438 research outputs found

    Video-on-Demand over Internet: a survey of existing systems and solutions

    Get PDF
    Video-on-Demand is a service where movies are delivered to distributed users with low delay and free interactivity. The traditional client/server architecture experiences scalability issues to provide video streaming services, so there have been many proposals of systems, mostly based on a peer-to-peer or on a hybrid server/peer-to-peer solution, to solve this issue. This work presents a survey of the currently existing or proposed systems and solutions, based upon a subset of representative systems, and defines selection criteria allowing to classify these systems. These criteria are based on common questions such as, for example, is it video-on-demand or live streaming, is the architecture based on content delivery network, peer-to-peer or both, is the delivery overlay tree-based or mesh-based, is the system push-based or pull-based, single-stream or multi-streams, does it use data coding, and how do the clients choose their peers. Representative systems are briefly described to give a summarized overview of the proposed solutions, and four ones are analyzed in details. Finally, it is attempted to evaluate the most promising solutions for future experiments. Résumé La vidéo à la demande est un service où des films sont fournis à distance aux utilisateurs avec u

    A Taxonomy of Data Grids for Distributed Data Sharing, Management and Processing

    Full text link
    Data Grids have been adopted as the platform for scientific communities that need to share, access, transport, process and manage large data collections distributed worldwide. They combine high-end computing technologies with high-performance networking and wide-area storage management techniques. In this paper, we discuss the key concepts behind Data Grids and compare them with other data sharing and distribution paradigms such as content delivery networks, peer-to-peer networks and distributed databases. We then provide comprehensive taxonomies that cover various aspects of architecture, data transportation, data replication and resource allocation and scheduling. Finally, we map the proposed taxonomy to various Data Grid systems not only to validate the taxonomy but also to identify areas for future exploration. Through this taxonomy, we aim to categorise existing systems to better understand their goals and their methodology. This would help evaluate their applicability for solving similar problems. This taxonomy also provides a "gap analysis" of this area through which researchers can potentially identify new issues for investigation. Finally, we hope that the proposed taxonomy and mapping also helps to provide an easy way for new practitioners to understand this complex area of research.Comment: 46 pages, 16 figures, Technical Repor

    Smart PIN: performance and cost-oriented context-aware personal information network

    Get PDF
    The next generation of networks will involve interconnection of heterogeneous individual networks such as WPAN, WLAN, WMAN and Cellular network, adopting the IP as common infrastructural protocol and providing virtually always-connected network. Furthermore, there are many devices which enable easy acquisition and storage of information as pictures, movies, emails, etc. Therefore, the information overload and divergent content’s characteristics make it difficult for users to handle their data in manual way. Consequently, there is a need for personalised automatic services which would enable data exchange across heterogeneous network and devices. To support these personalised services, user centric approaches for data delivery across the heterogeneous network are also required. In this context, this thesis proposes Smart PIN - a novel performance and cost-oriented context-aware Personal Information Network. Smart PIN's architecture is detailed including its network, service and management components. Within the service component, two novel schemes for efficient delivery of context and content data are proposed: Multimedia Data Replication Scheme (MDRS) and Quality-oriented Algorithm for Multiple-source Multimedia Delivery (QAMMD). MDRS supports efficient data accessibility among distributed devices using data replication which is based on a utility function and a minimum data set. QAMMD employs a buffer underflow avoidance scheme for streaming, which achieves high multimedia quality without content adaptation to network conditions. Simulation models for MDRS and QAMMD were built which are based on various heterogeneous network scenarios. Additionally a multiple-source streaming based on QAMMS was implemented as a prototype and tested in an emulated network environment. Comparative tests show that MDRS and QAMMD perform significantly better than other approaches

    Mathematical analysis of scheduling policies in peer-to-peer video streaming networks

