2,192 research outputs found

    Improving operating room schedule in a portuguese hospital : a machine learning approach to predict operating room time

    Get PDF
    Tese de Mestrado, Engenharia Biomédica e Biofísica, 2022, Universidade de Lisboa, Faculdade de CiênciasFor most hospitals, the operating room (OR) is a significant source of expenses and income. A critical point of effective OR scheduling is the prediction of OR time for a patient procedure. An inefficient schedule results in two scenarios: underestimated or overestimated OR times. A solution reported in the literature is the implementation of machine learning (ML) models that include additional variables to improve the accuracy of these predictions. This project goal is to improve the OR schedule efficiency in a hospital center by achieving precise OR time predictions. This goal was accomplished by developing two ML models (Multiple Linear Regression (MLR) and Random Forest (RF)), through two different approaches. Firstly, for all the specialties on the dataset (All Specialties Model). Second, a specialty-specific model for each (Urology, General Surgery, and Orthopedics Models). This leads to eight models where the predictive features were identified based on the literature along with consultations with the professionals. The All Specialties Model presented a surgery median time of 115.0 minutes, with an R-squared surrounding 0.7. Urology had a median time of 70.0 minutes, with an R-squared of 0.822 and 0.831 and a MAE of 21.7 and 20.9 minutes for MLR and RF models, respectively. General Surgery had a median time of 110.0 minutes with an R-squared of 0.826 and 0.825 and a MAE of 26.2 and 26.1 minutes for MLR and RF, respectively. For Orthopedics, the RF was the only one able to model all the data with an R-squared of 0.683 and a MAE of 27.1 minutes. When compared with the current methods, considering a 10% threshold, the models achieved reductions in underestimation surgeries (41%), and an increase of within predictions (19%). However, with a 22% increase in overestimation predictions. We conclude that using ML approaches improve the accuracy of OR time predictions.O bloco operatório representa uma das unidades que gera maior despesas e receitas a nível hospitalar. Trata-se de um ambiente altamente complexo, onde é necessário alocar recursos materiais e humanos que são extremamente dispendiosos. Desta forma, o bloco operatório necessita de ser gerido de forma eficiente para garantir que o investimento inicialmente feito tem o seu retorno e é utilizado no seu máximo potencial. Paralelamente, os hospitais públicos, integrados no Serviço Nacional de Saúde, apresentam longas listas de espera às quais necessitam de dar resposta. Esta crescente demanda por serviços de saúde, que exige tratamento a nível de bloco operatório, é agravada pelo envelhecimento populacional, e leva a que todos os profissionais envolvidos neste ambiente coloquem os seus esforços no sentido de garantir que toda a população tem as suas necessidades asseguradas. Um ponto fulcral no problema descrito passa por, numa primeira instância, garantir um agendamento cirúrgico eficiente. Quando um paciente é eleito para uma cirurgia programável, cirurgia eletiva, é colocado em lista de espera e feito o seu agendamento, para mais tarde realizar o respetivo procedimento cirúrgico. No momento do agendamento é necessária a informação do tempo de sala de operação que o paciente irá requerer, para reservar o bloco de tempo de sala adequado ao seu procedimento cirúrgico. Um agendamento cirúrgico ineficiente pode gerar dois diferentes cenários que não são desejáveis. Por um lado, se existir uma subestimação do tempo de sala, situação em que o tempo previsto é inferior ao real, leva a que a cirurgia seja mais longa que o estimado e, consequentemente, atrase as operações seguintes. No pior dos cenários há operações que são canceladas. Por outro lado, se há uma sobrestimação, a cirurgia levou menos tempo que o estimado, não há um aproveitamento total dos recursos da sala de operação. Na maioria dos hospitais, esta previsão de tempo de sala é feita com base na experiência do cirurgião e a implementação de ferramentas de inteligência artificial para executar esta tarefa ainda é escassa. Este tipo de previsão leva a um elevado número de cirurgias subestimadas, pois o cirurgião, na sua maioria, não tem em consideração fatores do paciente e anestésicos que impactam o tempo de sala considerando, na maioria das vezes, somente o tempo necessário à cirurgia em si. Além disso, o cirurgião tende a alocar o maior número de cirurgias num curto bloco de tempo, o que leva a uma previsão irrealista. Uma solução apontada na literatura é a implementação de algoritmos de aprendizagem automática para o desenvolvimento de modelos que implementem variáveis associadas ao paciente, operacionais, anestésicas e relacionadas com o staff. Este tipo de abordagens mostrou melhorar a precisão na previsão do tempo de sala. O projeto apresentado foi