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Abstract

Video-on-Demand is a service where movies are delivered to distributed users with low delay and 
free interactivity. The traditional client/server architecture experiences scalability issues to provide 
video streaming services, so there have been many proposals of systems, mostly based on a peer-to-
peer or on a hybrid server/peer-to-peer solution, to solve this issue. This work presents a survey of 
the currently existing or proposed systems and solutions,  based upon a subset of representative 
systems, and defines selection criteria allowing to classify these systems. These criteria are based on 
common questions such as, for example, is it video-on-demand or live streaming, is the architecture 
based on content delivery network, peer-to-peer or both, is the delivery overlay tree-based or mesh-
based,  is  the system push-based or  pull-based,  single-stream or  multi-streams,  does  it  use  data 
coding, and how do the clients choose their peers. Representative systems are briefly described to 
give  a  summarized  overview of  the  proposed  solutions,  and  four  ones  are  analyzed  in  details. 
Finally, it is attempted to evaluate the most promising solutions for future experiments.

Résumé

La vidéo à la demande est un service où des films sont fournis à distance aux utilisateurs avec un 
court délai de démarrage et des possibilités d'interaction. L'architecture traditionnelle client/serveur 
éprouve des problème à s'adapter à la fourniture de streaming video à grande échelle, de telle sorte 
que de nombreux systèmes ont été proposés pour résoudre ce problème, souvent sur base d'une 
architecture  peer-to-peer  ou  d'une  solution  hybride  serveur/peer-to-peer.  Ce  travail  présente  un 
aperçu  des  systèmes  et  des  solutions  actuellement  proposés  ou  existants  sur  base  d'un  sous-
ensemble de systèmes représentatifs, et définit des critères de sélection permettant de classifier ces 
systèmes. Ces critères sont basés sur des questions usuelles telles que, par exemple,  s'agit-il  de 
vidéo  à  la  demande  ou  de  live  streaming,  l'architecture  est-elle  basée  sur  un  content  delivery 
network, du peer-to-peer ou bien les deux, l'overlay est-il tree-based ou mesh-based, le système est-
il push-based ou pull-based, single-stream ou multi-streams, emploie-t-il le codage de données, et 
comment  font  les  clients  pour  choisir  leurs  pairs.  Les  systèmes  représentatifs  sont  brièvement 
décrits pour donner une vue d'ensemble récapitulative des solutions proposées, et quatre systèmes 
sont analysés en détail. Finalement, les différentes options sont analysées afin d'essayer d'évaluer 
les plus prometteuses pour les développements futurs.

Keywords

Video-on-demand  service,  live  streaming  video  streaming,  peer-to-peer  networks,  overlays, 
selection criteria.
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1. Introduction
With  the  widespread  deployment  of  broadband  residential  Internet  access,  there  has  been  an 
increasing  interest  in  developing  media  streaming  services  and  in  Video-on-Demand  (VoD)  in 
particular during the last ten years. VoD is a service where movies are delivered to distributed users 
with low startup delay and full interactivity. However, providing such a service over the Internet 
with the traditional client/server architecture leads to lack of scalability, long startup delays, latency 
problems, and streaming continuity issues. 

As a result, there have been many proposals to provide scalable video streaming services. Though 
current  popular  video  services  mainly  rely  on  content  delivery  networks  (CDNs)  and  local 
streaming proxies to increase system scalability, there have been some successful deployments for 
live streaming, such as CoolStreaming and PPLive, and VoD streaming, such as Joost, using a peer-
to-peer overlay architecture. The purpose of this work is to carry out a survey of the currently 
existing or proposed systems and solutions for providing VoD services over the Internet.

This work is related to a project which researchers of the Faculty of Computer Science are part of, 
with the objective of proposing an architecture for VoD streaming using a peer-to-peer network to 
provide a reliable and scalable solution for the simultaneous delivery of video streams to multiple 
sets of distributed clients.

The  first  step  of  this  work  consisted  in  collecting  and  reading  scientific  papers  about  video 
streaming in order to draw up a list of the proposed or existing systems for which the necessary 
information to  carry out  an analysis  was  available.  It  proved quickly to  be more difficult  than 
foreseen, because it was actually hardly possible to set up a comprehensive list of them all, within a 
limited period of time, given the outstanding number of ideas on the matter and the multitude of 
proposed systems. So it was decided to limit the survey to a subset of systems being representative 
of the architectural options.

Then, the selection criteria allowing to classify the selected systems into different categories were 
defined based on, first the main architectural options, and second the questions considered to be 
relevant for the above mentioned project. Those questions were: Does the system use a push- or 
pull-based scheme? Do peers get the video from a single source, or combine from several sources? 
How to identify the peers to stream from? How do we collect P2P status? How do you know where 
the content you are interested in is to be found? What content does the peer serve? Where is the 
content  stored?  How much memory does  the  peer  dedicate  for  serving  other  peers?  Are peers 
homogeneous or not? Does the system use incentives?

Finally,  a  further  reduced selection of  systems has  been  chosen for  a  detailed  analysis,  with  a 
balance between VoD systems and live streaming systems, and a representativeness of the different 
overlay architectures and the currently implemented systems. The remaining selected systems have 
been briefly described on basis of the selection criteria.

Most of the information used in this work has been found in scientific papers related mainly to 
video streaming and to peer-to-peer networking. Little information has also been found on the web 
sites  of  systems  released  for  public  viewing.  In  this  document,  the  choice  has  been  made  to 
explicitly cite or paraphrase those sources which important parts have been borrowed from. The 
originality of the work lies therefore in the analysis of the systems, presented from chapter 3 on.

This work is organized as follows. Video-over-IP applications and Video-on-Demand in particular 
are presented in chapter 2. In chapter 3, a list of selection criteria used to classify the different 
systems is presented with a detailed description of the various proposed options. In chapter 4, the 
proposed or existing systems are described and a selection of representative ones are analyzed in 
detail. Next, an analysis is presented in chapter 5. Finally, this work is concluded in chapter 6.
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2. Video-over-IP applications and Video-on-Demand (VoD)
Video-over-IP applications have recently attracted a large number of users over the Internet. On 
YouTube,  the  world's  most  popular  online  video  community,  people  are  watching  hundreds  of 
millions  of  videos  a  day,  and  uploading  hundreds  of  thousands  of  videos  daily.  In  fact,  every 
minute, ten hours of video is uploaded to YouTube [YouTube 2008]. In the same time, Internet live 
video  streaming  systems,  also  known  as Internet  Protocol  Television  (IPTV), such  as  PPLive 
[PPLive  2008],  CoolStreaming  [CoolStreaming  2008]  and  Zattoo  [Zattoo  2008]  have  been 
developed and deployed, and have been watched by thousands of users. With the fast deployment of 
high speed residential access, video traffic is expected to be the dominating traffic on the Internet in 
the near future [Liu et al, 2008].

As a result, “video streaming over the Internet has been one of the most prolific research areas for 
over  a  decade.  Most  related  to  this  work  are  the  research  efforts  for  the  designing  of  video 
distribution systems that can support  a large number of users” [Annapureddy et  al,  2007].  The 
particular  problem of  designing a  Video-on-Demand (VoD) service has  also received extensive 
attention in the past [Annapureddy et al, 2006].

“VoD is an interactive multimedia service, which delivers video content to subscribers (or users)” 
[He et al, 2007]. It “proposes to provide subscribers with the possibility of watching the video of 
their choice at the time of their choice, as if they were watching a rented video cassette” [Hu 2001] 
or a DVD. “Due to the frequent VCR controls from users, such as play, pause, fast forward, fast 
search, reverse search and rewind, existing approaches either present long latencies on the user side, 
or incur excessive stress on the server side” [He et al, 2007].

The VoD user behavior could be described as follows. “First,  VoD users rarely view the movie 
continuously from the beginning to the end. Second, accesses to different periods of a video are not 
uniformly distributed.  Some parts  always attract  more accesses than the others.  Hot  scenes are 
always appreciated by most audience and lead to a consensus on the popularity of a video. Third, 
VCR interactivities occur frequently. Many VCR controls are forward-looking, due to the users' 
skips of the video, ignoring the uninteresting periods” [He et al, 2007].

“VoD allows users to watch any point of video at any time. Compared with live streaming, VoD 
offers more flexibility and convenience to users and truly realizes the goal of watch whatever you 
want whenever you want. VoD has been identified as the key feature to attract consumers to IPTV 
service” [Liu et al, 2008].

“Video-on-demand (VoD) dedicates a single channel to each user and enables the video to be started 
at any time with VCR-like controls (pause, rewind, fast-forward, etc.). Today, IP network based 
deployments for services such as VoD are very limited in scope.  The largest  deployed libraries 
achieve a mere 0.7 per- cent (5,000 hours) of the global movie and TV-series catalog (DVD by mail 
services, such as Netflix, offer up to 10 per- cent), and peak utilization reaches only 10–15 percent 
of broadcast TV. There is a strong belief among telecommunication companies that this market will 
expand exponentially in the next few years. Service providers are intensely interested in scalable 
design methodologies for the deployment of large-scale IP content delivery networks that provide 
content propagation, storage, streaming, and transport” [Thouin and Coates 2007].

“Extensive VoD systems also have the potential to consume enormous bandwidth. The interactivity 
requirement and lack of network support restrict the widespread application of multicast streaming. 
Therefore,  many  concurrent  unicast  streams  must  be  supported.  Even  when  state-of-the-art 
compression methods such as MPEG-4 are employed, hundreds of gigabits of streaming capacity 
are required. The high bandwidth requirements encourage distributed architectures with replication 
of content and localization of network traffic, but such architectures imply a substantial increase in 
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storage requirements, which is not a negligible factor, given the large size of video files” [Thouin 
and Coates 2007].

“The basic solution for streaming video over the Internet is the client-server service model. A client 
sets up a connection with a video source server and video content is streamed to the client directly 
from the  server.  One variation of  client-server  service model  is  the Content  Delivery Network 
(CDN) based video streaming. In CDN based solution, the video source server first push video 
content to a set of content delivery servers placed strategically at the network edges. 

Instead of downloading from the video source server,  a client is  normally directed to a nearby 
content delivery server to download the video. CDN effectively shortens the users’ startup delays, 
reduces the traffic imposed on the network, and serves more users as a whole. 

YouTube employs CDN to stream video to end users” [Liu et al, 2008]. “YouTube videos today are 
typically less than 10 minutes in length and have a bit rate under 200 kbps” [Liu et al, 2007].

“The major challenge for server based video streaming solutions, though, is its scalability. A video 
session with good quality requires high bandwidth. With the current video compression technology, 
the streaming rate for a TV quality video is more than 400 kilo-bits-per-second. The bandwidth 
provision, at video source servers or in CDNs, must grow proportionally with the client population. 
This makes the server based video streaming solutions expensive” [Liu et al, 2008].

IP Multicast is probably the most efficient vehicle for video streaming services; but its deployment 
however remains confined due to many practical and political issues, such as the lack of incentives 
to install multicast-capable routers and to carry multicast traffic. Researchers thus have resorted to 
application-level solutions using Peer-to-Peer (P2P) systems, which build an overlay network out of 
unicast tunnels across cooperative participating users, called overlay nodes, and multicast is then 
achieved through data relaying among these nodes [Zhang et al, 2005].

“P2P systems have been immensely successful for large scale content distribution. Current peer-to-
peer applications generate a large percentage of the traffic over the Internet and a large fraction of 
that traffic relates to distributing video content. However, with current systems, the users need to 
download the complete file, and as a result suffer long delays before they can watch the video. 
Recently  systems  such  as  CoolStreaming  [Zhang  et  al,  2005]  have  been  very  successful  in 
delivering  live  media  content  to  a  large  number  of  users  using  mesh  peer-to-peer  technology. 
However, it has been an open question whether similar P2P technologies can be used to provide a 
VoD service. A P2P VoD service is more challenging to design than a P2P live streaming system 
because the system should allow users arriving at arbitrary times to watch (arbitrary parts of) the 
video, in addition to providing low start up delays. The fact that different users may be watching 
different parts of the video at any time can greatly impact the efficiency of a swarming protocol” in 
which a collection of peers actively share a file, exchanging pieces of it and being simultaneously 
client and seeder. “The lack of synchronization among users reduces the block sharing opportunities 
and increases the complexity of the block transmission algorithms” [Annapureddy et al, 2006].

“Current P2P systems have inherent limitations that do not allow them to support a play-as-you-
download experience. In these systems, the peers have partial content which they exchange with 
each other in order to download the complete file. The system achieves high throughput when the 
peers can exchange content with each other, and this happens only when they have non-overlapping 
pieces of the file. Hence, the peers download pieces of the file in random order to minimize the 
overlap. However, in order to support a play-as-you-download experience, the peers require blocks 
in  sequential  order from the beginning.  However,  if  all  the peers were to  download content in 
sequential order, they would have overlapping pieces of the file, and the utilization (throughput) of 
the system would be low. The goal then is to design a P2P system which meets the VoD requirement 
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of play-as-you-download experience, while maintaining a high utilization of the system resources” 
[Annapureddy et al, 2006].

So it appears that the video streaming systems are not mature yet. Nevertheless, a lot of work has 
already been done upon such systems. The purpose of this work is to give a synthetic outline of the 
state of the art on the subject, and to analyze the various techniques and strategies designed or used 
in the different video streaming systems.

The focus of this work is set on Video-on-Demand (VoD) but, according to the similarities in both 
the systems constraints, like huge need of bandwidth, and used techniques, like overlay topologies, 
we will also pay attention to the live streaming systems and to the way the developments designed 
for those systems could contribute to the VoD systems.
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3. Selection criteria
In this chapter, we describe a series of selection criteria used to categorize existing and proposed 
streaming systems. Those criteria are video streaming type, system architecture, delivery overlay 
topology, data exchange design, single or multiple sources, peer choice protocol, content repository, 
peer  upload  source,  homogeneity  of  peers,  locality  of  peers,  incentives,  and  performances 
evaluation.

3.1. Streaming type

Video streaming applications can be divided into two main categories: Video-on-Demand and live 
streaming. Though those categories share several  common principles,  they both have their  own 
particular issues which we describe in this section.

3.1.1. Video-on Demand (VoD)

Video-on-Demand (VoD) is an interactive multimedia service which should enable users to start 
watching the video of their choice at the time of their choice, after waiting for a small startup delay, 
and perform VCR-like control operations such as play,  pause,  fast  forward,  fast  search,  reverse 
search and rewind, while downloading the video in parallel.

The first point to address in the implementation of such a service is the amount of available media 
content; the amount of titles should at least compare with that available in an average video store. 
This should no longer be an issue considering the huge storage capacity commonly available on 
much of the Internet current servers.

The second point and first critical problem is the bandwidth required for providing such a service. 
While providing low quality short videos to a limited number of users could easily be implemented 
using a server cluster and a classical client/server architecture, providing full length movies with a 
DVD-like quality to several thousands of users at the same time poses a significant challenge in 
terms of scalability.

The third point is that users should be able to watch the video at an arbitrary time. Although a large 
number of users may be watching the same video, they are asynchronous to each other and different 
users are watching different portions of the same video at any given moment. This particularity 
causes an additional problem in the use of P2P networks in  order to meet the scalability issue 
mentioned in the previous point.

The fourth point is the tough issue of supporting interactive VoD. While pause and rewind can be 
supported by introducing more buffer space, fast search and fast forwarding are the most difficult 
features  to  implement  in overlay protocols.  Fast  forward requires the video data  transmitted in 
shorter  time  than  normal,  while  fast  research  generally  causes  important  latency  delays  that 
dramatically drop the Quality of Service (QoS).

Many existing designs for VoD streaming address one or more of those points, but none of them 
really addresses all of them; in particular, most of the known systems do not support interactive 
functions,  and so provide only near  VoD service.  For this  reason,  significant  advances are still 
needed to bring the concept of media overlays for VoD streaming to the required level of maturity, 
in order to develop cost efficient, scalable and reliable solutions with effective QoS.
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3.1.2. Live streaming

Live video streaming, or  Internet Protocol Television (IPTV), is a service which enables users to 
watch several TV channels through the Internet. Unlike in VoD streaming, all the users watching the 
same channel at the same time would have their viewing times synchronized. The only operation 
that the users should be able to perform is to switch channels.

The  first  point  to  address  for  distributing  live  video  streaming,  is  also  related  to  bandwidth 
requirements since the streaming rate has to be maintained for smooth playback. Since live content 
becomes available as time progresses, it is delivered to each peer in a roughly sequential order. The 
challenge of streaming is that the demand for bandwidth at the streaming rate must be satisfied at all 
peers, while additional bandwidth is, in general, not required.