    Get PDF
    Las redes de pares son comunidades virtuales autogestionadas, desarrolladas en la capa de aplicación sobre la infraestructura de Internet, donde los usuarios (denominados pares) comparten recursos (ancho de banda, memoria, procesamiento) para alcanzar un fin común. La distribución de video representa la aplicación más desafiante, dadas las limitaciones de ancho de banda. Existen básicamente tres servicios de video. El más simple es la descarga, donde un conjunto de servidores posee el contenido original, y los usuarios deben descargar completamente este contenido previo a su reproducción. Un segundo servicio se denomina video bajo demanda, donde los pares se unen a una red virtual siempre que inicien una solicitud de un contenido de video, e inician una descarga progresiva en línea. El último servicio es video en vivo, donde el contenido de video es generado, distribuido y visualizado simultáneamente. En esta tesis se estudian aspectos de diseño para la distribución de video en vivo y bajo demanda. Se presenta un análisis matemático de estabilidad y capacidad de arquitecturas de distribución bajo demanda híbridas, asistidas por pares. Los pares inician descargas concurrentes de múltiples contenidos, y se desconectan cuando lo desean. Se predice la evolución esperada del sistema asumiendo proceso Poisson de arribos y egresos exponenciales, mediante un modelo determinístico de fluidos. Un sub-modelo de descargas secuenciales (no simultáneas) es globalmente y estructuralmente estable, independientemente de los parámetros de la red. Mediante la Ley de Little se determina el tiempo medio de residencia de usuarios en un sistema bajo demanda secuencial estacionario. Se demuestra teóricamente que la filosofía híbrida de cooperación entre pares siempre desempeña mejor que la tecnología pura basada en cliente-servidor

    Robust P2P Live Streaming

    Get PDF
    Projecte fet en col.laboració amb la Fundació i2CATThe provisioning of robust real-time communication services (voice, video, etc.) or media contents through the Internet in a distributed manner is an important challenge, which will strongly influence in current and future Internet evolution. Aware of this, we are developing a project named Trilogy leaded by the i2CAT Foundation, which has as main pillar the study, development and evaluation of Peer-to-Peer (P2P) Live streaming architectures for the distribution of high-quality media contents. In this context, this work concretely covers media coding aspects and proposes the use of Multiple Description Coding (MDC) as a flexible solution for providing robust and scalable live streaming over P2P networks. This work describes current state of the art in media coding techniques and P2P streaming architectures, presents the implemented prototype as well as its simulation and validation results

    Network coding meets multimedia: a review

    Get PDF
    While every network node only relays messages in a traditional communication system, the recent network coding (NC) paradigm proposes to implement simple in-network processing with packet combinations in the nodes. NC extends the concept of "encoding" a message beyond source coding (for compression) and channel coding (for protection against errors and losses). It has been shown to increase network throughput compared to traditional networks implementation, to reduce delay and to provide robustness to transmission errors and network dynamics. These features are so appealing for multimedia applications that they have spurred a large research effort towards the development of multimedia-specific NC techniques. This paper reviews the recent work in NC for multimedia applications and focuses on the techniques that fill the gap between NC theory and practical applications. It outlines the benefits of NC and presents the open challenges in this area. The paper initially focuses on multimedia-specific aspects of network coding, in particular delay, in-network error control, and mediaspecific error control. These aspects permit to handle varying network conditions as well as client heterogeneity, which are critical to the design and deployment of multimedia systems. After introducing these general concepts, the paper reviews in detail two applications that lend themselves naturally to NC via the cooperation and broadcast models, namely peer-to-peer multimedia streaming and wireless networkin

