
Regis University
ePublications at Regis University

All Regis University Theses

Spring 2009

A Strategy for Reducing I/O and Improving Query
Processing Time in an Oracle Data Warehouse
Environment
Chris Titus
Regis University

Follow this and additional works at: https://epublications.regis.edu/theses

Part of the Computer Sciences Commons

This Thesis - Open Access is brought to you for free and open access by ePublications at Regis University. It has been accepted for inclusion in All Regis
University Theses by an authorized administrator of ePublications at Regis University. For more information, please contact epublications@regis.edu.

Recommended Citation
Titus, Chris, "A Strategy for Reducing I/O and Improving Query Processing Time in an Oracle Data Warehouse Environment"
(2009). All Regis University Theses. 113.
https://epublications.regis.edu/theses/113

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ePublications at Regis University

https://core.ac.uk/display/217364696?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://epublications.regis.edu?utm_source=epublications.regis.edu%2Ftheses%2F113&utm_medium=PDF&utm_campaign=PDFCoverPages
https://epublications.regis.edu/theses?utm_source=epublications.regis.edu%2Ftheses%2F113&utm_medium=PDF&utm_campaign=PDFCoverPages
https://epublications.regis.edu/theses?utm_source=epublications.regis.edu%2Ftheses%2F113&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=epublications.regis.edu%2Ftheses%2F113&utm_medium=PDF&utm_campaign=PDFCoverPages
https://epublications.regis.edu/theses/113?utm_source=epublications.regis.edu%2Ftheses%2F113&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:epublications@regis.edu

Regis University
College for Professional Studies Graduate Programs

Final Project/Thesis

Disclaimer

Use of the materials available in the Regis University Thesis Collection
(“Collection”) is limited and restricted to those users who agree to comply with
the following terms of use. Regis University reserves the right to deny access to
the Collection to any person who violates these terms of use or who seeks to or
does alter, avoid or supersede the functional conditions, restrictions and
limitations of the Collection.

The site may be used only for lawful purposes. The user is solely responsible for
knowing and adhering to any and all applicable laws, rules, and regulations
relating or pertaining to use of the Collection.

All content in this Collection is owned by and subject to the exclusive control of
Regis University and the authors of the materials. It is available only for research
purposes and may not be used in violation of copyright laws or for unlawful
purposes. The materials may not be downloaded in whole or in part without
permission of the copyright holder or as otherwise authorized in the “fair use”
standards of the U.S. copyright laws and regulations.

A Strategy for Reducing I/O and Improving Query

Processing Time

In an Oracle Data Warehouse Environment

By

Chris Titus

titus830@regis.edu

A Thesis/Practicum Report submitted in partial fulfillment of the requirements for the

degree of Master of Science in Computer Information Technology

 School of Computer and Information Sciences

Regis University

Denver, Colorado

December 12, 2008

vii

Abstract

In the current information age as the saying goes, time is money. For the modern

information worker, decisions must often be made quickly. Every extra minute spent

waiting for critical data could mean the difference between financial gain and financial

ruin. Despite the importance of timely data retrieval, many organizations lack even a

basic strategy for improving the performance of their data warehouse based reporting

systems.

This project explores the idea that a strategy making use of three database

performance improvement techniques can reduce I/O (input/output operations) and

improve query processing time in an information system designed for reporting. To

demonstrate that these performance improvement goals can be achieved, queries were run

on ordinary tables and then on tables utilizing the performance improvement techniques.

The I/O statistics and processing times for the queries were compared to measure the

amount of performance improvement. The measurements were also used to explain how

these techniques may be more or less effective under certain circumstances, such as when

a particular type of query is run.

The collected I/O and time based measurements showed a varying degree of

improvement for each technique based on the query used. A need to match the types of

queries commonly run on the system to the performance improvement technique being

implemented was found to be an important consideration. The results indicated that in a

reporting environment these performance improvement techniques have the potential to

reduce I/O and improve query performance.

viii

Table of Contents

Certification of Authorship of Thesis/Practicum Work ..ii
Authorization to Publish Student Work ... iii

Releasor Authorization to Publish Student Work on WWW ... iv
Regis University Faculty Approval Form ... vi

Abstract ... vii
Table of Contents ...viii

List of Figures .. ix
List of Tables ... xi

Executive Summary .. 1
Chapter 1 – Introduction .. 3

Chapter 2 – Review of Literature and Research ... 5
2.1 Databases in a Data Warehousing Environment ... 5

2.2 Performance Improvement and Tuning Strategies .. 7
2.3 Bitmap indexes .. 8

2.4 Table Partitioning .. 10
2.5 Denormalization .. 12

Chapter 3 – Methodology .. 16
3.1 Hardware and Software Testing Environment .. 16

3.2 Table Partitioning Test Method .. 16
3.3 Bitmap Index Test Method... 17

3.4 Denormalization Test Method .. 19
3.5 Improvement Calculation ... 20

Chapter 4 – Partitioning ... 22
4.1 Partitioning Results and Analysis ... 22

4.2 Partitioning Summary .. 28
Chapter 5 – Bitmap Indexing ... 32

5.1 Bitmap Indexing Results and Analysis ... 32
5.2 Bitmap Indexing Summary .. 39

Chapter 6 – Denormalization ... 43
6.1 Denormalization Results and Analysis ... 43

6.2 Denormalization Summary .. 50
Chapter 7 – Conclusions .. 52

7.1 Integration ... 52
Chapter 8 – Lessons Learned ... 54

8.1 Challenges ... 54
8.2 Limitations .. 55

References ... 56
Annotated Bibliography .. 61

ix

List of Figures

Figure 3-1: Schema for Partition testing .. 17
Figure 3-2: Schema for Bitmap Index testing ... 18

Figure 3-3: Schema for Denormalization Testing ... 20
Figure 4-1: Query 1u ... 22

Figure 4-2: Query 1p ... 22
Figure 4-3: Query 2u ... 23

Figure 4-4: Query 2p ... 23
Figure 4-5: Query 3u ... 23

Figure 4-6: Query 3p ... 24
Figure 4-7: Query 4u ... 24

Figure 4-8: Query 4p ... 24
Figure 4-9: Query 5u ... 25

Figure 4-10: Query 5p ... 25
Figure 4-11: Query 6u ... 25

Figure 4-12: Query 6p ... 26
Figure 4-13: Query 7u ... 26

Figure 4-14: Query 7p ... 27
Figure 4-15: Query 8u ... 27

Figure 4-16: Query 8p ... 27
Figure 4-17: Postal Code Hash Partitioning ... 29

Figure 4-18: Partitioning Performance ... 30
Figure 4-19: Partitioning Physical Reads ... 31

Figure 5-1: Query 1a ... 32
Figure 5-2: Query 1b ... 32

Figure 5-3: Query 2a ... 33
Figure 5-4: Query 2b ... 33

Figure 5-5: Query 3a ... 33
Figure 5-6: Query 3b ... 33

Figure 5-7: Query 4a ... 34
Figure 5-8: Query 4b ... 34

Figure 5-9: Query 5a ... 35
Figure 5-10: Query 5b ... 35

Figure 5-11: Bitmap Performance by Query Set .. 36
Figure 5-12: Query 6a ... 36

Figure 5-13: Query 6b ... 37
Figure 5-14: Query 7a ... 37

Figure 5-15: Query 7b ... 37
Figure 5-16: Bitmap Optimizer Cost .. 39

Figure 5-17: Bitmap Physical Reads .. 40
Figure 5-18: Execution Plan for a Count Query with No Joins 41

Figure 5-19: Execution Plan for a Count Query with Joins... 41
Figure 5-20: Execution Plan for a Query Retrieving Rows ... 42

x

Figure 6-1: Query 1n ... 44
Figure 6-2: Query 1d ... 44

Figure 6-3: Query 2n ... 45
Figure 6-4: Query 2d ... 45

Figure 6-5: Query 3n ... 46
Figure 6-6: Query 3d ... 46

Figure 6-7: Query 4n ... 47
Figure 6-8: Query 4d ... 48

Figure 6-9: Denormalization Performance ... 48
Figure 6-10: Denormalization I/O Performance ... 50

xi

List of Tables

Table 4-1: Partitioning Time Measurements .. 28
Table 4-2: Partitioning I/O Measurements ... 30

Table 5-1: Bitmap Time Measurements ... 38
Table 5-2: Bitmap I/O Measurements .. 39

Table 6-1: Denormalization Time Measurements... 43
Table 6-2: Denormalization I/O Measurements.. 49

1

Executive Summary

Disk and memory access are the main obstacles on the path to reducing query

processing time. Data warehouses systems, known for their immense size and long

running queries, can be severely affected by these impediments. As result, a performance

improvement strategy is needed which reduces the amount of costly disk and memory

access, also known as I/O.