baseado numa metodologia que, primeiramente, permitiu a compreensão dos métodos praticados no centro hospitalar abordado no projeto, o Centro Hospitalar Lisboa Central (CHULC), a validação da relevância do projeto e como objetivo principal, o aumento da eficiência do bloco operatório através da melhoria na precisão da predição do tempo de sala. Toda a metodologia foi desenvolvida tendo como fundamento a base de dados fornecida por esta instituição que contém todas as cirurgias relativas às especialidades de Urologia, Cirurgia Geral e Ortopedia realizadas nos últimos cinco anos (janeiro de 2017 a dezembro de 2021). Para alcançar o objetivo central de melhorar a predição do tempo de sala, foram propostos dois modelos de aprendizagem automática, cujo output é o tempo de sala, um modelo de regressão linear múltipla e de uma floresta aleatória (em inglês designado por Random Forest- RF) segundo duas abordagens. A primeira abordagem consistiu no desenvolvimento de um modelo único para todas as três especialidades apresentadas na base de dados e a segunda num modelo específico para cada especialidade individual. O que conduziu a um total de oito modelos, uma vez que em cada abordagem ambos os algoritmos de regressão linear múltipla e de RF foram implementados. As variáveis com potencial valor preditivo da base de dados do CHULC foram identificadas com base na revisão de literatura assim como em reuniões marcadas com os diretores de serviço das especialidades abordadas, administradores hospitalares e anestesiologistas. Uma vez abordada a metodologia atualmente implementada no CHULC para a previsão do tempo de sala, que é baseada na experiência do próprio cirurgião, foi avaliado o impacto do tempo controlado pelo cirurgião e relativo à anestesia no tempo de sala. O tempo controlado pelo cirurgião apresentou a maior correlação com o tempo de sala, com um coeficiente de Pearson de 0,966 seguido do tempo anestésico, com um coeficiente de 0,686. A elevada correlação do tempo controlado pelo cirurgião com o tempo de sala indica que, por um lado, a forma como a predição do tempo de sala é praticada atualmente não é totalmente errada, mas, por outro lado, não é tão realistas já que não considera todos os fatores que influenciam este tempo. Ao incluir as variáveis relativas ao paciente, hospital e anestesia nos oito modelos propostos, para uma mediana de tempo de sala de 115,0 minutos, o modelo de regressão linear relativo a todas as especialidades obteve um R-quadrado de 0,780 acompanhado por um erro médio absoluto de 26,9 minutos. Os modelos de Urologia apresentaram um R-quadrado de 0,822 e 0,831 e um erro médio de 21,7 e 20,9 minutos para o modelo de regressão linear e de RF, respetivamente, com uma mediana de cirurgia de 70,0 minutos. Para a Cirurgia Geral, a mediana de cirurgia é de 110,0 minutos com um R-quadrado de 0,826 e 0,825 e um erro médio de 26,2 e 26,1 minutos para os modelos de regressão linear e RF, respetivamente. No modelo de Ortopedia, o algoritmo de RF foi o único capaz de modelar todos os dados desta especialidade com um R-quadrado de 0,683 e um erro médio de 27,1 minutos, para uma mediana de cirurgia de 130,0 minutos. Nesta especialidade, a regressão linear conseguiu moldar todas as cirurgias com exceção das cirurgias relativas ao joelho e anca, com um R-quadrado de 0,685 e erro médio de 28,9 minutos. As possíveis causas foram levantadas e descritas em maior detalhe, a elevada variabilidade entre procedimentos e o perfil de doentes (polidiagnosticados e polimedicados) foram os pontos fulcrais apontados pelo diretor de cirurgia ortopédica do CHULC. Quando comparado com os métodos atuais do CHULC, todos os modelos alcançaram uma diminuição significativa no erro de predição do tempo de sala. Considerando uma margem de 10%, todos os modelos apresentaram uma redução na percentagem de cirurgias subestimadas, cerca de 41%, e um aumento nas percentagens das cirurgias estimadas corretamente, rondando os 19%. No entanto, os modelos registaram um aumento de 22% nas cirurgias sobrestimadas. Futuros estudos no sentido de traduzir o impacto de cirurgias subestimadas e sobrestimadas serão necessários para complementar estes resultados. A variável que apresentou um maior impacto em todos os modelos de RF foi a média do cirurgião com base no tipo de procedimento cirúrgico realizado. Dado o elevado grau de linearidade desta variável com o output do modelo, o tempo de sala, expresso por um coeficiente de Pearson de 0,865, levou a que o modelo de regressão linear conseguisse traduzir de forma precisa a relação entre estas variáveis, e, consequentemente, atingisse resultados semelhantes ao modelo de RF nas especialidades de Urologia e Cirurgia Geral. Conclui-se que a implementação de abordagens de aprendizagem automática melhora a precisão na predição do tempo de sala e podem servir como uma ferramenta de apoio à decisão clínica para o auxílio do agendamento cirúrgico. Para operacionalizar estes resultados a nível hospitalar é necessário trabalho futuro

