
A credit-based approach to scalable video transmission over a peer-to-

peer social network
Asioli, Stefano

The copyright of this thesis rests with the author and no quotation from it or information

derived from it may be published without the prior written consent of the author

For additional information about this publication click this link.

http://qmro.qmul.ac.uk/jspui/handle/123456789/8369

Information about this research object was correct at the time of download; we occasionally

make corrections to records, please therefore check the published record when citing. For

more information contact scholarlycommunications@qmul.ac.uk

http://qmro.qmul.ac.uk/jspui/handle/123456789/8369

Queen Mary University of London

School of Electronic Engineering & Computer Science

A CREDIT-BASED APPROACH TO
SCALABLE VIDEO

TRANSMISSION OVER A
PEER-TO-PEER SOCIAL

NETWORK

Thesis submitted to University of London

in partial fulfilment of the

requirements for the degree of

Doctor of Philosophy

Stefano Asioli

Supervisor: Prof. Ebroul Izquierdo

London, 2013.

i

ii

Acknowledgements

First of all, I would like to express my gratitude to my supervisor Prof. Ebroul

Izquierdo, as this work would not have been possible without his support and advice.

A special thank goes to Dr. Naeem Ramzan, for his help and above all for his patience.

During these last years I have had the chance to work with many brilliant people,

too many to mention, nevertheless each one of them has left me something. I would

like to thank, in no particular order: Eduardo Peixoto, Michele Sanna, Qianni Zhang,

Lasantha Seneviratne, Giuseppe Passino, Muhammad Akram, Tijana Janjusevic, Bruno

Gardlo, Sander Koelstra, Julie Wall, Krishna Chandramouli, Vlado Kitanovski, Heng

Yang ‘Chris’, Ivan Damnjanovic, Saverio Blasi, Fiona Rivera, Tomas Piatrik, Vir-

ginia Fernandez, César Pantoja, Cristina Romero, Sertan Kaymak, Simena Dinas,

Markus Brenner, Xavier Sevillano, Vijay Kumar, Daria Štefić, Konstantinos Bozas,

Petar Palasek, Anıl Aksay, Navid Hajimirza, Vangelis Sariyanidi, Karthik Vaiapury,

Patrycia Barros, Yixian Liu, Juan Carlos Caicedo and all the other members and visit-

ors of MMV. I am particularly grateful to Fiona, Julie, Virginia, Naeem, Michele and

Saverio for helping me proof-read my thesis.

I would also like to thank all my friends from Queen Mary and the other members of

QMUL Italian Society.

Infine, vorrei ringraziare i miei genitori, Ornella e Giuliano, per avermi sempre

incoraggiato durante i miei studi.

Last, but not least, I would like to thank my parents Ornella and Giuliano for their

encouragement throughout all my studies.

iii

Abstract

The objective of the research work presented in this thesis is to study

scalable video transmission over peer-to-peer networks. In particular,

we analyse how a credit-based approach and exploitation of social net-

working features can play a significant role in the design of such systems.

Peer-to-peer systems are nowadays a valid alternative to the traditional

client-server architecture for the distribution of multimedia content, as

they transfer the workload from the service provider to the final user,

with a subsequent reduction of management costs for the former. On

the other hand, scalable video coding helps in dealing with network

heterogeneity, since the content can be tailored to the characteristics

or resources of the peers. First of all, we present a study that evalu-

ates subjective video quality perceived by the final user under different

transmission scenarios. We also propose a video chunk selection al-

gorithm that maximises received video quality under different network

conditions. Furthermore, challenges in building reliable peer-to-peer

systems for multimedia streaming include optimisation of resource al-

location and design mechanisms based on rewards and punishments that

provide incentives for users to share their own resources. Our solution

relies on a credit-based architecture, where peers do not interact with

users that have proven to be malicious in the past. Finally, if peers

are allowed to build a social network of trusted users, they can share

the local information they have about the network and have a more

complete understanding of the type of users they are interacting with.

Therefore, in addition to a local credit, a social credit or social repu-

tation is introduced. This thesis concludes with an overview of future

developments of this research work.

Contents

1 Introduction 1

1.1 Motivation . 1

1.2 Objectives . 4

1.3 Summary of Achievements . 5

1.4 List of Publications . 8

1.5 Structure of the Thesis . 9

2 Background 11

2.1 Subjective Video Quality and Quality of Experience 11

2.2 P2P Systems . 13

2.2.1 A Brief History of P2P . 13

2.2.2 BitTorrent . 14

2.2.3 Credit-based P2P Systems . 18

2.3 Scalable Video Coding . 20

2.3.1 SVC Modules . 21

2.3.2 Scalability Functionalities . 21

2.3.3 WSVC, a Wavelet-based SVC . 23

2.3.4 H.264/SVC, the Scalable Extension of H.264/AVC 28

2.3.5 Final Remarks about SVC . 30

2.4 Introduction to Social Networks . 32

2.5 Summary . 35

3 Subjective Video Quality Evaluation of SVC over P2P 36

3.1 Motivation and Related Work . 36

3.2 Subjective Evaluation Methodology . 41

3.2.1 Test Sequences . 41

3.2.2 Testing Environment . 44

iv

Contents v

3.2.3 Subjective Testing . 44

3.2.4 Scenarios for Subjective Evaluation of P2P Transmission 46

3.3 Results . 48

3.3.1 Objective Results . 48

3.3.2 Subjective Results . 51

3.4 Conclusion . 55

3.4.1 A Lesson Learned . 55

4 Scalable Video Adaptation to P2P Transmission 57

4.1 Overview of a General Social P2P SVC System 58

4.1.1 Block Diagram . 58

4.2 Problem Description . 61

4.3 Related Work . 61

4.3.1 Popular P2P Systems for Video Transmission 62

4.3.2 Multimedia Streaming Using BitTorrent and BiToS 63

4.3.3 Tribler BitTorrent Client . 65

4.3.4 P2P Scalable Streaming Using a Sliding Window 69

4.4 Proposed Approach . 71

4.4.1 Piece Picking Policy . 72

4.4.2 Neighbour Selection Policy . 77

4.5 Implementation . 79

4.6 Results . 81

4.6.1 Dataset Description . 81

4.6.2 Comparison Between a Non-scalable and a Scalable Codec 82

4.6.3 Effects of Neighbour Selection Policy 86

4.7 Conclusion . 91

5 Joint Free-riding Detection and Resource Optimisation 93

5.1 Problem Description . 94

5.2 A Simplified Case Study . 95

5.2.1 An Analytical Solution . 96

5.2.2 Additional Problems . 99

5.3 Related Work . 101

5.3.1 A Simple File-sharing Model . 101

5.3.2 Live Multimedia Streaming in a P2P Social Network 103

Contents vi

5.3.3 Overview of Other Techniques Based on Game Theory 108

5.3.4 P2P Network as a Graph . 109

5.3.5 A Push-based Approach for a Mesh Topology 110

5.3.6 Stanford Peer-to-Peer Multicast 111

5.3.7 Other Systems and Final Considerations 112

5.4 Proposed Approach . 113

5.4.1 Piece Picking Policy . 115

5.4.2 Credit-Based Framework . 117

5.4.3 Resource Optimisation . 118

5.4.4 Optimal Policy for Resource Allocation and FR Detection 119

5.4.5 Distribution of the First Copy . 121

5.5 Implementation . 123

5.6 Results . 123

5.7 Conclusion . 128

6 Social-based Free-riding Detection 129

6.1 Problem Description . 129

6.2 Related Work . 130

6.2.1 Tribler BitTorrent Client: Social-based Features 130

6.2.2 P2P Protocols Based on Social Norms 132

6.3 Proposed Approach . 133

6.3.1 Credit-Based Framework . 135

6.3.2 Social Networking Extension . 136

6.3.3 Optimal Policy for Resource Allocation and Social FR Detection . 138

6.3.4 Tracker . 140

6.4 Results . 140

6.5 Conclusion . 144

7 Conclusion and Future Work 145

7.1 Contributions . 145

7.2 Future Work . 146

Bibliography 150

List of Tables

2.1 Summary of cross-references for background topics. 35

3.1 Mean Opinion Score . 38

3.2 Summary of related studies for scalable video codecs. 39

3.3 Sample frames from the test sequences used for subjective evaluation. . . 42

3.4 SA and TA of test sequences used for subjective evaluation. 43

3.5 PSNR for slow and medium-intensity motion sequences; 4-layer WSVC

and H.264/SVC. 49

3.6 PSNR for fast motion sequences; 4-layer WSVC and H.264/SVC. 50

3.7 Mean Opinion Score for slow and medium-intensity motion sequences, all

scenarios, WSVC and H.264/SVC. 52

3.8 Mean Opinion Score for fast moving sequences, all scenarios, WSVC and

H.264/SVC. 53

4.1 Encoding parameters and extraction points. 82

4.2 Average received bit-rates with and without neighbour selection policy. . 91

5.1 Initialisation times for different values of M and N 99

5.2 List of symbols in use for the proposed approach. 113

5.3 Cumulative number of chunks forming a quality layer. 124

6.1 List of symbols in use for the proposed approach. 133

vii

List of Figures

2.1 Building blocks of a generic SVC system. 22

2.2 Examples of basic and combined scalability. 24

2.3 A ST decomposition tree for t+2D decomposition. 25

2.4 3D representation of a scalable video bit-stream. 27

2.5 High level description of a scalable video bit-stream. 28

2.6 Inter and intra-layer prediction dependencies for spatial scalability. . . . 29

2.7 Structure of scalable video bit-stream with quality scalability only. 31

2.8 Effects of rewiring probability p on the topology of a Watts-Strogatz graph. 33

3.1 Illustration of the testing environment. 44

3.2 Subjective Quality Continuous Scale . 45

3.3 SVC over P2P scenarios for subjective video evaluation. 46

3.4 Sample frames from InToTree; only the base layer has been decoded. . . 54

4.1 Generic block diagram for our proposed architectures. 59

4.2 Sliding window notion using the rarest-first policy for BitTorrent. 64

4.3 The feedback connections for an individual peer. 67

4.4 Different priority sets in G2G algorithm. 68

4.5 Buffer state at a given time. 70

4.6 Block diagram for the proposed approach. 72

4.7 Sliding window for scalable video bit-stream. 76

4.8 Flowchart diagram of our proposed neighbour selection policy. 78

4.9 Tribler Video Architecture. 80

4.10 New modules used for scalable video streaming. 81

4.11 Original City, Crew, Soccer and InToTree sequences. 83

4.12 Received video bit-rate for Crew, non-scalable case. 84

4.13 Received video bit-rate for Crew, scalable case. 84

viii

List of Figures ix

4.14 Example of decoded frames with different qualities. 85

4.15 Received video bit-rate for City. Neighbour selection is not active. 87

4.16 Received video bit-rate for City. Neighbour selection is active. 87

4.17 Received video bit-rate for Crew. Neighbour selection is not active. . . . 88

4.18 Received video bit-rate for Crew. Neighbour selection is active. 88

4.19 Received video bit-rate for Soccer. Neighbour selection is not active. . . . 89

4.20 Received video bit-rate for Soccer. Neighbour selection is active. 89

4.21 Received video bit-rate for InToTree. Neighbour selection is not active. . 90

4.22 Received video bit-rate for InToTree. Neighbour selection is active. . . . 90

5.1 A P2P TV scenario. 94

5.2 Feasible and enforceable payoff profiles. 105

5.3 Example of SPPM overlay network. 111

5.4 Block diagram for the proposed approach. 114

5.5 Sliding window showing high and low priority requests. 116

5.6 Example showing the credit factors of a peer’s neighbours. 122

5.7 Example showing the deprivation factors of a peer’s neighbours. 122

5.8 Received video bit-rate with 11 peers, ci = 75kB/s and 0% FRs. 125

5.9 Received video bit-rate with 31 peers, ci = 75kB/s and 66% FRs. 125

5.10 Received video bit-rate as f(α, β) varying # and ci of peers and % of FRs.126

6.1 Block diagram for the proposed approach. 134

6.2 Social Reputation . 135

6.3 Social Network used in our experimental evaluation. 141

6.4 Average received video bit-rate with 81 peers as a function of ∆max, with

ci = 75kB/s, (α, β) = (0.5, 0.5) and 20% FRs. 143

6.5 Average received video bit-rate with 81 peers as a function of (α, β),

ci = 100kB/s, ∆max = 16 and 20% FRs. 143

6.6 Average received video bit-rate with 121 peers as a function of (α, β),

ci = 75kB/s, ∆max = 16 and 33% FRs. 143

List of Abbreviations

4CIF Spatial resolution, corresponding to 704× 576 pixels (see CIF)

ANOVA ANalysys Of VAriance

BiToS BitTorrent Streaming

CGS Coarse-Grain quality Scalability

CIF Common Intermediate Format, spatial resolution corresponding

to 352× 288 pixels

DASH Dynamic Adaptive Streaming over HTTP

DCT Discrete Cosine Transform

FGS Fine-Grain quality Scalability

fps Frames per second

FR Free-rider

G2G Give-to-Get

HD High Definition, spatial resolution corresponding to 1280 × 720

or 1920× 1080 pixels

HEVC High Efficiency Video Coding

HVS Human Visual System

LC Layer Chunk

LSB Least Significant Bit

MCTF Motion-Compensated Temporal Filtering

MGS Medium-Grain quality Scalability

MOS Mean Opinion Score

MSB Most Significant Bit

x

MSE Mean Squared Error

NAL Network Abstraction Layer

P2P Peer-to-Peer

PBE Perfect Bayesian Equilibrium

PSNR Peak Signal-to-Noise Ratio

QCIF Spatial resolution, corresponding to 176× 144 pixels (see CIF)

QoE Quality of Experience

QoS Quality of Service

SAQ Successive Approximation Quantisation

SN Social Network

SNR Signal-to-Noise Ratio

SPPM Stanford Peer-to-Peer Multicast

ST Spatial-Temporal (decomposition)

SVC Scalable Video Coding

T4T Tit-for-Tat

TCP Transport Control Protocol

TTL Time-To-Live

UDP User Datagram Protocol

VCL Video Coding Layer

VoD Video on Demand

WSVC Wavelet-based Scalable Video Coding

Chapter 1

Introduction

1.1 Motivation

In the last few years, distribution of multimedia content over the Internet has become

very popular due to widespread diffusion of high-speed connections. The most commonly

used architecture for these applications is the traditional client-server scheme. This

model implies the presence of a client, which is interested in a certain content, and a

server, which stores and distributes it. Servers usually deal with several requests at a

time and data is replicated to increase availability and achieve fault tolerance. However,

this comes with additional costs for the service provider. Moreover, this architecture

intrinsically limits the number of simultaneous users, due to its poor scalability. This

can be a critical aspect in bandwidth-intensive applications such as video streaming.

Another important characteristic is that, in multimedia applications, video contents

of different fidelities are required according to the desired application, such as high

quality material for storage and future editing and lower bit-rate content for distribution.

In traditional video communications, video is usually processed offline. Compression

and storage are tailored to the targeted users according to the available bandwidth

and potential receiver or display characteristics. However, this process requires either

transcoding of compressed content or storage of several different versions of the encoded

video.

Peer-to-peer (P2P) architectures promise to be a scalable and economical alternative

to the traditional client-server model, as users contribute by making their own resources

1

Introduction 2

available to the system. Other interesting features of these networks are self-organisation

and network path redundancy. However, they present a number of open issues. First

of all, some users of the system might behave as free-riders. This means that they

use resources from other peers without giving anything in exchange. In modern P2P

systems, like BitTorrent [1], this problem is tackled by providing peers with incentives

to share their upload capacities. Nevertheless, even in this case this behaviour might

sometimes pay [2]. Second, data is vulnerable to malicious pollution attacks [3]. In

this case, a peer deliberately decides to tamper with the content that is being shared,

sending other peers corrupt data, which might result in a useless received file (e.g. a

video sequence). Finally, users have different upload capacities and P2P networks are

highly heterogeneous. All the issues previously introduced are a common feature of

many P2P systems, not necessarily performing scalable transmission. In addition, video

streaming over P2P networks presents further challenges. For example, data chunks

have strict deadlines, represented by their playback time. In fact, if a video part is not

received in time, the system may either be paused or part of the video will be skipped.

Therefore, this is a challenge that needs to be specifically tackled in the design of these

systems.

The problem of network heterogeneity can be partially solved by using Scalable Video

Coding (SVC). This allows adaptation of the content to different users requirements by

selecting an appropriate sub-set of the original sequence for download and discarding the

rest. These codecs can use DCT-like transforms – where DCT represents the Discrete

Cosine Transform [4] – such as the standard H.264/SVC [5], or the wavelet transform [6],

like the wavelet-based SVC developed at our institution (WSVC) [7]. In both cases,

adaptation can be performed in terms of frame size, frame rate or Signal-to-Noise Ratio

(SNR), the latter also being known as quality scalability. In this research work, our

proposed algorithms have been designed for WSVC. The choice of this codec is relevant

from a research point of view, as in a significant number of cases its performance is

comparable with or better than the standard. Moreover, WSVC presents appealing

features such as efficient management of Fine-Grain (quality) Scalability (FGS). Finally,

due to the fact that the two codecs present a similar bit-stream structure, we consider

our results obtained in a P2P environment valid for the general SVC case.

Resource reciprocation in P2P networks has been an important area of research for

many years. In fact, P2P is based on the idea that users should contribute their band-

Introduction 3

width voluntarily. This implies that if there are no rewards for cooperative behaviour

and punishments for free-riders a peer that behaves rationally [8] would never share its

resources with the rest of the system. Several models, like the original BitTorrent [1]

focus on interactions with a limited set of peers over a long period of time and this

approach might not be suitable for highly dynamic scenarios, typical of video related

applications. In fact, video chunks in P2P video transmission have very strict deadlines

and the set of video chunks users are interested in is usually limited and changes re-

peatedly. On the other hand, this issue may be overcome by requesting video chunks to

a larger set of peers, without expecting instant reciprocation of resources. Finally, many

alternative approaches see P2P networks as a market, where rules – such as a maximum

acceptable credit or debit – can be set in order to create a fair and stable system, where

users have incentives to cooperate.

Due to the strict deadlines previously introduced, efficient resource allocation is an-

other typical issue of these systems. In fact, cooperative users might occasionally not

be able to to reciprocate resources because they do not have anything to share. If

this behaviour repeats itself over time, these users will be considered as free-riders by

their neighbours and will receive even less data, creating a vicious circle. As the de-

signer should be able to distinguish between intentional and accidental misbehaving,

this problem needs to be tackled within the context of free-riding detection.

Finally, in most systems where there is no global user reputation, decisions taken

by single peers only depend on their own knowledge of the network, for example a

neighbour’s past behaviour. On the other hand, if there are some friendship or “trust”

relationships among users, they can share information and better identify misbehaving

peers. In the last few years the interest for social networks has grown exponentially.

They are most widely known and used as social networking sites, however, their features

can be found in other systems, such as P2P networks [9]. In these systems, each user

has a profile, which should correspond to a real identity, and establishes relationships

with other real users (such as friendship). If a peer considers this information reliable,

it can use it to have a better picture of the behaviour of its non-friends neighbours and

better distinguish between free-riders and users which have not reciprocated this peer’s

resources but have been cooperative with its friends. This approach can be vulnerable

to Sybil attacks [10], where malicious peers can generate multiple sets of identities and

Introduction 4

fictitious contributions between them, however, examples of systems that are resistant

with respect to these types of attacks have already been proposed in literature [11].

In summary, in this section we highlighted the main issues related to multimedia

content distribution using both client-server and P2P architectures. A possible remark

is that using a client-server approach it might be much easier to simply replicate the

data and increase the number of servers. However, as we have already mentioned, this

implies a multiplication of set-up and maintenance costs. The key motivation behind

our work is therefore that a P2P approach is much more economical than the traditional

one, as it makes use of resources that would otherwise be idle.

1.2 Objectives

Given the context introduced in the previous section, the objective of our research is

to investigate the problem of scalable video transmission over a social P2P network. In

order to achieve that, we identified the following objectives:

• To perform a subjective video quality evaluation for SVC transmission under dif-

ferent network conditions, to help with the subsequent design of P2P systems that

can handle such sequences.

• To propose algorithms for appropriate chunk and neighbour selection, specifically

designed for scalable video sequences.

• To investigate the problem of fairness in P2P networks. This is strictly related to

tackling the problem of free-riding, by designing specific policies based on peers’

contributions that users should obey, or be cut out of the system. Contribution in

this context needs to be seen in terms of debit or credit towards other peers.

• To analyse how a social-based approach to this problem (e.g. a “social P2P net-

work” [9]) can improve the resilience of our algorithms, in particular what type of

information is useful and how it can be used.

• To research how to create P2P overlay networks that allow to exploit these social-

based features.

Introduction 5

• To learn how to improve the overall utilisation of the network, which is related to

efficiently using the resources of the single peers.

Therefore, the aim of our work is to investigate new subjective quality-aware and credit-

based P2P models, which present social networking features, in order to achieve a system

where peers fully utilise their upload capacities and free-riding behaviour is punished.

Exchanged data will be mainly scalable video sequences.

1.3 Summary of Achievements

In this section, we illustrate the main achievements obtained in this thesis. The starting

points of our research work were the original BitTorrent protocol and – for the reasons

previously described – a custom, wavelet-based scalable video codec (WSVC), which was

developed at our institution. In particular, we focussed on issues related to providing

final users with the best possible video quality, free-riding – with and without considering

the benefits of exploiting social-based features – and network resources optimisation. The

main results presented in this document can be summarised as follows:

• We performed subjective tests to assess perceived quality in the context of scalable

video transmission over P2P under different scenarios, for both WSVC and the

standard H.264/SVC. These results were compared with objective measurements,

which showed a similar behaviour. Our subjective tests, which will be found in Sec-

tion 3.3, suggested that chunk policies requests for P2P video transmission should

aim at providing the final user with a quality that is as constant as possible, dis-

couraging variations for WSVC as well as the standard. Moreover, our test subjects

preferred to receive a higher quality at the beginning of the video, as if they were

biased by a “first impression” factor, which suggests to increase for example the

pre-buffering time of the sequence. Finally, our tests showed that the behaviour

of WSVC and the standard SVC are comparable, which indicated that our results

obtained with the wavelet-based codec are also valid for H.264/SVC.

• We designed a piece picking policy that allowed to adapt the video bit-rate re-

ceived by the final user to the available resources of the system, keeping in mind

the results obtained in our subjective video quality evaluation. We achieved that

Introduction 6

by using a sliding window and prioritising quality layers depending on their import-

ance; the base layer of the sequence (whose role will be explained in Section 2.3.1)

is the most critical sub-set of the bit-stream, therefore it was always downloaded

before anything else, and the other enhancement layers followed. Adaptation was

performed by shifting the window when the playback time approached. Experi-

mental evaluation under fluctuating download bandwidth, which will be illustrated

in Section 4.6.2, showed the benefits of using a scalable codec and that changes in

the chunks receiving rate corresponded to actual variations in the bit-rate of the

received video, which was comparable with the download bandwidth.

• We proposed a neighbour selection policy that only requests the base layer of the

sequence to the best peers in the network, in order to reduce the risk that this part

of the bit-stream was requested to slow peers and therefore not delivered in time.

The best peers in the network are defined as the users with the highest download

bandwidths, which alone can provide a rate that is sufficient to receive the base

layer in time. Our results, which will be explained in Section 4.6.3, showed that

activating and de-activating this policy had an impact in the number of pauses

caused by base layer chunks not being received in time, with a significant reduction

when the policy was active.

• We studied a simplified version of the problem of video transmission over P2P,

without considering many of the non-ideal aspects of a real system. We provided

an analytical solution to this reduced problem, which cannot be applied to a real

system, but provided ideas that can be applied to more complex cases. In particular,

it highlighted the problems related to having “deprived” peers in the network, which

have no data to share. As we will discuss in Section 5.2.1, we found that this is

an issue that needs to be specifically addressed in a rapidly changing context like

video transmission.

• We studied the problem of joint network resource optimisation and free-riding iden-

tification. In particular, we proposed a credit-based framework whose aim was to

promote cooperation among users – and achieve fairness by cutting out free-riders

– as well as providing more data to those users that had less, reducing their risk

of being marked as malicious. Our algorithm used a credit line mechanism, which

was the maximum accepted difference between uploaded and downloaded chunks

Introduction 7

before marking a peer as non-cooperative. Moreover, resource allocation was based

on two factors:

– credit factor, which indicated the current debt or credit towards a peer. Giv-

ing more importance to this factor resulted in repaying a peer’s debt more

promptly.

– deprivation factor, which depended on the potential contribution towards a

peer. A higher weight assigned to this factor encouraged a more equal chunk

distribution.

Our simulations, which will be found in Section 5.6, showed that free-riders were

effectively cut out of the system. Moreover, this approach resulted in a higher

received video bit-rate with respect to those cases when optimal resource allocation

and free-riding detection were considered as separate problems.

• We extended our previous approach by considering social-based features. We re-

laxed the constraints about the maximum acceptable credit, and introduced the

concept of social reputation, which depended on the information friend peers re-

ported about another user in the network. A peer was considered a free-rider if it

either had a low credit or a bad social reputation. Our experiments, whose outcome

will be illustrated in Section 6.4, indicated that peers in the social network could

benefit from the information from their friends by receiving an overall higher video

quality, and that our considerations about credit and deprivation factors were still

valid in this context.

• It is intuitive that if peers are connected to random users, friends have low chances

to interact with the same neighbours, especially if the network is big. As we will see

in Section 6.3.4, this is relevant, as our social reputation is based on the assumption

that friend peers can share information about peers they have both interacted with.

In order to make the impact of our approach significant, we modified the tracker

protocol to connect peers in the social network to friend users, and other potentially

uncooperative users to group of friends, which can share information about them.

Introduction 8

1.4 List of Publications

Most of the contributions presented in this thesis have been published in international

journals, proceedings of international conferences and workshops [12–17]. The detailed

list of publications is given below, together with another publication of ours whose

content is not described in this document [18], but whose field will be investigated for

future work.

Journals

[12] N. Ramzan, E. Quacchio, T. Zgaljic, S. Asioli, L. Celetto, E. Izquierdo, and

F. Rovati, “Peer-to-peer streaming of scalable video in future Internet applications,”

IEEE Communications Magazine, Special Issue on Future Media Internet, vol. 49,

pp. 128–135, March 2011.

[13] S. Asioli, N. Ramzan, and E. Izquierdo, “A game theoretic approach to minimum-

delay scalable video transmission over P2P,” Signal Processing: Image Communic-

ation, vol. 27, no. 5, pp. 513–521, 2012.

Conferences and Workshops

[14] S. Asioli, N. Ramzan, and E. Izquierdo, “Efficient scalable video streaming over

P2P network,” in Proceedings of the 1st International ICST Conference on User

Centric Media (UCMedia), December 2009.

[15] S. Asioli, N. Ramzan, and E. Izquierdo, “A novel technique for efficient peer-

to-peer scalable video transmission,” in Proceedings of the 2010 European Signal

Processing Conference (EUSIPCO), August 2010. Also presented at the Streaming

Day 2010 (STDAY) Workshop, September 2010.

[16] S. Asioli, N. Ramzan, and E. Izquierdo, “A game theoretic framework for op-

timal resource allocation in P2P scalable video streaming,” in Proceedings of the

2012 IEEE International Conference on Acoustics, Speech and Signal Processing

(ICASSP), pp. 2293–2296, IEEE, 2012. Also presented at the Streaming Day 2012

(STDAY) Workshop, October 2012.

Introduction 9

[17] S. Asioli, N. Ramzan, and E. Izquierdo, “Exploiting social relationships for free-

riders detection in minimum-delay P2P scalable video Streaming,” in Proceedings

of the 2012 IEEE International Conference on Image Processing (ICIP), pp. 2257–

2260, IEEE, 2012.

Other Publications

[18] R. Mekuria, M. Sanna, S. Asioli, E. Izquierdo, D. Bulterman, and P. Cesar, “A

3D tele-immersion system based on live captured mesh geometry,” in Proceedings

of the ACM Multimedia Systems conference (ACM MMSys), 2013.

1.5 Structure of the Thesis

The remaining chapters of this thesis are organised as follows:

Chapter 2 provides a background for our research work. More specifically, it first intro-

duces a few concepts related to subjective video quality and Quality of Experience

(QoE), BitTorrent and other P2P systems, with a particular focus on credit-based

architectures. Second, it discusses the properties of SVC and describes the main

characteristics of WSVC and H.264/SVC, used in our experimental evaluations.

Finally, it gives an overview about social networks, explaining how it is possible to

generate graphs that capture their fundamental properties.

Chapter 3 describes our subjective evaluation of scalable video transmission over P2P.

First of all, we introduce the problem of video quality assessment, the objective

metrics used in this field and present a few related studies. Second, we clarify

the methodology used in our subjective evaluation, our testing environment and

scenarios. Third, we show the outcome of both our objective and subjective evalu-

ations. Finally, we compare these results and draw conclusions that will be useful

for the design of our systems.

Chapter 4 begins with a description of a block diagram representing a general archi-

tecture for a social P2P system for scalable video transmission. Subsequently, we

introduce the problem of efficient chunk requesting in scalable video transmission

over P2P. After providing the related background, we describe our piece picking

Introduction 10

and neighbour selection policies and we shortly discuss their implementation. Our

experimental evaluation shows the impact of our proposed approaches on the beha-

viour of our system. Finally, we critically discuss the positive and negative aspects

of this technique.

Chapter 5 proposes an algorithm for joint free-riders detection and network resource

optimisation. We start by introducing the problem, then we discuss a simplified

version of the problem of video transmission over P2P and we propose an analyt-

ical solution. Related systems that tackle free-riding and techniques that aim at

optimal resource allocation are then described, before introducing our approach,

which is based on some of the conclusions arising from the solution to the simpli-

fied problem. A credit-based mechanism is then explained. Its aim is to identify

and cut out free-riders, while at the same time our resource allocation mechanism

tries to find the best trade-off between promptly repaying a peer’s “debts” and

uploading data to deprived peers. The chapter continues with some considerations

about the implementation of this architecture using a network simulator, our tests

and an analysis of the pros and cons of this solution.

Chapter 6 adds social networking features to the approach described in Chapter 5.

After introducing the possible benefits deriving from the use of social-based features

– such as the possibility to join forces when trying to identify free-riders – we

describe a few techniques that consider P2P networks as social networks or use a

social reputation. Subsequently, we explain our algorithm to compute a peer’s social

reputation based on the interactions it had with another peer’s set of friends. As

this approach would be ineffective without a ponderate construction of the overlay

network, we also introduce a new tracker protocol that takes social relationships

among peers into account. After showing the results of our experiments, we discuss

the strongest and weakest aspects of this solution.

Chapter 7 concludes this thesis, summarising our main contributions. Finally, we

present a few possible directions for our future research work. In particular, we

will focus on more game theory-oriented approaches, briefly introducing a new

technique based on Bayesian game theory.

Chapter 2

Background

The chapter provides some background about the context in which we developed our

research work. This is a general description, as more specific techniques will be ex-

plained in the “Related Work” section of each chapter that explains one of our proposed

architectures. The rest of the chapter is organised as follows: Section 2.1 provides an

introduction to QoE and how it relates to subjective video quality; Section 2.2 gives

a general definition of P2P and discusses the history of such systems before analysing

the main concepts of BitTorrent in detail and describing a few credit-based systems;

Section 2.3 discusses the advantages of a scalable approach to video streaming, provides

a general architecture for SVC systems and briefly illustrates the two codecs used for

our experiments: WSVC and H.264/SVC; Section 2.4 introduces a few concepts related

to social networking and defines the key properties of such networks; finally, Section 2.5

concludes the chapter.

2.1 Subjective Video Quality and Quality of

Experience

According to a quite recent definition by Crespi et al. [19], in the context of multimedia

applications QoE “represents the human centric quality aspects, unlike QoS which is

merely a technology centric approach. [It] is a blue print of all human needs, desires and

perceptions concerning a service and/or product in a specific context.”

11

Background 12

This definition clearly states that the key aspect of QoE is that it is not necessarily

based on objective metrics, like Quality of Service (QoS), but on how the final user

perceives a certain content. Defining this quantity in the context of video transmission

over the Internet is itself a challenging task [20]. In fact, quality metrics need to consider

the application a user is interested in, as well as the impact of delivery to the final

user itself. In particular, they should capture how playback interruptions, received bit-

rate, frame rate, changes in the bit-rate and pre-buffering times affect the final user

experience. Moreover, another key aspect of Internet video is user engagement, which

can be represented for example by the percentage of a video watched by a user before

switching to something else, and which does not necessarily relate to objective metrics

that quantify how much an encoded video differs from the original sequence.

In their study, Balachandran et al. identified three key factors that explain why

assessing video QoE is an arduous challenge [20]:

• Complex Relationships: The relationship between objective metrics or para-

meters and the user experience may, under many circumstances, not be linear. For

example, higher received video bit-rates do not always result in a better user exper-

iences, especially when they result in a high number of quality switches. Another

example showing the complexity of the problem is given by the different types of

experience users might be interested in. In fact, a few subjects that were following

live events preferred to stream the video in the background while performing other

tasks and only occasionally watching it. In this case, their QoE was positively

affected by a lower received frame rate, as it resulted in a smaller computational

power needed for decoding, while the remaining computing resources could be used

for their other tasks.

• Metric Dependencies: Different parameters are often linked and improving one

aspect of the video playback might affect another one negatively. For instance,

performing bit-rate adaptation to the current download bandwidth allows to re-

duce the number of pauses or buffering, while repeated bit-rate changing might be

evaluated very negatively.

• Impact of Content: The content itself may influence the judgement of the video

quality assessors. The two main aspects considered in the study are whether the

application is live streaming or VoD, and the user’s interest in the content itself.