Bitmap indexing, partitioning, and denormalization are three performance

improvement techniques that are available in many of the major enterprise database

systems in use today. These techniques work on the premise of reducing I/O, with lower

I/O leading to faster query processing times. Faster query times can mean the difference

between having key data at hand when it is needed for decision making and getting it

several hours after the decisions were made.

To determine the extent of practical performance these techniques could

potentially provide and how they work with different types of queries, a series of queries

were run in a test environment. Measurements and statistics resulting from the testing

were then collected and analyzed. It was found that certain types of queries performed

better when used with a particular technique and that a considerable gain in performance

could be achieved when the type of query and technique were properly matched up.

Ultimately, the testing and analysis of the three performance improvement

techniques indicated they are capable of considerably improving performance when

implemented under the proper conditions. The techniques can co-exist in the same

2

system, can potentially complement one another, and are recommended for use as part of

a comprehensive data warehouse performance improvement strategy.

3

Chapter 1 – Introduction

The reduction of query processing time in a database system is a common but

sometimes elusive goal. Reducing processing time for queries in a data warehouse

environment, which typically houses a large amount of data, can prove to be particularly

challenging. These challenges can be overcome through the use of a three pronged

approach to performance improvement. Implementing a performance improvement

strategy that includes table partitioning, bitmap indexing, and de-normalization can

reduce I/O in a data warehouse system, potentially leading to shorter query processing

times.

Data warehouse systems allow a company to pool their data into a central

repository for reporting. Reports created using this data can help provide managers with

the information they need to make important business decisions. As businesses begin to

realize the value of such a capability, these systems have become more popular. As

Goeke and Faley (2007) state, “It is no surprise that with its potential to generate

extraordinary gains in productivity and sales, the market for data warehousing software

and hardware was nearly $200 billion by 2004” (p. 107).

Gray and Watson (1998) point out that, “ […] a data warehouse is physically

separate from operational systems; and data warehouses hold both aggregated data and

transaction (atomic) data, which are separate from the databases used for On-Line

Transaction Processing (OLTP)” (p. 84). Since a data warehouse system serves a

different purpose than a database designed for processing transactions and therefore its

4

performance is affected in different ways. Improving the performance of a database

configured as a data warehouse system requires a different strategy than that used for a

transaction processing system.

Instead of recording financial transactions or sales orders from a web site, the data

warehouse acts as a central repository for historical data. Because the data warehouse

system is not constantly updated like a transaction processing system, exists primarily to

respond to queries, and houses tables that often contain a large number of rows, it is an

excellent candidate for de-normalized tables, indexes, and partitioned tables.

5

Chapter 2 – Review of Literature and Research

2.1 Databases in a Data Warehousing Environment

A database lies at the heart of every data warehouse system. According to

Mallach (2000), the majority of work done on a data warehouse project is involved with

the database itself. In fact, “Experts regularly mention figures of up to 80 percent”

(Mallach, 2000, p. 492). The level of performance provided by this database can mean

the difference between waiting for hours to generate a report on key business indicators,

and having the information in the hands of decision makers within a matter of minutes.

As Shasha (1996) points out, “In fields ranging from arbitrage to tactical missile defense,

speed of access to data can determine success or failure” (p. 113).

Morzy and Wremble declare in their 2004 paper on multiversion data

warehousing that, “A data warehouse (DW) integrates autonomous and heterogeneous

external data sources (EDSs) and makes the integrated information available for

analytical processing, decision making, and data mining applications” (p. 92).The data

warehouse database exists separately from the production databases (Chaudhuri & Dyal,

1997), which are responsible for processing the daily transactions of the business and

[…] “reflect the current state of the organization” […] (Saharia & Babad, 1997, p. 43).

The data warehouse database captures this data, storing it for historical reference and

analysis. As Palpanas (2000) writes in his paper on data warehouse knowledge discovery,

“Data warehouses tend to be fairly big in size, usually orders of magnitude larger than

operational Databases” (p. 1).

6

Data from the production databases is moved into the warehouse through an

Extract, Transform, and Load (ETL) process (March & Hevner, 2007). This can

sometimes lead to problems in data warehouse implementation. In their 2007 paper on

decision support systems, March and Hevner report that “Often operational systems are

not designed to be integrated and data extracts must be performed manually or on a

schedule determined by the operational systems” (p. 1037).

Before dedicated data warehouse systems came into being, analytic queries were

run on production database systems, often adversely affecting their performance (Gray &

Watson, 1998). Technical staff using these systems soon realized that a totally separate

database would be required to house the historical data. Since this database would be

separate from the production system, it could be designed differently and optimized for

reporting.

Saharia and Babad (2000), describe a multi-level system architecture with

operational production databases distinctly separated from the historical data repository.

Modern data warehouses take advantage of a similar architecture with OLTP databases

feeding data into a separate data warehouse database.

In their paper on data mart design, Bonifati, Cattaneo, Ceri, Fuggetta, &

Paraboschi (2001) point out that many data warehouse systems are comprised of smaller

known as data marts. These sub components of the data warehouse are “[…] dedicated to

the study of a specific problem” (Bonifati, et al., 2001, p. 453).

7

Queries processed on data warehouse systems often retrieve aggregate (broad)

data as well as more specific (deep) data, such as that dealing with particular products or

customers (Shasha & Bonnet, 2003).

2.2 Performance Improvement and Tuning Strategies

Database performance improvement involves making changes to a database

system that can potentially improve its performance. Many methods for improving

performance have been suggested throughout the evolution of the relational database.

In an early paper, Shasha (1996) explores a performance improvement strategy

that focuses on tuning transactions, indexes, and table structures. He suggests the use of

vertical partitioning to physically segregate data by column and processing transactions

so that record locking is minimized.

Agrawal, Chu, & Narrasaya (2006) declare in their paper on automated database

tuning, “[…] a strategy that tunes physical design only for queries and ignores updates

while tuning (thus there is no transition cost since the physical design does not need to

change) can also be sub-optimal since the cost of updating physical design structures can

be substantial (p. 684). The authors believe that tuning a database for one particular

function may not always be practical because physical structures occasionally change.

For example, indexes may be dropped before an update and re-created afterward.

Ongoing maintenance and tuning are required for any type of database system,

but having a good design in the beginning can save a great deal of time. In their 2007

book on performance tuning for data warehouse systems, Stackowiak, Rayman, and

8

Greenwald suggest that, “Addressing performance and scalability during the development

lifecycle has a significant positive impact on overall performance and reduces production

performance complaints” (Production Phase section, para. 5).

2.3 Bitmap indexes

Bitmap indexes have been around in one form or another since the 1960’s (Wu,

1999) and made an appearance commercially in a system known as Model 204 (O’Neil &

Quass, 1997). Bitmaps are now supported by several major database vendors including

Oracle. In fact, the bitmap index has been a part of the Oracle RDBMS for several

releases with Oracle users seeing the first incarnation of the bitmap index in version 7.3

(Kyte, 2005).

