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Abstract

Background and Objectives. The clinical severity of Traumatic Brain Injury (TBI) ranges from
mild to severe, being one of the primary causes of disability in the world and responsible for nearly
50% of deaths from trauma. There is a need for trustworthy methods to better predict the outcome
of TBI and aid doctors’ decision-making. However, it is difficult due to the injury’s heterogeneity.
Developments in this area could improve healthcare, leading to changes in treatment, and avoiding
unnecessary spending. We aimed at creating a Machine Learning model capable of predicting the
long-term neurological outcome of patients with a TBI, by assessing the dynamics over time of
the continuous electroencephalogram (EEG) during the patient’s stay in the Intensive Care Unit
(ICU).

Methods. We performed continuous EEG in 111 patients with moderate to severe TBI af-
ter admission to the ICU, continued for 7 days or until discharge or death. Demographic, clinic,
laboratory, radiologic and other trauma-related parameters were collected. Neurological outcome
at 12 months was assessed using the Extended Glasgow Outcome Scale (GOSE) dichotomized
into poor (GOSE 1-3) or good (GOSE 4-8). We extracted EEG features related to power, con-
tinuity, synchrony, symmetry, and randomness for each hour. We evaluated trends over time of
the EEG features using linear and non-linear regressions in 15 possible time intervals. A Random
Forest classifier with 5-fold cross-validation was trained using admission parameters and the time-
dependent regressions’ features for binary prediction of the outcome. Feature selection included
a filter based on ranking and backward elimination. We evaluated and compared models with
different inputs using sensitivity, specificity and the AUC of the ROC curve.

Results. The best two prediction models were found using EEG features from 12 to 36 hours
(AUC = 0.83 [0.75-0.91], sensitivity = 0.83 [0.72-0.94], and specificity = 0.80 [0.61-0.94]) or
from 48 to 72h (AUC = 0.85 [0.73-0.97], sensitivity = 0.91 [0.83-1.00], and specificity = 0.67
[0.32-1.00]) combined with predictors collected at the time of admission. The combination of
admission predictors with the EEG features outperformed models trained with only admission or
EEG features separately. The findings also hint at better performance using EEG trends compared
to features from single time points.

Discussion. This study allows for an early prediction of the outcome of TBI resorting to a
machine learning approach. EEG trends over time point to added value to the prediction, high-
lighting the importance of monitoring continuously the EEG and encouraging its use in severe TBI
patients, as it is frequently done in other brain injury populations. We suggest that future works
explore the possibility of using a multi-class prediction. Furthermore, we also suggest training
other algorithms than Random Forest, which if possible allows understanding of the features’
contribution to the prediction.

Keywords: Traumatic Brain Injury, Eletroencephalogram, Machine Learning, Random For-
est, Outcome prediction.
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Resumo

Contexto e Objectivos. A gravidade do Traumatismo Cranianoencefálico (TBI) varia de suave a
severo, sendo uma das principais causas de incapacidade no mundo e responsável por quase 50%
das mortes por trauma. Há uma necessidade de métodos fiáveis para prever o prognóstico do TBI e
ajudar os médicos a tomar decisões. Contudo, tal é difícil devido à heterogeneidade da lesão. De-
senvolvimentos na área podem melhorar os cuidados de saúde, levando a mudanças no tratamento
e reduzindo os custos do mesmo. O objectivo foi criar um modelo de aprendizagem automática
para prever o progóstico a longo prazo de pacientes com TBI, avaliando a dinâmica ao longo do
tempo do EEG contínuo durante a estadia do paciente na Unidade de Cuidados Intensivos(ICU).

Métodos. Realizámos medições contínuas de EEG em 111 pacientes com TBI moderado a
severo após a admissão na ICU, durante 7 dias ou até à alta ou morte. Os parâmetros demográfi-
cos, clínicos, laboratoriais, radiológicos e parâmetros relacionados com o trauma foram recolhidos
à admissão. O resultado neurológico aos 12 meses foi avaliado com a Escala de Resultados de
Glasgow Estendida (GOSE) dicotomizada em mau (GOSE 1-3) ou bom (GOSE 4-8). Extraímos
características relacionadas com potência, continuidade, sincronia, simetria e aleatoriedade para
cada hora. Avaliámos as tendências das características do EEG utilizando regressões lineares e não
lineares em 15 intervalos de tempo. Um classificador de Floresta Aleatória com validação cruzada
de 5 conjuntos foi treinado utilizando parâmetros de admissão e a informação das regressões de-
pendentes do tempo para a previsão binária do resultado. A selecção dos preditores incluiu um
filtro baseado em categorização, e na eliminação de retrocesso. Avaliámos e comparámos modelos
com diferentes preditores utilizando a sensibilidade, especificidade e a área da curva ROC.

Resultados. Os dois melhores modelos de previsão foram encontrados utilizando caracterís-
ticas EEG de 12 a 36 horas (AUC = 0,83 [0,75-0,91], sensibilidade = 0,83 [0,72-0,94], e especi-
ficidade = 0,80 [0,61-0,99]) ou de 48 a 72h (AUC = 0,85 [0,73-0,97], sensibilidade = 0,91 [0,83-
1,00], e especificidade = 0,67 [0,32-1,00]) combinados com preditores do momento da admissão.
A combinação de preditores de admissão com do EEG superou os modelos treinados apenas com
admissão ou características do EEG separadamente. Os resultados também sugerem um melhor
desempenho utilizando as tendências do EEG em comparação com as de pontos de tempo únicos.

Discussão. Este estudo permite uma previsão antecipada do prognóstico de TBI com uma
abordagem de aprendizagem da máquina. As tendências do EEG ao longo do tempo apontam para
um valor acrescido à previsão, salientando a importância de monitorizar continuamente o EEG e
encorajar o uso em doentes com TBI grave, como é feito em outras populações de lesões cerebrais.
Sugerimos que trabalhos futuros explorem fazer uma previsão multiclasse. Além disso, sugerimos
ainda o uso de outros algoritmos para além do de Floresta Aleatória, e, se possível, que permitam
a compreensão da contribuição das características para a previsão.

Keywords: Traumatismo Craninano, Eletroencefalografia, Aprendizagem Computacional, Flo-
resta Aleatória, Prognóstico
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“The beginning of all things is small. ”

Cícero, Roman statesman
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Chapter 1

Introduction

Traumatic Brain Injury (TBI) is an acute event that often triggers long-term developing injuries

related to behaviour, emotions, cognition, and psychiatric disorders. The clinical severity of TBI

ranges from mild to fatal, being a primary cause of disability worldwide and responsible for nearly

50% of deaths from trauma [1]. The impact of TBI results in great suffering for victims and their

families, with enormous costs to society [2].

As injuries are never identical, clinical research into TBI is particularly challenging. In ad-

dition, the primary injury is altered by possible secondary insults and patient-related factors, pre-

morbid and physiologic states, influencing the response to trauma. Finally, it is very difficult to

standardise and categorise endpoints and distinguish between a “good” and a “poor” outcome in

an objective manner. The Glasgow Coma Scale (GCS) is a popular way to categorise the conse-

quences of sustaining a TBI. The outcome of a patient with TBI may vary, for instance, as a result

of hospital approaches and fluctuations in available resources from place to place. This imbalance

in treatment and patient prognoses is significant for the outcome of the injury [3, 4].

1.1 Motivation and Objectives

Early support for medical staff decisions can have an impact on the treatment decisions. Aid clini-

cians in the classification of the severity of TBI, decision making, decrease in labour intensity, and

subjectivity is desired [5]. Prognostic models arise as a way to achieve that goal. By combining

patients’ data to predict clinical outcomes, physicians would be able to adequate the treatment

strategy for each patient and diminishing the overall expenses associated with the treatment and

rehabilitation. Besides that, knowledge based on prompt and dependable outcome predictions can

empower family members, as it prevents medical practitioners from providing false hope to pa-

tients and relatives, and avoid unrealistic expectations. The mentioned points translate into a better

allocation of resources, as unnecessary expenses are mitigated. In short, new developments in this

area could benefit healthcare and promote the treatment of patients with TBI [6].
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2 Introduction

The project comprised in this master thesis is part of a long ongoing investigation on TBI by

researchers from the Clinical Neurophysiology group at the University of Twente and the Medisch

Spectrum Twente. This dissertation aims at creating a Machine Learning (ML) model capable of

predicting the neurological outcome of patients following a TBI. The present study considers the

inclusion of electroencephalogram (EEG) features and clinical predictors at the time of admis-

sion, in an attempt to predict the outcomes. Our primary goal is to investigate the dynamics over

time of the EEG extracted features and how those changes combined with clinical predictors can

ameliorate the prognostication of the disease.

1.2 Structure of the Dissertation

The document is structured in 7 chapters. This first chapter introduces the topic and provides a

rationale for the conducted research. A broad overview of the theoretical concepts required for

fully understanding the work herein is provided in chapter 2. The State of the Art of current

alternatives in outcome prediction of TBI is presented in chapter 3. Chapter 4 will cover the

methodological steps employed throughout the dissertation. In chapter 5, we shall present and

assess the results by using the aforementioned methods. The discussion of the results is carried

out in chapter 6. At last, chapter 7 will present the conclusions to be drawn from the research

conducted and suggestions for future work.



Chapter 2

Fundamental Concepts

This chapter is reserved for the theoretical conceptualisation of TBI, EEG, ML, and related topics.

2.1 Traumatic Brain Injury

TBI is a condition caused by an external or internal mechanical force, such as a blow, an impact,

or a concussion which leads to a change in brain function [7–9]. It comprises either the loss

of at least one of the subsequent events: consciousness, memory of events, motor control, vision,

speech, concentration, and orientation or other neurological deficits; and a change in mental status.

Normally the effects occur in temporal proximity to the injury but manifestations can occasionally

be slightly delayed [9].

Symptoms of a TBI range from mild and moderate to severe, defined by the extension of the

damage to the brain. It varies from a brief change in mental status or consciousness, for mild, to

prolonged unconsciousness, coma and death, for more severe cases. Injuries associated with TBI

include contusions, intracerebral haemorrhage, subarachnoid haemorrhage, diffuse injury, diffuse

axonal injury, ischemia, and skull fractures [7,8]. The survivors not only experience a considerable

weight of physical, psychiatric, emotional, and cognitive disabilities during the in-hospital time,

as they also experience it for the rest of their lives [10].

Brain injury is confirmed by neuroradiologic examination or laboratory testing. Tests at the

time of admission include the assessment of pupillary dilatation and reflexes, measurements of

Intracranial Pressure (ICP), imaging techniques e.g. computed tomography (CT) or magnetic res-

onance imaging (MRI), assessment of cardiac and pulmonary function, a full-body examination,

and a neurological examination often using the GCS. Surgery and medication are the gold standard

treatment after sustaining a TBI [7, 9].

Several possible events can lead to a TBI, the most common being: road-traffic accidents,

military blast injuries, hitting blunt objects, falls, and sports-related concussions [8]. According

to a Dutch study [11], the most common causes of TBI are either injury sustained at home and

3



4 Fundamental Concepts

during leisure activities (47.9%) or as a result of traffic accidents (33.5%). Regarding traffic-

related injuries, 56.9% of accidents concern bicyclists [2]. In Portugal, the major cause of TBI is

falls, followed by traffic accidents [12].

Approximately 50 million TBIs occur in the world annually, of which 2.5 million are reported

in Europe every year [10]. In the Netherlands the incidence of TBI is about 213.6 per 100,000

persons per year [2], whilst in Portugal, the incidence is lower, being around 65 per 100,000 per-

sons per year [13]. Hospitalisation rates were numbered at 1.5 million, with 57,000 TBI resulting

in death [10] every year in Europe. There are also considerable differences between countries.

For instance, admission rates in Germany and Austria are eight times higher than in Spain and

Portugal [10].

