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ABSTRACT

Peer to Peer (P2P) models are based on user altruism, whereina user shares its content with

other users in the pool and it also has an interest in the content of the other nodes. Most P2P systems

in their current form are not fair in terms of the content served by a peer and the service obtained

from swarm. Most systems suffer from free rider’s problem where many high uplink capacity

peers contribute much more than they should while many others get a free ride for downloading the

content. This leaves high capacity nodes with very little orno motivation to contribute. Many times

such resourceful nodes exit the swarm or don’t even participate. The whole scenario is unfavorable

and disappointing for P2P networks in general, where participation is a must and a very important

feature. As the number of users increases in the swarm, the swarm becomes robust and scalable.

Other important issues in the present day P2P system are below optimal Quality of Service (QoS)

in terms of download time, end-to-end latency and jitter rate, uplink utilization, excessive cross

ISP traffic, security and cheating threats etc. These current day problems in P2P networks serve as

a motivation for present work. To this end, we present an efficient data distribution framework in

Peer-to-Peer (P2P) networks for media streaming and file sharing domain.

The experiments with our model, an alliance based peering scheme for media streaming, show

that such a scheme distributes data to the swarm members in a near-optimal way. Alliances are

small groups of nodes that share data and other vital information for symbiotic association. We
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show that alliance formation is a loosely coupled and an effective way to organize the peers and our

model maps to a small world network, which form efficient overlay structures and are robust to net-

work perturbations such as churn. We present a comparative simulation based study of our model

with CoolStreaming/DONet (a popular model) and present a quantitative performance evaluation.

Simulation results show that our model scales well under varying workloads and conditions, deliv-

ers near optimal levels of QoS, reduces cross ISP traffic considerably and for most cases, performs

at par or even better than Cool-Streaming/DONet.

In the next phase of our work, we focussed on BitTorrent P2P model as it the most widely used

file sharing protocol. Many studies in academia and industryhave shown that though BitTorrent

scales very well but is far from optimal in terms of fairness to end users, download time and

uplink utilization. Furthermore, random peering and data distribution in such model lead to sub-

optimal performance. Lately, new breed of BitTorrent clients like BitTyrant have shown successful

strategic attacks against BitTorrent. Strategic peers configure the BitTorrent client software such

that for very less or no contribution, they can obtain good download speeds. Such strategic nodes

exploit the altruism in the swarm and consume resources at the expense of other honest nodes

and create an unfair swarm. More unfairness is generated in the swarm with the presence of

heterogeneous bandwidth nodes. We investigate and proposea new token-based anti-strategic

policy that could be used in BitTorrent to minimize the free-riding by strategic clients. We also

proposed other policies against strategic attacks that include using a smart tracker that denies the

request of strategic clients for peer list multiple times, and black listing the non-behaving nodes that

do not follow the protocol policies. These policies help to stop the strategic behavior of peers to a
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large extent and improve overall system performance. We also quantify and validate the benefits of

using bandwidth peer matching policy. Our simulations results show that with the above proposed

changes, uplink utilization and mean download time in BitTorrent network improves considerably.

It leaves strategic clients with little or no incentive to behave greedily. This reduces free riding

and creates fairer swarm with very little computational overhead. Finally, we show that our model

is self healing model where user behavior changes from selfish to altruistic in the presence of the

aforementioned policies.
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CHAPTER 1

INTRODUCTION

In last decade, Peer-to-Peer (P2P) networks have evolved from ground up. They have been ex-

tensively used for music sharing and now for sharing videos over the internet. The increasing

deployment of broadband further revolutionized P2P media streaming applications which includes

Video-on-Demand (VoD) and live media streaming. Live eventbroadcast [CRS02] using P2P tech-

nology such as Sports and TV streaming [Ppl05, Fei05] are more common now. Recent measure-

ment studies [HLL06, AMZ06] have shown that users in excess of tens of thousands are turning to

live streaming of popular Asian channels as of 2006.

P2P file sharing has been immensely popular because it does not necessitate a real time media

playback and hence Quality of Service (QoS) and reliabilityissues are not a major concern. On the

contrary, synchronous applications like live media streaming and VoD are characterized by strict

time and bandwidth requirements, and have been partly successful. Moreover, the heterogeneity

of peer bandwidths, peer location and topology, congestionin the interior of the network and lack

of dedicated service has led to low reliability of P2P streaming. Researchers have applied various

different paradigms to solve this problems but certain issues like QoS and reliability of service
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have never been near optimal. Recent measurement studies [HLL06, AMZ06] have presented new

findings and problems about present day P2P media streaming systems.

1.1 P2P Media Streaming

Previous works in P2P media streaming focussed on improvingcertain aspects of media streaming

metrics like QoS, bandwidth throughput, robustness and scalability using various paradigms of P2P

streaming. However, these works lacked a collective evaluation and comparison of these metrics

and their interdependence, which forms the underpinnings of an efficient media streaming system.

Design flaws and inefficient peering strategy in the earlier works has led to the development of

newer P2P streaming models, most of which are built on chunk-driven andloosely coupledpeering

philosophy.

1.1.1 Issues in Present day P2P Streaming

Users in excess of tens of thousands are turning to live streaming of popular Asian channels as of

2006 [HLL06]. Though it has been shown that P2P has emerged asa successful medium for live

streaming, the quality of service (QoS) and reliability of streaming service still needs additional

improvement. Recent measurement studies have revealed thefollowing shortcomings of current

day P2P streaming systems:
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1. Recent study [HLL06] on PPLive showed that startup time ofvideo before playback is in

order of tens of seconds and sometimes even minutes, and needs to be minimized for a better

viewing experience. The study further states that some nodes lag in their playback time

by minutes as compared to their peers. We believe that this could be alleviated by a better

peering strategy.

2. Another measurement study [AMZ06] on PPLive [Ppl05] and SOPCast [sop04] has shown

that these streaming services lacktit-for-tat fairness that leads to uneven distribution of up-

link bandwidth among users. The study found that these approaches use greedy algorithms

for peering without the consideration of peer locality thatleads to huge cross ISP traffic. An

important finding of this work is that due to random data distribution structures, the uplink

bandwidth utilization is sub optimal.

1.1.2 Motivation

The above limitations serve as a motivation for our current work. We propose a novel swarm

based P2P model for live media streaming based on chunk-driven P2P philosophy. Our work

mainly focuses on leveraging the randomness of swarm like environments and imposing a few

management policies at the node level to reduce the real timepacket contention among the nodes.

The peering strategy and internal policies in our model are unique as compared to earlier works.
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We propose a novel concept of alliance formation, where nodes cluster in groups, calledalliances,

for mutual node benefit while sharing the media content.

1.1.3 Our Proposed Methodology

We quantify QoS (in terms of jitterless transmission and latency), uplink bandwidth utilization,

fairness (in terms of content served), robustness, reliability and scalability of the system, and de-

sign a suitable model to improve these metrics. We thus provide a comprehensive framework for

collective evaluation of these media streaming metrics. Weevaluate the effectiveness of our model

and provide a comparative performance evaluation with DONet/CoolStreaming [ZLL05] system.

We chose to compare our model with CoolStreaming for the following reasons: 1) It is based on

swarming technology and uses chunk-driven P2P streaming philosophy. 2) It is the most important

published work in recent times and can serve as a benchmark; many derivatives have evolved out

of it that are extremely popular among audiences.

Further, we show that the node topology in our model forms a small world network [WS98].

We present an empirical analysis of our model under varying workloads and conditions. Results

show thatalliance formationis an effective way of organizing peers and distributing content in

the P2P overlay networks. We show that our model has scaled well while achieving near optimal

levels of QoS. We call our model as BEAM (Bit strEAMing).
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Our proposed work focuses on architectural and organizational aspects of P2P media streaming.

We do not deal with the media content and its various attributes like compression, audio/video

quality and media format types. Different media formats vary in their space requirements. There

is an on going research in making storage efficient and patentfree formats for streaming by an end

user. It is beyond the scope of our current work.

1.2 P2P File Sharing Domain: BitTorrent

The second part of the dissertation focuses on the current day challenges in P2P file sharing do-

main. We chose BitTorrent for our studies because it is the most widely used file sharing protocol

as of today and largely accounts for P2P traffic over current day internet.

1.2.1 Current Issues in BitTorrent

Many studies in academia and industry have shown that thoughBitTorrent scales very well but is

not near optimal in terms of fairness to end users, download time and uplink utilization. Further-

more, random peering and data distribution in such model lead to sub-optimal performance. Lately,

new breed of BitTorrent clients like BitTyrant have shown successful strategic attacks against Bit-

Torrent. Strategic peers configure the BitTorrent client software such that for very less or no

contribution, they can obtain good download speeds. Such strategic nodes exploit the altruism in
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the swarm and consume resources at the expense of other honest nodes and create an unfair swarm.

More unfairness is generated in the swarm with the presence of heterogeneous bandwidth nodes.

1.2.2 Our Proposed Methodology

We investigate and propose a new token-based anti-strategic policy that could be used in BitTorrent

to minimize the free-riding by strategic clients. We also proposed other policies against strategic

attacks that include using a smart tracker that denies the request of strategic clients for peer list

multiple times, and black listing the non-behaving nodes that do not follow the protocol policies.

These policies help to stop the strategic behavior of peers to a large extent and improve overall

system performance. We also quantify and validate the benefits of using bandwidth peer matching

policy. Our simulations results show that with the above proposed changes, uplink utilization and

mean download time in BitTorrent network improves considerably. It leaves strategic clients with

little or no incentive to behave greedily. This reduces freeriding and creates fairer swarm with

very little computational overhead. Finally, we show that our model is self healing model where

user behavior changes from selfish to altruistic in the presence of the aforementioned policies.
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1.2.3 Outline of the Dissertation

Related work is presented in chapter 2. In chapter 6, we present the preferential peering technique

using strata based classification. We describe the details of our P2P streaming protocol in chapter 3.

In chapter 5, we present details of how current day streamingISP traffic can be brought down

by using alliance based preferential peering. Chapter 7 present our phase II work for securing

BitTorrent network from strategic threats. Finally, we present our conclusions and future work in

chapter 8. We conclude the paper with the discussion of advantage of our work and future research

directions.
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CHAPTER 2

RELATED WORK

In this chapter, a taxonomy of P2P streaming methodologies is presented and some popular sys-

tem in academia and industry are discussed briefly. Mainly, there have been two kinds of major

approaches to solve the problems: Application layer multicast and P2P based models.

2.1 Taxonomy of P2P Media Streaming

2.1.1 Application Layer Multicast

After the success of P2P file sharing systems, many studies focussed on using the P2P technology

on overlay networks for distributing the media content for viewing in realtime. Unlike Content

Distribution Networks (CDN) like Akamai, P2P models were based on the principle of no infras-

tructure cost. The only resource an end user should contribute is its uplink bandwidth for itself and

other members of the pool. The concept of IP multicast couldn’t succeed for various technical, ad-

ministrative and economic reasons. Application layer multicast (ALM) came up as an alternative
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Figure 2.1:Classification of P2P streaming Models

to IP multicast, wherein multicasting functionality is implemented at end hosts instead of network

routers. Application layer multicast builds an overlay network of participating users through uni-

cast channels among the nodes. In ALM, most overlay network construction algorithms form a

tree like node topology.

2.1.1.1 Tree Based

In tree based models, participating peers are organized into a single tree-structured overlay over

which the media content is pushed from source towards all thepeers. Some noted approaches

in tree like structures are NICE [BBK02], ZIGZAG [THD03], and SpreadIT [DBG]. These ap-

proaches distributively construct an overlay network of nodes and routing functionality to mini-

mize the number of hops for content distribution. The internal nodes in the tree are responsible for

forwarding the content and any failure in these nodes causesshort term failures including jitters

in that particular sub tree before any repair algorithm can be used for recovery. An extension to

this approach uses Multiple description coding (MDC) in which participating peers are organized
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into multiple diverse trees. Each description of the coded stream is sent through different subtrees.

CoopNet [PS02] and SplitStream [CDK03] use MDC in their approach. CoopNet uses a central-

ized algorithm to obtain node information for tree construction, maintenance and data routing.

SplitStream is a scalable tree based system built upon distributed hash table (DHT) based overlay

network called Pastry. It strips the media content across a forest of interior-node-disjoint multicast

trees that distribute the forwarding load among the participating nodes.

Advantages: Tree based model were comparatively easy to model. In a steady state, the data could

be passed to child nodes in a regular pattern that brings downthe latency [BBK02].

Disadvantages: Such models are susceptible to churn (frequent arrival anddeparture of nodes).

Available bandwidth to each node in a tree structure is limited. Heterogeneous and asymmetric

access link among peer nodes generates bottleneck, and leads to suboptimal uplink throughput and

QoS is affected at user end [THD03].

2.1.1.2 Mesh Based

In mesh based models, participating peers are connected to many other neighbors in the pool like a

mesh, in additions to the tree like topology. Narada and End System Multicast (ESM) [CRS02] are

mesh based tree approaches to counter the problems in tree like structures. It has the capability to

send multiple video streams at different qualities to counter node failures and degrading network

links. It was also the first deployed system for broadcastingvideo streaming using ALM technol-

ogy.
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Advantages: They are less vulnerable as compared to tree based models owing to links to another

nodes in the multicast trees [CRS02].

Disadvantages: The core topology of the network is tree like and susceptible to high churn. A

node in a mesh based model keeps connections with many other nodes and it has comparatively

high control overhead [CRS02].

2.1.2 P2P Based Models

Design glitches in P2P application layer multicast saw new generation of P2P models using chunk-

driven P2P technology. In chunk-driven P2P approach, a file is typically broken into several small

sized chunks of equal size and disseminated in the swarm. These models were heavily inspired by

BitTorrent (BT) [Coh03] technology but their internal policies are very different from BT. Media

content is broken down into small pieces and disseminated inthe swarm. Participating peers form

no strict topology like ALM but rather are randomly organized and connected to each other in

mesh like models. The nodes periodically exchange the buffer information with their neighbors

and trade unavailable pieces of content. It overcame the problems in tree based models and proved

to be more robust in nature. Currently, these models are extremely popular and have a large viewer

based. These P2P based models were applied to VoD as well as for live event streaming including

TV broadcast.
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2.1.2.1 Video-on-Demand Models

In VoD, media content is streamed to an end system after a usermakes a request for it. Participating

peer in the swarm help each other with their uplink bandwidth. Different viewers in the swarm may

view different part of the video since they requested the media at different times. BASS [CC05] is

a recent P2P streaming technique for VoD thats uses a hybrid approach of BT and a client-server

model providing the swarm with an external media server. However, load on such server increases

linearly with the number of users due to its server centric design and hence does not scale well.

BiToS [VIF06] is a BT modified approach to VoD using the P2P network. Redcarpet [SM05] is yet

another work that concentrates on providing near VoD using different piece selection algorithms

in BT. Since BT has been proven to be near optimal in achievinguplink utilization and mean

download time, many models have modified BT to suit the VoD needs.

2.1.2.2 Live Media Streaming Models

Live media streaming is event based and streaming is broadcasted in real time, with all the viewer

viewing the same content with very little differences in their delays. PRIME [MSR05] is a mesh

based P2P streaming approach to live media streaming that focuses on finding the global con-

tent delivery pattern to maximize the uplink utilization while maintaining the delivered quality.

PROMISE [HHB03] is a system that uses an application level P2P service called Collectcast

for peer selection and dynamic reconfiguration in case of sudden network failures and topology
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changes. CoolStreaming [ZLL05] is one of the most successful P2P approaches to live media

streaming. It is based on a data driven overlay network wherea node periodically exchanges data

availability information with a set of partner and retrieves the unavailable data and helps peers with

deficient content. A new breed of piece based P2P system have evolved since CoolStreaming’s im-

mediate success. Proprietary models like PPLive, SOPCast and TVAnts are derivatives of it but

their exact working philosophy is unpublished. Piece basedP2P model exploits the randomness

of the swarming technology (very similar to BitTorrent (BT)), and doesn’t depend on tree based

structures. Server relays the content in small pieces and disseminates in the swarm. Every node

typically has 6-8 neighbors and they exchange information about their buffer and then trade the

unavailable pieces.