The structure of a bitmap index is composed of ones and zeros that identify

whether a certain column value exists in a particular row. Bitmaps are suited for a read-

only environment such as a data warehouse system, which is usually set up for querying

historical data. As Stockinger, Wu, and Shoshani (2002) observe, “They are not

optimized for typical transaction operations such as insert, delete or update” (p. 73).

Ingram (2002) notes that, “Bitmap indexes are most suitable for query-intensive

applications, where queries use combinations of low cardinality columns in predicates

containing equality, AND, OR, and NOT operations (Bitmap Indexes section, para. 6)”

Low cardinality refers to the ratio between the number of unique rows and the number of

rows in a table (Lane, Schupmann, & Stuart, 2007). So a column that has 8 unique values

9

(such as available product colors, for example) in a table of 10,000 rows would be

considered by many to have low cardinality.

Compression and encoding of bitmap indexes can increase their flexibility.

Research conducted by Stockinger, Wu, and Shoshani (2002), suggests that compression

can increase the flexibility of a bitmap index by making it“[…] useful for high cardinality

attributes” (p. 73) as well as low cardinality attributes. Wrembel and Koncilia (2007),

note that different types of encoding can make bitmaps more suitable for certain

operations. For example, bitmaps can be range-encoded by storing multiple bits over a

range of values, which can improve the performance of range queries (Wrembel and

Koncilia, 2007).

One advantage of bitmap indexes observed by Chan and Ioannidis (1998) is their

small size. Whereas a b-tree index stores rowids, the Oracle bitmap index instead stores

compressed bitmaps that point to rowids (Lane et al., 2007). This results in a smaller

index size and therefore a shorter index scan time.

As Wu (1999) reasons in his research on the structure of bitmap indexes, “Even

for low selectivities, if the time of index processing is high, the total time spent on index

processing and data retrieval may be longer than that of a table scan” (p. 227). As a

result, bitmap indexes can potentially provide lower query processing times than a b-tree

index when implemented on a column with low cardinality and using appropriate query

operators (and, or, and not).

Bitmap indexes also provide other query processing related benefits. Hellerstein,

J. & Stonebraker note that, “[…] bit map [sic] indexes can be intersected and unioned

10

very efficiently to deal with Boolean combinations of predicates. B-trees are much less

efficient in this kind of processing” (Data Warehousing section, para. 14).

As with other indexes, bitmaps must be properly implemented and maintained in

order to be effective. Powell (2004) points out that when used improperly, “[…] both

bitmap and function-based indexes are largely ineffective and can be exceedingly

detrimental to performance” (What and How to Index section, para. 5). Inmon, Rudin,

Buss, and Sousa (1999), observe that as the cardinality of a column increases, the size of

an associated bitmap index increases as well, since more bits are required to represent the

value for each row.

A subtype of the bitmap index available in Oracle is known as the bitmap join

index. The bitmap join index stores the rowids of two columns in different tables together

as if those tables were joined (Niemiec, 2007). When a query is run in which these tables

are joined on the indexed columns, the results of the join operation are already stored in

the index, which can greatly reduce query processing time.

2.4 Table Partitioning

An important goal of read-optimized databases is to minimize the number of bytes

read from the disk when scanning a table (Harizopoulos, Liang, Abadi, & Madden,

2006). One way this can be accomplished is by dividing a single database structure such

as a table into smaller sections known as partitions.

A table can be partitioned both vertically by columns and horizontally by rows. In

their paper on integrating automated database design with partitioning, Agrawal,

11

Narrasaya, and Yang (2004) assert that “Like indexes and materialized views, both kinds

of partitioning can significantly impact the performance of the workload i.e., queries and

updates that execute against the database system, by reducing cost of accessing and

processing data” (p. 359).

Vertical partitioning can be used to separate commonly queried columns. As

Graefe, (1993) mentions in his paper on the physical design of databases, “Vertical

partitioning of large records Into multiple files, each with some of the attributes, allows

faster retrieval of the most commonly used attributes […]” (p. 78). For example, if the

values of three columns are commonly requested in queries, those three columns could be

stored in a separate partition. When a query is processed requiring data from only those

columns, only that partition must be accessed.

The Oracle RDBMS first supported partitioning in version 8 (Kyte, 2005). The

types of partitioning supported by Oracle 10g include range partitioning, list partitioning,

hash partitioning, and two hybrid partitioning methods (Powell, 2005).

Range partitioning separates data based on an array of values. For example, ten

years of a company’s historical sales data could be stored in a large table. In this case, the

table could be range partitioned by year. If a query was run to find data from the year

2005, only the partition containing the 2005 data would have to be accessed, instead of

the table containing ten years worth of data. Along this same line, Hobbs, Hillson, and

Lawande (2003) note that, “If a table is partitioned, the query optimizer can determine if

a certain query can be answered by reading only specific partitions. Thus, an expensive

table scan can be avoided” (Benefits of Partitioning section, para. 4).

12

List partitioning is similar to range partitioning only it separates data based on

specific values. For example, an organization’s sales data could be partitioned based on

geographic location, such as state, country, or region.

Hash Partitioning is a little different from list and range partitioning in that it

doesn’t separate data based on a value or range of values. Hash partitioning instead uses

an algorithm to equally divide data into a number of partitions.

When designing a database system for a data warehouse in which very large

tables will exist, partitioning can help the designer work around certain design

limitations. In their text on physical database design, Lightstone, Teorey, and Nadeau

(2007) note that some database systems have limits on table size that can be overcome

through the use of horizontal table partitioning.

2.5 Denormalization

Denormalization involves reversing the process known as normalization in

relational database systems. In their paper on denormalization guidelines, Bock and

Schrage (2002) declare that a normalized table, “[…] minimizes redundant data storage

and supports data manipulation language processing for row insertions, deletions, and

updates without introducing errors or data inconsistencies termed anomalies”(p. 129). As

a result of the importance of normalization, it has become a part of the database design

process when developing transaction processing systems.

13

Data warehouse systems do not process the same number of update, insert, and

delete operations that a transactional system does, since its primary function is usually to

hold data for reporting. Because of this behavior, tables in a data warehouse system do

not benefit from normalization as a transaction based system would.

Although normalization does have benefits in a transaction processing system it

also suffers from a few disadvantages. Bock and Schrage (2002) believed that, “These

include inadequate system response time for data retrieval and storage, and referential

integrity problems due to the decomposition of natural data objects into relational tables.”

(p. 129).

Normalization generally results in larger tables being broken up into smaller

tables through a process called decomposition (Artz, 1997). This requires more tables to

be joined in complex queries, which can lead to greater query processing times (Bock and

Schrage, 2002).

In his paper on data warehouse semantics and normalization, Artz (1997) argues

that semantic disintegrity can occur when normalization is not performed correctly.

According to Artz (1997), “Semantic disintegrity occurs when a user submits a query

against a database and receives an answer, but the answer is not the answer to the

question they believe that they asked” (p. 22). This can have disastrous consequences for

a new data warehouse implementation.

Gorla’s (2003) paper on data warehouse features offers suggestions for making

data warehouse acceptance among users more likely and details his attempts to measure a

system’s perceived ease of use. To underline this point, Goeke and Faley (2007) find that

14

users who see a data warehouse system as difficult to use are not likely to adopt it, which

could potentially lead to the failure of the project.

The denormalization process mandates the restructuring of database tables by

reducing the number of joins required for queries. During this process, data held within

several smaller tables may be combined into a single larger table.

The use of denormalization techniques to improve performance plays a big part in

Ralph Kimball’s dimensional modeling strategy. Kimball (2002) suggests that data

should be divided into fact and dimension tables, with the fact tables holding assessed

data (such as sales numbers) and dimension tables holding attributes used for filtering

data in queries (such as sales region). In their 2005 paper on varying data warehousing

methodologies, Sen and Sinha describe a fact table as, “[…] a specialized relation with a

multi-attribute key and contains attributes whose values are generally numeric and additive”

(p. 80).