In general, males are twice as likely to suffer TBIs than females. The age groups where the

incidence is the highest comprise children between 0 and 4 years old and teenagers between the

ages of 15 to 19. Concerning hospitalisations, people over 75 years of age are the most likely to

be affected by TBI along with people incarcerated in prisons, military personnel, rescue workers

and victims of terrorist attacks [14].

Costs generally depend on the length of stay, surgical procedures, and the severity of in-

jury, with more severe cases being associated with higher costs, higher mortality, and more un-

favourable outcome rates [11]. The average cost per case was found to increase with age. On the

one hand, even though younger people are associated with a higher incidence and disease burden,

treatment costs are lower. On the other hand, people aged 25 to 64 years old have a considerable

low incidence but high economic costs [11]. Most of the time it is hard to quantify the costs as-

sociated with TBI. Not only due to the disease’s heterogeneity but also because of the differences

between treatment centres all over the world. Furthermore, in addition to the direct and in-hospital

or medical costs, there are also costs associated with rehabilitation and lost productivity. Addi-

tionally, indirect effects on friends, families, caregivers, and the community also have to be taken

into consideration [10, 14, 15].

People who have recovered from a TBI suffer from its repercussions, resulting in long-lasting

effects that impact the patient’s life and productivity [14, 16]. Since TBI is one of the most de-

bilitating injuries, it reduces the patient’s ability to regain independence in performing personal,

social, and labour activities. In addition to disability, TBI is often seen as a risk factor for other

health conditions. Among the list of long-lasting mental disabilities following TBI, the most

common were complications related to memory, problem-solving, stress, and the management of

emotional upsets and temper control. People who have sustained a TBI were more likely to binge

drink and develop depression, epilepsy, and Alzheimer’s disease [14]. The aforementioned factors

contributed to disturbed relationships: divorce rates were higher, with social isolation being also

frequent in these cases [15], and a reduced life expectancy was observed [10].

Hereby, it is possible to infer that the implications and costs of TBI are wide. The estimation of

treatment cost-effectiveness is crucial to avoid unnecessary spending and elevate treatment man-

agement. This becomes particularly important when dealing with patients in severe critical states,

in which a poor outcome can lead to very high costs, as it happens with patients who suffered
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severe TBI [11].

2.2 Scoring Systems

In order to evaluate the condition of a patient at admission to the hospital or at any time point

following a neurological injury, it is necessary to resort to an objective measure. The most com-

monly used for trauma include the Glasgow Coma Scale (GCS) and the Glasgow Outcome Scale

(GOS) [17]. Both scales allow for the grouping of patients according to the severity of sustained

injuries and have been proven to be correlated with neurological outcomes [4, 18].

The GCS is used to quantitatively describe impairment in consciousness in acute trauma pa-

tients. It was first described in 1974 and is used in many medical units to this day. The scale rates

patients according to three aspects of responsiveness: eye-opening, motor (GCS-M), and verbal

responses, as exemplified in figure 2.1. Reporting each of these parameters separately allows us

to infer the state of a patient clearly and easily. The use of the responsiveness evaluation allows a

more effective management of patients during acute care, a period during which many decisions

have to be made. These vital decisions range from securing the airway and triage to determining

patient transfer, in more severe patients, or the need for neuroimaging, admission for observation

or discharge, for less severely impaired patients [4]. GCS can be employed as a series of measure-

ments to monitor the clinical course of a patient and guide changes in management. Deterioration

of a patient’s condition should always be carefully assessed [17].

Figure 2.1: Aspects of responsiveness of the Glasgow Coma Scale.
Adapted from [19].
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The GOS was also created in 1974. However, this assessment was oriented towards the evalua-

tion of the outcome after a brain injury. It has five categories namely: 1) Dead; 2) Vegetative State,

when a patient is unable to interact with its surroundings; 3) Severe Disability, when a patient can

follow commands but cannot live independently; 4) Moderate Disability, when a patient is capable

of living independently but is unable to return to work or school; 5) Good recovery, when the

patient can fully return to daily activities [20]. The scale was redefined in 1981 to extend its 5

categories to 8, originating the Extended Glasgow Outcome Scale (GOSE). It has arisen from the

limitations of the original one, e.g. the insensitivity to change, use of broad categories, and diffi-

culties with reliability due to the lack of a structured interview format. Therefore this addition has

improved the reliability of the rating and is also more sensitive to variations in mild to moderate

TBI. The categories are divided into 1) Dead, 2) Vegetative State, 3) Lower Severe Disability, 4)

Upper Severe Disability, 5) Lower Moderate Disability, 6) Upper Moderate Disability, 7) Lower

Good Recovery, 8) Upper Good Recovery [21].

The scales can be used for patients’ stratification of TBI into mild, moderate or severe and

access favourable or unfavourable outcomes. Mild TBI is characterised by a GCS between 13

and 15. Usually, these patients experience headaches, dizziness and irritability but the outcome is

favourable, translating to a GOS higher than 3. GCS of 9 to 12 is attributed to moderate TBI and

patients might either recover, experience moderate disability, become in a vegetative state, or die.

Severe patients are characterised by a GCS of 8 or fewer. These patients are usually less likely

to have positive outcomes. Oftentimes the outcome is either death (GOS = 1) or vegetative state

(GOS 1-3) [20, 22].

Nowadays, scoring models based on CT imaging are an option to consider for prognostic, es-

pecially in patients that are under sedation, influence of alcohol or psychoactive drugs or are

intubated, as it occurs in severe TBI patients [23]. Specific grading scales based on CT can pro-

vide useful information on a patient’s health condition. As a further matter, the Marshall scale,

Rotterdam scale, and Helsinki scale are radiological imaging scales that aid prognoses and predict

the risk for increased ICP and outcome in adults. They differ in the factors used for evaluation.

Particularly, Helsinki includes the presence of an epidural hematoma, while Rotterdam takes into

account the presence of subarachnoid haemorrhage but does not distinguish mass lesion in terms

of type and size, and Marshall takes into account the presence of a mass lesion, the midline shift

and the status perimesencephalic cisterns but relies on subjective assessments [24].

2.3 Electroencephalography

Electroencephalography provides an electro-biological measurement of the brain, by evaluating

the electrical activity of a group of neurons [25,26]. It is a way to assess the brain’s electrical func-

tion and allows for a time display of the difference in voltages in two sites of the brain [27]. Some

challenges experienced when using this technique are that the human cortex is under the scalp
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surface, which is a barrier to this measurement, and that the transformation of a three-dimensional

source into a two-dimensional projection is required [27].

Traditionally, EEG recording is performed as a scalp EEG, with the placement of the electrodes

on the surface of the skull [25]. By doing so, it is possible to measure the electrical activity of

large, synchronously firing, populations of neurons [28]. The advantage of the extra-cranial EEG

comprises its non-invasive, non-expensive (cost of hardware is low [25]), and painless assessment

of the neuro-physiological function [26,28]. The standard electrode placement is the international

10-20 system, shown in figure 2.2, in which the name derives from the 10% and 20% spaced

interval division of the sensors locations between the ears and nose [26,27]. At least 21 electrodes

are recommended for scalp EEG [29].

Figure 2.2: The international 10-20 system for electrode placement.
Reproduced from [30].

The EEG potentials are displayed in channels, which are the difference in potential between

two electrodes [29]. The electrodes are designated as frontal (F), frontopolar (Fp), occipital (O),

central (C), temporal (T), and parietal (P), according to their location in the brain areas, and a

number is also given (odd for left and even for right) according to the distance of the electrode

to the midline placement (to which the letter z is attributed instead of a number). This spatial

array is shown in figure 2.2. From this, it is possible to obtain an electrical map which is named

montage [26,27]. The montages are the different possible arrangements of derivations or channels

that can be used to display brain activity. In a bipolar montage, the local potentials are amplified

due to a difference in potential between contiguous electrodes [29]. The referential montage is

more susceptible to external noise but detects local and distant potentials [29]. The combination

of different montages allows for a better interpretation of the EEG by circumventing the drawback

of a two-dimensional projection of a three-dimensional activity, allowing the display of the activity

spatially. This ensures that there is no missing activity, two sides of the brain can be compared and

it is possible to accurately locate the activity [31].
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The EEG is sensitive to different states such as stress, alertness, drowsiness, resting, hypnosis,

and sleep [26, 29]. The EEG detects several artefacts that can be originated from patient-related

reasons (electrical sources), eye blink, eye movements, muscle activity, electrocardiogram (ECG),

or any other body movements considered unwanted physiological signals that cause perturbation

in the EEG [26, 27, 29]. In addition, artefacts can result from technical sources (electrical en-

vironment), such as alternating current (AC) power line noise associated with the impedance or

electrode wires [26, 27]. Occasionally, single electrode artefacts or faulty channels may happen.

Artefacts might also be caused by unequal electrode impedance and other specific events. In the

Intensive Care Unit (ICU) it is also possible to often observe "noise" from mechanical and instru-

mental, or environmental source. The mentioned artefacts can be detected during preprocessing

stages [27], and can be removed using filtering and noise reduction methods [25]. The most fre-

quently employed methods for filtering are bandpass, wavelet, finite impulse response and adaptive

filters [25].

EEG allows us to identify normal and abnormal electrical activity in the brain. Therefore it

is an extremely important tool in neurology as well as in clinical neurophysiology [26]. EEG

findings can support diagnosis and have many clinical applications. Visual interpretation of EEG

allows for the identification of seizures, epileptiform activities, and other patterns with important

information, including status epilepticus [27]. It is also possible to identify alertness, coma, and

brain death and locate areas of damage [26]. Thus, using EEG allows practitioners to detect if an

intervention can prevent irreversible damage, enhancing its use in the ICU.

Quantitative EEG (qEEG) is the digitised EEG that can be analysed, extending the visual EEG

interpretation and allowing for the extraction of more information. qEEG can be processed using

the “Fourier” or, although less common, the “Wavelet” algorithms. This enables the visualisation

of the brain’s cognitive processing tasks [32]. qEEG allows us to determine spatial structures,

location of brain activity and abnormalities [26]. This way, EEG interpretation becomes easier

since the waveforms are presented in an easy-to-read format [33, 34]. Normally, visual EEG

analysis can take up to 1-2 hours per day, which can be reduced by computer algorithms that

additionally make it possible to analyse more data [5].

The mentioned qEEG techniques enhance the use of continuous EEG (cEEG), which is a

non-invasive procedure to monitor the consciousness of patients with spatial and temporal res-

olution [33, 35]. cEEG is a paraclinical examination tool in patients with hypoxic-ischemic en-

cephalopathy (HIE) but it is infrequently used in patients with TBI [36]. Although it is not yet

a common practice, in the last years its use has attracted much attention. Some locations are

now adopting the standard practice of cEEG monitoring for TBI patients in the ICU [37] since it

allows for the detection of non-convulsive status epilepticus, assesses the sedation, detects cere-

bral ischemia, and estimates the outcome of patients with neurological disorders [33]. Further-

more, cEEG allows for the detection of changes over time, allowing for earlier medical interven-

tions [33]. For those reasons, it should be initiated as early as possible after admission to the

hospital [37]. Nonetheless, the use of cEEG can be limited by technical, patient-related or system

resources [38].



2.4 Machine Learning 9

To decode the activity in the brain by using the EEG, it is required to either extract features or

use spectral information using the Fourier transform [25]. From the EEG it is possible to extract

univariate features when they are taken from each EEG channel separately or multivariate when

taken from several channels [25]. EEG features can be separated into time, frequency, and time-

frequency domain features [39].

In conclusion, the EEG technique has the advantage of not requiring external radiation or

injected substances in order to produce a direct measurement of brain activity. Not only the use

of visual EEG but the extraction of qEEG features has also been mentioned to be relevant for

diagnostic and prognostic purposes [40]. However, when working with EEG signals it is always

required to take into consideration the preprocessing, and artefacts removal which will be highly

time-consuming.