The second point to address is the reception timeliness which is defined as the delay (also known as 
play-out delay) between the generation at the source of a stream of frames and its reproduction at 
the receiver. Live streaming requires the maximum play-out delay to be reasonably low, ranging 
from few seconds to few tens of seconds. The constraint on play-out delay is more bound to the 
perception of the user that s/he is receiving fresh media data: live streaming deals with information 
whose interest to the user would rapidly decay if it was delayed too much.

The third point is the media quality which depends on the completeness of the data received before 
its  playback deadline.  The  qualitative  effect  of  incomplete  stream data  on  the  user’s  playback 
experience  depends  on  several  factors,  including  the  media  coding  format,  the  presence  of 
redundant encoding to protect the stream, the ability of the player application to hide discontinuities 
in the media, and the subjective user sensitivity to visual artifacts.

A lot of live streaming application protocols have been designed during the last few years, but the 
implicit constraints of this application, both on media quality and timeliness of stream reception, are 
quite challenging when faced together: different approaches have been proposed so far, striking in 
all cases a trade-off between these two strongly-correlated factors.

3.2. System architecture

In the construction of interactive VoD systems, the most promising idea is to use media overlay 
networks on top of the existing infrastructures. These overlays have been evolving from the original 
client-server model through CDN technologies, on to the P2P networks that permit to deploy media 
and network adaptive video streaming techniques.

While traditional CDN systems offer a means for media delivery and streaming, they are rather 
expensive to build and to maintain, and they also pose a significant performance challenge in terms 
of  scalability  and  service  delay  as  the  number  of  clients  increases.  To  solve  this  issue,  P2P 
technologies have been applied to support the VoD systems, which is highly cost-effective but do 
not guarantee high-quality streaming service because of the quality of available data and because 
the capacities of peers can be heterogeneous and their availabilities can be transient [Guo et al, 
2006].

So, since the use of single CDN or P2P systems do not satisfy the true VoD requirements, mostly 
due to fundamental scalability and complexity limitations of the existing solutions, some authors 
proposed hybrid  CDN/P2P solutions  [Guo et  al,  2006][Xu et  al,  2006]  in  order  to  address  the 
scalability problem of CDN-based techniques, and to ensure the high-quality of the delivered media 
content.
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3.2.1. Content Delivery Network (CDN)

The first approach to deal with the scalability issue of video streaming systems is to use a CDN. A 
CDN is  a  network  infrastructure  with  several  network  elements  for  scaling  and enhancing  the 
delivery of content from providers to many end-users over the Internet. CDNs traditionally carry 
static content, such as HTML pages, images, documents, software patches, audio, and video files. 
Recently, CDNs have been used to deliver live and on-demand streaming media, for example on 
video sharing sites such as YouTube [YouTube 2008] and Google Video [Google Video 2008].

Figure 3.1 Abstract architecture of a Content Delivery Network (CDN) [Pathan et al, 2007]

“CDNs provide services that improve network performance by maximizing bandwidth, improving 
accessibility and maintaining correctness through content replication. They offer fast and reliable 
applications and services by distributing content to cache or edge servers located close to users. A 
CDN  has  some  combination  of  content-delivery,  request-routing,  distribution  and  accounting 
infrastructure” [Pathan et al, 2007].

The content-delivery infrastructure consists of a set of edge servers (also called surrogates) that 
deliver copies of content to end-users (Figure 3.1). Edge servers are usually clusters of servers and 
are  located  at  network  operator  Points-of-Presence  (PoPs).  Edge  server  placement  affects  the 
viability of CDNs as it tries to optimize both QoS for the end-user and cost for the CDN provider.

As illustrated on Figure 3.2, “the request-routing infrastructure is responsible for directing client 
requests (4) to appropriate edge servers (6). It also interacts with the distribution infrastructure (3) 
to keep an up-to-date view of the content stored in the CDN caches” [Pathan et al, 2007]. Different 
techniques  have  been  used  to  guide  clients  to  use  a  particular  replica  server,  such  as  HTTP 
redirection, client multiplexing, DNS indirection, and anycasting. HTTP redirection is the simplest 
and probably the least efficient means of redirecting requests. The origin server (or server cluster) 
re-directs  the browser  to a  new URL at  the HTTP protocol  level.  Because it  is  the only point 
responsible for redirecting requests, it could become a bottleneck. In client multiplexing, the client 
receives the addresses of a set of candidate replica servers and chooses one to send the request. This 
imposes additional overhead in sending the set of candidate replica servers to the client, and, due to 
lack of overall information, the client may choose a server with high load, which could result in 
overloading servers and hence larger access latency. DNS indirection uses Domain Name System 
(DNS) modifications to return the IP address of a replica server when the DNS server is queried by 
the  client.  The  quality  of  server  selection  can  be  improved  by taking  into  account  the  server 
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performance. In Anycasting, an anycast address/domain name, which can be an IP anycast address 
or a URL of content, is used to define a group of servers that provide the same service. The client 
sends packets with the anycast address in the destination address field. The packet is then routed via 
anycast-aware routers to at least one of the servers identified by the anycast address [Peng 2003].

“The distribution infrastructure moves content from the origin server to the CDN edge servers and 
ensures consistency of content in the caches (2-3)” [Pathan et al, 2007]. The system can use a full 
replication or a partial replication technique. In the simplistic approach of full replication, all of the 
origin server's  content  is  copied to  each edge server.  In  the more complex approach of partial 
replication,  only some of the origin server's content is copied to the edge servers.  Selection of 
content in partial replication can be on the basis of heuristics, popularity [Chen et al, 2003], or 
sensitivity to QoS [Wu et al, 2006]. Distributing content to replica servers can be done using the 
Internet or using broadcast satellite. Internet distribution of content is simpler but might suffer from 
the unpredictability and problematic performance of the Internet itself. Data satellite broadcast has 
the potential for remarkable cost savings, and it provides a high-quality, predictable performance 
path  for  sending  critical  content  such  as  real-time  streaming  media  [Peng  2003].  “Limelight 
Networks uses a dedicated high-speed network to span the globe, interconnecting all of its regional 
data  centers  over  a  fiber-optic  backbone.  This  allows  Limelight  Networks  to  deliver  the  most 
massive of files” [Limelight 2008].

“The accounting infrastructure maintains logs of client accesses and records the usage of the CDN 
servers (7). This information is used for traffic reporting and usage-based billing (8)” [Pathan et al, 
2007]. Typical metrics are: cache hits, origin server upload bandwidth, response latency, edge server 
utilization, packet loss, and proximity.

Figure 3.2 Components of a CDN [Peng 2003]

The  most  important  CDNs  deployed  over  the  Internet  are  commercial  ones,  such  as  Akamai 
Technologies  [Akamai 2008],  Limelight  Networks [Limelight  2008],  and Mirror  Image [Mirror 
Image 2008]. However some academic CDNs, such as CoDeeN [Pai et al, 2003] and COMODIN 
[Esteve et al, 2007] have also been deployed. 

Akamai is the market leader in providing content delivery services [Vakali et al, 2003] [Pallis et al, 
2006]. It owns about 34,000 servers over more than 1,000 networks in 70 countries. LimeLight 
Network provides a suite of services (including music download and subscription services, video 
game  developers  and  distributors,  movie/video  download  services,  and  so  forth)  and  supports 
surrogate servers located in 72 locations around the world (Asia, the U.S., and Europe). Mirror 
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Image supports surrogate servers located in 22 cities around the world (North America, Europe, and 
Asia), which provide a range of value-added services, from content distribution to media streaming 
and managed caching. Akamai uses a combination of the overlay and network approaches to deliver 
static and dynamic web content, streaming media, and services. Content is selected using full and 
partial replication. Limelight Networks follows the overlay approach to deliver static and dynamic 
web content, as well as streaming media and uses partial replication for content selection. Both use 
non-cooperative  pull  for  content  replication  and  on-demand  content  update,  and  DNS-based 
request-routing for redirection.

CoDeeN was developed at Princeton University and deployed on 496 PlanetLab nodes. It uses the 
overlay approach to deliver only static web content. CoDeeN selects content with partial replication 
and copies content with cooperative pull,  but it  does not support content update. Redirection is 
through HTTP and accounting performs internal measurements of traffic and system parameters 
using a companion system (CoTop) [Pai et al, 2003]. Finally, COMODIN was developed jointly by 
the  Polytechnic  University  of  Valencia  and  the  University  of  Calabria  and  deployed  on  three 
testbeds connected through the Internet in one domain. It uses the network approach and focuses on 
delivery and control of on-demand streaming. Content is fully replicated with cooperative pull and 
periodic  updates.  COMODIN  uses  DNS-based  request-routing  and  employs  internal  network 
probing and server feedback for accounting [Esteve et al, 2007].

Though rather  expensive,  CDNs are  currently  able  to  provide  video  streaming services  with  a 
satisfying video quality. Nevertheless, they may still raise a scalability issue in case of increasing 
number of users and very high quality videos encoded at higher bit rates.

3.2.2. Peer-to-peer (P2P) overlays

The second approach to deal with the scalability issue of video streaming systems is to use P2P 
overlays (Figure 3.3). “P2P networking architectures receive a lot of attention nowadays, as they 
enable a variety of new applications that can take advantage of the distributed storage and increased 
computing resources offered by such networks” [Jurca et al, 2007]. During the last years, systems 
based on BitTorrent [BitTorrent 2008], a second generation P2P file sharing protocol, designed by 
Bram Cohen  [Cohen  2003],  have  been  proved  to  be  a  very  effective  mechanism  for  content 
distribution.  “P2P systems  represent  a  scalable  and  cost  effective  alternative  to  classic  media 
delivery services, which allows for extended network coverage in the absence of IP multicast or 
expensive  CDNs.  Their  advantage  resides  in  their  ability  for  self  organization,  bandwidth 
scalability, and network path redundancy, which are all very attractive features for effective delivery 
of media streams over networks” [Jurca et al, 2007].

Figure 3.3 A peer-to-peer overlay [Thouin and Coates 2007]
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This approach has recently become very popular, and some P2P video streaming systems have been 
deployed on the Internet, like PPLive [PPLive 2008] and Coolstreaming [CoolStreaming 2008]. The 
basic principle of P2P video streaming is as follows: a server storing a video that will be viewed by 
many users chooses to cut the video into several chunks, then send these chunks separately to some 
users and let them exchange data so that all users receive all chunks of the stream before they are 
played.

“However, specificities of media applications in terms of bandwidth, delay, and reliability are not 
completely addressed by the characteristics of unstructured P2P systems. The lack of coordination 
of such systems, the limited peer capabilities, and the low system stability over time represent a 
great challenge for the deployment of high quality P2P streaming applications. The replacement or 
extension  of  conventional  media  delivery  infrastructures  with  P2P systems  clearly  necessitates 
adaptation  of  existing  coding,  routing,  and  scheduling  algorithms  to  unreliable  network 
environments” [Jurca et al, 2007]. The existing P2P systems suffer from high startup latency, which 
makes them unsuitable for interactive applications. Indeed, since the download rate depends on the 
upload rate, a user may have to wait a long time before the received video can be played back 
continuously.

3.2.3. Hybrid CDN/P2P overlays

Infrastructure-based CDNs with dedicated network bandwidths and hardware supports can provide 
high-quality streaming services, but at a high cost. Client-based P2P networks are scalable, but do 
not guarantee high-quality streaming service due to the transient nature of peers. In order to address 
the limitations of both CDN and P2P approaches, there have been attempts to combine CDN and 
P2P overlays. Such hybrid solutions have been proposed in [Xu et al, 2006] and [Guo et al, 2006]. 
Also, though the mechanisms behind it are still unrevealed, based on extensive experiments, Joost 
[Joost 2008] appears to be a server-assisted P2P VoD system.

In [Xu et al, 2006], the authors study how the upload capacity of peer nodes can be exploited in 
such architectures. The paper investigates different contribution policies for the peer population and 
the dynamics of the instance when no CDN assistance will be needed to serve clients that connect 
later in the streaming process. In their architecture, the CDN server plays the roles of the actual 
media streaming server and of the P2P index server. The media file is first distributed by the CDN 
server; while fulfilling requests for the first clients, the server dynamically creates supplying peers 
that can then serve subsequent requests with higher capacity than the server itself; finally, when the 
P2P capacity reaches a certain level, the CDN server stops serving streaming sessions and lets the 
peers take over the task (this transition is called “CDN-to-P2P” handoff).

In [Guo et al, 2006], the authors propose a system called PROP (for “collaborating and coordinating 
PROxy and its P2P clients”) which attempts to address both the scalability and the reliability issues 
of streaming media delivery in a cost-effective way. The server provides a dedicated storage and 
reliable streaming services  when peers are not  available  or not capable of doing so.  They also 
propose a model to analyze the cache redundancy, to give the optimal replica distribution in such a 
system. Their objective is to keep popular media segments in the server for global sharing, and 
leave a certain space in each peer to cache the relatively unpopular segments.

Although such a hybrid CDN/P2P architecture seems to be very promising, some further aspects 
should  be  taken into  account,  including  for  example  the  heterogeneity of  users'  download and 
upload capacity, and the dynamics of interaction between servers and clients.
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3.3. Delivery Overlay Topology

In P2P streaming systems, “two main types of architectures are generally considered for providing 
the organization necessary to streaming applications: tree-based overlay for streaming sessions from 
media sources to a pool of client peers, and mesh overlay for massive parallel content distribution 
among peers” [Jurca et al, 2007]. CDN overlays are likely to be mostly built upon a tree-based 
scheme. So the use of a tree-based topology in P2P overlays appears as an extent of the existing 
topology to the new available resources provided by the cooperating peers.

3.3.1. Tree-based overlays

“Tree-based overlays organize the peers as a single, or multiple tree overlay that connects the source 
of the media content to the clients. Clients are leaf nodes in the distribution tree, while intermediate 
peers push the content from the source (Figure 3.4). Single tree architectures are easy to implement 
and  maintain,  either  in  a  distributed  or  centralized  way  by  the  source.  However,  they  are 
fundamentally limited by two factors: 

i) due to the high rate of peers joining/leaving the system (the so called churn rate), the architecture 
suffers from high instability;

ii)  the received media quality is limited by the minimum upload bandwidth of the intermediate 
peers in the branch, since each client is connected to the source through a single tree branch.

Figure 3.4 A tree-based overlay [Jurca et al, 2007]

Multiple  tree  architectures  address  the  aforementioned  problems,  by  providing  redundancy  in 
network paths. However, designing and maintaining such systems becomes less trivial” [Jurca et al, 
2007]. 

3.3.2. Mesh-based overlays

Mesh-based overlays are (Figure 3.5) “based on self organization of nodes in a directed mesh that is 
used for media delivery to clients. The original media content from a source is distributed among 
different peers. A peer is connected to the mesh through one or more parent peers, where it retrieves 
media information, and to a set of child peers to which it serves media packets. The advantages of 
such an architecture reside in the low cost and simplicity of structural maintenance,  and in the 
resilience of the topology to node failure or departure, due to the increased probability of available 
distinct network paths. 

However, streaming applications over such architectures face important challenges. First, due to the 
inherent  sequential  media  encoding and play-out,  packet  dissemination  and data  requests  must 
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follow closely the temporal ordering of the content at the source. This constraint may be slightly 
reduced by the implementation of play-back buffers, when delays permit it.  Second, the limited 
look-ahead content availability, especially in the case of live streaming scenarios, limits greatly the 
flexibility in terms of content download/upload through such an architecture” [Jurca et al, 2007]. 

Figure 3.5 A mesh-based overlay [Jurca et al, 2007]

In [Carra et al, 2007], the authors study fundamental properties of stream-based content distribution 
services in the presence of an overlay network such as those built by P2P systems with limited 
degree of connectivity, and develop a mathematical model that captures the essential features of 
overlay-based streaming protocols and systems. Their methodology is based on stochastic graph 
theory. They model the streaming system as a stochastic process, whose characteristics are related 
to the streaming protocol. Results show that mesh based architectures are able to provide bounds on 
the receiving delay and maintain rate fluctuations due to very slow system dynamics.

3.4. Data exchange designs

There  are  two  major  approaches  of  data  exchange  designs  in  P2P-based  systems:  push-based 
systems where the data are pushed from data owners to other peers, and pull-based systems where a 
peer has to explicitly request a missing chunk.

3.4.1. Push-based systems

In a push-based system, a peer actively pushes a received chunk to its neighbors who have not 
obtained the chunk yet. In a tree-based system, a chunk should always be pushed from a peer to all 
its  children peers in the streaming tree.  In a mesh-based system, as there is  no clearly defined 
parent-child relationship between peers, a peer might blindly push a chunk to a peer already having 
it.  It  might  also  happen that  two different  peers  push the  same chunk to  one  same peer.  Peer 
uploading bandwidth would then be wasted in redundant pushes. To address this problem, chunk 
push schedules  need  to  be carefully planned between neighbors,  and the  schedules  need to  be 
reconstructed upon neighbor arrivals and departures [Liu et al, 2008].