Both types of tables are denormalized and many queries can be run by joining a

fact table with one dimension table. This model containing a fact table connected to

multiple dimension tables is known as a star schema (Kimball, 2002). A star schema can

be further transformed into a snowflake schema by breaking down the dimensions into

smaller tables based on certain columns (Sen & Sinha, 2005). This makes the snowflake

schema a star schema/3
rd

 normal form hybrid (Martyn, 2004).

Although many authors such as Kimball (2002) promote the use of the

denormalized star schema, others such as Martyn (2004) believe in using a traditional

normalized schema with the use of denormalization only when necessary to improve

15

performance. In Martyn’s 2004 paper on multidimensional schemas, he describes the

advantages/disadvantages of both normalized and denormalized schemas. Martyn (2004)

argues that, “Making special case design modifications to a 3NF schema is much less

radical than adopting a specialized design methodology that specifically targets a MD

schema” (p. 88). Although Martyn advises that denormalized tables only be used in

certain situations, he agrees that a denormalized schema can potentially improve

performance. This performance gain comes with associated costs, such as a loss of

meaning when the schema is compared to entities in the real world (Martyn, 2004).

16

Chapter 3 – Methodology

3.1 Hardware and Software Testing Environment

The hardware for the testing environment consisted of a desktop computer with a

single Pentium 4, 2.4 Gigahertz processor, and 1.5 GB of memory. A single hard drive

supplied 160GB of storage for the RDBMS. The testing for this project was performed

using Oracle 10g Enterprise Edition software, release 10.2.0.1.0. The Oracle data

warehouse sales history sample schema included with the database software was installed

and modified for use in the project. Oracle’s SQL Developer version 1.5.1 was used to

help create and prepare the test schema. SQL*plus was used to run the test queries with

timing and autotrace enabled.

3.2 Table Partitioning Test Method

Two sets of tables containing address, customer, and sales data were used to test

the effect of partitioning on I/O and query processing time (see Figure 3-1). Both sets of

tables contained an identical number of rows and data. The partitioned fact table was

range partitioned on the time_id column by quarter, half year, and year. The partitioned

dimension tables DIM_ADDRESS_PART and DIM_CUSTOMER_PART were hash

partitioned on the POSTAL_CODE and CUST_EMAIL columns respectively. All the

tables contained around thirty-four million rows each, except the address tables which

contained around ten million rows each. Each query was run ten times on the normalized

and denormalized tables to calculate the average processing time for each query.

17

Figure 3-1: Schema for Partition testing

3.3 Bitmap Index Test Method

Tables containing address, customer, and sales data were used to test the effect of

bitmap indexing on I/O and query processing time (see Figure 3-2). The dimension tables

contained an identical number of rows and shared the same fact table which was not

indexed. One set of tables did not have any indexed columns, while the other set of tables

had bitmap indexes on the CUST_GENDER, CUST_INCOME_LEVEL,

CUST_MARITAL_STATUS, and STATE_PROVINCE columns. The tables each held

18

around thirty-three million rows when testing was conducted, except for the fact table

which held thirty four million rows. Each query was run ten times on the normalized and

denormalized tables to calculate the average processing time for each query.

Figure 3-2: Schema for Bitmap Index testing

19

3.4 Denormalization Test Method

A set of normalized tables and a single denormalized table were used to test the

effects of denormalization on query I/O and processing time. Both contained the same

data and number of rows. Each of the tables held around eleven million rows.

It is important to note that using a single denormalized table to hold all the data in

a schema is not something that is commonly done in the real world as far as I am aware.

Using this single denormalized table was done to help demonstrate the performance

benefits of denormalization in a data warehouse system. It is more common to see tables

in a data warehouse system arranged in a star schema with joins being required between

dimension and fact tables. In this arrangement users can take advantage of Oracle’s star

transformation feature to optimize queries, which is beyond the scope of this project.

Several queries were run on the normalized/denormalized tables and their I/O

statistics collected. The normalized and denormalized tables both contained close to

eleven million rows during testing. Each query was run ten times on the normalized and

denormalized tables to calculate the average processing time for each query.

20

Figure 3-3: Schema for Denormalization Testing

.

3.5 Improvement Calculation

It is difficult to define substantial improvement when query processing times can

vary by such a large degree and so many variables are involved. Practically speaking, an

information worker would likely consider a fifty percent reduction in the processing time

21

of a long running query to be substantial. For example, if a query that normally takes

four hours to complete finishes in two hours that would probably be considered to be a

substantial improvement by many users. The improvement percentage calculation for

query processing times is based on the following formula where t1 = the first query

completion time measured and t2 = the second query completion time measured: ((t1 – t2)

÷ t1) × 100

This method of calculating performance improvement as a percentage of the

original query time was chosen because it provides a way to easily demonstrate the

degree of improvement for queries regardless of whether the initial processing time was

short or long.

22

Chapter 4 – Partitioning

4.1 Partitioning Results and Analysis

To test the effects of table partitioning a series of eight queries were run on

partitioned (p) and unpartitioned tables (u). First, queries 1 u and 1p (see figures 4-1 and

4-2) were run.

Figure 4-1: Query 1u

Figure 4-2: Query 1p

Queries 1u and 1p (Figures 4-2 and 4-3) both accessed only one table and 1p

accessed a single partition. Table 4-2 shows a big difference in the number of physical

reads between these two queries. When the query was run on the unpartitioned table, the

entire table of around thirty-three million rows had to be scanned. When it was run on the

partitioned table, only a single partition containing a fraction of the total number of rows

had to be scanned. Instead of scanning thirty-three million rows, only about two million

were scanned, leading to a much lower optimizer cost for query 1p and a ninety percent

improvement in performance over query 1u.

23

Figure 4-3: Query 2u

Figure 4-4: Query 2p

The second set of queries (Figures 4-3 and 4-4) was similar to the first set of

queries but accessed two tables. Query 2p was able to access two table partitions instead

of performing a full table scan on the two tables and it outperformed query 2u by ninety-

two percent. Again, Table 4-2 shows a large difference in the number of physical reads

was observed as was a sizeable difference in optimizer cost.

Figure 4-5: Query 3u

24

Figure 4-6: Query 3p

Queries 3u and 3p (Figures 4-6 and 4-7) continued with the format of the first and

second sets of queries, but added a third table with query 3p accessing a total of three

partitions. The third table added to the queries was smaller in size than the other tables

and contained fewer partitions. This resulted in a very slight increase in performance that

was close to that of the previous set of queries and measured less than one percent over

query 2p.

Figure 4-7: Query 4u

Figure 4-8: Query 4p

25

Figure 4-9: Query 5u

Figure 4-10: Query 5p

The fourth and fifth sets of queries (Figures 4-7 through 4-10) vary from the

previous queries in that they expand the range of data retrieved from the fact table. In

queries 4p and 5p this results in the access of additional fact table partitions. The addition

of one extra partition didn’t affect performance much for query 5p with performance

decreasing by less than one percent compared to query 4p. The optimizer cost and

physical reads for queries 4p and 5p were also very close.

Figure 4-11: Query 6u

26

Figure 4-12: Query 6p

Queries 6u and 6p (Figures 4-11 and 4-12) included an increase in the number of

partitions accessed in the fact table over the previous queries. Fourteen partitions were

accessed in these queries with the increase being dramatically reflected in the number of

physical reads and the higher optimizer cost. Scanning nine additional fact table

partitions more than tripled the number of physical reads for query 6p when compared to

query 5p, and came close to doubling the optimizer cost. The increase in I/O caused by

the additional partition access resulted in the percentage of improvement falling from

eighty-seven percent in query 5p to sixty percent in query 6p.

Figure 4-13: Query 7u

27

Figure 4-14: Query 7p

The seventh and eighth sets of queries (Figures 4-13 through 4-16) continued to

increase the range of data in the fact table, for a total of eighteen in query 7p and twenty-

two in query 8p. The trend of decreasing performance continued as well, with the

percentage of improvement dropping to fifty-one percent for query 8p. Physical reads

increased as did the optimizer cost, indicating a relationship between the number of

partitions accessed and the amount of I/O generated by a query.

