575 research outputs found

    Query Optimization Techniques for OLAP Applications: An ORACLE versus MS-SQL Server Comparative Study

    Get PDF
    Query optimization in OLAP applications is a novel problem. A lot of research was introduced in the area of optimizing query performance, however great deal of research focused on OLTP applications rather than OLAP. In order to reach the output results OLAP queries extensively asks the database, inefficient processing of those queries will have its negative impact on the performance and may make the results useless. Techniques for optimizing queries include memory caching, indexing, hardware solutions, and physical database storage. Oracle and MS SQL Server both offer OLAP optimization techniques, the paper will review both packages’ approaches and then proposes a query optimization strategy for OLAP applications. The proposed strategy is based on use of the following four ingredients: 1- intermediate queries; 2- indexes both BTrees and Bitmaps; 3- memory cache (for the syntax of the query) and secondary storage cache (for the result data set); and 4- the physical database storage (i.e. binary storage model) accompanied by its hardware solution

    Fusion OLAP : Fusing the Pros of MOLAP and ROLAP Together for In-memory OLAP

    Get PDF
    OLAP models can be categorized with two types: MOLAP (multidimensional OLAP) and ROLAP (relational OLAP). In particular, MOLAP is efficient in multidimensional computing at the cost of cube maintenance, while ROLAP reduces the data storage size at the cost of expensive multidimensional join operations. In this paper, we propose a novel Fusion OLAP model to fuse the multidimensional computing model and relational storage model together to make the best aspects of both MOLAP and ROLAP worlds. This is achieved by mapping the relation tables into virtual multidimensional model and binding the multidimensional operations into a set of vector indexes to enable multidimensional computing on relation tables. The Fusion OLAP model can be integrated into the state-of-the-art in-memory databases with additional surrogate key indexes and vector indexes. We compared the Fusion OLAP implementations with three leading analytical in-memory databases. Our comprehensive experimental results show that Fusion OLAP implementation can achieve up to 35, 365, and 169 percent performance improvements based on the Hyper, Vectorwise, and MonetDB databases, respectively, for the Star Schema Benchmark (SSB) with scale factor 100.Peer reviewe

    Database Principles and Technologies – Based on Huawei GaussDB

    Get PDF
    This open access book contains eight chapters that deal with database technologies, including the development history of database, database fundamentals, introduction to SQL syntax, classification of SQL syntax, database security fundamentals, database development environment, database design fundamentals, and the application of Huawei’s cloud database product GaussDB database. This book can be used as a textbook for database courses in colleges and universities, and is also suitable as a reference book for the HCIA-GaussDB V1.5 certification examination. The Huawei GaussDB (for MySQL) used in the book is a Huawei cloud-based high-performance, highly applicable relational database that fully supports the syntax and functionality of the open source database MySQL. All the experiments in this book can be run on this database platform. As the world’s leading provider of ICT (information and communication technology) infrastructure and smart terminals, Huawei’s products range from digital data communication, cyber security, wireless technology, data storage, cloud computing, and smart computing to artificial intelligence

    A Strategy for Reducing I/O and Improving Query Processing Time in an Oracle Data Warehouse Environment

    Get PDF
    In the current information age as the saying goes, time is money. For the modern information worker, decisions must often be made quickly. Every extra minute spent waiting for critical data could mean the difference between financial gain and financial ruin. Despite the importance of timely data retrieval, many organizations lack even a basic strategy for improving the performance of their data warehouse based reporting systems. This project explores the idea that a strategy making use of three database performance improvement techniques can reduce I/O (input/output operations) and improve query processing time in an information system designed for reporting. To demonstrate that these performance improvement goals can be achieved, queries were run on ordinary tables and then on tables utilizing the performance improvement techniques. The I/O statistics and processing times for the queries were compared to measure the amount of performance improvement. The measurements were also used to explain how these techniques may be more or less effective under certain circumstances, such as when a particular type of query is run. The collected I/O and time based measurements showed a varying degree of improvement for each technique based on the query used. A need to match the types of queries commonly run on the system to the performance improvement technique being implemented was found to be an important consideration. The results indicated that in a reporting environment these performance improvement techniques have the potential to reduce I/O and improve query performance