Background 13

The debate regarding these challenges is still open in the scientific community and

a function that accurately relates QoE or user engagement with other objective metrics

has not been accepted as standard yet. In our study in Chapter 3, we will focus on

analysing perceived video quality under different network scenarios. As in our work

we will be more focussed on measuring opinion scores of video quality rather than user

engagement, we prefer to refer to our study as subjective video quality evaluation instead

of QoE assessment.

2.2 P2P Systems

P2P networking architectures allow a range of new applications that can exploit dis-

tributed storage and parallel usage of computing resources. The following definition of

P2P [21] was given in 2001, but it is still valid nowadays:

A distributed network architecture may be called a Peer-to-Peer [...] network, if

the participants share a part of their own hardware resources (processing power,

storage capacity, network link capacity, printers,...). These shared resources

are necessary to provide the Service and content offered by the network (e.g.

file sharing or shared workspaces for collaboration). They are accessible by

other peers directly, without passing intermediary entities. The participants of

such a network are thus resource (Service and content) providers as well as

resource (Service and content) requestors (Servent-concept).

This is a very general definition and also includes systems like SETI@home [22] or

Skype [23]. In the first case, the shared resource is computational power, while in the

second it is network bandwidth. However, from now on we will only focus on P2P

systems used for file sharing.

2.2.1 A Brief History of P2P

The first popular P2P client was Napster [24], developed in 1999. It was a centralised

system, since its operation was based on a central server that kept track of all users and

available resources in the network. One year later, in 2000, Gnutella [24] was developed.

Background 14

The original system was purely decentralised, as nodes were directly connected to each

other, without the need of any central entity. This made the system robust, since failure

of any (single) node did not significantly affect the overall performance of the system.

However, Gnutella was an unstructured system, which means that there was no strict

control over network topology. As a matter of fact, in this approach it was not possible

to provide a directory service and the client itself made massive usage of flooding. As

opposite to unstructured ones, structured systems [25] have been designed over the past

few years. In these networks, nodes and data are placed according to certain rules,

with the aim of locating files in an efficient way. Queries are quick and efficient thanks

to the use of distributed routing tables. Comparison with unstructured systems has

proven structured approach to be more scalable, more reliable and fault tolerant. In

2001, creators of KaZaA [26] proposed an hybrid solution, half-way between centralised

and decentralised systems. In this system, peers are divided into two categories: regular

and super nodes. The latter have more capacity than the average nodes and are chosen

to perform additional functionalities like keeping track of peers and data in a certain

portion of the network and keeping a list of other super nodes. Queries are only per-

formed through these special peers, using therefore “intelligent” flooding. A significant

improvement is represented by BitTorrent, which deserves a special mention, as it is the

starting point of all our proposed techniques.

2.2.2 BitTorrent

BitTorrent is a game theory-based P2P protocol developed by Bram Cohen in 2003 [1]

and the main idea behind it is that users’ download rates should be proportional to their

upload rates, in order to provide a fair mechanism and motivate users to share more.

Free-riding is occasionally accepted, but only if there is enough spare capacity in the sys-

tem. Ever since it was designed, several major improvements have been added, in order

to eliminate single points of failure and add new features like Video on Demand (VoD)

or live video streaming. BitTorrent protocol is thoroughly described in this chapter, as

it will be the starting point of our architectures described in Chapter 4, 5 and 6.

Background 15

Base Working Principles

If a user wants to publish one or more files in BitTorrent, it should create a torrent file.

It contains information such as size, name of these files, some checksums and the address

of a tracker, which is a server that helps peers interested in a certain content find each

other. Moreover, files are split into several pieces of a fixed size, which can be typically

picked from a 32 kilobytes to 2 megabytes range. Each piece is associated with an ID

and a SHA1 hash, which is written in the torrent in order to check integrity of the piece

once it has been downloaded – and tackle the issue of pollution. BitTorrent transfers

data using the Transport Control Protocol (TCP) and, to improve overall performance

of the system and avoid delays, each peer should have an optimum number of requests

pending at the same time. Pieces are cut into sub-pieces and typically five requests are

pipelined at once. When a new sub-piece is received, another request is sent. The user

that publishes a file becomes a seeder for that particular file and other peers, which are

called leechers in this case, can download from it. A peer interested in that file should

download the associated .torrent file and contact the tracker, which provides it with a

partial list of users that own all or part of it. When a leecher completes its download, it

becomes a seeder and the set of all seeders and leechers is called a swarm. An important

remark is that in general BitTorrent clients will not allow users to search for torrents,

which can be located on ordinary web servers or can be exchanged in many other ways.

Piece Picking

In the previous section, division of pieces into sub-pieces was mentioned. The general

rule is that a piece should be completed before requesting sub-pieces belonging to other

chunks, in order to have complete pieces as soon as possible. In fact, pieces will not be

shared until their download is terminated. This policy is called strict priority and it is

the main rule that any BitTorrent client should obey. Under these circumstances, the

main issue becomes choosing which new piece to pick for downloading. All BitTorrent

clients keep track of which pieces are owned by their connected neighbours and sort

them according to number of occurrences; in this context rarest pieces are considered

more interesting and are chosen first. This behaviour has many advantages:

Background 16

• If the original seeder for a specific content leaves the P2P network after a short time,

it is more likely that at least one complete copy is transmitted – even if to different

users – using this technique, instead of selecting pieces at random. Therefore, the

full content remains available to the users even after the original peer has left.

• Similarly, if a piece is owned by only a few peers, it will be picked first, since the

probability that these peers disconnect and therefore the piece is lost is quite high.

• If a piece is extremely rare, other users might be interested in it, which means that

other peers might download it once it is owned by a peer. Since download band-

width is proportional to upload bandwidth, owning rare pieces will grant higher

download rates from other peers.

An exception to this rule is represented by the first piece, which is chosen at random.

Since this piece is downloaded without giving anything in exchange, it is important that

it is downloaded as soon as possible, in order to have something to share. In this case

downloading a rare piece is not convenient, since it might be owned by just one peer

and transfer could be slow. Therefore, pieces are randomly selected until one complete

piece is received. After that, the policy switches to rarest first.

In the final part of the download, when all the missing sub-pieces are being requested,

the protocol enters the so-called endgame mode. This should be a very short period,

in order to avoid wasting resources, and it consists of requesting all these missing sub-

pieces from all the neighbours. When a sub-piece arrives, all the other requests for it

are cancelled. The reason for this is that, if a peer downloads its last sub-pieces from

another peer which has very slow transfer rates, it has to wait for an unnecessarily long

time. With this technique, instead, downloads are completed very quickly, while usage

of extra resources is minimal.

Choking and Unchoking Algorithms

Since in BitTorrent there is no such thing as central resource allocation, each peer has

to work independently to maximise its own performance. What happens in practice is

that each peer tries to download from all the peers that will allow them to, while choking

or unchoking (uploading to or refusing to upload to) other peers. All the algorithms

that can be used should try to reach Pareto efficiency [8]. In computer science, this

Background 17

is an algorithm that tries to reach global optimum by maximising the profit of every

single peer. Since peers will mostly upload to peers that are “generous” towards them,

this algorithm is called tit-for-tat (T4T). In practice, each peer has a fixed number of

unchoked neighbours, typically four, and the problem that the algorithm tries to solve

is deciding which peers to unchoke. The default behaviour is uploading to peers that

give something in exchange, but if there are some free connections they are used to

unchoke random peers, to “explore the network” and try to find better peers. If all the

connections are used, instead, all peers will be sorted and unchoked according to their

upload rates, except for one, which will be optimistically unchoked. This means that one

peer is unchoked regardless of its upload rate. An exception to this rule is represented

by BitTorrent’s anti-snubbing policy. In fact, if a peer does not receive a piece from

another peer in over a minute, it assumes it is being snubbed by the other peer and will

refuse to unchoke it, except by optimistic unchoking. Most of the times this strategy

leads to more than one peer being optimistically unchoked and helps a peer find better

neighbours more quickly.

When a leecher becomes a seeder, it is of course no longer interested in earning a

profit from any exchange and it simply uploads to the peers that have higher transfer

rates, in order to maximise the download rate of the entire system. The assumption

behind this strategy is that high download rates will imply high upload rates to other

users. A potential limitation is that, however, not having a feedback from these users,

seeders might be uploading data to free-riders. It is also worth mentioning that according

to a study by Piatek et al. [27] incentives provided by the BitTorrent protocol are not

robust enough, as peers can improve their utility by unilaterally changing their strategy.

In this study, a modified BitTorrent client called BitTyrant is proposed. The strategy

followed by BitTyrant peers differs from the original protocol in terms of size of unchoked

peers set and amount of contribution towards them. The modified algorithm will try

to find peers that reciprocate resources in exchange of a lower upload bandwidth, and

increase the number of unchoked peers until the benefit of an additional unchoked user

is outweighed by the lower resource reciprocation probability from other peers.

In the next section, we will analyse a different approach to resource reciprocation,

which considers P2P as a market.

Background 18

2.2.3 Credit-based P2P Systems

The T4T strategy implemented by BitTorrent requires that two peers exchange data in

both directions at the same time, and this mechanism works well when the chunks that

are being transmitted belong to a very large set. On the other hand, in the context of

video transmission peers are interested in the chunks that immediately follow a certain

playback position, which represents a much smaller set. Alternative approaches to T4T

consider P2P system from a more economic-oriented point of view by introducing credit-

based systems. These are systems that model P2P networks in terms of resources that

users can trade and peers are associated with a reputation, which depends on their

behaviour in the network.

A Barter-based Solution

In 2006, Peserico proposed a market-oriented P2P architecture based on barter [28].

One of the most interesting properties of this system is wealth storage. That is, a

perishable good can be traded for something that has a value which remains constant

over time. An example of goods that lose value quickly in this context is represented

by P2P video chunks, as they are of no use once their playback time has passed. In the

proposed solution, such resource can be traded in exchange for the promise of future

commodities. The main challenge is represented by ensuring that this promise will be

kept, however, this can be achieved by offering peers an incentive, such as learning what

the other user has gained from the exchange.

For example, let us suppose that there are two peers in the network, A and B, which

simultaneously barter one unit of two commodities a and b. Supposing that A would

have been willing to trade 1+ε units of a in exchange for 1 unit of b and that symmetrical

assumptions apply to B, both peers have gained a surplus and have de facto opened a

credit line with each other. Peer A can therefore now borrow an additional ε of b, and

B will not experience loss even if the other peer does not give anything in exchange (as

B would have been willing to trade 1 + ε of b in exchange for 1 unit of a in any case).

Background 19

Karma and Reputation-based Schemes

Vishnumurthy et al. propose a system based on karma [29], which is a parameter ana-

logous to user reputation that depends on how well a peer has behaved towards the rest

of the community. Despite it being a global parameter, such solution has been designed

for completely decentralised systems. Therefore, karma values are stored by other nodes,

also called Bank nodes and peers act both as content consumers and guardians for other

nodes. Information is heavily replicated to achieve fault tolerance and resistance to collu-

sion attacks. Nevertheless, this system is also vulnerable to phenomena like discrepancy

between the karma reported by different nodes due to lack of synchronisation.

We denote with BankA the set of nodes responsible for tracking the transactions

involving node A and storing A’s karma. When A is interested in a specific content

from another node B, both nodes need to agree on a price, which could be for example

the result of a bidding process. Karma transfers need to be fair and preserve the total

amount. Therefore, in this specific example, the karma of A should be reduced of the

same amount as the one of B is increased. As this process is vulnerable to tampering,

this is achieved through a provable transfer of karma from A to B, followed by another

provable transfer of data from B to A. This operation is performed through the aid of

BankA and BankB, which supervise the operations through the exchange of messages.

When nodes in the bank sets disagree, a majority vote is called.

An important observation the authors make is that peers can be free-riders not

only in terms of refusing to upload data to other users, which can overcome by only

allowing users with a positive karma to send requests, but also in terms of refusing to

act as banking nodes from other peers, while using the services provided by other users.

Finally, this system proposes to be a distributed but global reputation mechanism. The

reliability of the system comes at the expenses of complexity, and the system is still

vulnerable to collusion attacks when a node creates several identities and these peers

become its guardians.

On the other hand, the solution proposed by Gupta et al. is a global reputation-

based scheme which relies on a reputation computation agent [30]. In this system, a peer

K can increase its credit and its debit by performing different actions and its reputation

depends on different factors:

Background 20

• Query-Response Credit, which is awarded to a peer just by being online and

replying to queries from other users.

• Upload Credit, proportional to the contribution a user has given to the rest of the

network. This value also considers the fraction of its bandwidth a peer is sharing.

• Sharing Credit, which depends on the amount of shared content. This quantity

has been introduced to give credit to those peers that offer hard to find content

and because of this do not get much upload credit.

• Download Debit, increased by downloading a file from another user.

A peer’s reputation is given by the sum of all its credit components minus its debit

component. The authors also propose another model, where the debit component is not

considered, but credit expires. Reputation can subsequently be used by other peers as

an aid for their decisions regarding resource allocation.

The systems described in this section rely on a global reputation, and need to ad-

dress the problem of estimating this parameter correctly. Moreover, they represent very

generic architectures and have not been specifically designed for video transmission.

However, concepts introduced here, like debit and credit, will be used in Chapter 5 and

Chapter 6 in the description of our proposed approaches.

2.3 Scalable Video Coding

The most important aspect of SVC is the possibility to encode a sequence once and

decode it many times, in many different ways, according to specific application require-

ments. In order to achieve this, it is necessary to modify the traditional encoding and

decoding scheme. Moreover, it is also necessary to define which types of scalability we

want to use. First of all, we will introduce some general concepts about SVC, and second

we will briefly describe the main characteristics of two codecs we used for our studies;

they are based on two different tools: DCT [4] and wavelet transform [6].

Background 21

2.3.1 SVC Modules

A SVC architecture consists of three modules: encoder, extractor and decoder [31]. The

whole scheme is shown in Figure 2.1. The encoder takes an uncompressed YUV sequence

as input and produces a scalable bit-stream and its description as output. YUV indicates

that each frame of the original sequence is represented by its luminance component (Y)

and two crominance components (U and V). The resulting description can be either

interleaved within the encoded video sequence or stored in a separate stream, e.g. a text

file. The whole sequence has a very high quality, and compression in some cases can

even be lossless.

Figure 2.1 shows that different qualities and spatial resolutions can be interleaved

in the bit-stream. Light blue data is associated to small spatial resolution, while dark

blue bit-stream parts correspond to a higher resolution. These are further divided into

smaller parts, that correspond to different qualities. If the extractor completely removes

the dark blue parts, the output will be a high-quality sequence with a small spatial

resolution. On the other hand, if the extractor truncates both light and dark blue data,

this operation will result in a high-resolution video with a low quality. Finally, the green

part represents the base layer of the sequence, which is the only part that cannot be

truncated.

The extractor has in general very low complexity. It produces another scalable se-

quence, which can be further truncated. Finally, the decoder converts the extracted

video back to YUV format, performing operations that are symmetric with respect to

the encoder.

2.3.2 Scalability Functionalities

Video extraction, which also takes the name of video adaptation, should be done in a

very simple manner, for example parsing the bit-stream and removing the unwanted

parts. To achieve that, it is necessary to encode the video in such a way that different

bit-stream parts are encoded in a hierarchical fashion with respect to the video para-

meters we want to scale. It is possible to define three basic types of scalability: spatial,

temporal and quality [31]. The latter can also be referred to as SNR (Signal-to-Noise

Ratio) scalability. We have spatial scalability when there exists a subset of the original

Background 22

Original Video
Sequence

SVC
Encoder

Base
Layer

Residual
Data

Encoded
Bit-stream

SVC
Extractor

SVC
Extractor

Lower
Quality
(SNR)

Lower
Spatial

Resolution

Figure 2.1: Building blocks of a generic SVC system.

Background 23

sequence that allows to reconstruct the video with a smaller spatial resolution. Tem-

poral scalability holds if a (different) subset corresponds to a lower frame rate version

of the sequence. Finally, in order to achieve SNR scalability, different subsets of the

video should allow its reconstruction with different qualities. These properties can also

be combined; for example, given an original sequence that has 4CIF resolution (704 ×
576 pixels, corresponding to four times the CIF – or Common Intermediate Format –

resolution) and a rate of 30 frames per second (fps), it could be possible to extract a

CIF version of the video (352 × 288 pixels) with 15 fps and a lower quality. An example

of the original sequence and scaled sequences is shown in Figure 2.2.

2.3.3 WSVC, a Wavelet-based SVC

Wavelet-based Encoder

Differences between scalable video codec architectures lie in the design of encoding and

decoding modules. However, since the decoder simply performs operations that are

inverse with respect to the encoder, it will not be described in this section. The scalable

video codec used in our proposed approaches is being developed by Multimedia and

Vision Research Group (MMV) at Queen Mary University of London since 2006 [32].

Its encoder module can be divided into two blocks: the first one calculates a spatial-

temporal transformation of the sequence, while the second one performs the optimal

truncation of the bit-stream.

The aim of spatial transforms of images is to compact their energy and de-correlate

their content, making their compression simpler and more efficient. A peculiar aspect of

the wavelet transform – which this codec is based on – is that it is applied to the whole

image at once. In video compression, these concepts are extended to a third dimension

(time), in order to exploit temporal correlation between frames.

In WSVC, Spatial-Temporal (ST) decomposition consists of two steps: a motion

compensated temporal filtering (MCTF) [33] and a 2D discrete wavelet transform. They

provide, respectively, temporal and spatial scalability. These two operations are neces-

sarily performed separately, which allows a degree of freedom. In fact, temporal decom-

position can either be performed before the spatial one (t+2D scheme) or after it (2D+t

scheme). Decomposition of one level is equivalent to the operation of analysis. The pro-

Background 24

SV
C

En
co

d
e

r
SV

C
 S

ca
la

b
le

 B
it

-S
tr

e
am

Q
u

al
it

y
Sc

al
ab

ili
ty

(l
o

w
e

r
SN

R
)

Sp
at

ia
l S

ca
la

b
ili

ty
(s

m
al

le
r

p
ic

tu
re

 s
iz

e
)

C
o

m
b

in
e

d
 S

ca
la

b
ili

ty
(a

n
y

co
m

b
in

at
io

n
 o

f
th

e
 o

th
e

r
th

re
e

 t
yp

e
s)

Te
m

p
o

ra
l S

ca
la

b
ili

ty
(l

o
w

e
r

fr
am

e
 r

at
e

)

O
ri

gi
n

al
Se

q
u

e
n

ce

F
ig
u
re

2
.2
:

E
x
am

p
le

s
of

b
as

ic
an

d
co

m
b

in
ed

sc
al

ab
il

it
y.

Background 25

Figure 2.3: A ST decomposition tree for t+2D decomposition [32].

cess reversing the decomposition is reconstruction, where a one level reconstruction is

equivalent to the operation of synthesis.

ST decomposition can be represented by an ST tree structure [31,32]. This is shown in

Figure 2.3 for two temporal and two spatial levels of transform. Here, T and S denote one

step of the temporal and spatial decomposition, respectively. Each level of decomposition

creates a node in the ST tree, called an ST node. To perform reconstruction of the video

sequence at the decoder’s side, the data contained in the leaves of the ST tree has to be

transmitted. In the following the leaves of an ST tree will be referred to as ST sub-bands.

Each ST sub-band is represented with 2D coordinates corresponding to its temporal (T)

and spatial resolution (S), which is denoted as (T, S). By convention, a lower value of

the coordinate corresponds to a lower value of the spatial or temporal resolution.

In order to achieve quality scalability, wavelet coefficients are bit-plane [34] encoded.

Since the result of a ST wavelet transform is a set of transformed frames, bit-plane en-

coding can be performed on a frame-to-frame basis by using algorithms developed for

scalable coding of still images. This algorithm applies successive approximation quant-

isation (SAQ) on the wavelet coefficients generated by the 3D wavelet transform in order

to encode them progressively, from the most significant bit (MSB) to the least significant

Background 26

bit (LSB). This operation results in a video sequence that has optimal distortion at the

specified spatial and temporal resolutions, given an appropriate set of target bit-rates.

Bit-stream Description and Extraction

Adaptation to lower fidelity content, (i.e. quality, spatial or temporal resolution) can

be performed by simply removing those parts of the bit-stream that represent a higher

fidelity of the video with respect to the targeted one. For adaptation of the scalable

bit-stream, an extractor can be used.

In order to achieve efficient extraction, a WSVC bit-stream consists of data pack-

ets called atoms [31]. An atom represents the smallest entity that can be added to or

removed from the bit-stream, and groups of atoms form layers. Following such organisa-

tion, the extractor simply discards from the bit-stream the group of atoms that are not

needed to achieve the desired resolution. For an easier interpretation of the extraction

process, the bit-stream can be represented in a 3D Temporal resolution, Spatial resol-

ution, Quality (T,S,Q) space, as shown in Figure 2.4 for example of tl = sl = ql = 2.

tl, sl, ql are the number of refinement layers in the quality, temporal and spatial domains

respectively. With the exception of refinement layers, in each domain there exists a basic

layer which is denoted as 0th layer and cannot be removed from the bit-stream. There-

fore, in the example shown in Figure 2.4 we have 3 quality, 3 temporal and 3 spatial

layers. Each atom has its coordinates in T-S-Q space, which are denoted by (T,S,Q).

If (i, j, k) represents the desired quality, temporal and spatial resolution of the adapted

video, where i ∈ 0, 1, . . . , tl, j ∈ 0, 1, . . . , sl and k ∈ 0, 1, . . . , ql, then, in the extraction

process, the atoms with coordinates T > i, S > j,Q > k are simply discarded from the

bit-stream. In Figure 2.4, the atoms that are highlighted are the ones remaining in the

final bit-stream after the extraction process for which i = j = k = 1.

A high-level description of the WSVC bit-stream is illustrated in Figure 2.5. The

bit-stream begins with the main header, which contains parameters that define general

information about the encoded video. The most notable ones are spatial resolution,

frame rate and number of spatial, temporal and quality layers. Then, an optional header

follows. It is composed of parameters that define more advanced encoding settings, such

as motion block size or type of wavelet transform. The remaining part of the bit-

stream is divided into Groups Of Pictures (GOPs) of the encoded video. A GOP is the

Background 27

(0,2,2) (1,2,2) (2,2,2)

(2,1,2)

(2,0,2)

(0,2,1) (1,2,1) (2,2,1)

(0,1,1) (1,1,1) (2,1,1)

(0,0,1) (1,0,1) (2,0,1)

(0,2,0) (1,2,0) (2,2,0)

(0,1,0) (1,1,0) (2,1,0)

(0,0,0) (1,0,0) (2,0,0)

T S

Q

30 fps

15 fps

7.5 fps

Low Medium High

QCIF

CIF

4CIF

(ql, tl, sl) = (2,2,2)

Figure 2.4: 3D representation of a scalable video bit-stream.

basic unit of input video on which the scalability is imposed, and for which a (T,S,Q)

representation can be used. Each GOP has a header with parameters that describe some

general information about that GOP. The GOP header is followed by its payload, which

is divided into atoms. Each atom contains a tag specifying its size, motion vector and

texture information. Since the size of the atoms is not constant, the number of bytes

that an atom tag occupies in the bit-stream varies as well; its minimum size is 1 byte

and the maximum is 4 bytes.

During the extraction process, the WSVC extractor internally creates a (T,S,Q)

representation of the bit-stream shown in Figure 2.4. That representation only exists

in the memory of the extractor. Along with the (T,S,Q) coordinates of the atoms, it

also contains information about the starting byte and length of the particular atom.

Therefore, for each atom, the extractor knows on which byte in the bit-stream it starts

and how big it is. Based on that information, when an atom has to be discarded, the

extractor simply removes the corresponding part of the bit-stream and concatenates the

remaining parts with the previous one. An important remark is that WSVC supports

fine granularity. In other words, instead of extracting a specific number of quality layers,

Background 28

Main
Header

Optional
Header

GOP
Header

GOP 0
Atoms

GOP
Header

GOP 1
Atoms

GOP
Header

GOP N
Atoms

Atom 0
Tag

Atom 0
Data

Atom 1
Tag

Atom 1
Data

Atom M
Tag

Atom M
Data

Byte
Index

Atom
Length

MV Data
Tag

MV
Data

Texture Data
Tag

Texture
Data

...

...

M = ((sl + 1) * (tl + 1) * (ql + 1)) - 1

Figure 2.5: High level description of a scalable video bit-stream.

it is possible to specify the bit-rate of the extracted video. However, the SNR of the

video might not be optimal for this specific bit-rate, since, as we previously mentioned,

it is optimised with respect to some extraction points.

2.3.4 H.264/SVC, the Scalable Extension of H.264/AVC

H.264/SVC [5] has been standardised as the scalable extension of H.264/AVC [35]. The

design of these codecs concerns both a Video Coding Layer (VCL) and a Network Ab-

straction Layer (NAL). The first one is responsible for the generation of the coded

bit-stream, whereas the second formats this data and generates the respective headers,

in order to allow exploitation of the functionalities of the codecs. Encoded bit-streams

consist of several NAL units, made of a header and a payload. These units can be either

VCL NAL – containing coded data such as slices – or non-VCL NAL, the most import-

ant of which contains parameter sets. In general, scalability is obtained by discarding

the desired NAL units and reconstructing the video with the remaining data.

The VCL follows a block-based hybrid approach [35], similarly to other codecs like

MPEG-2 [36] and H.263 [37]. The division of frames into smaller coding units follows

the partition into slices (parts of the frame that do not depend on any other region of

the same frame) and macroblocks, typically made of 16 × 16 luma and 8 × 8 chroma

samples (if the sampling format is 4:2:0 [38]). The codec supports three types of slices,

Background 29

Figure 2.6: Inter and intra-layer prediction dependencies for spatial scalability.

whose difference lies in the information they require for their decoding and the slices

they depend on:

• I-slices: coding is intra-picture only and uses spatial interpolation from neighbour-

ing areas within the same slice.

• P-slices: both intra and inter-picture coding, where the prediction only depends

on one other signal.

• B-slices: similar to P-slices, however the prediction is the weighted average of two

signals (e.g. a “past” signal and a “future” one).

The residual signal (prediction error) is transformed with a filtering that is very similar

to DCT, quantised and finally subjected to entropy coding.

Temporal Scalability

As far as temporal scalability is concerned, it is obtained by imposing constraints on

the slices that are used as reference for motion compensation. For example, let t be a

temporal layer identifier varying between t0 and tN , where ti+1 denotes higher temporal

resolution with respect to ti. Predictions of slices belonging to ti can only be made from

those with a temporal index k < i. In general these predictions can be generated using

more than one reference, as in H.264/AVC, and it is possible to avoid the usage of future

slices.

Background 30

Spatial Scalability

In order to obtain spatial scalability, this codec uses the traditional multi-layer coding

approach. That is, in addition to intra-frame prediction and motion compensation inside

each layer, inter-layer prediction is also used, as shown in Figure 2.6. For an enhancement

layer frame, the reconstructed prediction can be generated by using motion compensation

techniques inside the layer, by upsampling a lower layer frame or calculating an average

between the upsampled and temporal prediction. The figure also shows how spatial and

temporal scalability can be combined.

Quality Scalability

Quality scalability can be seen as a particular case of spatial scalability where two layers

q0 and q1 have the same frame size and therefore no upsampling is required. For different

layers, different quantisation step sizes are also used when encoding the residual. This

case is known as Coarse-Grain quality Scalability (CGS) and as the name suggests only

allows a limited number of decoding points. In order to achieve Medium-Grain quality

Scalability (MGS) the concept of key picture is introduced. An issue that may be

encountered when decoding scalable sequences is drift. It is the lack of synchronisation

between motion-compensated prediction loops at the encoding and decoding sides. For

a subset of frames, the key pictures, the motion vectors used to generate the prediction

must be the same for all layers. Moreover, a flag is also transmitted, which indicates

which frame has been used as reference to generate the prediction. Using this technique

allows to have more flexibility on the extraction points, hence the MGS, as it allows to

split the information more efficiently in the different NAL units.

2.3.5 Final Remarks about SVC

Both WSVC and H.264/SVC allow a layered representation of the video bit-stream. In

fact, it is sufficient that the corresponding atoms or NAL units are grouped according

to any of the scalability parameters. Therefore, if a user wants to exploit only one type

of scalability, such as quality, it is possible to assume the sequence to be divided into

GOPs and quality layers, as shown in Figure 2.7. Layer q0, which is the base layer

Background 31

SVC Encoding

Quality
Scalability

High

Medium

Low

Q

GOP 0 GOP 1 GOP 2 GOP 3 GOP 4

T

SVC Encoded Bit-stream

Figure 2.7: Structure of scalable video bit-stream when only quality scalability is considered;
the video sequence is divided into GOPs and layers.

– corresponding to a Low quality in Figure 2.7 – needs to be completely received to

decode a certain GOP. Therefore, it is the most critical part of the bit-stream. All the

other layers are enhancement layers and they are used to improve the received video

quality. If this representation of the sequence is used and layers have the same bit-rate,

the only differences in the codecs as seen from the outside lie in compression efficiency

and subjective quality perceived by the final user, which will be analysed in the next

chapter. An important remark is that SVC technologies will be used throughout the

rest of this thesis, from Chapter 3 to Chapter 6.

Background 32

2.4 Introduction to Social Networks

Social networking sites contribute nowadays to an important share of the Internet traffic.

For example, the biggest social network, Facebook1, as of early 2013 counts over 1 billion

active members [39]. They can be defined as web-based services that allow users to [40]:

• construct a public or semi-public profile within a bounded system,

• articulate a list of other users with whom they share a connection,

• view and traverse their list of connections and those made by others within

the system.

An important aspect emerging from this definition that can be applied to P2P is that,

as we will see, creating a user profile contributes to the de-anonymisation of the network

and this might be an incentive for users not to cheat [9]. Moreover, if users share a

connection, they have the faculty to exchange information with the others, especially

friends or in general peers they trust. An important remark is that friendship on a social

network does not necessarily mean an actual connection in real life. Moreover, recent

studies indicate that a significant percentage of profiles on Facebook (nearly 9% in 2012)

are fake [41], therefore trust in social networks cannot always be implied. However, in

principle, misbehaviour of a friend user is easily identifiable [9] and such users can be

removed from the set of trusted peers.

Another characteristic that is peculiar of social networks is their topology, which

can be defined as small-world [42]. That is, a few users have a number of connections

that is significantly higher than the rest of the network and the maximum degree of

separation between two random nodes in the network is small (if we assume all the

nodes to be connected). In the real world, according to an old study [43], if two random

persons are selected they will be connected (in the majority of the cases) by at most 5

intermediaries. This theory is more commonly known as six degrees of separation. It

is however outdated, as a more recent study [44] performed on the network of active

Facebook users indicates that the average number of nodes between two users is 3.74,

suggesting at most four intermediaries, with small variations when national sub-graphs

are considered.

1https://www.facebook.com/

Background 33

(a) Regular, p = 0 (b) Small-world, p = 0.5 (c) Completely Random, p = 1

Figure 2.8: Effects of rewiring probability p on the topology of a Watts-Strogatz graph.

In 1998, Watts and Strogatz proposed a method to generate these type of graphs [42].

First of all, let N be the number of vertices and K the number of edges per vertex, the

algorithm generates a ring lattice where each node is connected to K/2 neighbours on

each side. Second, each edge is rewired at random with a probability p. Figure 2.82

shows that p influences the properties of the graph, from perfectly regular to completely

random, whereas small world networks lie in between. A requirement for the parameters

used in the graph generator is expressed in Eq. (2.1):

N � K � ln(N)� 1, (2.1)

where K � ln(N) is required to obtain a connected graph.

This model can be used to generate networks with a small world topology, however

it shows some limitations. First of all, the degree sequence of the generated graph is not

power-law; that is, the number of nodes with degree κ is not proportional to κ−β for any

β > 0 [46], as expected for large κ from a real social network. Second, the model is not

able to capture the property of densification [47] over time. This is a phenomenon that

consists in an increase of the average degree of a graph as time passes. It also follows a

power-law pattern; that is, given the number of nodes over time n(t) and the number of

edges over time e(t), e(t) ∝ n(t)α, with 1 < α < 2. Nevertheless, this model has been

used in our approach in Chapter 6 due to its simplicity and as a starting point for future

work, where more realistic models will be considered.

2These figures have been generated with Pajek [45] software.

Background 34

Albert et al. proposed an algorithm to generate scale-free networks [46]. The starting

point of their work is the consideration that most real-world networks represent systems

that grow over time with the addition of new nodes. Moreover, the probability that a

connection is rewired in the original Watts-Strogatz model does not take into account

the fact that the probability of connecting to a node should also depend on the node’s

degree; in other words, it should show a preferential attachment to those nodes that are

already popular and therefore have a high degree.

The algorithm works as follows: the starting point is a small set of nodes consisting

of n0 elements. At each step, a new node is added and e new connections are created

(with e < n0). These new connections, however, are not created randomly, but the

probability Π that the new node connects to a node i depends on its degree κi and it

satisfies the property expressed in Eq. (2.2).

Π(κi) =
κi∑
j

κj
. (2.2)

It is intuitive to see that after t steps, this model generates a network that consists of

n0 + t nodes and e · t edges. Numerical simulations indicate that the probability that a

node has κ connections follows a power-law with β = 3. Finally, as the total number of

edges e ∝ n, this model does not take densification into account.

On the other hand, Leskovec et al. presented an approach called forest fire model [47].

Let us suppose that there already exists a small graph consisting of n0 users and a new

node i wants to connect to it. First of all, it connects to an ambassador node j, creating

a link to it. The second step consists in generating two random variables, x and y

geometrically distributed and depending on forward and backward burning probability.