Figure 4-15: Query 8u

Figure 4-16: Query 8p

28

4.2 Partitioning Summary

By looking at the test results in Tables 4-1 and 4-2 it can be seen that table

partitioning has the potential to reduce I/O and improve performance, with the amount of

improvement determined by several factors. The level of performance provided by a table

partitioning strategy will increase when queries access a small number of partitions in

relation to the total number in the table. As the number of partitions accessed by a query

increases, the level of performance will decrease.

Table 4-1: Partitioning Time Measurements

Queries

Number of

Table

Partitions

Accessed

Avg. Query

Time

(seconds)

Query u

Avg. Query

Time

(seconds)

Query p

Avg. Time

Difference

(seconds)

Percentage of

Improvement

1u, 1p 1 31 3 28 90%

2u, 2p 2 67 5 62 92%

3u, 3p 3 85 7 78 92%

4u, 4p 4 89 12 77 87%

5u, 5p 5 95 12 83 87%

6u, 6p 14 98 39 59 60%

7u, 7p 18 99 41 58 57%

8u, 8p 22 99 49 50 51%

Partitioning performance is also affected by the number of rows in a partition and

whether the rows in a partitioned table are evenly distributed. Partitions that do not

contain approximately the same number of rows will likely still show performance

improvement, but may not provide predictable results. A greater number of partitions in

29

a table can potentially provide a greater amount of performance improvement, especially

on large tables with many rows.

Figure 4-17: Postal Code Hash Partitioning

 Figure 4-17 reveals that the 17399 rows in this table containing postal code

66798 reside in a single partition. If a query’s where clause did not filter based on the

postal code column, but instead filtered by state, the data requested could reside in more

than one partition. That would require accessing multiple partitions and could possibly

affect query performance. To achieve optimal performance with partitioning, it is best to

match the where clause column of queries to the partition key column of a partitioned

table.

30

Table 4-2: Partitioning I/O Measurements

Queries
Physical Reads

Query u

Physical Reads

Query p

Optimizer Cost

Query u

Optimizer Cost

Query p

1u, 1p 161362 10349 34737 1136

2u, 2p 419296 18849 86396 2845

3u, 3p 532214 25369 108000 4291

4u, 4p 532160 44891 117000 44243

5u, 5p 532175 44901 120000 47220

6u, 6p 531872 134781 159000 86287

7u, 7p 532082 135147 161000 87644

8u, 8p 531967 163605 178000 105000

The sudden drop in performance shown in Figure 4-18 can be attributed to the

increase in I/O caused by going from five partitions scanned to fourteen partitions

scanned. Table 4-2 shows that performance decreased from eighty-seven percent to sixty

percent between queries six and seven as the additional partitions were accessed.

Figure 4-18: Partitioning Performance

31

Figure 4-19 graphically illustrates the rise in physical reads between queries 5p and 6p

that corresponds with the drop in performance observed in Figure 4-18. While the I/O on

the unpartitioned tables stayed the same after the third set of queries, the I/O on the

partitioned tables slowly increased as additional partitions were accessed (see Figure 4-

19). Since the amount of I/O increases with the number of partitions scanned, running

queries that require access to a small number of partitions will provide the best

performance.

 Figure 4-19: Partitioning Physical Reads

32

Chapter 5 – Bitmap Indexing

5.1 Bitmap Indexing Results and Analysis

The bitmap index testing consisted of running a set of seven queries on tables

with (b) and without (a) bitmap indexes. Queries 1a through 7a (Figures 5-1 through 5-

17) were run on tables without bitmap indexes, while queries 1b through 7b were run on

tables with bitmap indexes. I/O statistics and time measurements were collected in an

attempt to determine how query performance might be affected by the implementation of

bitmap indexes.

Figure 5-1: Query 1a

Figure 5-2: Query 1b

The first set of queries that were run (see Figures 5-1 and 5-2) returned a count

from two nearly identical indexed and non-indexed tables. Query 1a performed a full

table scan while query 1b read the bitmap index. Since a count operation was performed,

the bits in the index designating the female gender were counted without touching the

table. Because only the index was accessed for query 1b, physical I/O is practically

33

nonexistent as shown in Table 5-2. As a result, a major performance gain was achieved

by running a count query that referenced a bitmap indexed column.

Figure 5-3: Query 2a

Figure 5-4: Query 2b

The second and third sets of queries (Figures 5-3 through 5-6) added additional

WHERE clauses to filter on marital status and income level. Again, the queries on the

indexed table produced minimal I/O and consequently finished in a fraction of the time

required by the queries on the non-indexed table.

Figure 5-5: Query 3a

Figure 5-6: Query 3b

34

Queries 4a and 4b (Figures 5-7 and 5-8) were run next, which returned rows

based on criteria in the previous queries instead of counting them. When this query was

run the bits in the bitmap indexes were counted as before, but this time the rows had to be

returned instead of only being counted. Because the rows had to be returned, an

additional bitmap conversion step was required in which the affected rowids were

identified through the bitmap index. The table then had to be accessed to retrieve the

rows.

Figure 5-7: Query 4a

Figure 5-8: Query 4b

When running the previous count queries only the index had to be accessed. The

bitmap to rowid conversion operation required additional I/O and caused a small drop in

performance. As shown in table 5-2, the amount of physical disk access for query 4b was

zero since a very small number of rows were retrieved and already available in the cache.

35

Figure 5-9: Query 5a

Figure 5-10: Query 5b

The 5
th

set of queries (see Figures 5-9 and 5-10) brought about a steep drop in

performance as physical and logical I/O increased dramatically. A graphical illustration

of the performance decrease can be seen in Figure 5-11and matching I/O statistics in

Table 5-2. This was caused by joining to a fact table and another dimension table. A full

table scan was performed on the fact table while a fast full index scan was performed on

the primary key index of other dimension table.

36

Figure 5-11: Bitmap Performance by Query Set

Since this was a count query only the primary key index needed to be accessed in

order to determine the number of rows in the table and thus a full table scan on the other

dimension table was avoided. The full table scan and hash joins operations caused by

joining tables together were very costly in terms of I/O, bringing the performance

improvement level down to twenty-five percent.

Figure 5-12: Query 6a

37

Figure 5-13: Query 6b

Figure 5-11 graphically illustrates the rapid decrease in performance that was measured

when queries 5a and 5b were run. A quick look at Figure 5-16 and Figure 5- 17 shows

that the cost of both queries increased substantially over their predecessors, while the

number of physical reads for query 5a was over twice the number recorded for query 5b.

Not having to perform full table scans on DIM_CUSTOMERS_B and

DIM_ADDRESS_B considerably lowered the amount of physical disk access produced

by query 5b.

Figure 5-14: Query 7a

Figure 5-15: Query 7b

38

Queries 6a and 6b (see Figures 5-12 and 5-13) added an additional WHERE

clause to the previous set of queries. Query 6b was able to make use of a bitmap index on

the DIM_ADDRESS_B table to improve performance. While query 6a was performing

full table scans on three tables, query 6b was only performing a full table scan on one

table, leading to a forty-eight percent difference in performance.

Table 5-1: Bitmap Time Measurements

Queries

Bitmap

Indexes

Accessed

Number

of Joins

Avg. Query

Time (seconds)

Query a

Avg. Query

Time (seconds)

Query b

Percentage of

Improvement

1a, 1b 1 0 83 1 99%

2a, 2b 2 0 79 1 99%

3a, 3b 3 0 79 1 99%

4a, 4b 3 0 81 3 96%

5a, 5b 3 2 288 217 25%

6a, 6b 4 2 165 85 48%

7a, 7b 4 2 167 85 49%

The seventh and final set of queries (see Figures 5-14 and 5-15) changed the

previous set of count queries so that rows are returned instead of counted. Had the query

not already included join operations, this would have generated additional I/O for bitmap

to rowid conversion. However, these bitmap conversions were already taking place

because of the joins so query performance was not adversely affected. A look at Table 5-

1 indicates that the average processing times for queries 6b and 7b were the same.