3.4.2. Pull-based systems

In a pull-based system, peers exchange chunk availability using buffer maps periodically. A buffer 
map contains  the sequence  numbers  of  the  chunks currently available  in  a  peer’s  buffer.  After 
obtaining buffer maps from its neighbors, a peer can decide a chunk pull schedule that specifies 
from which peers to download which chunks. Then it will send requests to its neighbors to pull 
missing  chunks.  Redundant  chunk  transmissions  can  be  avoided  since  a  peer  will  request  to 
download a missing chunk from one neighbor only. However, frequent buffer map exchanges and 
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pull  requests  incur  more  signaling  overhead  and  might  introduce  additional  delays  in  chunk 
retrieval [Liu et al, 2008].

3.5. Video Data Coding techniques

Video coding deals with the representation of video data for storage and transmission. The goals are 
to accurately and compactly represent the video data, to provide means to navigate the video, and to 
possibly add other additional author and content benefits such as text, meta information, and digital 
rights management. A big challenge for video coding is to reduce the size of the video data using 
video compression. The video stream is encoded in one or more substreams which themselves can 
be decoded to reconstruct the original stream.

In P2P streaming systems, a node can receive the video data either from one particular peer or from 
multiple peers in parallel. In case downloading from multiple peers is combined with data coding, a 
client can receive the different substreams of a same video block from different parent sources. It 
should then reassemble and decode the substreams before playing back the video.

Different data coding techniques exist, including single layer coding, layered coding, and Multiple 
Description Coding (MDC). Redundancy-Free Multiple Description (RFMD) coding has also been 
proposed as an enhancement for multiple description coding.

3.5.1. Single Layer Coding

In a single layer scheme, the video is encoded into a single layer, and each Group of Pictures (GOP) 
is divided sequentially into several blocks, so that earlier blocks contain data from earlier frames in 
the group. Each peer holds one block from each group. In case one block is not available,  the 
frames contained in the following blocks of the group are not decodable either (assuming the video 
is coded using temporal prediction), and only the frames contained in the previous blocks can be 
decoded and frozen until the next group. For example, if the second block is not available, only the 
first block can be decoded [Liu et al, 2007].

3.5.2. Layered Coding

“Layered coding generates multiple layers with recursive dependency. Specifically, layer k + 1 can 
only be decoded if  layers  1  through k are  available.  MPEG-4 Fine Grain Scalable  (FGS) is  a 
popular scheme for creating layered coding. An FGS encoder encodes the video into a base layer 
and a scalable enhancement layer. The enhancement layer is then sliced into M −1 substreams, 
creating a total of M substreams. The latest scalable coding standard, known as Scalable Video 
Coding (SVC), also has a base-layer and a successfully refinable enhancement layer. With FGS or 
SVC, the rate  of  the base layer  must  be sufficiently high so that  an acceptable  quality can be 
recovered from the base layer only. Compared to a single-layer coder, the distortion achievable by a 
scalable coder at the same rate (above the base layer) is typically higher” [Liu et al, 2007].

3.5.3. Multiple Description Coding

“MDC  consists  in  constructing  several  independent  descriptions  of  the  same  signal.  In  this 
approach, a controlled level of redundancy is left in the media content at compression, so that the 
received  video  quality  is  proportional  to  the  number  of  descriptions  that  are  received.  MDC 
represents a natural solution for multi-path streaming scenarios, where independent descriptions can 
be  sent  on  disjoint  paths.  It  is  generally  less  efficient  than  scalable  encoding  in  terms  of 
compression; however, it exhibits stronger resilience to packet loss” [Jurca et al, 2007]. A popular 
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scheme for multiple description encoding with many descriptions is Multiple Description source 
coding through Forward Error Correction codes (MD-FEC) [Liu et al, 2007].

“The first step of MD-FEC is to encode each GOP into  M layers. This can be performed with a 
scalable video coder such as MPEG4 FGS or SVC. This is shown in Figure 3.6 (a) for the case of 4 
layers. Denote by  L1,  L2,  L3, and  L4 for the bits in these 4 layers. The  kth layer is then further 
divided into k equal-length groups. Thus, as shown in Figure 3.6 (b), layer two is broken into two 
equal-size groups L21 and L22; layer three is broken into three equal-size groups L31, L32 and L33; 
and layer four is broken into four equal-size groups L41, L42, L43 and L44. Then a (M,  k) Reed-
Solomon (RS) code is applied to the k groups from layer k to yield M groups. The M2 groups are 
then arranged as in Figure 3.6 (c). For layer 1, the RS step creates three redundant groups R11, R12, 
and  R13; for layer 2 it creates two redundant groups  R21 and  R22; and for layer 3 it creates 1 
redundant group R31. Thus, due to the RS code, if any k of the M groups is received for layer  k, 
then layer k can be decoded” [Liu et al, 2007].

Figure 3.6 MD-FEC encoding procedure [Liu et al, 2007]

“After creating the  M2 groups, the substreams are generated by combining the groups across the 
rows in Figure 3.6 (c). For example, the first substream is created by combining L1, L21, L31 and 
L41; the fourth substream is created by combining R13, R22, R31 and L44. From this construction, 
it is easy to see that the substreams have the following desirable properties:

• Each substream has the same bit-rate;

• In order to recover  k layers from the original layer encoded video, the receiver needs to 
receive any  k of the  M substreams. Thus each stream is of equal importance” [Liu et al, 
2007].

One nice feature of MD-FEC as a multiple description technique is that it can generate any number 
of substreams (any M) from a scalable stream generated by any scalable coder, which is desirable 
for P2P VoD. When a supplying peer disconnects, the video quality is not severely degraded while 
waiting for a substitute peer to supply the substream. Note that when a receiver receives k of the M 
substreams, only a fraction of bits are used (for all values of k). what is inefficient in that it wastes 

significant upload bandwidth resources [Liu et al, 2007].

3.5.4. Redundancy-Free Multiple Description Coding

RFMD is a new multi-stream coding scheme proposed in [Liu et al, 2007]. This proposal is based 
on the fact that in P2P VoD, which does not have stringent delay constraints, it is not necessary to 
always  transmit  all  the  encoded  bits;  the  amount  of  redundancy  and  unhelpful  bits  that  are 
transmitted should adapt to the number of available supplying peers. This new coding scheme is 
derived from traditional MD-FEC coding.
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The coding procedure proceeds as follows:

• Data is first encoded using MD-FEC to generate M descriptions;
• If m supplying peers are available, then each supplying peer only transmits a fraction k/m 

portion of the data for layer k, where k = 1, . . . , m; each supplying peer transmits different 
portion of layer k data;

• The receiving peer combines the received m substreams and obtains layer k (k = 1, . . . , m) 
by (M, k) FEC decoding; hence, the lowest m layers are recovered.

Figure 3.7 Redundancy-Free Multiple Description Coding (RFMD) [Liu et al, 2007]

“Figure 3.7 shows the RFMD transmission of MD-FEC data (M=4): (a) shows the stored data in 
each description, with purple color representing the source bits and gray color the redundancy bits; 
(b-e) shows the portion of the data (purple) delivered by each supplying node” [Liu et al, 2007].

Because the portion of data transmitted at each supplying peer depends on how many peers are 
available, generally, the transmission rate at each peer is not constant. However, constant bit rate 
can  be  achieved with  the  appropriate  rate  partitioning  for  the  different  layers  before  MD-FEC 
encoding [Liu et al, 2007].

3.6. Peer choice and data scheduling protocol

In  a  P2P architecture,  a  peer  may implement  various  strategies  for  selecting  which  peer(s)  to 
collaborate with, and which data to exchange with the selected peer(s). Among these strategies, 
gossip  protocols  are  the  most  popular  ones,  but  other  protocols  have  also  been  proposed  or 
implemented.

3.6.1. Gossip protocols

Gossip  algorithms  have  become  popular  solutions  to  multicast  message  dissemination  in  P2P 
systems. According to [Kermarrec et al, 2007], gossiping could be described as a system where a 
node which has just been updated tells a number of other replicas about its update. The updated 
node first contacts another one; if the second node already knows the update, it stops; otherwise it 
contacts another randomly selected node.

According to [Montresor 2008], the protocol can be modeled by means of two separate threads 
executed at each node: an active one that takes the initiative to communicate, and a passive one 
accepting incoming exchange requests. In the active thread, a node periodically selects a peer node 
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p  from the  system population;  it  extracts  a  summary of  the  local  state  and  finally,  sends  this 
summary to node p. This set of operations is repeated forever. The other thread passively waits for 
incoming messages, replies in case of active requests, and modifies the local state. This scheme 
being too generic must also be associated with the following rules to distinguish gossip from non-
gossip protocols; peer selection must be random, or at least guarantee enough peer diversity; only 
local information is available at all nodes; communication is round-based (periodic); transmission 
and processing capacity per round is limited; and all nodes run the same protocol.

“The main reason that make gossip protocols popular is robustness: node failures do not cause any 
major havoc to the system, and can be tolerated in large quantity; message losses often cause just a 
speed  reduction  rather  than  safety issues.  Low-cost  is  another  plus:  load  is  equally  distributed 
among all nodes, in a way such that overhead may be reduced to few bytes per second per node. 
The cause of such robustness and efficiency can be traced back to the inherently probabilistic nature 
of gossip protocols. They represent a certain “laid-back” approach, where individual nodes do not 
take much responsibility for the outcome. Nodes perform a simple set of operations periodically, 
they are not aware of the state of the entire system, only a very small (constant) proportion of it, and 
act  based on completely local  knowledge.  Yet,  in  a  probabilistic  sense,  the  system as  a  whole 
achieves very high levels of robustness to benign failures and a favorable (typically logarithmic) 
convergence time” [Montresor 2008].

3.6.2. Push-based protocols

In [Bonald et al, 2008], the authors focus on push-based diffusion schemes where the transmission 
of a chunk between two peers is initiated by the sender. Each peer has only a partial knowledge of 
the overall system and can only send chunks to one of its neighbors. Push-based schemes may be 
broadly categorized into two classes depending on whether the destination peer or the chunk is 
selected first. The authors analyze several peer and chunk selection schemes:

Random peer:  The destination peer is  chosen uniformly at  random among the neighbors of the 
sender;

Random useful peer: The destination peer is chosen uniformly at random among those neighbors 
that did not yet receive all the chunks owned by the sender. When the chunk is selected first, the 
choice of the destination peer is restricted to those neighbors that do not own the selected chunk;

Most deprived peer: The destination peer is chosen uniformly at random among those neighbors 
that did not yet receive a maximum of the chunks owned by the sender. When the chunk is selected 
first, the choice of the destination peer is restricted to those neighbors that do not own the selected 
chunk;

Latest blind chunk: The sender peer chooses the most recent chunk in its collection;

Latest useful chunk: The sender peer chooses the most recent chunk in its collection that has not yet 
been received by at least one of its neighbors. When the destination peer is selected first, it chooses 
the most recent chunk in the set of chunks not yet received by the selected peer.

Random useful chunk: The sender peer chooses uniformly at random a chunk in its collection that 
has not yet been received by at least one of its neighbors. When the destination peer is selected first, 
the chunk is chosen uniformly at random in the set of chunks not yet received by the selected peer.

A rich class of push-based schemes can be built from the combination of these peer/chunk selection 
algorithms. The authors prove that the so called random peer, latest useful chunk algorithm can 
achieve dissemination at an optimal rate and within an optimal delay, up to an additive constant 
term. This qualitative result suggests that live streaming algorithms where peers are responsible for 
disseminating the data can achieve near-unbeatable rates and delays [Bonald et al, 2008].
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3.6.3. Topology aware protocol

In [Hefeeda et al, 2003], the authors compare three possible techniques for selecting peers from a 
set of candidates: on one hand a generic random technique, and on the other hand an end-to-end 
technique and a topology-aware technique they further  describe.  A random technique randomly 
chooses a number of peers that can fulfill the aggregate rate requirement, even though these peers 
may have low availability and share a congested path. The end-to-end technique chooses the active 
set based on the quality of the individual paths and on the availability of each peer. It does not 
consider shared segments among paths,  which may become bottlenecks if  peers sharing a tight 
segment are chosen in the active set. In contrast to the end-to-end technique, the topology-aware 
technique infers the underlying topology and its characteristics and considers the goodness of each 
segment of the path. Thus, it can make a judicious selection by avoiding peers whose paths are 
sharing a tight segment.

The  topology-aware  selection  technique  is  based  on  goodness  topology,  a  directed  graph  that 
interconnects the candidate peers and the receiving peer. Each edge (or segment) is annotated with a 
goodness random variable. Each leaf node represents a peer from the set of candidate peers and has 
two attributes: a fixed offered rate and a random variable that describes its availability for streaming 
[Hefeeda et al, 2003].

“The goodness topology is built in two steps. In the first step, network tomography techniques are 
used to infer the approximate topology and annotate its edges with the metrics of interest, (e.g., loss 
rate, delay, and available bandwidth), what is called the inferred topology. A segment in the inferred 
topology may represent a sequence of links with no branching points in the physical topology. The 
inferred topology is a tree-structured graph rooted at the receiver. The routes from candidates peers 
to the receiver are assumed not to change during the course of the streaming session. The second 
step  transforms  the  inferred  topology to  the  goodness  topology.  The  transformation  process  is 
basically computing a “logical” goodness metric for each segment from its properties.

Segment  goodness  is  a  function  of  one  or  more  properties  of  the  segment,  depending  on  the 
feasibility and ease of measuring these properties segment-wise. Segment properties may include 
loss rate, delay, jitter, and available bandwidth. In the proposed scheme, the segment goodness is 
represented as a function of the loss rate and available bandwidth because these two metrics can be 
measured segment-wise, and are the most influential on the receiving rate, and hence on the quality. 
A segment with high available bandwidth and low loss is unlikely to introduce high jitter or long 
queuing delay.

Peer  goodness  is  a  function of  the  availability of  a  peer,  and of  the goodness  of  all  segments 
comprising the path to the receiver. Peers with high expected goodness values indicate that these 
peers are likely to provide good and sustained sending rate. This is because they are unlikely to stop 
sending  packets  and  these  packets  will  be  transmitted  through network  paths  of  low dropping 
probability.  The best active peers set is the subset of peers that are likely to provide the “best” 
quality to the receiver. The perceived quality is quantified by the aggregated receiving rate.

Once a node has built this goodness topology, then the peers selection problem can be stated as 
finding the set of active peers that, given the annotated goodness topology, maximizes the expected 
aggregated rate at the receiver, provided that the receiver inbound bandwidth is not exceeded. The 
system then determines the expected aggregated rate for all possible active sets and selects the one 
with the highest rate” [Hefeeda et al, 2003].

Instead of  building the underlying topology,  the end-to-end technique uses  the end-to-end path 
bandwidth and loss rate in addition to peer availability. It exploits no information about the path 
segments  shared  among  peers  and  therefore  imposes  less  overhead  than  the  topology-aware 

17



selection, but while better than random selection, it does not perform as well as the topology-aware 
one does [Hefeeda et al, 2003].

3.6.4. Streaming Scheduling Algorithm

In  [Zhang et  al,  2006],  the  authors  proposed  a  streaming scheduling  algorithm for  data-driven 
overlay network, where data exchange is dynamically determined according to data availability and 
not restricted in specific directions. In data-driven overlay network based streaming applications, 
the  protocol  for  data  exchange  between  peers  contains  two  steps:  the  first  step  is  overlay 
construction, in which each node independently selects its neighbors so as to form an unstructured 
overlay network,  and  notifies  its  neighbors  what  streaming data  it  has;  the  second step  is  the 
streaming scheduling, in which each node retrieves the missing data from its neighbors according to 
the notification of data availability, while it sends the available data to its neighbors if requested. 
The peers then go on notifying data availability, and requesting and sending data.

Since  all  nodes  are  equivalent  and  independent  in  data-driven  overlay networks,  this  two-step 
scheme is robust with minimum maintenance cost for the entire system, and its performance relies 
on the algorithms in these two steps. In their work, the authors focus on the second step and present 
an analytical model and the corresponding solutions to tackle the streaming scheduling problem in 
data-driven overlay networks.

Each node should optimally decide from which  neighbor  it  asks  for  each block and optimally 
allocate its limited outbound bandwidth to every neighbor, in order to maximize the throughput with 
heterogeneous bandwidth constraints in such an unstructured overlay network. To maximize the 
throughput  of  the  system,  the  approach  is  to  increase  the  number  of  blocks  that  is  requested 
successfully under bandwidth constraints as much as possible within every scheduling period.

The priority of the blocks is defined using two factors: as “rarest-first” as been shown as one of the 
most  efficient  strategies  in  data  dissemination,  rarity factor  is  used  as  the  first  factor.  When a 
streaming application has  real-time constraint,  emergency is  considered as the second factor:  a 
block that is in danger of being delayed beyond the deadline should be with more priority than the 
one that is just entering the exchanging window. 