    Integrative Predictive Support Systems for Hospital’s Resource Planning and Scheduling

    Get PDF
    RÉSUMÉ: Le système de santé du Canada a du mal à gérer le nombre croissant de patients ayant plusieurs maladies chroniques nécessitant l’accès à des soins de longue durée, et cela, principalement en raison de vieillissement de la population. Cela entraîne notamment de longs délais d’attente pour les patients et une augmentation des frais des soins de santé. Comme les hôpitaux représentent la plus grande part du budget de la santé, ils doivent améliorer leur efficacité opérationnelle en utilisant plus efficacement leurs ressources. En particulier, les hôpitaux qui fournissent aux patients des soins directs et un accès à des ressources coûteuses telles que les chirurgiens, les salles d’opération, les unités de soins intensifs et les salles d’opération, ont de la pression pour gérer leurs ressources efficacement. Les chercheurs en recherche opérationnelle ont largement abordé les problèmes liés à la planification et l’ordonnancement des ressources dans les hôpitaux pendant de nombreuses années. Les modèles analytiques conventionnels visent ainsi à améliorer l’efficacité de la prise de décision de planification des ressources hospitalières à des fins stratégiques (à long terme), tactiques (à moyen terme) et opérationnelles (à court terme). Cependant, ces modèles ont du mal à adresser efficacement la complexité, la variabilité, et l’incertitude inhérentes aux opérations hospitalières, car ils utilisent souvent des distributions statistiques simplistes pour émuler ces opérations. Par conséquent, ils sont sous-optimaux dans des contextes réels d’utilisation. Avec l’accroissement continu des quantités massives de données collectées dans les hôpitaux et les systèmes de santé, ainsi que les progrès dans le domaine de la modélisation prédictive, la communauté de la recherche opérationnelle a maintenant l’occasion de mieux analyser, comprendre et reproduire la complexité, la variabilité et l’incertitude des opérations hospitalières. À cette fin, l’objectif principal de cette thèse est de développer des cadres prédictifs intégrés, capables d’analyser et d’extraire des informations à partir de masses de données afin de mieux éclairer la planification et l’ordonnancement des ressources hospitalières aux niveaux stratégique, tactique, et opérationnel. Au meilleur des connaissances de l’auteur, cette thèse est une des premières à proposer des cadres pour la conception de systèmes prédictifs dans les hôpitaux. Au niveau stratégique et tactique, le premier article (chapitre 4) développe un cadre hybride basé sur l’apprentissage machine et la simulation pour prédire la demande personnalisée des patients au niveau des ressources hospitalières. Le cadre reflète notamment la relation à long terme entre les hôpitaux et les patients ayant des maladies chroniques, couvrant ainsi un horizon à long terme et intégrant le fait que les patients ont besoin, non pas d’une, mais de plusieurs visites à l’hôpital et accès à divers types de ressources. Dans cette thèse, nous proposons une approche novatrice basée sur l’apprentissage profond avec notamment un modèle de réseaux de neurones qui modélise les interactions complexes des patients chroniques avec les ressources hospitalières tout au long de leurs trajectoires de traitement. Cette nouvelle approche propose une série de réseaux de neurones où l’entrée de chaque réseau est définie comme la sortie de prédiction de son précédent. Les modèles proposés sont ainsi capables de prédire le traitement suivant du patient avec une précision (« recall ») allant de 68% à 79%. En plus de prévoir la prochaine étape des traitements des patients, nous proposons aussi une deuxième série de réseaux de neurones qui fournissent le temps prévu pour le prochain traitement. Ces trajectoires temporelles ainsi prédites sont ensuite incorporées dans une simulation à base d’agents capable de prédire la demande personnalisée et agrégée en ressources rares des hôpitaux à moyen et long terme en fonctions des profils des patients à traiter. Nous avons appliqué ce cadre intégratif à des données hospitalières réelles et montrons que le cadre proposé prédit efficacement la demande à moyen et à long terme de ressources rares dans les hôpitaux avec une précision de 77% (trajectoire) et de 64% (délai entre étapes), qui surpasse considérablement à la fois les méthodes traditionnelles de prévision demande et les techniques standard d’apprentissage automatique. Au niveau tactique et opérationnel, l’article présenté au chapitre 5 propose un modèle intégratif pour la prédiction des durées d’intervention chirurgicale personnalisées. Ce cadre est le premier de ce genre, et permet d’incorporer des attributs opérationnels et temporels