Node i then selects x out-links and y in-links of j, connecting to the x+ y nodes on the

other side of them. This step is repeated considering the in- and out-links of these new

neighbours, however nodes cannot be visited more than once.

Graphs generated using this algorithm present a few interesting properties. First of

all, it allows newcomers to connect to popular nodes quickly no matter which node they

select as ambassador, according to the “rich gets richer” paradigm, which can also be

found in [46]. Second, it facilitates the generation of “communities”, as new users tend to

replicate the social circle of their ambassadors and their connections. Finally, it satisfies

Background 35

Topic Where it can be found

Subjective Video Evaluation: Chapter 3

Peer-to-Peer:

P2P Transmission Chapter 4 to Chapter 6

Credit-based P2P Chapter 5 and Chapter 6

Scalable Video Coding:

H.264/SVC Chapter 3

WSVC Chapter 3 to Chapter 6

Social Networks: Chapter 6

Table 2.1: Summary of cross-references for background topics.

the aforementioned densification power law property and the diameter of the network

shrinks as the number of users increase. That is, the maximum distance between two

random nodes in the network decreases when more users join the network.

2.5 Summary

In this chapter we provided background information about QoE and subjective video

quality, P2P networking including BitTorrent and credit-based systems, SVC and social

networks. These are the elements our work has been built on, and a more detailed

summary of where they can be found later on in this thesis is shown in Table 2.1. In

the next chapters, more specific techniques that are relevant to our contributions will

also be explained. Before that, Chapter 3 will illustrate our objective and subjective

evaluations of WSVC and H.264/SVC over P2P.

Chapter 3

Subjective Video Quality Evaluation

of SVC over P2P

The aim of this chapter is to evaluate the performance of two scalable codecs – WSVC

and the standard H.264/SVC – under different static and dynamic network conditions

in terms of subjective quality, and study how this relates to objective metrics1. The rest

of the chapter is organised as follows: Section 3.1 explains the motivation behind this

study and provides some related background. Section 3.2 describes the methodology

used for our evaluation, in particular: the test sequences, environment, types of tests

the subjects had to perform and the different P2P scenarios. Section 3.3 shows both

objective (in terms of objective quality, assessed with metrics widely used in the scientific

community) and subjective results of our experiments. Finally, Section 3.4 concludes

the chapter, discussing the importance of these results in the design of P2P systems.

3.1 Motivation and Related Work

As the final users of digital content are actual persons and not machines, objective met-

rics used to determine video quality only give a partial assessment of how a video is

actually perceived by the Human Visual System (HVS). Therefore, in the field of multi-

media applications the necessity to carry out rigorous subjective tests for the assessment

of video quality has arisen. These tests require a sufficient number of subjects and need

1The research work presented in this chapter has been developed within the FP7 project Saracen [48–
52]. However, the subjective evaluation has been re-run.

36

Subjective Video Quality Evaluation of SVC over P2P 37

to be carried out in a controlled environment, in order to guarantee the validity of the

results and their reproducibility. In addition to this, test materials should be selected

to cover several types of content and tests should be designed to reduce the impact of

human bias to a minimum.

Objective metrics are used to express mathematically how much the original signal

differs from the compressed one, in order to evaluate the performance of the encoding

algorithm. Two very common tools used for objective video quality assessment are the

Mean Squared Error (MSE) and the Peak Signal-to-Noise Ratio (PSNR), which will be

described in detail in Section 3.3.1. A few studies [53, 54] indicate that there is not

perfect correspondence between these metrics and how the HVS perceives video quality,

especially if compression introduces artefacts. Several studies, which try to model the

behaviour of the HVS [55, 56], have been proposed in the attempt to find a correlation

between objective and subjective metrics. However, none of these models have proven

to be fully reliable under a wide range of circumstances. Therefore, as both MSE and

PSNR represent nowadays the most commonly used tools to evaluate the performance

of video compression techniques, it is important to find in which cases these objective

metrics can also be used to estimate how the HVS perceives a visual stimulus.

The study in [57] proposes a function that correlates objective and subjective metrics,

expressed by Eq. (3.1):

QoE = e−ciMSE, (3.1)

where the optimal value of ci, found experimentally, is 8.05× 10−3. This function, how-

ever, does not always prove to be accurate, especially for different frame sizes and frame

rates. In our study, we will conduct both types of tests and we will draw conclusions

based on the significance of our experimental evaluation. However, it is out of the scope

of this research work to model a function that correlates these two types of metrics.

As far as our subjective tests are concerned, international standards [58, 59] can

provide guidelines to define such test activities. Tests can be classified according to the

types of stimuli the subjects are presented with and fall into three categories:

• double stimulus: subjects are presented with a reference and a test stimulus

sequentially. It can be required to rate the test only or both stimuli;

Subjective Video Quality Evaluation of SVC over P2P 38

MOS Quality Impairment

5 Excellent Imperceptible

4 Good Perceptible but not annoying

3 Fair Slightly annoying

2 Poor Annoying

1 Bad Very annoying

Table 3.1: Mean Opinion Score

• single stimulus: only a test stimulus is shown and the subject is asked to rate it;

• stimulus comparison: both stimuli are shown and the subject is required to

assess relative quality.

Ratings can be expressed on a continuous or discrete scale, can be numerical or cat-

egorical (e.g. very bad to excellent) and represent the quality or impairment perceived

by the subject when presented with the corresponding stimulus. The most commonly

used metric used for subjective tests is Mean Opinion Score (MOS), defined by the

standard [58,59] and shown in Table 3.1 for the discrete case. Stimuli subjective evalu-

ation can be performed while this is being presented to the subjects or at the end of the

test sequence, in order to assess the impact of variations in the quality. Based on the

degrees of freedom previously introduced, several types of assessments can be defined.

For example, DSCQS represents a double stimulus continuous quality scale test, where

an encoded test sequence and its reference are shown sequentially and the procedure is

repeated twice. Ranking is performed after the second round and the difference between

the MOS – expressed on a continuous scale from 0 to 100 – of the reference and com-

pressed videos is calculated. Another method is DSCS, which means double stimulus

comparison scale. It is similar to the previous test, the main differences being that both

stimuli are shown only once and that a discrete scale is used.

Different types of tests are used for different purposes. For example, stimulus com-

parison immediately highlights the artefacts introduced by video compression, and it

is used to evaluate the performance of the video codec regardless of its specific applic-

ations. On the other hand, double stimulus is more similar to a video transmission

context, where the reference is not transmitted. Therefore, we used the latter approach

Subjective Video Quality Evaluation of SVC over P2P 39

Ref. Codec(s) Sequences Subjects Methodology

[61] MPEG-4 4 120 SC

[62] H.263 5 20 DSIS

[63] H.264/SVC 6 30 DSCQS

[64] H.264/SVC 8 20 ACR

[65] H.264/SVC, WSVC 3 16 SC

Table 3.2: Summary of related studies for scalable video codecs.

for our tests. However, we did not use a single stimulus as in the double stimulus case

the difference between the perceived quality of the received and uncompressed video is

more evident, making this test less vulnerable to the perceived quality of the original

sequence.

The guidelines [58,59] also provide tools to compensate for differences between sub-

jects and calculate average MOSs and their corresponding confidence intervals. Other

statistical tools can be used for a more thorough analysis of the data and comparison

of results. An important remark is that subjective tests with scalable videos are usually

performed to assess perceived quality and impairment associated to quality scalability.

The main question is what is the minimum threshold for video quality to be considered as

acceptable, and the answer depends on many parameters, such as content, type of applic-

ation and viewers. The main studies regarding scalability for MPEG-4 [60], H.263 [37],

H.264/SVC [5] and wavelet-based WSVC [32] are reported in Table 3.2, where SC is

stimulus comparison, DSIS is double stimulus impairment scale and ACR is absolute

category rating.

More specifically, [61] proposes an optimal adaptation trajectory to adapt video para-

meters to the current network conditions in order to maximise the perceived video qual-

ity. In fact, there are many possible choices to decrease a video bit-rate in case of a

reduction in the current available resources: for example, video frame rate and frame

size can be downgraded individually or at the same time and there are a large number

of configurations that result in videos lying in the same zone of equal average bit-rate.

Therefore, the authors propose a path in the (frame rate, frame size) space, which the

adapting module should follow when choosing the video parameters, corresponding, as

Subjective Video Quality Evaluation of SVC over P2P 40

said, to the minimum perceived impairment for a specific bit-rate. An important remark

is that this trajectory also depends on the content of the video itself. Similarly, the study

in [62] assesses video quality at low bit-rates, identifying equal MOS contours either in

a (frame rate, frame size) or a (SNR, frame rate) space, concluding that the quality

depends on the video content and that a small frame size is usually preferred under this

low bit-rate constraint.

The authors of [63] propose a study on subjective video quality for mobile devices,

analysing the impact of degradation in the spatial, temporal and SNR domain, showing

how different types of sequences are affected. For example, the authors found that

a cartoon sequence is not significantly affected by a frame rate reduction. They also

identified a few scaling order preferences associated to different type of content. For

instance, for a sequence showing a Sports event, the subjects preferred a reduction in

the frame rate to a SNR degradation. The authors justified this phenomenon in terms

of user expectation rather than the characteristics of the video themselves.

In [64], Song et al. analyse the relationship between video content and perceived

quality, suggesting that different segments of long video sequences should be encoded

with different parameters to maximise perceived quality. They also recommend that

studies should not just focus on the intensity of motion (e.g. high or low), but also on

the size of the moving area with respect to the whole picture. Moreover, given a fixed

spatial layer, the results of this work suggest that SNR scalability should be prioritised

with respect to temporal. On the other hand, for extremely low frame rates, spatial

scalability should have priority over temporal. Finally, the evaluation performed in [65]

compares H.264 and WSVC, showing that the preferences between a degradation in the

spatial resolution and the frame size depended on the content of the test sequences and

that the behaviour of the two codecs is overall consistent, despite the fact that the type

of distortion introduced by the two encoding techniques is quite different.

In our study, we will focus on SNR scalability, as our proposed P2P systems will

mostly scale video sequences with respect to this parameter. Finally, despite the study

in [65] also focussing on WSVC, it is based on stimulus comparison and does not consider

scenarios with variable quality.

Subjective Video Quality Evaluation of SVC over P2P 41

3.2 Subjective Evaluation Methodology

In this section we clarify the methodology we used for our subjective evaluation of

scalable video over P2P. First, we give a short description of the test video sequences.

Second, we describe the characteristics of our controlled environment. Finally, we de-

scribe the scenarios we defined to simulate different behaviours of the P2P network when

transmitting scalable video sequences.

3.2.1 Test Sequences

For our subjective video quality evaluation, we used five uncompressed, high quality, test

sequences showing different types of content. All of them are real scenes and there are

no computer generated scenes nor animations. All used test sequences are professionally

acquired and show no distortion. The original content is High Definition (HD), in YUV

4:2:0 format, not interlaced and it does not include any audio. The sequences have

been downsampled to 4CIF (704x576 pixels) resolution while keeping the same aspect

ratio, to avoid introducing distortion. A 10-second interval from each sequence has been

encoded in both H.264/SVC and WSVC format using 4 layers and the encoded videos

are the same as the ones used in Saracen project [48]. Their layers roughly have the

same bit-rates; despite their differences being negligible, these values are not exactly the

same, as they are the result of the choice of other quantisation parameters. The bit-rate

of the layers depends on the sequence itself, as different activity results in a different

quality when the bit-rate is fixed and the bit-rates had to be chosen in such a way that

there was significant visual difference between the layers. All sequences have a frame

rate of 30 fps and the GOP size is 16, hence there are 16 GOPs in each video. The

content of the sequences can be summarised as follows, while a frame for each sequence

is shown in Table 3.3:

• InToTree: Camera pan, shows a building and a tree.

• PersonsReporting: Still camera, shows two persons reporting news as if they

were anchormen.

Subjective Video Quality Evaluation of SVC over P2P 42

Slow Motion

a) InToTree b) PersonsReporting

Medium-intensity Motion

c) PrimeTelFootball

Fast Motion

d) Soccer e) JohnnyTrailer

Table 3.3: Sample frames from the test sequences used for subjective evaluation.

Subjective Video Quality Evaluation of SVC over P2P 43

Sequence Name Spatial Activity (SA) Temporal Activity (TA)

InToTree 8.59 12.64

JohnnyTrailer 10.00 81.49

PersonsReporting 12.00 4.00

PrimeTelFootball 17.41 47.28

Soccer 10.20 51.28

Table 3.4: SA and TA of test sequences used for subjective evaluation.

• PrimeTelFootball: Camera pan, shows the public inside a football stadium and

the field.

• Soccer: Camera pan, shows a few people playing football. This sequence is a

standard video testing sequence and has also been used for other experiments in

this thesis.

• JohnnyTrailer: A ten-second extract from “Johnny English” movie trailer, with

fast action, sudden changes of the scene and text.

These sequences can be characterised by their spatial activity (SA) and temporal

activity (TA), which depend on the amount of details and motion they contain respect-

ively. These values have been computed as indicated in Eq. (3.2) and Eq. (3.3) [59]:

SA(n) = rmsspace[Sobel(I(n))], (3.2)

TA(n) = rmsspace[I(n)− I(n− 1)], (3.3)

where rmsspace indicates the root mean square computed over the entire frame, I(n)

indicates the frame at time n and Sobel() indicates Sobel filter [66], which is used for

edge detection and reveals the presence and location of high-frequency components in

the frame. An average for TA and SA has been computed over the selected ten seconds

for each sequence and is reported in Table 3.4. The table shows that for these tests we

have used two sequences with high TA (Soccer and JohnnyTrailer), two with low TA

(InToTree and PersonsReporting) and one with high SA and low TA (PrimeTelFootball).

Subjective Video Quality Evaluation of SVC over P2P 44

Figure 3.1: Illustration of the testing environment.

3.2.2 Testing Environment

The aim of using a controlled environment, such as a test room, is to assure the repro-

ducibility of the subjective test activity by avoiding the involuntary influence of any ex-

ternal factors and following the instructions in the guidelines [58,59] serves this purpose.

These tests were performed at the Multimedia and Vision Group (MMV) laboratory at

Queen Mary University of London and the testing environment was set up according to

the recommendations specified in [58,59]. The test room was equipped with two Desktop

PCs, each one with a LCD monitor. The ambient lighting consisted of neon lamps with

6500 K colour temperature and halogen lamps. The wall colour was black. One subject

at a time sat in front of one of the LCD screens at a distance of about two to three times

the diagonal size of the stimulus, and it was chosen specifically for this application. It

is within the range of 1 to 8 times the height of the picture height, as expressed by the

standard [59]. A picture of the test room is shown in Figure 3.1.

3.2.3 Subjective Testing

The method consisted of pair-wise comparisons between two stimuli (test sequences).

The subject was asked to indicate the perceived quality for each, on a continuous scale

Subjective Video Quality Evaluation of SVC over P2P 45

Figure 3.2: Subjective Quality Continuous Scale

from “Bad” to “Excellent”, as shown in Figure 3.2 and the ranking was expressed on

a scale from 0 to 100. The subjective test proceeded as follows. Fifteen pairs of test

sequences for each scenario were played one after another. The videos in the pair were

chosen randomly, however, one of the sequences was always the original uncompressed

bit-stream, while the other could be a H.264/SVC video, a WSVC video or another

display of the original sequence.

To limit the duration of a test session, the stimuli presentation was divided into two

separate sessions, each of which consisted of three scenarios. Prior to the test sessions, a

training session took place, where the test methodology was described to the subject by

using a set of training stimuli different from the test stimuli. Eighteen subjects (11 men

and 7 women) participated in the experiment, above the suggested value of 15 [59]. They

were recruited among a group of postgraduate students and three of them were experts

in video coding. They reported normal or corrected to normal vision. The average age

of the subjects was 26.

Subjective Video Quality Evaluation of SVC over P2P 46

0 0 0 1 0 2

4 0 4 1 4 2

8 0 8 1 8 2

12 0 12 1 12 2

16 0 16 1 16 2

Rec. Enh. Layers

0 0 0 3 0 0

4 0 4 3 4 0

4 1 4 2 4 1

8 1 8 2 8 1

8 2 8 1 8 2

12 2 12 1 12 2

12 3 12 0 12 0

16 3 16 0 16 0

0

1

2

3

0 4 8 12 16

En
h

a
n

ce
m

en
t

La
ye

rs

GOP

Scenario 1
Rec. Enh. Layers

0

1

2

3

0 4 8 12 16

En
h

a
n

ce
m

en
t

La
ye

rs

GOP

Scenario 2
Rec. Enh. Layers

0

1

2

3

0 4 8 12 16

En
h

a
n

ce
m

en
t

La
ye

rs

GOP

Scenario 3
Rec. Enh. Layers

0

1

2

3

0 4 8 12 16

En
h

a
n

ce
m

en
t

La
ye

rs

GOP

Scenario 4
Rec. Enh. Layers

0

1

2

3

0 4 8 12 16

En
h

a
n

ce
m

en
t

La
ye

rs

GOP

Scenario 5
Rec. Enh. Layers

0

1

2

3

0 4 8 12 16

En
h

a
n

ce
m

en
t

La
ye

rs

GOP

Scenario 6
Rec. Enh. Layers

Figure 3.3: SVC over P2P scenarios for subjective video evaluation.

3.2.4 Scenarios for Subjective Evaluation of P2P Transmission

For subjective evaluation, six different scenarios were considered. They were designed

to simulate actual potential behaviours of the P2P network and they can be illustrated

as follows:

Scenario 1 Only the base layer of each GOP has been decoded.

Scenario 2 The base layer and one enhancement layer have been considered.

Subjective Video Quality Evaluation of SVC over P2P 47

Scenario 3 The decoded sequence consists of the base layer and two enhancement layers.

Scenario 4 Only the base layer is considered for the first four GOPs and the number of

additional layers increases to three.

Scenario 5 Symmetrically, the first four GOPs consist of base and three enhancement

layers, after which the number of enhancement layers received gradually goes down

to zero.

Scenario 6 The first twelve GOPs of each sequence are the same as Scenario 4, while

the last four only contain the base layer.

Moreover, Figure 3.3 shows the different scenarios with respect to the number of quality

layers for each GOP on a scale from 0 to 3, where “0” indicates that only the base layer

of that GOP has been received and “3” denotes three enhancement layers.

Scenarios 1 to 3 might prove valid over a period of time when the network is relatively

stable. In P2P networks at each time the sum of all the download rates of all the nodes

in the network needs to be equal to the sum of all their upload rates, as it will be

explained in Section 5.4.2. Therefore, regardless of any consideration about fairness and

cooperation in such networks, different download rates may be experienced depending

on different capabilities of each user. If the network resources are scarce, users might

be able to download only the base layer of the test sequence, like in Scenario 1. On the

contrary, if nodes with higher capability are present, or if additional servers are used

as data seeders, users might experience higher download rates, leading to Scenario 2

or 3. Another possible case is represented by different costs associated to download.

For example, if a peer wants to join the P2P network using a mobile device over a 3G

connection, it might be only interested in the base layer of the sequence, as it might

have to pay in relation to the amount of downloaded data. The same user might want

to download a higher resolution version (base and one or two enhancement layers) when

connected over WiFi. On the other hand, Scenarios 4 to 6 correspond to nodes with

higher capability joining and recovering (Scenario 4) or leaving (Scenario 5) the network,

or a combination of these two cases (Scenario 6). In addition, Scenario 5 might also

happen as a consequence of node failures, or as a consequence of sub-optimal network

resources allocation, e.g. if a user is not using all of its uploading bandwidth, but has

no additional data it can contribute to its neighbours.

Subjective Video Quality Evaluation of SVC over P2P 48

These scenarios do not take pauses in the video playback into account and only

consider 10-second sequences. Assessing the impact of playback interruptions – especially

in comparison with very low bit-rate video – on subjective quality and performing tests

on longer sequences will be addressed as future work.

3.3 Results

In this section we present the results from both our objective and subjective evaluations.

First, we explain the metrics used for the objective evaluation and show the correspond-

ing obtained graphs. Second, we present and analyse the subjective results, obtained in

the aforementioned P2P scenarios.

3.3.1 Objective Results

The metrics we used for our objective evaluation are MSE and PSNR, already introduced

in Section 3.1. These tools are widely used by the video processing community to

evaluate the performance of lossy video codecs. One of the reason for their success is their

simplicity and ease of implementation, where at the same time they are objective metrics

used to quantify the distortion introduced in the encoding process. PSNR is a function

of the ratio between the maximum value a signal can have and the “noise” associated

to compression, which is represented in this case by the MSE. It is usually expressed in

decibels and is calculated on the luminance component of the video. Therefore, a higher

PSNR is better, as it implies a lower error. For a single frame, MSE and PSNR are

calculated as shown in Eq. (3.4) and Eq. (3.5):

MSE =

M∑
i=1

N∑
j=1

[
f(i, j)− f̃(i, j)

]2
M ·N

, (3.4)

PSNR = 20 · log10

(
255√
MSE

)
, (3.5)

Subjective Video Quality Evaluation of SVC over P2P 49

Slow Motion

30

31

32

33

34

35

36

37

38

39

0 0.5 1 1.5 2 2.5 3

P
SN

R
 [

d
B

]

Bit-rate [Mbps]

InToTree

WSVC H.264/SVC

a) InToTree

29

31

33

35

37

39

41

43

45

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45

P
SN

R
 [

d
B

]

Bit-rate [Mbps]

PersonsReporting

WSVC H.264/SVC

b) PersonsReporting

Medium-intensity Motion

30

31

32

33

34

35

36

37

38

39

0 0.5 1 1.5 2 2.5 3

P
SN

R
 [

d
B

]

Bit-rate [Mbps]

PrimeTelFootball

WSVC H.264/SVC

c) PrimeTelFootball

Table 3.5: PSNR for slow and medium-intensity motion sequences; 4-layer WSVC and
H.264/SVC.

Subjective Video Quality Evaluation of SVC over P2P 50

Fast Motion

30

31

32

33

34

35

36

37

0 0.5 1 1.5 2 2.5 3

P
SN

R
 [

d
B

]

Bit-rate [Mbps]

Soccer

WSVC H.264/SVC

d) Soccer

25

27

29

31

33

35

37

39

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

P
SN

R
 [

d
B

]

Bit-rate [Mbps]

JohnnyTrailer

WSVC H.264/SVC

e) JohnnyTrailer

Table 3.6: PSNR for fast motion sequences; 4-layer WSVC and H.264/SVC.

where M ·N represents the total number of pixels in the frame, f(i, j) represents a pixel

from the original image, f̃(i, j) is the reconstructed image and 255 is the maximum

(peak) luminance value, provided that it is represented using 8 bits. The sequences have

been encoded with the aforementioned codecs, H.264/SVC and WSVC, using bit-rates

that were as close as possible to guarantee a fair comparison, and have been adapted to

all four possible extraction points, e.g. removing part of the original encoded bit-stream.

Table 3.5 and 3.6 show the PSNR of the test sequences at these extraction points. An

important remark is that sequences with low TA and SA achieve good performances at

low bit-rates, as there is strong correlation between frames and less energy associated to

high frequency coefficients in the spatial domain, whereas sequences with fast motion or

high detail require a much higher bit-rate to achieve the same performance.

Subjective Video Quality Evaluation of SVC over P2P 51

The results show that for slow moving sequences (with low TA) WSVC performs

better than H.264/SVC, whereas for high moving sequences (high TA) the roles are

inverted, especially at low bit-rates. Moreover, at higher bit-rates, with the exception

of Soccer (in Table 3.6), WSVC shows either comparable or better performance with

respect to H.264/SVC for all types of sequences (low, medium and high TA).

3.3.2 Subjective Results

Table 3.7 and 3.8 show the average MOS for Scenarios 1 to 6 for the five test sequences,

which have been grouped according to their motion content.

First of all, we will consider Scenario 1 to 3, where bit-rates do not change throughout

the playback. As expected, the average perceived quality increases as the bit-rate and

PSNR increase. This difference is statistically significant in most cases, and the biggest

difference can be found in fast moving sequences. For the cases in which this difference

is not statistically relevant, it is plausible that the difference in the encoding bit-rate is

too little to have a significant impact on the video quality perceived by the subjects.

As far as slow moving sequences are concerned (PersonsReporting and InToTree),

Table 3.7 indicates that WSVC performs as good as H.264/SVC when only the base layer

has been decoded and better than the other codec when two enhancement layers have

been received. In the case when only one enhancement layer has been received, InToTree

has a higher MOS when encoded in WSVC format, while the performance is similar for

PersonsReporting. On the other hand, for fast moving sequences (JohnnyTrailer and

Soccer), H.264/SVC outperforms WSVC at all bit-rates, as shown in Table 3.8. The

graphs suggest that for H.264/SVC receiving two enhancement layers, given the current

bit-rate parameters, does not have a much bigger impact than receiving only one, as

it does not result in a much bigger gain as compared to only receiving the base layer.

For WSVC, on the other hand, the increase in the perceived video quality is much more

constant. Finally, for the medium-moving sequence (PrimeTelFootball), the graph in

Table 3.7 indicates that the perceived quality does not show a significant difference

depending on the codec used – even if the average MOS is bigger for WSVC at the

highest bit-rate – and therefore we can say that for this video the performance of WSVC

Subjective Video Quality Evaluation of SVC over P2P 52

Slow Motion

0

10

20

30

40

50

60

70

80

90

100

1 2 3 4 5 6

M
e

an
 O

p
in

io
n

 S
co

re
 (

M
O

S)

Scenario

InToTree

WSVC H.264/SVC

a) InToTree

0

10

20

30

40

50

60

70

80

90

100

1 2 3 4 5 6

M
e

an
 O

p
in

io
n

 S
co

re
 (

M
O

S)

Scenario

PersonsReporting

WSVC H.264/SVC

b) PersonsReporting

Medium-intensity Motion

0

10

20

30

40

50

60

70

80

90

100

1 2 3 4 5 6

M
e

an
 O

p
in

io
n

 S
co

re
 (

M
O

S)

Scenario

PrimeTelFootball

WSVC H.264/SVC

c) PrimeTelFootball

Table 3.7: Mean Opinion Score for slow and medium-intensity motion sequences, all scen-
arios, WSVC and H.264/SVC.

Subjective Video Quality Evaluation of SVC over P2P 53

Fast Motion

0

10

20

30

40

50

60

70

80

90

100

1 2 3 4 5 6

M
e

an
 O

p
in

io
n

 S
co

re
 (

M
O

S)

Scenario

Soccer

WSVC H.264/SVC

d) Soccer

0

10

20

30

40

50

60

70

80

90

100

1 2 3 4 5 6

M
e

an
 O

p
in

io
n

 S
co

re
 (

M
O

S)

Scenario

JohnnyTrailer

WSVC H.264/SVC

e) JohnnyTrailer

Table 3.8: Mean Opinion Score for fast moving sequences, all scenarios, WSVC and
H.264/SVC.

and H.264/SVC is similar. An important remark is that these results are coherent,

as expected, with our objective evaluation, with the exception of JohnnyTrailer. Our

explanation for this behaviour is the different types of artefacts introduced by the two

codecs; for example, the users might be more accustomed to the type of compression

introduced by the standard codec. Two frames showing the impact of the two different

encoding techniques are shown in Figure 3.4.

Scenarios 4 to 6 correspond to more dynamic situations that may occur during scal-

able video transmission over P2P. The average MOS for these scenarios are also shown

in Table 3.7 and Table 3.8. Overall, the scores obtained by the two codecs in Scenarios 4

and 6 are much lower than those found in Scenario 2, despite the average bit-rate being

Subjective Video Quality Evaluation of SVC over P2P 54

(a) WSVC (b) H.264/SVC

Figure 3.4: Sample frames from InToTree; only the base layer has been decoded.

higher, while Scenario 5 is roughly comparable with Scenario 2 (despite the uncertainty

on the results being bigger). Therefore, these results suggest that the subjects did not

like changes in the video quality, however were positively impressed by a high video qual-

ity at the beginning of the playback, which could be achieved for example by extending

the pre-buffering time. This result may however be a limitation of the sequences used for

testing, as they are 10-seconds long. Previous literature studies show that sudden quality

degradation can significantly affect the perceived video quality [61], and a recent solu-

tion proposed in the context of Dynamic Adaptive Streaming over HTTP (DASH) [67]

aims at using intermediate quality layers to smoothen the transition from high to low

quality, which results in an overall improvement of the performance. Scenario 5 in our

study also presents a smooth transition and in our opinion this is the reason why the

MOS is higher than expected.

An important remark is that the behaviour observed in these scenarios is the same

for both codecs, which suggests that both WSVC and H.264/SVC are affected by PSNR

variations in roughly the same way. Finally, even for the variable scenarios the res-

ults suggest that H.264/SVC performs better than WSVC for fast moving sequences,

while for slow and medium moving sequences the performances of the two codecs are

comparable in most cases.

Subjective Video Quality Evaluation of SVC over P2P 55

3.4 Conclusion

In this chapter, we analysed scalable video transmission over P2P from a subjective video

quality perspective. Before conducting the subjective experiments, we performed an

objective analysis using the most advanced PSNR metric. According to this evaluation,

WSVC shows better results for slow moving sequences, while H.264/SVC performs better

for fast moving sequences, in particular at low bit-rates. On the other hand, at higher

bit-rates WSVC shows equal or better results with respect to H.264/SVC for both slow

and fast moving sequences, the only exception being Soccer.

As far as our subjective evaluation is concerned, we found that in general, for slow

moving sequences, there was either no significant difference (for low bit-rates) or WSVC

performed better (at higher bit-rates) as compared to H.264/SVC. This is coherent

with what we already found in our objective evaluation. For fast moving sequences,

H.264/SVC performed better as compared to WSVC, especially at low bit-rates. For

medium moving sequences, there was no significant difference between the two codecs.

Regarding the scenarios with constant received bit-rates, we observed that in general,

as expected, the performance of both codecs improved as users had successfully down-

loaded more layers at the receiving end, through the P2P network. Hence, the protocol

designer needs to make sure that all the users of the system receive the highest pos-

sible layer according to the given network conditions. On the other hand, this situation

radically changes when the number of decoded layers is not constant. In fact, Scenario

2 received higher perceived quality score as compared to Scenarios 4 and 6, while the

scores assigned to the videos in this Scenario were comparable with Scenario 5. This

result confirms that frequent quality changes are not seen favourably by the users, and

lower yet constant received video bit-rate will result in a better user experience. How-

ever, quality will be overall higher if the user receives the better quality at the beginning

of sequence.

3.4.1 A Lesson Learned

Finally, as far as the findings in this chapter that will be used in the remaining parts of

this thesis are concerned, they can be summarised as follows:

Subjective Video Quality Evaluation of SVC over P2P 56

• The results obtained with WSVC codec have the same validity as those that would

be obtained with H.264/SVC.

• It might be useful to increase the pre-buffering time to provide users with a better

video quality since the beginning instead of changing the video quality, as users

seem to be biased by a first-impression factor.

• The aim of chunk request policies for both H.264/SVC and WSVC should be to

provide final users with a received video quality that is as constant as possible.

In the next chapter, we will describe a general block diagram which is valid for all our

proposed architectures, then we will illustrate our proposed algorithms for piece picking

and neighbour selection for P2P SVC transmission, which will consider the results found

in this chapter.

Chapter 4

Scalable Video Adaptation to P2P

Transmission

This chapter starts with the presentation of a block diagram showing a general architec-

ture for SVC streaming over a P2P network. Subsequently, our first proposed approach

is described. In summary, it consists of a piece picking and a neighbour selection policy,

whose aim is to allow efficient scalable video transmission over a P2P network. In such a

system, users experience different video qualities depending on their available resources.

These techniques have been implemented as modifications of existing algorithms for

non-scalable video. This is a basic solution, which handles scalable video streaming

over P2P networks in such a way that the system is still compatible with the original

Tribler [68] BitTorrent client, presented in Section 4.3.3. Therefore, resource allocation

to other peers is performed according to the algorithm used by the original client, which

will also be illustrated in Section 4.3.3. This chapter is organised as follows: the general

social P2P architecture for SVC is presented in Section 4.1; the problem is introduced

in Section 4.2; the related background is provided in Section 4.3; our algorithms are

described in Section 4.4; Section 4.5 gives a short description of how the framework for

testing these techniques has been implemented; Section 4.6 consists of the experimental

evaluation; finally, Section 4.7 concludes this chapter, analysing the pros and cons of

this solution.

57

Scalable Video Adaptation to P2P Transmission 58

4.1 Overview of a General Social P2P SVC System

Before explaining our proposed architectures, we describe a general block scheme for a

system that performs transmission of scalable videos over a P2P network that presents

social features. It will be used as a reference for the techniques illustrated in this chapter

and in the following ones. First, we illustrate a diagram that shows the main components,

and then we provide a short description for each of them.

4.1.1 Block Diagram

The scheme presented in this section is valid for each of the approaches described in this

thesis, however, depending on the approach itself, some blocks might not be used, or

might correspond to state-of-the-art technologies instead of new contributions. For the

systems presented in this chapter, Chapter 5 and Chapter 6 we draw similar diagrams,

highlighting where the novelties lie. The architecture is shown in Figure 4.1. In this

and all the related diagrams, full lines indicate the exchange of video chunks, while the

dashed ones denote control or information messages.