Advantages: Pure P2P models are more robust, scalable as compared to ALMmodels. Random

swarm provides multiple channels to provide data in shortest possible time. CoolStreaming like

deployed systems have shown the feasibility of such approach [ZLL05].

Disadvantages: Control overhead is relatively more than ALM models. Random nature of swarm

brings in more startup time before media playback begins as there is no fixed pattern of content

delivery. Other issues like fairness and excessive cross IPtraffic have surfaced recently [ZLL05].
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CHAPTER 3

BEAM: OUR PROPOSED METHODOLOGY

BEAM [PG07a, PG07b] consists of three main entities: nodes,a media relaying server and a

tracker. Media relaying server is the origin of the stream content in the swarm. The tracker is a

server that assists nodes in the swarm to communicate with other peers1. It also communicates

with the media relaying server to exchange important information about the current state of the

system. As a new user arrives, it contacts the tracker and submits its IP address together with its

bandwidth range. The tracker issues it a peer list, typically 40 nodes, from the set of nodes that are

in similar bandwidth range. Alternatively, if it is not available, tracker provides the list of nodes in

the closest bandwidth range. Small et al. [SLL06] and Bharambe et al. [BHP06] have shown that

interaction of nodes in similar bandwidth range leads to optimal resources utilization in the swarm.

The new node requests stream content from the nodes in its peer list, and then starts creating and

joining alliances. Alliance formation is explained in detail in Section 3.1.

Since the media relaying server cannot stream the content tomultiple users simultaneously due

to the bottleneck in its uplink speed, it streams the contentto a selected number of peers, termed

aspower nodes, which have higher contribution to the swarm in terms of content served. Initially,

1Nodes and peers have been used interchangeably.
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when the streaming starts, power nodes are chosen from the nodes with higher uplink bandwidth,

since the contribution of nodes is yet undetermined. The power nodes in turn forward the content

to the other peers in the swarm.

The tracker periodically (e.g. every10 minutes) computes the rank of the nodes in terms of

the content served to the swarm. If the media server can simultaneously stream the content to, say

P nodes, then theP top ranked nodes become the power nodes. The tracker updatesthe media

server about the new power nodes, which are then streamed themedia content directly from the

server. The rank is calculated on the basis of aUtility Factor (UF ), which is a measure of the

node utility or contribution to the swarm.UF is computed using two parameters:Cumulative

Share Ratio(CSR) andTemporal Share Ratio(TSR). Share ratio is the ratio of the uploaded

volume content to the downloaded volume content by an end user. CSR is the share ratio of a

node since its arrival in the swarm, whereasTSR is the share ratio over a recent period of time.

Thus,UF = f(TSR, CSR). We formulateUF as follows:

UF = α CSR + (1 − α) TSR

whereα is the weight ofCSR and(1 − α) is the weight ofTSR. For example, if a node has a

CSR = 2.0, TSR = 4.0 andα = 0.75, thenUF = 2.5. Only the nodes that have (CSR, TSR)

values≥ 2.0 (empirically obtained from Figure 4.3(a) and explained later) periodically update the

tracker with their (CSR,CSR). These account for less than20% of the total nodes in the swarm

(see Figure 4.3(a)). These20% nodes are enough to generate the required number of power nodes
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in a streaming session and do not incur significant overhead since the remaining80% nodes do

not report to the tracker. This alleviates the tracker from receiving an overwhelming number of

messages from the nodes in the system. We assume that nodes are honest and do not tamper with

the data, protocol and the software at the client end. Similar concept of the gauging share ratio of

registered users is used in popular BitTorrent clients likeAzureus [Azu].

Since the power nodes are periodically computed based on their UF , they need to perform

consistently well in terms of distributing the content to remain as power nodes, else they could

be replaced by other well performing nodes. The purpose is two fold: 1) It serves as a natural

incentive for the power nodes as well as the non power nodes tocontribute to the swarm since this

reward helps them to get the content early and directly from the server; the most reliable source

in the swarm. Such altruism has been shown to be very effective in improving the overall swarm

performance [PIA07, BHP06]. 2) Nodes with higher uploadingcapacity are closer to the server.

Small et al. [SLL06] has proven that placing peers with higher uploading capacity closer to the

source achieves optimal performance in terms of maximizinguplink utilization and minimizing

average delay for all the peers in the swarm.

Live media streaming is time and resource constrained. Nodes contend within themselves for

the same media content within a short period of time. The needto playback the media and procure

the future content necessitates an effective management policy. We introduce the concept ofal-

liance formationto counter these problems. Nodes cluster into small groups,typically between 4

to 8, calledalliances, to form a symbiotic association with other peers. Members of an alliance are

assumed to be mutually trusted and help each other with sharing media content. Our model places
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an upper bound on two very important parameters: Maximum number of nodes in an alliance,

h, and maximum number of alliances a node can join,k. A node can be a member of at mostk

alliances and this helps the node to form a stronger connectivity in the pool and gives an option to

receive the stream content from different alliances (paths).

As a power node receives the media content from the server, itpropagates the content within

its alliances. While serving the content to its alliance members, a node serves different pieces of a

packet2 to its peers. A packet contains(h−1) pieces, which the power node distributes to the other

(h − 1) members of the alliance, i.e. each node gets one piece, whichit shares with other alliance

members and subsequently obtains other missing pieces fromother members. In this process, a

node downloads(h − 1) pieces and uploads(h − 2) pieces. This is done to leverage the uplink

bandwidth of all the peers and make participation necessaryso that no node gets a free ride. In

case a node cannot get a particular piece because it could notfetch from peer in its alliance, it can

request the power node for it. Nodes that only procure the content from alliance members and do

not share are ignored by other alliance members in future andalliance member find another node

to replace such non contributing node to be in the alliance. As a node gathers all the pieces of a

packet, it starts the media playback, forwards the content among its other alliances like power node

and procures the future stream content. A node usesannounce mechanismto notify its alliance

members the receipt of a new packet. This process of announcing and exchanging unavailable

content can also be efficiently improved using Network Coding [GR05]. Periodically, nodes in an

alliance serve a request that is out of the alliance to bootstrap a new node.

2A packet refers to a collection of pieces and does not refer toan IP packet. A piece is the smallest data unit
exchanged.
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Figure 3.1:Alliance Formation in BEAM

3.1 Alliance Formation

A node creates an alliance by sending an alliance join request packet to the nodes in its peer list.

The receiving node can accept the alliance join request or reject it (depending on how many al-

liances it is currently a member of i.e.k). In case of rejection or no reply, node times out after a

short time interval (e.g.2 round trip times (RTT) ) and continues to search for peers to join their

alliances. If a node accepts the alliance request, it issuesa success packet back to the requesting

node. These two members of the alliance can expand and grow the alliance further. The format of

a request packet for an alliance is shown by:[AID, Num, N1, N2, ..], whereAID is the ID of the

alliance,Num denotes number of current members in the alliance, andNid is the ID of the present

member(s) in the alliance.N1 is the sender of the alliance join request. The format of a success

packet is as follows:[AID, SelfID], whereSelfID is the ID of the node that sends the success

message to all the alliance members inAID. Figure 3.1 depicts the process of alliance formation.

In Figure 3.1(a), following events occur:

1) Node 1 sends an alliance request to node 6.
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2) Node 6 accepts alliance invitation and returns success packet to node 1.

3) Node 6 issues a request packet to node 12, that includes: alliance ID and IDs of nodes 1 and 6.

4) If 12 joins the alliance, 12 will send success packets to both, 1 and 6. Now all three nodes 1, 6

and 12 are members of the same alliance. Nodes expand the alliance tillk is reached.

Similarly, in figure 3.1(b) following events occur:

1) Node 1 issues an alliance request to node 7.

2) Node 7 does not reply or rejects the request. This could be because node 7 has reached the

maximum limit ofk. Node 1 times out after a small time interval.

3) Node 1 issues request to some other node, say 11.

4) If 11 agrees to be part of the alliance, it sends success packet to node 1. Nodes 1 and 11 are

members of the same alliance.

Nodes expand the alliance tillk is reached. Oncek is reached and if a new node requests to

be a member of the alliance, it cannot be included. The other node in such a case can initiate the

formation of a new alliance. One important point to note is that even if a node is not a member

of any alliance it request nodes in its peer list to join its alliances. It depends on the other node

whether to join the alliance or not.
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3.2 Alliance Functionality

A node can be member of multiple alliances (at mostk). This is important to facilitate multiple

paths for a node to obtain the stream content in case of node failures. As a member of an alliance

procures a packet, it spreads it among its respective alliances. Consider the scenario in Figure 3.2,

Alliance1 consists of nodes with IDs (1, 4, 8, 9, 22) and Alliance2 has nodes with IDs: (3, 4, 11,

25, 26) with node4 being a member of both the alliances. Suppose, node 22 obtains a new packet

from one of its other alliances or from media server, it then forwards it in Alliance1. It sends an

announce packet to its members as:[AID, PNum, NPieces], wherePNum is the packet number

in the streaming andNPieces is the number of pieces in the packet. Nodes (1, 4, 8, 9) request for

unavailable pieces that they need to procure to complete thedownload by sending a request in the

form: [AID, PNum, P1, P2, ...], whereP1 andP2 are piece number 1 and 2 respectively.

A packet comprises of (h−1) pieces. If all the members of a particular alliance simultaneously

request all the pieces, the forwarding node randomly distributes the pieces of the requested packet
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among them. It is left to the peers to exchange the pieces within themselves. In case, a node

requests specific unavailable pieces in a packet since it hasalready obtained some pieces from other

alliances, the forwarding node sends only those specific requested pieces to avoid any redundancy

at the requesting node. In the above example, if members of Alliance1 have procured distinct

pieces, they exchange among themselves to complete their individual downloads. As nodes of

Alliance1 procure the complete packet, they forward it in their other alliances. In the above case,

node 4 (common node in both the alliances) forwards the content in Alliance2 by announcing the

arrival of the packet and the subsequent process of forwarding the content is similar as explained

above.

While leaving the network, a node sends a departure packet toits alliance members as follows:

[AID, SelfID, F lagD], whereF lagD is the departure flag. In case a node exits without sending a

departure packet, the nodes within the alliance become aware of its inactivity and infer its depar-

ture. Other nodes in the alliance continue sharing the streaming content within themselves and/or

can find another member for the alliance. In our model, we propose to use TCP connection in

BEAM as the network links between peers. TCP detects the peer’s departure from the pool and

gracefully handles shutdown of the connection link. Li [Li04] has explained the benefits of using

TCP over UDP/RTP, provided the initial buffer time is significantly larger than the Round Trip

Time (RTT) between the peers. We elaborate the details in thesimulation section.
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3.3 Small World Network

In this section, we present an analogy between BEAM and SmallWorld Network (SWN) [WS98]

to show the effectiveness of BEAM’s important properties such as near-optimal overlay distance

and network robustness in the events of churn and node failures. SWN is a class of random graphs

where: 1) Every node has dense local clustering, i.e a high coefficient of clustering (µc, defined

below) and some edges with far located nodes. 2) Every node can be reached from every other

node by a small number of hops or steps. We present a graph theoretic analysis of our model and

show that it generates a swarm of nodes, which when convertedto a graph, end users as vertices

and connection between them as edges, exhibits small world network characteristics. We compare

our results with CS [ZLL05] which uses a random network topology. Random graphs [Bol01] are

known to generate near-shortest mean distance between all pairs of nodes in a graph.

We chose to show an analogy with small world network for the following reasons: 1) Over-

lay hops (path length) between any two nodes is short in SWN and partially reflects end to end

latency [BBK02, THD03, ZLL05]. 2) High local clustering means a close knit group ; in a media

streaming scenario it ensures that once a packet is in the alliance, it can be readily obtained from

the alliance members. The important group policies required in an alliance can also be readily

applied. 3) SWN are robust to network perturbations like churn and hence provide an efficient

overlay structure in events of nodes failures.

22



3.3.1 Alliances and Small World Network

µc is a local property of a vertexv in a graph and is defined as follows. Consider the vertexv and

a set of neighboring verticesV = (v1, v2, . . . ,vn) and a set of edgesE, whereeij denotes an edge

between the vertexi and vertexj. The clustering coefficient(µc) of a vertex is the ratio of actual

number of edges present to the total possible edges among those vertices:

µc =
|eij|
(

n

2

) =
2|eij |

n(n − 1)

In other words,µc is density of edges in the node’s vicinity. Average of clustering coefficients of all

the nodes is the clustering coefficient of the graph. Mean path length is the mean of path lengths

between all pairs of vertices in the graph. The concept of SWNis counter intuitive as graphs

with higher clustering coefficients would be dense locally and require more hops to traverse the

other parts of the graph as compared to a random graph. Watts et al. [WS98] showed that routing

distance in a graph is small if each node has edges with its neighbors (i.e. has highµc) as well

as some randomly chosen nodes in the swarm. Similarly, Kleinberg [Kle00] proved that if every

node in the swarm shares an edge with a far located node, the number of expected hops for routing

between any pair of vertices becomesO(log2N), whereN is the number of nodes.

Suppose a node is a member ofk alliances (a1,a2,.....ak) and each alliance has neighbors (m1,

m2, .....,mk), where|mi| ≤ h, and1 ≤ i ≤ k. Therefore, coefficient of clustering for such node
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would be:

µc ≥

(

m1

2

)

+
(

m2

2

)

+ ..... +
(

mk

2

)

(

m1+m2+m3....+mk

2

) .

Figure 3.2 depicts the neighborhood of node 4. It is a member of two alliances and in each

alliance, it is connected to four other members. Nodes in an alliance forms a clique (complete

subgraph). Node 4 is completely connected to members of Alliance1 and Alliance2, though, mem-

bers of Alliance1 and Alliance2 may or may not be connected with each other. With respect to

Alliance1, node 4 forms four long distance links elsewhere in the network. Similarly, with respect

to Alliance2, node 4 forms four long distance links elsewhere in the network. This property is

analogous to small-world network, where nodes are well connected locally and also have some

long distance links elsewhere in the network that helps to achieve a small path length between all

pairs of nodes. Coefficient of clustering for node4 in this case would be:

µc ≥

(

4
2

)

+
(

4
2

)

(

8
2

) =
3

7
= 0.428

We also consider the case that other alliance members can have edges between them. Similarly,

other nodes in the graph would haveµc of at least0.428 since they have similar constitution of

alliance and neighborhood. Clustering coefficient of0.428 is relatively much higher than a random

graph (µc for random graph of the same size was found to be0.0019 ), and therefore it lies in the

region of small world graphs as mentioned in [WS98].
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3.3.2 Graph Theoretic Properties of Alliance

Graph density (ratio of number of edges to the total number ofpossible edges in the graph) is an

important factor for the connectedness of a graph. We evaluate the graph density of a BEAM graph

by abstracting the alliances as nodes. As a member of an alliance receives a packet, it forwards

within its alliance members and hence we focus on alliance hops rather than individual node hops

in this scenario and compute the same. To simplify, we consider an alliance as a single node which

we call super node. Suppose there are N nodes in the swarm viz (V1, V2,. ....,VN ) and they are

spread inM alliances. LetDgraph be the density of the graph,Dalliance be the density of the graph

when alliances are abstracted as vertices i.e. super nodes as vertices,M be the number of super

nodes in the swarm,O be the outdegree of a super node. Every node in the swarm is connected to

(h − 1) other nodes in every alliance and there arek such alliances. Therefore, we have

Dgraph =

N
∑

i=1

k
∑

j=1

(hij − 1)

2 ∗
(

N

2

) =

N
∑

i=1

k
∑

j=1

(hij − 1)

N ∗ (N − 1)

wherehij is the number of members injth alliance of nodei, and1 ≤ i ≤ N , 1 ≤ j ≤ k. In a

steady state, when all the nodes have formedk alliances, and each alliance has exactlyh members,

we have

Dgraph =
(h − 1)k

N − 1
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Since super nodes are formed by contracting the alliances, we have

M =
N ∗ k

h

Every super node is connected to other super nodes through its h members and their respective

(k − 1) alliances since every node is a member ofk alliances each. Therefore, we have

O = h ∗ (k − 1)

Since there areM super nodes and each has a outdegree ofO, there are
M ∗ O

2
edges. Therefore,

we have,

Dalliance =
M∗O

2
(

M

2

) =
h2(k − 1)

(Nk − h)
.