liés à la planification, en plus d’attributs liés aux patients, aux procédures et aux chirurgiens pour prévoir ainsi la durée des interventions chirurgicales. De plus, ce cadre illustre l’efficacité d’algorithmes d’apprentissage automatique, tels que « Random Forest » et « Support Vector Machine » pour capturer les relations complexes entre les prédicteurs de la durée des interventions chirurgicales. Nous avons appliqué ce cadre à des données hospitalières réelles et constaté une amélioration de 31% de la précision des prédictions par rapport à la pratique. De plus, les résultats montrent que les décisions liées à la planification telles que l’ordonnancement des procédures et l’affectation des blocs ont un impact significatif sur les durées d’intervention chirurgicale. Ce résultat a des implications importantes pour la littérature dédiée à la planification et l’ordonnancement des salles d’opération aux niveaux tactique et opérationnel. Autrement dit, ce résultat implique que la planification optimale des salles d’opération n’est possible que si l’on optimise conjointement la durée et l’ordre des chirurgies. Au niveau opérationnel, l’article présenté au chapitre 6 propose un modèle intégratif pour la prédiction du risque de défaillance opérationnelle, et notamment du risque de temps supplémentaire. En pratique, même le plus précis des outils utilisés ne permet pas de prédire la variabilité des processus hospitaliers avec une précision de 100%. Par conséquent, au niveau opérationnel, il est important d’éviter les décisions qui ont un risque élevé d’échec pouvant ainsi entraîner des conséquences négatives significatives, qui peuvent à leur tour impliquer des coûts supplémentaires, une qualité de soins inférieure, et causer une insatisfaction à la fois des patients et du personnel. Dans cette thèse, nous appliquons des techniques d’apprentissage machine probabiliste au problème des heures supplémentaires en salle d’opération. Plus précisément, nous montrons, en utilisant des données hospitalières réelles, que les algorithmes proposés sont capables de classer les horaires des salles d’opération qui entraînent des heures supplémentaires avec une précision de 88%. La performance des prédictions ainsi calculées est de plus améliorée grâce à l’utilisation de techniques d’étalonnage appliquées aux résultats d’algorithmes d’apprentissage automatique. Le modèle de risque proposé a ainsi des implications significatives à la fois pour la pratique de la gestion les ressources au niveau opérationnel, mais aussi pour la littérature académique. Tout d’abord, le modèle de risque proposé peut facilement être intégré dans les systèmes de planification des salles à l’hôpital afin d’aider les décideurs à éviter des horaires risqués. Deuxièmement, le modèle de risque proposé peut être utilisé conjointement avec les modèles existants d’ordonnancement des salles d’opération pour améliorer la performance opérationnelle des solutions.----------ABSTRACT: Canada’s health care system is struggling to manage the increasing demand of patients with multiple chronic issues who require access to long-term care, primarily due to Canada’s aging population. This has resulted in long patient wait times and increasing healthcare costs. Since hospitals represent the largest share of the healthcare budget, they are required to improve their operational efficiency by making better use of their resources. In particular, hospitals that provide patients direct care and access to expensive resources such as surgeons, operating rooms, ICUs and wards are under scrutiny on whether or not they manage their resources effectively. Operations research scholars have extensively addressed problems related to resource planning and scheduling in hospitals for many years. Conventional analytical models aim to improve the efficiency of decision-making in hospital resource planning at strategic (long-term), tactical (mid-term) and operational (short-term) levels. However, these models suffer from limited ability in effectively capturing the inherent complexity, variability and uncertainty of hospital operations because they often assume crude and simplistic statistical distributions to imitate these operations. Consequently, they are suboptimal in real-life settings. With the massive amount of data gathered in the hospitals and healthcare systems and advances in the field of predictive modeling, the operations research community are now given the opportunity to better analyze, understand and replicate the complexity, variability and uncertainty of hospital operations. To this end, the main objective of this thesis is to develop integrate predictive frameworks that are capable of analyzing and extracting important patterns from large-scale data that better inform hospital resource