2.4 Machine Learning

Artificial Intelligence (AI) dates back to the 1950s when the term started to be used as a description

of the capability of machines to mimic human intelligence [41, 42]. The term AI is used when

a machine can perform tasks related to "problem-solving" or "learning" [42]. It allows for the

computer to copy human decisions through a process of learning, reasoning, and self-correction

but in a faster and easier way [43].

ML, a subset of AI, makes use of large data sets as inputs and identifies its patterns. It allows

users to train the machine to make recommendations or decisions autonomously [41]. After a

certain number of iterations, the machine can take an input and predict the output. The output can

be compared to the known outputs for each input to judge the accuracy of the algorithm and adjust,

when necessary, to improve the prediction of future inputs [41]. Nowadays, the use of extremely

large data sets has led to ML becoming popular and integrated into everyday life [41]. ML is

applied to the health field in many different ways either in diagnosis, treatment, or personalised

care, among others. ML allows us to learn about the structure and the functional anatomy of the

brain [25], holding great potential for neuroscience and neurocritical care. The use of accurate

ML options allows us to directly improve the patient’s outcome [41] and to obtain an individual

and tailored therapy [44]. AI allows for the transformation of medical practice by aiding the

physician’s interpretation of the data and improving the performance of diagnosis, prognosis, and

the management of decisions [43].

2.4.1 Data and Features

ML makes use of data sets, comprising multiple data points and the measured or calculated fea-

tures, which describe each data point [45]. It is possible to classify the features as categorical

(predefined values without a specific order), ordinal (predefined values with a specific order) or

numerical (real values). Each of those features is a one-dimensional representation of the feature

space. The actual value of a feature for one data point allows the definition of the point in a place

in the space dimension. All the values of all the features of one data point constitute the feature
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vector. If we have more features for each data set, the dimensionality is higher. The higher the

dimensionality, the harder it becomes for a human to visualise the information and detect patterns

in the data. However, computers can handle this efficiently to a certain degree [45]. Further-

more, it is still considered a challenge to include time as a continuous variable in ML algorithms.

Time-dependent data in ML data sets can be included: i) without changes, having each time point

representing a feature ii) applying Fourier transform, using the coefficients as features [45].

Regarding terminology, features are also mentioned as predictors, variables input or attributes.

The target is also known as an outcome, output, response variable, dependent variable or label.

Raw data does not always fit the models being used, thus preprocessing it is an important step

in ML. Very often, the features have to be extracted from the data [46]. Most ML algorithms can

handle high-dimensional data sets but feature engineering, which is the data transformation into

advanced combinations, such as log-transformed data, or simpler ones, as products and ratios, is

important [45]. Additionally, feature transformation is also essential. It usually includes either the

normal transformation or the standardisation of the data, for all features to be in the same range

[46], and dimensionality reduction, especially in the presence of highly correlated or irrelevant

features [46]. Furthermore, it is also important to pay attention to data quality which evaluates

outliers, missing values (identifying, imputation or eliminating [46]), bias in data, unbalance in

data set, and definition of measures of similarity [45]. Note that when working with categorical

data, encoding might be necessary [46]. Feature selection, normally used to reduce noise, remove

redundant or irrelevant attributes, and reduce dimensionality, might also be necessary. It allows

us to decrease the chances of overfitting [47], which occurs when the models fit perfectly the

training data but cannot generalise for new data [48]. Feature selection approaches are usually

divided into filters and wrappers, whereas the first ones usually make use of the data’s general

characteristics, and the latter usually depend on the predictor. Wrappers are considered to have

better results while filters are less computationally expensive. The use of these approaches is not

mutually exclusive [47].

Data can be separated into training, validation, and testing set. The training set is the one

employed for building various models while the validation set is for the selection of the algorithm

and its respective hyper-parameters [45].

2.4.2 Selection and Evaluation of models

There are three possible types of ML: i) supervised, when data is labelled, the algorithm extracts a

relation between the given labels and the data, hence there is feedback which allows the model to

predict the output for unseen data; ii) unsupervised, when there are no given labels to the data and

no feedback, but the model finds a hidden structure in data; iii) semi-supervised (less common),

which is the situation when there is a decision process, a reward system and the model can learn a

series of actions [25, 45, 46].

Classification tasks, a subcategory of supervised learning, try to predict the labels of new in-

stances, using the previous observations. The class classification can be binary, having a positive
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and negative class, and the goal is to find the separation boundary between the classes. Multi-

class classification is also possible when the inputs are also multiclass [46]. For the prediction

of continuous outputs, a different subcategory is used, the regression analysis. In this case, many

predictor variables and a continuous response variable are given, and a relation between the two

is searched for [46]. Regarding unsupervised learning techniques, no prior information is given

about the labels and the purpose of the methods is to explore the structure of the data and try

to extract significant knowledge, for example using clustering and dimensionality reduction ap-

proaches [45, 46].

Learning algorithms aim to learn from the given data set, create a model that describes it,

and predict the output for a new data point. Different ML algorithms have been developed to

solve different prediction tasks. However, no solution can be universally applied to tackle other

problems [45,49]. Performance metrics lead users to improve the training of the models since they

allow both the evaluation of the performance of the model itself, and for the selection of optimal

hyper-parameters [45]. Moreover, performance metrics enable the comparison of different models

and algorithms [46], since the selection of the most adequate for a specific problem is possible.

When the model cannot provide predicted values close to the observed values of the training set

it is considered underfitting, usually resulting from the use of models too simplistic or selection of

irrelevant features. When the model cannot generalise beyond the given training set it is considered

overfitting, which often occurs because of high complexity or a too large number of features for

a small set of training examples. The model should avoid both underfitting and overfitting of the

training data. This can also be explained as a bias/variance trade-off. Bias is the difference between

the average of the predicted values and the true mean that we are trying to predict. The variance

is a measure of the sensitivity of the model to the training set. Ideally, bias and variance should

be minimum. However, if the complexity of a model is increased, the variance also increases

whilst the bias decreases. A balance between these values should be found, allowing for a good

performance of the model in a new data set [45]. The models are selected according to their

performance on the validation set. The generalisation error is evaluated with the test set, being

for that reason called test error. Cross-validation can also be put to use. In this case, there is

only a separation into the train and the test set, in which the train set is divided into k subsets.

k-1 subsets are used for training and one is used to evaluate the performance of the model. The

process is repeated k times for each one of the k subsets in validation, being the performance score

the average of each set of hyper-parameters to test [45]. This allows for the fine-tuning of the

parameters of each of the models [46].

The most commonly used performance measures for model assessment are derived from the

confusion matrix [45]. Figure 2.3 represents a confusion matrix, where it is possible to define four

different metrics: when the data is correctly predicted as positive - True Positive (TP), or negative

- True Negative (TN); or when wrongly predicted as negative - False Negative (FN), or as positive

- False Positive (FP) [25]. Some metricts to take into consideration are [45, 51]:
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Figure 2.3: Confusion matrix and evaluation metrics.
Adapted from [50].

• Precision: ratio of correctly predicted positive values with the total number of predicted

positive values. In clinical context it is also known as positive predictive value (PPV).

Precision = PPV =
T P

T P+FP
(2.1)

• Sensitivity: ratio of correctly predicted positive values with the total number of positive

values in the data set. Also known as recall.

Sensitivity = Recall =
T P

T P+FN
(2.2)

• Specificity: ratio of correctly predicted negative values with the total number of true nega-

tives and false positives.

Speci f icity =
T N

T N +FP
(2.3)

• F1-score is a harmonic mean of precision and recall, allowing for a combined idea of the

two metrics. The value is maximum when precision and recall are balanced as equal.

F1− score =
2

1
Recall +

1
Precision

(2.4)

• Accuracy: number of correct predictions, divided by the total number of predictions made.

Accuracy =
T P+T N

T P+T N +FP+FN
(2.5)

• Area Under the ROC curve (AUC): the Receiver operating characteristic curve (ROC) is a

plot of the sensitivity, also known as True Positive Rate (TPR), against False Positive Rate
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(FPR), which is the ratio of negative values predicted incorrectly. The points on the ROC

curve are obtained by selecting different thresholds for the classification of a point in the

positive or the negative classes. Ideally, the best result of AUC is obtained when there is

perfect separation between the positive and the negative classes i.e. TPR=1 and FPR=0, as

represented in figure 2.4. Therefore, the goal is to maximise TPR and minimise FPR, which

results in a higher AUC and better the performance.

Figure 2.4: Summary of how to distinguish classifiers comparing AUC ROC.
Reproduced from [52].

2.5 Conclusion

TBI is a high incidence disease worldwide. Advances in informatics and prognostic tools have

the potential to promote neurocritical care by developing an outcome prediction model to greatly

assist medical decision-making, upgrade patient care, reduce the incidence of secondary insults,

assist in cost reallocation, provide more robust support for family members, and improve patient

care. The use of ML allows the analysis of large quantities of data, making it possible to analyse

information from cEEG signals in a more effective way.
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Chapter 3

State of the Art

Neurocritical care relies on the continuous and real-time measurement of physiological parame-

ters. The main focus of neurocritical care and TBI management is on the prevention, prediction,

and detection of secondary brain insults, that tend to often appear after an injury. The use of multi-

modal monitoring and informatic tools in ICU concedes an improved follow-up of the patients

since the transformation of raw data into useful information is possible [53].

In this chapter, we will focus on the description of the currently available and under-study

options for the management of TBI and outcome prediction. It comprises a description of the

models available in clinics and studies, including their advantages and limitations.

3.1 Demographic, Clinical, Imaging, and Laboratory Data

Prognostic models have been developed and improved over the years. Some include clinical data,

laboratory or CT information. The commonly established prediction models, that are currently

used in some centres are the Acute Physiology and Chronic Health Evaluation (APACHE) [54,55],

the International Mission for Prognosis and Analysis of Clinical Trials in TBI (IMPACT) [56],

and the Corticosteroid Randomization After Significant Head Injury (CRASH) [57]. Other than

the available models, numerous research efforts are being focused on this matter, using different

predictors, ML models, and timing of outcome prediction. They aim at tackling some of the

existing flaws encountered in the existing models such as the use of old data, lack of validation

or calibration or the restricted scenarios to which the models can be applied [58]. This section

describes the traditional and some non-trivial approaches for the prediction of outcomes after brain

injury using either demographic, clinical, imaging, and laboratory data individually or combined.

APACHE [54, 55] is a mortality and functional outcome prediction model that was firstly de-

veloped in the ‘90s and has undergone several updates. It includes 12 physiological variables

(including GCS, age, diagnosis, surgical information, and history prior to admission). The model

stratifies patients according to mortality risk. Although for the first day the prediction is not opti-

mal, it still allows for the testing of therapeutic efficacy and is a good indicator of later mortality

15
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and functional recovery [54, 55]. Nonetheless, APACHE is not specific to TBI but both the IM-

PACT [56] and CRASH [57] studies are currently the most used prognostic models for TBI.

IMPACT comprises 3 models of increasing complexity: 1) the core model, considering age,

motor score, and pupillary light; 2) the extended model, which includes CT, and secondary insult

variables; 3) the lab model, with levels of glucose and haemoglobin (Hb). One of IMPACT’s

advantages is the use of admission data making it independent of hospital care. However, it does

not take into consideration the patient’s changes in condition during the hospital stay. Furthermore,

it is also robust due to cross-validation with the original data set and external validation with

CRASH [3]. However, according to some authors, re-calibration of IMPACT is also needed [58].

Furthermore, Raj el al. [58] pretended to improve the IMPACT’s performance by combining it

with the APACHE. A combination of the two models resulted in better mortality prediction but

not of the neurological outcome [58].