As P2P networking relies on the fact that users both receive and transmit data,

we can identify the two most important blocks: one which is responsible for resource

allocation (uploading) and one for chunk selection (downloading). This is not valid for

all P2P systems (only for the pull-based ones), however, all our proposed techniques

rely on this scheme. In general, downloading mechanisms need to be aware of the

characteristics of the video sequence they are requesting. In other words, they need to

know the structure of the codec. On the other hand, resource allocation can depend on

a credit-based framework, and information received from reliable peers, such as friends

in a social network. More specifically, these blocks can have the following functions:

• Chunk Selection. In this thesis, we will usually refer to this block as “piece

picking policy”. It is responsible for requesting chunks of data to other users. As

our systems deal with video transmission, it needs to request these chunks with

the aim of ensuring a satisfactory video experience for the final user. For example,

it needs to make sure that video chunks are correctly received and decoded before

their playback time, with the best quality a user can afford to download. Our

Scalable Video Adaptation to P2P Transmission 59

Resource
Allocation

Social
Network

Rest of P2P Network

Chunk
Buffer

User
Behaviour
Monitor

Free-riders
Missing
Chunks

Feedback
About

Regular Users
Download

Chunk

Accept/Reject
Request

Request
Chunk

Upload
Chunk

Chunk
Selection

Peer i

Regular Users Friends of Peer i

Free-riders

Figure 4.1: Generic block diagram for our proposed architectures.

piece picking policies work with scalable video. This allows to add flexibility to

the system. In fact, some parts of a scalable video bit-stream can be removed and

the new sequence still be decoded, albeit a downgraded version. This system needs

information from:

Scalable Video Adaptation to P2P Transmission 60

– Chunk Buffer. This module keeps track of the missing video parts. The

Chunk Selection module will then generate requests depending on the inform-

ation provided by this module (and the respective timestamps of the chunks).

• Resource Allocation. This is the most critical part in every P2P system. It is

responsible for deciding which users a peer should cooperate with and the amount

of this contribution. Optimising resource allocation (with the constraint of the

upload capacities of the single peers) also means making more data available to

the network. This can result in a “virtuous circle”, as this data can be shared

with even more users. In our proposed resource allocation modules, this decision

always depends on a peer’s current credit or information users can retrieve from

their circle of trusted users. Credit-based P2P paradigms are often introduced to

promote fairness among peers. We remark that if a system does not make use of

rewards or punishments for good or deceptive behaviour, a peer has no interest

in sharing their resources. This was a typical situation in the first P2P systems,

whereas in the most recent ones, resource allocation mechanisms tend to reward

users that have proven to be trustworthy. This module requires the information

provided by:

– User Behaviour Monitor. This module is responsible for collecting inform-

ation about the interactions a peer has had with the rest of the network, and

more generically about the network itself. This module is also responsible

for the generation of some metrics, which will be evaluated by the Resource

Allocation module when taking decisions.

– Social Networking. The increase of popularity of social networks has contrib-

uted to the de-anonymisation of the Internet, as users are allowed to connect

with other people they might know in real life. When a relationship among

users that trust each other, such as “friendship”, is established, they can share

some information which is de facto verified. Within the context of P2P net-

works, each user tries to build a map of their neighbours, trying to understand

whether they are cooperative or malicious. When friend users trust each other,

they can combine their efforts and have a better understanding of the bigger

picture. It is important, however, that peers choose their friends carefully, oth-

erwise the system might be vulnerable to social attacks, where malicious peers

ask for a someone else’s trust, sometimes even pretending to be multiple users.

Scalable Video Adaptation to P2P Transmission 61

4.2 Problem Description

As far as our first approach is concerned, we propose a simple solution to allow trans-

mission of scalable sequences over a P2P network. The starting point is the existing

BitTorrent protocol, which is however not suitable for video streaming without proper

modifications, as it will be discussed later in Section 4.3. The scalable sequences we

use are encoded in WSVC [32] format, but this solution can be easily extended to

H.264/SVC [5]. Despite this codec supporting spatial, temporal, SNR and combined

scalability, as explained in Chapter 2, we will only consider quality scalability in this

case.

More specifically, the issues we address in this chapter are the following:

• Define a piece picking policy whose aim is to download the video chunks that

are following the current playback position, trying to maximise the received video

quality given the current available resources.

• Propose a neighbour selection policy which identifies unreliable peers in the network,

in order to avoid downloading base layer chunks from them.

4.3 Related Work

Given the description of the original BitTorrent protocol in Section 2.2.2, it is clear that

it is not possible to transmit video sequences efficiently without introducing some modi-

fications. For example, rarest-first piece picking policy is incompatible with sequential

frame visualisation; in fact, a user has to wait for the download to be complete before

being able to play the video. Moreover, T4T mechanism alone can result in poor transfer

rates at the beginning of the download, which means that pre-buffering phase could be

unnecessarily long.

Scalable Video Adaptation to P2P Transmission 62

4.3.1 Popular P2P Systems for Video Transmission

First of all, we describe a few very popular P2P systems that can perform either VoD

or live streaming. None of them were originally designed for SVC transmission, however

all these protocols can in principle be extended to support it.

Similarly to our proposed approach, PPLive [69] is an example of pull-based architec-

ture for VoD, where users need to implement a piece selection and neighbour selection

policy. As far as the chunk selection strategy is concerned, it is mixed, in the sense that

sequential download has the highest priority, but rarest-first is also applied. Pieces are

requested from a set of neighbours whose size is kept under control and peers have no

control over their level of contribution, which implies that cooperation is enforced. In

addition to SVC support, this is the main difference with our approaches described both

in this and in the following chapters.

BulletMedia [70] is another solution where peers need to explicitly request data to

other users. Video blocks are selected according to a rarest random strategy, however

the base principle of this protocol is that there should be a minimum number of content

replicas available at all times. Therefore, a peer not only requests blocks that are close

to its playback position, but also other parts of the stream that are not currently being

cached by a sufficient number of peers in the network. This is known as proactive caching

and is only performed if the current playback can be sustained. Proactive caching could

in principle be applied to our system as well, provided that there are enough spare

resources available, however in our case peers will in general try to improve their received

video quality, rather than downloading other parts of the stream.

On the other hand, RedCarpet [71] divides a video sequence in segments, which are

subsequently divided into blocks. As far as chunk requests are concerned, peers use

different policies when requesting data from a central server, which owns the first copy,

and the other clients. As far as server policies are concerned, in addition to requesting

a random piece in the segment, options include requesting: the overall rarest piece in

the system, the system-wide rarest piece in the segment, the rarest piece in a peer’s

neighbourhood and the rarest piece in a peer’s neighbourhood belonging to the peer’s

current segment. Client policies, on the other side, allow to request a random piece

within a segment or the rarest piece in a peer’s neighbourhood within the current seg-

ment. An important remark is that all the peers follow the same policy. The authors

Scalable Video Adaptation to P2P Transmission 63

propose many other policies, which also use network coding, however their main finding

is that the system performs better if peers receive the globally rarest blocks, and not

just the ones within the segment. As far as a comparison with our systems is concerned,

we considered using a sliding window as opposed to dividing video chunks into groups

a more appropriate choice, as the window keeps following the current playback posi-

tion. Moreover, the experimental evaluation of this system shows huge variations in its

performance over time, with minima when a peer switches from a segment to the next

one.

Finally, SplitStream [72], as the name suggests, splits a live stream into several flows

or strips which are transmitted over different trees. As the burden of transmission over

a tree lies on the intermediate nodes and the authors aim at creating a fair system,

each peer needs to be an intermediate node in at most one tree and a leaf node in

the others. In this case, this set of trees is said to be interior-node disjoint. Multiple

Description Coding (MDC) [73] – a technique based on SVC in which the more separate

and individually decodable sub-streams or descriptions of a video are received, the better

its final quality will be – can be used in this system, however, as far as the negative

points of this solution are concerned, tree-based architectures are usually more expensive

to maintain with respect to mesh.

4.3.2 Multimedia Streaming Using BitTorrent and BiToS

The solution proposed by [74] for multimedia streaming using BitTorrent introduces

a new selection policy for both chunks and neighbours. Regarding chunks, a sliding

window like the one shown in Figure 4.2 is used to separate w pieces that follow the

current playback position from the rest of the stream. In this case, w is the length of the

window, which is strictly correlated to playback delay. Pieces that do not belong to this

window are not downloaded. Pieces that follow the last chunk in the window might be

downloaded in the future, but are not considered interesting at present, as their playback

position is still too far away. Missing pieces that precede the playback position are not

of any use anymore and therefore they will be ignored. Inside the window, chunks are

downloaded according to a rarest-first policy. In fact, they might be more appealing

to peers that download the video both in a sequential-like way and in the standard

BitTorrent fashion. As far as neighbour selection is concerned, modifications are made

Scalable Video Adaptation to P2P Transmission 64

Initial window
Peers request chunks from the current

window range using BT’s rarest-first policy

Window slides if the beginning
chunks are received

Chunks not
received yet

Received chunk
Window slides every playback interval

Missed chunk

Playback delay Scheduled playback time

Figure 4.2: Sliding window notion using the rarest-first policy for BitTorrent.

to achieve a better performance during the start-up phase. A randomised version of

T4T policy, which “gives more free tries to a larger number of peers in the swarm”, is

used to give an advantage to those peers that have got nothing or little that they can

share.

Another solution, BitTorrent Streaming (BiToS) [75], uses a “High Priority Set”,

which is similar to a sliding window and pieces are picked from this or from the “Re-

maining Pieces Set” with probabilities of p and 1 − p respectively. The optimal choice

of p indicates that there exists a trade-off between requesting pieces that are urgently

needed for playback and rare pieces that are appealing to other peers. This is one of the

key problems in BitTorrent multimedia applications.

Both of these techniques were considered innovative at the time they were proposed

(2006-2007). In fact, they are an attempt to use BitTorrent in applications it was not

originally intended for. However, they also show some limitations. For example, they

do not consider that many peers might have different playback positions and therefore

they might be mainly interested in small and different subsets of the original sequence,

which is an issue that will be tackled by the approach presented in the next section.

Scalable Video Adaptation to P2P Transmission 65

4.3.3 Tribler BitTorrent Client

Tribler [68] is a BitTorrent client that was developed at Delft University of Technology,

in the Netherlands. It is based on ABC [Yet Another BitTorrent Client] [76], which is

itself based on BitTornado [77]. New features include exploitation of social relationships

among peers, which will be described in Chapter 6, and content discovery through

exploration of the network instead of browsing a torrent repository.

Give-to-Get Algorithm

The typical course of action of a peer in this system is the following: when it starts

downloading a video, playback is delayed until the end of the pre-buffering period. This

happens when the estimated downloading time required to complete the sequence is

shorter than its playback time. After this, playback starts. When it finishes playing, the

peer leaves the swarm; if the download has finished before the end of the playback, that

peer will act as a seeder for a certain amount of time. Within this interval of time, the

behaviour of the peer can be described by the give-to-get (G2G) algorithm [9], which

consists of three parts: an unchoking algorithm, which is the module responsible for

resource allocation, a piece picking and a neighbour selection algorithm. An important

observation is that here seeking and fast-forward are not taken into account, and are

not even supported by G2G, even though in the future the protocol might be extended.

Unchoking Algorithm The video stream is divided into smaller pieces, as it happens

with any other file. Since G2G does not know anything about codecs, different GOPs

might belong to the same piece and vice-versa. Each peer shares information about the

pieces it has with its neighbours, which might send requests for them. These neighbours

can be unchoked according to their performance evaluation or optimistically unchoked.

Typically, at least 3 and at most 3+n neighbours, where n could be for example equal to

2, are unchoked according to their rank until 90% of the upload bandwidth is saturated,

while at most one peer is optimistically unchoked. It is obvious that if the number of

requests is less or equal to n+ 4, all the peers will be unchoked. A pseudo-code version

of the proposed method is given in Algorithm 4.3.1. Peers are ranked according to the

number of pieces they have forwarded in the last δ seconds, hence the “give-to-get”

Scalable Video Adaptation to P2P Transmission 66

name, and at the end of this period the best peers are unchoked; optimistic unchoking,

instead, is performed every 2δ seconds.

�

�

�

�

Algorithm 4.3.1: GiveToGet(N∗)

choke all neighbours N∗

N ← all interested neighbours

sort N on forwarding rank

for i← 1 to min(|N |, 3 + n)

do



unchoke (N [i])

b←
∑i

k=1(our upload speed to N [k])

if i ≥ 3 and b > UPLINK · 0.9

then break

The ranking procedure is made of two different steps: first of all “children” peers c

are sorted decreasingly by a “parent” peer p according to the number of chunks they

downloaded from it that have been forwarded to other “grandchildren” peers g. Second,

ties are broken according to the total number of pieces the children have forwarded

to their grandchildren. Both steps are required to create a fair mechanism. In fact,

assuming that only the pieces received from p and uploaded to g are considered, it will

be extremely difficult for a peer c that has been optimistically unchoked to become a

good uploader of those chunks over a short period of time. Therefore, also considering

the total number of forwarded chunks helps in identifying well-behaving peers. On the

other hand, if only the total number of forwarded pieces is considered, a few peers with

high capacity will be unchoked by a large number of neighbours and the others will be

left to starve.

Another issue is evaluating the number of pieces that have been forwarded, since it is

obvious that a parent cannot trust its children c. Therefore, a parent peer p will not ask

them for information about the pieces they have uploaded, but for a list of their children

g, which will be contacted in order to have a feedback, as it is shown in Figure 4.3.

This way, a peer has no interest in lying about its children and has an incentive to share

as much as it can. Free-riders can still download from other peers, since they can be

Scalable Video Adaptation to P2P Transmission 67

p

c

g

Video Data

Feedback Information

Figure 4.3: The feedback connections for an individual peer.

optimistically unchoked, but if there is no more spare capacity in the system, they will

be automatically cut out.

Piece Picking It was already pointed out that in VoD applications for P2P the order

which the pieces are downloaded in is crucial, as well as delivering these pieces in time.

Therefore, each piece is given a deadline, which is infinite if the video is not being played.

A peer is interested in requesting a chunk if three conditions hold: another neighbour

has got that chunk, that peer does not have the chunk and has not requested it in the

past, and finally there is a chance that it arrives before its deadline.

As far as the piece picking policy is concerned, two important issues have to be taken

into account: chunks should be delivered to the video player in order, and therefore

should be also downloaded in a sequential fashion, and it is necessary to own pieces that

other peers want, in order to get good upload rates. The solution proposed in G2G

algorithm gives different priorities to different chunks. Let us suppose that m is the

playback position of peer p, where m can be piece 0, if the playback has not started; p

will choose the first interesting chunk i in the following three sets:

Scalable Video Adaptation to P2P Transmission 68

HIGH
PRIORITY

MID
PRIORITY

LOW
PRIORITY

Video
start

m (playback
position)

Video
end

h µh

Round-trip time to q

Figure 4.4: Different priority sets in G2G algorithm; the high-, mid- and low-priority sets in
relation to the playback position. The chunks in the grey areas, if requested, will
not arrive before their deadline.

• High priority: m ≤ i < m + h. If playback has already started, the piece with

the smaller index will be downloaded, otherwise the policy will be rarest-first.

• Mid priority: m+ h ≤ i < m+ (µ+ 1)h. Chunk i will be picked on a rarest-first

basis.

• Low priority: m+ (µ+ 1)h ≤ i. Chunk i will be picked on a rarest-first basis.

Since mid and low priority are separated, pieces with low priority will be picked only if

there are no medium priority chunks left; this distinction is made because mid priority

chunks could be part of the high priority set in the near future. If two pieces are equally

rare, one of them will be chosen at random. These three sets are shown in Figure 4.4.

Finally, every time a new piece is requested, the system estimates the arrival time of

all the requested chunks. If this is greater than the deadline, the corresponding request

will be dropped. Periodically, the playing buffer is filled with the received pieces and

the playback position, which determines the starting point of the different priority sets,

is incremented.

Neighbour Selection Tribler also implements a neighbour selection policy. Its aim is

to discriminate between “good” or “reliable” peers and “bad” ones. While downloading

a video, a peer might fail to deliver a piece belonging to the high priority set before it

is required for playing, forcing the system to pause. Therefore, a “black list” of all the

peers that have failed to deliver on time is kept (for each download). If the number

Scalable Video Adaptation to P2P Transmission 69

of failures exceeds a certain threshold, no pieces from the high or mid priority set will

be requested from that peer anymore and they will be picked from the low-priority set

instead. This threshold is 4 for live streaming, while it is 0 for VoD.

4.3.4 P2P Scalable Streaming Using a Sliding Window

A few techniques for scalable video transmission over a P2P network have already been

proposed. The framework described in [78] can be classified as a “mesh-pull live video

streaming system with a T4T strategy”. The structure of the overlay network in this

case is similar to the original BitTorrent. Advantages of this approach include simple

design and robustness to sudden changes in the network, typical of these systems [79].

An important remark is that, while tree-push systems have been extensively studied in

Academia, most of practical implementations (like CoolStreaming [80] or the already-

cited PPLive [69]) rely on a mesh-pull architecture.

In the considered system [78], a source encodes a video that consists of L layers

and each of them is divided into Layer Chunks (LCs). These LCs correspond to ∆

seconds of the original sequence. They might have different sizes, depending on the layer

they belong to. If a peer wants to watch a video, it requests a list of peers currently

downloading it to some entity (whose role is similar to the BitTorrent tracker) and

establishes a connection with several of them. In this system, peers exchange information

about the chunks they own with their neighbours.

As far as the resource allocation module is concerned, the main idea is that a peer

should provide a larger portion of its upload capacity to those peers with the highest

download rates. Several receivers might be sending requests to a supplier at the same

time, while the supplier only serves one request at a time. The probability pn,k of supplier

n serving a request from a receiver k is given in Eq. (4.1):

pn,k =
In,kd

γ
n,k∑

i∈Kn

In,id
γ
n,i

, (4.1)

where Kn is the set of neighbours of n and dn,k is the current transfer rate from peer k to

n. In,k is defined as 0 if no requests from peer k are in the queue and 1 otherwise. The

denominator in Eq. (4.1) thus represents the total transfer rate to peer n from the peers

Scalable Video Adaptation to P2P Transmission 70

1 2 3 4 5 6 7 8

1 O O O
2 X X O - O
3 X - -
4 X X X X X

LC Time Index

La
ye

r
In

d
ex

Current
time

X : buffered

- : requested O : not available

Blank: available

Figure 4.5: Buffer state at a given time.

that have pending requests. Finally, γ is a correction factor. Therefore, pn,k can also be

seen as a local reputation, since the peer that uploads the largest amount of data to a

supplier has the highest probability of being served. On the other hand, it is clear that

free-riding is only tolerated if there is enough spare capacity in the system, for example

if there are no other pending requests.

On the receiver side, the scheduler uses a sliding window, which is formed by a fixed

number of LCs and video layers. Chunks request is divided into several rounds. At

the beginning of each round, the system state is characterised by a buffer, as shown in

Figure 4.5. In order to decide which LCs should be downloaded, each of them is assigned

a score. This value depends on layer index, playback deadline and rarity. For a generic

peer n, the score function for a LC can be expressed as:

Snl,t = G(l, t, λ), (4.2)

where λ represents the number of neighbours of n that currently own a specific piece

and l and t are the layer index ad the time index of LC respectively. More specifically,

this function can be defined as a linear combination of these three characteristics of a

LC:

Snl,t = w1
l

L
+ w2

t− t0
B

+ w3
λ

H
, (4.3)

Scalable Video Adaptation to P2P Transmission 71

where t0 is the current playback position, B is the window length, k is the number

of neighbours of n, w1, w2 and w3 are weight factors and L has already been defined

as the total number of layers. LCs with the highest scores are requested first. These

are LCs belonging to low quality layers, with a time index that is close to t0 and are

owned by a limited number of neighbours. An important remark is that only pieces

which are believed to be received on time are requested. This estimation is based on the

performance of a peer’s neighbours. Finally, in order to completely exploit upload and

download capacities of peers, low-priority requests are defined.

The idea of using a sliding window has been extensively applied in P2P video stream-

ing, and this solution is no exception. However, in this architecture no extra importance

is given to the base layer of the sequence, as the weight factors w1, w2 and w3 are fixed.

4.4 Proposed Approach

The block diagram of our proposed solution is shown in Figure 4.6. It highlights that our

contributions described here lie in the chunk selection mechanism, and more specifically

in the piece picking and neighbour selection policies. Our piece picking policy formulates

how the scalable layers [32] of WSVC video are prioritised. It associates different gains,

which result in different priorities, to different parts of the bit-stream, in order to allow

video playback while the sequence is being downloaded. In practice, this policy selects

the subset of the video bit-stream with the highest bit-rate that can be currently afforded

by a user. Moreover, the desired behaviour of the system is that playback should never

pause. Pauses occur when a user fails to receive the base layer of a GOP before it is

needed for decoding. This may happen even if the overall download bandwidth is high,

if these chunks are requested from slow peers. Therefore, our neighbour selection policy

is applied. It does not allow a user to request this part of the bit-stream from peers

that might fail to deliver it in time. As the diagram also shows, our technique uses the

original G2G unchoking algorithm [9] and social-based aspects are not considered here

yet.

Scalable Video Adaptation to P2P Transmission 72

G2G
Unchoking
Mechanism

Rest of P2P Network

Chunk
Buffer

User
Behaviour
Monitor

Top
Uploaders

Missing
Chunks

Download
Chunk

of
Forwarded

Chunks

Request
Chunk

Upload
Chunk

SVC Piece
Picking,

Neighbour
Selection

Peer

Slow Peers

Figure 4.6: Block diagram for the proposed approach.

4.4.1 Piece Picking Policy

This work has also been published in [12, 14, 15]. First of all, WSVC scalable video

bit-streams are split into GOPs and atoms as explained in Section 2.3.3. However, only

quality scalability is considered here, in order to limit the complexity of our approach.

Therefore, groups of atoms will form quality layers. An important remark is that atoms

can be grouped in different ways in order to create spatial or temporal layers and deciding

to exploit another type of scalability does not affect the proposed algorithm. As it will

Scalable Video Adaptation to P2P Transmission 73

be shown in the experimental evaluation in Section 4.6, it is also possible to exploit

combined scalability by choosing the right encoding parameters.

On the other hand, according to BitTorrent protocol files are split into chunks or

pieces [1]. Since there is no correlation between these two divisions, some information

is required to map GOPs and layers into pieces and vice versa. This information can

be stored inside an index file, which should be transmitted together with the video

sequence. Therefore, the first step consists of creating a new torrent that contains both

files. It is clear that the index file should have the highest priority and therefore should

be downloaded first. Once the index file is completed, it is opened and information

about offsets of different GOPs and layers is read.

For the purpose of explanation, we now assume that all BitTorrent pieces are available

from at least one peer. In other words, we assume that there are no missing pieces.

Moreover, we consider a generic playback position. At this point, it is possible to define

the following quantities and functions:

L, total number of GOPs in the sequence.

Q, total number of quality layers.

W , is a window size (in GOPs).

(t, q), represents a GOP index (t) and quality layer index (q), where (t, q) ∈
(0, ..., L)×(0, ..., Q). Each of these ordered pairs is associated to a set of BitTorrent

pieces.

tp, current playback position (GOP). Since playback has already started, tp > 0.

g(t, q), gain function. It measures the gain currently associated to BitTorrent pieces

of (t, q).

r(t, q), request function. It returns the number of BitTorrent pieces associated to

(t, q) that have never been requested.

S is the set of possible candidates ((t1, q1), . . . , (tN , qN)) which a new picked Bit-

Torrent piece belongs to.

P (S) = (p1, . . . , pk) is a function that maps a set of WSVC GOPs and layers S into

a set of BitTorrent pieces; p1, . . . , pk are sorted according to their piece id.

Scalable Video Adaptation to P2P Transmission 74

This policy uses a sliding window, which consists of W GOPs. The first GOP in the

window is the one with index tp+ 1, while the last one has index tp+W . Assuming that

L� tp +W , the following relations hold:

g(t, q) = 0

if (t ≤ tp, q ∈ (0, . . . , Q)) ∨ r(t, q) = 0, (4.4)

g(t, q) =
1

1 + q

if t ∈ (tp + 1, . . . , tp +W), q ∈ (0, . . . , Q), (4.5)

g(t, q) =
1

1 +Q+ (t− (tp +W))

if t ∈ (tp +W + 1, . . . , L), q ∈ (0, . . . , Q). (4.6)

First of all, Eq. (4.4) indicates that no pieces lying before the window will be reques-

ted, as no gain is associated to the corresponding (t, q) pair. The same holds for any

(t, q) whose pieces have already been requested. Eq. (4.5) indicates that pieces inside

the sliding window that correspond to the same quality layer also have the same gain.

Finally, Eq. (4.6) shows that pieces lying after the window have a gain that only de-

pends on the GOP they belong to. Moreover, these pieces always have a smaller gain

with respect to those inside the window. An important remark is that the gain function

in Eq. (4.5) and Eq. (4.6) has been defined in such way as it is a monotone decreasing

function and could be replaced with any other function that satisfies the same property.

Therefore, a peer requests pieces from layer i + 1 only if it has already requested

layer i completely. Similarly, a peer only requests pieces lying after the window if all

the pieces inside the window are already marked as requested. As defining priorities in

such way aims to achieve a uniform received video bit-rate among the GOPs inside the

window, this mechanism also allows to reduce fluctuations in the received video quality,

which results in smoother transitions. This offers a better subjective quality to the final

user, as indicated by the results in Chapter 3. That is, this mechanism limits the impact

of either positive or negative peaks in the download bandwidth, provided that these

variations occur over a period of time that is shorter than the duration of the sliding

Scalable Video Adaptation to P2P Transmission 75

window. Finally, as a longer window results in a longer permanence of a GOP inside

it, increasing its size makes the system less vulnerable to bandwidth fluctuations, which

results in a smoother video playback. However, this comes at the expenses of a longer

delay in case of live streaming and a longer pre-buffering time in VoD.

The piece picking rule consists of two steps:

1. Finding the best set of candidates S, which is given by S = arg max(t,q) {g(t, q)}. It

is a set of (ti, qi) that corresponds to a set of BitTorrent pieces P (S) = (p1, . . . , pk).

2. Choosing a piece from this set. At this step, the decision rule is the following.

Given S = ((t1, q1), . . . , (tN , qN)):

• If q1 = · · · = qi = · · · = qN = 0, picked piece p will be the one in P (S) with

the smallest id that has not been requested yet. These are pieces that belong

to the base layer. This rule gives a higher priority to the base layer of GOPs

according to their distance from the current playback position, since the closest

ones are the most urgently required for avoiding pauses, as we will see.

• Otherwise, the rarest piece in P (S) that has not been already requested will

be picked. This is the standard BitTorrent picking policy applied to a smaller

set.

The window shifts every ∆GOP seconds, where ∆GOP represents the duration of a

GOP. The only exception is given by the first shift, which is performed after the pre-

buffering, which lasts W · ∆GOP seconds. Pre-buffering only starts when the index

file has been received. Every time the window shifts, two operations are made. First,

downloaded pieces are checked, in order to evaluate which layers have been completely

downloaded. Second, all outstanding requests regarding pieces of a GOP that lie before

the window are cancelled. An important remark is that the window only shifts if at

least the base layer has been received, otherwise the system will auto-pause. As far

as missing pieces are concerned, they are treated as chunks that have already been

requested. However, this only happens during the piece picking phase. If a missing piece

belongs to the base layer, the system is paused until it is received correctly. Otherwise,

the available chunks will be extracted and decoded.

Figure 4.7 shows the behaviour of the system with W = 3. An early stage of the

pre-buffering phase is shown in Figure 4.7a. The peer is downloading pieces from the

Scalable Video Adaptation to P2P Transmission 76

Figure 4.7: Sliding window for scalable video bit-stream a) Pre-buffering phase starts, b)
Pre-buffering phase ends, c) The window shifts after GOP 0, d) The window
shifts after GOP 1.

base layer according to their piece id, while in Figure 4.7b the first two layers have

been downloaded and pieces are being picked from the enhancement layer 2 according

to a rarest-first policy. In Figure 4.7c, the window has shifted. As not all the pieces

of enhancement layer 2 of GOP 0 have been received, this layer and higher layers are

discarded. In this phase, pieces from the base layer and the enhancement layer 1 of

GOP 3 have a higher priority with respect to enhancement layer 2 of GOP 1 and 2. In

Figure 4.7d all the GOPs have the same number of complete layers and pieces are picked

from enhancement layer 3.

An alternative approach which exploits FGS of WSVC could use only two layers

(base and enhancement). The base layer could correspond to a video which has the

minimum acceptable quality according to QoE-related considerations. On the other

hand, the algorithm could dynamically set a target received video bit-rate depending on

Scalable Video Adaptation to P2P Transmission 77

the current network conditions and request all the chunks belonging to this enhancement

layer according to a rarest-first policy. This would increase the chance of downloading

data that cannot be decoded – due to the hierarchical structure of WSVC bit-stream –

but also the probability that the set of chunks different peers own is more diverse, which

is one of the keys to efficient resource allocation.

An important remark is that this solution presents some analogies with [78], illus-

trated in Section 4.3.4. However, a WSVC video is used in our work. Moreover, the

correlation between LCs and BitTorrent chunks is not considered and the base layer is

not downloaded sequentially. Another difference is the neighbour selection policy, which

is illustrated in the next section.

4.4.2 Neighbour Selection Policy

It is extremely important that at least the base layer of each GOP is received before

the window shifts. Occasionally, slow pieces in the swarm might delay the receiving of

a BitTorrent piece, even if the overall download bandwidth is high. This problem is

critical if the requested piece belongs to the base layer, as it might force the playback

to pause. Therefore, these pieces should be requested from good neighbours. Good

neighbours are those peers that own the piece with the highest download rates, which

alone could provide the current peer with a transfer rate that is above a certain threshold

and this set is updated at every base layer chunk request, as it depends on the set of

peers that own that chunk. During the pre-buffering phase, any piece can be requested

from any peer. However, every time the window shifts, the current download rates of

all the neighbours are evaluated and the peers are sorted in descending order.

Let us suppose that p is a piece belonging to the base layer that a peer wants to

download and N1, . . . , Nk are the peer’s neighbours that are currently uploading to (or

unchoking [1]) it that own this piece. Since neighbours are sorted, R(N1) > · · · >
R(Ni) > · · · > R(Nk), where R(Ni) indicates the current download rate from neighbour

i and k is the number of neighbours. The threshold value is calculated as:

RT =
n0 · l(p)
W ·∆GOP

, (4.7)

Scalable Video Adaptation to P2P Transmission 78

Figure 4.8: Flowchart diagram of our proposed neighbour selection policy.

where n0 represents the number of pieces in the base layer that are currently inside the

window, l(p) is the size of the BitTorrent piece for this file and the other quantities have

been already defined. In other words, RT is the minimum rate that allows these pieces

from the base layer to be received in time. Assuming that

T ∗=̂ min
T

T∑
i=1

R(Ni) > RT , T ≤ k. (4.8)

T ∗ is the minimum number of neighbours which own this piece, whose sum of download

rates exceeds the threshold and N1, . . . , NT ∗ is the set of neighbours from which base

layer pieces can be requested. A flowchart diagram explaining this algorithm is shown

in Figure 4.8.

An important remark is that, as far as BitTorrent is concerned, it has been proven

that peers with similar upload bandwidths tend to connect with each other [81], and

the P2P network becomes clusterised; that is, high bandwidth hosts are matched with

Scalable Video Adaptation to P2P Transmission 79

other high bandwidth hosts, and low bandwidth hosts are matched together. This is

also known as stratification. It is out of the scope of this thesis to prove whether this

phenomenon also appears when G2G is applied, like in this case, or for different resource

allocation algorithms, however, our neighbour selection policy can in principle be used

in BitTorrent when a peer’s good neighbours have not been discovered yet.

4.5 Implementation

In this section we briefly describe how we created the tools to test our algorithms.

The starting point was Tribler BitTorrent client, which has already been described in

Section 4.3.3. This client has been written using Python [82] programming language.

The part of the program that handles Video on Demand and Live Streaming consists of

several modules, as shown in Figure 4.9. The main components in this section are:

• VideoStatus: This module handles information about the current video sequence

and keeps track of the playback position. It has knowledge of the position of

the sequence inside the torrent and also implements the window used in the G2G

algorithm.

• PiecePickerVOD: Inside the source code, it is implemented as PiecePickerStream-

ing. It implements the piece picking policy of G2G, which means that it has a

knowledge of the current playback position and the download window implemen-

ted in VideoStatus. Therefore, it avoids requesting obsolete pieces. This module is

derived from PiecePicker, which keeps track of all the pieces owned by all the peers

in the swarm and sorts them according to their rarity.

• MovieOnDemandTransport: This module was implemented as VideoOn De-

mandTransport in the source code. It provides an interface between BitTorrent

and a video player. It can start the playback, pause it, resume it and it can push

available data into the player buffer. This counts as playing the video, as far as

Tribler is concerned, and in practice consists in incrementing the playback position.

• StorageWrapper: It handles the received data and has methods that allow to

read it.

Scalable Video Adaptation to P2P Transmission 80

Session

BT1
Download

Single
Download

Download

MovieOn
Demand
Transport

*Stream
Wrapper

Video
Status

LiveSource
Authenticator

Storage
Wrapper

PiecePicker
VoD

Video
Source

TorrentShare
X

GUI
UserCallBack
Handler

Video
Player

Embedded
Player

VLC
Library

Video
Server

External
Player

Screen

Camera

Disk

TCP
6880

Video on Demand / Live

Figure 4.9: Tribler Video Architecture.

• VideoSource and LiveSourceAuth: These modules are used for live streaming.

In this case we cannot create a torrent that contains a hash for all the pieces, since

we do not have all the data when we start broadcasting. VideoSource handles

the live source and injects data into the network, while LiveSourceAuth is used to

create a hash of every single piece and check the integrity of the received data.

Some of these modules have been modified, while a few others have been created.