planning and scheduling systems at the strategic, tactical and operational levels. To the best of the author’s knowledge, this thesis is a pioneer in proposing frameworks for the design of hospital-wide integrative predictive support systems. At the strategic and tactical level, the first article (Chapter 4) develops a hybrid machine learning-simulation framework for predicting personalized patient demand for hospital resources. The framework captures the long-term relationship between hospitals and chronic patients, which spans over a long-term horizon and incorporates the fact that patients will need, not one, but several visits to the hospital and access to various types of resources over a long time period. In this thesis, we propose a novel approach based on deep feedforward neural network model that models the complex interactions of chronic patients with hospital resources during their treatment pathways. The proposed novel approach does so by developing a series of sequential individually trained deep feedforward neural networks, where each network’s input is set as the prediction output of its preceding. The proposed models are capable of predicting patient’s next treatment with an accuracy (measured by “recall”) ranging from 68% to 79%. In addition to predicting the transition of patients between treatments in their clinical pathways, we propose a second series of temporal deep feedforward neural network models that provide the expected receiving time for the next treatment. The trained pathway and temporal predictive models are incorporated into an agent-based simulation which is capable of predicting personalized and aggregated demand for hospitals’ scarce resources for the mid-term and long-term time horizon. We applied the proposed integrative framework to real hospital data and showed that proposed framework effectively predicts mid-term and long-term demand for hospital scarce resources with an accuracy of 77% and 64%, respectively, which dramatically outperforms traditional demand forecasting methods and standard machine learning techniques. At the tactical and operational level, the article proposed in chapter 5 is an integrative predictive model for personalized surgical procedure durations. The framework is the first of its kind to incorporate scheduling-related, operational and temporal attributes in addition to patient specific, procedure specific and surgeon specific attributes to predict surgical procedure durations. Furthermore, the framework illustrates the effectiveness of machine learning algorithms such as Random Forest and Support Vector Machine to capture the complex relationships among the predictors of surgical procedure durations. We applied the proposed framework to real hospital data and found an improvement of 31% in the accuracy of our predictive model compared to its practice benchmark. Furthermore, the results show that scheduling-related decisions such as procedure sequencing and block assignment have a significant impact on surgical procedure durations. This result has significant implications for operating room planning and scheduling literature at both tactical and operational levels. Namely, it indicates that optimal operating room planning is achieved only through joint optimization of surgical duration procedures and schedules. At the operational level, the article presented in chapter 6 proposes an integrative predictive model for operational failure risk assessment. Interestingly, even the most accurate predictive tools used in practice fall short in predicting variability in hospital processes with 100% accuracy. Therefore, at the operational level it is important to avoid decisions that have a high risk of failure which may subsequently result in significant adverse consequences, which, in turn, may incur additional costs, lower quality of care and cause patient and staff dissatisfaction. In this thesis, we apply probabilistic machine learning techniques to the operating room overtime problem. We show that the proposed algorithms are capable of classifying operating room schedules that result in overtime with an accuracy of 88% when applied to real hospital data. The predictive performance is further improved through the use of calibration techniques applied to the output of machine learning algorithms. The proposed risk model has significant implications for practice and operational level resource scheduling literature. First, the proposed risk model can easily be integrated into operating room scheduling systems at the hospital which ultimately assist decision makers in avoiding risky schedules. Second the proposed risk model may be used in conjunction with existing operating room scheduling models to improve the operational performance of commonplace solutions