39

Figure 5-16: Bitmap Optimizer Cost

5.2 Bitmap Indexing Summary

In the previous tests bitmap indexes exhibited excellent performance

improvement on count queries with no table joins. When a count query’s WHERE

clauses reference columns that have been indexed, many times only the indexes must be

accessed. This greatly improves the performance of these types of queries when

compared to that of tables not associated with bitmap indexes.

Table 5-2: Bitmap I/O Measurements

Queries
Physical Reads

Query a

Physical Reads

Query b

Optimizer Cost

Query a

Optimizer Cost

Query b

1a, 1b 558551 0 111000 584

2a, 2b 558396 0 110000 282

3a, 3b 558790 0 110000 424

4a, 4b 558787 0 110000 32763

5a, 5b 889232 331719 214000 174000

6a, 6b 1049830 274031 237000 197000

7a, 7b 1049847 273095 456000 361000

40

Bitmap indexes can significantly reduce the amount of physical I/O in queries,

especially count queries. Figure 5-17 displays the progression of the physical reads for

the seven test queries. The number of physical reads for queries 1b through 7b (on the

indexed tables) is consistently far lower than that of queries 1a through 7a (non-indexed

tables). Even the two join operations in query 5b didn’t cause the same sharp increase in

physical I/O that was observed in query 5a.

Figure 5-17: Bitmap Physical Reads

The level of performance improvement provided by the bitmap indexes quickly

deteriorated when joins were required or when rows needed to be returned instead of

counted. The bitmap to rowid conversion process generates additional I/O which can be

detrimental to performance.

41

Figure 5-18: Execution Plan for a Count Query with No Joins

Figure 5-18 shows the execution plan for a count query that didn’t require any

joins. Three bitmap index single value scans took place followed by a bitmap AND

operation. Note how no table access or bitmap to rowid conversion operations were

required as this query was only returning a row count. The index was used to determine

how many rows satisfied the criteria in the query’s where clause. The results were then

counted and returned to the user.

Figure 5-19: Execution Plan for a Count Query with Joins

Figure 5-19 details the execution plan for a count query with two joins. Three

bitmap index single value scans took place followed by a bitmap AND operation. A

bitmap conversion to rowids then took place and the table was accessed using the rowids.

42

Because a join was required the rows identified as meeting query criteria in the bitmap

indexes had to be accessed so that they could be joined to those in another table. The

bitmap conversion to rowids step maps the needed bitmap values in the index to their

respective rowids so that they can be accessed during the join operation.

Figure 5-20: Execution Plan for a Query Retrieving Rows

Figure 5-20 reveals the execution plan for a query that retrieves rows from a

bitmap indexed table. As in the two previous examples, three bitmap index single value

scans took place followed by a bitmap AND operation. Since rows must be returned in

this query, the rows identified as meeting query criteria must be converted to rowids for

retrieval from the table. This results in the bitmap conversion to rowid operation and

subsequent table access seen in the query execution plan.

43

Chapter 6 – Denormalization

6.1 Denormalization Results and Analysis

It has been stated in data warehouse design literature that schema denormalization

can improve performance, but under what circumstances this performance gain can be

realized and its extent are often not mentioned. In an attempt to test the effects of

denormalization on a database schema, a set of queries were run on a set of normalized

tables designated by the letter n and a single denormalized table designated by the letter

d.

Table 6-1: Denormalization Time Measurements

Queries
Number

of Joins

Avg. Query

Time for

Normalized

Schema n

(seconds)

Avg. Query

Time for

Denormalized

Schema d

(seconds)

Time

Difference

(seconds)

Percentage of

Improvement

1n, 1d 6 275 266 9 3%

2n, 2d 12 382 131 251 66%

3n, 3d 18 667 196 471 71%

4n, 4d 18 354 195 159 45%

To start the testing, two queries (Figure 6-1 and 6-2) returning the same columns

were run on the normalized and denormalized tables. The queries returned around

655,000 rows from each table with the denormalized table barely outperforming the

normalized table by an average of nine seconds. In this case, the denormalized table

44

demonstrated only a small three percent increase in performance over the normalized

tables, and the average processing times were very close.

Figure 6-1: Query 1n

Figure 6-2: Query 1d

Next, a second set of queries (Figures 6-3 and 6-4) with a more restrictive where

clause, were run on the normalized and denormalized tables. Query 2n included twelve

joins -twice the number of joins in query 1n, and both second set queries brought back far

fewer rows (196) than the first set. Query 2d finished 251 seconds faster than query 2n

indicating the denormalized table provided a sixty-six percent reduction in processing

time over the normalized tables.

45

Figure 6-3: Query 2n

Figure 6-4: Query 2d

The third set of queries (see Figures 6-5 and 6-6) expanded the number of joins

from twelve to eighteen over the second set of queries, and returned the same number of

rows. Query 3d finished 471 seconds before query 3n resulting in a performance increase

of seventy-one percent for the denormalized table.

46

Figure 6-5: Query 3n

Figure 6-6: Query 3d

47

The fourth and final set of queries (Figures 6-7 and 6-8) were identical to those used in

the third set, only with more restrictive where clauses. Query 4d finished 152 seconds

faster than query 4n giving the denormalized table a forty-five percent increase in

performance over the normalized tables. The difference in processing times for this set of

queries is lower because query 4n completed in nearly half the time as query 3n.

Figure 6-7: Query 4n

48

Figure 6-8: Query 4d

A look at Table 1 tells us that on average the queries run on the denormalized

table finished consistently faster than the queries run on the normalized tables. Figure 6-9

shows that the number of joins in the normalized query increased the query processing

times also increased, with the greatest percentage of improvement being recorded after 18

joins were added.

Figure 6-9: Denormalization Performance

49

A comparison of Table 5-1 with Table 5-2 points to a relationship between the

number of joins, number of physical reads, query cost, and the number of sorts. This is

because joins generate I/O (both physical and logical) which in turn increases disk access,

optimizer cost, the number of sorts that take place, and ultimately query processing time.

Queries on a denormalized schema do not require as many joins and as a result can

provide a lower I/O cost than a similar normalized schema. Although the same

columns/criteria were used in queries on the normalized/ denormalized schemas and the

tables contained the same data/number of rows, the I/O overhead of multiple joins meant

that the queries on the denormalized schema finished more quickly.

Table 6-2: Denormalization I/O Measurements

Queries

Physical

Reads for

Norm

Schema n

Physical

Reads for

Denorm

Schema d

Cost for

Norm

Schema n

Cost for

Denorm

Schema d

Memory

Sorts for

Norm

Schema n

Memory

Sorts for

Denorm

Schema d

1n, 1d 505190 442125 174000 87130 28 4

2n, 2d 1216413 884239 398000 173000 28 4

3n, 3d 1941600 1325925 568000 259000 28 4

4n, 4d 1558974 1326019 394000 261000 29 4

One point of interest is that the optimizer cost and processing time of Query 4n

were reduced by nearly half as a result of additional WHERE clauses that were added.

These WHERE clauses help to filter the data, causing the rowsets that must be joined

together to be much smaller, therefore making the joins less costly. This indicates that the

performance of queries on normalized tables can be affected to a great degree by the

50

types of queries run on them and may play a role in the decision of whether or not to

implement a denormalized schema. Queries that are joining smaller rowsets on a

normalized schema will not produce as great a difference in performance when compared

to similar queries run on a denormalized schema. Figure 6-11 shows the sharp decrease in

physical reads between queries 3n and 4n caused by smaller rowsets.

Figure 6-10: Denormalization I/O Performance

6.2 Denormalization Summary

In the previous tests denormalization improved performance by reducing I/O, but

might only be practical to implement under certain conditions. Denormalization is most

effective at improving performance when queries on a similar normalized schema would

require many joins. During the testing conducted for this project minimal gains were seen

51

at six joins with more substantial improvement being observed between six and twelve

joins.