Figure 4.10 shows the main changes that were introduced. Implementation of the pro-

posed algorithms and their integration with the rest of the system required over 1000

lines of code written in Python [82]. The new piece picking policy has been implemen-

ted in PiecePickerStreaming. It has a method that selects the next piece to pick, which

simply implements the algorithm described in Section 4.4.1. It also contains the neigh-

bour selection policy. This method is called every time we are trying to request a piece

from any of our neighbours. If we have selected a piece that belongs to the base layer,

Scalable Video Adaptation to P2P Transmission 81

PiecePicker
Streaming

VideoStatus

VideoOnDemand
Transport

ScalableVideo
Interface

Increment
Playback
Position

Figure 4.10: New modules used for scalable video streaming.

we check if the current peer belongs to the “good peers” set. If it does, we go on with

the request, otherwise we put this piece in an “off-limits” list and we request another

piece. This list is required because some pieces might belong to the base layer and one or

more other layers. Extraction is performed inside VideoOnDemandTransport, while we

defined a new module, IncrementPlaybackPosition, which is responsible for the window

shifts. The interface that makes Tribler “codec-aware” is also implemented in a new

module, ScalableVideoInterface.

4.6 Results

4.6.1 Dataset Description

For our experiments, first of all four uncompressed video sequences have been generated.

All of them consist of the repetition of a ten-second YUV video sequence, which can

be “City”, “Crew”, “Soccer” or “InToTree”. These are commonly used sequences in

testing video compression and they cover different types of content in terms of spatial

and temporal activity. All the YUV sequences that were processed by the encoder had

CIF frame resolution (352× 288 pixels) and a frame rate of 30 fps. The duration of all

sequences was 300 seconds.

Original sequences are shown in Figure 4.11. These have been subsequently encoded

with the parameters shown in Table 4.1, where extraction points have been specified.

An important remark is that compressed videos have multiple spatial and temporal

Scalable Video Adaptation to P2P Transmission 82

YUV Sequence GOP Size Extraction Points [bps]

City 128 frames
CIF, 30Hz

QCIF, 15Hz

384k, 448k, 512k, 640k, 768k

96k, 112k, 128k, 160k, 192k

Crew 64 frames CIF, 30Hz

192k, 224k, 256k, 320k, 384k,

480k, 576k, 672k, 768k, 1024k,

1280k, 1536k

Soccer 64 frames
CIF, 30Hz

QCIF, 15Hz

384k, 448k, 512k, 640k, 768k

96k, 112k, 128k, 160k, 192k

InToTree 64 frames CIF, 30Hz
192k, 256k, 320k, 480k, 576k,

640k, 768k

Table 4.1: Encoding parameters and extraction points.

resolution extraction points, which means that low quality layers only contain a version

of the video with lower frame size and frame rate, and therefore we are de facto only

exploiting one type of scalability. This can be also seen in Table 4.1. On the other

hand, in the encoded version of Crew and InToTree only quality can be degraded. The

specified size for BitTorrent pieces is 32 kB.

As far as the P2P network used for testing is concerned, it consists of three peers.

Two of them are seeders and one is a leecher. Depending on the experiment, they are

allowed to leave and re-join the network or not and, moreover, different limits on the

upload bandwidth of each peer are set. More details about specific upload capacities can

be found in Section 4.6.2 and Section 4.6.3, where the individual experimental set-ups

are described.

4.6.2 Comparison Between a Non-scalable and a Scalable

Codec

In this section, we will compare the performance achieved by WSVC and a non-scalable

video codec. The behaviour of a non-scalable codec is however simulated by handling

a scalable sequence. In order to obtain a non-scalable video, the window described in

Section 4.4.1 only shifts if all the quality layers have been received. The sequence selected

for this experiment is Crew. The sliding window consists of 6 GOPs, for a total duration

Scalable Video Adaptation to P2P Transmission 83

(a) City (b) Crew

(c) Soccer (d) InToTree

Figure 4.11: Original City, Crew, Soccer and InToTree sequences.

of 12.8 s. As far as network configuration is concerned, as we previously mentioned there

are two seeders (Peer 1 and Peer 2) and one leecher (Peer 3). Upload bandwidth limit

has been set to 25 kB/s and 50 kB/s respectively, for a total of 600 kbps. Therefore,

this bandwidth is not enough to download the full-quality video, which has a bit-rate

of 1536kbps. Moreover, Peer 1 periodically disconnects and reconnects to the network,

which causes fluctuations in the download bandwidth of Peer 3.

Figure 4.12 and Figure 4.13 show the download rate and the received video bit-rate in

this case. The received video bit-rate here needs to be intended as the playback bit-rate

and a received rate of 0 kbps means that the system is being paused due to buffering.

Some extracted video frames for the scalable sequence are reported in Figure 4.14 (b)-

Scalable Video Adaptation to P2P Transmission 84

0

200

400

600

800

1000

1200

1400

1600

1800

0 100 200 300 400 500 600 700 800 900 1000

D
o

w
n

lo
ad

 R
at

e
 [

kb
p

s]

Time [s]

Crew - Non-scalable Sequence

Video Download Rate Received Video Bit-rate

Figure 4.12: Received video bit-rate for Crew, non-scalable case.

0

200

400

600

800

1000

1200

1400

1600

1800

2000

0 50 100 150 200 250 300 350

D
o

w
n

lo
ad

 R
at

e
 [

kb
p

s]

Time [s]

Crew - Scalable Sequence

Video Download Rate Received Video Bit-rate

Figure 4.13: Received video bit-rate for Crew, scalable case.

(d), while the original one is shown in (a). The graphs show that in the non-scalable case,

since the overall download bandwidth is low, the system needs to pause several times

during the playback. On the other hand, when using a scalable video codec, the received

video quality follows the download rate, as the variations occur over a period of time

(about 30 s) that is longer than the sliding window (12.8 s). However, variations do not

occur immediately, but after a while. It is important to note that that the received video

bit-rate is in general a little lower than the download bandwidth. One of the reasons is

Scalable Video Adaptation to P2P Transmission 85

(a) Original Frame (b) Frame 8012, Video Bit-rate = 256 kbps
PSNR = 34.29 dB

(c) Frame 2312, Video Bit-rate = 576 kbps
PSNR = 36.40 dB

(d) Frame 8912, Video Bit-rate = 1024 kbps,
PSNR = 38.78 dB

Figure 4.14: Example of decoded frames with different qualities.

that layers may be split on different BitTorrent pieces and BitTorrent pieces can contain

more than one layer. This problem could be solved by exploiting FGS of WSVC. In this

example, we can observe that the received video quality increases towards the end of the

sequence. This happens because the window shrinks when there are no GOPs left to

replace those that have already been decoded. As far as decoded frames are concerned,

in the scalable case a received video bit-rate of 576 kbps still leads to acceptable results

(Figure 4.14 (c)) . However, when it drops to 256 kbps, or even less, quality is very low

(Figure 4.14 (b)). A possible remark is that this comparison might not look fair, as a

non-scalable video sequence with a lower bit-rate could allow a user to receive the video

Scalable Video Adaptation to P2P Transmission 86

in time without pausing. However, this experiment models all those cases in which the

video bit-rate is fixed and the download bandwidth is either temporarily or permanently

too low to sustain this video bit-rate and what we would like to highlight with this test

is the additional flexibility deriving from the SVC approach.

4.6.3 Effects of Neighbour Selection Policy

In this set of experiments, the effect of the neighbour selection algorithm is evaluated.

The impact of this policy is more evident if at least one slow peer is in the swarm, as it

can delay the completion of a piece, which could belong for example to the base layer.

The window size chosen for these tests is tW = 8.53 s. As in the previous tests, the

network consists of two seeders and one leecher, however, there are one “fast” and one

“slow” peer, whose upload limit has been set to 40 kB/s and 3 kB/s respectively. The

latter is the minimum acceptable value that can be set in Tribler. The total upload

bandwidth is therefore 344 kbps. Tests have been performed on City, Crew, Soccer and

InToTree sequences both when neighbour selection policy was active and when it was

not.

Results are shown in Figure 4.15 to 4.22 and in Table 4.2. As far as City and Crew

are concerned, playback is paused only a few times when neighbour selection is not

active, while Soccer and InToTree perform very badly. On the other hand, when this

policy is active, playback never stops. As far as the average video bit-rate is concerned,

City and Crew show very similar performances with and without neighbour selection,

while Soccer and InToTree show a higher received video bit-rate, since the videos have

been downloaded for a much longer time.

According to these results, this policy actually helps in delivering the base layer in

time. However, most of the graphs show drops in received bit-rate, especially Figure 4.16

and Figure 4.20. These suggest that, even if our neighbour selection is active, pieces

from low quality layers might not be received on time, since protection is only given

to the base layer. Therefore, in order to achieve a smoother playback quality, a more

complex policy might be required.

Scalable Video Adaptation to P2P Transmission 87

0

200

400

600

800

1000

1200

1400

1600

0 50 100 150 200 250 300 350

D
o

w
n

lo
ad

 R
at

e
 [

kb
p

s]

Time [s]

City - No Neighbour Selection

Video Download Rate Received Video Bit-rate

Figure 4.15: Received video bit-rate for City. Neighbour selection is not active.

0

200

400

600

800

1000

1200

0 50 100 150 200 250 300 350

D
o

w
n

lo
ad

 R
at

e
 [

kb
p

s]

Time [s]

City - Neighbour Selection

Video Download Rate Received Video Bit-rate

Figure 4.16: Received video bit-rate for City. Neighbour selection is active.

Scalable Video Adaptation to P2P Transmission 88

0

200

400

600

800

1000

1200

1400

0 50 100 150 200 250 300 350 400

D
o

w
n

lo
ad

 R
at

e
 [

kb
p

s]

Time [s]

Crew - No Neighbour Selection

Video Download Rate Received Video Bit-rate

Figure 4.17: Received video bit-rate for Crew. Neighbour selection is not active.

0

200

400

600

800

1000

1200

1400

0 50 100 150 200 250 300 350

D
o

w
n

lo
ad

 R
at

e
 [

kb
p

s]

Time [s]

Crew - Neighbour Selection

Video Download Rate Received Video Bit-rate

Figure 4.18: Received video bit-rate for Crew. Neighbour selection is active.

Scalable Video Adaptation to P2P Transmission 89

0

100

200

300

400

500

600

700

800

900

1000

0 50 100 150 200 250 300 350 400 450 500

 D
o

w
n

lo
ad

 R
at

e
 [

kb
p

s]

Time [s]

Soccer - No Neighbour Selection

Video Download Rate Received Video Bit-rate

Figure 4.19: Received video bit-rate for Soccer. Neighbour selection is not active.

0

200

400

600

800

1000

1200

0 50 100 150 200 250 300 350

D
o

w
n

lo
ad

 R
at

e
 [

kb
p

s]

Time [s]

Soccer - Neighbour Selection

Video Download Rate Received Video Bit-rate

Figure 4.20: Received video bit-rate for Soccer. Neighbour selection is active.

Scalable Video Adaptation to P2P Transmission 90

0

200

400

600

800

1000

1200

1400

0 100 200 300 400 500

D
o

w
n

lo
ad

 R
at

e
 [

kb
p

s]

Time [s]

InToTree - No Neighbour Selection

Video Download Rate Received Video Bit-rate

Figure 4.21: Received video bit-rate for InToTree. Neighbour selection is not active.

0

200

400

600

800

1000

1200

1400

0 50 100 150 200 250 300 350

D
o

w
n

lo
ad

 R
at

e
 [

kb
p

s]

Time [s]

InToTree - Neighbour Selection
Video Download Rate Received Video Bit-rate

Figure 4.22: Received video bit-rate for InToTree. Neighbour selection is active.

Scalable Video Adaptation to P2P Transmission 91

Another important remark is that the testing environment used for these experiments

is too limited. However, as performing real tests on a much larger-scale environment

might be very expensive, the most reasonable option is to use a simulation tool.

Sequence Average bit-rate Autopauses (duration)

City w/o N.S. 213 kbps 2 (8.53 s)

City w/ N.S. 215 kbps 0

Crew w/o N.S. 278 kbps 6 (12.8 s)

Crew w/ N.S. 264 kbps 0

Soccer w/o N.S. 345 kbps 64 (136.5 s)

Soccer w/ N.S. 204 kbps 0

InToTree w/o N.S. 435 kbps 82 (174.7 s)

InToTree w/ N.S. 227 kbps 0

Table 4.2: Average received bit-rates with and without neighbour selection policy.

4.7 Conclusion

First of all, in Figure 4.1 we showed a general diagram which can be taken as a reference

for the technique explained in this chapter and in the following ones. Moreover, we

presented two algorithms that allowed efficient streaming of scalable video sequences

over a P2P network. Experimental evaluation showed that our piece picking policy

allowed adaptation of the received video bit-rate to the available resources through

accurate chunk selection. Due to the hierarchical fashion of quality layer priorities, this

policy also aimed at providing a received video quality that was as constant as possible,

in accordance to the conclusions that were drawn from the subjective video analysis in

Chapter 3. Moreover, our neighbour selection policy significantly reduced or eliminated

playback pauses by only requesting base layer pieces to reliable peers. The strongest

aspect of this technique is its compatibility with the original BitTorrent. That is, this

solution could be easily adopted on a large scale and this would be transparent to the

other peers in the swarm, provided that in the future more sequences will be encoded

in WSVC format. Alternatively, it would be straightforward to adapt this solution to

the standard H.264/SVC. On the other hand, these algorithms do not take network

Scalable Video Adaptation to P2P Transmission 92

resources optimisation into account, for example in terms of maximising throughput.

Moreover, while G2G algorithm is suitable for Video on Demand, as it assumes that

peers have different playback position, a T4T-like unchoking mechanism is necessary in

case of live streaming. However, in this context peers might not be able to reciprocate

resources immediately, therefore a different solution is needed. In the next chapter, we

will propose a different approach specifically tackling this problem.

Chapter 5

Joint Free-riding Detection and

Resource Optimisation

This chapter describes a credit-based framework for scalable video transmission over

a P2P network, where the goal is to cut out misbehaving users and optimise resource

allocation at the same time. This is an evolution of our previous approach, described

in Chapter 4. This model is based on direct resource reciprocation, however, time

constraints are more relaxed with respect to BitTorrent. Therefore, we lose compatibility

with the original protocol. For this contribution, we are adopting the following approach:

first of all we consider a real P2P video transmission case and try to identify how this

problem – too difficult to solve analytically – can be simplified introducing constraints,

even if unrealistic. This leads to a much easier problem, for which we propose a solution.

Some of the considerations that are valid for the simplified case are useful when we try

to remove some of these constraints and our proposed approach itself is based on some

of these hypotheses. This chapter is organised as follows: Section 5.1 introduces the

problem; Section 5.2 describes a very simple case study, which will be useful to deal with a

more complex problem; Section 5.3 discusses the relevant related techniques; Section 5.4

illustrates the proposed approach; Section 5.5 briefly discusses how the experimental

evaluation framework has been implemented; Section 5.6 presents the simulation results;

and finally, Section 5.7 concludes the chapter by analysing the pros and cons of this

approach.

93

Joint Free-riding Detection and Resource Optimisation 94

Figure 5.1: A P2P TV scenario.

5.1 Problem Description

In our previous approach, we did not consider the problem of resource reciprocation,

fairness and optimal resource allocation. In order to achieve a P2P system for scalable

video streaming that addresses these aspects, our research objectives are now to:

• Propose an algorithm that identifies free-riders and isolates them from the rest of

the system, to reward well-behaving users.

• At the same time, optimise resource allocation. This is to be intended as maximising

the usage of the upload capacities of all the peers in the network (that intend to

cooperate).

First of all, we illustrate a realistic case and analyse its related issues, then we

introduce some hypotheses that simplify the system and study a reduced version of the

problem.

In a real scenario, we can suppose to transmit a scalable video sequence over a

BitTorrent-like P2P network. The context is now real-time streaming. The video is

composed of two quality layers, corresponding to different bit-rates. The base layer has

a bit-rate of 256 kbps, while this layer plus the (only) enhancement layer have a bit-rate

of 512 kbps. Since the size of the P2P chunk is 32 kB and the source encodes one GOP

every two seconds, in this time interval two base layer pieces and two enhancement layer

Joint Free-riding Detection and Resource Optimisation 95

pieces will be generated. The network consists of N = 100 peers, which have an upload

bandwidth of 64 kB/s plus two sources, used to inject the content into the network.

One of them shares the base layer of the sequence only, while the other uploads both

layers to the remaining peers. These two sources have an upload capacity of 256 kB/s

and 128 kB/s respectively, which is not enough to upload the sequence to all the peers.

This can be however achieved using the resources of the other users of the network.

Figure 5.1 illustrates this scenario with 10 peers. If we want to solve the problem of

optimal resource allocation in this scenario, it is not a simple tasks, as there are several

degrees of freedom: what is the strategy the source nodes should follow? how many

users should they upload data to at the same time? what is the best strategy the other

peers should adopt? In order to find a solution to these issues, we will first study a

simplified version of this scenario.

5.2 A Simplified Case Study

Given the scenario introduced in the previous section, it is possible to identify the

following hypotheses, which simplify the problem we are trying to solve. Most of them

are unrealistic and have very restrictive constraints, however more degrees of freedom

will be added later on:

• There is only one source injecting content into the network.

• There are no constraints on the download capacity of the peers.

• All the peers have the same upload capacity.

• The video is not scalable.

• All the peers know the current state of the network, e.g. who their neighbours are

what are the pieces owned by them.

• The network is static. No peers are allowed to join or leave the network.

• There are no node failures and the network latency is always zero.

• All the peers wish to cooperate, e.g. there are no free-riders or users that inject

polluted content into the network.

Joint Free-riding Detection and Resource Optimisation 96

• The nodes are strongly connected; that is, there is a path from every node to every

other node in the network.

The aim of each individual peer is to receive each GOP of the sequence within a

certain time. On the other hand, the objective of the service provider is that all the

peers receive the video sequence in time and their playback position is approximately

the same. In other words, peers should be synchronised.

5.2.1 An Analytical Solution

Under these circumstances, we would like to find the best resources allocation profile.

This is the profile that allows all the peers to receive a certain GOP within the minimum

possible time. According to the original BitTorrent protocol, a peer can start uploading

a piece only after it has been completed downloaded (and verified). In other words, a

piece is the minimum unit of content that can be shared (even if made of sub-pieces [1]).

In order to use the resources of a peer as soon as possible, this peer needs to have

something to share as soon as possible. If we consider a sequence that consists of only

one GOP, consisting of only one piece, intuitively the allocation that allows it to be

received in the shortest time by all peers is the one in which all the peers unchoke1 the

same user. In fact, when only the source owns the piece, if it only unchokes one peer,

this peer completes the download of the piece in the shortest possible time. When this

happens, both peers should unchoke a new peer (the same) and so on. Since we assumed

that the source and the peers have the same upload capacity, if we consider that the

time required to transfer a piece from the source to the first unchoked peer is τ , it can

be proven (for example by induction) that the time δN required to transfer this GOP to

N peers is given by:

δN = τ +
τ

2
+ · · ·+ τ

N
= τ

N∑
n=1

1

n
. (5.1)

For τ = 1, this is the sum of the first N terms of the harmonic series [83]. Because of

the properties of this series, if N →∞, then δN →∞. Therefore, if we set a maximum

acceptable threshold for the playback delay, there is a maximum number of users that

1We remind that, according to BitTorrent jargon, unchoking means uploading data to a certain user.

Joint Free-riding Detection and Resource Optimisation 97

can be part of the system. This happens even in this unrealistic scenario where there

is no limit on the download bandwidth and we do not even consider which parts of

the piece are downloaded from which peer. If the source generates a GOP at regular

intervals, each peer should forward the last piece they received. Similarly, all the peers

that are uploading the same piece should unchoke the same peer. This way, all the

peers are kept constantly busy and new pieces are made available for upload as quickly

as possible. In this case, the number of peers that are currently uploading a piece is

limited and it depends on the interval between two GOPs. Therefore, also in this case

we have a maximum number of users that can take advantage of the service within a

(set) acceptable delay.

It is not realistic to consider GOPs that are made by only one piece. We will now

consider the propagation of a one-GOP sequence that is made of M pieces. In this

case, the problem of allocation becomes much more complicated. First, we will show

an example where M = 2, then we will consider more generic values for it. Let us now

suppose that the original GOP is divided into two pieces. The source now unchokes two

peers at the same time, uploading two different pieces. When the download is complete,

the scenario becomes similar to the previous example. However, in the next phase, peers

owning different pieces should unchoke different peers. Moreover, they should unchoke

peers that do not already own the other piece. This is because this peer’s resources

would be already fully exploited and the resources of another peer would not be used.

When all the peers own something to share, they need to upload it to other peers. The

strategy used at this point is irrelevant, as regardless of the number of peers that a peer

unchokes or the number of the peers that are transmitting the same piece to another

user, the time required to upload a piece to all the other users is the same. Therefore,

in this case, we have an “initialisation” phase, during which all peers need to obtain

something to share and another phase in which all peers exchange data. Moreover, the

duration of the second phase, under these circumstances, does not depend on the number

of peers in the network. An example with N = 10 shows that δN = 2.9289 τ if M = 1

and δN = 2.2873 τ if M = 2. Therefore, dividing a GOP into smaller parts reduces the

maximum delay.

If we now consider a network with N peers and M = N , we can observe that the

source transmits 1/N of the GOP to N peers in τ seconds. All the peers now have

something to share and they can upload it to the other users. Even if we do not consider

Joint Free-riding Detection and Resource Optimisation 98

the source, which may be transmitting the following GOP, the time required to upload

this part of the GOP to the others is ((N − 1)/N)τ < τ . Therefore, this system is

virtually scalable and it can be used to transmit videos if the interval between two

GOPs is greater than τ .

In the original BitTorrent protocol, the number of chunks per GOP depends on

the video bit-rate, as the piece length is fixed. In realistic scenarios, we have that

M � N . Assuming that N/M is an integer value for simplicity, we consider two possible

initialisations:

• The source unchokes all the peers at the same time: in this case, the initialisa-

tion phase has the duration expressed by Eq. (5.2), while the exchange phase is

calculated as tex = ((M − 1)/M) · τ .

tinit = τ
N

M
. (5.2)

• The source unchokes one peer per piece and all the peers that own the same piece

upload it to the same user. In this case, the initialisation time is calculated in

Eq. (5.3), while the exchange phase has the same duration as before.

tinit = τ

1 +

(N/M)−1∑
n=1

1

1 +Mn

 . (5.3)

In both cases, the initialisation phase duration depends on the number of peers in the

network, while the second one does not. However, it depends on the overall upload

capacity of the peers (as it would have an influence on τ). Table 5.1 shows different

results for the initialisation time as computed by Eq. (5.3), depending on the number of

chunks and peers. It is clear that dividing a GOP into a larger number of parts leads,

theoretically, to better performances.

These scenarios are not realistic, as many of the constraints they are based on are

not. However, some of the ideas that emerged from them could still be valid in more

generic cases. The aim of this study is not to find a comprehensive solution to the

Joint Free-riding Detection and Resource Optimisation 99

M = 3 M = 9 M = 27 M = 81 M = 243

N = 3 τ — — — —

N = 9 1.3928 τ τ — — —

N = 27 1.7703 τ 1.1526 τ τ — —

N = 81 2.1405 τ 1.2846 τ 1.0538 τ τ —

N = 243 2.5081 τ 1.4099 τ 1.0986 τ 1.0183 τ τ

Table 5.1: Initialisation times for different values of M and N .

considered problem. It should rather raise questions and suggest ideas that will be used

both in our proposed approach and in our future work.

For example, one key aspect is that in order to keep upload channels busy, peers

should always have content other users are interested in. In particular, different users

need to have different content. In order for this to happen, it is reasonable to upload

data to the most deprived peer, as we increase the likelihood that this peer owns content

that is interesting for other users. However, this consideration is not valid when there

are free-riders in the network. In fact, in order to achieve fairness, the amount of data

each user receives should roughly correspond to the amount of data it uploads. These

two aspects are not related, and this is an issue we will consider in our technique.

5.2.2 Additional Problems

Let us now analyse the constraints we previously introduced. Some of them will be

removed when proposing our approaches, whilst the others might provide ideas for future

work, as discussed in Chapter 7.

There is more than one source injecting content into the network If we con-

sider a scalable video, they might have different versions of the sequence. These sources

should work in parallel and be coordinated by some authority.

There are constraints on the maximum download bandwidth of the peers

This factor is not normally considered, as it is not the bottleneck of P2P systems.

Joint Free-riding Detection and Resource Optimisation 100

However, this implies that there should be a limit on the number of peers unchoking

another one, or peers could be allowed to unchoke more than one peer at a time (to

reduce the transfer rates towards them).

Peers have different upload capacities This aspect invalidates the nice symmetry

and synchronisation properties that we observed in the simple case. First, we could

consider a discrete set of upload capacities, then we could allow this parameter to be

completely random.

The video is scalable Dividing GOPs into pieces of the same length might not be

a good idea. Moreover, this strict rule was the main reason that pushed us to exploit

only one type of scalability in our work so far. Moreover, scalability could be also used

to “synchronise” peers with different upload or download capacities.

Peers do not know the current state of the network Peers in general have a

very limited knowledge of the network. Every decision needs to be based on this. Some

concepts like friendship or reputation have been already introduced in other systems,

but they can be extended.

Peers are allowed to join or leave the network The system should adapt to these

changes and ideally this problem should be transparent to the other users.

The network is unreliable Original BitTorrent uses TCP. However, the User Da-

tagram Protocol (UDP) has been used in P2P systems. Moreover, peers might have

different response latencies.

There are free-riders and malicious peers Not all the users wish to cooperate.

Another issue is that it is sometimes difficult to distinguish between a peer with a bad

connection and a free-rider. Credit-based models usually see P2P networks as markets

and define rules that make systems resilient with respect to these attacks. Improvements

might be also given by applying game theory.

Joint Free-riding Detection and Resource Optimisation 101

Peers need to establish a connection with a limited number of users Creating

the overlay network can be an issue. Original BitTorrent is based on centralised trackers,

while distributed ones already exist. The creation of such network could be based on

friendship relationships. Properties of these networks, like topology, should be taken

into account.

5.3 Related Work

Before proceeding to the description of our proposed approach, we are going to present

a few related techniques. They are divided into two groups. First, we are going to ana-

lyse some frameworks for resource reciprocation in P2P systems, with a particular focus

on those that are specifically designed for video transmission, either scalable or non-

scalable. An important remark is that, in principle, systems in the latter category could

be extended to support scalable video sequences by designing a chunk selection mech-

anism which is aware of the codec characteristics. Second, we will consider techniques

that optimise resource utilisation in P2P networks.

5.3.1 A Simple File-sharing Model

In [84], Buragohain et al. proposed a game theoretic framework for incentives provision

in a P2P network. This study was performed in 2003 and therefore it is as old as the

original BitTorrent protocol. Such a system is modelled as a non-cooperative game, as

users compete for shared resources and can decide not to give any contribution. The

aim of each player is to maximise their own payoff or utility function, while their level

of contribution is the strategy they adopt. The authors focus on the concept of Nash

Equilibrium [8]; that is, they analyse those cases in which players cannot increase their

utility by unilaterally changing their strategy.

The set of players is made of N peers P1, . . . , PN and the utility function associated

to peer Pi is Ui. Finally, the contribution given by the ith peer is denoted by Di. This

quantity is a continuous variable and can correspond, for example, to a certain amount

of data shared in a fixed period of time and can be also described in terms of costs

and therefore money, if multiplied by a cost factor ci. This contribution can be also

Joint Free-riding Detection and Resource Optimisation 102

expressed using a dimensionless quantity defined as

di ≡
Di

D0

, (5.4)

where D0 is a fixed measure of contribution. The incentive mechanism will aim to ensure

that each peer contributes at least D0 to the system.

Another important feature of this system is the use of a benefit matrix B. This is a

N ×N matrix, where Bij is the value of the contribution peer Pi made to Pj and it can

be also measured in actual money. In general, Bij ≥ 0 and Bii = 0 ∀i. The following

dimensionless parameters are also introduced:

bij =
Bij

ci
, bi =

∑
j

bij, bav =
1

N

∑
i

bi. (5.5)

In these equations, bi is the total benefit that peer i can obtain from the other users of

the network and bav is the average benefit for all the peers in the system.

The basic idea behind this model is that if a contribution made by a peer is small, the

benefit it gains will also be small. In practice, a peer Pj accepts a request from Pi with

a probability p(di) and rejects it with probability 1 − p(di). This probability function

should be monotonically increasing, in order to satisfy the properties previously stated.

The function used in [84] is defined as follows:

p(d) =
dα

1 + dα
, α > 0. (5.6)

It is easy to observe that p(0) = 0 and p(d) → 1 for large values of d. For large values

of α, this function has a steep step. Therefore, there exists a threshold under which a

peer has a high probability of rejection. An important consideration is that acceptance

or rejection only depends on the total contribution to the system.

Considering the quantities that have been previously defined, it is possible to define

the following utility function ui for each peer Pi

ui = −di + p(di)
∑
j

bijdij, bii ≡ 0. (5.7)

Joint Free-riding Detection and Resource Optimisation 103

The first term here indicates that there is a cost associated to joining the system (di),

which linearly increases with respect to the data contributed by a user i. On the other

hand, the benefit given by joining the system depends on how much the other users are

willing to cooperate (dj). It is possible to prove that neither di = 0 nor di → ∞ are

optimal strategies.

As far as the two-player game is concerned, Buragohain shows that there exist two

Nash Equilibria [8] if the benefit b given by joining the network is above a certain

threshold, which depends on the chosen probability function p(d). One of this equilibria

denotes a high contribution from both peers and is indicated by dhi, while the other

corresponds to a smaller amount of contributions by the users and is denoted by dlo.

Experimental results show that dhi is a stable Nash Equilibrium, while dlo is unstable.

Therefore, depending on the initial contribution values chosen by the peers they will both

converge to the desirable strategy or leave the system empty-handed. These concepts

can be extended to the N-player game.

The solution proposed in [84] is important because it shows that in such a framework

there exists a threshold in the benefit received by users under which it is not convenient

to join the system. On the other hand, a possible limitation is that only pure strategies

are considered here, while no mixed strategies are allowed. Moreover, given the definition

of probability function p, it appears the single decisions to accept or refuse requests from

other peers depend on their total contribution to the system, rather than the benefit

directly obtained from them.

5.3.2 Live Multimedia Streaming in a P2P Social Network

The solution proposed in [85] aims at designing incentive mechanisms in the specific

context of live video streaming. In this model, the reward depends not only on the

availability of data, but also on the quality of the received video. Another characteristic

of such a system is the presence of very strict delay constraints, as already mentioned

for other BitTorrent-based video streaming systems. Moreover, the P2P network itself

is modelled as a social network, where users can cheat to improve their payoff or tamper

with the shared data. Social relations among peers (e.g. friendship) are however not

considered.

Joint Free-riding Detection and Resource Optimisation 104

In this system, a video bit-stream of bit-rate B is divided into chunks of length M .

This video is originally stored on a server. A tracker-like mechanism is implemented to

allow peers to obtain a list of their neighbours. Finally, time is divided into rounds of

length τ . First of all, a two-player interaction will be analysed from a game theoretic

point of view. The payoff function of the game for one single round is defined as follows:

π1(a1, a2) = (a2P21)g1 − a1c1

= (a2P21)g1 − a1
M

W1τ
,

π2(a1, a2) = (a1P12)g2 − a2c2

= (a1P12)g2 − a2
M

W2τ
. (5.8)

These equations contain several terms. First of all, ai is the action taken by peer i and it

is either 1 or 0, depending on the decision of i to cooperate or not respond to the other

peer’s request. Pij is the probability that a chunk is successfully transferred from i to

j, while g ∈ [0, 1] denotes the gain a certain user receives when receiving a video chunk;

it is a subjective measure. Wi is the upload bandwidth of peer i. Finally, ci is the cost

associated to cooperation and it is measured in terms of percentage of bandwidth used

to transmit one chunk in one round. There are two terms in the equation. The first one

is the gain of user i with respect to the action of the other peer, while the second is the

cost, which depends on their own action. If the game is only played for one round, the

only action profile (a1, a2) that satisfies Nash Equilibrium [8] is (0, 0), similarly to what

happens in the game theoretic problem called prisoner’s dilemma [86]. The same holds

if the game is played for a finite number of times and the termination time is known

to both users. However, in these systems, users do not exactly know when the other

peers will leave the game. Therefore, other Nash Equilibria exist and the game can be

modelled as an infinitely repeated game.

In this case, an averaged payoff function over all the rounds of the game Ui(s) is

considered, where s = (s1, s2) is the strategy profile for the two players. For this game,

the set of feasible and enforceable payoffs is given by

V1 = convex hull {(v1, v2) | ∃(a1, a2) with (π1(a1, a2), π2(a1, a2)) = (v1, v2)}

∩ {(π1(x), π2(x)) | π1(x), π2(x) ≥ 0} . (5.9)

Joint Free-riding Detection and Resource Optimisation 105

π1

π2

(P21 g1 – M/(W1 τ),
P12 g2 – M/(W2 τ))

(– M/(W1 τ), P12 g2)

(P21 g1, – M/(W2 τ))

(0,0)

V1

Figure 5.2: Feasible and enforceable payoff profiles.

where (a1, a2) ∈ {0, 1}, as previously stated and x = (x1, x2) is the set of the average

strategies for the infinitely repeated game. These payoff profiles are also shown in

Figure 5.2. The average strategy of each player is defined as xi = limt→∞
∑T

j=0 a
(j)
i /T ,

where a
(j)
i is the strategy adopted by i during round j and T is the total number

of rounds. For the infinitely repeated game there exists an infinite number of Nash

Equilibrium strategies. However, not all of them are acceptable from the point of view

of the users of the social network. Therefore, it is necessary to introduce some more

bounds, or refinements of the Nash Equilibrium:

• Pareto Optimality: It means that it is not possible to increase the payoff of a peer

without decreasing the the others’. This subset corresponds to the two segments

on the edge of the convex hull between point (P21g1−M/(W1τ), P12g2−M/(W2τ))

and the two intersections with axes π1(x) = 0, π2(x) = 0.