Likewise, the CRASH [57] study, which includes a large dataset (over 10,000 patients) also

includes predictors such as age, GCS, pupillary reactivity, and presence of severe extracranial

injury and, for the CT model, the presence of petechial haemorrhage, obliteration of the third

ventricle or basal cisterns, subarachnoid haemorrhage, midline shift, and non-evacuated hematoma

were considered. They predict mortality within 14 days, and both mortality and unfavourable

outcome (using 5 classes) within 6 months. There are two variants, one for low and middle-income

countries, and one for high-income countries. In 2008, Steyberg et al. conducted a similar study

[59] using demographic predictors at admission (age, gender, race, education) in combination

with clinical severity (cause of injury, GCS components, pupillary reactivity), secondary insults

(hypoxia, hypotension, hypothermia), blood pressure (systolic, diastolic), CT characteristics, and

biochemical variables using a Logistic Regression model to help clinicians assess the severity and

prognosis of a patient with TBI, using mortality and unfavourable outcome prediction at 6-month.

They concluded that the most relevant information for prognosis was contained in age, motor

score, and pupillary reactivity on admission [59].

More recent studies, using patient data from Nijmegen, the Netherlands [60] aimed at develop-

ing a validated model to predict outcome in moderate and severe TBI using demographic, clinical,

and radiological parameters, including two prognostic models: 1) demographic and clinical mod-

els: using age, pupillary responses, GCS, the occurrence of hypotensive episodes after injury; 2)

CT models. They used a multivariate binary Logistic Regression between predictors of three pos-

sible outcomes and was externally validated in a Dutch TBI cohort. The outcome predictors for

both death and unfavourable outcome after multivariate analysis were age, GCS at admission, the

occurrence of a hypotensive episode, and pupillary reactivity. Despite IMPACT and CRASH’s use

of bigger data sets, this model relies on more recent data [61].

A comparison between IMPACT, CRASH, and Nijmegen models concluded that all three

show good discriminatory ability for 6-months outcome in TBI patients [61], with small AUC

differences when applied to a moderate-to-severe TBI population. In general, mortality was bet-

ter predicted than the unfavourable outcome. Age, GCS, and pupillary reactivity were common
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predictors for all three models but the models including CT information showed better perfor-

mance [61].

Most of the patient data used for these studies were derived from highly developed countries

and, for that reason, not applicable to global intensive care. Of the three mentioned, only CRASH

includes a model that takes into consideration the differences between middle-income countries

and high-income countries. With this motivation, Amorim et al. [62] focused in researching pre-

diction of outcome in low-to-middle-income countries. Predictors included were gender, age,

pupillary reactivity at admission, GCS, presence of hypoxia and hypotension, CT findings, trauma

severity score, and laboratory results. Different algorithms were tested, the best ones were Ran-

dom Forest for in-hospital mortality and conditional inference tree model for length of stay in the

ICU [62].

Most of the previously mentioned methods included the use of CT in prognostic models. Actu-

ally, neuroimaging techniques, such as CT and MRI, are methods used in hospitals for the assess-

ment of neurological damage and therefore are very commonly included in prognostic models [40].

CT findings such as the status of the basal cistern, midline shift, associated traumatic subarach-

noid haemorrhage and intraventricular haemorrhage are useful predictors of outcome and valid

options for prognostication of patients with TBI according to the literature [23]. However, the use

of imaging portrays disadvantages arising from the CT findings not being always objective [63].

Relying on CT information is limited in countries where the use of radiologic information is un-

common, or for prognostic of young children or pregnant women, where radiation exposure is not

recommended [64].

Despite numerous attempts to formulate new and better models, most do not reach clinic im-

plementation either for being developed on small samples, having a poor methodology, not having

external validation, and not being able to generalise [57, 61, 65].

3.2 Machine Learning

As previously mentioned in chapter 2, the decision on the best ML algorithm is not always unyield-

ing. Authors compare the use of different algorithms and obtain different results. Comparisons

might also be dependent on the evaluation metric employed. A study for prediction of mortal-

ity in severe TBI patients [66] found that the most significant variables were different for each

model but that among the tested algorithms, Artificial Neural Networks (ANN) had the highest

AUC in the train set (0.968) and sensitivity (80.59%). In the test set, ANN had the highest sensi-

tivity (84.38%). Cubic Support Vector Machines (SVM), quadratic SVM, and linear SVM were

reported to be the best algorithms in a study conducted to predict survival [67]. In contrast to an-

other study [68], that concluded that for the prediction of poor outcome (GOS 1-3) Random Forest

was the model that showed the highest sensitivity (97.2%), Gaussian Naïve Bayes had the highest

specificity (82.8%) but the highest accuracy was attained with Gradient Boosting (87.5%), and

highest AUC was in SVM with Radial Basis Function (RBF) Kernel (0.894). On the bootstrapped

test data Random Forest outperformed the other models in terms of accuracy and AUC. For the
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prediction of death, the best sensitivity was found for ridge regression (85.1%), the best specificity

for Random Forest (99.3%), the highest accuracy for linear SVM (89.8%), and the best AUC for

Random Forest (0.960). Ridge regression surpassed the other models in sensitivity and AUC in

the validation set. Furthermore, for in-hospital prediction of poor outcome, Random Forest was

the best whilst for in-hospital mortality, Ridge Regression was the leading one. These differences

among values of the different metrics for each algorithm indicate that the choice of algorithm to

use may portray a big challenge.

ML, by revealing patterns and relations in the data, portrays as a great advantage to optimise

the outcome in neurological patients since it allows for a better understanding of the relevant fac-

tors, leading to a more tailored therapy for each patient [44]. Nonetheless, the use of ML also

accounts for disadvantages derived from the lack of interpretability, explainability, and difficulty

assessing the contribution of each variable to prediction [64] due to the use of black-box tech-

niques. It can be discouraging for doctors since it comes with the uncertainty of responsibility

on wrongly classified cases [44] and mistakes committed based on such. To tackle this problem,

some authors opt for models that allow us to understand the decisions behind the algorithm. One

example was a study in which the decision was based on a tree model to predict the long-term

outcome of severe TBI patients [69]. In this case, variables used included the Abbreviated Injury

Scale, Marshall score, and pupil reactivity as potential predictors. They obtained results of AUC

of 0.67. The advantages of such models are that they are simple, easy to remember, explainable,

and easy to incorporate into the clinic.

One further disadvantage of the use of ML if that the shift from research to clinical settings is

not always adequate [44]. One way to avoid this is to ensure the models are largely validated in

different cohorts. Finally, the authors also clarify that ML models are only meant to reinforce and

aid medical decision-making, not to replace human opinion [44].

3.3 EEG

Regarding the features which ought to be used for the outcome prediction of TBI, qEEG parame-

ters related to absolute band power and variability have been considered [70]. For absolute band

power, median alpha power showed a very strong relation with outcome [70]. Regarding variabil-

ity, relative fast theta power variability and relative alpha power variability were pointed [70, 71].

Furthermore, both variability of mean frequency and spectral entropy, and the total power in beta,

fast theta, and alpha frequency bands, have been noted to be correlated to the outcome of TBI [71].

Literature reviews concluded that the most used qEEG features are spectral analysis [8], absolute

and relative amplitude [8,72], power within a frequency rate or on each channel [8,72], total EEG

power [72], coherence [8, 72], and symmetry between homologous electrodes pairs [8].

Regarding modelling approaches using qEEG, the models most commonly used in the liter-

ature are Logistic Regression and Random Forest [72]. Often others such as Generalised Linear

model, Linear Discriminant analysis, Multivariate Autoregressive model, SVM, and Least Abso-

lute Shrinkage and Selection Operator are used [22].
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A pilot study sought to use qEEG measures and clinically relevant parameters to predict the

outcome of patients with TBI [5]. Their work combines EEG monitoring with the IMPACT predic-

tors. The best result was obtained by using 19 features (8 qEEG, Mean Arterial Pressure (MAP),

age, and 9 IMPACT parameters). In all models, the mean amplitude of EEG, age and MAP were

shown to be important for prediction capability. Features showed different significance when the

time interval was changed. Total power (mean amplitude), spectral edge frequency of 90%, and

relative alpha power at 72h were found to be significant. Similar to this study, other authors used

Random Forest classifiers with 8 visual EEG features and clinical characteristics to predict sur-

vival at 6 months for different groups (stroke, TBI, the metabolic inflammatory infectious origin of

consciousness impairment (MIII) and HIE [36]. Results showed that the most important clinical

characteristics were GCS (closely followed by age) for predicting survival, and age for predict-

ing unfavourable outcome. EEG background reactivity was the most important EEG feature for

both outcomes. In this study, the use of clinical variables with EEG did not change classification

performance, but increased specificity and decreased sensitivity [36].

3.4 Vital Signals: Dynamics over Time

The consideration of temporal information might be one factor worth taking into account, espe-

cially when using physiological signals and continuous measures.

Early in 2012, Feng et al [73] developed a model which considered information regarding

historic ICU readings for ischemic brain injury. The model performed better compared to those

that did not consider temporal information. Therefore a temporal parameter may hold promise for

the prediction in TBI patients. Temporal models are more complex and require more training time

but can outperform non-temporal models in terms of accuracy, AUC, and F-measure [73].

Dynamic algorithms might also be an option to improve prediction. Raj et al. [74] used ICP,

MAP, Cerebral Perfusion Pressure, and GCS values for motor and eye responses, to predict mor-

tality 30 days after a TBI. The first prediction was at 24h after trauma, which was then updated

every 8 to 120 hours. The performance was shown to be best at 48h after injury. Medical staff

benefits from real-time predictions based on dynamics since it allows the physician to become

aware of the worsening of the patient’s condition. It also allows the identification of the need for

intervention [74].

In addition, substituting defined time points for the use of continuous measures may be helpful

in predicting TBI’s outcome. Lee et al [75] attempted to correlate the use of cEEG features with

functional outcome assessed with the GOSE. The authors found that the unfavourable outcome

was not associated with age or pupillary reactivity in this cohort, but rather with both GCS after

resuscitation and injury severity score. Ictal-interictal continuum patterns correlated significantly

with the IMPACT score. Furthermore, the cEEG background features: the absence of a posterior

dominant rhythm, the absence of N2 sleep transients, a predominant delta activity, a discontinuous

background at each time point of recording, and the presence of a moderate to severe background

at each time point of recording were found to be related with functional outcome. In summary, the
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data suggest that cEEG background can provide additional prognostic information related to the

established clinical variables as early as 24h after recording onset [75].

3.5 Conclusion

Predicting long-term outcomes for individual patients is difficult, especially in the first hours or

days after injury and it is currently limited by available scoring systems or clinical models. Out-

come prediction models with clinical data are used including the APACHE [54,55], IMPACT [56],

and CRASH [57]. Besides clinical data, it is also possible to include laboratory and CT options.

Variables commonly used are age, admission GCS (or one specific component of the GCS),

and pupillary reactivity [59–62]. Combining admission features with others collected later during

ICU stay can improve the accuracy of the results. Some authors have also mentioned correlations

with other variables and patient’s outcome such as hypotension [60,62], gender [62], hypoxia [62].

The use of CT information is also frequent [23, 40, 62, 63]. Several authors demonstrated that the

models may improve their accuracy and performance when physiological signals are included in

this evaluation [53, 76]. It is also expected that the addition of EEG features to the clinical data

will improve the performance of the model, and provide medical staff with a reliable prognostic

tool [5, 36, 70, 75].

Furthermore, the use of ML for such models has also been discussed since it presents both

advantages, such as allowing for a more tailored therapy to the individual patient and for the

understanding of patterns that are not easily interpreted by humans, and disadvantages associated

with black-box models lacking explainability [44]. The use of regression models instead of ML is

also often considered in such models but does only achieve superior performance in very specific

conditions [77, 78]. Different ML algorithms should be considered [22, 68, 69]. Most studies

regarding outcome prediction of TBI either use Logistic Regression [58, 60], Random Forest [62,

68], ANN [63, 64, 66], SVM [67] or tree-based models [69].