Denormalization is also very effective in improving performance when queries

bring back large amounts of unfiltered data. When queries containing multiple WHERE

clauses are used, the percentage of performance over a normalized schema is reduced.

This is because WHERE clauses filter data so that smaller rowsets are created, which

results in joins that are less costly in terms of I/O.

52

Chapter 7 – Conclusions

The performance improvement techniques discussed in previous chapters have

been shown to increase performance by varying degrees based on the types of queries

being processed. Certain key query types have the ability to unlock the performance

potential of these techniques and provide performance gains of over ninety percent in

some cases.

It is important to note that in order to achieve the maximum increase in

performance afforded by these techniques they must be implemented in an environment

where the key queries for a particular technique are commonly run. For example, at an

automotive sales headquarters where the counts of vehicle colors and models that have

been sold across the country are regularly retrieved, bitmap indexing could provide a

sizeable performance gain.

7.1 Integration

Partitioning, bitmap indexing, and denormalization are compatible with one

another and can be used in the same system. This makes them ideally suited to form the

foundation of a data warehouse based performance improvement strategy. In fact, they

are not only compatible, but can complement one another.

Testing in previous chapters has shown that bitmap indexes must perform a

bitmap to rowid conversion to return rows or when a count query contains joins, resulting

in additional I/O. Using bitmap indexes in a denormalized schema in which few joins are

53

required will eliminate this additional I/O and allow count queries to perform at their

best.

A denormalized schema will likely still require a few joins to made, but

fortunately partitioning and bitmap indexing both lower the size of the resulting rowsets

that must be joined together. This means that table joins are not as costly as they would

be if full table scans were being performed instead of index/partition scans. The larger the

amount of data that must be sorted in memory or on disk means a longer wait for a query

to produce results.

Some very large tables could benefit from a combination of all three techniques.

Bitmap indexes could provide fast count queries, while queries that return rows may only

have to access a single partition. The denormalized structure would eliminate the need for

a large number of costly joins, saving unnecessary I/O and therefore time, while the

impact of any necessary joins would be lessened by smaller rowsets.

54

Chapter 8 – Lessons Learned

8.1 Challenges

Setting up the test environment proved to be the most time consuming part of the

project. During the process of modifying the Oracle sample schema for use in testing,

several technical problems were encountered that slowed things down. Oracle’s SQL

Developer tool was used to help with preparing the testing environment and it often

crashed or stopped responding.

The tool caused problems when inserting large number of rows because after

crashing in middle of an insert, the insert would have to be rolled back. The single disk

drive would then become very active and other transactions would take much longer to

complete. If the insert was tried again before the previous insert had been completely

rolled back, massive I/O contention would result, making the system unusable for a

considerable amount of time.

After setting up the testing environment and running a few test queries, it became

apparent that a larger number of rows would be required to see any difference in

performance. The largest of the tables contained only around one million rows and the

tables were small enough to be read into memory, making disk access unnecessary.

Indexing, denormalization, and partitioning improve performance by reducing disk

access, so on such small tables they were not effective. More rows were needed to

demonstrate an increase in performance - especially in the case of table partitioning.

55

8.2 Limitations

The testing environment hardware was limited by the number of processors,

amount of disk space, and memory in the test system. The test system supported one

Pentium 4 processor and 2GB of memory which was upgraded from 500MB to 1.5 GB.

Disk space became an issue in the testing process early on, so the internal hard disk was

upgraded to provide 160 GB of storage for the database installation software,

documentation, and databases. An external 160 GB drive was also added to store

database backups.

The database was initially set up as a data warehouse with common data

warehouse parameter settings, including the STAR_TRANSFORMATION_ENABLED

parameter set to true. This parameter allows the Oracle optimizer to more efficiently

perform joins between fact and dimension tables when certain criteria are met (Lane,

Schupmann, & Stuart, 2003). Unfortunately, thoroughly exploring and testing the effect

of this parameter on performance was beyond the scope of this project.

56

References

Artz, J. (1997). How good is that data in the warehouse?. ACM SIGMIS Database, 28(3),

21 – 31.

Agrawal, S., Narrasaya, V., & Yang, B. (2004). Integrating vertical and horizontal

partitioning into automated physical database design. In Proceedings of the 2004

ACM SIGMOD International Conference on Management of Data (pp. 359 –

370). New York: Association for Computing Machinery.

Agrawal, S., Chu, E. & Narrasaya, V. (2006). Automatic physical design tuning.

In Proceedings of the 2006 ACM SIGMOD International Conference on

Management of Data (pp. 683 – 694). New York: Association for Computing

Machinery.

Bonifati, A., Cattaneo, F., Ceri, S., Fuggetta, A., & Paraboschi, S. (2001). Designing

data marts for data warehouses. ACM Transactions on Software Engineering

and Methodology, 10(4), 452 – 483.

Bock, D. & Schrage, J. (2002). Denormalization guidelines for base and transaction

tables. ACM SIGCSE Bulletin, 34(4), 129 – 133.

Chan, C. & Ioannidis, Y. (1998) Bitmap index design and evaluation. In Proceedings of

the 1998 ACM SIGMOD International Conference on Management of Data (pp.

355 – 366). New York: Association for Computing Machinery.

Chaudhuri, S. & Dayal, U. (1997). An overview of data warehousing and OLAP

technology. ACM SIGMOD Record, 26(1), 65 – 74

Goeke, R. & Faley, R. (2007). Leveraging the flexibility of your data warehouse.

57

Communications of the ACM, 50(10), 107 – 111.

Gorla, N. (2003). Features to consider in a data warehousing system. Communications of

the ACM, 46(11), 111 – 115.

Graefe, G. (1993). Options in physical database design. ACM SIGMOD Record, 22(3), 76

– 83.

Gray, P. & Watson, H. (1998). Present and future directions in data warehousing.

ACM SIGMIS Database, 29(3), 83 – 90.

Harizopoulos, S., Liang, V., Abadi, D., & Madden, S. (2006). Performance tradeoffs in

read optimized databases. In Proceedings of the 32nd international conference on

very large databases (pp. 487 – 498). New York: Association for Computing

Machinery.

Hellerstein, J. & Stonebraker, M. (2005). Readings in database systems (4
th
 ed.).

Cambridge, MA: Massachusetts Institute of Technology.

Hobbs, L., Hillson, S., & Lawande, S. (2003). Oracle 9iR2 data warehousing.

Burlington, MA: Digital Press.

Ingram, G. (2002). High performance oracle: Proven methods for achieving optimum

performance and availability. New York: Wiley.

Inmon, W., Rudin, K., Buss, C., & Sousa, R. (1999). Data Warehouse Performance. New

York: Wiley

Kimball, R. & Ross, M. (2002). The data warehouse toolkit: The complete guide to

dimensional modeling (2
nd

 ed.). New York: Wiley.

58

Kyte, T. (2005). Expert oracle database architecture: 9i and 10g programming

techniques and solutions. Berkely, CA: Apress.

Lane, P, Schupmann, V., & Stuart, I. (2003). Oracle 10g database data warehouse guide.

Retrieved December 27, 2007 from

http://download.oracle.com/docs/cd/B14117_01/server.101/b10736.pdf

Lightstone, S., Teorey, T., Nadeau, T. (2007). Physical database design: The database

professional’s guide to exploiting indexes, views, storage, and more. San

Francisco: Morgan Kaufmann.

March, S. & Hevner, A. (2007) Integrated decision support systems: A data warehousing

perspective. Decision Support Systems 43(3), 1031 - 1043.

Mallach, E. (2000). Decision Support and Data Warehouse Systems. Boston: McGraw-

Hill

Martyn, T. (2004). Reconsidering multidimensional schemas. ACM SIGMOD Record,

33(1), 83 -88.

Morzy, T. & Wrembel, R. (2004). On querying versions of a multiversion data

warehouse. In Proceedings of the 7th ACM International Workshop on Data

Warehousing and OLAP (pp. 92 - 101). New York: Association for Computing

Machinery.