• Proportional Fairness: A payoff profile that is proportionally fair can be achieved

if the product U1(s)U2(s) is maximised. This corresponds to maximising π1(x)π2(x)

at each round.

• Absolute Fairness: This solution is not always Pareto-optimal. However, this

concept can be applied on many occasions. According to this criterion, the payoff

of every player in the game should be the same, e.g. π1(x
∗) = π2(x

∗).

Joint Free-riding Detection and Resource Optimisation 106

It is possible to prove that the solutions found by applying absolute and proportional

fairness are not cheat-proof. However, when cheating on their private information, peers

can maximise their payoff reporting PjigiWi = M/τ . The corresponding strategy profile

is x∗ = (1, 1), which means that users always cooperate. The corresponding payoff profile

is

v =

(
P21g1 −

M

W1τ
, P12g2 −

M

W2τ

)
. (5.10)

This forms a Nash Equilibrium, is Pareto optimal and cheat-proof, as it already assumes

that peers may be cheating about their private information. Other information peers

can cheat on is the list of chunks in their buffer. This reduces the number of requests

from other users, while getting rewards from other peers. To avoid this, peers should

not upload more chunks than they receive from the other one.

For this two-player game, a cheat-proof strategy is obtained when all the users report

false values of their private information. Therefore, transmitting such values is useless.

In practice, in the two-player game, peers will upload data to peers they assume to be

good enough to receive data in exchange. Moreover, they will not upload more data

then they actually download. This is a revisitation of the original BitTorrent unchoking

mechanism.

For the multiple user scenario, new challenges are presented, as in bigger networks

links between users might sometimes be busy and packets can be delayed or lost. Two

types of attacks are also considered: incomplete chunks attack and pollution attacks.

Under these circumstances, the challenge is to distinguish between malicious and unin-

tentional misbehaviour. Therefore, a credit line is introduced. This is the maximum gap

allowed between the number of complete and unpolluted chunks two peers download.

It is in practice as a “download threshold”, since if a peer tries to cross this line by

requesting more data, the user that has received the smallest contribution will reject all

of the other peer’s requests. This rule is valid for all the relationships between a peer

and its neighbours. The aim of this rule is to stimulate cooperation among peers and

to add some tolerance when favours cannot be instantly returned. Moreover, this limits

the damage free-riders or malicious peers in general can cause to the other users.

Another goal is to detect these malicious users. Assuming that the unsuccessful

transmission of a chunk is modelled as a Bernoulli random process [87] and applying the

Joint Free-riding Detection and Resource Optimisation 107

Central Limit Theorem [88], it is possible to prove that:

Cs(i)(j, t)− Cu(j)(i, t)Pji ∼ N
(
0, Cu(j)(i, t)Pji(1− Pji)

)
, (5.11)

where Cs(i)(j, t) is defined as the number of chunks that i successfully receives from j

per round and Cu(j)(i, t) is the number of chunks that i has requested to j and j has

agreed to transmit by time t. This quantity needs to be multiplied by Pji, which has

already been defined as the probability to transmit one chunk from j to i in one round.

Assuming that a malicious peer will never send a good or complete chunk, it is possible

to set a threshold that corresponds to the maximum false positive malicious users rate

depending on this Gaussian distribution.

An important remark stated in this work is that in some cases it is more convenient

for a selfish peer to download only from the source, without sharing any data with the

others. In this case, it will always refuse to cooperate with other peers. However, it is

reasonable to assume the streaming server as often busy. Therefore cooperation among

otherwise selfish peers can be enforced. For a selfish peer i which is cooperating with

the others, the following strategy is defined:

• Mark all the other peers as selfish.

• Send a request to the peer that has the highest probability of successfully trans-

mitting a chunk within a round and apply the malicious behaviour detection rule

to it.

• When receiving a request, accept it if the peer is not marked as malicious and the

credit line has not been crossed.

It is possible to prove that in the case of no attacks the strategy described in this

section strategy is sub-game perfect, cheat-proof and, if none of the peers stops receiving

chunks, strongly Pareto optimal. On the other hand, experimental evaluation shows that

malicious users either are detected by the proposed mechanism or can only cause very

limited damage.

Joint Free-riding Detection and Resource Optimisation 108

5.3.3 Overview of Other Techniques Based on Game Theory

Other systems have been proposed [89–94]. In many of them, a utility, payoff or welfare

function is defined to measure the benefit gained by a certain user or a group when

receiving data from other peers minus the upload costs they incur.

In addition, in [89], Park and van der Schaar consider the problem of content pro-

duction and sharing together. They also analyse what are the conditions under which it

is convenient for a peer to cooperate in a P2P system. Moreover, a few pricing schemes

are also proposed. A similar scheme was proposed in [95] in 2006.

In [90, 91] a “foresighted” resource reciprocation model is proposed. The main idea

is that peers should upload data to other users considering how this action will impact

their behaviour in the future. Moreover, peers do not just decide which users they want

to upload to, but also the scale of this contribution. This is achieved using a Markov

Decision Process [96] framework. Simulations show a significant improvement in the

results, however a practical implementation of this system could be computationally

very expensive.

A few more techniques analysed are based on evolutionary game theory [97]. In [92–

94], peers try to adapt their strategies to the feedback they get from other users. In

particular, in [92] peers autonomously decide if they should keep their current list of

neighbours or update it. On the other hand, in [94] peers are allowed to behave co-

operatively. Moreover, they can either decide to download only from peers in their own

group or act as agents (e.g. “superpeers”) and contribute to their group downloading

data from outside it.

Finally, some properties of the network (like those described in [42, 98–101]) can,

in principle, be exploited in general P2P systems, not just for video streaming. So

far, there are examples of systems that consider proximity of nodes [102, 103] or social

relationships [104] when deciding which connections should be established between peers.

The results presented in these works show that these systems perform better than the

traditional ones.

Joint Free-riding Detection and Resource Optimisation 109

5.3.4 P2P Network as a Graph

The following techniques consider the issue of optimal resource allocation in P2P trans-

mission. We now consider the solution proposed by Huang et al. [105]. The over-

lay network is modelled as a graph G = (V,E). V represents the set of vertices

(peer nodes) and E is the set of links among them in the overlay network. Each of

these links (i, j) ∈ E is associated with a communication delay d(i,j), ∀(i, j) ∈ E.

These links are considered to be symmetric and to satisfy the triangular inequality (e.g.

d(i,j) + d(j,k) ≥ d(i,k) ∀i, j, k ∈ V). Maximum download and upload capacities are defined

for every peer as Ii and Oi and they are measured in terms of units (e.g. minimum P2P

chunk size) per second.

The stream is generated by only one source S, while all the other peers r ∈ R ⊂ V are

receivers. This stream can be either received from the source only, or (indirectly) through

the other peers via multiple paths. The rate of this (non-scalable) stream is denoted by

s, while fij is the streaming rate from peer i to peer j. The stream from the source to

a receiver r is the unicast flow U to r, which may be formed by several fractional flows

p ∈ U . Each of these flows is associated with a delay tp =
∑

(i,j)∈p d(i,j). The latency of

the unicast flow is the maximum latency of the fractional flows t = maxp∈U tp. Given

these assumptions and definitions, the problem is formulated as follows:

Minimise t,

subject to: ∑
(i,j)

d(i,j)x
r
ijm ≤ t with xrijm ∈ {0, 1}, ∀(i, j) ∈ E, ∀r ∈ R, ∀m, (5.12)

where xrijm is set to 1 only if the path of the m-th flow from the source to a receiver r

includes the link from i to j. This condition simply indicates that t is the maximum

delay of all the flows to all the receivers. In other words,

xrijm = df rijm/se ∀(i, j) ∈ E, ∀r ∈ R, ∀m. (5.13)

Joint Free-riding Detection and Resource Optimisation 110

Here, f rijm is the m-th fractional flow rate on (i, j) to r. The maximum upload and

download rate of each peer also needs to be considered:

s∑
m=1

∑
r:r∈R

f rijm ≤ yij, ∀(i, j) ∈ E , (5.14)∑
j:(i,j)∈E

yij ≤ Oi, ∀i ∈ V, (5.15)

∑
j:(j,i)∈E

yji ≤ Ii, ∀i ∈ V. (5.16)

In Eq. (5.14) to (5.16), yij is the aggregated flow rate on link (i, j). Over all the incoming

(outgoing) connections, the sum of aggregated flows cannot exceed the download (up-

load) capacity of each node. Here, s denotes the number of fractional flows, therefore

0 < m ≤ s. This algorithm achieves a delay which can be approximated by O(
√

log(n)),

where n is the number of peers in the network. This paper works with data flows instead

of considering packet exchanges, however, it is relevant to our study, as it states that in

order for all the peers to be served, the sum of all the upload rates of all the peers needs

to be greater than the sum of all the desired rates, which is a statement we are going to

extend for the scalable case.

5.3.5 A Push-based Approach for a Mesh Topology

The problem of minimising delays in video transmission is connected to the problem

of optimising streaming rates. In [106], Picconi et al. describe a mesh-based approach

which can achieve optimal streaming rates, similarly to tree-based solutions. This is

obtained by uploading the latest useful chunk to the most deprived peer. The idea of

sending data to the most deprived node in a network can be already found in [107],

where random useful packets are forwarded.

The key component of this algorithm is the set of video chunks each peer Pi owns,

which can be defined as C(Pi). Assuming that the set of neighbours of Pi is Ni, the most

deprived peer is the one that satisfies maxPk∈Ni
{|C(Pi) \ C(Pk)|}. In other words, it is

the peer that maximises the amount of chunks a certain peer owns and its neighbours do

not. According to the original study [107], optimal streaming rates are obtained when

random chunks are forwarded. However, the experimental evaluation performed in [106]

Joint Free-riding Detection and Resource Optimisation 111

P1S

P5

P2

P3P4

P6

P7
P8

Tree 1

Tree 2

Figure 5.3: An example of SPPM overlay network. Two complementary multicast trees are
maintained to route the data from the source of the stream to the set of users.

suggests that other techniques, for example forwarding the latest useful chunk, achieve

similar results. An important remark is that the “latest useful” chunk in this context

should be intended in terms of timestamp (e.g. position in the video bit-stream).

5.3.6 Stanford Peer-to-Peer Multicast

The system proposed in [108] is based on Stanford Peer-to-Peer Multicast (SPPM). This

is a push-tree solution where several complementary multicast trees are created. These

trees form the overlay network, whose root node is the source S of the video. Different

packets are distributed using different trees. Figure 5.3 shows an example with two; in

this case odd and even packets are distributed through the two possible different paths

from S to peers P1 . . . P8.

The use of a push-tree solution as opposed to mesh-pull can lead to a better per-

formance of the system [108]. However, creating and maintaining trees might be com-

putationally expensive, especially in big networks. In this case, if a new peer wants to

Joint Free-riding Detection and Resource Optimisation 112

join the network, it needs to contact the source. Similar to a BitTorrent tracker, the

source returns a random list of peers. The new peer then selects the best parent nodes

according to available throughput, distance from the source in logical hops and end-to-

end delay. Finally, it connects to only one parent for each of the multicast trees. Every

time a peer leaves the swarm, its children need to repeat this procedure and connect to

another parent. Since connecting to a descendant creates loops that are not connected

to the source, each peer keeps a list of all its ancestors (for each tree). While connected

to the network, each peer will receive data from its parents and will forward it to its

children.

As far as video scalability is concerned a “content-aware prioritisation” is used in case

of network congestion. Each packet is assigned a different importance, which depends

on the distortion-rate reduction given by its decoding. The packet’s dependencies are

also considered. That is, if a layered video is used, the base layer of the sequence has

the highest priority, while enhancement layers are only transmitted if there is enough

spare capacity in the system.

This tree-based solution does not consider potential free-riders. In fact, a peer might

connect to several parents, while refusing to upload data to its children. In other words,

a parent will always upload data to its children, if the network conditions allow it,

regardless of their behaviour. The problem of peers tampering with the data is also not

considered. However, this issue could be easily solved requesting a hash of each packet

from a trusted entity (e.g. the source S).

5.3.7 Other Systems and Final Considerations

Finally, an experimental study [109] performed by Liang et al. addresses the issue of

performance versus complexity of the system, proposing different scheduling techniques.

This study is also important because it shows the impact of the network topology on

the network and it suggests that peers with higher capacity should be linked to a larger

number of peers. Social networking aspects are not considered here, though.

On the other hand, another study, performed specifically on PPLive [110] shows that

the behaviour of IPTV users is the same as regular users. This can be a critical factor,

as many peers might simultaneously leave at the beginning of commercials breaks and

Joint Free-riding Detection and Resource Optimisation 113

List of Symbols

Pi Peer i

ci Upload capacity of Pi

qi Quality layer i

bi Bit-rate of quality layer qi

bit Target bit-rate for Pi

∆max Maximum acceptable credit or debit a peer can have towards

another peer

S Content source

N Set of peers in the network, including the content source

|N | Number of peers in the network, including the source

Ni Neighbours of Pi

N∗i Non free-riding neighbours of Pi

χsk(i, t) Number of chunks Pk has sent to Pi at time t

χrk(i, t) Number of complete and unpolluted chunks Pk has received

from Pi at time t

δ(Pi) Deprivation of Pi

ϕidep Deprivation factor of Pi, as computed by another peer

ϕicr Credit factor of Pi, as computed by another peer

α, β Weighting factors for ϕidep and ϕicr respectively

ri Chunk request, sent from Pi

s(ri) Score assigned to ri

Table 5.2: List of symbols in use for the proposed approach.

re-join the network at the end of them. This article also points out that slow start is a

problem that needs to be specifically addressed.

5.4 Proposed Approach

Our approach is based on the conclusions drawn from the simplified scenario. We are

now considering peers with limited upload capacities and different upload speeds. A

Joint Free-riding Detection and Resource Optimisation 114

GT Based
Resource
Allocation

Rest of P2P Network

Chunk
Buffer

User
Behaviour
Monitor

Credit, Credit Factor,
Deprivation Factor

Missing
Chunks

Download
Chunk

Accept/
Reject

Request,
Missing
Chunks

Request
Chunk

Upload
Chunk

Piece Picking
Policy for SVC

Peer

Chunk
Map

Figure 5.4: Block diagram for the proposed approach.

fraction of the user behaves as a free-rider. We are simulating the network using ns-

2 [111] simulator, to deal with network unreliability. Video scalability helps achieve

fairness among users. However, we still assume that peers cannot leave the network

during the whole simulation and we also create the overlay network according to the

standard BitTorrent protocol. That is, we are using a BitTorrent tracker.

This contribution is also published in [13, 16]. It is a credit-based framework for

scalable P2P video streaming with a focus on optimal resource allocation. Our idea

Joint Free-riding Detection and Resource Optimisation 115

is to integrate minimum-delay streaming functionalities within an incentive provision

mechanism. Scalable video coding forms an integral part of our framework, as peers

are discouraged from downloading videos with a quality which is higher than the one

they can provide other users with. To the best of our knowledge, optimising streaming

rates and finding incentives for users to cooperate are usually considered as separate

problems. Most real systems, however, need to deal with both at the same time. Our

technique considers both issues, while aiming at achieving nearly optimal performance.

An important remark is that this approach is not compatible with the original BitTor-

rent. Therefore, for the purpose of testing we have not integrated this approach within

a P2P client, but we used ns-2 network simulator, as it allowed to perform tests with a

higher number of users.

The block diagram in Figure 5.4 summarises our proposed technique. The blocks

representing our contributions are the Chunk Selection and Resource Allocation in the

reference diagram (Figure 4.1). The first one is a modification of the technique proposed

in Chapter 4, as described in the following section, while the second is a framework for

resources allocation that takes decisions based on the behaviour of the peers (such as

number of accepted requests) and information regarding their downloaded chunk map.

In the figure, “Credit” indicates whether a peer has run out of credit and needs to

be marked as a free-rider. Finally, credit and deprivation factors will be defined in

Section 5.4.4. A list of the symbols used in the next sections can be found in Table 5.2.

5.4.1 Piece Picking Policy

This packet scheduling algorithm is similar to our solution presented in Section 4.4.1,

however, due to completeness, we will briefly describe it, illustrating the key differences.

A sliding window, containing a fixed number of GOPs that follow the current playback

position is defined. The number of GOPs inside the window usually corresponds to 10-20

seconds of video. Inside the window, chunks have a priority that depends on the quality

layer they belong to. Inside each layer, the rarest pieces are requested first. In contrast

with the approach described in Section 4.4.1, however, this also holds for the base layer.

In fact, as the playback positions of the peers are synchronised, a sequential policy would

imply that many peers would be interested in the same chunk, whereas applying a rarest-

first policy increases diversity. At regular intervals, the system performs a window shift

Joint Free-riding Detection and Resource Optimisation 116

High Priority Requests Low Priority Requests

GOP i - 1 GOP i GOP i + 1 GOP i + 2 GOP i + 3 GOP i + 4

GOP i GOP i + 1 GOP i + 2 GOP i + 3

GOP i GOP i + 1 GOP i + 2 GOP i + 3

GOP i - 1

GOP i - 1

GOP i + 4

GOP i + 4

Quality
Layers

Target
Video

Quality

a)

b)

c)

Figure 5.5: Sliding window for scalable live video streaming, showing high and low priority
requests.

and checks how many quality layers of the current GOP have been completely received.

If at least the base layer has been received, it will be decoded, otherwise the GOP will

be skipped, as in this case the system cannot be paused. In this case, the received video

bit-rate will be set to 0.

The sliding window is also shown in Figure 5.5. In a) the peer has just joined the

network. It calculates the current playback position from its neighbours and there is a

short pre-buffering before the first window shift. Figure 5.5 b) shows the final moments

of the pre-buffering. The peer has already downloaded all the chunks it could afford to

upload and it sends low-priority requests to its neighbours. After the window shifts in c),

the completely received quality layers are decoded, while the partial ones are discarded.

Joint Free-riding Detection and Resource Optimisation 117

5.4.2 Credit-Based Framework

In our system, a credit line mechanism is used. However, as it was previously introduced,

two different types of requests are defined: regular – or high priority – and low priority.

Regular requests, when accepted, will be considered when computing the calculation of

the current credit, while the latter will not be taken into account. This is necessary,

as we prove that peers should not request data they cannot afford to upload, but on the

other hand we would also like to exploit the spare resources in the system. We consider

the case in which peers have different upload capacities and we use SVC. Under these

circumstances, quality layers are subsets of the original bit-stream associated to different

SNR.

Proposition 5.1. Let us consider a peer Pi whose upload capacity is ci and a layered

scalable video whose bit-rates of layers q0, . . . , qmax are b0, . . . , bmax. If this peer down-

loads data belonging to quality layers qj, . . . , qmax, such that bj > ci, it will be eventually

marked as a free-rider by its neighbours.

Proof. A peer Pi is marked as a free-rider by its neighbours Pk ∈ Ni if χsk(i, t)−χrk(i, t) >
∆max for any k | Pk ∈ Ni, where Ni is again the set of neighbours of Pi, χ

s
k(i, t) is

the number of chunks Pk sent to Pi at time t, χrk(i, t) is the number of complete and

unpolluted chunks Pk received from Pi at time t and ∆max is the credit line set by all

the peers in the network. Considering the most favourable case for peer Pi, which is

when χrk(i, t) = χsi (k, t) (e.g. there are no transmission errors), Pk will cooperate with Pi

if limt→∞(χsi (k, t)/χ
s
k(i, t)) = 1. If this condition is not satisfied then, for an arbitrarily

long time t′, χsk(i, t
′) − χsi (k, t′) > ∆max will be verified. As χs depends on the upload

capacity of a certain peer, a user should not try to download more data then it can afford

to upload. Therefore, for the specific case of scalable video transmission, a peer should

not aim to download a video with a bit-rate that is higher than its upload capacity. It

also follows that free-riders and users with an upload capacity that is lower than the

bit-rate of layer q0 will be cut out of the system.

This result can also be interpreted as follows: if a peer tries to download more data

than it can upload, its behaviour is comparable to free-riding. In some cases, however,

there might be some spare resources in the system. Therefore, in order to fully exploit

the available capacity, low priority requests are defined. These are requests that concern

Joint Free-riding Detection and Resource Optimisation 118

quality layers with a higher bit-rate than a peer can afford to upload. They will only be

satisfied if the peer that receives one is not fully utilising its capacity and they will not

be added to the current debt or credit.

It is intuitive to prove that it is not convenient for a peer to ask for all the chunks

as low priority requests. For instance, no chunks belonging to the base layer can ever

be requested under these circumstances. This would imply that the peer that sends the

request does not meet the minimum requirements to be allowed inside the P2P network.

Moreover, as far as enhancement layers are concerned, requests will only be satisfied

if there is enough spare capacity in the system. In this case, a peer that can afford

to upload a certain layer which asks for chunks belonging to the same layer with low

priority only lowers the chance of having this request accepted and therefore has no

interest from unilaterally changing its strategy.

5.4.3 Resource Optimisation

This algorithm aims to achieve real-time streaming through accurate resource allocation.

In applications such as live streaming, it is fundamental to keep the upload channels of

all the peers constantly busy. It has already been proven [105] that in order for the peers

to be fully served, for a non-scalable video the following condition needs to be satisfied:∑
i | Pi∈N

ci ≥ (|N | − 1)× s, (5.17)

where N is the set of peers (including the source), ci is the upload capacity of a peer Pi,

|N | is the total number of peers and s is the video bit-rate. It is possible to extend the

condition stated in Eq. (5.17) to scalable video sequences.

Lemma 5.1. Assuming that a scalable video with bit-rates b1, . . . , bj, . . . , bmax is used,

and each peer Pi has a target bit-rate bit, in order to achieve these received bit-rates the

following condition needs to hold:∑
i | Pi∈N

ci ≥
∑

i | Pi∈N\{S}

bit, (5.18)

where S is the source of the video.

Joint Free-riding Detection and Resource Optimisation 119

Proof. Considering the total flow of data entering and leaving each peer, the Lemma

follows.

We now assume that the number of peers in the network is high and the contribution

of the source is therefore negligible. Moreover, in order for a peer not to be marked as a

free-rider, following from the proof of Proposition 5.1 the outgoing flow of data on every

single channel should roughly correspond to the incoming one. In this specific case, the

former condition can be rewritten as follows:

ci ≥ bit, ∀i | Pi ∈ N\{S}. (5.19)

The two terms of the inequality shown in Eq. (5.19) can only be equal in case of optimal

resource allocation, for example the one that fully exploits the upload capacity of all the

peers. In some cases, however, this does not happen as some peers do not have any data

their neighbours are interested in.

This problem can be partially overcome by uploading more data to the most deprived

peers [106]. Considering the set of useful chunks a peer has (where useful could mean

those inside a sliding window), its most deprived neighbour is the one who does not own

the largest number of chunks in this set.

5.4.4 Optimal Policy for Resource Allocation and Free-riding

Detection

As far as our resource allocation algorithm is concerned, a peer Pk adopts the following

strategy when receiving a request ri from Pi: First of all, every time a request is received,

it is associated with a time-stamp and a time-to-live (TTL). Moreover, it is associated

with a score s(ri). This score is defined as follows:

• If χsk(i, t)−χrk(i, t) ≥ ∆max, s(ri) = −∞; this request will be immediately rejected,

as Pi might be a free-rider.

• If χsk(i, t) − χrk(i, t) < ∆max and the request has been sent with high priority, the

request will be inserted into a buffer and it will be associated with the following

Joint Free-riding Detection and Resource Optimisation 120

score:

s(ri) =
(
α · ϕidep + β · ϕicr

)
, (5.20)

where ϕidep is the deprivation factor and ϕicr is the credit factor of Pi, and α and

β are arbitrary constants which satisfy the condition α + β = 1. These quantities

will be explained in detail in the following paragraphs.

• If χsk(i, t) − χrk(i, t) < ∆max and the request has been sent with low priority, the

request will be inserted into the buffer with s(ri) = 0.

Every time a peer has finished sending a chunk, or if it is not sending any chunks, it

will select a piece to upload. Among all the requests in its buffer, it will accept the

one with the highest score, while the others will remain in the buffer until their TTL

expires. The TTL for each request is not fixed and it depends on the current arrival

rate of both high and low priority requests from its non-free-riding neighbours. If two

or more requests have the highest score, the peer will forward the chunk that has been

forwarded the least amount of times. An important remark is that low priority requests

will be only accepted if there is enough spare capacity in the system.

As far as the quantities in Eq. (5.20) are concerned, the deprivation factor is calcu-

lated as follows. Considering all the non-free-riding neighbours N∗k of Pk, for every peer

Pj in this set the number of chunks Pk could contribute to them are counted. This value

is also called the deprivation of peer Pj, or δ(Pj). The deprivation factor ϕidep of a peer

is therefore computed as:

ϕidep =
δ(Pi)∑

j∈N∗
k

δ(Pj)
. (5.21)

In other words, ϕidep is the ratio between the number of chunks Pi is missing and the

total number of chunks the non-free-riding neighbours of Pk are missing. It should be

pointed out that the denominator in Eq. (5.21) cannot be zero when there are requests

in the buffer. In fact, if δ(Pi) is zero, it means that there is no possible contribution

towards Pi and the request makes no sense. Therefore, the denominator can only be

null if there are no possible contributions towards any of the peers, which implies that

the peer will not receive any requests and this calculation would not make sense. On

Joint Free-riding Detection and Resource Optimisation 121

the other hand, the credit factor ϕicr indicates the contribution received from another

peer and can be expressed as:

ϕicr =
χsk(i, t)− χrk(i, t) + ∆max∑

j∈Nk

χsk(j, t)− χrk(j, t) + ∆max

. (5.22)

It should be pointed out that χsk(j, t) − χrk(j, t) + ∆max in Eq. (5.22) is zero only if a

peers has run out of credit, in which case it does not make sense to compute this factor,

as the request will be rejected in any case. Therefore, the denominator in Eq. (5.22)

cannot be zero either. The deprivation factor helps achieve nearly optimal performance,

while the credit factor is used to encourage resource reciprocation.

These quantities are also explained in Figure 5.6 and 5.7. In Figure 5.6, showing

the credit factor, a peer gets a request rejected because it has already received too

many chunks. For all the other cases, the peers are assigned a score that depends both

on the contribution they gave and received. Similarly, in Figure 5.7 the sender peer

computes the deprivation factors using the information from its own chunk buffer and

its neighbours’.

5.4.5 Distribution of the First Copy

One of the critical aspects in P2P file sharing is the distribution of the first copy. Given

a certain upload capacity of the source, the aim of the proposed algorithm is to maximise

the data each peer has to share, increasing therefore the usage of their upload channels.

In our approach, peers cannot request any data from the source, which only pushes

data to selected peers in the swarm. First of all, the source identifies the most deprived

non-free-riding peer in the swarm. This can be achieved using a G2G-like [9] algorithm.

That is, peers will report to the source whenever they receive a chunk, specifying the

user they received it from. Depending on this information, the source will first estimate

if users have forwarded a number of chunks corresponding at least to the base layer

of the sequence and depending on this they will classify users either as cooperative or

deceptive. During the second phase, the source identifies the chunks this peer is missing.

Among them, the seeder will then forward the one that has been forwarded the least

amount of times.

Joint Free-riding Detection and Resource Optimisation 122

Current Balance:
-3 Chunks

Credit Factor: 0.05

Current Balance:
+2 Chunks

Credit Factor: 0.27

Current Balance:
-4 Chunks

Current Balance:
+7 Chunks

Credit Factor: 0.5

Current Balance:
0 Chunks

Credit Factor: 0.18

Δ = 4 Chunks
Total Normalisation Factor: 22 Chunks

REQUEST REJECTED

Figure 5.6: Example showing the credit factors of a peer’s neighbours.

Total Possible Contribution: 12 Chunks

Chunks Buffer

Possible Contribution:
1 Chunk

Deprivation Factor: 0.08

Possible Contribution:
1 Chunk

Deprivation Factor: 0.08 Possible Contribution:
2 Chunks

Deprivation Factor: 0.17

Possible Contribution:
3 Chunks

Deprivation Factor: 0.25

Possible Contribution:
3 Chunks

Deprivation Factor: 0.25Possible Contribution:
2 Chunks

Deprivation Factor: 0.17

Figure 5.7: Example showing the deprivation factors of a peer’s neighbours.

Joint Free-riding Detection and Resource Optimisation 123

5.5 Implementation

For our experimental evaluation, we used a modified version of the ns-2 [111] network

simulator. It is a “discrete event simulator targeted at networking research”. It supports

simulation of TCP. Moreover, each Node in the network can be associated with an Agent

which generates packets and an Application, which performs several tasks (e.g. behave

according to a certain protocol).

The starting point was the BitTorrent simulation in ns-2 described in [112]. Both

packet-level and flow-level simulations are supported, however for our testing environ-

ment we only considered packet-level. A few modules have been added to provide an

interface between the P2P network and WSVC sequences and implement the reputation

mechanism described in the previous section. A new Application was created, which is

based on BitTorrentApp, proposed in [112]. Implementation of the proposed techniques

and integration with the rest of the simulator required over 2500 lines of code written

in C++ [113] and additional 150 lines written in tcl [114] were needed to set all the

simulation parameters, generate the nodes, the links and the routing table.

5.6 Results

For the purpose of simulation, City sequence – already used in previous evaluations – is

repeated 15 times (for a total of 150 seconds) and encoded in WSVC format. The spatial

resolution is 352×288 (CIF) and the frame rate is 30 fps. The video sequence is divided

into chunks of 4 kB. In addition, there are 7 quality layers, with bit-rate rb ranging from

256 kbps to 768 kbps. Information about WSVC GOPs and quality layers is stored in

a metadata file, which we assume to be available to all peers. We decided to use only

one sequence as WSVC allows to specify bit-rates manually and the differences between

layer sizes are very small (no more than 30 bytes in most cases, much smaller than the

defined BitTorrent chunk size). Table 5.3 shows a comparison among the cumulative

number of chunks that are necessary to decode a quality layer for City, InToTree and

Soccer when their extraction points are the same. As these values are the same and

the actual content of these chunks does not have an impact on the performance of the

Joint Free-riding Detection and Resource Optimisation 124

rb

Video
City InToTree Soccer

256 kbps 17 17 17

320 kbps 21 21 21

384 kbps 26 26 26

480 kbps 32 32 32

576 kbps 38 38 38

672 kbps 44 44 44

768 kbps 51 51 51

Table 5.3: Cumulative number of chunks forming a quality layer for City, InToTree and Soccer
sequences.

simulated system, we consider our results obtained with City to be also valid for slow

(InToTree) and fast-moving sequences (Soccer).

In our experiments, only one source has the full sequence at the beginning. Peers

are divided into two categories: regular users and free-riders. Regular users accept or

reject requests according to the proposed algorithm, while free-riders reject any request

they receive. We assume all the peers to join the system within a one-second interval,

in order to keep their playback positions synchronised. After a pre-buffering phase, the

playback starts.

In our tests, the network consists of 11, 31, 51 or 101 peers. This includes a video

source, which has the same bandwidth as the other users. We consider scenarios with

different upload capacities (50, 75 and 100 kB/s), fractions of free-riders (0%, 33%, 50%

and 66%) and values of the credit line. Moreover, α and β range between 0 and 1, with

β = 1 − α. A comparison with an existing technique [85] is also shown. In the next

paragraphs, the outcome of our experimental evaluation will be illustrated.

Figure 5.8 shows the impact of different credit lines on the behaviour of the system

when there are 11 peers with no free-riders in the network and (α, β) is set to (0.5, 0.5).

The credit line ∆max grows exponentially with a power of 2 and it ranges between 1

and an infinite number of chunks. The average received video bit-rate grows as ∆max

grows up to a certain threshold, which in this case is 8 chunks. For values below the

Joint Free-riding Detection and Resource Optimisation 125

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

1 2 4 8 16 32 64 128 ∞

A
v
e

ra
g

e
 R

e
c
e

iv
e

d
 V

id
e

o
 b

it
-r

a
te

 [
k
b

p
s
]

Maximum Credit ∆max [chunks]

Cooperative Users, (α, β) = (0.5, 0.5)

Figure 5.8: Average received video bit-rate with 11 peers, ci = 75kB/s and 0% FRs.

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

1 2 4 8 16 32 64 128 ∞

A
v
e

ra
g

e
 R

e
c
e

iv
e

d
 V

id
e

o
 b

it
-r

a
te

 [
k
b

p
s
]

Maximum Credit ∆max [chunks]

Cooperative Users, (α, β) = (0.5, 0.5)

(a) Cooperative users.

 0

 5

 10

 15

 20

 25

1 2 4 8 16 32 64 128 ∞

A
v
e

ra
g

e
 R

e
c
e

iv
e

d
 V

id
e

o
 b

it
-r

a
te

 [
k
b

p
s
]

Maximum Credit ∆max [chunks]

Free Riders, (α, β) = (0.5, 0.5)

(b) Free-riders.

Figure 5.9: Average received video bit-rate by (a) Cooperative users and (b) Free-riders with
31 peers, ci = 75kB/s and 66% FRs.

threshold, cooperative peers are incorrectly detected as free-riders, which causes poor

system performance. For ∆max = 1, the average received video bit-rate (about 50 kbps)

is lower than the bit-rate of the base layer (256 kbps), therefore real-time streaming is

not achieved in this case. However, with ∆max set to 4 chunks, the performance of the

system is nearly optimal. Finally for values of ∆max above the threshold, the system is

fully utilising its resources and the received video bit-rate remains the same even with

a maximum debit or credit set to infinite.

