-1 
27 29 31 22 30 6 

Table A6.3 An example of a Structure in a Case. 
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Fitness 384 (100% functional) + 4 (Redundant cells e.g. 30-26=4) 
Frequency 4 (Number of times this program occurred) 
Generation 6434526 
Number of rows 1 
Number of columns 30 
Number of gates 26 

Table A6.4 An example of the other attributes and values in a Case. 
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Gate 1 Gate 2 Gate 3 Frequency 
100 105 6 1 
102 103 10 1 
6 105 10 1 
100 104 6 1 
103 100 6 1 
6 6 7 2 
6 6 10 2 
... ... ... . .. 

Table A6.5 An example of the sub-programs in a Case. This is a 'finger-print' for the Case 
Values of 100 and over represent inputs to the program, values less than 100 represent gate 
types, of the 2-into-l sub-programs. 
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Appendix 7 - The SBox problem 

An investigation into evolving the SBox encryption circuits. This investigation by Dominic Job 
was based on work in Miller, J. F. and Thomson, P. 1998 a and b. 

In considering new architectures for digital circuit evolution, there are two key issues (Miller, 
J. F. and Thomson, P. 1998a and b): 

(a) Functionality of cells - where evolution selects the logical functionality of a particular 
cell, and determines whether or not that cell should possess functionality. 

(b) Routing - where the routes that provide the interconnection between functional cells are 
evolved into non-functional cells (or functional cells which are partially used as routes). 

The routeability of circuits is an important practical issue that is aptly demonstrated by the 
SBOX combinational design problem. This is a circuit used in data encryption. Traditional 
synthesis techniques are not able to produce a design which will place and route on to the 
Xilinx 6216 within the geometric bounding-box currently desired by engineers. This shows 
the importance of designing in such a way as to incorporate both issues of functionality of 
circuits and also the manner in which they route on target devices (Miller, J. F. and Thomson, 
P. 1998a and b). 

Each Sbox has 6 inputs, 4 outputs and 64 lines in the truth table. In each experiment an 
Evolutionary Strategy was used with a population size of 5 over 10,000,000 generations, with 
elitism and a mutation rate of 1.5%. Two multiplexers were the available functions: ((A & 
-C) I (B & C)), ((A & -C) I (-B & C)) as these two functions are known to be capable of 
producing the required functionality. In the three experiments below for the Sboxl, Sbox2 
and Sbox3 problems, the allowed geometry was increased from 8x12 for the first experiment 
to 8x16 in the second and lastly 8x32 in the third. This was done to attempt to get a 100% 
perfect solution to one of the problems, as the high fitness values e.g. 99.22% with 50% 
perfection suggest that 100% perfect solutions are attainable. The structure of the 
chromosomes given is explained in the reference texts (Miller, 1. F. and Thomson, P. 1998a 
and b). 

Experiment 1: Sboxl 

The first experiment was to attempt to place and route the Sboxl problem in an 8x12 
horizontal cell area on a Xilinx 6216 FPGA with 'levels back' = 12 (the number of columns 
across which a connection can be made to an earlier column in the cell area). The 8x12 area 
requires 100 genes in the chromosome. The results are given in table 1 below, and the best 
chromosome is then given. 

rrhe result was achieved at generation: lPercentage fitness Percentage perfect* 

~520338 196.88 0.00 

~481415 198.05 0.00 

~411700 196.09 0.00 

17839230 197.27 0.00 

8126761 194.92 0.00 

12618692 198.44 0.00 

8223080 196.48 0.00 

~785943 198.44 ~O.OO 
~303018 197.27 0.00 

*Percentage perfect is the percentage of the truth table that is perfectly calculated from top to 
bottom without breaks, reported at 25% intervals. 
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Table 1. The Sboxl problem in an 8x12 horizontal cell area. 