Then the target is to maximize the average priority sum of each node, while ensuring that 

• the  block  scheduling  should  satisfy  the  inbound,  outbound,  and  end-to-end  available 
bandwidth constraints,

• each block should be fetched from at most one neighbor so that no duplicate blocks arrive. 

This  formulation  can  be  transformed  into  an  equivalent  minimum cost  network  flow problem 
[Zhang et al, 2006].

However, the solution of this optimization problem is centralized and requires global knowledge, 
making it impractical in real systems. Based on its basic idea, a heuristic algorithm which is fully 
distributed and asynchronous is proposed with only local information exchange. Simulation results 
indicate  that  this  distributed  algorithm  outperforms  other  different  existing  methods  by  about 
10%~80% gains in high streaming rate [Zhang et al, 2006].

3.7. Content repository

In CDN-based video streaming systems, the video data is provided to the client node using a client-
server scheme; all the blocks are transmitted in a sequential order according to the current playback 
location. In a push-based P2P streaming system, the client node receives the video blocks from its 
parent(s) and forwards/pushes them to its child(ren); it does not have to find each block of data, but 
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needs to find (a) parent(s) which will be able to send it the appropriate data. In a pull-based P2P 
streaming system, the client node needs to be provided a list of potential supplying peers for each 
block of data it is interested in. So P2P systems must have a content repository in order to enable 
the clients to locate the peers that own the appropriate video content. The basic solution is the use of 
a  kind  of  central  database,  owned  and  managed  by  the  server.  But  other  solutions,  based  on 
decentralized architectures like Distributed Hash-Tables (DHT) or Dynamic Skip Lists (DSL) also 
exist to address this problematic.

3.7.1. Centralized database

A central database at the server side is the basic approach for managing content repository in a P2P 
streaming system for VoD. The server manages an index table in a convenient way, possibly a hash-
table, based on a key such as video and segment IDs, with the list of peers owning each particular 
segment. When a client node needs to find a segment, it just asks the server which provides a list of 
possible seeds. Peers should also warn the server about all changes in the data they can share to 
other peers. This is not mostly efficient because all the transactions regarding data location must go 
through the server which could become a bottleneck.

3.7.2. Distributed Hash-Table

“A DHT is a structured overlay constructed among peers. It works like a traditional hash table, that 
is, given a hashed key, it returns the corresponding object or its location. The difference is that the 
table entries are not located in the same place but distributed among the peers in the network. With 
a proper routing mechanism, the DHT supports primitive functions such as: put(id, object), get(id) 
and delete(id), where id is the object’s identifier, as in a traditional hash table” [Yiu et al, 2007].

“Basically, a DHT is designed as a circular, double-linked list. Each node keeps a reference to the 
next and previous nodes in the list. For each node in the list, the next node is the node whose ID is 
closest to but still greater than the current node's ID, except for the node with the greatest ID whose 
successor is the node with the smallest ID.

Each node is itself a standard hash table. To store or retrieve a value from the hash table, one just 
needs to find the appropriate node in the network, then do a normal hash table store or lookup there. 
To determine which node is appropriate for a particular key, one should take the key, hash it to 
generate a node ID-like key,  and find the node whose ID is closest to but still  greater than the 
hashed key. This node is the one responsible for storage and lookup for that particular key.

For a new joining node, the first step is to look up the successor of the new node's ID using the 
normal lookup protocol. The new node should be inserted between the found successor node and 
that node's predecessor. The new node is responsible for some portion of the keys for which the 
predecessor node was responsible. Leaves are very simple; the leaving node copies all of its stored 
information to its predecessor. The predecessor then changes its next node pointer to point to the 
leaving  node's  successor.  In  a  DHT,  the  insertion  and removal  of  nodes  is  independent  of  the 
insertion and removal of data.

However,  with  only one  link  to  the  previous  and next  node,  the  performance  is  O(n)  with  an 
expected performance of n/2. In order to achieve better performance, instead of storing a pointer to 
the next  node,  each node can stores  a “finger  table” containing the addresses  of k  nodes.  The 
distance  between the  current  node's  ID and the  IDs of  the  nodes  in  the  finger  table  increases 
exponentially. Each traversed node on the path to a particular key is closer logarithmically than the 
last, with  O(log n) nodes being traversed overall. When doing lookups, one now has k nodes to 
choose from at each hop, instead of only one at each. For each node visited from the starting node, 
one follows the entry in the finger table that has the shortest distance to the key.
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Despite the apparent chaos of periodic random changes to the membership of the network, DHTs 
make provable guarantees about performance” [Stoica 2003].

3.7.3. Dynamic Skip List

In [Wang and Liu 2008], the authors propose the use of a Dynamic Skip List (DSL), a randomized 
structure consisting of a set of layers. Each new node, with its playback offset as a key, first joins a 
base layer, and then randomly and independently promotes itself to upper layers. Logical links to its 
neighbors in each layer are set up during this promotion process, which can then be used to quickly 
locate nodes with the expected keys through a fast skipping operation.

“The salient features of a DSL are the following: 

1) Its probabilistic nature eliminates costly re-balancing operations after nodes join or leave, 
making it a highly efficient and adaptive structure;

2) Its  parallel  logical  links  have  inherent  power  to  support  multi-peer  collaboration  in  an 
overlay network;

3) Both the search cost and the state information kept at a node are sub-linear (constant or 
logarithmic) to the DSL size, suggesting good scalability” [Wang and Liu 2008].

“A skip list is an ordered list with additional, parallel links. Assume there are  N keys in the list, 
indexed from 1 to N . The i × 2l-th key, i = 1, 2, · · · , l = 0, 1, · · · will have links to the (i − 1) × 2l-th 
and the (i + 1) ×  2l-th  keys  respectively.  This  translates  to a  layered structure,  where the link 
distance between two neighboring nodes in layer l is 2l” [Wang and Liu 2008].

Figure 3.8 A regular skip list with 16 nodes [Wang and Liu 2008]

Figure 3.8 shows a regular skip list with 16 nodes in 5 layers (l = 0, 1, 2, 3, 4). Each i × 2l-th node 
has been inserted in layer l, and has links to the (i − 1) × 2l-th node and to the (i + 1) × 2l-th node. 
For example, node 23, which is the 4th one (= 2 x 21), has on layer 1 links to node 7, which is the 2nd 

one (= 1 x 21), and to node 29, which is the 6th one (= 3 x 21).

“In this layered representation, a single key in the list is mapped into multiple logical nodes along 
the same column. Since the parallel links in higher layers skip geometrically more than those in 
lower layers, a key search can be started from the highest layer, so as to quickly skip unnecessary 
parts, and then progressively move to lower layers until it achieves a hit. The complexity of this 
top-down search is bounded by O(log N).

A skip list can also be constructed in a random fashion: each key is first inserted into the base layer, 
and then randomly promotes itself to the upper layer with probability 1/2. If successful, the key will 
leave a node copy in the previous layer, and try to promote itself again in the new layer until it fails 
or a  MaxLayer is met. Assuming it stops at layer  l, it will then connect to all the neighbors from 
layer  0  through layer  l.  This randomized version achieves  the same search performance as  the 
deterministic version when MaxLayer is set to log(N)” [Wang and Liu 2008].
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A randomized skip list is significantly easier to implement and generally faster than other typical 
indexing  structures,  and  its  probabilistic  nature  eliminates  the  need  for  costly  re-balancing 
operations after  each key insertion,  making it  an attractive solution for distributed applications. 
Nevertheless, there are some issues for such an application: first, the number of keys in a skip list 
has to be predefined; second, higher layer nodes often encounter significantly more hits than lower 
ones and so are vulnerable; and third, the random promotion could generate unbalanced layers, 
which greatly reduces the maintenance and search efficiency.

Figure 3.9 A dynamic skip list with 16 nodes [Wang and Liu 2008]

“The  DSL addresses  those  limitations  by  allowing  an  adaptive  setting  for  the  list  size,  and 
effectively compressing unbalanced layers. It is built in a similar way to a regular skip list, but there 
is no MaxLayer limit: a newly inserted key will stop promoting itself only when it fails. Since the 
layers above L = log (N/log N) might be unbalanced owing to excessive promotions, what means 
unnecessary neighbor information has to be maintained making the search efficiency potentially 
quite low across these layers, all the layers above L shall be compressed into a single top layer to 
solve this problem (Figure 3.9). The number of logical nodes in the top layer being bounded by 
O(log  N), this small set of nodes can be easily monitored by a single entity, such as the content 
server in an overlay network. As N is neither fixed nor known a priori in this dynamic list, it should 
be kept track of the number of the keys to determine which of the nodes belong to the top layer” 
[Wang and Liu 2008].

In an asynchronous overlay, “the playback offset of a client serves as its key in the DSL, and the set 
of logical  nodes associated with this key all  map to the client node in the overlay.  The key is 
updated over time according to the playback progress. Since the playing speed is identical for all the 
normal clients, their relative distances will not change, unless VCR operations are invoked. The 
client also maintains the logical links in the DSL, and the content server needs to keep track of all 
the logical nodes in top layer.

When a new client is to join the overlay, it first contacts the content server, which redirects the 
client to a top-layer node with the closest key. The new client then performs a top-down search to 
insert itself into the base layer, and chooses the left neighbor (with earlier playback time) as its 
supplier in the overlay. It goes on to conduct the bottom-up random promotion, and set up its links 
to the corresponding neighbors in each layer.

A client that is scheduled to leave the overlay should first notify its neighbors in the DSL such that 
that  they can  re-connect  with  each  other  to  form new neighboring  relations.  Every client  also 
periodically exchanges echo messages with its neighbors in the DSL, enabling an abrupt client 
failure to be easily detected. The parallel links in the DSL then enable the affected neighbors to 
perform local repairs.” [Wang and Liu 2008].

“The DSL provides effective support for most of the VCR-like interactions, including fast-forward 
and rewind, through its horizontal links, which enable a client to skip unnecessary nodes at a fairly 
stable  speed  and  hence  segments”  [Wang  and  Liu  2008].  “The  cost  for  a  jump  operation  is 
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independent of the overlay size, nor the fast-forwarding/rewinding speed. Such a performance can 
be difficult to achieve with linear or tree structures, because there are no logical links for efficient 
skipping nodes with regular distances” [Wang and Liu 2008]. “The maximum speed that DSL can 
provide is bounded by its highest layer. Nevertheless, a speed of no more than 32x can be easily 
achieved even in a small DSL overlay, and a higher speed is rarely perceived as useful by users, nor 
is it supported in most commercial VHS or DVD players” [Wang and Liu 2008].

3.8. Content Upload source

In all  the P2P video streaming systems, peers share the video content with each others but the 
content peers serve vary from one system to one other. Peers can upload from what they see or have 
just seen, from what they saw during their last session, from something they have no immediate 
interest in, or from something they have no interest in at all.

The first and most common source of content that the peers are using is their current playing buffer; 
in other words, they share the data they downloaded for immediate use or the data they used from a 
few seconds up to some minutes ago, depending on the size of their buffer. This is actually the 
immediate solution for live streaming [Li et al,  2007] [Wang and Li 2007] [Zhang et al,  2007] 
where, with regards to one particular channel, all the users are watching (or would like to watch) the 
same  video  content  at  the  same time.  Data  segments  are  then  generally  discarded  after  a  few 
seconds because no more users are likely to be interested in those ones again. The same scheme is 
also often used for VoD systems [Do et al, 2004] [Zhou and Liu 2005] [Vlavianos et al, 2006] [Guo 
et al, 2008], but the data segments may remain available much longer, depending on the buffer size. 
The drawback of using this scheme in VoD system is that, “if a parent jumps to another playpoint in 
the video, it starts to receive media data which is not interested by its children” [Yiu et al, 2007].

A possible scheme would be to use the content downloaded by the peer during its latest session, 
since it even requires no additional download and the content is immediately available, but this 
solution was not used in any of the studied systems.

Besides  the  buffer  or  already  seen  option,  the  system can  also  be  designed  to  use  the  spare 
bandwidth of the peers for prefetching purpose and forced them to download segments that are of 
no immediate use to them [Yiu et al, 2007]. Depending on its storage capacity, each peer stores a 
number of segments of the video. It is not certain that the client will use those stored segments, 
unless s/he watches the whole video. If the nodes randomly pick the segments to store, the different 
segments of the video will be uniformly distributed over the network, but the system also has the 
opportunity to balance the distribution of the segments, for example by the use of a popularity based 
policy, so that there will be more occurrences of the most requested segments.

Peers can also be forced to download data in which they are no interest at all; for example data from 
another live streaming channel or from another video file. This scheme is used for VoD in Push-to-
Peer [Suh et al, 2006] and is likely to be used for live streaming in PPLive [Vu et al, 2006]. The 
purpose of such a policy is to balance the bandwidth and storage load needed for all the available 
content using the bandwidth and storage capacity provided by the whole P2P overlay.

3.9. Peers heterogeneity

“In P2P multicast streaming, it is generally assumed that a peer, acting as a relay, contributes an 
outbound streaming rate that is at least equal to the full streaming rate. Less effort has been devoted 
to P2P streaming to an individual requesting peer, under the conditions that supplying peers are 
heterogeneous and each willing to contribute only a fraction of the streaming rate” [Xu et al, 2006].
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Actually, the capacities of peers in terms of access bandwidth, storage and processing power can be 
heterogeneous  and  their  availabilities  can  be  transient.  Systems  must  handle  heterogeneous 
networks with on one hand nodes located behind residential broadband connections (including cable 
modem and  DSL)  having  asymmetric  upload  and  download  capacities  (their  upstream rate  is 
significantly  lower  than  their  downstream rate),  and  on  the  other  hand  hosts  located  on  high 
bandwidth university and corporate LANs.

In heterogeneous bandwidth environments that may involve hosts behind DSL and Ethernet, P2P 
video streaming systems should try to match up nodes with similar bandwidth capabilities, and 
allow a high-bandwidth node to receive the best download rate from other high-bandwidth nodes, 
while  a  low  capacity  node  would  receive  data  from  comparatively  low  capacity  nodes  only. 
Otherwise, high capacity nodes might waste bandwidth sending data to low capacity nodes whose 
download capacity could become the bottleneck. This could lead to decrease in uplink utilization, so 
clustering  similar  nodes  using  matching  bandwidth  is  important  to  ensure  optimal  bandwidth 
utilization [Pianese et al, 2007].

“The bandwidth utilization and thus the delivered quality to individual peers in the mesh-based 
approach depends on the aggregate quality of available content among their parents. Therefore, as 
the percentage of high bandwidth peers increases, the performance of the mesh-based approach 
gradually improves. In the context of tree-based approach, the main determining factor for both 
utilization and quality is the average depth across different trees. Increasing the percentage of high 
bandwidth  peers  rapidly  drops  depth  of  all  trees  which  in  turn  improves  both  utilization  and 
delivered quality” [Magharei and Rejaie 2007b].

The delivered quality and buffer requirements of high bandwidth peers are affected by the degree of 
bandwidth heterogeneity and the percentage of low bandwidth peers. When the percentage of high 
bandwidth peers is small, a larger fraction of their swarming parents consists of low bandwidth 
peers.  This  in  turn  reduces  the  aggregate  available  quality  among  their  swarming  parents  and 
increases the probability of content bottleneck [Magharei and Rejaie 2007a].

Peers heterogeneity is also an important issue for systems including policies for video segments 
distribution among peers; if a segment exists at a large number of nodes, the system could consider 
this segment as being well represented, but actually, if many of the nodes sharing the segment have 
limited upload capacities, the aggregate delivery capacity for this segment could be rather low. To 
avoid this problem, segment distribution policies should be adjusted to include the current seeding 
capacity of the peers [Annapureddy et al, 2007].

3.10. Network coordinates

Network  coordinates  (or  network  location)  embed  inter-node  latency  in  a  low-dimensional 
geometric  space,  providing  an  alternative  approach  to  building  a  latency  service.  As  network 
conditions change, each node maintains its location in the coordinate space, keeping distances in 
virtual space an estimate of inter-node latencies.

“There exist two main classes of algorithms for calculating coordinates: landmark-based schemes, 
in which overlay nodes use a fixed number of landmark nodes to calculate their coordinates, and 
simulation-based schemes, which are decentralized and calculate coordinates by modeling nodes as 
entities in a physical system.

In Global  Network Positioning  (GNP) [Ng and Zhang 2002],  nodes  contact  multiple  landmark 
nodes to triangulate their coordinates. The drawbacks of this landmark-based approach are that the 
accuracy of the coordinates depends on the choice of landmark nodes and landmark nodes may 
become  a  bottleneck.  Lighthouses  [Pias  et  al,  2003]  addresses  this  by  supporting  multiple 
independent sets of landmarks with their own coordinate systems. These local coordinates map into 
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a global coordinate system. Practical Internet Coordinates (PIC) [Costa et al, 2004] does not use 
explicit landmarks, incorporating measurements to any node using a simplex optimization algorithm 
to  obtain  an  up-to-date  coordinate.  These  landmark-based  schemes  require  a  reasonably  stable 
infrastructure.