On the other hand, when 66% of the peers are free-riders as shown in Figure 5.9(a)

and 5.9(b), using a ∆max above 4 chunks causes a degradation in the received video

bit-rate of cooperative users, while free-riders gain a benefit as the credit line grows.

However, due to the G2G-like free-riding detection mechanism used by the source, the

Joint Free-riding Detection and Resource Optimisation 126

 350

 355

 360

 365

 370

 375

(0, 1) (0.25, 0.75) (0.5, 0.5) (0.75, 0.25) (1, 0)

A
v
e

ra
g

e
 R

e
c
e

iv
e

d
 V

id
e

o
 b

it
-r

a
te

 [
k
b

p
s
]

(α, β)

Cooperative Users

(a) Average received video bit-rate with 11 peers,
ci = 50kB/s and 33% FRs.

 635

 640

 645

 650

 655

 660

 665

 670

 675

(0, 1) (0.25, 0.75) (0.5, 0.5) (0.75, 0.25) (1, 0)

A
v
e

ra
g

e
 R

e
c
e

iv
e

d
 V

id
e

o
 b

it
-r

a
te

 [
k
b

p
s
]

(α, β)

Cooperative Users

(b) Average received video bit-rate with 31 peers,
ci = 100kB/s and 33% FRs.

 460

 465

 470

 475

 480

 485

 490

 495

 500

(0, 1) (0.25, 0.75) (0.5, 0.5) (0.75, 0.25) (1, 0)

A
v
e

ra
g

e
 R

e
c
e

iv
e

d
 V

id
e

o
 b

it
-r

a
te

 [
k
b

p
s
]

(α, β)

Cooperative Users

(c) Average received video bit-rate with 51 peers,
ci = 75kB/s and 50% FRs.

 435

 440

 445

 450

 455

 460

 465

 470

 475

(0, 1) (0.25, 0.75) (0.5, 0.5) (0.75, 0.25) (1, 0)

A
v
e

ra
g

e
 R

e
c
e

iv
e

d
 V

id
e

o
 b

it
-r

a
te

 [
k
b

p
s
]

(α, β)

Cooperative Users

(d) Average received video bit-rate with 101 peers,
ci = 75kB/s and 50% FRs.

Figure 5.10: Average received video bit-rate by cooperative peers and FRs as a function of
α and β varying the number of peers in the network, their capacity ci, and the
percentage of misbehaving users.

free-riders’ credit factor being very low and the large amount of misbehaving peers in

the network, their average received video bit-rate remains very low. Specifically, in this

case they only manage to decode a very limited number of GOPs.

We are also considering the impact of parameters α and β on the behaviour of the

system. The credit line is set to 4 chunks, as in most of the cases this value allows

cooperative users to achieve the best performance, and there are 33% or 50% of free-

riders in the network.

Joint Free-riding Detection and Resource Optimisation 127

Before proceeding to the analysis of the results, let us now consider what would

happen if a peer Pi changed the weights assigned to credit and deprivation factor unilat-

erally. First of all, by increasing α and uploading more data to deprived peers, Pi would

not repay its debts towards another peer Pj as quickly as Pj’s neighbours, increasing Pi’s

chance of being marked as a free-rider. On the other hand, by unilaterally increasing

β, Pi would reciprocate resources more quickly, but not as quickly as Pi’s neighbours

would reciprocate theirs. Moreover, this would necessarily result in decreasing α. It

is worth noticing that giving more importance to the deprivation factor presents a few

similarities with optimistic unchoking in BitTorrent. This implies that by reducing α,

Pi would decrease its chances of discovering good peers in the network, increasing the

other peers’ instead.

Figure 5.10 shows the results for (α, β) ranging from (0, 1) to (1, 0) for different num-

bers of peers. An important remark is that for (α, β) = (0, 1) the system is very similar

to the one presented in [85]. These graphs indicate that when free-riders are in the

swarm, considering both the credit and the deprivation factor gives better results than

trying to solve the problem of resource reciprocation and delay minimisation alone. The

graph in Figure 5.10(d), obtained with 101 peers, shows a very similar behaviour of the

system with (α, β) = (0.5, 0.5) and (0.75, 0.25). Despite the first set of values being the

best, this result suggests that for bigger networks different values of (α, β) might lead

to a better performance since, as the number of users increases so does deprivation, all

the other parameters being equal. However, all graphs from Figure 5.10(a) to 5.10(d)

indicate that (α, β) = (0.5, 0.5) gives the best performance. Therefore, our experimental

evaluation verified that both factors are important, and more specifically equally im-

portant. That is, setting α = β results in a balance between accepting to forward data

to the peer that has less to share – to increase the overall performance of the system,

but also to potentially discover discover a good neighbour – and promptly repaying a

peer’s current debt, to avoid being marked as a free-rider. In fact, when increasing α

over β (as a global parameter), the system is more vulnerable to free-riding, whereas in

the opposite case, it is more vulnerable to starvation.

Joint Free-riding Detection and Resource Optimisation 128

5.7 Conclusion

We described a framework for P2P scalable video transmission that exploits elements

of credit-based systems and delay minimisation algorithms. We also defined credit and

deprivation factors and analysed how giving them different weights had an impact on

the performance of the system. The strongest aspect of our approach is that free-riders

are cut out of the system, while cooperative users can achieve real time streaming.

Moreover, using scalable video we also promoted fairness among users with different

upload capacities. On the other hand, this system might be vulnerable to sudden changes

in the network (churn) and handwash attacks, where free-riders leave the network and

re-join it with a different identity. Finally, the free-riding detection mechanism described

here only depends on the information collected by one peer. The effectiveness of this

approach could be improved if the peers in the network could share information about

the users they have dealt with. Therefore, in the next chapter, we will extend the work

described here by adding social features to the system.

Chapter 6

Social-based Free-riding Detection

This chapter describes a social-based framework for P2P transmission. It is an extension

of our research work presented in Chapter 5, which means the objective is again to

identify free-riders and optimise resource utilisation, however this is now also achieved

through exploitation of social relationships. In fact, peers that choose to become part of

the social network are not anonymous entities anymore – as their identity can be verified

– and interact either with other “social” users or regular peers. In our system, peers

that have an identity and have established friendship relationships with other users

can cooperate and share information about the rest of the network. The rest of the

chapter is organised as follows: Section 6.1 describes the problem in detail; Section 6.2

presents the relevant background; Section 6.3 explains our proposed approach and how

the social reputation of a peer can be calculated; Section 6.4 presents the results of our

experimental evaluation; finally Section 6.5 concludes the chapter.

6.1 Problem Description

In our previous approach, each peer was trying to estimate what type of peer it was

interacting with by analysing the neighbour’s behaviour towards itself. However, the

peer had no knowledge of other users’ interactions with this peer. Supposing that this

were common knowledge this could, in principle, help draw a more accurate picture of

what type of users are in the network and clearly identify who the free-riders are. A

reasonable approach would seem to gather all this information from all peers in the net-

129

Social-based Free-riding Detection 130

work and build a centralised database where the past behaviour of each user is stored.

This, however, presents two main challenges: first, handling all this information would

incur in additional costs; and second – and more importantly – peers could lie and this

information could not be considered fully reliable. It is however possible to build trust in

P2P networks, and our solution for achieving this is to rely on social relationships, such

as friendship. Therefore, the problem becomes understanding how to exploit these rela-

tionships for more accurate free-riders identification and punishment. More specifically,

this task can be divided into:

• Identifying what type of information peers can share with other trusted users.

• Formulating an algorithm that uses this information to understand if another peer

is a free-rider, building de facto a social reputation for that peer.

• Proposing a new tracker policy for building of the overlay network that allows users

that trust each other to interact with the same unknown users.

6.2 Related Work

In this section we describe a few social-based P2P systems. Some of them introduce

the concept of friendship among users, while others consider social features in terms of

expected behaviour given the characteristic of a certain peer. All these systems have

a common denominator: in contrast with early P2P systems, users are not anonymous

entities that interact with other unknown peers; in fact, each of them is associated to

an identity and its behaviour can in principle be traced. Other existing systems, not

described here, propose a social network for data sharing based on P2P [115] or try to

analyse trust and reputation systems in P2P [116].

6.2.1 Tribler BitTorrent Client: Social-based Features

BitTorrent client Tribler [68], already introduced in Section 4.3.3, can be considered an

example of social P2P. In this system, social features have been introduced to tackle the

following problems:

Social-based Free-riding Detection 131

• Decentralisation: some P2P systems are not fully decentralised, for example they

can have a single point of failure. Exploiting these features might help to achieve

this goal efficiently, since most of the information could be shared only among

people that belong to the same social group.

• Availability: adding social-based features to the system can incentivise peers to

behave in a more altruistic way, for example they might share content for a longer

period of time and consequently increase availability.

• Integrity. To reduce pollution in P2P systems, users can contact “trusted” peers,

whose best interest is to actively participate in this process. These peers should

avoid sharing corrupt or fake content, if they do not want their reputation to be

ruined.

• Incentives Provision: social incentives can help reducing the problem of free-

riding. In fact, users will tend not to “steal” resources from members of their own

community and therefore they will be less likely to download from them without

giving anything in exchange.

• Network Transparency: since the introduction of dynamic IP addresses, NAT

boxes and firewalls, peers cannot send any content anywhere without the need of

a trusted mediator, and again “trust” can be achieved using social-based features.

In Tribler, peers are de-anonymised and a log of all their previous activity is kept. This

information is used to build a reputation of the peers, as well as a profile of a user’s

favourite content. Moreover, groups can be created and peers can get recommendations

about a certain content (and download the corresponding torrent file) from users with

similar preferences. Peers can also discover other users and files using epidemic proto-

cols [68]. In addition to this, friendship is defined. If a peer is a friend of another peer, it

can help it with the download of a file. The two peers will download two different sets of

chunks and the “helper” will upload the data it received to its friend, without expecting

anything in exchange. In the context of scalable video transmission, this approach can

in principle help receive a better video quality, however, it requires that part of the

upload bandwidth of the helper is dedicated to uploading data to its friend, and not to

reciprocating resources of the peers it is downloading from. In P2P systems that use

free-riding detection mechanisms, this may cause this peer to be marked as malicious.

Social-based Free-riding Detection 132

6.2.2 P2P Protocols Based on Social Norms

This approach [117] is based on the concept that each peer in the network has a global

reputation, which determines its strategy. A social norm is in fact made of two elements:

first a social strategy, which “represents the rule prescribing to the peers when they

should or should not provide contents to other peers based on their own reputation as

well as the reputation of the requesting peers” and second a reputation scheme, which

“rewards or punishes peers depending on whether they comply or not with the social

strategy”.

For each peer, a set of allowed actions A = {S,NS} is defined, where S corresponds

to “Request Served” and NS to “Request Not Served”. Moreover, peers also have a

tag θ representing their global reputation or social status. θ is assumed to be a natural

number belonging to Θ = {0, 1, · · · , L}; L is is the maximum reputation and it is a

parameter of the system, while higher θ corresponds to higher reputation and reflects a

cooperative behaviour in the past.

In this framework, peers will behave according to the following strategy σ:

σ(θ, θ̃) =

S if θ ≥ h(σ) and θ̃ ≥ h(σ)

NS otherwise
. (6.1)

Eq. (6.1) shows that there is a reputation threshold h(σ) under which a θ-peer will not

cooperate with a θ̃-peer and will not receive a contribution, as this is what is requested

by the social norm. Similarly, two peers with good reputation (above the threshold) are

required to cooperate. If the peers follow what is prescribed by the social norm, their

social reputation will increase, otherwise they will receive a punishment. The paper

continues analysing different punishment schemes. For example, the reputation of a

peer can be reset to 0 if it refuses to cooperate, or it can just be lowered. Punishments

normally result in peers being excluded from chunk exchanges for a certain number of

turns (until their reputation becomes high enough again). Effects of free-riders, peers

that are always altruistic and transmission errors are also taken into account.

This paper [117] is important for two reasons: first, the attitude of a peer towards

another user does not depend on its previous interactions with it, on the contrary it

relies on its global social reputation. This implies that resource reciprocation is not

Social-based Free-riding Detection 133

List of Symbols

Pi Peer i

Ri
soc(Pj) Social reputation of Pj according to Pi

F i
j Set of friends of Pi that have interacted with Pj

|F i
j | Number of friends of Pi that have interacted with Pj

∆max Maximum acceptable credit or debit a peer can have towards

another peer

∆soc Social reputation threshold; can also be seen as “social credit”

χsk(i, t) Number of chunks Pk has sent to Pi at time t

χrk(i, t) Number of complete and unpolluted chunks Pk has received

from Pi at time t

ϕidep Deprivation factor of Pi, as computed by another peer

ϕicr Credit factor of Pi, as computed by another peer

α, β Weighting factors for ϕidep and ϕicr respectively

ri Chunk request, sent from Pi

s(ri) Score assigned to ri

Table 6.1: List of symbols in use for the proposed approach.

necessarily direct anymore. Second, peers have different strategies and are expected to

maintain a different behaviour according to their type. It is worth mentioning that the

research work in [117] does not consider scalable video. Some ideas on how to exploit

scalability in a similar scenario will be discussed in Section 7.2 as a starting point for

future work. A critical aspect of this approach, however, is that it is based on a global

reputation, which may be difficult to manage if the size of the network grows, and it

might be vulnerable to collusion attacks, where malicious peers report wrong information

to the reputation manager.

6.3 Proposed Approach

This proposed approach has been published in [17]. Its block diagram is shown in

Figure 6.1. The chunk selection algorithm is the same as the one used in Chapter 5 and

the main difference with the diagram in Figure 5.4 is the presence of a “Social Network”

Social-based Free-riding Detection 134

GT Based
Resource
Allocation

Social
Network

Rest of P2P Network

Regular Users Friends of Peer i

Chunk
Buffer

User
Behaviour
Monitor

Social
Reputation

Missing
Chunks

Feedback
About

Regular Users
Download

Chunk

Accept/Reject
Request

Request
Chunk

Upload
Chunk

Piece Picking
Policy for SVC

Peer i

Credit, Credit Factor,
Deprivation Factor

Chunk
Map

Figure 6.1: Block diagram for the proposed approach.

block, which elaborates the information received from friend peers and builds a social

reputation for those peers which friends have interacted with. A list of symbols used in

the description of this approach can be found in Table 6.1.

Social-based Free-riding Detection 135

Peer

Friends of Peer

Information about Peer:
Number of chunks exchanged

Previous Interactions

Peer

Chunk Request

Figure 6.2: Social Reputation

6.3.1 Credit-Based Framework

Due to completeness, we briefly describe here the main characteristics of our credit-

based framework. More details can be found in Section 5.4. A credit line mechanism is

used and there is a maximum number of chunks a peer can download from another user

without giving anything in exchange. If a peer requests more, it will be marked as mali-

cious. However, as the experimental evaluation will show in Section 6.4, in the proposed

framework we are relaxing the constraints on the maximum debit, giving less import-

ance to direct reciprocation, as in practice we also want to consider indirect cooperation.

Moreover, similarly to our previous approach, two different types of requests are defined:

regular and low priority. This is necessary, as we proved with Proposition 5.1 in Sec-

tion 5.4.2 that peers should not request more data than they can afford to upload, but

we would also like to exploit the spare resources in the system. Low-priority requests

will only be accepted if the peer that receives one is not fully utilising its capacity and

they will not be considered for the credit or debit computation.

Social-based Free-riding Detection 136

6.3.2 Social Networking Extension

The aim of this algorithm is to exploit information from trusted peers in the network

(friends) in order to better identify malicious users. We start by defining three types of

peers:

1. Peers inside the social network: We assume that they are always cooperative.

In fact, not being anonymous, their behaviour can be easily tracked [9]. When

choosing which peers to upload chunks to, they follow the strategy described in

this chapter.

2. Cooperative users outside the social network: These users follow the strategy

described in Chapter 5.

3. Free riders.

As far as our assumption regarding peers inside the social network is concerned, it

is necessary to illustrate further considerations regarding potential social attacks. In

Section 1.1 we already introduced Sybil attacks [10], where an entity presents itself to

other entities in the system using multiple identities. In our system, a malicious user

could potentially pretend to be several peers at the same time, requesting to establish

friendship connections with users it does not actually know. In a recent study by Manago

et al. [118] considering Facebook friendships established by a few students in an American

University, 90% of the connections were with close friends, activity partners, previous

connections or acquaintances, whereas 4% had been established with complete strangers.

We believe that this scenario might be realistic also for P2P systems, or in a practical

implementation of this architecture P2P users could be linked to existing social network

profiles, and therefore the impact of Sybil users may be limited. However, even supposing

that the percentage of friendship connections with unknown peers is higher than the one

found in the study, and that a significant share of these are malicious or Sybil users,

there are additional ways to tackle this problem:

i. as we already stated, since peers are not anonymous, their misbehaviour is easy to

manually detect by cooperative users, which can remove the link;

ii. there exists an automatic mechanism that can detect Sybil nodes with a high in-

terval of confidence, called SybilGuard [119].

Social-based Free-riding Detection 137

SybilGuard considers a social network where regular (honest) and Sybil nodes are both

present. When two nodes are connected by an edge, they are friends and if the edge is

between an honest and a Sybil user, it is called an attack edge. The number of attack

edges is limited by the number of connections the identities of a malicious entity can

establish with the rest of the network. The protocol then considers random walks,

which are defined in such a way that they verify a few properties when choosing an

honest node as starting point and are not likely to when starting from a Sybil node, due

to the limited number of attack nodes cooperative users can establish with the rest of

the network as compared to honest users. More specifically, this algorithm is able to

identify that several converging random walks start from Sybil nodes.

Regarding our approach, the credit line mechanism in Chapter 5 was introduced to

add some tolerance when a peer could not reciprocate resources immediately. However,

this mechanism only considered the information a single peer had about the rest of the

network. In this context, on the other hand, when a peer needs to mark a user which

is not a friend as cooperative or free-rider, it can ask its friends – which have interacted

with this user – for the number of chunks they have exchanged and classify the peer

according to this information. In a practical implementation, this information exchange

could either be direct, or handled by the tracker. An illustration of the concept of social

reputation is given in Figure 6.2. More specifically, the social reputation of peer Pj,

according to Pi is defined as:

Ri
soc(Pj)=̂

∑
k|Pk∈F i

j

χsk(j, t)− χrk(j, t), (6.2)

where again χrk(i, t) is the number of complete and unpolluted chunks Pk received from

Pi at time t, χsk(i, t) is the number of chunks Pk sent to Pi at time t and F i
j are those

friends of Pi which interacted with Pj. It is calculated as the overall credit or debt

towards a peer’s set of friends. This quantity needs to be compared to a threshold which

is based on the number of friends an unknown peer has interacted with. Its definition

is based on the idea that the larger the number of interactions is, the bigger the overall

contribution to these peers should be. Therefore, the incremental allowance (in chunks)

given by the presence of one more peer in F i
j should decrease as a function of its size.

Social-based Free-riding Detection 138

More formally, the social reputation threshold is defined as:

∆soc=̂

∆max

|F i
j |∑

n=1

1

n

 , (6.3)

where |F i
j | is the number of friends of Pi which have interacted with Pj. Therefore,

if Ri
soc(Pj) < ∆soc, Pj is marked as cooperative, otherwise it will have a bad social

reputation and Pi will refuse to cooperate with it.

We remind that that the optimal value for ∆max in the non-social case, found in the

experimental evaluation in Section 5.6 was a trade-off between minimising the number

of cooperative users erroneously detected as misbehaving and minimising the amount

of data uploaded to free-riders. By exploiting social features, it is possible to increase

the value of ∆max, as it will be shown in Section 6.4. This happens as free-riders will

have a low social reputation, while cooperative users will have the chance to reciprocate

resources to other peers.

6.3.3 Optimal Policy for Resource Allocation and Social

Free-riding Detection

As far as our social-based resource allocation algorithm is concerned, a peer Pk adopts

the following strategy when receiving a request ri from a peer Pi: every time a request is

received, it is again associated with a time-stamp and a TTL. Moreover, it is associated

with a score s(ri), defined as follows:

• If χsk(i, t) − χrk(i, t) ≥ ∆max, or the peer has a bad social reputation, s(ri) = −∞;

this request will be immediately rejected, as Pi might be a free-rider.

• If χsk(i, t) − χrk(i, t) < ∆max and the request has been sent with high priority,

the request will be inserted into a buffer and associated with a score s(ri) =(
α · ϕidep + β · ϕicr

)
, where again ϕidep and ϕicr are the the deprivation and credit

factors of Pi – defined in Section 5.4.4 – as computed by Pk and α and β are

arbitrary constants that satisfy α + β = 1.

Social-based Free-riding Detection 139

• If χsk(i, t) − χrk(i, t) < ∆max and the request has been sent with low priority, the

request will be inserted into the buffer with s(ri) = 0.

It is important to notice that the main difference with respect to the system in Chapter 5

is represented by adding social reputation to the first condition. Similarly to our previous

approach, every time a peer sends a chunk, it will accept the request in the buffer with

the highest score, while the others will remain in the buffer until their TTL expires. The

TTL for each request depends on the current arrival rate of both high and low priority

requests from its non-free-riding neighbours. If two or more requests have the highest

score, the peer will forward the least forwarded chunk.

A short proof of concept in favour of our social-based approach is presented in Lemma

6.1.

Lemma 6.1. Let us suppose that a free-rider PFR is interacting with N peers. Assuming

that none of these are friends, the free-rider can download (N∆max) chunks before being

marked as a free-rider by all of them. If all N peers are friends, the maximum number

of downloaded chunks is ∆max + b∆max

∑N−1
n=1

1
n
c − 1 ≤ (N∆max) for N ≥ 2.

Proof. When no social relations are considered, the total threshold (N∆max) is just the

sum of all the credit granted by all the peers. On the other hand, considering a peer

Pi and its friends, the free-rider has a maximum allowance ∆max granted by Pi and a

“social” allowance or credit b∆max

∑N−1
n=1

1
n
c, according to Section 5.4.4 and Eq. (6.3).

As we already stated, a free-rider will be identified by Pi if it either runs out of its non-

social or social credit. Therefore, if it downloads ∆max − 1 chunks from Pi and ∆soc − 1

from Pi’s neighbours (the latter corresponds to the social reputation Ri
soc(PFR)), the

free-rider cannot have been identified yet at least by Pi. It is important to note that

since the free-rider is interacting with all the peers in this set, ∆soc is the same for all

these users.

As soon as the free-rider downloads a chunk from any peer in the set, it is marked as

a free-rider by Pi, but nothing can be said yet about any of the other peers Pk. If the

free-rider has downloaded ∆max−1 chunks from a user P ′k, the same argument holds for

this peer. On the other hand, if the free-rider has downloaded less than this value from

any other P ′′k , it must have downloaded more chunks from the neighbours of P ′′k (since

the total number of downloaded chunks stays the same) and Rk′′
soc(PFR) > Ri

soc(PFR).

Therefore, since we assumed that Ri
soc(PFR) = ∆soc − 1, the free-rider must have a bad

Social-based Free-riding Detection 140

social reputation according to P ′′k . The maximum number of chunks the free-rider can

download is thus the one stated by the Lemma.

On the other hand, under the same circumstances cooperative users not in the social

network will have bigger chances to reciprocate their resources to any of these peers and

will therefore not be affected by this detection mechanism.

6.3.4 Tracker

P2P networks can in principle consist of several hundreds of users. If peers are connected

to random users, the chance that a friend is connected to the same peer is very low.

Therefore, if friend peers are connected to different users it is impossible to build a social

reputation. This problem can be overcome while building the overlay network.

The behaviour of the tracker is the following:

• If a peer inside the social network connects to the network, requesting a list of

users, the tracker returns a list of its friends currently connected to the network.

• If a peer outside the social network (cooperative or free-rider) connects to the

network, the tracker returns a list of peers in the social network and their friends.

By doing so, we make sure that peers outside the social network are always connected

to users that can exchange information about them.

6.4 Results

This technique, similarly to our previous approach, has been implemented using ns-

2 [111] simulator. It required an additional 500 lines of code with respect to the system

described in Chapter 5 to manage the social network and the social reputation. In

addition, we generated a graph which satisfied the Watts-Strogatz small world topology

requirement [42] using the graph generator of Pajek [45]. As far as the parameters

mentioned in Section 2.4 are concerned, the number of users N was 50, K = 4 and p =

0.55. They satisfy the requirements of Eq. (2.1) withK > ln(50) = 3.91 and the resulting

graph satisfied the property of connection. Therefore, it became the social network used

Social-based Free-riding Detection 141

Figure 6.3: Social Network used in our experimental evaluation.

for our experiments, which is also shown in Figure 6.31. In Section 2.4 we already stated

the limitations of this model, however, our experiments are performed on a relatively

small network, and we are interested in analysing the impact of information coming from

trusted peers without considering “friends of friends” relationships, therefore we used

this simple algorithm. When performing experiments on a larger scale, other models

like the “forest fire” [47], also explained in Section 2.4, should be used.

As far as the test sequence is concerned, City was repeated 15 times (for a total of

150 seconds) and encoded in WSVC format. The spatial resolution was 352×288 (CIF)

and the frame rate 30 fps. The video sequence was split into chunks of 4 kB. In addition,

there were 7 quality layers, ranging from 256 kbps to 768 kbps. In our tests only one

source had the sequence and peers were divided into the three specified categories. We

always had 50 peers in the social network, a variable percentage of free-riders and the

1This figure has been generated with Pajek [45].

Social-based Free-riding Detection 142

remaining peers were cooperative users outside the social network. The peers joined

the system within a one-second interval. After the pre-buffering, the playback started.

Cooperative users had an upload bandwidth ci = 75 or 100 kB/s. The size of the

network in our sets of experiments was 81 or 121 peers. This included a video source,

which distributed the first copy.

Figure 6.4 shows the behaviour of the free-riding detection mechanism as ∆max is

changing. There are 81 peers in the network, of which 20% free-riders. The upload

bandwidth of the regular peers is 75 kB/s and the source’s capacity is 150 kB/s. The

graph shows that, similarly to our previous results in Section 5.6, the average received

video bit-rate is low for very small values of the maximum credit due to false positives,

as well as for a very large ∆max, where on the other hand free-riders have more freedom

of action. The average received video bit-rate presents a maximum for ∆max = 16.

This value is bigger than the one found in our previous results. Our finding is that, as

free-riders are also detected by analysing their social reputation, more tolerance can be

added with respect to the reciprocation towards a single user, for which we also have

already provided a short proof of concept in Lemma 6.1. An important remark is that

users in the social network perform better than the others, as due to the social-based

mechanism they upload less data to free-riders and more to users which reciprocate.

Figure 6.5 and 6.6 show the impact of the weights assigned to the credit and depriva-

tion factor α and β on the behaviour of the system. ∆max is set to 16 chunks and there

are 81 and 121 peers. Free-riders are 20% and 33% of the total users and the upload

bandwidth is 100 kB/s and 75 kB/s respectively. The source has now an upload capacity

which is 150% of the cooperative peers’. The graphs show the average received video

bit-rate for cooperative peers when (α, β) varies between (0.25, 0.75) and (0.75, 0.25).

These graphs indicate that peers in the social network benefit from a higher received

video bit-rate, and statistical analysis indicates that this difference is significant, as the

t-test for (α, β) = (0.5, 0.5) gives t > 10 with p < 2 · 10−15 in both cases. Moreover, as

far as the peers in the social network are concerned, the best weights for the deprivation

and credit factor are (α, β) = (0.5, 0.5), which once again represent the best trade-off

between trying to repay a peer’s debt promptly and trying to provide peers with data

which they can share. This result is also confirmed by the statistical analysis of variance

(ANOVA), as F > 7 and p < 0.05 for both sets of experiments.

Social-based Free-riding Detection 143

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

2 4 8 16 32 64

A
v
e

ra
g
e

 R
e

c
e

iv
e
d

 V
id

e
o
 b

it
-r

a
te

 [
k
b
p

s
]

Maximum Credit ∆max [chunks]

Coop. Users in SN
Coop. Users outside SN

Free-riders

ANOVA; peers in SN t-test; peers in and out

for different ∆max, ∆max ≥ 4 of SN for ∆max = 16

F = 14.14 p < 3 · 10−10 t = 6.83 p < 5 · 10−9

Figure 6.4: Average received video bit-rate with 81 peers as a function of ∆max, with ci =
75kB/s, (α, β) = (0.5, 0.5) and 20% FRs.

 500

 520

 540

 560

 580

 600

 620

 640

(0.25, 0.75) (0.5, 0.5) (0.75, 0.25)

A
v
e

ra
g

e
 R

e
c
e

iv
e

d
 V

id
e

o
 b

it
-r

a
te

 [
k
b

p
s
]

(α, β)

Coop. Users in SN
Coop. Users outside SN

ANOVA; peers in SN for

different (α, β)

F = 3.08 p < 0.05

t-test; peers in and out of SN

for (α, β) = (0.5, 0.5)

t = 10.5 p < 2 · 10−15

Figure 6.5: Average received video bit-rate
with 81 peers as a function of
(α, β), ci = 100kB/s, ∆max =
16 and 20% FRs.

 300

 320

 340

 360

 380

 400

 420

 440

 460

(0.25, 0.75) (0.5, 0.5) (0.75, 0.25)

A
v
e

ra
g

e
 R

e
c
e

iv
e

d
 V

id
e

o
 b

it
-r

a
te

 [
k
b

p
s
]

(α, β)

Coop. Users in SN
Coop. Users outside SN

ANOVA; peers in SN for

different (α, β)

F = 12.2 p < 1.5 · 10−5

t-test; peers in and out of SN

for (α, β) = (0.5, 0.5)

t = 22.1 p < 10−15

Figure 6.6: Average received video bit-rate
with 121 peers as a function of
(α, β), ci = 75kB/s, ∆max = 16
and 33% FRs.

Social-based Free-riding Detection 144

An important remark is that Figure 6.6 indicates that (α, β) = (0.5, 0.5) is not the

best value for the peers outside the social network. On the contrary, the graph suggests

that the average received bit-rate increases as the deprivation factor increases. The

differences with the other sets of experiments are: a higher number of peers, a lower

bandwidth and a higher percentage of free-riders and the graph suggests that peers

outside the social network are more vulnerable to these factors, which determines a

worse performance. Our interpretation to the different impact of α and β is that these

peers’ worse performance implies that they have less chunks to share with the rest of

the network. This results in a contribution to the other peers that is not enough to

have a good credit factor. Therefore, giving more weight to the deprivation factor could

improve their overall performance.

6.5 Conclusion

We proposed a framework for P2P scalable video transmission that exploited elements

from social networking, credit-based systems and optimal network resource allocation

algorithms. Peers that established social relationships with their neighbours could share

information about the rest of the network and better identify free-riders. Experimental

evaluation showed that, with respect to the approach described in Chapter 5, it was

possible to increase the value of the maximum allowed credit and still be able to identify

free-riders, thanks to our social-based detection algorithm. The results also confirmed

that giving equal weight to the credit and deprivation factor still represented the best

trade-off and allowed to maximise the received bit-rate. Finally, peers in the social

network were rewarded by a better received video quality.

As far as the potential critical aspects of this approach are concerned, we identified

the fact that peers always distinguish between free-riders and cooperative peers, not

keeping the heterogeneity of the network into account. This suggests some ideas for

future work, as peers for example could refuse to share their chunks belonging to upper

quality enhancement layers to peers which are not considered “good” enough.

In the next chapter, we will summarise all the achievements described in this thesis

and we will discuss how this work can be extended in the future.

Chapter 7

Conclusion and Future Work

This Chapter summarises the main contributions that can be found in this Ph.D. thesis

in the field of scalable video transmission over P2P, as well as providing directions for

future work.

7.1 Contributions

Our contributions described in this thesis can be summarised as:

• We performed a subjective video evaluation simulating different networking con-

ditions using two different scalable codecs: WSVC and H.264/SVC. We defined

realistic video transmission scenarios and asked test subjects to rank their visual

experience under these different circumstances. These results were compared with

an objective evaluation and the two codec themselves were compared both in terms

of objective and subjective performance. The conclusion of this study was taken

into account in the design of an actual P2P system.

• We designed a sliding window-based piece picking policy that requests the quality

layers of the original scalable video bit-stream in a hierarchical fashion, so that the

received video bit-rate can adapt to the current download bandwidth of a peer.

• We proposed a neighbour selection policy that only requests P2P chunks belonging

to the base layer to peers that have proven to be good enough. This policy ranks all

145

Conclusion and Future Work 146

the peers a user is currently downloading from according to their download speed

and subsequently selects the best users in the network.

• We built a credit-based framework for optimal resource allocation in P2P whose

joint aim is to cut free-riders out of the system. This technique uses a credit line

mechanism, which means that there is a maximum difference in the number of

video chunks two peers can exchange before the one which is in debt is marked

as a free-rider. We defined two types of requests: high and low priority. They

have a different impact on a user’s reputation to exploit any idle resources in the

network. For all the supposed non-free-riding peers, their requests are assigned a

score which depends on two factors: their past generosity towards the peer that

receives the request (credit factor) and the potential contribution they can receive

from it (deprivation factor). We also showed how giving different importance to

these two factors has an impact on the behaviour of the proposed system.

• We developed an algorithm that exploits the knowledge of a peer’s friends to com-

pute a third peer’s social reputation and uses it to determine if that peer is a

free-rider. It tries to estimate the behaviour of this unknown peer from the number

of friends it has interacted with and the number of video chunks that have been

exchanged with them. More specifically, this approach uses a credit line mechanism

applied to a larger set of peers. The maximum total difference allowed depends on

the size of this set, however, for each new interaction the additional granted credit

decreases.

• Finally, for the social-based approach, we designed a tracker protocol that generates

connections among users taking social relationships into account. Friend users are

connected among each other and peers outside the social network are linked to

groups of friend users. This way, free-riding peers can be detected by our social

based algorithm.