Best chromosome from experiment 1: 

At generation 9785943 the following result was achieved 

55017 103 17 23317 5 1317 15416 21417 
31217 24017 12 l3 3 16 98016 68 1217 691017 
6103 16 34516 0011 17 l3l3517 10 l3 19 17 2015 10 16 
4 183 16 3161117 18 11 17 16 1791917 1424 17 16221 16 

15181217 2829 15 17 282827 17 2611717 422217 24182617 
2122316 252823 16 352611 17 303233 16 3332017 2341217 
l3 2911 16 203335 16 31121017 203017 384327 16 452943 17 
1018717 4031116 23333616 9374017 4432317 3934917 
6432616 37474216 6262816 9414516 0833 17 48225216 
3231816 2331 1417 33532917 435023 16 5434316 232858 16 
354761 16 355441 16 53495 16 56501017 64 1633 16 l3 47 4216 
12393016 272525 16 45 16917 62265617 37143117 50672416 
361259 16 10 59 27 16 72 70 35 16 70711917 23546817 48562217 
75 185616 754328 16 2846617 28229 16 53612016 17531217 
68764017 43302817 49397316 55051 17 971 62 16 77 7185 17 
13763 17 94129 16 5951516 425985 16 71164516 16832117 

77 55 68 99 

Experiment 2: Sbox2 

The second experiment was to attempt to place and route the Sbox2 function in an 8x16 
horizontal cell area on a Xilinx 6216 FPGA with 'levels back' = 16. The 8x16 area requires 
l32 genes in the chromosome. The results are given in table 2 below, and the best 
chromosome is then given. 

rrhe result was achieved at generation: !Percentage fitness Percentage perfect* 
3134822 ~7.27 0.00 
8841161 98.05 50.00 

~539456 98.44 50.00 

1433786 98.44 50.00 
8010889 98.44 50.00 
b179232 ~6.88 0.00 
4305603 98.05 0.00 

17723414 ~6.09 0.00 
1454634 98.44 50.00 
~548762 98.44 50.00 
8267265 ~4.92 0.00 

17318510 97.66 0.00 

~107938 98.05 50.00 
~830277 98.44 50.00 
2631902 98.44 50.00 
3552944 ~7.66 0.00 
8672225 ~6.09 0.00 
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13205873 198.44 150.00 
*Percentage perfect is the percentage of the truth table that is perfectly calculated from top to 
bottom without breaks, reported at 25% intervals. 

Table 2. The Sbox2 problem in an 8x 16 horizontal cell area. 

Best chromosome from experiment 2: 

At generation 3205873 the following result was achieved 

20516 25017 04516 55417 121 17 22317 
10217 03016 1310917 58917 1 10 117 47717 
151017 32117 1110817 6117 16 7 12017 102017 
7 1418 17 1928 16 041117 11121416 11917 1825 17 
2713616 1265 16 17141217 232621 16 252129 16 182 15 17 
10 252416 2027 12 16 36253517 36363117 35 121116 152234 17 
34223217 026716 162237 16 61928 16 37403217 40392916 
33339 16 933 116 34252017 273227 16 42443016 10 93416 
4045 11 16 9251917 730 18 17 30304817 5252417 17 15416 
50272617 47471317 45201317 391928 16 2 1632 17 735 13 16 
8104316 5159216 302331 16 82041 16 325643 16 473215 16 
60615216 2536617 31176417 572745 17 38165817 5644516 
28284917 754341 16 56964 16 5645717 69584816 55423417 
32297016 24545917 8526 14 17 76421916 5529 18 16 7563 15 17 
50235217 74507417 28795416 6161417 33748717 83166417 
657017 5164 5617 7233217 73216016 88393917 7667 19 16 
90908817 4382017 219075 17 832943 17 46345 16 69969416 
66255617 66882116 2773 16 5664 105 17 50997917 14523 16 
100495016 10 1009217 8410245 17 2072 15 17 58476917 39552517 
901085117 73229816 43792016 505010617 192863 16 83 1175416 
53 115 1117 748217 122356017 65761217 412234 17 7632017 
117565816 8610895 16 5893 12589 

Experiment 3: Sbox3 

The third experiment was to attempt to place and route the Sbox3 function in an 8x32 
horizontal cell area on a Xilinx 6216 FPGA with 'levels back' = 32. The 8x32 area requires 
260 genes in the chromosome. The results are given in table 3 below, and the best 
chromosome is then given. 