For h = 5, k = 2, i.e. node degree =(h − 1) ∗ k = 8 andN = 512, theDgraph is approximately

0.004, whileDallaince is approximately0.025. We see that the density of the graph at alliance level

is relatively much higher than at the node level i.e.Dalliance >> Dgraph. The alliance formation

and subsequently the topology of the network produces strongly connected graph and reduces the

hop count during the communication. Similar abstraction isnot possible for complete random

graphs.
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We are more interested in the mean path lengths from server tonodes rather than mean path

lengths between all pairs of nodes. Therefore, we limit our search to length of all the paths from

server to all other nodes in the swarm.

Consider, a tree like view of BEAM graph. Note that a tree likeview is a simplification of

BEAM network since in BEAM, many nodes and hence alliances are joined with each other and it

is a mesh of nodes rather than a tree like topology. We depict it as a tree like structure to quantify

its path length from the source server. ConsiderL1 as path length in a conventional tree andL2 as

path length in BEAM like graph.

L1 ≤ logNodeDegree N

L2 ≤ logk(h−1) N

It is trivial to see that in conventional tree like topologies, the path length from source to any node

is bounded byL1 . The hop count in a BEAM network is bounded byL2, since a node after

procuring the content forwards it in its otherk alliances i.e. tok(h − 1) nodes. Since, BEAM

graph has lot of interconnections between them, the above equations only depict the upper bound.

It is more difficult to infer the same on random graphs. To gauge the actual path length in a large

swarm, we conducted experiments for finding average path length between all nodes, average path

length from server, radius, and diameter of a graph.

Table 1 illustrates results from a simulation in which we compare synthetically generated ran-

dom graphs with BEAM graph having the same node degree and overall density in the graph. We
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Table 3.1:A comparison of BEAM, Random and a network generated graph. The experiment was
conducted for 512 nodes, node degree 8.

Graph Type Diameter Radius Mean Distance Server Distance Clustering Coefficient
BEAM 6 5 3.37 3.19 0.42
Hybrid 5 4 3.33 2.87 0.014

Random 5 4 3.26 3.16 0.013

use networkx python library [net] for complex networks to obtain our simulation results. In these

experiments, we have tested 3 kinds of graphs: completely random graph, BEAM network graph

and hybrid BEAM graph where alliances acts as nodes. The graph density, node degree = 6 and

node count = 512 were same in all the three graphs. Hybrid graph’s node count is reduced to

Nk

h
= 256 sinceh = 4, k = 2, and degree of such hybrid nodes is equal toh. Server distance

is calculated by picking a random node among the512 nodes and then calculating distance from

it. From the results in table 1, it is seen that random graphs perform well as expected in all the

metrics. BEAM graphs have performed at par with random graph. Server distance in hybrid graphs

is even shorter than random graphs. Random graphs have relatively lower mean path length but

hybrid have lowest mean server distance. This abstraction of BEAM graphs helps to analyze the

topography and various other graph theoretic properties.

Figure 3.3 depicts performance of random and BEAM graphs forhigher number of nodes.

These values were found by averaging 10 different runs usingthe networkx python library for

complex graphs. Random graphs are known to perform better while traversing the graph. It is

evident from the figure that it has relatively shorter radiusand diameter as compared to BEAM

graph. BEAM has nearly matched random graphs in mean distance from server, which is the

most important criteria in our environment. Thus, BEAM graph forms a small world network with
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relatively much higher clustering coefficient and very comparable mean path length to the random

graphs.

3.4 Summary

In this chapter we introduced our P2P streaming framework, BEAM, that is based on alliance based

peering scheme and forms a small world network. Alliance formation is an effective organization

of peers into small groups where a node contributes effectively and also gets served by alliance

members effectively. Small world network typically have short path lengths and are robust to

network perturbations such as churn. As we have shown that alliance based network topology

forms a small world network and displays short path length. The results in subsequent chapter

demonstrate that it indeed forms a very robust overlay network and is very stable during churn and

during other network anomalies.
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CHAPTER 4

SIMULATION

In this chapter, we describe our simulation setup and discuss the results. Initially, we discuss the

metrics which we have used in our simulation to compare our model with CoolStreaming.

4.1 Metrics

In this section, we define the metrics that are most importantin a P2P streaming environment. We

quantify these metrics and provide mathematical expressions for the same. In our simulation, we

use the following expressions to evaluate our results.

Metric 1. Average Jitter Factor =

(

N
∑

i=0

Ji

)

/

N where,

Ji =

(

T
∑

i=0

Fi

)

/

T

Fi =



















0 if packet arrived before media playback

1 if packet not arrived before media playback
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Here,T andN denote the total packets in the streaming session and the total number of nodes in

the swarm respectively.

If a packet is not received at its playback time, it is considered to be a jitter. Average jitter

factor is critical to maintain high quality of streaming at user end; lower the jitter rate, better

is the QoS. Since, it is averaged out among the total number ofend users, it depicts a system

wide measure of QoS. We compute the jitter factor for each individual node and then average it

to compute the system wide jitter factor. Jitter factor is also called as continuity index in some

previous works [ZLL05].

Metric 2. Average Latency =

(

N
∑

i=0

Li

)

/

N where,

Li = TNodei − TServer

TServer= Media playback time at Server

TNodei = Media playback time at Nodei

The difference in media playback time at user end and server end is the latency. Most live events

and their streaming rely on minimizing the latency from the actual playback at server end to keep

end users interested. We compute the latency of individual nodes and then average it to derive the

system wide measure of average latency.

Metric 3. Uplink Utilization =
Total Uplink Used

Total Uplink Available

The better the uplink utilization, better is the scalability of the system. Uplink bandwidth is the
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most sparse resource in the swarm and its maximization leadsto optimal performance in the swarm

in terms of minimizing delay and maximizing number of end users [SLL06].

Metric 4. Fairness Factor = Variance(SR1, SR2 . . . , SRN) where,SRi denotes the share ratio of

nodei and is defined as,

SRi =
Uploads(Nodei)

Downloads(Nodei)

Fairness can be defined in several different ways, for e.g. interms of uplink bandwidth contribu-

tion, pricing etc. We believe that in such random swarm environments, it is extremely difficult to

deliver services in proportion to their contribution. We define fairness in terms of share ratio of

content served by nodes. Share ratio of end users over the period of simulation run depicts the

contribution of the nodes quite fairly. Since, it is difficult to provide services in proportion to the

contribution, the best we can do is to minimize the variance of share ratios of the nodes in the

swarm by enforcing strict policies. An ideal system would have nodes with share ratios of 1.0,

where an end user gets streaming content and it passes on equally to other end user. But given the

dynamics of the internet, it is very difficult to achieve the same. More the number of nodes close

to share ratio of 1.0, the fairer is the system.
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Metric 5. Robustness Factor = Maximum(F ) where,

F = Percent failure of nodes

RJ = Average Jitter Factor

RL = Average Latency

∆Rj = Threshold Jitter Factor

∆Rl = Threshold Average Latency

and such that,

RJ ≤ ∆Rj

RL ≤ ∆Rl

To evaluate the robustness of BEAM with respect to achievingacceptable levels of QoS, while

maximizing the node failure rate in the swarm, we assign a threshold of∆Rj and∆Rl to jitter

factor and average latency respectively. We test the robustness and reliability of the underlying

network architecture under increasing node count, subjecting the system to varying percentages

of node failures or departures. We determine the maximum node failures which the system can

withstand, without degrading the QoS.
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Metric 6. Scalability Number = Maximum(N) where,

N = Number of Nodes

SJ = Average Jitter Factor

SL = Average Latency

∆Sj = Threshold Jitter Factor

∆Sl = Threshold Average Latency

and such that,

SJ ≤ ∆Sj

SL ≤ ∆Sl

To evaluate the scalability of BEAM with respect to achieving acceptable levels of QoS while

maximizing the number of nodes, we assign a threshold of∆Sj and∆Sl to jitter factor and average

latency respectively. The scalability number indicates the optimal number of users in the swarm,

where the threshold is not exceeded and number of users are maximized.
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Table 4.1: This table explains all the Metrics related terms. All theseterms are part of some
expression in the Metrics in Table 4.2.

Term Expression Description
Total Number of Nodes N Number of Nodes in swarm
Total Number of Packets T Total Packet in a Streaming Session

Number of Server Upstream Connection P Server can simultaneously upload toP nodes
Total Uploads by node i UPi Volume of Uploads by node i

Total Downloads by node i DOWNi Volume of Downloads by node i
Share Ratio of node i SRi UPi/DOWNi

Media Playback Time at Server Tserver Start Time of Media Playback at Server
Media Playback at Node i Ti Start Time of Media Playback at Node i

Piece Availability Fi 0 if packet available before media playback else 1

Jitter Factor of Node i Ji

(

T
∑

i=0

Fi

)

/

T

Latency of node i Li Li = TServer− TNodei

Table 4.2:This Table lists all the Media Streaming Metrics we have usedin our simulations. For
explanation on the terms refer to Table 4.1

Term Expression Description

Average Jitter Factor Aj

(

N
∑

i=0

Ji

)

/

N

Average Latency Al

(

N
∑

i=0

Li

)

/

N

Total Uplink Utilization U Uplink Used/Uplink Available
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4.2 SIMULATION SETUP AND EXPERIMENTS

To evaluate various aspects of BEAM which are normally difficult to study using logs of real world

torrents or trace, we use a simulation based approach to study the same. A simulator gives the abil-

ity to experiment with different parameters involved in thesystem and study its performance under

varying workloads and conditions. Experiments for large scale simulation in excess of thousands

of nodes are difficult to perform using real world implementation for lack of nodes participat-

ing in it. Similarly, such experiments have limited domain in testbed overlay networks like Planet

Lab[Pla] due to the limited number of nodes1 participating in it, while it can be suitably modeled in

a simulator. It also helps to check the feasibility of such a system and to verify if simulation results

corroborate with the analytical results. Though, it is difficult to capture all the internet dynamics

correctly in a time event simulator, we mention the assumptions and simplifications we make, and

how it will impact results in real world scenario. With theseassumptions and simplifications, we

are able to model and simulate the behavior of BEAM and CS faithfully and the results show the

definitive trends and directions.

4.2.1 Simulator Details

We simulate both the models i.e. BEAM as well as CS [ZLL05] andcompare their results based

on the metrics defined in Table 4.2. We simulate all the components of CS i.e. 1) Node join and

1As of October 2006, PlanetLab currently consists of 704 machines, hosted by 339 sites, spanning over 25 coun-
tries.
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membership management algorithm. 2) Buffer map representation and exchange. 3) Intelligent

scheduling algorithm. 4) Failure recovery and partnershiprefinement method. In BEAM, we

model the server, tracker functionality, and the nodes in the swarm. Server is the only source of

streaming packets in the system. For comparing the two systems, we quantify QoS (in terms of

jitter factor and latency), uplink utilization, fairness (in terms of content served by an end user).

We also analyze robustness, reliability and scalability ofthe system by evaluating the QoS of the

system under varying workloads and conditions like node failure, churn, larger swarms etc.

We used the BRITE universal topology generator [MLM01] in the Top-Down Hierarchical

mode to model the physical network topology of Autonomous Systems (AS) and the routers. All

AS are assumed to be in the Transit-Stub manner. Overlay is assumed to be undirected. Unlike

other simulators [BHP06, BCC06, MSR05], we assume that the bottleneck in the network can

appear in the access links of source and destination (i.e. first-mile and last-mile hops) as well

as the non access links that are in the interior of the network, in particular within or between

carrier ISP networks. The nodes in the swarm are assumed to beof heterogeneous bandwidth

classes namely:(512Kb, 128Kb), (768Kb, 256Kb), (1024Kb, 512Kb), (1536Kb, 768Kb), (2048Kb,

1024Kb) where first and second member of the tuple are the maximum downlink and uplink speed

of a node respectively. The distribution of these bandwidthclasses is uniform in the swarm. To

simulate the congestion in the Internet, we induce5% congestion in the non access links within

the interior of the network. In such congestion scenarios, the available bandwidth to nodes is the

minimum of the bottleneck at source or destination and the bottleneck in the non access links.

The delay on inter-transit domains and intra-transit domains are assumed to be 100 ms and 50
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ms respectively, while delay on stub-transit is assumed to be 30 ms and intra-stub transit links are

randomly chosen between 5ms and 25ms. We simulate the TCP level dynamics like timeouts, slow

start, fast recovery and fast retransmission by introducing a delay of 10 RTTs [CK01]. We model

a flash crowd scenario for the arrival of users in the swarm, i.e. all users are present in the swarm

when the live media streaming starts, as this is the most relevant and challenging scenario for the

P2P streaming system.

In our experiment, the number of nodes typically vary from 128 to 4096 for most cases. For

some large sets of experiments we have also considered nodesin excess of 16000. We consider a

media file of duration 120 minutes, originating from a source, encoded with streaming rate of 512

Kbps and a file size of approximately 440 MB. In BEAM, we use thevalues of(h, k) = (4, 2) to

make the neighbor count= 6, similar to CS, for a fair comparison. Table 4.3 provides other values

of (h, k) that can be considered for streaming. The values ofα is 0.75 from Table 4.4. Each piece

size is 64 Kb and hence packet size is(h − 1) ∗ 64 Kb = 192 Kb in our case. We maintain similar

settings for the remainder of the paper. Any changes in the configuration settings are mentioned in

the respective sections.
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Figure 4.1:Comparison of QoS parameters in BEAM and CoolStreaming

4.2.2 Results and Discussion

4.2.2.1 QoS and Uplink Utilization

In the first set of experiments, we compare the effectivenessof alliance theory of BEAM on QoS

and uplink utilization as against CS’s random peer selection. Figure 4.1 depict these comparisons.

In accordance with the conventional notion of scalability in P2P systems, it can be seen from fig-

ure 4.1(a) that BEAM and CS both perform better with the increasing swarm size, though jitter

rate slightly increases after 1500 node mark but stabilizesaround 2000 nodes. BEAM has a com-

paratively lower (approximately0.01%) jitter rate than CS. The plausible reason is that in CS, the

content delivery is random in nature rather than an organized flow. Sometimes an intermediate

piece which could not be fetched, may increase the jitter rate. Due to alliance formation in BEAM,

the stream content propagates in an organized fashion from one alliance to other; so chances of

an intermediate piece missing are comparatively low. In BEAM, every node receives the content

through the best possible channel among its various alliances, while the same cannot be com-
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mented for CS. An optimal jitter rate of 0 is difficult to attain in such random swarm environments

because the content distribution is dynamic and, lasts for an extended time; network anomalies and

congestions can cause unavailability of a packet at its playtime.

Figure 4.1(b) depicts the average latency in both systems. For the same settings, average la-

tency for BEAM varies from less than10 seconds for a128 node swarm to less than18 seconds

for a 4096 node swarm, while CS has considerably higher latency of29 seconds for a swarm of

4096 nodes. An explanation for this could be that higher the number of hops in the overlay, greater

are the chances of increased end to end latency [BBK02, THD03]. CS has comparatively higher

bootstrapping time before playing media and it could be attributed to the following facts: 1) It

buffers more pieces in advance before playback. 2) Due to random nature of data exchange, a

missing intermediate piece further increases jitter and hence latency. 3) Execution of intelligent

scheduling algorithm causes both computation overhead anddelay. On the contrary, in BEAM, the

systematic flow of content from one alliance to another and near optimal overlay hops account for

its lower latency. Moreover, if a packet has been procured byan alliance member, it implies that

there are at least one or more sources for the content. This flow of packets indeed saves time as

compared to CS. Playback starts 10 seconds after receiving the first segment in [ZLL05]. In our

implementation of both BEAM and CS, the playback starts after 6 seconds, as 6 seconds of buffer

time is long enough and is many times larger than the RTT between peers to counter the network

anomalies like jitter and congestion within the network [Li04].