Several points for outcome assessment can also be considered such as mortality (survival vs

death) in-hospital, after 14 days or in the long-term, and the outcome assessment (favourable vs

unfavourable) at 3, 6, 9, and 12 months after injury.
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Methodology

4.1 Database

The study population for this work were patients with moderate to severe TBI admitted between

2013 and 2021 to the ICU in the Medisch Spectrum Twente. Inclusion parameters were: 1) GCS of

3-12 at the trauma site or emergency department; 2) admission to the ICU and expectancy of stay of

at least 24 hours; 3) age older than 18. Patients were excluded if trauma was combined or following

cardiac arrest, had a medical history of TBI, stroke without full recovery or brain illness (such as

brain tumour or neuro-degenerative disease) or limited life expectancy before the TBI, high risk

for development of iodine contrast induce nephropathy or contrast allergy, potentially childbearing

or pregnancy. The study was conducted according to the principles of the Declaration of Helsinki

2013 and in accordance with the Medical Research Involving Human Subjects Act (WMO). Verbal

and written consent is provided as soon as possible to the legal representative. When the patient

regains consciousness, verbal and written study information is provided to the patient. The consent

can be withdrawn at any time during the study. Data was handled confidentially and coded. Data

collection protocol can be consulted in [79].

4.1.1 Clinical Parameters and Outcome Assessment

The noted demographic, clinical, and trauma-related parameters were age, gender, trauma cause,

impact seizure, history of prior seizures or TBI, alcohol ingestion and pupil response.

During the stay in the ICU, the administration of sedatives (midazolam and propofol) and anti-

epileptic drugs (AED) were indicated. The occurrence of secondary insults such as hypotension

(characterized as mean arterial pressure below 90 mmHg) and hypoxia (arterial oxygen saturation

below 90%) was also reported. Laboratory parameters included were the glucose and Hb levels at

the time of admission.

Concerning CT characteristics both Marshall and Rotterdam scales scores were noted. Infor-

mation on the existence of basal cisterns, midline shift bigger than 5mm, epidural mass lesion,

intraventricular air blood or traumatic subarachnoid hematoma (SAH) and occurrence or not of

neurosurgical interventions (such as craniotomy and ICP monitoring) were available.

21
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Regarding the GCS different measurements were obtained: GCS motor score, GCS in the

site and GCS in hospital (at admission). Neurological outcome was evaluated with GOSE, 12

months after the admission using telephonic follow-up. GOSE was dichotomized into poor out-

come (GOSE 1–3) and good outcome (GOSE 4–8).

Some patients (n=27) also presented recordings of ICP.

4.1.2 EEG Data

cEEG recordings started as soon as possible after admission to the ICU and continued for 7 days

after injury, until discharge from the ICU or death. A total of 21 silver-silver chloride cup elec-

trodes were placed on the scalp of the patients following the 10–20 International System. A Neuro

center EEG recording system was employed. EEG was stored in the database of the clinical neuro-

physiology department. Files are saved in an edf format. The file’s header has indications on the

starting time and date of recording, number of data records, duration of the data records, number

of recorded channels and corresponding labels. 19 channels were used in a G19 montage. In this

montage, the names of the corresponding signals for each channel are Fp2, Fp1, F8, F7, F4, F3,

T4, T3, C4, C3, T6, T5, P4, P3, O2, O1, Fz, Cz, Pz. Furthermore, the file also has indications on

the transducer, units, pre-filtering and sampling rate of the signal.

4.2 Preprocessing

Files belonging to the same patient were ordered by date and hour of acquisition and divided into

1h intervals. For each hour, a 5 minutes window was used for processing and feature extraction.

The algorithm starts by using the 5 minutes in the middle of the duration of the interval, otherwise,

it would look for the nearest quality approved 5 minutes window inside the one-hour interval. If

no proper window would be found, the hour was excluded from the analysis.

4.2.1 Clean data and Artefacts removal

We firstly filtered EEG data using a zero-phase sixth-order Butterworth bandpass filter of 0.1-40

Hz and corrected EEG for the mean. A semi-automated algorithm to detect and remove artefacts

within windows of 10 seconds in the common average was employed. We identified unrealistic

high amplitudes, muscle artefacts, and flat/empty channels as artefacts. If the number of artefacts

was excessive or the channel was flat, the channel was classified as a bad channel. If only present in

small segments, those segments were removed from the signal. We also searched for ECG artefacts

using temporal Independent component analysis (ICA) [80] (Matlab code available in: [81] ) .

If the remaining signal was smaller than 2 minutes or a threshold of half the number of chan-

nels plus 3 as a minimum number of channels was not fulfilled, the signal was not considered for

the analysis and another interval was searched for.



4.2 Preprocessing 23

4.2.2 EEG Feature Extraction

In the frequency domain, it is possible to calculate the power spectral density (PSD, also mentioned

as power spectrum) either using parametric or non-parametric methods [25, 39] . We obtained the

PSD, using Welch’s method. It is also possible to calculate features for different frequency bands.

The bands differ slightly between authors [25–27, 39, 70, 82] but in this work are considered as

following: Delta: 0.5 and 4 Hz; Theta: 4 to 8 Hz; Alpha: 8 to 13 Hz; Beta: 13 to 30 Hz; Gamma:

> 30Hz;

The features extracted from the EEG signals were the following:

• Mean Amplitude: corresponds to the standard deviation of the signal [5] and was calculated

for each channel.

• Coherence: is a non-directed spatio-temporal feature. It is considered the correspondent

to a cross-correlation in the frequency domain and reflects how the changes of frequency

components between channels are synchronized [39]. It can be calculated as the mean of

all magnitude squared coherences (function available in Matlab [83]) between all possible

combinations of channels [5]. We calculated it in each channel for all frequency bands and

averaged using a Hann window of 4 seconds and an overlap of 2 seconds. Results in a value

between 0 (not synchronized) and 1 (synchronized).

• Regularity: allows the evaluation of the continuity of a signal and indicates if the amplitude

is within normal values [34]. Higher values indicate a more regular amplitude of the signal.

We calculated it for each channel and averaged it, according to equation 4.1 [34], where N

is the length of the signal q.

Regularity =

√
∑

N
i=1 i2 q(i)

1
3 N2 ∑

N
i=1 q(i)

(4.1)

• Spatial Brain Symmetry Index: The Brain Symmetry Index (BSI) calculates the symmetry

between every two pairs of electrodes from left and right hemispheres [84–86] i.e. allows

the quantification of spatial and temporal spectrum characteristics. This feature is useful

to monitor changes in brain function [86]. The index allows the quantification of ischemic

damage [84] and takes values between 0 (symmetric) and 1 (not symmetric). Formulas for

BSI can be found in [85]. If any flat or bad channels were present they were not included in

the analysis but the order was preserved.

• Shannon Entropy: this concept allows to quantify uncertainty or randomness and is, for

this reason, a measure of complexity and predictability in the time-series observed [5,39,87].

Higher entropy corresponds to a less predictable system [39]. It was calculated for each

channel (following the equation 4.2 [34,88], where where xi the amplitude of the signal and
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p(xi) the probability of its occurrence in the signal, estimated using the histogram) and then

averaged.

Shannon Entropy =−
N

∑
i=1

p(xi) log2 p(xi) (4.2)

• Total Power: calculated as the sum of the PSD of all frequency bands [5].

• Alpha-delta ratio: several ratios can also be calculated between frequency bands and used

as features [39]. The alpha delta ratio (ADR), as the name indicates, is the division of the

alpha frequency band by the delta frequency band [5].

• SEF90: The spectral edge frequency 90% (SEF90) is the frequency at which 90% of the

total power lies below this defined cut-off [5].

• Fitting oscillations and one over f (FOOOF): The signals can show both periodic and

aperiodic components that have been associated with a diversity of states (physiological,

cognitive, behavioural) and diseases. Therefore it is possible to characterize the shape of

the PSD in one aperiodic component (1/f a) distribution with an exponential decrease across

frequency bands, while the oscillations, considered the periodic component, can be seen

as peaks of power above the aperiodic component in the frequency domain. The aperiodic

exponent, which can be calculated as the negative slope of the PSD in log-log space, rep-

resents the pattern of aperiodic power across frequencies. The ’offset’ allows to reflect the

uniform shift of power across frequencies [82, 89]. Figure 4.1 presents a representation of

these components. The FOOF analysis described in [82] including the ’FOOOF’ toolbox

for Python and Matlab wrapper were used to extract the aperiodic offset and exponent. Code

available in [90].

Figure 4.1: Representation of the aperiodic component of the power spectrum, described by an
aperiodic exponent and an offset. Reproduced from [82].
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The following features were extracted for the delta, theta, alpha and beta frequency bands:

• Absolute Power: is the integration of the PSD within each frequency band.

• Relative Power: calculated as the PSD in the frequency band divided by the total power

[5, 70].

• Variability per frequency band: the ratio between the median absolute deviation and the

median power [5, 70].

• Center of gravity: The center of gravity in the left-right and anterior-posterior brain di-

rection are two time-and-frequency dependent functions which allow both to quantify the

distribution of power over the head and to represent topographically where the power is

maximum for each frequency band [5,91]. Center of Gravity in the left to right and anterior

to posterior direction was calculated for each frequency band separately and all, according

to the equation 4.3 from [91]. The Fourier coefficients (Ai,j) are weighted in the direction d,

which can be left to right or anterior to posterior. If there was any bad channel, that channel

and its symmetric in the brain were excluded from the analysis.

Center o f gravity =
∑

M
j=1 Ai, j d j

∑
M
j=1 Ai, j

(4.3)

• Detrended Fluctuation Analysis (DFA): Physiological processes might manifest fluctua-

tions without characteristic scales. Often, the use of mean or median might be considered

incorrect in systems that are considered "scale-free" [92]. For that reason, DFA, which al-

lows quantifying power-law scaling, has received attention since it is considered a method to

analyse the scaling behaviour of a time series and to determine power-law behaviour [92,93].

Power laws adopt the same form in any time scale, depending only on a scaling factor with

exponent H - Hurst exponent. The scaling characteristics of amplitude and phase fluctu-

ations may help understand brain operation in a critical state and comprehending cortical

functioning. Therefore, the DFA allows to analyse the long-range temporal auto-correlation

structure of EEG activity and global amplitude and phase synchronization [94]. It aims to

remove trends in the signal and determine the mean squared fluctuations in consecutive in-

tervals. The result of the DFA is the estimation of the Hurst exponent. An exponent H= 0.5

represents an uncorrelated process with no memory, while H > 0.5 represents the presence

of long-range temporal correlations and memory. The DFA analysis which was obtained

using the implementation of [94, 95] (Matlab code available: [96]) allowed us to determine

power-law behaviour. The Hilbert transform was employed to extract the analytical signal

of bandpass filtered data. DFA allowed us to estimate the phase and amplitude envelope

dynamics across each frequency band. As input to the DFA analysis, either the sum of the

amplitude envelopes (which we mention as DFA amplitude) or the global phase (mentioned

as DFA phase) dynamics were used. Depending on the frequency band the window size
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ranged between one oscillation to one-fourth of the recording time for the auto-correlation

function computation.

• Broken Detail: Detailed balance is a concept that insinuates that the transitions between

two states are pairwise (i.e. without any specific preference between states). The brain

breaks detailed balance at large scales when it executes physical movements, processes

information and performs cognitive functions. Thus, it is also expected that violations of

detailed balance in neural dynamics increase with physical and cognitive effort. States of

the brain can be estimated from the first two principal components of the bandpass filtered

EEG data based on their current and future magnitudes to estimate the transition probability

matrix. The asymmetry of this transition probability matrix or the entropy production and

the curl of the corresponding probability flux can be used to define the broken detailed

balance. Broken detail approach was followed as described in [97] (Matlab code available:

[98]). The value of the sum of the probabilities of the flux vector (mentioned as S) and curl

of flux for each frequency band was obtained.