    Scalable Video Streaming with Prioritised Network Coding on End-System Overlays

    Get PDF
    PhDDistribution over the internet is destined to become a standard approach for live broadcasting of TV or events of nation-wide interest. The demand for high-quality live video with personal requirements is destined to grow exponentially over the next few years. Endsystem multicast is a desirable option for relieving the content server from bandwidth bottlenecks and computational load by allowing decentralised allocation of resources to the users and distributed service management. Network coding provides innovative solutions for a multitude of issues related to multi-user content distribution, such as the coupon-collection problem, allocation and scheduling procedure. This thesis tackles the problem of streaming scalable video on end-system multicast overlays with prioritised push-based streaming. We analyse the characteristic arising from a random coding process as a linear channel operator, and present a novel error detection and correction system for error-resilient decoding, providing one of the first practical frameworks for Joint Source-Channel-Network coding. Our system outperforms both network error correction and traditional FEC coding when performed separately. We then present a content distribution system based on endsystem multicast. Our data exchange protocol makes use of network coding as a way to collaboratively deliver data to several peers. Prioritised streaming is performed by means of hierarchical network coding and a dynamic chunk selection for optimised rate allocation based on goodput statistics at application layer. We prove, by simulated experiments, the efficient allocation of resources for adaptive video delivery. Finally we describe the implementation of our coding system. We highlighting the use rateless coding properties, discuss the application in collaborative and distributed coding systems, and provide an optimised implementation of the decoding algorithm with advanced CPU instructions. We analyse computational load and packet loss protection via lab tests and simulations, complementing the overall analysis of the video streaming system in all its components

    Diseño centrado en calidad para la difusión Peer-to-Peer de video en vivo

    Get PDF
    El uso de redes Peer-to-Peer (P2P) es una forma escalable para ofrecer servicios de video sobre Internet. Este documento hace foco en la definición, desarrollo y evaluación de una arquitectura P2P para distribuir video en vivo. El diseño global de la red es guiado por la calidad de experiencia (Quality of Experience - QoE), cuyo principal componente en este caso es la calidad del video percibida por los usuarios finales, en lugar del tradicional diseño basado en la calidad de servicio (Quality of Service - QoE) de la mayoría de los sistemas. Para medir la calidad percibida del video, en tiempo real y automáticamente, extendimos la recientemente propuesta metodología Pseudo-Subjective Quality Assessment (PSQA). Dos grandes líneas de investigación son desarrolladas. Primero, proponemos una técnica de distribución de video desde múltiples fuentes con las características de poder ser optimizada para maximizar la calidad percibida en contextos de muchas fallas y de poseer muy baja señalización (a diferencia de los sistemas existentes). Desarrollamos una metodología, basada en PSQA, que nos permite un control fino sobre la forma en que la señal de video es dividida en partes y la cantidad de redundancia agregada, como una función de la dinámica de los usuarios de la red. De esta forma es posible mejorar la robustez del sistema tanto como sea deseado, contemplando el límite de capacidad en la comunicación. En segundo lugar, presentamos un mecanismo estructurado para controlar la topología de la red. La selección de que usuarios servirán a que otros es importante para la robustez de la red, especialmente cuando los usuarios son heterogéneos en sus capacidades y en sus tiempos de conexión.Nuestro diseño maximiza la calidad global esperada (evaluada usando PSQA), seleccionado una topología que mejora la robustez del sistema. Además estudiamos como extender la red con dos servicios complementarios: el video bajo demanda (Video on Demand - VoD) y el servicio MyTV. El desafío en estos servicios es como realizar búsquedas eficientes sobre la librería de videos, dado al alto dinamismo del contenido. Presentamos una estrategia de "caching" para las búsquedas en estos servicios, que maximiza el número total de respuestas correctas a las consultas, considerando una dinámica particular en los contenidos y restricciones de ancho de banda. Nuestro diseño global considera escenarios reales, donde los casos de prueba y los parámetros de configuración surgen de datos reales de un servicio de referencia en producción. Nuestro prototipo es completamente funcional, de uso gratuito, y basado en tecnologías bien probadas de código abierto

    A Framework For Efficient Data Distribution In Peer-to-peer Networks.