    RAM: array processing over a relational DBMS

    Get PDF
    Developing multimedia applications in relational databases is hindered by a mismatch in computational frameworks. Efficient manipulation of multimedia data calls for array-based processing, which at best is available as a database add-on, not supported by the query optimizer. As a result, array-based processing ends up in dedicated programs outside the DBMS: non-reusable black boxes. The goal of our research is to reduce this gap between user-needs and system functionality by developing a seemless integration of array processing in a relational algebra engine. The paper introduces a declarative language for array-expressions based on the array comprehension, and its mapping to a relational kernel in a prototype implementation. The layered architecture of the resulting array database management system allows the use of structural knowledge available in the array data type. This additional source of information can be exploited for query optimization, which is demonstrated with a case study. The experiments show how the performance of a standard tool for matrix computations can be achieved without sacrificing data independence, highlighting however a critical aspect in the DBMS architecture proposed

    The Forgotten Document-Oriented Database Management Systems: An Overview and Benchmark of Native XML DODBMSes in Comparison with JSON DODBMSes

    Get PDF
    In the current context of Big Data, a multitude of new NoSQL solutions for storing, managing, and extracting information and patterns from semi-structured data have been proposed and implemented. These solutions were developed to relieve the issue of rigid data structures present in relational databases, by introducing semi-structured and flexible schema design. As current data generated by different sources and devices, especially from IoT sensors and actuators, use either XML or JSON format, depending on the application, database technologies that store and query semi-structured data in XML format are needed. Thus, Native XML Databases, which were initially designed to manipulate XML data using standardized querying languages, i.e., XQuery and XPath, were rebranded as NoSQL Document-Oriented Databases Systems. Currently, the majority of these solutions have been replaced with the more modern JSON based Database Management Systems. However, we believe that XML-based solutions can still deliver performance in executing complex queries on heterogeneous collections. Unfortunately nowadays, research lacks a clear comparison of the scalability and performance for database technologies that store and query documents in XML versus the more modern JSON format. Moreover, to the best of our knowledge, there are no Big Data-compliant benchmarks for such database technologies. In this paper, we present a comparison for selected Document-Oriented Database Systems that either use the XML format to encode documents, i.e., BaseX, eXist-db, and Sedna, or the JSON format, i.e., MongoDB, CouchDB, and Couchbase. To underline the performance differences we also propose a benchmark that uses a heterogeneous complex schema on a large DBLP corpus.Comment: 28 pages, 6 figures, 7 table

    Database Principles and Technologies – Based on Huawei GaussDB

    Get PDF
    This open access book contains eight chapters that deal with database technologies, including the development history of database, database fundamentals, introduction to SQL syntax, classification of SQL syntax, database security fundamentals, database development environment, database design fundamentals, and the application of Huawei’s cloud database product GaussDB database. This book can be used as a textbook for database courses in colleges and universities, and is also suitable as a reference book for the HCIA-GaussDB V1.5 certification examination. The Huawei GaussDB (for MySQL) used in the book is a Huawei cloud-based high-performance, highly applicable relational database that fully supports the syntax and functionality of the open source database MySQL. All the experiments in this book can be run on this database platform. As the world’s leading provider of ICT (information and communication technology) infrastructure and smart terminals, Huawei’s products range from digital data communication, cyber security, wireless technology, data storage, cloud computing, and smart computing to artificial intelligence

    Optimizing Analytical Queries over Semantic Web Sources

    Get PDF

    Growth of relational model: Interdependence and complementary to big data

    Get PDF
    A database management system is a constant application of science that provides a platform for the creation, movement, and use of voluminous data. The area has witnessed a series of developments and technological advancements from its conventional structured database to the recent buzzword, bigdata. This paper aims to provide a complete model of a relational database that is still being widely used because of its well known ACID properties namely, atomicity, consistency, integrity and durability. Specifically, the objective of this paper is to highlight the adoption of relational model approaches by bigdata techniques. Towards addressing the reason for this in corporation, this paper qualitatively studied the advancements done over a while on the relational data model. First, the variations in the data storage layout are illustrated based on the needs of the application. Second, quick data retrieval techniques like indexing, query processing and concurrency control methods are revealed. The paper provides vital insights to appraise the efficiency of the structured database in the unstructured environment, particularly when both consistency and scalability become an issue in the working of the hybrid transactional and analytical database management system
    • …
    corecore