    Simulation and Modeling for Improving Access to Care for Underserved Populations

    Get PDF
    Indiana University-Purdue University Indianapolis (IUPUI)This research, through partnership with seven Community Health Centers (CHCs) in Indiana, constructed effective outpatient appointment scheduling systems by determining care needs of CHC patients, designing an infrastructure for meaningful use of patient health records and clinic operational data, and developing prediction and simulation models for improving access to care for underserved populations. The aims of this study are 1) redesigning appointment scheduling templates based on patient characteristics, diagnoses, and clinic capacities in underserved populations; 2) utilizing predictive modeling to improve understanding the complexity of appointment adherence in underserved populations; and 3) developing simulation models with complex data to guide operational decision-making in community health centers. This research addresses its aims by applying a multi-method approach from different disciplines, such as statistics, industrial engineering, computer science, health informatics, and social sciences. First, a novel method was developed to use Electronic Health Record (EHR) data for better understanding appointment needs of the target populations based on their characteristics and reasons for seeking health, which helped simplify, improve, and redesign current appointment type and duration models. Second, comprehensive and informative predictive models were developed to better understand appointment non-adherence in community health centers. Logistic Regression, Naïve Bayes Classifier, and Artificial Neural Network found factors contributing to patient no-show. Predictors of appointment non-adherence might be used by outpatient clinics to design interventions reducing overall clinic no-show rates. Third, a simulation model was developed to assess and simulate scheduling systems in CHCs, and necessary steps to extract information for simulation modeling of scheduling systems in CHCs are described. Agent-Based Models were built in AnyLogic to test different scenarios of scheduling methods, and to identify how these scenarios could impact clinic access performance. This research potentially improves well-being of and care quality and timeliness for uninsured, underinsured, and underserved patients, and it helps clinics predict appointment no-shows and ensures scheduling systems are capable of properly meeting the populations’ care needs.2021-12-2

    The Value of Seizure Semiology in Epilepsy Surgery: Epileptogenic-Zone Localisation in Presurgical Patients using Machine Learning and Semiology Visualisation Tool

    Get PDF
    Background Eight million individuals have focal drug resistant epilepsy worldwide. If their epileptogenic focus is identified and resected, they may become seizure-free and experience significant improvements in quality of life. However, seizure-freedom occurs in less than half of surgical resections. Seizure semiology - the signs and symptoms during a seizure - along with brain imaging and electroencephalography (EEG) are amongst the mainstays of seizure localisation. Although there have been advances in algorithmic identification of abnormalities on EEG and imaging, semiological analysis has remained more subjective. The primary objective of this research was to investigate the localising value of clinician-identified semiology, and secondarily to improve personalised prognostication for epilepsy surgery. Methods I data mined retrospective hospital records to link semiology to outcomes. I trained machine learning models to predict temporal lobe epilepsy (TLE) and determine the value of semiology compared to a benchmark of hippocampal sclerosis (HS). Due to the hospital dataset being relatively small, we also collected data from a systematic review of the literature to curate an open-access Semio2Brain database. We built the Semiology-to-Brain Visualisation Tool (SVT) on this database and retrospectively validated SVT in two separate groups of randomly selected patients and individuals with frontal lobe epilepsy. Separately, a systematic review of multimodal prognostic features of epilepsy surgery was undertaken. The concept of a semiological connectome was devised and compared to structural connectivity to investigate probabilistic propagation and semiology generation. Results Although a (non-chronological) list of patients’ semiologies did not improve localisation beyond the initial semiology, the list of semiology added value when combined with an imaging feature. The absolute added value of semiology in a support vector classifier in diagnosing TLE, compared to HS, was 25%. Semiology was however unable to predict postsurgical outcomes. To help future prognostic models, a list of essential multimodal prognostic features for epilepsy surgery were extracted from meta-analyses and a structural causal model proposed. Semio2Brain consists of over 13000 semiological datapoints from 4643 patients across 309 studies and uniquely enabled a Bayesian approach to localisation to mitigate TLE publication bias. SVT performed well in a retrospective validation, matching the best expert clinician’s localisation scores and exceeding them for lateralisation, and showed modest value in localisation in individuals with frontal lobe epilepsy (FLE). There was a significant correlation between the number of connecting fibres between brain regions and the seizure semiologies that can arise from these regions. Conclusions Semiology is valuable in localisation, but multimodal concordance is more valuable and highly prognostic. SVT could be suitable for use in multimodal models to predict the seizure focus