The result was achieved at generation: Percentage fitness Percentage perfect* 
4107590 99.22 50.00 
9147835 98.05 0.00 
2597586 96.09 0.00 
5974820 99.22 50.00 
1732460 99.22 50.00 
*Percentage perfect is the percentage of the truth table that is perfectly calculated from top to 
bottom without breaks, reported at 25% intervals. 
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Table 3. The Sbox3 problem in an 8x32 horizontal cell area. 

Best chromosome from experiment 3: 

At generation 4107590 the following result was achieved: 

53 117 30017 02516 54216 50517 
45217 50216 22117 445 16 98716 
19716 411 1116 3 10 5 17 9 125 17 22517 
33117 145 16 17 551317 14181617 10 182116 
11 68 16 1 17 15 17 2158 17 17 12 1 16 2011717 
6132717 22272916 1017117 282827 17 6 17 14 16 
2341217 262625 17 3513116 24232916 1220016 
28 14016 4633 16 1976 17 11 23 2217 13 418 16 
10 4118 16 3678 16 40243017 3041 19 16 2840616 
7453617 314012 16 34617 16 25185317 13124517 
12121116 33484216 48 12116 3424917 27292816 
34738 16 40361217 3584416 2854 18 17 24454416 
8013 16 273523 16 36382117 61444916 361946 17 
335419 16 56646817 242057 17 504325 17 5435817 
4237 17 172737 16 12216016 54695617 44575916 
603865 16 3737 12 17 45 17 12 17 63107416 17526 16 
18313816 195357 16 364878 16 36173016 357336 16 
8132216 66517916 41668416 547567 17 84461116 
444269 17 663865 16 10 29 6616 23762917 39297217 
45194116 76 1377 17 74748216 636723 17 34946417 
4887217 5932 116 10188 17 17 194193 16 46421916 
60767617 3723917 16671017 6586817 33503217 
80266616 55408217 54 1055 17 88874616 103747717 
4929317 9387217 21 1096116 349785 16 1061081517 
5332417 1116863 17 57 1162416 7966417 547911616 
75011116 31 103 103 16 92928017 101362417 99 1252116 
302612416 131109117 10114216 55 13 105 16 131168617 
11821717 113 1212116 3359317 991319617 11281 108 16 
92133 12117 553727 17 544413817 48 127 136 16 789 131 17 
854645 16 361189817 32373617 95 1068016 1441411216 
152468 16 14350137 17 421154817 15184116 90522017 
8625 1617 129996416 11 1032417 581206016 148649616 
211115416 150832216 37 15657 16 105 134 140 17 698325 16 
57254617 31 77 16 17 138 125 153 17 5015675 16 8 1605416 
1289012216 104 1165 17 1436831 16 11244216 02595 17 
1 16012416 16528 153 17 1411615417 164 78 6916 9614613917 
1801175617 1511768816 167 145 1117 58 1493816 1111837716 
64 18464 17 41 13018 16 180157 15 16 27 1189 17 145 112416 
1279817617 27 185 187 17 93 183 14016 01875017 77 124 19116 
298018017 1807012916 81121 10 16 107 173 115 16 58127817 
11164 187 16 154 182 137 16 61196 182 17 2273 127 17 1516220217 
4718212817 1122 102 17 13 1184116 121346616 12018117 
21 140 181 16 159113 1817 3750149 16 43 15615 17 211 107 13 16 
1321444417 1071204917 2076975 17 20923167 16 8613 21217 
96144 183 16 1072092317 94 106 10116 1951527217 486914617 
21223 15017 3919321217 221337517 1538211 16 7 186 144 16 
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150209516 167 1809217 207 151 105 17 5915017517 148213 15 17 
10214421417 15683 12416 2 106 18116 92156227 17 154219 12117 
16242617 2012861 16 1796921616 9713616916 11045916 
35844017 244 169 180 17 55297416 158457 16 432822617 
39 112 106 17 180204 155 17 63 14020417 5 177 185 17 7920020917 
652141317 252200146240 
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FPGA - Field Programmable Gate Array 

FPGA programs are a limited form of program consisting of a feed forward network of 

primitive logic functions. 