It is important to note that the center of gravity and brain symmetry are spatial features and

therefore the order of the channels was taken into consideration.

4.3 Temporal Evolution

In order to evaluate the temporal evolution of the features, a regression was fit for each feature

in different periods after the first 12h after admission, when available, in 24, 36, 48 and over 48

hours possible intervals. A total of 15 intervals were defined according to figure 4.2.

Different regressions were applied, linear (4.4) and non-linear (4.5):

F(x) = p1x+ p2 (4.4)

F(x) = p1x2 + p2x+ p3 (4.5)

where the variables p1, p2 or p1, p2 and p3 were saved as inputs for the model. We also obtained

the mean and standard deviation of the signal in each interval.

4.4 Machine Learning

Data were normalized using z-score normalization. GOSE outcome was dichotomized into poor

(GOSE of 1,2 or 3) and good (GOSE >3). Categorical data was encoded. EEG predictors with the

most correlations above 0.9 with other predictors were removed from the data.

We employed a feature selection method - relief-F [47, 99] to reduce the number of EEG and

clinical predictors. Relief-F is an iterative, randomised and supervised approach. The goal of the
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Figure 4.2: Time intervals defined. A total of 15 intervals was used, including durations of 24, 36,
48 and over 48 hours intervals.

filter is to estimate the ranking of the features based on their capability to differentiate data samples

close to each other [47, 99]. The filter was followed by a backward elimination approach using

Random Forest to find the best set of predictors for the model. Here, all features were used to train

the model and the feature with the lowest importance was eliminated (feature importance ranking),

and the model was retrained. AUC values as a function of the number of features were saved and

the set of features corresponding to the maximum AUC value (after smoothing of the curve) was

used as the optimal number of features. Figure 4.3 provides an overview of the methodology

employed for feature selection. The optimal set of features was then applied to a Random Forest

classifier to predict clinical outcome.

4.4.1 Random Forest Classifier

Random Forest is a supervised ML algorithm that allows both classification and regression tasks.

The principle behind this algorithm is to build several decision trees [100–102] .

To understand Random Forest it is necessary to understand how decision trees and generated.

They are composed of three components: decision nodes, leaf nodes and a root node. The training

data is divided into branches which further divide into other branches. This iteration continues

until a leaf node, which can no longer be segregated, is reached. The nodes represent the attributes

used for the prediction of the output [101].
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Figure 4.3: Schema of the feature selection methodology.

Random Forest is an ensemble of decision trees, thus having more than one individual model

contributing to the prediction. In this case, the ensemble is based on bagging techniques (or

bootstrap aggregation) in which random samples from the data set are chosen to generate the

model - bootstrap step. Each model is trained individually and the output is generated considering

predictions from all models - aggregation step [100, 102]. In classification tasks, the majority of

the votes is used while in regression the average of the decisions is taken into consideration [100].

Results are usually better for classification [100].

Some important aspects of Random Forest make its use advantageous. The use of subsets of

data allows not only to obtain a big diversity, since not all samples are used in each tree, creating

always different trees but also avoids overfitting [100–103]. Additionally, it is possible to view the

features’ relative importance in the prediction [102,103]. Since all trees are created in parallel and

independently, it also allows full use of the Central Processing Unit for generation [100] and allows

the use of large data sets [101]. Furthermore, it is immune to the curse of dimensionality [100].

The averaging/voting allows us to obtain stability in the results [100]. Random Forests handles

continuous (regression) and categorical (classification) variables in the data sets and performs

well even if the data contains missing or null values [100, 101]. However, Random Forests can

be considered complex when compared to decision trees since they required more computational

resources and more time [100, 101].

Hyperparameters to take into consideration related to the predictive power are the number of

built trees, the maximum number of features considering in a splitting node, and the minimum

number of examples in each leaf for internal splitting [100, 102]. In this work parameter tunning

was performed using the out-of-bag (OOB) error to determine the optimal number of trees. This

method considers the error on the OOB samples, which are the samples that are not selected in

each bootstrap done by the Random Forest [104]. The optimal number of trees was selected as the

index in which the error converged [103] (consult Appendix B for more information). A quantile

error and bayesian optimization (MatLab code available in [105]) were employed for the minimum

leaf size, the number of predictors to sample and in-bag fraction. In the Bayesian Optimization
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method for hyper-parameter tuning, the model is run several times with different sets of hyper-

parameter values [106]. However, contrary to other approaches to parameter tuning, this method

evaluates the information from the previous model in order to select the hyper-parameter for the

most recent one. This approach is considered to find the highest accuracy model faster [106].

The predictive value was evaluated in a 5-fold-cross validation, using 80% of data to train and

20% to test. We evaluated and compared the results using sensitivity, specificity and the AUC of

the ROC curve values. The threshold was defined as the optimal operating point of the ROC curve

using FPR and TPR. This optimal operating point is obtained with the function perfcurve [107]

- which moves the straight line with slope S from the upper left corner of the ROC plot (FPR=0,

TPR=1) down and to the right until it intersects the ROC curve. Values were averaged for 5

cross-validations and displayed with a 95% confidence interval.

Values from the different time intervals were fed to the model, which for each selected a dif-

ferent set of features. Models using only clinical, only EEG and both EEG and clinical predictors

combined were compared. The inclusion of ICP as a predictor in the prediction model was also

assessed. Differences between model predictions (with a statistical significance of p < 0.05) were

assessed using McNemar’s test. The McNemar’s test is a non-parametric test for paired data and

allows the evaluation of the changes in proportion for the paired data [108]. At last, a comparison

with actual time point results and temporal evolution (trends over time) was also performed.
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Chapter 5

Results

5.1 Database

The present database contains a total of 111 patients. From this set, patients were excluded for

lack of EEG data before 96h after trauma (n=3), when EEG total recordings after cleaning were

2h or less (n=1), if concurrent with post-anoxic coma (n=3) and due to missing GOSE outcome

scores (n=2). After exclusion, 102 patients were left for inclusion in the analysis, the majority

male (n=75). Table 5.1 presents their baseline characteristics. The dataset is balanced in terms of

the number of patients with poor (GOSE =1-3) and good (GOSE > 4) outcome: 54 of the sustained

TBI resulted in a poor outcome, from which 43 patients died (GOSE = 1), contrasting to 48 patients

that had a good admission outcome (GOSE 3-8). Patients with poor outcomes were significantly

older than patients with good outcomes, being a mean age of 57 and 41 years old, respectively.

GCS at admission were similar between both groups, since all patients included were admitted

at the hospital with a moderate to severe TBI, but outcomes were very different. All values can

be consulted in the table below. More details on the CT assessment, cause of trauma, and pupil

evaluation can be found in Appendix A.

Table 5.1: Patient’s characteristics grouped in a poor and a good outcome.

Poor Outcome Good Outcome
GOSE= 1-3

(n=54)
GOSE = 4-8
(n=48)

Gender | females (%) 13 (24,1%) 14 (29,2%)
Age in years | median(IQR) 59 (28) 42 (35)
GCS in hospital | median(IQR) 3 (5) 3 (6)
GOSE | median(IQR) 1 (0) 6 (2)

31
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5.2 Models’ Performance

The values for the AUC in different time intervals with EEG and admission predictors varied

considerably and the results of AUC for train and test set are presented in table 5.2.

Table 5.2: AUC for train and test set. The AUC values for 30 tested models using admission and
EEG predictors vary from 0.87 and 0.97 in the training set and between 0.65 and 0.85 in the test
set. Values presented include the confidence interval. Models were identified using the fit function
type (poly1 for linear and poly2 for polynomial) and the hours of start and end of the time interval
used. The two models considered as the best models are in bold.

Interval
(h)

FIT
AUC
train

AUC
test

poly1 0.91 [0.86-0.96] 0.83 [0.75-0.91]
12-36

poly2 0.92 [0.85-0.98] 0.79 [0.69-0.88]
poly1 0.97 [0.94-1.00] 0.79 [0.73-0.85]

12-48
poly2 0.96 [0.94-0.98] 0.75 [0.57-0.93]
poly1 0.88 [0.87-0.89] 0.80 [0.65-0.95]

12-72
poly2 0.87 [0.83-0.91] 0.76 [0.60-0.92]
poly1 0.94 [0.89-0.99] 0.80 [0.65-0.94]

24-48
poly2 0.87 [0.83-0.91] 0.76 [0.65-0.87]
poly1 0.92 [0.88-0.96] 0.76 [0.65-0.88]

24-60
poly2 0.93 [0.86-1.00] 0.74 [0.63-0.85]
poly1 0.88 [0.79-0.97] 0.71 [0.66-0.76]

24-72
poly2 0.91 [0.79-1.02] 0.72 [0.59-0.85]
poly1 0.88 [0.75-1.00] 0.70 [0.47-0.93]

24-96
poly2 0.89 [0.79-0.99] 0.75 [0.63-0.86]
poly1 0.91 [0.86-0.97] 0.79 [0.76-0.82]

36-60
poly2 0.93 [0.85-1.02] 0.65 [0.42-0.87]
poly1 0.89 [0.77-1.00] 0.78 [0.72-0.84]

36-72
poly2 0.96 [0.92-1.00] 0.76 [0.62-0.91]
poly1 0.97 [0.95-0.99] 0.85 [0.73-0.97]

48-72
poly2 0.95 [0.90-0.99] 0.83 [0.77-0.89]
poly1 0.95 [0.91-0.98] 0.81 [0.64-0.97]

48-84
poly2 0.97 [0.94-1.00] 0.81 [0.63-0.98]
poly1 0.89 [0.86-0.92] 0.78 [0.68-0.89]

48-96
poly2 0.95 [0.89-1.01] 0.81 [0.66-0.96]
poly1 0.95 [0.89-1.01] 0.79 [0.66-0.92]

60-84
poly2 0.94 [0.89-0.99] 0.79 [0.67-0.92]
poly1 0.94 [0.87-1.01] 0.80 [0.65-0.95]

60-96
poly2 0.96 [0.93-0.99] 0.83 [0.74-0.93]
poly1 0.95 [0.91-0.99] 0.77 [0.70-0.85]

72-96
poly2 0.93 [0.87-0.99] 0.77 [0.60-0.93]

From the 30 available models, we selected the best two. The model with the highest AUC in

the test set was obtained using data between 48h to 72h with both admission and EEG predictors
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(figure 5.1). It predicted outcome yielding an AUC of 0.85 [0.73-0.97], sensitivity of 0.91 [0.83-

1.00] and specificity of 0.67 [0.32-1.00] in the test set. Moreover, in an earlier time interval, using

data from 12h to 36h, the following values were obtained: AUC = 0.83 [0.75-0.91], sensitivity of

0.83 [0.72-0.94] and specificity of 0.80 [0.61-0.94] (figure 5.2) in the test set. These two models

were the target for further analysis. The correspondent ROC curves and evaluation metrics can

be found in figures 5.1 and 5.2 for both the train and test sets. Values of AUC, sensitivity and

specificity are presented with a 95% confidence interval.

Figure 5.1: ROC curve. Train set (left) and test set (right) for the 48h-72h interval and linear fit.

5.2.1 Predictors

The results for the previously mentioned time intervals, using EEG and admission predictors com-

bined and independently can be observed in table 5.3. Models combining EEG and admission

predictors obtained better AUC than models using them separately. The models were proved to be

different by Mcnemar’s test at a 5% significance level. The inclusion of ICP as a predictor of the

outcome of TBI did not improve the performance. ICP was not selected after the feature selection

stage and therefore had no contribution to the prediction.

Furthermore, the AUC results obtained using features from the exact time points instead of the

temporal information (slopes, offsets, mean and std) ranged from 0.73 to 0.80. Results for 36h
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Figure 5.2: ROC curve. Train set (left) and test set (right) for the 12h-36h interval and linear fit.