Uplink bandwidth is the most important resource of a P2P system. End users that are charged

for bandwidth used per time unit want to maximize their utilization. Moreover, maximization of
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Figure 4.2:Effect of bitrate on the QoS parameters for BEAM and CoolStreaming

uplink bandwidth is a must for a scalable system [SLL06]. From Figure 4.1(c) it is clear that

uplink utilization increases with the swarm size in both of the systems. BEAM has approximately

7% higher utilization and this could be due to the fact that nodes with higher uploading capacity

can effectively use their outgoing bandwidth in their otheralliances, while the same may not be

true for CS where a node with high uplink capacity may remain under utilized due to insufficient

requests from its neighbors. In random peering (CS), neighboring peers may or may not request for

pieces in the packer, while in an alliance (BEAM), members share pieces in every packet among

themselves, ensuring that there are request for upload almost all the time, this increases BEAM’s

uplink utilization. An optimal utilization of1.0 is near impossible because of node heterogeneity

and lack of download requests from the low capacity peers.
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4.2.2.2 Streaming Rate

We vary the streaming rate from 64 Kbps to 512 Kbps in a 2048 node swarm and expect a com-

parative deterioration in QoS with increasing streaming rate as the nodes need to procure more

content for the same playback time. For lower streaming rates, QoS is expected to be near optimal

as additional packets are fetched much before their playtime and chances of jitter and hence la-

tency become negligible. From Figure 4.2(a), the difference in average jitter rate between BEAM

and CS is marginal for lower streaming rates but more prominent for higher streaming rates when

the systems are subjected to stress test. In Figure 4.2(b), similar trends can be observed for aver-

age latency while analyzing the effect of varying streamingrate on BEAM and CS. For the same

playback time, a node needs to obtain higher number of packets that incurs additional time over-

head. Figure 4.2(c) shows the variation in uplink utilization of both the systems. They both peak

around encoding rate of 256 Kbps. A plausible reason could bethat at this encoding rate, the

nodes are able to cater all the requests at optimum rate and this in turn increases the throughput.

Node topology and peering partners are important in analyzing the utilization of bandwidth. Most

commercial websites stream at rates between 225 Kbps and 450Kbps as of 2007. Receiver should

havedownlink ≥ streaming rate and sender should have enough uplink to contribute. In our

simulation, the bandwidth classes of lowest strata is 512 Kbps, so we have limited our discussion

to streaming rate of 512 Kbps. 512 Kbps can be considered as a decent rate, though in near future

streaming of DVD quality media will require additional bandwidth.
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Figure 4.3:Share Ratio, Jitter Factor and Latency Range vs Number of Nodes in BEAM and CoolStream-
ing.

4.2.2.3 Fairness

To the best of our knowledge fairness has been undermined in P2P streaming models. [AH00,

BHP06] have addressed fairness issues in Gnutella and BitTorrent like P2P systems. Chu et

al. [CCZ04] have proposed a tax based model for fairness in P2P streaming. Uplink bandwidth

is a sparse and most important resource in P2P streaming swarm and end users resort to methods

like freeriding [AH00], whitewashing [LFS03] etc. in orderto save their uplink bandwidth. As a

result, many nodes upload much more than what they should while others get a free ride. Recent

measurement studies [HLL06, AMZ06] confirm the same. In thispaper, we quantify fairness in

terms of content served by each node (uplink bandwidth) or equivalently by their share ratios. We

compute the share ratio of all the individual nodes and analyze the correlation, if any, in the QoS

perceived by the nodes. Also, we study the fairness of BEAM and CS towards distributing the load

evenly among users.
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In Figure 4.3(a), we depict the share ratios of nodes and their distribution in BEAM and CS.

An ideal share ratio of1.0 is not possible in such P2P systems due to the node bandwidth het-

erogeneity [HLL06, AMZ06]. In such cases, the range of shareratios from0.75 to 1.25 becomes

more significant since it is closest to1.0. Larger the number of nodes having share ratio close to

1.0, fairer is the system. In BEAM, around1180 nodes out of2048 have their share ratios in the

range0.75 to 1.25, which forms57.61% of the total nodes, while the distribution is more spread

out in CS with41.21% nodes lying in the region of share ratios between0.75 to 1.25.

BEAM encourages user participation, wherein nodes in an alliance exchange pieces, i.e. nodes

upload the content to their alliance members while completing their individual downloads. For

example, in an alliance of 5 nodes, if one of the nodes procures a packet (either from the server or

through some of its other alliances), it forwards the content among its other four members of the

alliance. These four members must exchange their pieces amongst themselves. Therefore, a node

downloads 4 pieces and at least uploads 3 pieces in its current alliance which makes its share ratio

= 3/4 = 0.75. Further, after downloading the complete packet, it forwards (4 or fewer pieces) the

content to its other alliances depending upon the number of requests it has and depending upon if

those members have procured some pieces from their other alliances. This explains why BEAM

has better uplink utilization and more nodes have share ratio around 1.0. However, some disparity

can be seen in Figure 4.3(a) where some nodes upload more than3 copies while others share less

than one fourth of the entire content. This is because there are very few requests made to the low

capacity peers , and power nodes distribute multiple copiesof the content in the swarm. In case of

CS, there are more nodes with higher share ratios and comparatively lesser nodes with share ratio
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closer to 1. This could be attributed to the fact that some nodes with high bandwidth always remain

forwarding nodes, i.e. they upload much more than the lower bandwidth nodes either because of

excess bandwidth or the topology of the node in which flow could be top-down.

As shown in the Figure 4.3(b), the average jitter factor is0.0158% and average latency is15.12

seconds in BEAM, whereas they are0.0221% and22.11 seconds respectively for CS. It can be seen

that most nodes in the swarm receive average values of QoS parameters for both the systems, i.e.

the nature of graphs in Figures 4.3(b) and 4.3(c) are similarand show that nodes contributing fairly

to the swarm receive the streaming content with an average jitter factor and latency. This can be

seen in Figure 4.3(b) and Figure 4.3(c) where certain nodes have larger latencies and comparatively

higher jitter rates. These nodes have lower contribution inthe swarm. In BEAM, more than80%

nodes have jitter factor in the range of0.001 to 0.003 and similarly more than70% nodes have

latencies in the range of10 to 20 seconds. In case of CS, jitter factors are more spread out as

compared to BEAM and there are many nodes with a high jitter factor of 0.040 and above. The

initial bootstrapping time in CS is also higher as shown in Figure 4.3(c).

4.2.2.4 Robustness and Reliability

We conducted two types of experiment to evaluate the robustness and reliability of both systems:

1) We injected various percent of node failures after50% of the simulation run time. 2) We injected

one third of node failures at three different intervals:25%, 50% and75% of the simulation run.

After the complete simulation run, we recorded the QoS factors viz percentage jitter rate and
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Figure 4.4: Various Workloads of Robustness and Scalability in BEAM and CoolStreaming.
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average latency. We study the impact of node failures on these metrics and the overall system

performance. This simulation run comprises of 2048 nodes and maintains a 512 Kbps streaming

rate.

Figure 4.4(a) shows the results for our first set of experiment where we inject node failures

after50% simulation run. It can be seen that for0% node failure, the jitter rate is almost negligible

for both the schemes. The jitter rate steadily increases to1% for around20% node failures. After

injecting 50% node failures, we observe that the rise in jitter rate is steep and reaches8% for

BEAM and 10% for CS. This effect can be understood considering the impactof node failures

on the alliances. As the number of nodes gradually decline incase of node failure or departure,

number of alliance members (h) decrease, thereby weakening the overall graph connectivity. As

nodes continue to falter, the alliance becomes sparse and sometimes is broken completely . The

increase in time and consequently jitter rate is due to the time required to find alternate paths and

receive the content. CS has displayed similar trends exceptthat it has comparatively more jitters

with failure. This can be similarly understood that a node requires more time to find new peer with

the available pieces.

Figure 4.4(b) shows the impact of node failures on average latency. In BEAM, for25% node

failures, the average latency incurred is around 30 seconds. At 0% failure, the latency is well within

20 seconds and steadily increases with the node failure rate. The steep curve is prominent after

20% failures. Similar is true for CS except that it takes more time to start the media playback. The

same average latency is maintained for the rest of the session. A plausible reason for the behavior

of BEAM is that since a node cannot procure packet, it issues multiple requests to the node having
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desired content in the alliance. In case of a complete alliance failure, the nodes need to re-form an

alliance, thereby increasing the average latency. In CS, for 25% node failures the latency increases

to 56 seconds and rises steadily after that to almost 170 seconds for75% node failure. Finding new

peers after a node failure incurs an additional time in CS andthis delay becomes the end to end

latency. The difference in results of BEAM and CS in Figures 4.4(a) and 4.4(b) can be understood

in the light of SWN, which show robust behavior during churn.

In the second set of experiments we study the effect when nodefailure is gradual and occurs

over three distinct time intervals:25%, 50% and75% of the simulation run. This setup depicts

more realistic scenario and facilitates easy recovery. Forexample, to depict30% node failures, we

inject one third i.e.10% node failures at25%, 50% and75% of the simulation times respectively.

Figures 4.4(c), 4.4(d) depict the jitter rate and average latency for the above mentioned node failure

rates. We observe that for75% node failures the jitter rate is still under1% for BEAM, though it

has gone considerably high up to2.5% for CS. The average latency for75% node failure is around

60 seconds in BEAM and 70 seconds for CS. For lesser percent of node failures, the jitter rate and

average latency are found to be under acceptable range of QoS. We observe that in the case where

the node departure is gradual (at specific time intervals), the node recovery is comparatively easy

and makes system inherently more stable since more time is available for recovery. For example,

when the node failure occurs say within the first25% of the simulation run time, the system is

recovered much before another failure occurs at50% simulation run time. Similarly, when another

failure occurs at75% simulation time the system is already stable.
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4.2.2.5 Scalability

In this section, we extend the results obtained for QoS and uplink utilization to larger swarms. We

evaluate scalability in terms of maximum number of nodes a streaming system can support without

degrading the QoS. In this experiment, we vary the number of nodes from 128 to 16384. From

Figure 4.4(e), we observe that for a swarm size of 16384 nodes, the average jitter rate is around

0.0278% in BEAM and almost around0.04% for CS. With increasing nodes , jitter factor decreases

and becomes steady after 1500 node count and marginally increases for very large swarms. How-

ever, even with a steep rise in the number of nodes in the swarmthe average jitter factor is found

to be under acceptable levels. The difference between CS andBEAM is more evident for larger

swarms.

From Figure 4.4(f), in BEAM, the average latency is under 30 seconds for a 16384 node swarm.

The peer lag is approximately than 20 seconds. As the number of users in the swarm increase, there

are more alliances and as the content is forwarded from one alliance to other, the number of total

hops increase resulting in a higher latency. As mentioned previously, a high average latency is not

acceptable in live media streaming as live media content is time sensitive and loses its importance

if the delay is greater. CS and BEAM have a comparable performance except that CS takes a little

more time to bootstrap. One of the important problems in CS like models is the high peer lag for

media playback and high buffering time. BEAM has displayed considerable improvement in both

aspects, i.e. reduced peer lag and reduced initial buffering time from more than half a minute to
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Table 4.3:A comparison of QoS for varioush, k values for a 1024 node swarm, media encoded
with 512 Kbps. Peering denotes peering scheme in BEAM in terms ofh andk, N denotes number
of neighbors,BEAMJ and CSJ denote Average Jitter Rate for BEAM and CS,BEAML and
CSL denote Average Latency for BEAM and CS,BEAMU andCSU denote Uplink Utilization for
BEAM and CS.

Peering N BEAMJ CSJ BEAML CSL BEAMU CSU

h, k = 4, 2 6 0.0158 0.0221 15.12 22.11 90.13 80.64
h, k = 5, 2 8 0.0156 0.0213 15.89 21.89 91.26 82.76
h, k = 4, 3 9 0.0162 0.0202 16.23 20.27 92.42 84.34
h, k = 6, 2 10 0.0164 0.0206 17.63 22.18 90.57 85.10
h, k = 4, 4 12 0.0164 0.0210 16.11 23.34 88.26 84.14
h, k = 5, 3 12 0.0159 0.0210 15.04 23.34 92.53 84.14
h, k = 4, 5 15 0.0176 0.0231 17.72 23.42 86.47 83.59
h, k = 6, 3 15 0.0177 0.0231 17.14 23.42 89.41 83.59
h, k = 5, 4 16 0.0186 0.0245 17.98 24.03 85.53 80.68
h, k = 4, 6 18 0.0181 0.0244 18.31 24.16 86.77 82.71
h, k = 5, 5 20 0.0190 0.0249 18.68 26.98 87.63 84.93

approximately 20 seconds. It is very difficult to achieve TV like switching because of the lack of a

dedicated proxy during initial buffering time.
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Figure 4.5:Control Overhead in BEAM for various values of h and k.
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4.2.2.6 Control Overhead

Control overhead is the ratio of the total number of bytes expended in communication and control

to the total bytes used for streaming data payload. An efficient system aims to minimize the control

overhead (CPU time and bandwidth) and maximize resource utilization towards the streaming

content. Figure 4.5 shows the communication overhead incurred in varying swarm sizes ranging

from 128 to 1024 nodes. We vary the values ofh andk. Recall, that values ofh andk denote the

node degree. With higher node degree, additional resourcesare needed resulting in an increased

communication and control overhead. For 1024 node swarm and(h, k) = (5, 4) (node degree=16),

the control overhead is slightly over3%. For most other permutations ofh andk values, the control

overhead is around2%. Table 4.3 shows affect of various values ofh andk on the QoS parameters.

We found(h, k) = (5, 2),(h, k) = (4, 3) and(h, k) = (5, 3) as well performing schemes. In

our experiments in the paper, we useh = 4 andk = 2, to show a comparison with CS which has a

neighbor count of 6. As mentioned in [ZLL05], for a 200 node swarm in CS, the control overhead

is around2% for node degree of 6, which is quite comparable to BEAM. BEAM and CS almost

incur similar overhead. In BEAM, a node sends announce request as it receives a packet, while in

CS nodes send information packets to all their neighbors periodically about their buffer state.
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Table 4.4:Evaluation of power nodes and their effect on the QoS factors. The swarm is composed
of 2048 nodes and media encoded with 512 Kbps.α is the weight ofCSR for calculating theUF .
pNode denotes number of distinct power nodes during the streaming session. For various values
of α we evaluate number of distinct power nodes active and their effect on overall QoS.

α pNodes Average Jitter Average Latency Uplink Utilization
0.00 76 0.0175 17.12 90.18
0.20 73 0.0185 17.31 89.46
0.25 67 0.0186 18.23 91.42
0.33 63 0.0175 17.66 89.45
0.50 54 0.0174 17.11 88.29
0.67 48 0.0160 16.54 91.37
0.75 45 0.0158 15.12 90.13
0.80 36 0.0162 15.78 89.27
1.00 29 0.0182 17.95 86.22

4.2.2.7 Effect of Power Nodes

Table 4.4 shows the effect of power nodes on the whole system.For various values ofα (the weight

factor forCSR andTSR), the jitter factor, average latency and uplink utilization are compared.

pNodes is the number of distinct nodes that were chosen as power nodes at least once during

the streaming session. The optimal choices were found to beα = 0.67 andα = 0.75, though

other choices were also good with marginal overhead in jitter rate, latency or uplink utilization.

This may lead to a very important question: Is it necessary tochange the power nodes at all

during the streaming session? The answer could depend on many factors. What incentive do the

high capacity nodes have in contributing the content altruistically? What if the already chosen

power nodes decrease their uploading rate (in the absence ofsuch a policy where best performers

in terms of uploading are chosen as power nodes)? We believe that changing the power nodes

brings altruism from the high capacity peers who have an interest of being served from the server.
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Altruism has a very important effect on the overall efficiency of the swarm and sometimes even

more thantit-for-tat and any kind of forced fairness policies [PIA07].