This thesis examines a specific area of software reuse in the programming of Field 

Programmable Gate Arrays (FPGAs). An FPGA is a programmable microchip that takes as a 

program a representation of a digital logic circuit. The FPGA takes on the digital circuit 

configuration given to it as a program. FPGAs have the advantage over Gate Arrays in that 

they do not have to be manufactured for a specific purpose. . FPGAs can also be quickly 

reprogrammed to fulfil a new specification, whereas non-programmable Gate Arrays cannot 

(Xilinx, 1996). 

Logic programming can be seen as a specific kind of software programming. Gate Arrays are 

microchips that require a Logic program to perform a function. Field programmable Gate 

Arrays (FPGAs) are a specific type of gate array that is user programmable, and can be reused 

by reprogramming it with a new program. Normal Gate arrays are programmed once and then 

discarded after use. 

CBR - Case-Based Reasoning 

CBR is a problem solving method that reuses old solutions to solve new problems 

CB - Case-Base 

A collection of problem-solution pairs, used in CBR 

HCBR - Hierarchical Case Base Reasoning 

Hierarchical Case Base Reasoning (HCBR) (Smyth, 1996) are designed to facilitate indexing 

and retrieval by organising the Cases into a hierarchy where specific Cases are indexed under 

more general Cases. 

A form of CBR where the CB can been seen as a hierarchy of cases where the cases are more 

general higher up the hierarchy. The lowest cases are problem-solution pairs, the higher a case 

is the more general it is. This facilitates matching and reasoning as the distance between cases 

can be measured by the number of nodes of the hierarchy tree that have to be ascended to find 

a common case. 

AGR - Adaptation Guided Retrieval 
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AGR finds existing Cases in the Case-Base that can be best adapted to solve the problem, 

rather than simply retrieving the closest Case to the problem Case 

EC - Evolutionary Computation 

Computational techniques based on theories or natural evolution and natural systems, for 

example Darwinian theory and ant colonies. 

CGP - Cartesian Genetic Programming 

A digital logic circuit is encoded as a more general graph based computational model called 

CGP (Miller, 1999a). CGP is a graph-based form of genetic programming. Other graph based 

genetic programming forms are Parallel Distributed GP (PDGP) proposed by Poli (1997) and 

Parallel Algorithm Discovery and Orchestration (PADO) (Teller and Veloso, 1995). CGP 

represents a data-flow graph (Banzhaf et al., 1998). 

NLP - Natural Language Processing 

Fully automated computing techniques and methods for interpreting and making useful 

inferences (understanding) about natural language e.g. the interpretation of English, or French 

by a computer. 

Natural Language Processing (NLP) can extract knowledge from Natural Language 

documents and other data-mining techniques can produce knowledge e.g. by Filtering or 

mapping legacy databases to new uses 

SR - Software Reuse 

Software reuse (SR) encompasses many techniques. In general these techniques fall into one 

of the categories give in Table 2.1. Each technique aims to reuse existing knowledge as much 

as possible whilst minimising the amount of new work required to produce a satisfactory 

solution (Krueger, 1992). 

PLA - Programmable logic array 

PLA files (PLA stands for programmable logic array) commonly specify combinational logic 

functions. A PLA file is a truth table with additional information about the numbers of inputs, 

outputs and products of the target program, and has the format shown in Table 2.2. A PLA 

file differs from a Truth Table in that a PLA file need not have all outputs or inputs specified. 

TT - Truth Table 

Binary table of inputs and outputs for a digital function. 
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TFQ - The Fundamental Question 

"Can we by evolving a series of sub-systems of increasing size, extract the general principle 

and hence discover new principles?" 

BCT - Behavioural Context Triple 

Like a two input logic gate (AND, OR, XOR etc) but including 'context' where the context of 

a gate is defined as the binary inputs and outputs for the specific gate in a specific circuit with 

a specific function such as multiplication. 
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