On the other hand, Vivaldi [Dabek et al, 2004] and Big Bang Simulation [Shavitt and Tankel 2003] 
determine  coordinates  using  spring-relaxation  and  force-field  simulation,  respectively.  In  both, 
nodes attract and repel each other according to network distance measurements. The low-energy 
state of the physical system corresponds to the coordinates with minimum error. A different method 
for stabilizing coordinates is proposed in [de Launois et al, 2004]: asymptotically dampening the 
effect of each new Vivaldi measurement.  While this factor does mitigate oscillations in a fixed 
network, it  prevents the algorithm from adapting to changing network conditions” [Ledlie et al, 
2007].

Network coordinates may be useful in a P2P system where performance relies on accurate latency 
estimation between peers. In a VoD streaming system, when choosing among a list of potential 
seeders, a node may want to choose the closest ones because they should be able to deliver the 
requested data faster and so increase the efficiency of peer-to-peer communications and reduce the 
system latency.

3.11. Incentives

Collaborative peer-to-peer networks are exposed to abuse of selfish peers which would use the 
collaborative network without contributing back to it. So some distributed systems, like BitTorrent 
[Cohen 2003] use incentives to prevent abuse of the overlay network to give preferential treatment 
to nodes that do contribute. An important source for incentives in cooperative systems is the game 
theory, and the effective strategies for the iterated prisoner's dilemma.

3.11.1. The Stanford Game Theory

“Game  theory is  the  study of  the  ways  in  which  strategic  interactions among  rational  players 
produce outcomes with respect to the preferences (or utilities) of those players, none of which might 
have been intended by any of them” [Ross 2006].

“Game theory is the most important and useful tool in the analyst's kit whenever she confronts 
situations in which what counts as one agent's best action (for her) depends on expectations about 
what one or more other agents will do, and what counts as their best actions (for them) similarly 
depend on expectations about her” [Ross 2006].

“All situations in which at least one agent can only act to maximize his utility through anticipating 
(either consciously, or just implicitly in his behavior) the responses to his actions by one or more 
other agents is called a game. Agents involved in games are referred to as players. If all agents have 
optimal actions regardless of what the others do, as in purely parametric situations or conditions of 
monopoly or perfect competition, we can model this without appeal to game theory; otherwise, we 
need it” [Ross 2006].

“Each player  in  a game faces a choice among two or more possible  strategies.  A strategy is  a 
predetermined ‘programme of play’ that tells her what actions to take in response to every possible 
strategy other players might use” [Ross 2006].

The Prisoner's Dilemma is a game having its name derived from the following situation typically 
used to exemplify it.  “Suppose that the police have arrested two people whom they know have 
committed an armed robbery together. Unfortunately, they lack enough admissible evidence to get a 
jury to convict. They do, however, have enough evidence to send each prisoner away for two years 

24



for theft of the getaway car. The chief inspector now makes the following offer to each prisoner: If 
you will confess to the robbery, implicating your partner, and she does not also confess, then you'll 
go free and she'll get 10 years. If you both confess, you'll each get 5 years. If neither of you confess, 
then you'll each get two years for the auto theft” [Ross 2006].

Prisoner B Stays Silent Prisoner B Confess

Prisoner A Stays Silent Each serves 2 years Prisoner A: 10 years
Prisoner B: goes free

Prisoner A Confess Prisoner A: goes free
Prisoner B: 10 years

Each serves 5 years

Table 3.1 The prisoner's dilemma

The first prisoner evaluates the two possible actions by comparing his payoffs to see which one is 
preferable for each possible action taken by the second one. If the second prisoner confesses, the 
first one will go in prison for 5 years by confessing and for 10 years by refusing. If the second 
prisoner refuses, the first one will go free by confessing and in prison for 2 years by refusing. 
Therefore, the first prisoner is better off confessing regardless of what the second one does. The 
second one, meanwhile, evaluates his actions by comparing his payoffs, and he comes to exactly the 
same conclusion. Thus both players will confess, and both will go to prison for 5 years.

Something disturbing about the outcome of the Prisoner's Dilemma is that if both had refused to 
confess, they would each have gone to prison for only 2 years, thereby both earning higher utility 
than they receive when they confess. This is the most important fact about the Prisoner's Dilemma, 
and its significance for game theory is quite general.

However, if in one-shot games, that is, games in which players' strategic concerns extend no further 
than the terminal nodes of their single interaction, the only possible outcome is mutual defection, 
this may no longer hold, in repeated games, that is, games in which sets of players expect to face 
each other in similar situations on multiple occasions. Actually games are often played with future 
games in mind, and this can significantly alter their outcomes and equilibrium strategies. Rational 
players  repeatedly  interacting  for  indefinitely  long  games,  repeated  Prisoner's  Dilemma  for 
example, having memory of at least one previous game, can sustain the cooperative outcome [Ross 
2006].

3.11.2. Tit-for-Tat

"Tit  for  Tat"  is  one  simple  and  famous,  but  not  necessarily  optimal, deterministic  strategy for 
preserving cooperation in repeated prisoner's dilemma. This strategy tells each player to behave as 
follows:

1. Always cooperate in the first round;
2. Thereafter, take whatever action your opponent took in the previous round.

A group of players all playing tit-for-tat will never see any defections. Since, in a population where 
others play tit-for-tat, tit-for-tat is the rational response for each player. 

But there are two complications. Firstly, the players must be uncertain as to when their interaction 
ends, otherwise it will be rational for players to defect in the last round since no punishment will be 
possible. Considering then the second-last round, players also face no punishment for defection, 
since they know they will defect in the last round anyway. So they defect in the second-last round 
too,  and  do  so  on,  until  they reach  the  first  round.  Therefore,  cooperation  is  only possible  in 
repeated prisoner's dilemmas where the expected number of repetitions is indeterminate. Secondly, 
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players'  ability to distinguish defection from cooperation should be perfect.  Otherwise tit-for-tat 
players could mistake the second case for the first and defect, thereby setting off a chain-reaction of 
mutual defections from which they can never recover [Ross 2006]. 

A slightly better strategy can be "Tit for Tat with forgiveness." When the opponent defects, on the 
next move, the player sometimes cooperates anyway, with a small probability (between 1% and 
5%). This allows for occasional recovery from getting trapped in a cycle of defections.

3.11.3. Excess-based

Excess-Based is an economic model to perform resource allocation in P2P networks and defend 
against malicious participants. This model has been described in [Grothoff 2003] as follows. 

Instead of money, the model is based on trust. Each node keeps track of how much it trusts each of 
the other nodes it has had contact with in the network. The level of trust is measured as a non-
negative integer.

“Nodes form their opinions upon requests, and replies. A request is considered network usage, and a 
reply is considered to be a contribution to the network, so nodes that send large numbers of requests 
will lose trust, and nodes that send replies earn trust. Each request comes with a priority which 
defines the amount of trust that the sender node is willing to risk for this request. The receiver of the 
request can reduce the amount of trust it has in the sender by that amount, and if the receiver can 
answer the request, the sender will increase its trust in it by the same amount. Note that the receiver 
will give the request an effective priority which is the minimum between the priority given by the 
sender and its trust in it [Grothoff 2003].

The main motivation for the introduction of an economic model is resource allocation. If a node is 
too busy to process all requests, it will decide to drop first the requests with the lowest priority, 
which  are  going  to  be  less  valuable.  This  scheme  has  the  desirable  property  that  nodes  that 
contributed to the network will receive better service than nodes that did not contribute. On the 
other hand, if a node is idle, or its current load is under a certain threshold, it may decide not to 
charge the sender for the request. However, the sender of the request will still credit the replier for 
its answer. This is essential for the economic model to work as it  makes possible to infuse the 
network with trust [Grothoff 2003].

It is in the nodes' best interest to have knowledge about their peers’ performance in the past because 
it helps making good decisions. If they were to lose that knowledge, their decisions would be less 
informed and thus potentially harmful for them. Note that it does not matter whether a node forgets, 
ignores or disregards its  knowledge about its  peers but what it  bases its  decision on. The only 
important decision a node makes that depends upon its trust in its peers is which one of two peers it 
should drop the request from if it is so busy that it can only answer one of them. If a node has no 
proper  records  of  its  peers’ past,  it  might  drop  a  request  from a  good host  that  has  answered 
thousands of its requests in the past in order to serve a less good one; it would so miss a great 
opportunity to increase its own standing with the good peer which may then decide it is a malicious 
node and later prefer answering requests from other ones [Grothoff 2003].
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4. Existing or proposed systems
A lot of different systems have been proposed for both VoD and live streaming during the last years, 
so that it is even difficult to draw up a comprehensive list with all of them. In order to give an 
overview of the proposed solutions, a representative panel comprising a dozen of systems has been 
selected. Section 4.1 presents a brief description of those systems, based on the selection criteria 
defined in chapter 3, while section 4.2 presents a detailed analysis of the most representative ones. 
The systems analyzed in section 4.2 are only listed in section 4.1 without any further description. 
Section 4.3 presents a global overview of the options chosen in the different systems.

4.1. Description of existing or proposed systems

P  2  VoD   (Peer-to-Peer  approach  for  VoD  streaming)  is  a  P2P  architecture  for  VoD  streaming 
proposed  in  [Do  et  al,  2004].  Peers  are  organized  in  a  tree-based  overlay,  grouped  by 
generations where a generation is a group of peers having always the same smallest numbered 
block in their cache. Children receive data using a push-based scheme from a single parent, 
which uploads data from its own playing cache. Parents are proposed to be chosen using a 
round robin, smallest delay, or smallest distance selection algorithm, from a list obtained from 
the server. The performance of the system has been evaluated using a simulation method. The 
system does not support VCR-like operations.

PPLive : this system has been described with more details in section 4.2.3.

CoolStreaming/DONet : this system has been described with more details in section 4.2.1.

HON (Hybrid Overlay Network) is a P2P protocol for VoD streaming proposed in [Zhou and Liu 
2005].  This system constructs  both a  tree overlay and a  mesh overlay which collectively 
deliver the video data to the clients; much of the data is delivered through the mesh overlay 
while a node will only resort to the tree overlay if it fails to fetch some segment after a certain 
deadline. Both overlays use a pull-based scheme for data delivery. Nodes are assigned their 
parent in the tree overlay by a managing node, responsible for constructing and maintaining 
the overlay. Multiple parent peers in the mesh overlay are chosen using a gossip selection 
algorithm. The performance of the system has been evaluated using a simulation method. It is 
just proposed to simulate VCR functionalities by initiating a new subscription request.

BiToS (BitTorrent Streaming) is  P2P streaming protocol for VoD proposed in [Vlavianos et  al, 
2006]. Peers are organized in a mesh-based overlay and data distribution follows a pull-based 
scheme. Parents are chosen using a tracker program running on a server. Pieces requests and 
exchanges among peers follow both rarest-piece-first and tit-for-tat policies. Pieces from a 
particular video file are contained in three components called Received Pieces, High Priority 
set and Remaining Pieces Set. Pieces from the Received Pieces set can be shared with peers. 
The performance of the system has been evaluated using a simulation method. The system 
does not support VCR-like operations.

PROP (collaborating and coordinating PROxy and its P2P clients) is a hybrid proxy/P2P system for 
VoD streaming proposed in [Guo et al, 2006]. The proxy serves as a persistent cache site, and 
takes over the streaming whenever the media cannot be served by any peer. Peers are self-
organized into a structured overlay and data distribution follows a pull-based scheme. They 
share the cached media data they are currently playing. The system uses a DHT for content 
location, a popularity-based proxy replacement policy and a utility-based peer replacement 
policy. The performance of the system has been evaluated using a simulation method. VCR-
like operations have not been studied in the system.
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Push-to-Peer is  a  VoD system for  long-lived peers  proposed in  [Suh et  al,  2006].  The  authors 
consider  a  controlled  environment  with  always-on peers,  constant  bandwith,  and  possible 
centralized control. The content distribution proceeds in two phases: first the content server 
pushes content to the nodes, then the nodes will pull content of interest from other peers. A 
peer may store and share content in which it has no interest.  The system assumes homo-
geneous peers. Clients download media data from a small number of peers. The performance 
of the system has been evaluated using theoretical models. Startup delay is around 22 sec. 
VCR-like operations have not been studied in the system.

Joost : this system has been described with more details in section 4.2.2.

PRIME is a P2P live streaming system proposed in [Magharei and Rejaie 2007a]. The peers are 
organized into both a tree and a random mesh overlay and data distribution follows a pull-
based scheme. Connections between peers in level n and their children in level n-1 of the tree-
based overlay are only used for the diffusion of data units received from level  n+1. Parent 
peers then swarm data units with child peers in the same or higher level. Peers receive media 
content from multiple sources. The performance of the system has been evaluated using a 
simulation method.

BulletMedia is a P2P system for VoD proposed in [Vratonjic et al, 2007]. Peers are organized in a 
mesh-based overlay and data  distribution follows a  pull-based scheme.  Peers  are  selected 
uniformly at random. The blocks are selected using the rarest random strategy. The system 
uses a DHT to store content location within peers. Peers upload from the entire set of chunks 
associated with the media being played; they use their spare bandwidth to prefetch blocks 
chosen to ensure good diversity across the overlay. The performance of the system has been 
evaluated using a prototype implementation. Startup delay: about 20 seconds to cache the 
initial blocks. The system supports VCR-like operations.

PULSE is a P2P live streaming system proposed in [Pianese et al, 2007]. Peers are organized in a 
mesh-based overlay and data distribution follows a pull-based scheme. The system uses a 
primary optimistic tit-for-tat peer selection policy, and an additional excess-based altruistic 
incentive. Chunks are selected using a rarest first policy by the requester and ordered using a 
least  sent  first,  random strategy by the  sender.  The  performance  of  the  system has  been 
evaluated using a simulation method and limited deployment of a node prototype.

R  2   is P2P live streaming system proposed in [Wang and Li 2007]. Peers are organized in a mesh-
based overlay and data distribution follows a push-based scheme. The system is based on 
Random Push with Random Network coding. The chunks to be sent are chosen randomly with 
a preference to the ones from a priority region. Seeds also randomly choose downstream peers 
for each segment. Unlike other live streaming systems, playback is synchronized for all peers. 
The performance of the system has been evaluated using a prototype implementation. Startup 
delay:  fill  the priority region is  less than 6 seconds with initial  buffering delay set  to  16 
seconds.

VMesh : this system has been described with more details in section 4.2.4.

GridMedia is a P2P live streaming system fully implemented to broadcast live TV programs since 
January 2005 and analyzed in [Zhang et al, 2007]. Peers self-organize into an unstructured 
random mesh overlay and data distribution follows a pull-push hybrid protocol: a pull-based 
protocol is  first  used to form trees along which packets are then pushed.  A partial  list  of 
current online nodes is given by the server. Packets are requested to peers randomly with the 
same  probability.  The  performance  of  the  system has  been  evaluated  using  a  simulation 
method and a full implementation. The average playback delay is around 25 seconds.
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DirectStream is a P2P streaming system for VoD proposed in [Guo et al, 2008]. Peers are organized 
in a tree-based overlay and data distribution follows a push-based scheme. Parent peer is 
selected using a distance-bandwidth ratio. Content location use an application-level multicast 
based directory service called AMDirectory, built on the top of Scribe [Rowstron et al, 2002], 
which is a decentralized multicast infrastructure. The performance of the system has been 
evaluated using a simulation method. VCR functionalities are simulated by initiating a new 
joining process.

4.2. Detailed analysis of representative systems

In  this  section,  we describe  a  selection  of  existing  or  proposed  streaming systems.  As already 
mentioned in this chapter, given the significant amount of systems, it was impossible to describe 
them all in detail as part of the present thesis. So it was decided to limit this section to the analysis 
of four representative systems: two VoD systems and two live streaming systems. For the VoD part, 
Joost and VMesh have been chosen: the former for having an hybrid server/P2P architecture, the 
latter for being P2P only. For the live streaming part, Cool-Streaming and PPLive were selected.

4.2.1. CoolStreaming

CoolStreaming is a P2P live video streaming system presented in [Zhang et al, 2005] as DONet, 
which stands for Data-driven Overlay Network. “Since the first release (CoolStreaming v0.9) as a 
public  Internet-based  implementation  in  March  2004,  it  has  attracted  millions  of  downloads 
worldwide. The peak concurrent users reached over 80,000 with an average bit rate of 400 Kbps, 
with users from 24 different countries” [Li et al, 2007]. It is currently deployed on [CoolStreaming 
2008], and its implementation is platform independent and supports Window Media Video (WMV) 
or  RealMedia  Variable  Bitrate  (RMVB)  formats.  Its  internal  architecture,  dynamics  and 
performance have further been studied in [Li et al, 2007].