4.3 Summary

Simulation results have shown that BEAM performs at par withCoolStreaming and in most cases

outperforms it. As discussed in the previous chapter, BEAM’s performance improvements mainly

stem from its alliance based network topology which is more efficient than a random based net-

work topology. The main improvements are in reducing the average latency, improving effective

uplink bandwidth usage and delivering near optimal QoS. It also has shown scalable behavior and

is very robust during node failures. In very sparse networksit has shown behavior like any other

random network, and the main reason is that because during such times it cannot form any al-

liances. Formation of small world network gives network stability during node failures and also

delivers streaming bytes in near optimal paths. Simulationresults in this chapter have corroborated

with our hypothesis.
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CHAPTER 5

REDUCING CROSS ISP TRAFFIC

We saw in the previous chapter that our proposed model for streaming has shown improvement

over the CS model in terms of QoS, uplink utilization, robustness and scalability. In this section,

we are going to emphasis on the cross ISP traffic that floods thecurrent day Internet. According

to some studies, P2P forms approximately60% of the Internet traffic as of 2007. Many ISPs bare

the brunt of home users that use excessive P2P applications by paying extran revenue. As a result,

many ISPs have started traffic shaping. They do deep packet inspection of packets and if there are

P2P headers found, the packet is dropped or sometimes its priority is lowered. In USA Comcast

ISP does traffic shaping. Rogers is an ISP in Canada, that doesthe same. As a result, the QoS

further degrades at the user end, because in its current mostP2P streaming models have random

peering mechanism generates excessive cross ISP traffic. Inthis chapter, we show that using our

alliance based peering scheme, we can indeed reduce cross ISP traffic.
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5.1 Current Issues

Most P2P streaming algorithms display a greedy behavior in choosing peers and generate excessive

amount of cross ISP traffic [AMZ06], thereby increasing the operating cost of an ISP significantly.

To overcome such losses, some ISPs impose traffic throttling, where they limit the bandwidths of

such P2P traffic. QoS perceived at user end is affected in suchscenarios. Cross ISP traffic can

be significantly reduced by using a biased neighbor selection policy [BCC06] in BitTorrent like

P2P file sharing system and still achieve near optimal performance like BT. In such a systems,

a node chooses more peers based on locality of the peers (i.e.within the same ISP) and also

chooses some far located peers for content diversity. But BTis a file sharing system, has different

internal policies and mainly works ontit-for-tat mechanism. We focus on the problem of P2P

media streaming cross traffic and propose a preferential peering technique using alliance theory to

counter the same and study if reducing cross traffic affects QoS. What are the optimal conditions

to achieve both the goals, or it is not possible at all?

5.2 Alliance Based Preferential Peering

As a node joins a swarm, the tracker intelligently assigns ita peerlist using two main criteria:

1) Peers in the similar bandwidth range, if available. 2) Peers in the same ISP, if available and

possible. A node while creating and joining alliances can effectively choose its peers or alliance

members based on locality and peer bandwidth range. This serves two important purposes: 1)
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Cross ISP traffic is reduced. 2) Improving traffic locality ensures less probability of congestion

within the interior of the network as compared to bandwidth congestion in the cross ISP links. A

good mix of peers from the same ISP and peers in comparable bandwidth range can yield good

performance in terms of reducing the cross ISP traffic but it may hurt QoS and other parameters.

5.3 Simulation Results

In this section, we present a set of simulation experiments where there are 20 ISPs and nodes in the

swarm belong to these ISPs. We attempt to find and compare percent of traffic between different

ISPs and what is internal traffic within the ISPs. We considertwo cases: 1) Using BEAM with

regular alliance theory.2) Using preferential peering andalliance theory as explained above. The

number of nodes vary from 500 to 4000 (i.e. in each ISP, the number of nodes vary from 25 to

200), the streaming rate is 512 Kbps, (h,k)=(4,2). We assumethat there is a link between all ISPs

and communication can be carried out between all the links.

Fig 5.1 depicts the cross ISP traffic in both the scenarios. Preferential peering using alliance

theory reduces the cross ISP traffic significantly. With increasing node count, the percent cross

traffic has reduced in both the schemes. While using no peering (i.e. just using regular alliance

theory), cross ISP traffic has decreased with increase in node count because the nodes increasingly

have better connections within the same ISP, though these connections are not intentionally created

in the same ISP. While using preferential, the cross traffic has reduced considerably. For a 4000
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nodes swarm, there is a reduction of around13% in cross ISP traffic, which is approximately 230

GB (a significant volume considering 4000 nodes and a streaming rate of 512 Kbps).

Figure 5.2 depicts the QoS parameters between the two scenarios. It is evident that preferential

peering hurts the QoS factors, though, it reduces cross ISP traffic significantly. For smaller swarms

the difference is negligible but for larger swarm, which is of interest to us, their difference is

conspicuous. For a 4000 node swarm, there is an increase in percent jitters by around0.2%, and

latency has gone up by approximately8 seconds. Such behavior is understood in terms of nodes

not getting the best connection. Since more peers are clustered in similar ISPs, nodes miss out

on useful connection which can fetch newer pieces, resulting in extra jitters and latency. Contrary

to the intuition that uplink utilization in preferential peering should be better than normal alliance

based peering, uplink utilization has indeed gone down in the preferential peering scheme. This

is because nodes in the same alliance are not able to get new stream content through the best

possible connection. As a result the nodes are idle at various times and the uplink bandwidth is

not as effectively used as it is used in normal alliance basedpeering where a node receives best

connection, though at the expense of high cross ISP traffic. It is evident from the figures that

achieving good QoS and reducing cross ISP traffic are independent goals and pursuit of one affects

other.
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5.4 Summary

In this chapter, we enumerated the problem of excessive cross ISP traffic in current day internet due

to P2P traffic. Current models based on random network topology don’t make peering connections

in a topology aware fashion and it causes a huge cross ISP traffic problem. ISPs in turn throttle the

P2P traffic that further deteriorates the QoS of P2P environments. Using BEAM and preferential

peering scheme, we saw that we can considerable reduce crossISP traffic. It is not possible to

reduce much more than that because in that case peers would not have any interesting data to share

within their alliance members. Cross ISP traffic brings in interesting data to peers which they can

propagate within their alliance. This is an active field of research among ISP to alter their revenue

model such that they need not throttle the P2P traffic as it is used for legitimate applications these

days like sharing source code of major Linux distributions.

59



CHAPTER 6

PREFERENTIAL PEERING METHODOLOGY

In this chapter, we analyze the current day challenges in BitTorrent (BT) like P2P systems and

propose an alternative model to BT to overcome the problems.Bit Torrent (BT) [BHP06, Coh03]

is one of the very popular P2P systems used for bulk file download. Results [BHP06] showed that

BT scales very well to large number of users and achieves nearoptimal performance in terms of

uplink utilization, mean download time and fairness. The BTlike P2P model is based on tit-for-tat

policy, however, it lacks in terms of fairness. Some nodes end up uploading more than 6 copies

while others almost get a free ride [AH00]. Our model aims to achieve the following.

1. Survivability: At all times, every block of the file existsin the swarm ensuring system sur-

vivability.

2. Minimum Mean Download Time: The model aims to minimize theaverage of the download

times of all the nodes in the system.

3. Link utilization: The model aims to maximize total uplinkutilization of nodes in the swarm.

4. Fairness: No node is forced to upload more than it has downloaded.
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However, there is always a trade off involved when we try to accomplish these goals. We define

stricter bounds to achieve good uplink utilization and minimize the mean download time, which in

turn ensures fairness. We propose a preferential and stratabased pairing scheme among the nodes.

The idea is to group nodes with similar bandwidths together in a single stratum. The tracker issues

every node a list of its preferred peers based on their respective stratum. Later on we show that this

scheme of assigning the peers indeed is better than random selection of peers as in conventional

BT model. We aim to achieve optimal system performance in terms of fairness, uplink utilization

and mean download time. The emphasis is overall system benefit and not individual node gain.

However, if free riders [AH00] exist in the system, it in turnaffects overall system performance.

As a result the contributing nodes suffer in terms of fairness. We propose the use of public key

cryptography to alleviate this issue and prevent nodes fromcheating.

Our main contributions are a preferential and strata based clustering scheme to group nodes

and use of public key cryptography to prevent the nodes from cheating. We introduce the notion

of TokenFromTracker and Published Upload Speed for the same. We have proposed a self healing

and a self punishing model to dissuade selfishness and propagate altruism.

6.1 BitTorrent like P2P Models

BitTorrent (BT) [BHP06, Coh03] is a P2P application used forbulk file download. Conventional

P2P systems were used for small sized data files with one to oneconnections possible between
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them. Large multimedia files and software distributions demand a fast and efficient mode of trans-

fer. It exploits the uplink speed of end users while they are downloading parts of the file. With BT,

files are broken into small chunks typically 256 Kb. As the fragments are distributed to the peers

in a random order, they can be reassembled on a requesting machine. Each peer takes advantage

of the best connections to the missing pieces while providing an upload connection to the pieces it

has already downloaded. This scheme has proven particularly useful in trading large files such as

video, games and software source code. In conventional downloading, high demand leads to bot-

tlenecks as demand surges for bandwidth from the host server. With BT, high demand can actually

increase throughput as more bandwidth and additional seedsof the completed file become avail-

able to the group. Cohen [Coh03] claims that for very popularfiles, BT supports about a thousand

times as many downloads as HTTP and prevents server crashes evident in the HTTP downloads.

There are two types of nodes in the system. The nodes that havefinished downloading the file

and willingly offer uploads to other users are called as seeds. The nodes still in the process of

downloading file are called as leeches. Leeches also offer uploads to other users as they download.

To share a file using BT, a user creates a .torrent file, a small metafile that contains the in-

formation like filename, size, hash of each block in the file, the address of a tracker server and

miscellaneous data like client instructions. The .torrentfile is distributed to the users via some

medium like email or website. The original user who is willing to offer the upload starts as a seed

while other users start as leeches. Once a new user joins the system he contacts the tracker to obtain

a list of 40 peers including seeders and leeches who are in theswarm. A new node upon receipt of

peer list contacts these nodes to obtain the file blocks. The nodes in the peerlist which are already
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in the system send their buffermaps to this new node. Buffermap is a list which contains the list

of pieces they currently have. New node then requests the pieces from these nodes. If the peer list

goes below 20 due to departure of some nodes the new node makesanother request to tracker to

give him the addresses of some more peers. It then sends ahavemessage to its neighbors about

this new piece, so that other nodes can now request for this newly obtained piece.

Every node downloads as many blocks and as fast as they can. For each available source, the

node considers the blocks of file available and then requeststhe rarest block among the peers. This

is called as Local Rarest First(LRF) policy. The least replicated block is chosen and downloaded to

maximize the content diversity in the system. This makes it more likely that peers will have blocks

to exchange. As soon as the client finishes importing a block,it hashes the block to ensure that the

hash matches with the hash value in the torrent file. It then looks for someone to upload the block.

A tit-for-tat policy is enforced to make sure that leeches donot get a free ride and also give back

to the system by performing uploads. BT gives the best download performance to the nodes with

maximum upload, a property known as “leech resistance”. It discourages leeches from download-

ing the file without uploading it to anyone. This policy forces everybody to contribute to the system

to get maximum system benefit. Every node tries to limit the number of uploads at one instant to

some small number say 5 to avoid having lots of competing TCP connections [BHP06, Mor97].

A technique called choking is used to limit the number of uploads. A node uses choking to

block the upload connections to maintain its own performance. In general, the set of neighbors

that a node is uploading to may differ from the set of nodes it is downloading from. Time to time

every node performs optimistic unchoking which helps new user to get started. When a new user
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joins the system there is no way he can start downloading the blocks unless there is optimistic

unchoking. The scheme helps the node realize if there is any other node giving better upload speed

to him so that it can choke some other connection and unchoke him. Though BT is a good protocol

for a broadband user, it is less effective for dial up connections, where disconnections are common.

On the other hand, many HTTP servers drop connections over several hours, while many torrents

exist long enough to complete a multi-day download.

This process of uploading and downloading continues till nodes procure a complete copy of

the file. Once a node finished it can either stay in the swarm andoffer its uplink to helps others or

it can leave the swarm. The average download time of the usersin the swarm is proportional to the

number of seeds present and also on the contribution of othernodes.

6.2 Related Work

There has been considerable work done ever since Cohen [Coh03] first came with the idea of BT.

Many simulation and analytical based studies have been reported till date. Most simulation based

studies focused on BT performance at various setups. Izal etal. [IUB04] focused on the tracker log

obtained from the Redhat 9 Linux Distribution. Their work enumerated the basic properties of the

torrent i.e. most clients after finishing the download tend to stay in the pool for another 6.5 hours

because they need manual intervention to close the BT clientand stop uploading. They also re-

ported average upload speed achieved during the run of the torrent. They have seconded the claim
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by Cohen [Coh03] that tit-for-tat policy is effective in BT and gives good results. Pouwelse et

al. [PGE05] also performed a study on a 8 month log obtained from a real life tracker of more than

two thousand global components. Their main finding is that within P2P systems a tension exists

between availability which is improved when there are no global components, and data integrity,

which benefits from centralization. Sherwood et al. [SBB04]have explained the ”Slurpie” system

which is very similar to BT. It uses an available bandwidth estimation technique. All nodes down-

loading the same file contact the topology server. Using the information returned by the topology

server the nodes form a mesh and propagates progress updatesto other nodes. Slurpie protocol

has been implemented and is available for download. Shrivastava et al. [SB05] have presented an

incentive based streaming in P2P environment. Qiu et al. [QS04] modelled BT using fluid flow and

conducted an analytical performance study. They have derived expressions for average number of

seeds, leeches and download time using the node arrival and departure rate. They have shown that

BT is scalable and performance improves as there are more users in the system.

Our work mainly focuses on classifying nodes in various strata so that peers mostly exchange

packets with peers in the same bandwidth stratum. This is very crucial for good uplink utilization.

On the fairness front, we employ a published based model where a node publishes his standard

upload speed. To stop cheating, tracker creates a token called “TokenFromTracker” which uses

public key cryptography to encrypt the token.
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Figure 6.1:A Strata based mechanism

6.3 Preferential and Strata Based Model

We propose a novel scheme to classify and group nodes in a similar bandwidth range into respective

stratum. Nodes within different strata have the flexibilityof communicating with each aother for

the requested file block. However, the nodes that lie within the same stratum are the primary

preferred peers for file exchange followed by the nodes in thenearby stratum in terms of their

bandwidth difference.

In real life scenario we have nodes with heterogeneous bandwidths such as T3, T1, Cable, High

DSL and Low DSL. We assume five bandwidth classes related as:

∆1 > ∆2 > ∆3 > ∆4 > ∆5

Let,

∆(i,j) = |∆i − ∆j |
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where∆i and∆j are the bandwidths of strata i and j. Therefore,

∆(i,j) ≤ ∆(i,k) for |i − j| ≤ |i − k|

where

i ≤ j ≤ k or i ≥ j ≥ k

In our model, a node with bandwidth∆2 is most likely to interact with nodes from∆2 as|i−j|

is 0. A second preference is given to∆3 and∆1 bandwidth nodes, which are the strata with the

second minimum bandwidth difference.

∆(2,2) < ∆(2,3)

∆(2,2) < ∆(2,1)

Some fraction of the peer list will include nodes from remotestrata. For example, in our case

a node with∆1 speed would also have∆3, ∆4 and ∆5 bandwidth nodes as its peers. In our

simulation we consider60% peers from the same stratum,15% each from the neighboring strata

and 10% from remote strata. It can be denoted as(60, 15, 10). We also consider other possible

distributions like(70, 10, 10) and(50, 20, 10). Later we show that this scheme of assigning peers

is better than random selection of peers (used in conventional BT model). It ensures near optimal

uplink utilization as maximum interaction is found to be among nodes within the same strata.
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Moreover, this scheme tends to be fair as the nodes form a symbiotic association and are equally

benefited in terms of the volume of content served. This formsa natural incentive for the nodes to

be in the best possible strata.

Generally such P2P systems comprise of large number of nodes. Nodes can enter and depart

at any point of time. Moreover, the node behavior cannot be trusted. There is always a possibil-

ity of free riders in the swarm who selfishly download the content without contributing fairly to

the swarm. We emphasize on the overall system performance and not on individual gains. Con-

sequently the contributing nodes suffer on account of thesefree riders. This also has significant

impact on the uplink utilization and fairness ensured by thepreferential and strata based scheme.

We propose a self healing and self punishing model to counterthis issue.

We introduce the notion of Published Upload Speed (PUS) for anode. This is to dissuade

the node from cheating and to ensure that the node offers the same upload speed as published

throughout the time it is in the swarm. Every node upon arrival contacts the tracker. It sends

PUS it is going to offer to the peers. An end user (node) can configure the BT client based on his

preferences. Even if a node has good uplink speed he would notwant to dedicate all his uplink

speed. However, if the node publishes a lower uplink speed hewill be placed in the lower stratum.