    Get PDF
    Peer to Peer (P2P) models are based on user altruism, wherein a user shares its content with other users in the pool and it also has an interest in the content of the other nodes. Most P2P systems in their current form are not fair in terms of the content served by a peer and the service obtained from swarm. Most systems suffer from free rider\u27s problem where many high uplink capacity peers contribute much more than they should while many others get a free ride for downloading the content. This leaves high capacity nodes with very little or no motivation to contribute. Many times such resourceful nodes exit the swarm or don\u27t even participate. The whole scenario is unfavorable and disappointing for P2P networks in general, where participation is a must and a very important feature. As the number of users increases in the swarm, the swarm becomes robust and scalable. Other important issues in the present day P2P system are below optimal Quality of Service (QoS) in terms of download time, end-to-end latency and jitter rate, uplink utilization, excessive cross ISP traffic, security and cheating threats etc. These current day problems in P2P networks serve as a motivation for present work. To this end, we present an efficient data distribution framework in Peer-to-Peer (P2P) networks for media streaming and file sharing domain. The experiments with our model, an alliance based peering scheme for media streaming, show that such a scheme distributes data to the swarm members in a near-optimal way. Alliances are small groups of nodes that share data and other vital information for symbiotic association. We show that alliance formation is a loosely coupled and an effective way to organize the peers and our model maps to a small world network, which form efficient overlay structures and are robust to network perturbations such as churn. We present a comparative simulation based study of our model with CoolStreaming/DONet (a popular model) and present a quantitative performance evaluation. Simulation results show that our model scales well under varying workloads and conditions, delivers near optimal levels of QoS, reduces cross ISP traffic considerably and for most cases, performs at par or even better than Cool-Streaming/DONet. In the next phase of our work, we focussed on BitTorrent P2P model as it the most widely used file sharing protocol. Many studies in academia and industry have shown that though BitTorrent scales very well but is far from optimal in terms of fairness to end users, download time and uplink utilization. Furthermore, random peering and data distribution in such model lead to suboptimal performance. Lately, new breed of BitTorrent clients like BitTyrant have shown successful strategic attacks against BitTorrent. Strategic peers configure the BitTorrent client software such that for very less or no contribution, they can obtain good download speeds. Such strategic nodes exploit the altruism in the swarm and consume resources at the expense of other honest nodes and create an unfair swarm. More unfairness is generated in the swarm with the presence of heterogeneous bandwidth nodes. We investigate and propose a new token-based anti-strategic policy that could be used in BitTorrent to minimize the free-riding by strategic clients. We also proposed other policies against strategic attacks that include using a smart tracker that denies the request of strategic clients for peer listmultiple times, and black listing the non-behaving nodes that do not follow the protocol policies. These policies help to stop the strategic behavior of peers to a large extent and improve overall system performance. We also quantify and validate the benefits of using bandwidth peer matching policy. Our simulations results show that with the above proposed changes, uplink utilization and mean download time in BitTorrent network improves considerably. It leaves strategic clients with little or no incentive to behave greedily. This reduces free riding and creates fairer swarm with very little computational overhead. Finally, we show that our model is self healing model where user behavior changes from selfish to altruistic in the presence of the aforementioned policies

    A credit-based approach to scalable video transmission over a peer-to-peer social network

    Get PDF
    PhDThe objective of the research work presented in this thesis is to study scalable video transmission over peer-to-peer networks. In particular, we analyse how a credit-based approach and exploitation of social networking features can play a significant role in the design of such systems. Peer-to-peer systems are nowadays a valid alternative to the traditional client-server architecture for the distribution of multimedia content, as they transfer the workload from the service provider to the final user, with a subsequent reduction of management costs for the former. On the other hand, scalable video coding helps in dealing with network heterogeneity, since the content can be tailored to the characteristics or resources of the peers. First of all, we present a study that evaluates subjective video quality perceived by the final user under different transmission scenarios. We also propose a video chunk selection algorithm that maximises received video quality under different network conditions. Furthermore, challenges in building reliable peer-to-peer systems for multimedia streaming include optimisation of resource allocation and design mechanisms based on rewards and punishments that provide incentives for users to share their own resources. Our solution relies on a credit-based architecture, where peers do not interact with users that have proven to be malicious in the past. Finally, if peers are allowed to build a social network of trusted users, they can share the local information they have about the network and have a more complete understanding of the type of users they are interacting with. Therefore, in addition to a local credit, a social credit or social reputation is introduced. This thesis concludes with an overview of future developments of this research work
    corecore