    Utilizing artificial intelligence in perioperative patient flow:systematic literature review

    Get PDF
    Abstract. The purpose of this thesis was to map the existing landscape of artificial intelligence (AI) applications used in secondary healthcare, with a focus on perioperative care. The goal was to find out what systems have been developed, and how capable they are at controlling perioperative patient flow. The review was guided by the following research question: How is AI currently utilized in patient flow management in the context of perioperative care? This systematic literature review examined the current evidence regarding the use of AI in perioperative patient flow. A comprehensive search was conducted in four databases, resulting in 33 articles meeting the inclusion criteria. Findings demonstrated that AI technologies, such as machine learning (ML) algorithms and predictive analytics tools, have shown somewhat promising outcomes in optimizing perioperative patient flow. Specifically, AI systems have proven effective in predicting surgical case durations, assessing risks, planning treatments, supporting diagnosis, improving bed utilization, reducing cancellations and delays, and enhancing communication and collaboration among healthcare providers. However, several challenges were identified, including the need for accurate and reliable data sources, ethical considerations, and the potential for biased algorithms. Further research is needed to validate and optimize the application of AI in perioperative patient flow. The contribution of this thesis is summarizing the current state of the characteristics of AI application in perioperative patient flow. This systematic literature review provides information about the features of perioperative patient flow and the clinical tasks of AI applications previously identified

    Algorithms for Neural Prosthetic Applications

    Get PDF
    abstract: In the last 15 years, there has been a significant increase in the number of motor neural prostheses used for restoring limb function lost due to neurological disorders or accidents. The aim of this technology is to enable patients to control a motor prosthesis using their residual neural pathways (central or peripheral). Recent studies in non-human primates and humans have shown the possibility of controlling a prosthesis for accomplishing varied tasks such as self-feeding, typing, reaching, grasping, and performing fine dexterous movements. A neural decoding system comprises mainly of three components: (i) sensors to record neural signals, (ii) an algorithm to map neural recordings to upper limb kinematics and (iii) a prosthetic arm actuated by control signals generated by the algorithm. Machine learning algorithms that map input neural activity to the output kinematics (like finger trajectory) form the core of the neural decoding system. The choice of the algorithm is thus, mainly imposed by the neural signal of interest and the output parameter being decoded. The various parts of a neural decoding system are neural data, feature extraction, feature selection, and machine learning algorithm. There have been significant advances in the field of neural prosthetic applications. But there are challenges for translating a neural prosthesis from a laboratory setting to a clinical environment. To achieve a fully functional prosthetic device with maximum user compliance and acceptance, these factors need to be addressed and taken into consideration. Three challenges in developing robust neural decoding systems were addressed by exploring neural variability in the peripheral nervous system for dexterous finger movements, feature selection methods based on clinically relevant metrics and a novel method for decoding dexterous finger movements based on ensemble methods.Dissertation/ThesisDoctoral Dissertation Bioengineering 201

    Seizure Detection, Seizure Prediction, and Closed-Loop Warning Systems in Epilepsy

    Get PDF
    Nearly one-third of patients with epilepsy continue to have seizures despite optimal medication management. Systems employed to detect seizures may have the potential to improve outcomes in these patients by allowing more tailored therapies and might, additionally, have a role in accident and SUDEP prevention. Automated seizure detection and prediction require algorithms which employ feature computation and subsequent classification. Over the last few decades, methods have been developed to detect seizures utilizing scalp and intracranial EEG, electrocardiography, accelerometry and motion sensors, electrodermal activity, and audio/video captures. To date, it is unclear which combination of detection technologies yields the best results, and approaches may ultimately need to be individualized. This review presents an overview of seizure detection and related prediction methods and discusses their potential uses in closed-loop warning systems in epilepsy
    corecore