So the node resorts to cheating by initially offering high PUS and later configuring his BT client to

downgrade the uplink speed. Open source programs for BitTorrent gives an end user a chance to

modify the protocol in the code. New programs like Azureus [Azu] can be customized as per user

needs and allow user to choose upload speed, number of connections etc. This facilitates cheating

by an end user. If a node wants to downgrade his PUS for some reasons it is expected that the
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tracker is informed and the node obtains a new TokenFromTracker with the new downgraded PUS.

This helps the tracker differentiate the cheating nodes from the non cheating ones.

We propose to create a token called “TokenFromTracker”. This token is encrypted with tracker’s

private key. The payload contains Node ID, PUS and Arrival Time:

{[Node ID, Published Upload Speed, Time]KR}KU

For example, node A and B agree to communicate. They exchangetheir tokens and get the infor-

mation of peer’s PUS and other details by decrypting the token with tracker’s public key. While the

session is on, the peer can gauge the node’s offered upload speed. A node is immediately caught

if it keeps upload bandwidth low for a certain period of time interval. The model associates some

tolerance T with the upload speed i.e. if a node publishes an upload speed of U, then its uplink

speed in the range U-T to U are all acceptable. If it falls below U-T the other node would wait for

a small time interval t and eventually disconnect. Peer notifies the tracker about the cheating node.

Tracker issues a warning to the cheating node. If number of complaints exceed the threshold K, the

tracker brands him as a bad node and throws him out of the swarm. This is a consequence of our

self punishing policy. Nevertheless, the warned users who cooperate with the protocol are allowed

to stay in the swarm. This is in accordance with our self healing policy. Thus, our model is a self

healing and self punishing one and turns the node behavior from selfish to altruistic enhancing the

overall system performance.
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After acquiring the peer list the node contacts the peers forthe first file block. Once it procures

the first file block it starts uploading as well downloading other file blocks. For the subsequent

blocks Local rarest first (LRF) policy is enforced as in the conventional BT protocol [Coh03]. The

nodes continue to exchange the file blocks until they finish their respective downloads. Nodes may

volunteer to stay in the swarm or leave. Nodes intimate the tracker while leaving the swarm.

6.4 Simulation Setup

We present the details of the simulation setup for our proposed preferential and strata based model.

We present an evaluative comparison against the BT protocol. We have mainly focused on average

time to finish the download, fairness in terms of the volume ofcontent served and uplink bandwidth

utilization. Under the assumption that(downlinkspeed > uplinkspeed), the bottleneck in most

cases is the uplink speed. In such cases downlink speed cannot capture the correct notion of

bandwidth utilization. To justify our fairness claims we have taken into account share ratio of the

nodes in the system. We compute the variance of share ratios and compare with BT to identify

how our model works in case of free riders. Can we lower the disparity of share ratios of the nodes

so that free riders have no incentive in their behavior? We have performed experiments to evaluate

our self healing and self punishing model.

We implemented a discrete event custom simulator in Java. Asmentioned in [BHP06] network

propagation delay is relevant only in the case of small sizedpackets such as request packets. Most
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P2P traffic is the data payload and ignoring propagation delay does not have a significant impact

on the simulation results. For experimental purposes we make an implicit assumption about the

network propagation delay and do not model it in our simulation. We do not model the TCP

congestion and delays within the network. The bottlenecks are assumed to be either the uplink or

downlink bandwidth and not any other point in the network. Webelieve that bulk file transfers

lasts over an extended period of time and ignoring TCP dynamics for small intervals do not affect

the simulation results. Pouwelse [PGE05] findings are that the real world torrent downloads do

not necessarily follow any particular arrival pattern. Thearrival pattern of nodes in the swarm is

assumed to be under Poisson distribution which is closest tothe real world compared to any other

distribution.

In our simulation setup we have varied the following parameters: Number of users (N) from

128 to 8192, File size (S) from 256 MB to 2048 MB. Each file blockis considered to be 256 KB.

Initial seed is considered to be a powerful node capable of very good upload speed say 6 Mbps.

The various bandwidth strata we have considered are (10000Kbps, 5000Kbps), (8000 Kbps, 4000

Kbps), (3000 Kbps,1000Kbps), (1500 Kbps, 384 Kbps) and (784Kbps, 128 Kbps), where the first

member of the tuple is the max download speed and the second isthe max upload speed. The

distribution of nodes among various bandwidth strata is uniform. On an average, every stratum has

around20% of the total nodes in the swarm. An implicit assumption is that as nodes finish their

downloads they leave the swarm. We have injected around25% of users who stay in the swarm

to help others finish their download. The above mentioned numbers have been obtained from real

life torrent examples [IUB04].
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We evaluated our model for the three main metrics viz. (i) Average download time (ii) Uplink

utilization (iii) Fairness in terms of share ratio of each node in the swarm. Mathematically these

are denoted as follows.

1. Average download time=

∑N

i=0 Di

N
,

whereDi is the download time of nodei andN is the total number of nodes in the swarm.

2. Uplink utilization=

∑N

i=0 UTi

N
,

whereUTi is the ratio of the uplink bandwith used to the uplink bandwith avaliable for node

i.

3. Share ratio=
Ui

Di

,

whereUi andDi denote the uploaded and downloaded contents for nodei.

Further, to evaluate our self healing and punishing model weinjected around10% cheating

nodes. These nodes mimic real world cheating nodes that do not adhere to the protocol. Imple-

mentation program detects such cheating nodes for their selfish behavior. We analyze the node

behavior during the course of the simulation and quantify the number of nodes that turn from

selfish to altruistic.
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Figure 6.2:Comparison of Mean Download Time in Our Model versus BT for 256 MB and 1024
MB.
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Figure 6.3:Comparison of Uplink Utilization in Our Model versus BT for 256 MB and 1024 MB.
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Figure 6.4:Comparison of Share Ratios in Our Model versus BT for 512users.
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6.5 Results and Discussion

Our main objectives were to evaluate and compare the mean download time, fairness and percent-

age uplink utilization. Figures 6.2 and 6.3 show the comparison of Mean Download time and

Uplink utilization in our model versus the conventional BT.Figure 6.2 is plotted for file size 256

MB and for 1024 MB. The simulations were run for users rangingfrom 128 to 8192 and time

is calculated in second. It is evident from both the figures that the mean download time in our

model has been considerably minimized. Furthermore, with increasing number of nodes, the mean

download time decreases in our model. Thus, our model is scalable.

Figure 6.3 represents the percentage utilization of uplinkbandwidth for file sizes 256 MB and

1024 MB. For both the cases our model has better uplink utilization compared to the conventional

BT. For file size of 256 MB the utilization factors for BT and our model are86% and91% respec-

tively while for 1024 MB the utilization factors are83% and88% respectively. Our model has

consistently scored over BT for all number of users for the both the cases.

We have quantified fairness in terms of Share Ratio. Share Ratio is the ratio of uploaded volume

content to the downloaded volume content. Share ratio of 1 isconsidered healthy and optimal

where a node downloads a copy of the file and also gives back to the system the downloaded

copy. Typically, original seed ends up uploading number of copies and there are always some

very reliable seeds (not original) which stay in the swarm for a while to help others complete their

downloads. Such seeds have a very high share ratio typicallymore than 5. We believe that a node

should not be forced to stay in the swarm to finish the download. If nodes stay in the swarm, their
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altruism is welcome but we believe that user altruism shouldnot be forced. In the figure 6.4 we

have depicted the fairness in terms of share ratio. This simulation run was done for 512 nodes in

the system. It is evident from figure 6.4 that the variance of share ratio in our model is less as

compared to BT. The variance of our model is 0.115725 while BThas 0.156253 which proves that

our model is more consistent than BT in terms of fairness. Thefact that our model kicks out free

riders helps improve fairness among user nodes. The resultsmanifest that our model has achieved

the above mentioned goals.

6.6 Analysis

In previous sections we compare our model to conventional BTand conduct an analysis of the

same. We begin with quantifying the differences in the tracker overhead in our model and con-

ventional BT. While in the conventional BT the peer list is assigned randomly, in our model the

tracker finds best peers for every node. This task is computationally inexpensive as it has to search

for peers in the stratum corresponding to the node’s published upload speed. The search space is

considerably reduced. Tracker monitors the nodes in various strata and uses it to assign the peer

list. Tracker creates a token called “TokenFromTracker” and encrypts with its private key. For

instance if the Node Id is 64 bits, the published upload seed and miscellaneous information occupy

another 64 bits, the tracker encrypts around 16 bytes for a single node. This encryption and com-

putation can be done in parallel while computing the peer list. This does not incur any additional

overhead. In addition to this the tracker also logsbad node historyof the cheating nodes. Tracker
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warns a node if it gets complaints about him not adhering to the protocol. After monitoring that

particular node, if the node behavior persists, the trackermay remove him from the swarm. Even-

tually the number of nodes the tracker has to monitor decrease. Above mentioned changes are not

computationally expensive and do not flood tracker with lot of messages. They can be performed

very well without any delay and degradation in the tracker performance.

We perform an analysis of the node behavior during our simulation. There are three stages in

the run of the protocol shown in Figure 6.5.

Stage 1: There are not enough number of users in the swarm. Due to lessnumber of users in

each stratum, the tracker cannot assign the peer list based on our protocol. Essentially, our model

behaves the same as conventional BT in this phase for lack fornodes. This phase does not demon-

strate any improvement in terms of uplink utilization as we cannot achieve preferential pairing of

nodes. Howsoever, this phase does not dominate the total runtime of the protocol and hence does

not show a significant impact in the overall results. Figure 6.5 depicts this stage. It is evident that

in this stage disparity dominates in the share ratio of nodes.

Stage 2: There are considerable number of users present in the swarm. This state is called “Steady

State”. This is the phase where our model is most dominant. The tracker allocates peer list based

on preferential grouping in accordance with our model. As a result, good uplink utilization is

achieved. Since nodes with similar bandwidths are involvedin block exchange share ratio is close

to 1. This ensures overall fairness in the system. This phaseis marked by maximum transitions

from selfish to altruistic nodes shown in Figure 6.6.

Stage 3: There is dearth of nodes again because the nodes that have finished the download leave
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the swarm. The seeds willingly offer uploads to help other users finish their downloads. That is

why the share ratio of users involved in this phase is less than 1 and decreasing. It is evident that

the share ratio steadily falls below 1.

Second phase dominates90% of the protocol run time. Any improvement in this phase will be

reflected in the overall results. First phase is similar to the conventional BT but its share is very

less compared to the second and third phases that dominate the total run of the protocol. Results in

the previous sections have demonstrated this fact. These changes are reflected in all three measures

namely mean download time, fairness and uplink utilization.

In our simulation run, we injected around10% cheating nodes. These nodes over a period

of time turn altruistic during the simulation run. The nodesthat cheat despite the warning are

taken off the swarm by the tracker. In Figure 6.6, 900 nodes start as altruistic and 124 as selfish

nodes. Towards the end 31 nodes are blacklisted and thrown out of the pool and rest 93 turn good.

This shows that our model indeed turns user behavior from selfish to altruistic. In Figure 6.6 the

number of altruistic nodes increase while cheating nodes decrease as they are thrown out of the

swarm. This shows that our self healing and punishing policyholds good.

6.7 Summary

BitTorrent is inherently a very efficient protocol for bulk file transfer. But it does not achieve the

best performance in terms of mean download time, fairness and uplink utilization. We present a
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Figure 6.6:Number of Selfish Users who turned Altruistic.

refined model by adding strata for various bandwidth users for better pairing between the peers.

Results show that this way of assigning peers is better than random selection of peers. Publish

based model is an efficient way of classifying nodes in strata. Usage of public key cryptography

adds flexibility and is a cost efficient solution to prevent cheating. Our analysis and simulation

results have confirmed that our model is stable, scalable andperforms well on all the three impor-

tant metrics. Our self healing and self punishing policy helps turn user behavior from selfish to

altruistic. Our results are promising and inspiring. Future goals related to this work are to analyze

the graph theoretic properties such as node degree, max flow problem from node to sink of the BT

like P2P system.
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CHAPTER 7

IMPROVING SECURITY IN BITTORRENT

BitTorrent has shown to be efficient for bulk file transfer, however, it is susceptible to free riding by

strategic clients like BitTyrant. Strategic peers configure the client software such that for very less

or no contribution, they can obtain good download speeds. Such strategic nodes exploit the altruism

in the swarm and consume resources at the expense of other honest nodes and create an unfair

swarm. More unfairness is generated in the swarm with the presence of heterogeneous bandwidth

nodes. Many high capacity peers contribute much more than needed while low capacity peers

contribute very little or nothing. In this research, we propose and investigate new anti-strategic

policies that could be used in BitTorrent to minimize the free-riding by strategic clients. In our

proposed anti-strategic model, nodes obtain atokenfrom Tracker upon joining the swarm which

they use while interacting with peers. The token contains information such aspublished upload

speed, arrival time and node ID, and this token is signed by trackersuch that other nodes can

verify the information but nobody can forge it. Other anti-strategic policies include, using a smart

tracker that denies the request of strategic clients for peer list multiple times, and black listing

the non-behaving nodes that do not follow the protocol policies. These policies help to stop the

strategic behavior of peers to a large extent and improves overall system performance. Moreover,
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in this paper, we also quantify and validate the benefits of using bandwidth peer matching policy.

Peers are given a peer list based on their bandwidth range upon arrival. This fosters better uplink

utilization, reduces the time for nodes to find the optimal peers for exchanging data and has positive

effects on many important metrics like download time, fairness index etc. Our simulations results

show that with the above proposed changes, uplink utilization and mean download time improves

considerably. It leaves strategic clients with little or noincentive to behave greedily. This reduces

free riding and creates fairer swarm with very little computational overhead. Finally, we show

that our model is self healing model where user behavior changes from selfish to altruistic in the

presence of the aforementioned policies.

7.1 New Security Issues in BitTorrent

BitTorrent (BT) [Coh03] has emerged as one of the most popular peer-to-peer (P2P) models in

recent years for bulk file sharing. It shows improved performance in terms of uplink utilization

and mean download time as compared to other P2P systems [BHP06]. However, BT is prone to

strategic attacks as shown by BitTyrant [PIA07] and others [HP05, LNK06, LMS06]. It also suffers

from free riding problem [AH00] and creates unfair swarm. Many high capacity peers1 upload

much more than it is required while many get a free ride. The share ratio (ratio of uploaded volume

to downloaded volume content) has shown to vary from0 to almost6 in many studies [BHP06].

1We have used the terms nodes and peers interchangeably.
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The strategic clients exploit the excess bandwidth in the swarm provided by some altruistic

peers present in the swarm. They game their BT client in such away that with very little or no

contribution, they can obtain a good download speed. This exploit comes at the expense of other

non strategic users. They procure a peer list in excess of 200-300 by constantly querying for more

peers from the tracker. Their main strategy is to exploit theoptimistic unchoke by seeds, and if

there are many seeds, they could benefit without contributing much. While interacting with other

nodes in the swarm, these clients gradually decrease their uplink speed while they get service from

other peers. If the other peer drops the service because of less uplink speed, such strategic clients

increase the uplink speed so as to reach the minimal uplink speed needed to induce cooperation

from the other peer. Such clients use many more TCP connections than mentioned in the reference

BT client implementation to exploit the maximum download speed for a given uplink speed.

In this paper, we propose a set of new features that, when incorporated, could make BT resistant

to such strategic attacks. We determine the impact of these policies on other important factors in

the system like mean download time, uplink utilization and fairness towards an end user. There

is a trade off involved in accomplishing these goals simultaneously, i.e., minimal download time

and fairness do not go hand in hand and pursuit of one affects the other. The BT protocol can be

customized in many different ways, where achieving optimalmean download time is one end of

the spectrum and achieving fairness the other [BL06]. We investigate as to what point in the whole

spectrum of these parameters, could yield a near optimal results with no strategic attacks and high

fairness. We also investigate the effect of altruism, i.e.,self volunteers who offer their upload speed

in return for nothing, on the swarm performance.
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The main goals of BitTorrent like P2P system are the following. Each one of them is very im-

portant independently and not completely mutually exclusive with others. In our present work, we

propose new policies that will make them robust and capable of overcoming the current problems

of strategic attacks.