“CoolStreaming represented one of the earliest large- scale P2P video streaming experiments, which 
was built on the notion of data-driven, somewhat similar to the technique used in BitTorrent [Cohen 
2003] but with much more stringent timing and rate constraints” [Li et al, 2007].

“The system consists of five basic components:
1) the Membership manager, which maintains the partial view of the overlay; 
2) the Partnership manager, which establishes and maintains partnership with other nodes;
3) the Scheduler, which is responsible to schedule data transmission across streams;
4) the Buffer, which stores video data before playback;
5) the Buffer Map, which represents the current status of the buffer and data requests” [Li et al, 

2007]. 

DONet is a mesh-based system which has been designed as “data-centric”: a node always forwards 
data  to  others  that  are  expecting  the  data,  with  no  prescribed  roles  like  father/child,  internal/ 
external, and upstreaming/downstreaming; the availability of data that guides the flow directions, 
while not a specific overlay structure that restricts the flow directions [Zhang et al, 2005].

“For each segment of a video stream, a DONet node can be either a receiver or a supplier, or both, 
depending dynamically on this segment’s availability information, which is periodically exchanged 
between the node and its partners. An exception is the source node, which is always a supplier, and 
is referred to as the origin node. It could be a dedicated video server, or simply an overlay node that 
has a live video program to distribute” [Zhang et al, 2005].

Node membership is managed as follows: the users first contact a web server to select the program 
that they intend to watch [Li et  al,  2007].  After selecting the program, the newly joining node 
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contacts the origin node (or boot-strap node), which randomly selects a deputy node (from a set of 
24 dedicated servers) and redirects the new node to the deputy, as shown on figure 4.1. The new 
node then obtains a list of partner candidates from the deputy, and contacts them to establish its 
partners in  the overlay.  To accommodate overlay dynamics,  each node periodically generates  a 
membership message to announce it existence. A gracefully departing node should issue a departure 
message. When a node fails, the partner that detects the failure will issue the departure message on 
behalf the failed node [Zhang et al, 2005]. “An ActiveX component in JavaScript code is used to 
collect the peer activities as well as status information and reports back to a log server” [Li et al, 
2007].

The  initial  system adopted  a  simple  pull-based  scheme  for  content  delivery  based  on  content 
availability  information,  what  incurred  per  block  overhead  and  resulted  in  a  longer  delay  in 
retrieving the video content. The present one implements a hybrid push-pull mechanism, in which 
the video content is pushed by a parent node to a child node except for the first block. Each peer 
only sends a single request for a sub-stream; once the request is accepted, the parent node will push 
all subsequent data blocks from this sub-stream to the requesting child peer. It remarkably lowers 
the overhead associated with each video block transmission, reduces the initial delay and increases 
the video playback quality [Li et al, 2007].

Figure 4.1 CoolStreaming system configuration [Li et al, 2007]

Originally, the system was based on a single-stream scheme. In the current version, a video stream 
is divided into multiple sub-streams, which essentially enables multi-source and multi-path delivery. 
It means that a node can subscribe for sub-streams from different partners. This enhances the video 
playback quality and also improves the effectiveness against  system dynamics.  A sub-stream is 
further divided into blocks with equal size, in which each block is assigned a sequence number 
representing its playback order [Li et al, 2007]. 

Each node maintains an internal buffer. A video stream is divided into segments of uniform length, 
and the availability of the segments in the buffer of a node is represented by a Buffer Map. The 
playback progresses of the nodes are semi-synchronized. Analytical results  demonstrate that  the 
average segment delivery latency is bounded and experimental results further suggest that the time 
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lags between nodes are unlikely higher than 1 minute. If each segment contains 1-second video, a 
sliding  window of  120 segments  can effectively represent  the  buffer  a  node uses  to  upload  to 
partners, because a partner should not be interested in the segments that are outside of the window 
[Zhang et al, 2005]. 

CoolStreaming uses a gossiping protocol for membership and management based on a basic random 
partner selection. The newly joined node obtains a list of partner candidates from the deputy node, 
and contacts them to establish its partners in the overlay.  It maintains a membership cache that 
contains a partial list of the active nodes.

Each  node  continuously  exchange  its  buffer  map  with  its  partners,  and  then  schedules  which 
segment  is  to  be  fetched  from  which  partner;  the  scheduling  algorithm  strikes  to  meet  two 
constraints: the playback deadline for each segment, and the heterogeneous streaming bandwidth 
from the partners. If the first constraint cannot be satisfied, then the number of segments missing 
deadlines should be kept minimal. The algorithm first calculates the number of potential suppliers 
for each segment. Since it could be more difficult to obtain a segment with less potential suppliers 
within the deadline constraints, the algorithm determines the supplier of each segment starting from 
those with only one potential  supplier,  then those with two, and so forth.  Among the multiple 
potential suppliers, the one with the highest bandwidth and enough available time is selected. The 
segments to be fetched from the same supplier are marked in a buffer map-like bit sequence, which 
is sent to that supplier, and these segments are then delivered in order through a real-time transport 
protocol [Zhang et al, 2005]. 

Finally, each node periodically establishes new partnerships with nodes randomly selected from its 
membership cache. This operation first helps each node maintain a stable number of partners in the 
presence of node departures; second, it helps each node explore partners of better quality [Zhang et 
al, 2005].

[Zhang et al, 2005] first present the performance results of DONet experimented on a distributed 
testbed. Under a stable environment where all the nodes join in an initialization period, the control 
overhead increases with the number of partners but is fairly limited to less than 2% of the total 
traffic. The playback continuity improves with an increasing number of partners because each node 
has more choice for suppliers. It reaches 98% when using 4 partners and improvements with more 
partners are marginal. The system appears to be scalable in terms of both overlay and streaming 
rate. Larger overlays obviously lead to better playback continuity due to the increasing degree of 
cooperation.  Under a dynamic environment the control overhead is slightly higher with a more 
dynamic node behavior; it also leads to poorer continuity but the drop is insignificant.

Then the authors present the results of the first implemented public version of the system called 
CoolStreaming. Those results reveal that the Internet has enough bandwidth to support TV-quality 
streaming, and that the larger the data-driven overlay is, the better quality it delivers.

In [Li et al, 2007], the authors present the results of the performance measurement studied using a 
large set of live streaming traces obtained from the current CoolStreaming system. They showed 
that: the excessive start-up time and high join failure rates are the critical performance issue in P2P 
streaming systems.  The  system dynamics,  in  particular  the  peers  churn,  appeared  to  affect  the 
overall performance. Finally, they noticed a highly unbalanced distribution in term of uploading 
contributions from nodes. So the authors conclude that a certain server deployment is of necessity, 
but as pure server-based approaches like CDN can be costly and do not scale well, a large-scale 
commercial  Internet  streaming system should be a  hybrid one,  using P2P with assistance from 
distributed servers.
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4.2.2. Joost

Joost is a P2P VoD streaming system created by Janus Friis and Niklas Zennström, co-founders of 
Skype and Kazaa. It was commercially launched on May 1, 2007. The current Joost Beta version 
(Joost Beta 1.1.8. Release date: July 21, 2008) runs on Windows XP Service Pack 2, Windows 
Vista, and on any Intel-based Mac running OS X 10.4. It supports more than 28,000 TV shows 
through more than 480 channels [Joost 2008]. 

Joost is one of the earliest and best-known commercial P2P VoD products and has the potential to 
become  very  popular.  It  offers  high-quality  and  comprehensive  VoD services,  and  the  current 
version supports an instant on-demand video without any need for additional set top box. However, 
the mechanisms behind Joost are still  unrevealed. The underlying Joost architecture and its key 
components  have  been  studied,  and  its  media  streaming  behaviors  and  peer  management 
mechanisms analyzed in [Lei et al, 2007] through close investigations on its network traffic. Their 
work has been the source for the information reported below.

Figure 4.2 Joost architecture [Lei et al, 2007]

Joost  is  a  server-assisted  peer-to-peer  VoD  system  that  mainly  relies  on  plenty  of  dedicated 
infrastructure nodes (e.g. content servers) to distribute video. P2P technologies are used to help 
distributing video and to extend the system’s scalability. Five types of servers are participating in 
the Joost architecture (Figure 4.2):

1) the version server is responsible for checking the current version of the software; when the 
Joost client crashes, it is also responsible for the error reports;

2) the tracker server keeps track of membership and helps bootstrapping new peers by sending 
the initial peer list that includes some of the super nodes and content servers; after that, the 
tracker server will not appear in any of the other stages;

3) the backend (or control) server performs channel list management and load balancing within 
the server cluster it is part of with the graphics servers; it  also communicates every one 
minute with the client;

4) the channel graphics servers are responsible for tasks like channel list updating and channel 
graph downloading actions, especially when the control server is overloaded;

5) the content servers, of which a significant number have been spread over the network, on 
sites owned by different network solutions and service providers.

Joost uses super nodes to perform the following three basic functions:

1) they direct new joined clients to available peers which are either clients or content servers;
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2) for on-demand video functions, they periodically exchange with clients some small UDP 
packets which are believed to be used for peer management, such as keep-alive probing;

3) channel switching requires the client to talk to them, most likely to help it finding available 
peers to fetch the new media data.

Super nodes are not responsible for relaying or forwarding media data to other peers.

To connect to the system, a client first communicates with the tracker server from which it will 
receive some available super node addresses and possibly some content server addresses. Then it 
requests the version server for getting the latest software version. Finally, it starts contacting some 
of Joost super nodes to obtain the list of other available clients and begin exchanging video content; 
before long, it starts communicating with other peers besides Joost servers. After a short period, the 
backend server appears, and continuously sends a large amount of data to the client in order to 
update the channel list. When restarted the client proceeds identically to reconnect, except that the 
version server might not appear if the interval was short, and that it attempts to communicate with 
peers from which it has downloaded content previously. 

Peer selection mechanisms in Joost seem to occur as follows. First, the popularity is considered 
during the peer selection. Most likely, the client receives a peers list with more available clients if a 
most popular channel is chosen. Second, during the peer selection, low capacity peers probably 
connect mostly with low capacity peers except for most popular programs. It is quite similar to the 
swarm mechanisms used in BitTorrent [Cohen 2003], which allow low capacity nodes to receive 
data from comparatively low capacity nodes only since otherwise, high capacity nodes might waste 
resources for sending data to low capacity nodes instead of high capacity nodes. But for the most 
popular channels, there are enough peer resources so that it would be no problem for low capacity 
nodes to receive data from some high capacity nodes. Third, if the client requests a seldom channel 
or it is the only one in that channel, most of the data will be sent from the Joost content server since 
there are not enough peers which can contribute to the client. Fourth, the geographical locality may 
have been considered in Joost. Topological locality has however not been realized in the current 
version.

A client stores the media data in its local cache as “anthill cache” on its system disk. Joost claims 
the system runs on a media streaming library the company has nicknamed “Anthill”. Here, Anthill 
[Babaoglu et al, 2002] is an agent-based P2P system to support the media distribution services. The 
cache size depends on which and how long programs have been played. Each time a new program is 
chosen, the size of the cache will automatically increase. It sometimes reaches more than 2 GB. 
Therefore, the user’s system resources could be significantly occupied if the client continues to 
watch different channels. 

The VoD aspect of Joost is particularly interesting. Unlike file sharing or live media streaming, each 
client only cares about contents after its current playing position, which is often different from other 
peers. The peer can only download from those whose playback positions are ahead, or from whom 
have already watched the program. Instead, itself can help peers which join later. However, as each 
Joost  client  can  change its  playback position  at  any time,  which differs  from many other  P2P 
streaming  systems,  it  becomes  difficult  to  optimize  the  overall  VoD system.  For  example,  the 
“rarest-first” strategy [Cohen 2003] in BitTorrent is not applicable here. 

In Joost,  each media file is broken down into fixed-time chunks. Each chunk is encrypted, and 
includes an anchor  which is  a dedicated marker for the encrypted media data.  When a seek is 
triggered in a client, it will always search for the closest anchor in the local video cache if it is 
already downloaded. Otherwise, it first sets a new anchor and requests new data from other peers. If 
the fast forward interval is smaller than 5 seconds the client may continuously play without waiting. 
However, if the interval is large, it takes 5 − 10 seconds to start playing. So, each media file is 
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supposed to be divided into multiple 10-second play time chunks, but the exact size of the chunk is 
unknown. 

When the client drags the control bar into any specific position, it communicates with one of the 
super nodes, supposedly in order to support the VoD functionalities. During the actions of “fast 
forward” within the same program, there is a large amount of traffic sent from the super node. 
Otherwise, the traffic from the super node is quite low compared to the “fast forward period”; UDP 
is used to carry the traffic and the size of both received and sent packets is always below 150 bytes. 
These  packets  are  supposedly only used  for  control,  not  for  media  transmission.  Probably the 
updated  lists,  which  contain  information  about  peers  having  already  received  the  on-demand 
contents, are encoded in these packets.

The channel switching aspect is also interesting. If the program is completely new to the client, it 
may  take  up  to  20  seconds  to  really  start  the  program.  Most  likely,  the  time  is  required  for 
requesting contents from other peers and preparing downloading. Otherwise, the program will start 
immediately  after  selection  since  content  can  be  directly  fetched  from the  local  video  cache. 
Moreover, the Joost client can browse the channel list and add selected channels into a favorite 
channel list for client’s convenience. It usually takes 7 − 9 seconds for switching between those 
channels.

The performance of Joost have been measured on the real network using three test machines located 
in Germany, following different scenarios [Lei et al, 2007]. The authors demonstrate that with some 
dedicated infrastructure the current Internet is capable of providing performance requirements of 
high quality VoD services.  However,  the performance remains to be improved in the following 
branches:

• Such an architecture heavily relying on a set of centralized content servers may still raise a 
scalability issue.

• Joost does not efficiently use the peers’ resources, especially when high capacity peers are 
available. For example, it takes a long time to browse the channel list since it is dynamically 
downloaded from the server, which is highly overloaded in case of a crowded browsing. 
High capacity peers could be used for providing such a service.

• The authors noticed program unavailability over five times during experiments;  at  those 
times, all programs were unavailable for up to 30mins. So it seems that the current Joost P2P 
technology is not always reliable.

• Joost currently provides each client with the same quality of video, which may result in an 
inefficient resource utilization if some clients are unable to support the desired video quality.

4.2.3. PPLive

PPLive is a free P2P-based live streaming (IPTV) and VoD application that has been released for 
the first time in January 2005. According to the PPLive web site [PPLive 2008], as of May 2006, 
the PPLive network provided more than 200 channels with a daily average of 400,000 aggregated 
users, and most of its channels had several thousands of users at their peaks [Vu et al, 2006]. With 
typically over 100,000 simultaneous users PPLive is the most popular IPTV application today. The 
system is increasing in popularity, especially in China and Asia [Hei et al, 2006]. The number of 
subscribers is predicted to increase to 36.9 millions by 2009 [Vu et al, 2006]. The current client 
version (PPLive 1.9.15) runs on Windows operating systems.

“The bit rates of video programs mainly range from 250 Kbps to 400 Kbps with a few channels as 
high as 800 Kbps. The PPLive network does not own video content. The video content is mostly 
feeds from TV channels in Mandarin. The channels are encoded in two video formats: WMV and 
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RMVB. The encoded video content is  divided into chunks and distributed to users through the 
PPLive P2P network” [Hei et al, 2006].

The PPLive web site provides limited information about its video content distribution mechanism. 
Although PPLive is paving the way for an important new class of bandwidth intensive applications, 
as it  employs  proprietary signaling and video delivery protocols,  details  about  its  performance, 
streaming workload and overlay characteristics are still largely unknown. In [Hei et al, 2006], the 
authors  undertake  a  preliminary  measurement  study of  PPLive,  reporting  results  from passive 
packet  sniffing  of  residential  and  campus  peers  for  streaming  performance,  workload 
characteristics,  and  overlay  properties.  In  [Vu  et  al,  2006],  the  authors  studied  the  overlay 
characteristics of the proprietary PPLive protocol by undertaking a crawler-based investigation of 
the system.

PPLive  streams live TV and video  data  through overlays  of  cooperative  peers,  in  which  peers 
download and redistribute live television content from and to other peers. The PPLive system has 
multiple channels, each of which forms its own overlay. Each channel streams either live audio-
video feeds, or movies according to a preset schedule. A user can join at most one channel [Vu et al, 
2006].

Figure 4.3 PPLive membership and partnership protocols [Vu et al, 2006]

The  PPLive  software  implements  a  gossip-based  protocol  for  peer  management  and  channel 
discovery, see Figure 4.3. When an end-user joins the PPLive network, it sends out a query message 
to the PPLive channel server to obtain an updated channel list. Before a peer actually starts to watch 
a channel, it does not exchange data with other PPLive peers. After a peer selects a channel to 
watch, it sends out multiple query messages to some root servers to retrieve an online peer list for 
this channel. Upon receiving this list, the PPLive client sends out probes to peers on the list to find 
active peers for the channel. Some active peers may also return their own peer lists, helping the 
initial peer to find more peers. [Hei et al, 2006]. 