7.2 Future Work

The new High Efficiency Video Coding (HEVC) standard [120], also known as H.265 [121]

has been recently proposed. Its scalable extension is yet to be ratified, despite a few

Conclusion and Future Work 147

preliminary techniques having already been suggested [122, 123]. We believe that the

most sensible approach is first of all to research how our proposed algorithms can be

adapted to the new standard. Therefore, we are closely following all the updates related

to the development of this new codec. On the other hand, as far as the scalable codecs

currently available are concerned, we will perform tests on longer sequences, also con-

sidering the impact of playback pauses, and we will not only focus on subjective video

perception but also on QoE in terms of user engagement.

Moreover, possible directions regarding further development of our research work

include further exploitation of social-based features in P2P systems. Some ideas include:

• The overlay P2P network should only correspond to a social network. In this case,

peers are completely de-anonymised and it is very easy to detect free-riders and

malicious users in general. However, this approach requires a peer’s friends to be

interested in the same content. Intuitively, if there are not enough friends currently

in the swarm, the streaming might not be sustainable.

• Other techniques might not simply distinguish between friends and the rest of the

network, but consider the degree of separation. This approach might potentially

build a “chain of trust” that connects distant peers. Due to the small world topology

of social networks, information about users’ behaviour might travel fast through

the network. In our future research, we will either consider real social networks,

or generate graphs whose degree follows a power-law and that become more dense

over time, as suggested by the forest fire model [47].

• Friend peers that are interested in the same content might form coalitions to down-

load different sets of chunks, and dedicate part of their bandwidth for internal

exchange of what they have downloaded.

As far as our credit-based model is concerned, we will formulate it within a game

theoretic framework by considering the peer strategies and for example by proving that

the system is stable in terms of Nash Equilibrium. Furthermore, an idea to improve the

current state-of-the-art might come from Bayesian game theory [8]. In fact, each peer has

a maximum upload capacity it wants to share (zero for a free-rider), which determines

its maximum number of quality layers it can upload in real-time and therefore its type

θ. Each peer knows its own type – which we can also assume to be assigned by Nature

– and tries to estimate those of its neighbours from their actions. In order to achieve

Conclusion and Future Work 148

a Perfect Bayesian Equilibrium (PBE) at each time every player must follow a strategy

that maximises its expected pay-off given the expected strategies played by the other

users. These strategies depend on beliefs, based on a peer’s (incomplete) information set

(e.g. a list of previous interactions). That is, at each round of the game a peer can follow

a strategy that depends on the estimated type of its neighbour. Since we are dealing

with transmission of scalable video streams, a peer might for example refuse to share

enhancement layers of a sequence if it believes that its neighbour is not sharing enough

bandwidth. This approach still presents some open issues, such as how to efficiently

estimate a peer’s type and what the optimal resource allocation policy is if a peer

receives more requests than it can afford to accept.

Another open issue is the impact of sudden variations in the network (flash crowd,

churn, etc.). Auction-based mechanisms [124] or other models which see P2P network

as a market [125] could help solve this problem and this could become an interesting

area of research in the near future. Finally, another area of research could be network

coding [126,127] applied to P2P, which is an area we have already started exploring and

our contribution can be found in [18].

Bibliography

[1] B. Cohen, “Incentives build robustness in BitTorrent,” in Proc. of 3rd Int. Conf.

Peer-to-Peer Computing, April 2003.

[2] S. Jun and M. Ahamad, “Incentives in BitTorrent induce free riding,” in Proc. of

ACM SIGCOMM Workshop on Economics of peer-to-peer systems (P2PECON),

pp. 116–121, 2005.

[3] J. Liang, R. Kumar, Y. Xi, and K. W. Ross, “Pollution in P2P file sharing sys-

tems,” in Proc. of IEEE Conf. on Computer Communications, December 2005.

[4] N. Ahmed, T. Natarajan, and K. Rao, “Discrete Cosine Transform,” Computers,

IEEE Transactions on, vol. C-23, no. 1, pp. 90–93, 1974.

[5] H. Schwarz, D. Marpe, and T. Wiegand, “Overview of the scalable video coding

extension of the H.264/AVC standard,” IEEE Trans. on Circuits and Systems for

Video Technology, vol. 17, pp. 1103–1120, Sept. 2007.

[6] C. K. Chui, An introduction to wavelets. Academic Press Professional, Inc., 1992.

[7] N. Ramzan, T. Zgaljic, and E. Izquierdo, “An efficient optimisation scheme for scal-

able surveillance centric video communications,” Signal Processing: Image Com-

munication, vol. 24, pp. 510–523, July 2009.

[8] M. J. Osborne and A. Rubinstein, A Course in Game Theory. MIT Press, 1994.

[9] J. J. D. Mol, J. A. Pouwelse, M. Meulpolder, D. H. J. Epema, and H. J. Sips,

“Give-to-get: free-riding resilient video-on-demand in P2P systems,” in Proc. of

SPIE, Multimedia Computing and Networking Conference (MMCN), 2008.

[10] J. R. Douceur, “The Sybil Attack,” in Revised Papers from the First International

Workshop on Peer-to-Peer Systems, pp. 251–260, 2002.

150

Bibliography 151

[11] R. Landa, D. Griffin, R. G. Clegg, E. Mykoniati, and M. Rio, “A Sybilproof In-

direct Reciprocity Mechanism for Peer-to-Peer Networks,” in Proceedings of IEEE

INFOCOM 2009, pp. 343–351, IEEE, 2009.

[12] N. Ramzan, E. Quacchio, T. Zgaljic, S. Asioli, L. Celetto, E. Izquierdo, and

F. Rovati, “Peer-to-peer Streaming of Scalable Video in Future Internet Applica-

tions,” IEEE Communications Magazine, Special Issue on Future Media Internet,

vol. 49, pp. 128–135, March 2011.

[13] S. Asioli, N. Ramzan, and E. Izquierdo, “A Game Theoretic Approach to

Minimum-delay Scalable Video Transmission over P2P,” Signal Processing: Image

Communication, vol. 27, no. 5, pp. 513–521, 2012.

[14] S. Asioli, N. Ramzan, and E. Izquierdo, “Efficient Scalable Video Streaming Over

P2P Network,” in Proceedings of the 1st International ICST Conference on User

Centric Media (UCMedia), December 2009.

[15] S. Asioli, N. Ramzan, and E. Izquierdo, “A Novel Technique for Efficient Peer-

to-Peer Scalable Video Transmission,” in Proceedings of the 2010 European Signal

Processing Conference (EUSIPCO), August 2010.

[16] S. Asioli, N. Ramzan, and E. Izquierdo, “A Game Theoretic Framework for Op-

timal Resource Allocation in P2P Scalable Video Streaming,” in Proceedings of the

2012 IEEE International Conference on Acoustics, Speech and Signal Processing

(ICASSP), pp. 2293–2296, IEEE, 2012.

[17] S. Asioli, N. Ramzan, and E. Izquierdo, “Exploiting Social Relationships for Free-

riders Detection in Minimum-delay P2P Scalable Video Streaming,” in Proceedings

of the 2012 IEEE International Conference on Image Processing (ICIP), pp. 2257–

2260, IEEE, 2012.

[18] R. Mekuria, M. Sanna, S. Asioli, E. Izquierdo, D. Bulterman, and P. Cesar, “A 3D

Tele-Immersion System Based on Live Captured Mesh Geometry,” in Proceedings

of the ACM Multimedia Systems Conference (ACM MMSys), 2013.

[19] N. Crespi, B. Molina, C. Palau, et al., “QoE Aware Service Delivery in Distributed

Environment,” in Advanced Information Networking and Applications (WAINA),

2011 IEEE Workshops of International Conference on, pp. 837–842, IEEE, 2011.

Bibliography 152

[20] A. Balachandran, V. Sekar, A. Akella, S. Seshan, I. Stoica, and H. Zhang, “A

quest for an Internet video quality-of-experience metric,” in Proceedings of the

11th ACM Workshop on Hot Topics in Networks, HotNets-XI, pp. 97–102, ACM,

2012.

[21] R. Schollmeier, “A Definition of Peer-to-Peer Networking for the Classification

of Peer-to-Peer Architectures and Applications,” in Proceedings of the First In-

ternational Conference on Peer-to-Peer Computing, P2P ’01, pp. 101–108, IEEE

Computer Society, 2001.

[22] D. P. Anderson, J. Cobb, E. Korpela, M. Lebofsky, and D. Werthimer, “SETI

at home: an experiment in public-resource computing,” Commun. ACM, vol. 45,

pp. 56–61, Nov. 2002.

[23] S. A. Baset and H. Schulzrinne, “An analysis of the Skype peer-to-peer internet

telephony protocol,” in IEEE infocom, vol. 6, pp. 23–29, 2006.

[24] P. K. Gummadi, S. Saroiu, and S. D. Gribble, “A measurement study of Nap-

ster and Gnutella as examples of peer-to-peer file sharing systems,” SIGCOMM

Comput. Commun. Rev., vol. 32, pp. 82–82, Jan. 2002.

[25] I. Filali, F. Bongiovanni, F. Huet, and F. Baude, “A survey of structured P2P

systems for RDF data storage and retrieval,” in Transactions on large-scale data-

and knowledge-centered systems III, pp. 20–55, Springer, 2011.

[26] N. Leibowitz, M. Ripeanu, and A. Wierzbicki, “Deconstructing the KaZaA net-

work,” in Internet Applications. WIAPP 2003. Proceedings. The Third IEEE

Workshop on, pp. 112–120, IEEE, 2003.

[27] M. Piatek, T. Isdal, T. Anderson, A. Krishnamurthy, and A. Venkataramani, “Do

incentives build robustness in BitTorrent?,” in Proceedings of the 4th USENIX con-

ference on Networked systems design & implementation, NSDI’07, (Berkeley,

CA, USA), USENIX Association, 2007.

[28] E. Peserico, “P2P Economies,” in Proceedings of the ACM Special Interest Group

on Data Communication (SIGCOMM), 2006.

[29] V. Vishnumurthy, S. Chandrakumar, and E. G. Sirer, “KARMA: A Secure Eco-

nomic Framework for Peer-to-Peer Resource Sharing,” in Workshop on Economics

Bibliography 153

of Peer-to-Peer Systems, 2003.

[30] M. Gupta, P. Judge, and M. Ammar, “A reputation system for peer-to-peer net-

works,” in Proceedings of the 13th international workshop on Network and operat-

ing systems support for digital audio and video, pp. 144–152, ACM, 2003.

[31] T. Zgalkic, M. Mrak, S. Wan, and N. Ramzan, “D3.11 Evaluation of aceSVC and

solution for video playing,” aceMedia Technical Document, 2007.

[32] T. Zgaljic, N. Sprljan, and E. Izquierdo, “Bit-stream allocation methods for scal-

able video coding supporting wireless communications,” Signal Processing: Image

Communications, vol. 22, no. 3, pp. 298–316, 2007.

[33] J.-R. Ohm, “Three-dimensional subband coding with motion compensation,”

IEEE Trans. Image Processing, vol. 3, no. 5, pp. 559–571, 1994.

[34] J. M. Shapiro, “Embedded image coding using zerotrees of wavelet coefficients,”

IEEE Transactions on Signal Processing, vol. 41, pp. 3445–3462, December 1993.

[35] T. Wiegand, G. J. Sullivan, G. Bjontegaard, and A. Luthra, “Overview of the

H.264/AVC video coding standard,” IEEE Trans. on Circuits and Systems for

Video Technology, vol. 13, pp. 560–576, July 2003.

[36] “ITU-T H.262 , Generic Coding of Moving Pictures and Associated Audio Inform-

ation - Part 2: Video, International Telecommunication Union Recommendation,

1994.”

[37] G. Ct, B. Erol, M. Gallant, and F. Kossentini, “H.263+: Video coding at low bit-

rates,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 8,

pp. 849–866, 1998.

[38] C. Poynton, “Chroma subsampling notation,” Digital Video and HDTV: Al-

gorithms and Interfaces, vol. 19, p. 2004, 2002.

[39] N. Ljepava, R. R. Orr, S. Locke, and C. Ross, “Personality and social character-

istics of facebook non-users and frequent users,” Computers in Human Behavior,

vol. 29, no. 4, pp. 1602–1607, 2013.

[40] N. B. Ellison et al., “Social network sites: Definition, history, and scholarship,”

Journal of Computer-Mediated Communication, vol. 13, no. 1, pp. 210–230, 2007.

Bibliography 154

[41] A. Papanikolaou, V. Vlachos, P. Chatzimisios, and C. Ilioudis, “Privacy Issues in

Social Networks,” Social Network Engineering for Secure Web Data and Services,

p. 162, 2013.

[42] D. J. Watts and S. H. Strogatz, “Collective dynamics of ‘small-world’ networks,”

Nature, vol. 393, pp. 440–442, June 1998.

[43] S. Milgram, “The Small World Problem,” Psychology Today, vol. 1, no. 1, pp. 61–

67, 1967.

[44] L. Backstrom, P. Boldi, M. Rosa, J. Ugander, and S. Vigna, “Four degrees of sep-

aration,” in Proceedings of the 3rd Annual ACM Web Science Conference, WebSci

’12, pp. 33–42, ACM, 2012.

[45] V. Batagelj and A. Mrvar, “Pajek – Program for Analysis and Visualization of

Large Networks, Reference Manual.” 2011.

[46] R. Albert and A.-L. Barabási, “Statistical mechanics of complex networks,” Re-

views of modern physics, vol. 74, no. 1, p. 47, 2002.

[47] J. Leskovec, J. Kleinberg, and C. Faloutsos, “Graph evolution: Densification

and shrinking diameters,” ACM Transactions on Knowledge Discovery from Data

(TKDD), vol. 1, no. 1, p. 2, 2007.

[48] R. S. Cruz, M. S. Nunes, C. Z. Patrikakis, and N. C. Papaoulakis, “SARACEN:

A platform for adaptive, Socially Aware, collaboRative, scAlable Coding mEdia

distributioN,” in GLOBECOM Workshops (GC Wkshps), 2010 IEEE, pp. 1356–

1360, IEEE, 2010.

[49] M. Tekalp, N. Ramzan, C. G. Gurler, S. Asioli, T. Bagci, and D. Esteban, “D3.1

Evaluation of scalable and multiple description coding in P2P applications,” Sara-

cen Technical Document, 2012.

[50] M. Tekalp, N. Ramzan, C. G. Gurler, S. Asioli, T. Bagci, C. Patrikakis,

N. Papaoulakis, and N. Protonotarios, “D3.2 Measuring and Optimization of Qual-

ity of Experience in P2P video streaming,” Saracen Technical Document, 2013.

[51] M. Tekalp, N. Ramzan, T. Bagci, S. Asioli, C. G. Gurler, E. Garrido, and

D. Esteban, “D3.4 Evaluation of the Resilience Mechanisms For Integration in

Bibliography 155

the Proposed Architecture,” Saracen Technical Document, 2013.

[52] R. Cruz, M. Nunes, N. Ramzan, S. Asioli, and D. Esteban, “D4.2 Evaluation of

Adaptive and QoS aware scalable coded streaming mechanism,” Saracen Technical

Document, 2012.

[53] S. Winkler and P. Mohandas, “The Evolution of Video Quality Measurement:

From PSNR to Hybrid Metrics,” Broadcasting, IEEE Transactions on, vol. 54,

no. 3, pp. 660–668, 2008.

[54] B. Girod, “What’s wrong with mean-squared error?,” in Digital images and human

vision, pp. 207–220, MIT press, 1993.

[55] J. Guo, M. Van Dyke-Lewis, and H. Myler, “Gabor difference analysis of digital

video quality,” Broadcasting, IEEE Transactions on, vol. 50, no. 3, pp. 302–311,

2004.

[56] S. S. Hemami and A. R. Reibman, “No-reference image and video quality es-

timation: Applications and human-motivated design,” Image Commun., vol. 25,

pp. 469–481, Aug. 2010.

[57] J. Monteiro and M. S. Nunes, “A subjective quality estimation tool for the evalu-

ation of video communication systems,” in Computers and Communications, 2007.

ISCC 2007. 12th IEEE Symposium on, pp. 75–80, 2007.

[58] “ITU-R BT.500-12, Methodology for the subjective assessment of the quality

of television pictures, International Telecommunication Union Recommendation,

Rev. 12, 2009..”

[59] “ITU-T P.910, Subjective video quality assessment methods for multimedia ap-

plications, International Telecommunication Union Recommendation, 1999..”

[60] A. Puri and A. Eleftheriadis, “MPEG-4: an object-based multimedia coding stand-

ard supporting mobile applications,” Mob. Netw. Appl., vol. 3, pp. 5–32, June 1998.

[61] N. Cranley, P. Perry, and L. Murphy, “User perception of adapting video quality,”

International Journal of Human-Computer Studies, vol. 64, pp. 637–647, Aug.

2006.

Bibliography 156

[62] G. Zhai, J. Cai, W. Lin, X. Yang, W. Zhang, and M. Etoh, “Cross-dimensional

perceptual quality assessment for low bit-rate videos,” IEEE Transactions on Mul-

timedia, vol. 10, no. 7, pp. 1316–1324, 2008.

[63] A. Eichhorn and P. Ni, “Pick your layers wisely - a quality assessment of H.264

scalable video coding for mobile devices,” in Proceedings of the 2009 IEEE inter-

national conference on Communications, ICC’09, pp. 5446–5451, 2009.

[64] W. Song, D. Tjondronegoro, and S. Azad, “User-Centered video quality assessment

for scalable video coding of H.264/AVC standard,” in Proceedings of the 16th

international conference on Advances in Multimedia Modeling, MMM’10, pp. 55–

65, 2010.

[65] J.-S. Lee, F. De Simone, N. Ramzan, Z. Zhao, E. Kurutepe, T. Sikora, J. Os-

termann, E. Izquierdo, and T. Ebrahimi, “Subjective evaluation of scalable video

coding for content distribution,” in Proceedings of the International ACM confer-

ence on Multimedia, MM ’10, pp. 65–72, 2010.

[66] C. Fenimore, J. Libert, and S. Wolf, “Perceptual effects of noise in digital video

compression,” in 140th SMPTE Technical Conference, pp. 28–31, 1998.

[67] R. K. Mok, X. Luo, E. W. Chan, and R. K. Chang, “QDASH: a QoE-aware DASH

system,” in Proceedings of the 3rd Multimedia Systems Conference, pp. 11–22,

ACM, 2012.

[68] J. A. Pouwelse, P. Garbacki, J. Wang, A. Bakker, J. Yang, A. Iosup, D. H. J.

Epema, M. Reinders, M. R. van Steen, and H. J. Sips, “Tribler: A social-based

peer-to-peer system,” Concurrency and Computation: Practice and Experience

Journal, vol. 20, pp. 127–138, February 2008.

[69] Y. Huang, T. Z. Fu, D.-M. Chiu, J. Lui, and C. Huang, “Challenges, design

and analysis of a large-scale P2P-VoD system,” in ACM SIGCOMM Computer

Communication Review, pp. 375–388, ACM, 2008.

[70] N. Vratonjić, P. Gupta, N. Knežević, D. Kostić, and A. Rowstron, “Enabling

DVD-like features in P2P Video-on-Demand Systems,” in Proceedings of the 2007

workshop on Peer-to-peer streaming and IP-TV, pp. 329–334, ACM, 2007.

Bibliography 157

[71] S. Annapureddy, C. Gkantsidis, P. Rodriguez, and L. Massoulie, “Providing Video-

on-Demand using Peer-to-Peer networks,” in Proc. Internet Protocol TeleVision

(IPTV) workshop, 2006.

[72] M. Castro, P. Druschel, A.-M. Kermarrec, A. Nandi, A. Rowstron, and A. Singh,

“SplitStream: High-Bandwidth Multicast in Cooperative Environments,” in ACM

SIGOPS Operating Systems Review, pp. 298–313, ACM, 2003.

[73] I. Lee and L. Guan, “Reliable video communication with multi-path streaming

using MDC,” in Multimedia and Expo, 2005. ICME 2005. IEEE International

Conference on, pp. 4–pp, IEEE, 2005.

[74] P. Shah and J. F. Paris, “Peer-to-peer multimedia streaming using BitTorrent,”

in Proc. of IEEE International Performance, Computing, and Communications

Conference, 2007. IPCCC 2007., 2007.

[75] A. Vlavianos, M. Iliofotou, and M. Faloutsos, “BiToS: Enhancing BitTorrent for

supporting streaming applications,” in Proc. of 25th IEEE International Confer-

ence on Computer Communications IEEE (INFOCOMM), April 2006.

[76] T. Tucker, D. Pate, and C. Rattanapoka, “ABC [Yet Another Bittorrent Client].”

[77] J. Hoffman, “BitTornado,” 2011.

[78] Z. Liu, Y. Shen, S. S. Panwar, K. W. Ross, and Y. Wang, “Using layered video to

provide incentives in P2P live streaming,” in Proc. of 2007 Workshop on Peer-to-

peer streaming and IP-TV (P2P-TV), pp. 311–316, 2007.

[79] X. Hei, Y. Liu, and K. W. Ross, “IPTV over P2P streaming networks: the mesh-

pull approach,” IEEE Communications Magazine, vol. 46, pp. 86–92, March 2008.

[80] S. Xie, B. Li, G. Keung, and X. Zhang, “Coolstreaming: Design, Theory, and

Practice,” Multimedia, IEEE Transactions on, vol. 9, no. 8, pp. 1661–1671, 2007.

[81] A. Legout, N. Liogkas, E. Kohler, and L. Zhang, “Clustering and sharing incentives

in BitTorrent systems,” in ACM SIGMETRICS Performance Evaluation Review,

pp. 301–312, ACM, 2007.

[82] G. Van Rossum and F. L. Drake Jr, Python reference manual. Centrum voor

Wiskunde en Informatica, 1995.

Bibliography 158

[83] R. A. Adams, Calculus : A Complete Course. Addison-Wesley, 5th ed., 2003.

[84] C. Buragohain, D. Agrawal, and S. Suri, “A game theoretic framework for incent-

ives in P2P systems,” in Proc. of 3rd International Conference on Peer-to-Peer

Computing, 2003.

[85] W. S. Lin, H. V. Zhao, and K. J. R. Liu, “Incentive cooperation strategies for peer-

to-peer live multimedia streaming social networks,” IEEE Trans. on Multimedia,

vol. 11, pp. 396–412, April 2009.

[86] K. Aberer and Z. Despotovic, “On reputation in game theory - Application to

online settings,” tech. rep., Technical Report, 2004.

[87] G. R. Grimmett and D. R. Stirzaker, Probability and random processes. Oxford

University Press, USA, 2001.

[88] H. Bergström, “On the central limit theorem,” Scandinavian Actuarial Journal,

vol. 1944, no. 3-4, pp. 139–153, 1944.

[89] J. Park and M. van der Schaar, “A game theoretic analysis of incentives in content

production and sharing over peer-to-peer networks,” Computing Research Repos-

itory, October 2009.

[90] H. Park and M. van der Schaar, “A framework for foresighted resource reciproca-

tion in P2P networks,” IEEE Trans. on Multimedia, vol. 11, January 2009.

[91] H. Park and M. van der Schaar, “Evolution of resource reciprocation strategies in

P2P networks,” IEEE Trans. on Signal Processing, vol. 58, March 2010.

[92] L. Chisci, F. Papi, T. Pecorella, and R. Fantacci, “An evolutionary game approach

to P2P video streaming,” in Proc. of IEEE GLOBECOM, pp. 1–5, 2009.

[93] Y. Matsuda, M. Sasabe, and T. Takine, “Evolutionary game theory-based evalu-

ation of P2P file-sharing systems in heterogeneous environments,” International

Journal of Digital Multimedia Broadcasting, 2010.

[94] Y. Chen, B. Wang, W. Lin, Y. Wu, and K. Liu, “Cooperative peer-to-peer stream-

ing: an evolutionary game-theoretic approach,” IEEE Trans. on Circuits and Sys-

tems for Video Technology, vol. 20, no. 10, pp. 1346–1357, 2010.

Bibliography 159

[95] C. Aperjis and R. Johari, “A peer-to-peer system as an exchange economy,” in

Proc. of 2006 Workshop on Game theory for communications and networks (Game-

Nets), 2006.

[96] D. P. Bertsekas, Dynamic Programming and Stochastic Control. New York: Aca-

demic, 1976.

[97] J. W. Weibull, Evolutionary Game Theory. MIT Press, 1997.

[98] M. Faloutsos, P. Faloutsos, and C. Faloutsos, “On power-law relationships of the

internet topology,” in Proc. of Conf. on Applications, technologies, architectures,

and protocols for computer communication (SIGCOMM), pp. 251–262, 1999.

[99] C. E. Tsourakakis, P. Drineas, E. Michelakis, I. Koutis, and C. Faloutsos, “Spec-

tral counting of triangles in power-law networks via element-wise sparsification,”

in Proc. of Int. Conf. on Advances in Social Network Analysis and Mining (ASO-

NAM), pp. 66–71, IEEE Computer Society, 2009.

[100] G. Palla, I. Derényi, I. Farkas, and T. Vicsek, “Uncovering the overlapping com-

munity structure of complex networks in nature and society,” Nature, vol. 435,

pp. 814–818, June 2005.

[101] S. Fortunato, A. Flammini, and F. Menczer, “Scale-free network growth by rank-

ing,” Physical Review Letters, vol. 96, no. 21, 2006.

[102] L. Zhang, J. K. Muppala, and W. Tu, “Exploiting proximity in cooperative down-

load of large files in peer-to-peer networks,” in Proc. of 2nd International Confer-

ence on Internet and Web Applications and Services (ICIW), 2007.

[103] B. Liu, Y. Cui, Y. Lu, and Y. Xue, “Locality-awareness in BitTorrent-like P2P

applications,” IEEE Trans. on Multimedia, vol. 11, pp. 361–371, April 2009.

[104] W. Galuba, K. Aberer, Z. Despotovic, and W. Kellerer, “Leveraging social net-

works for increased BitTorrent robustness,” in Proc. of 7th IEEE Conference on

Consumer Communications and Networking, pp. 159–163, 2010.

[105] F. Huang, B. Ravindran, and A. Vullikanti, “An approximation algorithm for

minimum-delay peer-to-peer streaming,” in Proc. of Int. Conf. on Peer-to-Peer

Computing, pp. 71–80, September 2009.

Bibliography 160

[106] F. Picconi and L. Massoulie, “Is there a future for mesh-based live video stream-

ing?,” in Proc. of 8th Int. Conf. on Peer-to-Peer Computing, pp. 289–298, 2008.

[107] L. Massoulie, A. Twigg, C. Gkantsidis, and P. Rodriguez, “Randomized Decent-

ralized Broadcasting Algorithms,” in Proc. of 26th IEEE Int. Conf. on Computer

Communications, INFOCOM 2007, pp. 1073–1081, 2007.

[108] P. Baccichet, T. Schierl, T. Wiegand, and B. Girod, “Low-delay peer-to-peer

streaming using scalable video coding,” in Proc. of Packet Video 2007, pp. 173–

181, 2007.

[109] C. Liang, Y. Guo, and Y. Liu, “Investigating the scheduling sensitivity of P2P

video streaming: an experimental study,” IEEE Trans. on Multimedia, vol. 11,

pp. 348–360, April 2009.

[110] X. Hei, C. Liang, J. Liang, Y. Liu, and K. W. Ross, “A measurement study of a

large-scale P2P IPTV system,” IEEE Trans. on Multimedia, vol. 9, pp. 1672–1687,

November 2007.

[111] “ns-2, Network Simulator 2,” 1989.

[112] K. Eger, T. Hoßfeld, A. Binzenhöfer, and G. Kunzmann, “Efficient simulation

of large-scale P2P networks: packet-level vs. flow-level simulations,” in Proc. of

2nd Workshop on Use of P2P, GRID and Agents for the Development of Content

Networks, UPGRADE ’07, pp. 9–16, ACM, 2007.

[113] B. Stroustrup, The C++ Programming Language. Addison-Wesley, 2000.

[114] J. K. Ousterhout and K. Jones, Tcl and the Tk toolkit, vol. 227. Addison-Wesley,

1994.

[115] S. Buchegger, D. Schiöberg, L.-H. Vu, and A. Datta, “PeerSoN: P2P social net-

working: early experiences and insights,” in Proceedings of the Second ACM

EuroSys Workshop on Social Network Systems, pp. 46–52, ACM, 2009.

[116] Y.-F. Wang, Y. Hori, and K. Sakurai, “Characterizing economic and social prop-

erties of trust and reputation systems in P2P environment,” Journal of Computer

Science and Technology, vol. 23, no. 1, pp. 129–140, 2008.

Bibliography 161

[117] Y. Zhang and M. van der Schaar, “Peer-to-Peer multimedia sharing based on

social norms,” Signal Processing: Image Communications, vol. 27, pp. 383–400,

May 2012.

[118] A. M. Manago, T. Taylor, and P. M. Greenfield, “Me and my 400 friends: The

anatomy of college students’ Facebook networks, their communication patterns,

and well-being.,” Developmental psychology, vol. 48, no. 2, p. 369, 2012.

[119] H. Yu, M. Kaminsky, P. B. Gibbons, and A. D. Flaxman, “SybilGuard: Defending

against sybil attacks via social networks,” IEEE/ACM Transactions on Network-

ing, vol. 16, no. 3, pp. 576–589, 2008.

[120] G. Sullivan, J. Ohm, W.-J. Han, and T. Wiegand, “Overview of the High Efficiency

Video Coding (HEVC) Standard,” Circuits and Systems for Video Technology,

IEEE Transactions on, vol. 22, no. 12, pp. 1649–1668, 2012.

[121] “ITU-T H.265, High Efficiency Video Coding, International Telecommunication

Union Recommendation, 2013.”

[122] D. Hong, W. Jang, J. Boyce, and A. Abbas, “Scalability support in hevc,” in

Circuits and Systems (ISCAS), 2012 IEEE International Symposium on, pp. 890–

893, 2012.

[123] Z. Shi, X. Sun, and F. Wu, “Spatially scalable video coding for hevc,” in Multi-

media and Expo (ICME), 2012 IEEE International Conference on, pp. 1091–1096,

2012.

[124] D. Levin, K. LaCurts, N. Spring, and B. Bhattacharjee, “Bittorrent is an Auc-

tion: Analyzing and Improving BitTorrent’s Incentives,” in Proc. of the ACM

SIGCOMM 2008 Conf. on Data communication, SIGCOMM ’08, pp. 243–254,

ACM, 2008.

[125] A. H. Payberah, F. Rahimian, S. Haridi, and J. Dowling, “Sepidar: Incentivized

Market-Based P2P Live-Streaming on the Gradient Overlay Network,” IEEE In-

ternational Symposium on Multimedia, pp. 1–8, 2010.

[126] M. Sanna and E. Izquierdo, “A Method for Detection/Deletion via Network Coding

for Unequal Error Protection of Scalable Video over Error-Prone Networks,” in

Mobile Multimedia Communications, pp. 105–120, Springer, 2012.

Bibliography 162

[127] H. Zeng, J. Huang, S. Tao, and W. Cheng, “A simulation study on network coding

parameters in P2P content distribution system,” in Communications and Network-

ing in China, 2008. ChinaCom 2008. Third International Conference on, pp. 197–

201, IEEE, 2008.

	Introduction
	Motivation
	Objectives
	Summary of Achievements
	List of Publications
	Structure of the Thesis

	Background
	Subjective Video Quality and Quality of Experience
	P2P Systems
	A Brief History of P2P
	BitTorrent
	Credit-based P2P Systems

	Scalable Video Coding
	SVC Modules
	Scalability Functionalities
	WSVC, a Wavelet-based SVC
	H.264/SVC, the Scalable Extension of H.264/AVC
	Final Remarks about SVC

	Introduction to Social Networks
	Summary

	Subjective Video Quality Evaluation of SVC over P2P
	Motivation and Related Work
	Subjective Evaluation Methodology
	Test Sequences
	Testing Environment
	Subjective Testing
	Scenarios for Subjective Evaluation of P2P Transmission

	Results
	Objective Results
	Subjective Results

	Conclusion
	A Lesson Learned

	Scalable Video Adaptation to P2P Transmission
	Overview of a General Social P2P SVC System
	Block Diagram

	Problem Description
	Related Work
	Popular P2P Systems for Video Transmission
	Multimedia Streaming Using BitTorrent and BiToS
	Tribler BitTorrent Client
	P2P Scalable Streaming Using a Sliding Window

	Proposed Approach
	Piece Picking Policy
	Neighbour Selection Policy

	Implementation
	Results
	Dataset Description
	Comparison Between a Non-scalable and a Scalable Codec
	Effects of Neighbour Selection Policy

	Conclusion

	Joint Free-riding Detection and Resource Optimisation
	Problem Description
	A Simplified Case Study
	An Analytical Solution
	Additional Problems

	Related Work
	A Simple File-sharing Model
	Live Multimedia Streaming in a P2P Social Network
	Overview of Other Techniques Based on Game Theory
	P2P Network as a Graph
	A Push-based Approach for a Mesh Topology
	Stanford Peer-to-Peer Multicast
	Other Systems and Final Considerations

	Proposed Approach
	Piece Picking Policy
	Credit-Based Framework
	Resource Optimisation
	Optimal Policy for Resource Allocation and FR Detection
	Distribution of the First Copy

	Implementation
	Results
	Conclusion

	Social-based Free-riding Detection
	Problem Description
	Related Work
	Tribler BitTorrent Client: Social-based Features
	P2P Protocols Based on Social Norms

	Proposed Approach
	Credit-Based Framework
	Social Networking Extension
	Optimal Policy for Resource Allocation and Social FR Detection
	Tracker

	Results
	Conclusion

	Conclusion and Future Work
	Contributions
	Future Work

	Bibliography