• Survivability: Every block of the file must exists in the swarm at all times so as to ensure

that all nodes can finish the download at some point of the time, better sooner. BT employs

local-rarest-firstpolicy for replication of pieces and has shown to be very efficient [LUM06].

• Download Time: Every node individually attempts to finish its download as soon as possible.

Selfish clients use greedy policies for the same. Our aim is tokeep the mean of download

times of all the nodes to as less as possible.

• Uplink Utilization: High uplink throughput is desirable for scalable system and partially

reflects the mean download time. Peers at every point of time attempt to find a partner which

has high uploading capacity. Seeders upload the content to the peers with high download

speed to effectively improve the uplink throughput, which improves download time. In later

and new version of BT, the seeds uniformly distribute the content to the nodes rather than

few high capacity nodes.

• Fairness: The swarm should be fair i.e., no node should be forced to upload much more than

what it has downloaded. No one should be able to get a free ride. Voluntary altruism is

welcome for the swarm.
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• Robust: The swarm should be robust to strategic clients and must not let these clients to

download selfishly at the expense of other non strategic nodes.

In this chapter, we propose new features for BT to overcome strategic attacks and to improve

the overall system performance. In particular our main contributions and findings are:

1. We use anti-strategic policies to guard BT against selfishclients [PIA07, LMS06]. To this

end, peers exchange tokens given to them by tracker for keeping tab of uplink speed of the

other peer. Intelligent tracker prohibits strategic clients from procuring peer list multiple

times. Nodes that upload garbage content are quickly identified and blacklisted by neighbor-

ing nodes. These policies are resistant to strategic attacks and does not let the clients degrade

performance of other peers.

2. We quantify and experimentally validate the concept of bandwidth peer clustering [PG06,

BHP06, LUM06] and show that it shows significant improvementin uplink utilization and

mean download time.

3. We show that altruism is indeed very important for improving the overall system perfor-

mance. Altruistic swarms finish the download much faster anduse the resources near-

optimally when compared to swarms without altruism.

Section 6.1 gives an overview of BT like P2P model. We presentthe details of our model

in section 7.2. Section 7.3 describes the metrics we use for evaluating our model and the simu-

lation setup. We briefly describe the metrics which we use in our simulations and comparisons.
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And finally results are in section 7.4. In section 7.5, we present the related work done for the

enhancement of the BT protocol.

7.1.1 Strategic Attacks on BitTorrent

P2P systems are inherently based on user altruism and participation [BHP06] but this concept is

exploited by free riders who do not want to contribute their uplink speed and are only interested in

downloading. Free riders in BT resort to acts like tuning their client for minimum upload or even

strategizing the client for maximal download for minimum contribution. Liogkas et al. [LNK06]

proposed 3 main techniques to exploit BT: 1) Download from seeds. 2) Download from peers with

high uplink capacity and 3) Advertising false pieces. Locher et al. [LMS06] proposed to procure

huge peer list so that a client can afford to only interact with the seeds. BitTyrant [PIA07] is a client

implemented using Azureus [Azu], and has been very successful in exploiting the vulnerabilities

of BT. BitTyrant exploits the altruism present in the swarm by procuring a large peers list in the

swarm. It then attempts to establish connections with seedsand procures free content. While

interacting with other nodes, BitTyrant adopts a policy of uploading minimum content to get the

maximum download. One of the very important exploits BitTyrant used is to avoid equal split

policy while uploading, rather it uploads in different fractions to its peers to get the maximal

download. While interacting with a peer, it gradually decreases its uplink speed as long as it gets

reciprocation. If the other peer chokes BitTyrant then it increases the uplink speed and determine

the level of participation (uplink speed) needed to keep theconnection alive and get the downloads.
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BitTyrant does this over many connections and attempts to maximize the download for a given

uplink speed limit. BitTyrant by virtue of its greedy policydoes bring performance improvement

for a client, but it can hurt the swarm performance if all the peers use the BitTyrant client [PIA07].

This would mean BitTyrant improves performance for an individual user and not for the whole

swarm. In this paper, we investigate if such strategic behavior could be alleviated in the swarm

while achieving near-optimal behavior in the overall swarmperformance. To this end we propose

new set of anti-strategic policies mentioned in the next section.

7.2 Our Proposed Policies

In this section, we propose a set of features for BT that couldhelp to overcome the strategic attacks

and improve the swarm performance.

7.2.1 Anti-Strategic Behavior

We propose to use anti-strategic behavior in every BT clientin the wake of recent attacks which

leads to poor swarm performance [PIA07]. In particular, we propose to use the following three

strategies to overcome strategic attacks.
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7.2.1.1 Token From Tracker

We introduce the notion ofPublished Upload Speed(PUS) for a node. This is to dissuade the node

from cheating and to ensure that the node offers almost same upload speed as published throughout

the time it is in the swarm. Every node upon arrival submits tothe tracker the PUS it is going to of-

fer to the peers. The tracker creates a token, calledTokenFromTracker([Node ID, PUS, T ime]KR),

which consists the Node ID, PUS, and its arrival time, and encrypts it with its private key (KR).

While interacting with peers in the swarm, nodes exchange their TokenFromTracker. By de-

crypting the other peer’s token ({[Node ID, PUS, T ime]KR}KU ) using the public key of tracker

(KU ), they get an estimate of the uplink speed the other node is offering.

Assuming a node splits its uplink bandwidth equally among its local peers (say 5), a node can

gauge which peers give better uplink speed and it can unchokethe connections to those peers.

While a session is on, nodes can resort to cheating by initially offering uplink speed equal to

PUS and later on gradually decreasing the uplink speed (similar to BitTyrant). A node can be

immediately caught if it keeps upload bandwidth low for a certain period of time interval. The

model associates some toleranceT with the uplink speed i.e. if a node publishes an upload speed

of U , then its uplink speed in the range(U − T ) to U is acceptable. If it falls below(U − T )

the other node would wait for a small time intervalt and eventually disconnect. The toleranceT

andt takes care of the network anomalies that might arise and a nonstrategic user should not be

punished for it. Peer notifies the tracker about the cheatingnode. Tracker warns such nodes after

h complaints (sayh = 3) and upon receivingk such complaints (sayk = 5), tracker bars the node
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from getting any more peer list and blacklists such node, andintimates the nodes in its peer list

about the existence of such cheating node. This is a consequence of the punishing policy of our

model. Nevertheless, the warned users who cooperate with the protocol, i.e. after warning stop

the strategic behavior are allowed to stay in the swarm. Thisis in accordance with our self healing

policy.

An end user (node) can configure the BT client based on its preferences. A node can have a

good uplink speed, but it would not want to dedicate all its uplink speed to BT application. The

node can resort to cheating by initially offering high PUS and later configuring its BT client to

downgrade the uplink speed. Open source programs for BT givean end user a chance to modify

the protocol in the code. New programs like Azureus [Azu] canbe customized as per user needs

and allow user to choose upload speed, number of connectionsetc. This facilitates cheating by an

end user. If a node wants to downgrade its PUS for some reasons, it is expected that the tracker is

informed and the node obtains a newTokenFromTracker with the new downgraded PUS. This

helps the tracker differentiate the cheating nodes from thenon cheating ones. Nodes intimate the

tracker while leaving the swarm.

7.2.1.2 Smart Tracker

Most strategic attacks stem from the fact that such clients request for more peers from the tracker.

After every small time interval, they request for additional peers till they have peers in excess of

200-300. They then launch strategic attacks by interactingwith more peers and also hope to get
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optimistic unchoke from high capacity peers. We propose to use asmart tracker, wherein for every

request for additional peer list by a client, tracker checksif it has 40 live peers in the swarm. If no,

it provides it additional peer list so that the client has at least 40 peers in the list, else it rejects its

request of additional peer list. This can substantially lower down such strategic moves by clients

who are trying to maximize the profit. In the results section,we quantify the effectiveness of smart

tracker in alleviating the behavior of such clients.

7.2.1.3 Blacklisting Nodes

To counter the false publishing attack of nodes wherein the client falsely sends ‘have’ messages

of rare blocks in the swarm and in turn uploads garbage content in order to obtain some useful

content, we propose to use a policy wherein a node blacklistssuch a node upon finding that it

uploaded garbage content. Future interactions with such nodes are avoided and tracker is made

aware of such garbage content. Tracker warns such nodes after h complaints (sayh = 3) and

upon receivingk such complaints (sayk = 5), bars the node from getting any more peer list and

blacklists such node. The selfish nodes in presence of such policy cannot publish false message

for long as they will be blacklisted by most nodes in its neighborhood and it will severely hurt its

chances of obtaining new and useful content. In the results section, we show that by adopting this

policy, significant swarm bandwidth, that goes in downloading such garbage content, can be saved.

It also serves as a warning to such nodes that publishes falsecontent and upload bad content not to
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resort to such techniques. Results show that user behavior indeed changes from selfish to normal

upon receiving warning from tracker.

7.3 Evaluation of Our Proposed Model

We present the details of the simulation setup for our proposed anti-strategic and strata based

model. We present an evaluative comparison against the BT protocol. The main metrics for com-

parison are average time to finish the download, uplink bandwidth utilization, and fairness index

in terms of the share ratio. We now detail the metrics used forour comparison.

1. Average download time: It is the mean of download times of all the nodes in the system.

Mathematically,

Average Download T ime =

N
∑

i=0

Di

N

whereDi is the download time of nodei andN is the total number of nodes in the swarm.

The download time of high capacity nodes has shown to be less compared to its weaker

counterparts [BHP06]. By evaluating the mean download timefor the whole swarm, we can

get a fair bit of idea about the performance of the BT protocolin the swarm.

2. Uplink utilization: Uplink bandwidth is the most sparse resource in the system. In most

realistic scenariosUplink Bandwidth ≤ Downlink Bandwidth holds good, so we limit
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our discussion to only uplink bandwidth. A good uplink throughput i.e. (ratio of uplink

used to uplink available) would mean a lot of resource (uplink bandwidth) are pooled in the

swarm that can serve peers, which in turn helps to lower the download time. Moreover, some

ISPs charge their end users for the bandwidth used per unit time. Such users would want to

maximize the uplink throughput for saving the ISP fee. Smallet al. [SLL06] proved that

maximization of uplink speed leads to scalable systems. Mathematically,

Uplinl Utilization =

N
∑

i=0

UTi

N

whereUTi is the ratio of the uplink bandwidth used to the uplink bandwidth available for

node i.

3. Fairness: We define fairness in terms of share ratio of content served by nodes. Share ratio of

end users over the period of complete download depicts the contribution of the nodes quite

fairly. In an ideal system, nodes have share ratios of 1.0, where an end user downloads the

content and passes on equally to other end users. But given the dynamics of the internet,

churn, and peering schemes, it is very difficult to achieve the same in BT. So, more the

number of nodes close to share ratio of 1.0, the fairer is the system, i.e., the lesser the variance

of share ratios from the mean, fairer is the system. We use Jain’s fairness index [JCH84] to
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evaluate the swarm fairness.

f(x1, x2, x3, . . . , xn) =

(
n
∑

i=0

xi)
2

n

n
∑

i=0

xi
2

wherex1, x2, ..., xn are the share ratios of the nodes. The value of fairness indexvaries

from 0 (worst) to 1 (best).

4. Altruism: We define altruism as the excess uplink bandwidth provided to the swarm by a

node, i.e., a node when willingly uploads more content than what it downloaded is altruism

for the swarm. Most altruistic behavior is displayed by the original seed. Altruism can be

either voluntary or sometimes circumstantial/forced. Voluntary altruism is welcome as it

helps the system with more resources and the load is divided.In forced altruism, a node

has to upload more content to even download a single copy of the file (torrent data). Forced

altruism is not fair as a node is compelled to upload more thanwhat it had downloaded. We

define Altruism as the excess content uploaded to the swarm after reaching a share ratio of

1.0. For e.g., if a node has uploaded 6 copies and downloaded 1, its Altruism factor will be

5.0 since it uploaded 5 excess copies of the torrent data in the swarm. A node with share

ratio of1.0 will have altruism factor as0. Mathematically,
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Altruism Factor =
Uplaods − Downloads

Downloads

= Share Ratio − 1

7.3.1 Simulation Setup

Most real world physical links have(downlinkspeed > uplinkspeed), so the bottleneck in most

cases is the uplink speed. In such cases downlink speed cannot capture the correct notion of

bandwidth utilization. To justify our fairness claims, we have taken into account share ratio of

the nodes in the system. We compute the fairness index of share ratios and compare with BT to

identify as to how our model works in case of free riders. Can we lower the disparity of share

ratios of the nodes so that free riders have no incentive in their behavior? We have performed

experiments to evaluate our self healing and self punishingmodel. We used a simulation based

approach, primarily because it is extremely difficult to gauge the behavior of large swarms without

the participation of thousands of node. Moreover, simulated settings give flexibility to play with

different parameters without affecting the overall behavior.

We used the BRITE universal topology generator [MLM01] in the Top-Down Hierarchical

mode to model the physical network topology of Autonomous Systems (AS) and the routers. All

AS are assumed to be in the Transit-Stub manner. Overlay is assumed to be undirected. Unlike

other simulators [BHP06, MSR05], we assume that the bottleneck in the network can appear in the
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access links of source and destination (i.e. first-mile and last-mile hops) as well as the non access

links that are in the interior of the network, in particular within or between carrier ISP networks.

The nodes in the swarm are assumed to be of heterogeneous bandwidth classes namely:(512Kb,

128Kb), (768Kb, 256Kb), (1024Kb, 512Kb), (1536Kb, 768Kb),(2048Kb, 1024Kb) where first and

second member of the tuple are the maximum downlink and uplink speed of a node respectively.

The distribution of these bandwidth classes is uniform in the swarm. To simulate the congestion

in the Internet, we induce5% congestion in the non access links within the interior of thenetwork.

In such congestion scenarios, the available bandwidth to nodes is the minimum of the bottleneck

at source or destination and the bottleneck in the non accesslinks. The delay on inter-transit

domains and intra-transit domains are assumed to be 100 ms and 50 ms respectively, while delay

on stub-transit is assumed to be 30 ms and intra-stub transitlinks are randomly chosen between

5ms and 25ms. We simulate the TCP level dynamics like timeouts, slow start, fast recovery and

fast retransmission by introducing a delay of 10 RTTs [CK01]. We model a flash crowd scenario

for the arrival of users in the swarm, i.e. all users are present in the swarm when the file sharing

begins, as this is the most relevant and challenging scenario.

In our simulation setup we have varied the following parameters: Number of users (N) from

128 to 8192, File size (S) from 256 MB to 8192 MB. Each file blockis considered to be 256

KB. Initial seed is considered to be a powerful node capable of very good upload speed say (6

Mbps). A default implicit assumption is that as nodes finish their downloads they leave the swarm.

For some other experiments, we assume that nodes stay in the swarm. We mention the settings

at the appropriate places in the text. Further, to evaluate our self healing and punishing model,
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Figure 7.1:Effect of Anti-Strategic Behavior in Our Model

we injected around10% cheating nodes. These nodes mimic real world cheating nodesthat do

not adhere to the protocol. Implementation program detectssuch cheating nodes for their selfish

behavior. We analyze the node behavior during the course of the simulation and quantify the

number of nodes that turn from selfish to altruistic.

7.4 Results and Discussion

We use the above simulator to test the efficacy of our proposedpolicies. We compare the behavior

of conventional BT protocol with our proposed changes. Our proposed changes are to overcome

the current day vulnerability in BT which the strategic clients exploit. We test each of our proposed

techniques one by one, and then later combine all the proposed changes to see the overall behavior.
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7.4.1 Effect of Anti-Strategic Behavior

Current day exploits by strategic clients are: 1) Requesting peer list from tracker after every few

minutes. 2) While interacting with other nodes, decrease the contribution gradually to arrive at

an equilibrium that will give client maximum download speedfor a given upload contribution.

3) Sending false ‘have’ messages and uploading garbage content. In the first set of experiments,

we use the anti-strategic policy to see how well a swarm can cope up with the strategic clients.