Although PPLive is not open-source, a little of its internal design decisions are known. Each PPLive 
node executes two protocols, one for registration and harvesting of partners, and the second for P2P 
video distribution. A PPLive node maintains two kinds of partners: “candidates” and “real” partners. 
Partners of the latter type are used for exchanging video streams, while the former is used to replace 
real partners that have become unresponsive [Vu et al, 2006]. During a peer’s lifetime, it constantly 
changes its upload and download neighbors [Hei et al, 2006]. 

PPLive divides video streams into chunks and distributes them via overlays of cooperative peers. 
The  PPLive  system consists  of  multiple  overlays,  with  one overlay per  channel.  Each channel 
streams either live content or a repeating prefixed program, and the feed from the channel originates 
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from a server. The structure of the PPLive overlays is close to that of random graphs [Vu et al, 
2006].

The major software component of PPLive is its TV engine. It takes care of downloading video 
chunks from the PPLive network and streaming the downloaded video to a local media player. The 
streaming process in the PPLive traverses two buffers in local memory:  the PPLive TV engine 
buffer  and  the media player  buffer.  This  double buffering  mechanism is  designed to  pre-cache 
media content to combat download rate variations from the PPLive network; and to ensure efficient 
content  distribution  between  peers.  The  peer  client  contacts  multiple  active  peers  to  download 
media content  of  the channel  it  selected.  Received  video chunks are  reassembled  in  order  and 
buffered in the queue of the PPLive TV engine, forming a local streaming file in memory [Hei et al, 
2006].

When PPLive starts, the PPLive TV engine downloads media content from peers aggressively to 
minimize  the  playback  start-up  delay.  When  the  streaming  file  length  crosses  a  predefined 
threshold, the PPLive TV engine launches a media player, which downloads video content from the 
local HTTP streaming server. After the buffer of the media player fills up to the required level, the 
actual video playback starts. When the media player has received enough content and has started to 
play the media, the streaming process gradually stabilizes. The PPLive TV engine streams data to 
the media player at the media playback rate [Hei et al, 2006].

Due to the distributed nature of PPLive streaming, it  is possible that  a PPLive peer downloads 
duplicate media content from multiple peers. The transmission of redundant video chunks wastes 
network bandwidth. Hence, it is interesting to have a measurement of the redundancy of the PPLive 
video traffic. In [Hei et  al,  2006], the authors computed the redundant traffic by the difference 
between the total received video traffic and the estimated media segment size, the redundancy ratio 
being define as the ratio between the redundant traffic and the estimated media segment size. They 
observed that the traffic redundancy in PPLive is limited. This is partially due to the long buffer 
time period so that PPLive peers have enough time to locate peers in the same streaming channel 
and exchange content availability information between themselves.

The PPLive TV engine is responsible for downloading video chunks from the PPLive network and 
streaming the downloaded video to a local media player. The cached contents can be uploaded to 
other peers that are watching the same channel. While the peer client contacts multiple active peers 
to download media content of the channel, at the same time, this peer client may also upload cached 
video chunks to multiple peers [Hei et al, 2006].

The proprietary PPLive system is  rumored to  use the idea of inter-overlay optimizations.  As a 
result, a client machine may appear as a participant in multiple overlays, including ones that the 
user is not subscribed to.  A user may join any channel via her/his client machine, but the client 
machine could also be chosen by the protocol to act as a relay for feeds from channels other than 
the subscribed ones [Vu et al, 2006].

There is distinct peer connectivity behavior for campus peers and for residential peers. A campus 
peer  has  many more  active  video  peer  neighbors  than  a  residential  peer,  and  utilizes  its  high- 
bandwidth connectivity, maintaining a steady number of active TCP connections for video traffic 
exchange [Hei et al, 2006].

Content popularity has a significant impact on the number of active peer neighbors for a residential 
peer. A residential peer with a less popular channel seems to have difficulty in finding enough peers 
for streaming the media. This reduction in video neighbors impacts the download rate significantly. 
The PPLive client detects such a rate reduction and starts to search for new peers for additional 
video download. When new peers are found and fresh streaming flows are established, the video 
download rate recovers quickly as a result. [Hei et al, 2006]. 
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The PPLive system seems to take the geographic distribution of peers into account. Using the first 
prefix of the peer's IP addresses to estimate their geographic distribution, the authors in [Hei et al, 
2006]  observed  that  a  large  number  of  peers  located  in  Asia  contributed  the  majority  of  the 
download traffic for the peers located in New York they traced in their study, probably because 
many PPLive users are located in Asia. But, on the other hand, the majority of the video traffic 
uploaded by the same traced peers, was to peers in North America.

Overall,  PPLive exhibits reasonably good start-up user experiences. When PPLive first starts,  it 
requires some time to search for peers and then tries to download data from active peers. The delay 
from when one channel is selected until the streaming player pops up is in general 10 to 15 seconds 
and, the delay from when the player pops up until the playback actually starts is around 10 to 15 
seconds; therefore,  the total  start-up delay is around 20 to 30 seconds.  Nevertheless, some less 
popular channels could have a total start-up delay of up to 2 minutes [Hei et al, 2006].

4.2.4. VMesh

VMesh is a distributed P2P VoD streaming scheme proposed in [Yiu et al, 2007], and designed to 
efficiently support random seeking functionality. It builds an overlay mesh upon peers, with a pull-
based approach, to support random forward/backward seek, pause and restart during playback.

Most  of  the  existing  works  on  P2P-based  media  streaming  systems  have  made  an  implicit 
assumption that a user who joins a streaming session would play the media from the beginning to 
the end. On the contrary, VMesh has been based on observations showing that most users performed 
random seeking frequently, and that the jump distances are usually small, what is found reasonable 
because users would usually skip boring scenes by jumping a bit forward or review some exciting 
scenes by jumping a bit backward [Yiu et al, 2007].

Figure 4.4 Overview of VMesh architecture with static local storage [Yiu et al, 2007]

In the proposed scheme, a video server stores the videos for user access. Each video is divided into 
N segments, each of them being identifiable by its video ID and segment ID. VMesh utilizes the 
large aggregate storage capacity of peers to amplify the supply of video segments to achieve user 
scalability. Depending on the capacity of its local storage, each peer stores a number of segments 
randomly chosen from the N segments of the video. These peers are referred as storage peers. In 
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this  way,  there  are  multiple  copies  of  each video segment  in the network.  Figure 4.4 gives  an 
overview of the VMesh architecture with a video file divided into N = 194 segments and each peer 
storing some segments for serving others. When a client wants to play a segment, it first looks for 
the supplying peers of that segment in the P2P network, then sends requests to those peers for the 
service. Those supplying peers with enough outgoing bandwidth would serve the requesting peer. If 
there is no supplying peer, the requesting peer requests the media server for the target segment as 
the last resort [Yiu et al, 2007].

In the traditional “cache-and-relay” paradigm, a VoD client commonly relies on the content that 
resides in its parents’ buffers. If a parent jumps to another play point in the video, it starts to receive 
media data which is of no interest for its children, and those need to search for a new parent. In 
contrast, VMesh uses static local storage instead of sliding window buffering to help handle user 
interactivity efficiently and to reduce the complexity.  The segments stored by a peer in VMesh 
would  not  be  changed  by  any  user  interactive  actions.  The  advantage  of  this  scheme  is  that 
interactive action (e.g. random seeking) of a peer does not stop its children from continuing to 
receive its stored data. The peers, on the other hand, will connect to new parents for each segment. 
It  also means that,  during normal playback,  the time for a peer to swap parents is  predictable. 
Therefore,  the peer  can start  caching the next  segment  when it  nearly finishes  playing out  the 
current segment [Yiu et al, 2007].

The size of the segments is not fixed. Having very small segments would require each peer to swap 
parents very often, which would possibly introduce more control overhead. However, each peer has 
only a limited storage space for caching video data, and one cannot assume that a low-profile set-
top box (STB) is capable of storing a whole movie in its local storage. The size should be chosen 
properly as a trade off between the requirement on the peers’ local storage size and the messaging 
overhead caused by swapping parents. In [Yiu et al, 2007], the authors just set the segment size to 
be 5 minutes  long of a  video stream with bit  rate  of  1  Mbps,  which is  around 36 megabytes, 
considering it is reasonable for both set-top boxes and personal computers to have such a storage 
space. 

VMesh utilizes a DHT to locate the video segments. A new arriving peer uses the DHT built among 
existing peers to bootstrap a new video streaming session, searches for its first segment of interest 
in the DHT network, and starts playing the video when the requested data arrives and fills up its 
buffer. Using its residual bandwidth, it randomly downloads and stores some video segments in its 
local storage. These segments would then be used to stream to another peer of interest. After a video 
segment is completely downloaded, the client registers it in the DHT, to allow other peers to locate 
it [Yiu et al, 2007].

It  is  possible  for a client to continuously search for the next  required segment  using the DHT 
network. However, a client who is playing a particular segment is likely to play the next segment 
too,  because  the  access  probabilities  of  two adjacent  segments  are  not  independent  but  highly 
correlated.  Therefore,  to  further  reduce  the  latency  as  well  as  the  routing  message  overhead 
introduced by the DHT search process,  VMesh additionally builds an overlay mesh among the 
peers, which links up the contiguous media segments with bi-directional pointers. Each storage peer 
keeps a list of the storage peers storing the previous and next segments, so its children can quickly 
find these peers without having to search over the DHT network. Furthermore, a peer also keeps a 
list of pointers to some peers which are storing the same segment for load balancing purposes, so 
when a storage peer is overloaded, it can redirect some of its children to other storage peers which 
are also able to serve them [Yiu et al, 2007].

In case of random seeking a favorite scene in a movie, a user jumps back and forth in the video. 
Short-distance  jumps,  depending  on  the  segments  size,  can  be  satisfied  by either  the  next-  or 
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previous-segment-list from its current parents. In case of longer distance jumps, the client searches 
for new parents using the DHT [Yiu et al, 2007].

Keeping all the pointers in the lists up-to-date by frequent updates would cause a kind of messaging 
overhead that can be eliminated by making children responsible for checking the validity of the 
pointers  sent  by their  parents.  If  the  percentage  of  invalid  or  failed  pointers  reaches  a  certain 
threshold, the child reports the situation to its parent, which shall then update the pointers in its lists 
by using the DHT [Yiu et al, 2007].

In order to provide failure-tolerant streaming service, a client connects to multiple parents who have 
stored the segment of interest so that they stream the video in parallel and collaboratively. VMesh 
consider  simple  round-robin  scheduling  for  the  client  to  decide,  among  the  multiple  possible 
parents, which blocks to be delivered by each parent [Yiu et al, 2007]. 

The mutual network distance between parent and children is a crucial factor for efficient streaming. 
If the parent-child relationships are casually formed, much network resources would be wasted due 
to inefficient routing and increase in link stress. To address this problem, VMesh takes the network 
locations of the peers into consideration while locating supplying peers for a client [Yiu et al, 2007].

In order to search for parents with close network locations, we put this locality information into the 
DHT search keys of the segments registered by the peers using a Space Filling Curve (SFC). Each 
peer registers its own key for its stored video segments in the DHT. At the same time, it searches for 
its parents using DHT search keys constructed by segment ID and its own mapped coordinates. 
Most  DHTs can  be  modified  to  reply queries  with  multiple  peers  whose  keys  are  numerically 
closest to the search key. Since the peer’s own mapped coordinates are used to construct the search 
key, multiple parents closest to the requesting peer are returned. The peer can then connect to them 
and request for the segment [Yiu et al, 2007].

Additionally,  due  to  the  design  of  the  DHT search  key,  the  lists  of  bi-directional  pointers  to 
contiguous media segments should contain the qualified parents whose locations are close to the 
client.  Therefore,  children  of  a  peer  are  likely  redirected  to  close  parents  during  playback  or 
jumping [Yiu et al, 2007].

There are a number of approaches to extend VMesh for supporting fast-forward operation. One may 
consider performing fast-forward operation solely by playing out the video stream at a faster speed 
by the client peer. But this approach would definitely increase the download bandwidth required 
and costs 100% overhead for the transmission of skipped frames. Therefore, two approaches have 
been proposed to support FF in VMesh:

• Encode-on-demand at peers: when a peer performs a FF operation, it requests its parents to 
encode and deliver a video stream of the segment at a faster frame rate dynamically. This 
approach requires not only processing power from the peers for dynamic encoding, but also 
the  synchronization  of  all  encoding  parameters.  This  would  also  complicate  the  client 
software  implementation,  and moreover,  the  client  peer  needs  to  swap its  parents  more 
frequently while it performs FF operation.

• Distribution of pre-encoded frame-skipped version: the source provides encoded streams of 
the original version as well as the frame-skipped versions for various speeds. The frame-
skipped versions are then distributed to the peers in the same way as the original, the speed 
of a version being embedded into the media information part of the DHT key. This approach 
requires to pre-encode all versions, and the peers to store segments of versions other than the 
original, what requires more global storage capacity [Yiu et al, 2007].

Given a  streaming media,  the popularity of the segments  are  different  if  user interactivity like 
jumping is allowed, what makes the access rate of the segments non-uniform. Therefore, if storage 
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nodes uniformly pick random segments to store, some nodes would have heavier load than others 
since some segments are accessed more frequently. Intuitively, the load-balancing in the system can 
be improved if the supply of each segment matches the demand of that segment [Yiu et al, 2007].

So in [Yiu et al, 2007], the authors also model the popularities of segments by considering user 
interactivity.  They  propose  a  mechanism to  estimate  the  segment  popularities  in  a  distributed 
manner, and describe a distributed algorithm to determine which segments to be cached by the 
storage peers and how to perform cache replacement to adapt the supply of segments which meets 
the changing demand.

The performance of VMesh has been evaluated in [Yiu et al, 2007] using packet-level event-driven 
simulation, with three variants of the system:

1. the first one in which peers choose parents randomly regardless of their network locations 
and random selection is applied for segment storage;

2. the second one applies locality-aware segment location;

3. the third and last  one applies both locality-aware segment location and popularity-based 
segment storage schemes.

As  the  average  user  population  increases  exponentially,  the  server  stress  for  VMesh  systems 
increases very slowly. The system appears to be highly scalable for a large user population, and 
maintains  a  relatively constant  server  stress  at  a  low level.  The  use of  locality-aware  segment 
location reduces server stress because clients search for close peers to become one's parents and 
those close peers can provide efficient streaming in terms of error rate and delay, while segments 
requested from distant  parents  may experience higher  packet  loss  rates  and higher  delays.  The 
additional use of popularity-based segment storage can further reduce the server stress when the 
user population is large enough for the scheme to distribute enough segments among peers and 
match their supplies and demands, what relieves the server from handling requests for segments 
whose demands exceed their supplies. Furthermore, as VMesh peers store segments statically and a 
peer’s random seeking does not stop its children from continuing to receive data from its storage, it 
can keep server stress at a low level under user interactivity [Yiu et al, 2007].

All three VMesh schemes can achieve high playback continuity under dynamic peer join/leave in a 
lossy network.  Since VMesh employs  multiple parents,  if  one of the parents  leaves the system 
ungracefully, the child can request the remaining parents to share the load of the departed parent 
temporarily.  Additionally,  locality-aware  segment  location  achieves  better  continuity  because 
searching  for  close  parents  leads  to  less  packet  losses.  Close  parents  are  also  more  likely  to 
retransmit  lost  packets  quickly  enough  before  the  playback  deadline.  On  the  other  hand,  as 
popularity-based segment storage only helps in load-balancing among storage peers, it does not help 
improving the playback continuity [Yiu et al, 2007].

All schemes suffer from segment location and buffering latencies. The use of a DHT for searching 
parents makes segment location latency at  startup more or less the same regardless of the user 
population  size.  However,  thanks  to  the  overlay links  to  the  peers  who store  the next  and the 
previous  segments,  segment  location  latency at  random seeking  can  be  lower  than  at  startup, 
because a peer could follow the mesh links to locate the targeted segments. Regarding buffering 
latency, as there are more users in the system, it is more likely for users using both locality-aware 
segment location and popularity-based segment storage to find close parents and hence fill up their 
buffers more quickly [Yiu et al, 2007].

Finally, control messages for operations like joining, data scheduling, and mesh construction cause 
control traffic overhead. When using popularity-based segment storage, distributed consensus also 
requires exchange of messages. VMesh consumes very low control overhead and is scalable when 
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the user population increases,  ranging from 100 to 400 bytes  per second. For a 1 Mbps video 
stream, the control traffic is only 0.1% to 0.3%. Distributed consensus algorithm in the popularity-
based segment storage scheme adds extra control messages, and hence increases the control traffic 
overhead by around 40 bytes per second [Yiu et al, 2007].