Table 5.3: Model performance using EEG predictors, admission predictors and both EEG and
admission combined. Values of AUC, sensitivity and specificity are presented with a 95% confi-
dence interval. Values of AUC are higher when EEG predictors are combined with the admission
ones.

Time Interval 12h-36h Linear 48h-72h Linear
Predictors EEG Admission EEG + Admission EEG Admission EEG + Admission
AUC 0.72 [0.61-0.83] 0.71 [0.58-0.84] 0.83 [0.75-0.91] 0.75 [0.68-0.83] 0.77 [0.67-0.86] 0.85 [0.73-0.97]
Sensitivity 0.83 [0.52-1.00] 0.86 [0.69-1.01] 0.83 [0.72-0.94] 0.81 [0.57-1.00] 0.80 [0.60-1.01] 0.91 [0.83-1.00]
Specificity 0.57 [0.12-1.00] 0.58 [0.44-0.73] 0.80 [0.61-0.94] 0.65 [0.19-1.00] 0.74 [0.55-0.93] 0.67 [0.32-1.00]

and 72h, which are comparable with the time intervals of 12h-36h and 48h-72h, are indicated in

table 5.4.

Table 5.4: Model performance using only EEG features from the 36 and 72 hours after injury
compared with time intervals between 12-36h and 48-72h. AUC, sensitivity and specificity results
in the test set are presented with 95% confidence interval. AUC is greater in the 12-36h model
than 36h as well as in 48h-72h compared to 72h.

Time 36h 12-36h 72h 48-72h
AUC 0.78 [0.72-0.84] 0.83 [0.75-0.91] 0.80 [0.68-0.92] 0.85 [0.73-0.97]
Sensitivity 0.81 [0.69-0.83] 0.83 [0.72-0.94] 0.74 [0.51-0.98] 0.91 [0.83-1.00]
Specificity 0.81 [0.64-0.97] 0.80 [0.61-0.94] 0.79 [0.57-1.00] 0.67 [0.32-1.00]
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5.3 Feature Selection and Importance

The feature selection with backward elimination resulted in the AUC as a function of the number

of features (Figure 5.3). The AUC increases while the number of features decreases until the

optimal data set is found. The ideal number of features used to make predictions changed for each

model.

Figure 5.3: Example of the AUC as a function of the number of features used. The optimal set of
data that resulted from the backward elimination is marked on the plot. In most models the ideal
set of features for prediction was small (<20).

For the time interval 48h-72h, the most important features were age, the mean value of the

Hurst exponent using the phase dynamics in the delta band (deltaDfaPhaseMean), the mean value

of Hurst exponent using the phase dynamics in the alpha band (alphaDfaPhaseMean), the p2 of

Hurst exponent using the phase dynamics in the delta band (deltaDfaPhasep2), the mean of the

coherence, and the mean value the sum of the probabilities of the curl flux vector in the theta band

(thetaSmean) (Figure 5.4b), in respective order of importance. For the time interval 12h-36h, the

most important features were age, the slope of SEF90%, mean value of BSI (symmetry), mean

of entropy, the mean Hurst phase in the alpha band (alphaDfaPhaseMean), mean of entropy and

administration of midazolam (Figure 5.4a).
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(a) 12h-36h Linear fit

(b) 48h-72h Linear Fit

Figure 5.4: Feature Importance for the two selected models, including standard deviation of the
cross-validation iterations. alphaDfaPhasemean and deltaDfaPhasemean stand for the mean of
the Hurst exponent in phase dynamics in the alpha and delta band respectively (results from the
detrended fluctuation analysis - DFA). thetaSmean stands for the mean of the sum of the curl of
the probability flux in the theta band (results from the Broken Detail analysis).



Chapter 6

Discussion

The purpose of this study was to obtain a ML algorithm capable of predicting the outcome after

TBI using EEG and admission data. This study was spawned from the lack of research on the

contribution of EEG trends over time to the prediction of outcome in TBI patients. The main aim

herein was to investigate how changes in EEG features over time could improve the prognostica-

tion of the disease when combined with admission parameters.

The model to predict the outcome of TBI with the highest AUC was obtained for the interval

between 48h to 72h (AUC = 0.85 [0.73-0.97], sensitivity = 0.91 [0.83-1.00], and specificity = 0.67

[0.32-1.00]) (figure 5.1). The model using data between 12h to 36h hours (AUC = 0.83 [0.75-

0.91]; sensitivity = 0.83 [0.72-0.94]; specificity = 0.80 [0.61-0.94]) (figure 5.2), also obtained

good performance and is balanced, both in sensitivity and specificity, as well as in the values

obtained for the confidence interval. Both models incorporated admission and EEG predictors,

using a Random Forest algorithm with a 5-fold cross-validation. Overall, the combination of

admission predictors with the EEG features outperformed models trained with only admission

or EEG features separately. The findings also hint at a better performance using EEG trends

(regression features) compared to features from single time points.

This study allows for an early prediction of neurological outcome following a TBI, by using

multiple EEG features and a ML approach. We believe these points stress the importance of

continuously monitoring the EEG and encouraging its adoption in moderate to severe TBI patients

in the ICU, as it is frequently done in other brain injury populations.

6.1 Models’ performance

AUC values between linear and polynomial models for the same interval were different. The

findings suggest that one function fits the data better than the other, depending on the time span

selected.

Furthermore, differences between time intervals can be caused by the absence of data in spe-

cific time points within each interval, for example, due to the patient’s dismissal from ICU or

death, or due to surgical interventions, which cannot be prevented in patients with a moderate to

37
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severe condition, as the ones in the data set used. When this occurs, it results in a regression with

a bigger error and less adjustment to the available data. Thus, it was expected that the results

obtained were both different between fit-type functions and between time intervals.

Numerous studies have attempted at predicting the outcome of a TBI. Comparison between

studies is challenging due to disparities amongst populations of different cohorts. There are mod-

els available for other brain injuries, or in data sets with other characteristics (size, age, causes of

trauma, severity, etc), different times of outcome assessment, and the actual scale for assessment

varies significantly. Additionally, occasionally different evaluation metrics are employed, which

does not allow to have a direct comparison between different studies. Using only admission vari-

ables, values obtained are scattered. Markedly, the CRASH studies [57] use as a performance

metric the C statistic. They obtained a C value of 0.81 in the prediction of mortality in high-

income countries and a C value of 0.86 for mortality after 14 days. It is not possible to compare

these values with our study. Previous studies [69] have also reported values for sensitivity and

specificity of tree models for the prediction of outcome. The values were 72.3% [66.4–77.6%]

and 62.5% [54.9–69.6%]. These values are lower than the ones obtained for our two best models,

which have sensitivity of 0.83 [0.72-0.94] and 0.91 [0.83-1.00] and specificity of 0.80 [0.61-0.94]

and 0.67 [0.32-1.00], as it is evident from table 5.3. Our models using only EEG or only admis-

sion variables also obtained a sensitivity higher than 72.3%. However, the specificity values were

only higher for the model from 48h-72h. Furthermore, studies [60] have reported the prediction of

the outcome of TBI focusing on CT characteristics. Results yield an AUC of 0.83 for predicting

unfavourable outcome but only 0.69 in surviving patients. Therefore the results were shown to

be insufficient for predicting disability in survival patients. An outcome prediction model devel-

oped with admission characteristics using cross-validation [59] obtained an AUC of 0.80 [0.66 -

0.84]. This value was one of the closest to the work carried by us, amongst the ones found in

the literature for the prediction of the neurological outcome of TBI at 6 months. The prognostic

model was developed using a data set with 8,509 patients that suffered from moderate to severe

TBI. Employing a data set 77 times the size of the one used herein, permits the model to obtain

better generalisation, possibly leading to better performance in the test set. As our results were

obtained in a smaller set of data, we conclude that a comparison between the works is not accurate.

Furthermore, the authors employed an external validation which was not possible for us with the

data available. Regarding studies employing the use of EEG, a study [5] obtained values of AUC

in the validation set of 0.81 combining EEG and IMPACT predictors with admission and EEG

information at 72h and 96h together. Our model obtained a higher AUC, at an earlier time point,

but with an overlapping confidence interval.

As far as we know, no one has attempted to predict the outcome of TBI by considering the

temporal evolution of the EEG features as we do in this study. Furthermore, the use of cross-

validation is not always employed in all studies. The use of cross-validation, verification of the

95% confidence interval and evaluation in a test set constitute important steps to provide trust-

worthy results. To our knowledge, there are also no records of prediction of TBI by using EEG

features as early as 36h with similar performance to the one obtained in this study.
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All in all, our models obtained a good performance in determining the outcome of patients

who suffered a TBI compared to the available literature. We resorted to the evaluation of EEG

trends over time and combined them with admission predictors. We obtained predictions with

good performance as early as 36h and 72h after trauma. The models presented might provide

an additional tool for clinicians during the treatment of TBI, helping decision-making and proper

allocation of resources. However, as we will discuss in chapter 7, before implementing it in clinical

practice we still believe some future work to be required.

The use of ML to obtain the described results was critical. Random Forest was selected as the

preferred algorithm due to its ability to deal with missing values, which occurs often since the

EEG recording may stop due to medical interventions. Furthermore, it is also robust to outliers

and noise [103], which is extremely important since it is impossible to remove all artefacts in the

signals. It is also fast and simple compared to other algorithms [103]. Finally, one of the most

important factors for selecting Random Forest is that provides the user with internal estimates of

error and variable importance [103], which is to be taken into consideration when working with

medical data. This algorithm allows us to understand the features being used, providing more

confidence and comfort for the medical staff.

6.1.1 EEG Contribuition

The performance of the model with only EEG features was lower when compared with the models

combining EEG and admission features. The number of patients did not allow us to use only EEG

features: cEEG among patients do not have the same duration of recordings as hospitalisation time

varies, and some time intervals have fewer data available.

Moreover, the protocol for data collection used for this work was aimed at a study focused on

EEG. Therefore, some clinical variables presented in the literature were not noted, which did not

allow to obtain a good performance considering only admission data. To sum up, the combination

of EEG features with the admission variables is essential to obtain good discriminant performance

and generalisation.

The recording of cEEG after TBI is widely used to detect seizures [75] but it is not a standard

practice to predict the outcome [5]. The results presented in this work support the implementation

of this procedure for the prediction of the outcome of TBI in the clinical setting. Nonetheless, as

previously mentioned, the use of cEEG in daily clinical practice can be hampered by technical,

patient-related or system resources [33], thus making its practice not always possible.

6.1.2 Trends in EEG vs Fixed points

Our current work suggests more fidelity in models using temporal evolution rather than defined

points. One disadvantage of using continuous EEG is that recording and preprocessing the signals

is not always easy [109]. In our data set, often there are medical interventions that can take hours in

the ICU that are detrimental to the recordings. Furthermore, external and environmental artefacts
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are also present in EEG [109]. The unwanted components are not always removed, affecting the

value of the features for single data-points. When such happens, either a suitable window for

feature extraction is not found or the feature is miss-calculated. Therefore, if that would occur at

the moment of the pre-defined time point (24h, 36h, 48h, 72h) the data would not be available.

. The use of the regression functions to approximate the data allows to redraw the information

from the data, dealing properly with missing data or outliers that caused by miss-calculation of the

features. This could explain temporal evolution models outperforming the fixed time point.

The changes in the values of the features over time may have some significance in the outcome

of a patient with TBI. This is the case when p1, p2 or p3 values (the slope of the feature over time)

are selected as important features for the prediction. However, in our models, it was frequent for

the mean values in the specified time interval to be selected. In those cases, the changes over time

might not be as significant. Basically, to summarize, the use of the mean value of the feature is

diminishing the impact of outliers in the data.