The main components of our anti-strategic policy are mainlyusingTokenFromTrackerthat guards

honest nodes from such selfish clients that degrade the upload quality, stopping selfish clients from

obtaining peer list every few minutes by using a smart tracker and finally blacklisting the nodes

that uploads garbage content.

In this set of experiments, we investigate the difference inaverage downloading time between

the conventional BT with our proposed policies. Figure 7.1(a) depicts the results where the torrent

file size varies from 256 MB to 8192 MB for a swarm of 1024 nodes.10% of the nodes behave

strategically all the time during the simulation in both thecases. For smaller file sizes the difference

is small but with increasing file sizes the difference in download time is very prominent. For 8192

MB file, the difference in average downloading time is as highas 1450 seconds (approximately 40

minutes). Since every node keeps a tab on each of its connection, and as selfish clients degrade

the uplink bandwidth, the other node disconnects leaving the selfish client with no option but to

increase its contribution. We found that by usingTokenFromTracker, the BitTorrentTit-For-Tat

mechanism is used effectively and the equilibrium of uplinks bandwidths between the nodes is
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reached earlier as compared to standard BT implementation.Legout et al. [LUM06] and Piatek et

al. [PIA07] have showed that BT takes unusually long time to reach the steady state or equilibrium,

where peers have found their optimal partners with respect to the uplink bandwidths. This means

that non strategic clients do not suffer on account of strategic clients while usingToken From

Tracker as all legit nodes can interact with nodes which are in similar bandwidth range. In the

download of a large file like 8192 MB with a large swarm, the difference in download time is

evident as the policy of our model are enforced for a longer time. Similarly, the smart tracker denies

the recurring requests of strategic clients for more peer list. In this case such strategic client have

to make connections within the given peer list and they cannot exploit the best connections through

seeds and high capacity leeches. Finally, the strategic nodes that send false ‘have’ messages for

rare blocks for obtaining some useful content are quickly identified by fellow peers by checking

the hash of the blocks. Such nodes are warned and denied any help from tracker in obtaining new

peer list in future. Over a longer period of time, such nodes are found to adhere to the protocol. All

the above factors show a considerable performance improvement in the average download time.

Similarly, the difference in uplink utilization can be understood from figure 7.1(b). Average

download time of the swarm is directly proportional to the uplink utilization. By strictly imposing

the anti-strategic policy on the strategic clients, we can leverage the uplink bandwidth of such

selfish nodes. We see a consistent superior performance of our model over BT by using the anti-

strategic policy. Our model on an average has3−4% more utilization than the BT. This difference

amounts to large chunk of bandwidth (approximately 21 MB/s)for a 1024 node swarm and an

average uplink bandwidth of537.6 KB/s (average of all the uplink bandwidths of all the strata in
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the swarm). The more the uplink bandwidth is pooled in the swarm, the better will be the uplink

throughput and hence better will be the average download time.

Figure 7.1(c) shows the fairness index of both the models. The FI has been calculated on the

share ratios of the nodes in the swarm. If all the nodes have share ratio1.0, then the system would

be ideal and FI would be1.0. But as the share ratio deviates from1.0 the FI goes down. It gives

a decent measure of the performance of nodes in terms of contributing to the swarm. Strategic

clients consume lot of bandwidth of the swarm with no or little contribution, compelling honest

nodes to contribute more. This disparity of share ratio is quite evident in the figure 7.1(c). By

using anti-strategic policy, we can eliminate the greedy behavior of selfish clients. The share ratios

of the nodes are more even in case of our model. It is extremelydifficult to achieve a perfect FI of

1.0, because of node heterogeneity, network topology, churn and altruism. We discuss the effect of

altruism in section 7.4.4 as it has a major impact on the results.

7.4.2 Effect of Blacklisting

We quantify the amount of uplink bandwidth that can be saved by simply using blacklisting policy

as mentioned in section 7.2.1.3. Figure 7.2 depicts an estimate of bandwidth that is saved in a

1024 node swarm with10% strategic clients. We assume that such clients on an averageupload

5% garbage data. For large torrent file size, the difference in bandwidth is huge, and it adversely

affects uplink utilization and hence mean download time of the swarm. While in the case of anti-
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Figure 7.3: An estimate of nodes that turned from selfish to altruistic upon warned

strategic policy, part of the bandwidth is lost until all thenodes that upload garbage are caught and

blacklisted. Tracker informs peers of such cheating node not to interact with them. This indeed

saves a huge chunk of the bandwidth.

In the next set of experiments, we started out an experiment with 1024 nodes out of which 900

are honest and 124 are strategic. During the simulation run,these nodes behave strategically. Upon

being caught and warned by tracker, such nodes either adhereto the protocol or continue cheating.
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If they adhere to the basics of the protocol, they are included as honest nodes but upon constant

cheating they can be blacklisted and thrown out by the tracker. Figure 7.3 depicts the results.

Towards the end of the simulation run, 91 our of 124 strategicnodes turned honest and 31 were

blacklisted. By giving strategic clients a chance to improve their behavior, we can leverage their

contribution for the rest of the download. Some clients thatconsistently cheat are thrown because

of their leech behavior, they do not contribute any resources to the swarm, which is against the

ethics of the P2P file sharing etiquettes.

7.4.3 Overall Effect of Our Model

We showed the effect of each of our techniques individually in sections 7.4.1 and 7.4.2. Now,

we apply of these strategies together and compare the resultwith the reference BT protocol. We

assume10% strategic nodes in 1024 node swarm for various torrent file sizes. We use (70, 30)

peering policy for sending peer list to the new incoming node. Figure 7.4 depicts the results after

incorporating all our techniques.

The effect of anti-strategic policy and bandwidth clustering adds up to show a considerable

difference in the download time difference between BT and our model. As mentioned earlier,

uplink throughput and download time both improve as a resultof both anti-strategic behavior and

bandwidth clustering. A consistent difference of around4 to5% in uplink utilization and difference

of around45 minutes in the mean download time is evident from figure 7.4(a) and 7.4(b). Both
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Figure 7.4:Overall effect of our Model

the policies, i.e. anti-strategic behavior and bandwidth clustering do not interfere with each other

when used together. Bandwidth clustering is only used for issuing a peer list, while anti-strategic

behavior mainlyTokenFromTrackeris built on top of the bandwidth stratum a node belongs to.

Policies like Smart tracker and blacklisting are independent of bandwidth clustering and pose no

interference to other policies of our model. Similarly, theFI is significantly superior in our model

as compared to BT as shown in 7.4(c), signifying that in our model more nodes have share ratios

around1.0 and is comparatively fairer. Though, it is very difficult to achieve a perfect FI of1.0,

we present in section 7.4.4 that in some cases of non altruistic behavior, FI very close to1.0 can be

obtained but at the expense of mean download time and uplink throughput.

7.4.4 Effect of Altruism on the System

As mentioned earlier, one of our main finding is that altruismplays an important factor in im-

proving the download time. There are many seeds who voluntarily offer their upload bandwidth
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Figure 7.5:Altruism effect on BitTorrent

in return for nothing, which in fact reduces many peer’s download time. To quantify the effect of

altruism, we use the altruism factor as described in section7.4.4. We conducted three experiments:

1) Users are altruistic, i.e. they remain and offer their uplink bandwidth even after they have fin-

ished downloading. TheAltruism Factor of these nodes is strictly greater than0. 2) Users are

not altruistic but they offer uplink till they reach a share ratio of1.0, i.e. theAltruism Factor of

these nodes is0. 3) Users are greedy and leave the swarm as soon as they finish the downloading.

TheAltruismfactor of such nodes is strictly less than0. We investigate the trends obtained in

the main metrics when we vary our system to these variants.

From figure 7.5(a), we can see the effect of altruism in minimizing the mean download time.

High capacity peers when engaged in voluntary uploading thecontent enhances the swarm mean

download time. For a large file of 8192 MB, with 1024 nodes in the swarm, the difference in

mean download time between the two schemes wherein peers stay in the swarm and where peers

depart immediately after download is close to one hour. Thisresult is quite intuitive as seeds offer

many more copies to the swarm taking the load off the leeches,and they can utilize their uplink
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in obtaining other useful content from other peers, therebyminimizing their download time. The

content uploaded by the seed is very important in this context. On the other hand if nodes leave

the swarm as soon as they reach a share ratio of1.0 or immediately after their download, it will

be up to the remaining nodes to pool in the uplink resources for all the nodes, thereby increasing

the download time. These results reaffirm the notion that altruism is a very important factor in

BitTorrent and one of the most important reasons for its enhanced performance. Similar results can

be understood for uplink utilization. When seeds stay longer in the swarm and offer their uplink to

fully utilize their outgoing bandwidth, the leeches use their uplink bandwidth with other leeches,

thereby optimizing the uplink throughput. Same is not true when peers depart after downloading

as the remaining peers have to search more for useful contentand sometimes remain idle for lack

of useful content. This reduces the uplink throughput.

Altruism, although, improves uplink throughput and mean download time, it is not fair to the

contributing nodes. The FI is poor in the case when peers stayin the swarm after finishing their

own download as the share ratio of seeds exceeds far above1.0 and many leeches do not even

have to upload a copy back to the swarm, i.e. their share ratiois much less than1.0, creating

this unfairness. In the case when peer stay till they upload acopy back to the swarm, most nodes

depart the swarm with share ratio1.0, thereby making FI close to1.0. In the case when peers

depart the swarm soon after download, the disparity is even higher. Only the few altruistic seeds

offer uploads to most leeches in the swarm and this increasesthe disparity and reduces the FI. As

nodes leave the swarm, the nodes in the swarm have to search more for the useful content and

103



sometimes remain idle for the lack of interesting data. Thisreduces the uplink throughput and

increases mean download time, though has a very high FI.

It is extremely difficult to reach a standard set of argumentswhere the behavior of the system

is optimal in all the main metrics. Therefore, we try to reacha common ground where mean

download time and uplink utilization is near optimal and FI is approximately in the range0.9-0.95

or better. We show that this indeed can be achieved using the proposed policies in the paper.

7.5 Related Work

In this section, we enumerate previous work done in literature related to security threats in BitTor-

rent. In section 6.2, a general history of work done in BitTorrent is presented.

Bharambe et al. [BHP06] created a discrete event simulator to test BT on various different

parameters. They showed the presence of significant altruism and unfairness in the swarm. They

proposed to use TFT at the block level rather than rate based TFT to overcome unfairness. Fan et

al. [BL06] in their analytical study showed that BT could be designed in several different ways,

where achieving fairness among end users could be one end of the spectrum and minimizing the

mean download time the other end. Legout et al. [LUM06] showed that BT’s piece replication

using rarest first algorithm is efficient and to replace such apolicy is not justified in the context of

P2P file replication in the internet. They also showed that the newly incorporated choke algorithms
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in BT induces reciprocation and is robust to free riders. They also showed that choke algorithms is

fair and better than bit level TFT.

Shneidman et al. [SPM04] showed that BT indeed can be exploited using Sybil attacks [Dou02]

and by uploading garbage content. Other vulnerabilities and strategic attacks on BT have been

mentioned in section 7.1.1.

We present the first and foremost work to defend BT against strategic attacks, not previously

demonstrated. We perform the study of BT using the proposed anti-strategic policies and come

to the conclusion that we can indeed have a fairer and more efficient swarms in terms of optimal

mean download time and uplink utilization. The other part ofour work validates the improved

performance of BT while using bandwidth peer matching policy. We validated this concept using

different set of experiments under different settings. Finally, we second the claim of Piatek et

al. [PIA07] that altruism is very important for improving overall swarm performance.

7.6 Summary

We presented some defense mechanisms and policies against the strategic BitTorrent clients. In

particular, we showed that by using our proposed anti-strategic policies and bandwidth clustering,

not only can the system be prevented from such cheating and strategic attacks but also overall sys-

tem performance in terms of mean download time, uplink utilization and fairness can be improved.

Our simulation results corroborate with the proposed theory. Clustering peers of similar bandwidth
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has shown to be very effective in utilizing the uplink capacity, and it reduces the mean download

time. Anti-Strategic policies do not let cheating clients to stay longer in the swarm. They either

are kicked off the swarm or they turn altruistic (from selfish), and the uplink resources of such

nodes is utilized and is extremely important for the swarm. We believe our results can provide re-

search insights for the development of new defence mechanism in present day BitTorrent clients to

guard against the strategic attacks. Moreover, bandwidth clustering of similar nodes can be easily

incorporated into the clients straight away as it can be donewith very minor protocol changes.
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CHAPTER 8

CONCLUSION AND FUTURE WORK

We introduced a novel framework,BEAM, that uses alliance theory for peering to solve some of

the existing problems in chunk based P2P media streaming. BEAM is also shown to be robust and

scalable framework for P2P media streaming and it overcomesthe current prevalent problems. In

particular, our main contributions and findings are:

1. Peer lag (while media playback) can be significantly reduced from the order of minutes to

approximately 10-20 seconds in the swarm. Initial buffering time has been reduced from

around 30 seconds to 10-12 seconds for smaller swarms and less than 20 seconds for larger

swarms (4096 nodes) in BEAM. Further reduction in such buffering time to a few seconds

is extremely difficult because: a) Buffering time requires the time to find the path, stream

content and possible forwarders of the stream content. b) Lack of any dedicated proxy during

the initial (buffering) period. c) Heterogeneity of node bandwidths in the swarm.

2. BEAM has displayed robust and scalable behavior while delivering near optimal levels of

QoS under varying workloads and conditions. Uplink utilization has improved considerably

over CS and throughput is more then90% for larger swarms. Alliance based peering theory
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encourages every node to contribute in order to to receive the content, and indeed generates

a fairer swarm.

3. Our preferential and anti-strategic strategy improves current day BitTorrent performance.

Not only does it improve dowload time, uplink utilization, fairness but also secure network

from strategic clients. We also recommed smart trackers to be implemented in BitTorrent for

securing BitTorrent swarms.

8.1 Future Work

Our results are inspiring and provides research insights towards development of newer and efficient

peering strategies in P2P media streaming systems. In continuation of our work, we enumerate the

possible future work in the dissertation.

1. Applying current alliance based peering model to static P2P file sharing and BitTorrent mod-

els and evaluate its performance. We have been successfullyable to show our alliance based

scheme in streaming domain. Static file sharing is trivial compared to streaming, but we

foresee that we might need to tweak the alliance based model for it to suit the file sharing

mode.

2. Analysing alliance based peering for security related issues in P2P media streaming. With

increasing security threats, it is imperative to investigate more in security domain. Some

common threats are free riding, whitewashing, nodes sending garbled and malicious payload,
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and denial and distributed denial of service (DoS) attacks.We need to analyse and investigate

how to port the current alliance based model to counter the above mentioned security threats.

3. Evaluation of our proposed P2P models with dedicated CDN servers which are P2P friendly.

It has been shown that P2P models always incur an initial latency, no matter how well the

network is setup. We have shown that forming alliance does incur an initial overhead. For

data streams to reach all the nodes, find all the paths does incur some overhead in terms of

initial latency. If we can have some dedicated proxy like a CDN, the QoS can be much better

during initial time period. Later, P2P networks can supportthe user with data streams. It

will be very interesting to see the performance of a P2P network in which CDNs can support

the newly arrived nodes with service initially on.

4. A possible future work would be to study such P2P systems from payment based perspective,

wherein an under provisioned user pays certain revenue to CDN to make up for weak uplink

bandwidth. Such proposal for revenue models are floating around. Most current ISP model

work on flat fee for home users in most countries as of 2008. This is not true for larger

organization, where they pay revenue based on usage of service. By having a more consistent

model for revenue payment, we can enforce fairness in such P2P models. Most current P2P

models try to enforce fairness through ana la cartemodel, where an end user gets service in

proportion to the uplink offered. But most of these models cannot capture the true dynamics

because it is very difficult to provide differentiated service in such random swarm based

environments. In such scenarios, revenue based system can help in the deployment of such

P2P services in conjunction with CDNs.
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5. Using P2P dataset and crawlers to study congestion withinthe internet. P2P crawlers can

serve as a tool for solving other problems in tcp/ip networking. Large datasets are generated

while crawling for P2P networks. Such logs can be used to infer many other properties

pertaining to congestion within the internet.
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