41



Live P2P

Live P2P Simulation

Live P2P

PRIME Live P2P Pull Simulation

PULSE Live P2P Pull Multiple sources

R2 Live P2P

P2P Pull Multiple sources Simulation

P2P Pull Multiple sources DHT

P2P Simulation

HON P2P Pull Simulation

P2VoD P2P Round robin Simulation

PROP Pull DHT Simulation

Pull

P2P Pull Round robin Simulation

CoolStreaming Mesh
Hybrid 

Push-Pull
Multi-streans Gossip Centralized Buffer

Select highest 
bandwidth peer not used not used

Simulation + 
Implementation

GridMedia Mesh
Hybrid 

Push-Pull
Multi-streans Randomly Centralized Buffer

capacity supply 
ratio

not used not used

PPLive Mesh unknown Multi-streans Gossip Centralized
Buffer + other 

channels ?
unknown unknown unknown

Full 
implementation

Tree 
+Mesh

Multi-streans 
(MDC)

Randomly Centralized Buffer
taken into 
account

not used not used

Mesh Gossip unknown Buffer supports bandw idth 
heterogeneity

taken into 
account

tit-for-tat + 
additional excess

Simulation + 
prototype

Mesh Push
Random network 

coding
Gossip Centralized Buffer not used not used not used

Prototype 
implementation

BiToS VoD Mesh Tracker Centralized
Received 

Pieces Set
not used not used Tit-for-tat

BulletMedia VoD Mesh
uniformly at 

random
Proactive 
caching

maximize bandw idth 
utilization not used not used

Prototype 
implementation

DirectStream VoD Tree Push Single-stream distance-
bandw idth ratio Distributed Buffer distance-bandw idth 

ratio
proximity 

information
not used

VoD
Tree 

+Mesh
Multi-streans Gossip Centralized Buffer

available 
bandwidth

not used not used

Joost VoD
Hybrid 

Server/P2P
Mesh unknown Multi-streans unknown Centralized "Anthill" cache

taken into 
account

geographical 
distance

unknown Implementation

VoD Tree Push Single-stream Centralized Buffer not used not used not used

VoD
Hybrid 

Proxy/P2P
Mesh Single-stream "maximal available 

bandw ith"
Currently 
playing

"maximal available 
bandw ith"

data locality 
exploited

not used

Push-to-Peer VoD
Long-lived 

peers
Controlled 

overlay
Multi-streans unknown unknown

Pushed 
content

Homogeneous 
peers

not used not used Modelisation

Vmesh VoD Mesh Multi-streans
DHT + 

pointers
Static local 

storage
"enough upload 

bandwidth"
taken into 
account

not used

S
tre

am
in

g 
ty

pe

S
ys

te
m

 
ar

ch
ite

ct
ur

e

O
ve

rla
y 

to
po

lo
gy

D
at

a 
ex

ch
an

ge
 

de
si

gn

D
at

a 
co

di
ng

P
ee

r c
ho

ic
e

C
on

te
nt

 re
po

si
to

ry

up
lo

ad
 s

ou
rc

e

H
et

er
og

en
ei

ty

Lo
ca

lit
y

In
ce

nt
ive

s

P
er

fo
rm

an
ce

 
m

ea
su

re
m

en
t

Table 4.1 Summary of existing or proposed systems



4.3. Synthesis of the chosen options

Table 4.1 presents a global overview of the chosen options in the shape of a two-entry table with 
system and selection criteria. It comprises 9 VoD systems and 6 live streaming systems. Most of the 
listed systems are based on a P2P architecture, and 3 of them only use a hybrid architecture. There 
are probably two reasons for this: 

1. the P2P architecture is largely considered as being the solution to the scalability problem 
faced when implementing video streaming systems;

2. no or few improvements can be brought to a system based on a CDN architecture, this one 
being only an extension of the traditional client/server scheme.

The use of swarming protocols is preponderant, with mesh-based overlays and pull-based exchange, 
very often combined with the use of gossip protocols. That probably comes owing to the fact that 
swarming appears as a very efficient solution, requiring in addition few centralized management, 
peers self-arranging to form the overlay and choosing parents to send the appropriate video data. 
The use of multiple streams and data coding is also largely widespread.

Many systems use a centralized content repository although the server is then a central point of 
failure and could become a bottleneck. However there is a trend to use distributed data structures 
within the most recently proposed systems. Regarding the data segments shared by the peers, the 
buffer remains the upload source for almost all of the systems. In addition, very few systems take 
factors such as locality or heterogeneity of peers into account, and little use incentives to support 
collaboration between peers.
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5. Analysis
In the previous chapters we presented an outline of the proposed or implemented solutions for video 
streaming services, mainly for VoD streaming but also for live streaming. In order to complete this 
work, we now review once again the different technical aspects of video streaming by selecting 
among the several  proposed options those which appear to be the most interesting or the most 
promising for the future.

The first choice to be done is the system architecture. Some very popular video sharing systems, 
such as YouTube [YouTube 2008] and Google Video [Google Video 2008], are built on a CDN 
architecture. Joost [Joost 2008] uses a P2P architecture but the whole system relies on a highly 
centralized management infrastructure of servers or server clusters. On the other hand, most of the 
systems the different authors recently proposed, such as BulletMedia [Vratonjic et al, 2007], VMesh 
[Yiu et al, 2007] and DirectStream [Guo et al, 2008], are based on a P2P architecture. Some, such as 
PROP [Guo et al, 2006], also proposed a hybrid CDN/P2P architecture.

CDNs are effective infrastructures. They are built and daily used to deliver a huge amount of data 
over the Internet. They have enough storage capacity for a lot of video data files, making it possible 
to host a comprehensive library of high-quality full length movies. However, CDN infrastructures 
are really expensive to deploy and maintain, especially if they were scaled with the appropriate 
bandwidth  capacity  to  face  flash  crowd.  On  the  other  hand,  P2P  networks  showed  their 
effectiveness in scalability to deliver data to a large amount of users. Their bandwidth capacity is 
directly proportional to the number of connected users. However, a commercial VoD service could 
not rely on a P2P overlay only, as some file-sharing networks do. They must comprise a reliable and 
effective data source seed in order to ensure a high quality of service, even with a limited number of 
connected users or when delivering less popular content.

So a hybrid solution which combines CDN and P2P overlays seems to be promising in order to 
address both the scalability and the reliability issues of streaming media delivery in a cost-effective 
way. In such a solution, the CDN provides dedicated storage and reliable streaming services when 
peers are not available or not capable of doing so. It fulfills the requests from the first clients until 
the P2P capacity reaches a sufficient level. The P2P overlay can then serve subsequent requests with 
higher  bandwidth  capacity  than  the  CDN  itself.  When  the  demand  for  a  particular  video  file 
decreases, the system must rely on the CDN again. In order to remain cost-effective, the CDN 
architecture should be carefully dimensioned and remain fairly limited.

Regarding the data delivery overlay topology, tree-based overlays and mesh overlays have been 
reported as the two main types of architectures. A tree-based overlay is a fairly natural way to 
arrange  collaborating  peers,  as  an  extent  of  the  topology  probably  applied  in  several  CDN 
infrastructures, and easily matching with the idea of video data streaming from the source seed to 
the different peers. It appears also particularly suited to live streaming where clients just want to 
watch at a same TV program. However, a big issue in the tree-based approach is its lack of ability to 
cope with churn, as each node can be a single point of failure for a whole subtree. This problem is 
probably worsened because the first joined nodes, which are consequently placed at a higher level 
closer to the source, are also most likely to leave first, breaking the streaming flow for sub-trees 
containing a lot of nodes. Another issue occurs on symmetric trees that do not take the bandwidth 
heterogeneity of peers into account. Furthermore trees are not naturally suited for a VoD service 
where users can watch anything at any time. On the other hand, in a mesh-based approach, nodes 
are self-arranged and randomly connected to form the overlay. None of the nodes has a particular 
position in the overlay, so mesh-based networks appear to be resilient to peers churn. They have 
proved to be very efficient delivering appropriate data in a timely manner, also for live streaming 
service [Wang and Li 2007]. The dynamic formation of the delivery mesh enables to effectively 
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utilize the available bandwidth. So the mesh-based approach seems to be more promising for future 
developments.

Choosing between push-based and pull-based data exchange designs in a P2P streaming system is a 
tough issue. Both have proved to be efficient for delivering video data in VoD [Guo et al, 2008] 
[Yiu et al, 2007] and live streaming services [Wang and Li 2007] [Zhang et al, 2007]. A drawback 
of a push-based protocol is that two different peers may push the same data to one same peer, or in a 
VoD system that a peer may be pushed data it is not interested in anymore because it has jumped to 
another playback location, both examples leading to a waste in uploading bandwidth. So data push 
scheduling is not a trivial issue. On the other hand, a drawback of a pull-based protocol is that 
frequent  storage  map  exchanges  and  pull  requests  incur  more  signaling  overhead  and  might 
introduce additional delays in data retrieval. To solve this particular issue, some systems based upon 
a hybrid push-pull scheme have also been proposed [Li et al, 2007] [Zhang et al, 2007]. However, 
though a push-based scheme may be really efficient in a live streaming system, where new created 
video segments should be forwarded to peers as soon as possible to minimize the playback delay, it 
seems more promising to use a pull-based scheme in a VoD streaming service designed to support 
frequent VCR-like interactions so that storage map exchanges must occur anyway each time the 
playing point of a node or one of its parent seeds changes.

The combined use of  data  coding  and streaming from multiple  sources  has  been an important 
improvement in P2P video streaming systems. The latest proposed tree-based systems also use data 
coding combined with multiple-tree overlays or forests [Magharei and Rejaie 2007b]. The use of 
multiple streams makes the system more resilient to peers churn. While some systems use Multiple 
Description Coding (MDC) [Padmanabhan et al, 2002] [Magharei and Rejaie 2007a], some other 
coding schemes have also been proposed [Chi and Zhang 2006] [Liu et al, 2007]. An important 
point about downloading from multiple sources is that a client must be able to decode the data 
segment even if s/he only received one of the substreams for this segment.

Another issue in P2P overlays is the choice of the peers from which to download the data. In a tree-
based system, this is a trivial issue since the data flow is closely linked to the tree structure and a 
node receives the data from the node(s) located at the upper level in the tree(s). In a mesh overlay 
with a pull-based design, the client must select its providing peers among a list of potential seeds 
given by the system. This selection is usually done using gossip protocols, which have proved to be 
efficient, according to the availability of the peers and their willingness to serve data. But other 
parameters can also be taken into account such as the distance and bandwidth [Guo et al, 2008] or 
the  network  topology [Hefeeda  et  al,  2003].  VMesh  takes  the  network  location  of  peers  into 
consideration while locating supplying peers for a client [Yiu et al, 2007]: the content repository (a 
DHT) includes the network coordinates of the peer with the video information and the segment ID 
in its key, so that the closest peers are automatically selected. This kind of information appears to be 
important when designing a peer choice protocol since the simulation results show that VMesh with 
the locality-aware peer location outperforms in both startup and seeking latencies the system built 
without this feature. A related issue is the choice of the segment to be downloaded: the rarest first 
policy is often used because a less represented segment is more likely to become unavailable. Note 
that  in a system with a push-based design,  the problem of peer choice is  opposite because the 
transmission of data between two peers is initiated by the sender, but the problem of the choice of 
the segment to be sent also exists. According to [Bonald et al, 2008], in such a scheme the random 
peer, latest useful chunk algorithm is the optimal one.

In order to provide a list of potential seeds for a particular segment, as mentioned in the previous 
paragraph, a P2P streaming system using a pull-based scheme must have a content repository with a 
comprehensive catalog of all the peers hosting each particular segment, and even each substream of 
these ones for systems using data coding. In many systems, like P2VoD [Do et al, 2004], BiToS 
[Vlavianos et al, 2006] and Joost [Lei et al, 2007], this repository is a centralized one located at the 
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server side. This is a rather reliable solution except that all the transactions regarding data location 
must go through the server which could become a bottleneck. That is why more recent systems, like 
BulletMedia [Vratonjic et al, 2007], VMesh [Yiu et al, 2007] and DirectStream [Guo et al, 2008], 
prefer using a distributed solution, which is often a DHT. A DHT works like a traditional hash table 
but the table entries are distributed among the peers in the network. So as the number of peers 
hosting the table grows with the number of entries in the table, the transactions are fairly distributed 
among the peers and the number of transactions per peer remains stable. Such a distributed solution 
appears to be better than a centralized one. Additional solutions, such as bi-directional pointers [Yiu 
et al, 2007] and Dynamic Skip List [Wang and Liu 2008], have also been proposed. Those solutions 
are very interesting because they allow the clients nodes to find peers hosting segments related to 
the  current  one  without  having  to  query  the  system  repository.  Nevertheless,  it  seems  those 
solutions must be combined with another repository structure.

The media content that the peers are serving is usually the video segments located in their playing 
buffer, so the data they are able to serve change frequently, depending on the size of their buffer. 
This  also  means  that  the  content  repository  must  be  more  frequently  updated  to  reflect  those 
changes, and that a node shall have to search for a new providing peer if a parent jumps to another 
playing point in the video. In order to address this issue, VMesh uses a static local storage as upload 
source [Yiu et al, 2007]. The peers use their spare bandwidth to download some segments from the 
video  file  they  are  currently  playing  but  which  are  not  immediately  interesting  for  them.  The 
downloaded segments can then remain available  during their  whole video session even if  they 
frequently jump forward and backward. Such a solution appears to be very promising, especially 
because it also gives the system the opportunity to balance the distribution of the segments, based 
for example on their popularity as proposed in VMesh.

Few systems seem to pay attention to peers heterogeneity. However bandwidth capacities of nodes 
located behind residential broadband connections can strongly differ from those of nodes located on 
high  bandwidth  corporate  or  university  LANs.  High-bandwidth  nodes  are  very useful  for  P2P 
networks because they provide most of the upload capacity of the overlay, but this capacity should 
first be used to provide the best download rate to other high-bandwidth nodes, and the system must 
avoid wasting this bandwidth sending data to low capacity nodes whose download capacity could 
become the bottleneck. Nevertheless, peer heterogeneity is indirectly taken into account by several 
systems because their  peer choice protocol is based on the availability of peers and this  one is 
depending on their bandwidth.

Only some systems, like BASS [Dana et  al,  2005],  BiToS [Vlavianos et  al,  2006] and PULSE 
[Pianese et al, 2007], use incentives to enhance collaboration between peers, and to prevent abuse of 
selfish peers which would use the collaborative network without contributing back to it, though the 
success of BitTorrent [Cohen 2003] seems to be related to the use of Tit-for-Tat.

To  conclude  this  chapter,  it  appears  interesting  to  point  out  that  among  all  the  surveyed  VoD 
streaming systems, two of them only, BulletMedia [Vratonjic et al, 2007] and VMesh [Yiu et al, 
2007], have been explicitly designed to support VCR-like control operations such as fast forward, 
fast  search,  reverse search and rewind. In the other systems, either some of these functions are 
simulated by leaving and joining again at another playing point, or they are not supported at all. 
That seems well to be a sign that many scientific and technological challenges are still to be faced in 
this research field. There is still so much work to do in order to provide a service enabling at least to 
view a movie in  DVD quality,  from the very beginning to the final  end,  without  experiencing 
continuity issue or any other disturbing event, that VCR interactions are still very often viewed as 
only a nice-to-have.
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6. Conclusion
In this work, a survey and a synthesis of the currently existing or proposed systems and solutions 
for providing VoD and live streaming services over the Internet has been presented. This survey was 
based upon a subset of systems being representative of the architectural options, and for which the 
necessary information to carry out an analysis was available.

A list of selection criteria allowing to classify the video streaming systems into different categories 
was defined. Those selection criteria are the streaming type, the system architecture, the delivery 
overlay topology, the data exchange design, the use of data coding techniques, the peer choice and 
data scheduling protocols, the structure used for the content repository, the source of data used to 
upload content to peers, the peer locality and heterogeneity factors, and the incentives.

A detailed analysis of the CoolStreaming, Joost, PPLive and VMesh systems was presented. Those 
four systems have been chosen to keep a balance between VoD systems and live streaming systems, 
and  a  representativeness  of  the  different  overlay  architectures  and  the  currently  implemented 
systems.

Finally, an overview of the proposed solutions was given in a brief description, based on the defined 
selection criteria, of the selected representative systems, and the different technical aspects of video 
streaming were reviewed and analyzed, with an attempt to evaluate the options which appear to be 
the most interesting or the most promising for future experiments.

Based on this survey, it appears that, although some recent improvements, there is still work much 
to do in order to provide a VoD service where movies are delivered to distributed users with low 
delay and free interactivity.
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