6.1.3 Time Window

The different intervals used resulted in different performance although the algorithm employed

was the same. Most models, independently of the interval, achieved good performance. There

was no particular pattern observed in the data through time since a good performance was obtained

for both earlier and later time intervals. There is also no relevant conclusion to redraw from the

duration of the time intervals. The two models selected as the best ones were both 24 hours of

duration intervals. However, AUC values above 0.80 were found in 36 hours intervals (48h-84h

and 60h-96h), 48 hours intervals (48h-96h), and over 48 (12h-72h). We can only conclude that by

using information from 24 time points it is already possible to obtain a good prediction.

6.2 Feature Importance

As previously mentioned, both variation in time (slope), as well as the mean values in the time

interval, were frequently selected as important features. The feature selection was different from

one interval to another. Such findings hint at changes in features’ relevance throughout different

periods of a patient’s stay in the ICU. However, some intervals have less available data, due to the

late start of recordings of the signals, dismissal from the ICU (patients passing or awakening) or

due to interruptions for medical interventions. These factors do not make it possible to determine

if the change of the features between intervals is due to the features’ importance over time or due

to a lack of data.

Our best TBI prediction models showed strong discriminating ability in regards to age. Age

has been used several times in outcome prediction of TBI [5,36,57,59–62,68,110–113] and proven

to be highly relevant, supporting the theory that younger brains are more likely to recover or that

age could be influencing the doctor’s treatment decisions.

Our work also a showed strong discriminating ability concerning EEG features. The use of

EEG features has been reported by other authors with successful results for both the outcome
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prediction of TBI and the correlation of the EEG features with the outcome score [5, 70–72].

Brain symmetry, which evaluates damage in the brain [84] and helps in monitoring changes in

brain function [86], entropy, which quantifies the complexity of the signals and allows for the

analysis of their dynamic behaviour [114], SEF90, that has been described as an parameter in the

prediction of neurological outcome [5], and coherence, a measure of "space synchrony" that was

linked with a reduced cognitive function [115], were selected by our models and have also been

previously described in literature [5, 8, 71, 72]. Therefore, their appearance as relevant parameters

was not surprising. However, our models also showed a strong discriminant ability for features that

are not as trivial such as the Hurst exponent of the Detrended Fluctuation Analysis. Nonetheless,

the Hurst exponent was shown to be a helpful measurement for the interpretation of epileptic

and interictal EEGs and their neurodynamics [116]. For that reason, one would expect that it

contributed to the prediction of the TBI. At last, there have also been studies relating the DFA and

neurological functioning that concluded that values from DFA were associated with neurological

outcomes after TBI [117], supporting our results. Finally, the broken detailed analysis also showed

to be relevant since it was found that the sum of the probabilities of the flux vector were relevant

for the prediction. Although this feature has not been reported to be related to the outcome of TBI

previously, it has been mentioned that evaluating the violations of the detailed balance is a way of

quantifying entropy production [97]. Furthermore, big-violations also indicate asymmetries in the

system [97]. Therefore it is reasonable that this measure can quantify the extent of damage of the

brain after a TBI.

Some EEG features mentioned in the literature and also included in this work did not show

a high predicting value. Examples are the variability of the relative power [70, 71], variability of

the mean frequency [71], total power [71], absolute power [70]. Furthermore, admission features

also mentioned in literature but not found in the most relevant features in our work include the

occurrence of multiple injuries [110] or extracranial injury [57], GCS [57, 60, 68], motor GCS

[59, 110], pupil reactivity [57, 59, 60], mechanical ventilation [110], presence of hypotension [60]

and the degree of midline shift in CT scan [23] or presence of SAH [59]. ICP also did not appear

to contribute to the prediction. However, the latest might be due to the reduced number of patients

with this measurement available.

The EEG measurements and the calculation of the features can be a more time-intensive process

than the sole use of admission variables. However, the results obtained allow us to conclude that

the incorporation of EEG in a predictive model is relevant.
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Chapter 7

Conclusion and Future Work

We were able to predict the outcome of TBI based on EEG parameters and the patient’s admission

information. One strength of this work was that employing cEEG dynamics over time allowed us

to take into consideration the course of treatment and progression of the disease, which would not

be possible when solely using assessments at the time of admission. We also demonstrated the

potential of the Random Forest models for the purpose mentioned. We showed that the trends over

time of the EEG features contain interesting information for the prediction of outcomes. Their

potential is increased when combined with admission parameters. The model obtained is simple

and clear and allows the support of medical staff. It is important to point out that the goal of such

prediction models is to aid decision-making and improve healthcare treatments. It should never

replace the doctor’s decision and assessment.

One disadvantage of our study is that TBI is a very heterogeneous disease [118]. Our measure-

ments for the outcome are solely based on the GOSE scale that is being divided into a good and a

poor outcome. Since the boundary between a good and a poor outcome is not always as clear-cut,

this measurement can be insufficient due to its variability in interpretation [119]. One suggestion

would be to employ more than one measurement to distinguish between a poor and a bad outcome.

Additionally, we suggest future work to explore the possibility of utilising a multi-class prediction.

However, for this to be possible, a bigger data set will be required to ensure a reliable number of

patients in each class.

In this work, we proved to obtain a reliable prediction model using ML. Authors have com-

pared the performance of some ML algorithms. It was concluded that, among the tested algo-

rithms, for the prediction of survival of TBI patients, cubic SVM, quadratic SVM, and Linear

SVM performed better than Logistic Regression [67]. Other authors [68] compared several algo-

rithms for the prediction of in-hospital outcome and mortality of TBI. They concluded that Ran-

dom Forest had the best discriminant ability for the in-hospital outcome while Ridge Regression

for the in-hospital mortality. Likewise, for predicting mortality, [66] 5 different ML algorithms

were tested, concluding that ANN obtained the best performance, compared to Logistic Regres-

sion, SVM, Naive Bayes, and Decision Tree in moderate to severe TBI patients. On the same line,

another study for prediction of outcome after TBI [111] concluded that among ANN, Naive Bayes,
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Decision Tree and Logistic Regression, the highest AUC was found for ANN. Furthermore, when

deciding on which algorithms to employ, Random Forest has several advantages such as allow-

ing to understand features’ importance [103], the ability to deal with outliers and noise [103] and

avoiding overfitting [100–103]. However, in the future, it would also be interesting to evaluate

the performance of other algorithms, giving preference to those that allow the understanding of

the features’ contribution to the prediction. As previously mentioned, the models should be sim-

ple and explainable in order to be possible to be implemented in the clinical setting. That being

the case, the aforementioned parameters should be taken into consideration for any future work

developed with a different algorithm.

To reach the clinic, models need to be largely validated in different cohorts. External valida-

tion allows us to update or tailor the approach [120]. The model obtained in our work is capable

to generalise since a train and test set were employed with a 5-fold cross-validation. However,

we suggest that external validation is employed, preferably with information from different cen-

tres, similar to what other authors did to validate CRASH, IMPACT and Nijmegen models [61].

However, it is important to note that such can be challenging since not many centres have the

monitoring of cEEG for TBI patients as a standard practice yet. Furthermore, the use of a big data

set also adds challenges in methodology, as previously described [120].

Finally, the employment of temporal evolution and the addition of the changes of features over

time is a new idea. In this work, we showed the potential of applying linear or polynomial re-

gressions to the data over time and using the slope and offset to describe its behaviour. However,

we suggest future works adopt several functions to be used and selected individually (automati-

cally, if possible) for each feature instead of using the same function type for all features. We also

considered the development of an automated algorithm to identify outliers and exclude them from

the fit function but it was not possible to determine when an outlier resulted from an artefact or

an important sign of behaviour of the progression of the injury. Therefore future research on this

topic remains necessary.

To conclude, the main goal of the project was to create a model capable of predicting the

neurological outcome of patients following TBI. This goal was full-filled using EEG features and

admission data in a Random Forest model. We concluded that EEG trends have an added value to

the prediction. The model developed aims at aiding in-hospital decisions, and improving treatment

management, which will ultimately lead to better healthcare.
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Database Description

Very few patients had alcohol ingestion (n=3) and impact seizures (n=6). Drugs administrated

(midazolam, propofol and AED) were also registered. Associated hypotension and hypoxia were

higher in patients with poor outcome (20.4% and 9.3% versus 10.4% and 8.3%, respectively). 22

patients were submitted to craniectomy post TBI, 13 of them were patients with a poor outcome.

Values are presented in table A.1.

Table A.1: Patient’s characteristics, including medical history, trauma related factors, adminis-
trated drugs and occurence of secondary insults.

Poor Outcome Good Outcome
GOSE= 1-3

(n=54)
GOSE = 4-8
(n=48)

Alcohol Ingestion (n/%) 3(5.6%) 0(0%)
Impact Seizure (n/%) 4(7.4%) 2(4.2%)
Midazolam (n/%) 43(79.6%) 28(58.3%)
Propofol (n/%) 52(96.3%) 47(97.9%)
AED (n/%) 1(1.9%) 1(2.1%)
Hypotension (n/%) 11(20.4%) 5(10.4%)
Hypoxia (n/%) 5(9.3%) 4(8.3%)
Cranietomy (n/%) 13(24.1%) 9(18.8%)
Prior seizures (n/%) 2(3.7%) 1(2.1%)
Prior TBI (n/%) 2(3.7%) 2(4.2%)
Midline shift >5mm (n/%) 20(37%) 8(16.7%)
Epidural mass lesion (n/%) 11(20.4%) 9(18.8%)
SAH (n/%) 54(100%) 44(91.7%)

Table A.2 presents the frequency of the variables assessed at admission. Marshall’s score ranges

from 1 to 6 being the most common score 2 both in patients with good (64.6%) and poor outcome

(46.4%). Similarly, the Rotterdam score was also assessed. The values range from 0 to 5, scoring
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1 the most frequent (48.1% in poor outcome and 58.3% in good outcome). For most patients, there

were no basal cisterns present. Of the possible causes of trauma falls (stairs or bicycles) were the

most common cause of both good and poor outcome. From the pupil evaluation, most patients did

not have pupil response (61.1% in poor outcome and 79.2% in good outcome).

Table A.2: Frequency table of the neurological tests at admission. Marshall, Rotterdam score and
Basal Cisterns values are assessed through CT imaging. Pupil response is assessed at admission.

Poor Outcome Good Outcome
GOSE=1-3

(n=54)
GOSE = 4 - 8

(n=48)
Marshall score 1 0(0%) 4(8.3%)

2 25(46.3%) 31(64.6%)
3 5(9.3%) 3(6.3%)
4 7(13%) 1(2.1%)
5 16(29.6%) 9(18.8%)
6 1(1.9%) 0(0%)

Rotterdam score 0 0(0%) 3(6.3%)
1 26(48.1%) 28(58.3%)
2 12(22.2%) 11(22.9%)
3 9(16.7%) 5(10.4%)
4 5(9.3%) 1(2.1%)
5 2(3.7%) 0(0%)

Basal cisterns 0 40(74.1%) 41(85.4%)
1 6(11.1%) 6(12.5%)
2 8(14.8%) 1(2.1%)

Cause of trauma Bicycle vs MV 12(22.2%) 8(16.7%)
MC crash 2(3.7%) 2(4.2%)
MV crash 4(7.4%) 9(18.8%)
MV vs MV 4(7.4%) 3(6.3%)
Person vs MV 4(7.4%) 5(10.4%)
Assault 0(0%) 1(2.1%)
Others 1(1.9%) 2(4.2%)
Fall from stairs or bike 27(50%) 18(37.5%)

Pupil Response 0 33(61.1%) 38(79.2%)
1 10(18.5%) 6(12.5%)
2 11(20.4%) 4(8.3%)

Note: MV - motorvehicle; MC - motorcycle.
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Parameter Tuning

There is a trade-off between the number of trees used and the time to train the models [121]. To

surpass that challenge, the model was tested with a high number of trees and the out-of-bag error

was observed. The OOB error becomes stable (converges) after a certain number of trees [103]

(B.1), which can be used for further development of the models. This allows to decrease the time

and space required for training each of the 30 models.

Figure B.1: OOB error as function of the number of trees.
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