Niemiec, R. (2007). Oracle database 10g performance tuning tips and techniques. New

York: McGraw-Hill

O’Neil, P. & Quass, D. (1997). Improved query performance with variant indexes. In

Proceedings of the 1997 ACM SIGMOD International Conference on

http://download.oracle.com/docs/cd/B14117_01/server.101/b10736.pdf

59

Management of Data (pp. 38 - 49). New York: Association for Computing

Machinery.

Palpanas, T. (2000). Knowledge discovery in data warehouses. ACM SIGMOD Record,

29(3), 98 - 109.

Powell, G. (2004). High Performance Tuning for Oracle 9i and 10g. Burlington, MA:

Digital Press.

Powell, G. (2005). Oracle data warehouse tuning for 10g. Burlington, MA: Digital Press

Saharia, A. & Babad, Y. (2000). Enhancing data warehouse performance through query

caching. ACM SIGMIS Database, 31(2), 43 - 63.

Sen, A. & Sinha, A. (2005). A comparison of data warehousing methodologies.

Communications of the ACM, 48(3), 79 - 84.

Shasha, D. (1996). Tuning databases for high performance. ACM Computing Surveys,

28(1), 113 - 115.

Shasha, D. & Bonnet, P. (2003). Database tuning: Principles, experiments, and

troubleshooting techniques. San Francisco: Morgan Kaufmann.

Stackowiak, R., Rayman, J., & Greenwald, R. (2007). Oracle data warehousing and

business intelligence solutions. Indianapolis, IN: Wiley.

Stockinger, K., Wu, K., Shoshani, A. (2002). Strategies for processing ad hoc queries on

large data warehouses. In Proceedings of the 5th ACM international workshop on

Data Warehousing and OLAP (pp. 72 – 79). New York: Association for

Computing Machinery.

60

Wrembel, R. & Koncilia, C. (2007). Data warehouses and OLAP: Concepts,

architectures, and solutions. Hershey, PA: IRM Press.

Wu, M. (1999). Query Optimization for Selections Using Bitmaps. In Proceedings of the

1999 ACM SIGMOD International Conference on Management of Data (pp. 227

– 238). New York: Association for Computing Machinery.

61

Annotated Bibliography

Artz, J. (1997). How good is that data in the warehouse?. ACM SIGMIS Database, 28(3),

21 – 31.

 This paper focuses on the use of normalization in data warehouse systems. The

author points out several flaws in the normalization process that can contribute to

a loss of meaning in warehoused data. Problems with decomposed normalization

and synthetic normalization are discussed. The results of an experiment are

detailed in which subjects attempt to determine the relationships of database

objects.

Agrawal, S., Narrasaya, V., & Yang, B. (2004). Integrating vertical and horizontal

partitioning into automated physical database design. In Proceedings of the 2004

ACM SIGMOD International Conference on Management of Data (pp. 359 –

370). New York: Association for Computing Machinery.

 In this paper, the authors describe the importance of horizontal and vertical

partitioning. They discuss the benefits of these partitioning techniques and

propose a method for implementing them in the automatic physical design of a

database. The ways that partitioning and other elements of physical design such as

indexes interact are also explained.

Agrawal, S., Chu, E. & Narrasaya, V. (2006). Automatic physical design tuning.

In Proceedings of the 2006 ACM SIGMOD International Conference on

62

Management of Data (pp. 683 – 694). New York: Association for Computing

Machinery.

This paper discusses the use of tools native to a database platform to tune its

physical design. More specifically, the paper proposes that the order of queries

used when tuning the database can play an important role in getting an accurate

simulation of real world database performance. An example is explained in which

a data warehouse system is optimized using this technique.

Bonifati, A., Cattaneo, F., Ceri, S., Fuggetta, A., & Paraboschi, S. (2001). Designing

data marts for data warehouses. ACM Transactions on Software Engineering and

Methodology, 10(4), 452 – 483.

The authors of this paper describe the importance of data warehouse systems and

propose a three step method for creating data marts. This method is explained in

detail and sample schema diagrams are provided. An introduction to how data

warehouses generally function explains how schemas can be designed and the use

of star/snowflake schemas.

Bock, D. & Schrage, J. (2002). Denormalization guidelines for base and transaction

tables. ACM SIGCSE Bulletin, 34(4), 129 – 133.

This paper presents guidelines on how and when to denormalize data. It discusses

factors that can cause poor performance and explains how denormalization can be

an effective way to substantially improve performance. The paper goes on to

63

provide advice on how to denormalize data that is in the most common normal

forms and also includes a section on denormalizing from the higher normal forms.

Chan, C. & Ioannidis, Y. (1998) Bitmap index design and evaluation. In Proceedings of

the 1998 ACM SIGMOD International Conference on Management of Data (pp.

355 – 366). New York: Association for Computing Machinery.

The main focus of this paper is on the different architectures of the bitmap index

and how these index architectures can be optimized. The paper presents analytical

and experimental results showing the performance of different bitmap

architectures. An algorithm improving bitmap performance on certain queries is

introduced and bitmap compression is discussed.

Chaudhuri, S. & Dayal, U. (1997). An overview of data warehousing and OLAP

technology. ACM SIGMOD Record, 26(1), 65 – 74

In this paper the authors provide a broad description of data warehouse systems

and techniques. They explain the role that the data warehouse system plays in

business intelligence and how such a system can be used effectively by decision

makers. Typical data warehouse architecture is discussed as well as the use of

denormalized tables, indexes, and materialized views.

Goeke, R. & Faley, R. (2007). Leveraging the flexibility of your data warehouse.

Communications of the ACM, 50(10), 107 – 111.

64

This journal article discusses the importance of flexibility in a data warehouse

system. The authors suggest increasing system flexibility by expanding the

capability of users to perform ad hoc queries and offering additional ways that

reports can be displayed. The results from an industry survey are presented to

illustrate how several different data warehouse models scored on flexibility and

ease of use.

Gorla, N. (2003). Features to consider in a data warehousing system. Communications of

the ACM, 46(11), 111 – 115.

The author of this journal article presents his ideas on which features are the most

essential to have in a data warehouse system. He compares Multidimensional

Online Analytical Processing (MOLAP) with Relational Online Analytical

Processing (ROLAP) and provides guidelines for using both methods. A section

containing points to consider when creating a data warehouse system is also

included.

Graefe, G. (1993). Options in physical database design. ACM SIGMOD Record, 22(3), 76

– 83.

This paper focuses on different physical design factors affecting database

performance. Several physical design techniques including horizontal

partitioning, vertical partitioning, compression, and index selection are touched

on. A brief discussion of the how physical design factors are interrelated is

65

included as well as the importance of disk I/O (input/output) in system

performance.

Gray, P. & Watson, H. (1998). Present and future directions in data warehousing.

ACM SIGMIS Database, 29(3), 83 – 90.

In this journal article, the authors provide a variety of information on data

warehouse database systems. They provide a brief description of the purpose

behind a data warehouse then proceed to describe its functionality and

architecture. The cost limitations of implementing a data warehouse system are

examined and predicted trends in data warehousing are presented.

Harizopoulos, S., Liang, V., Abadi, D., & Madden, S. (2006). Performance tradeoffs in

read optimized databases. In Proceedings of the 32nd international conference on

very large databases (pp. 487 – 498). New York: Association for Computing

Machinery.

The primary focus of this paper is the design of databases that have been

optimized for reading data. The authors propose that column oriented database

systems can provide better performance than row oriented systems. They then

compare the advantages and disadvantages of both column orientations. Later in

the paper, data decomposition is mentioned for use in read-only optimization.

66

Hellerstein, J. & Stonebraker, M. (2005). Readings in database systems (4
th
 ed.).

Cambridge, MA: Massachusetts Institute of Technology. Retrieved March 13,

2008 from:

http://library.books24x7.com.dml.regis.edu/book/id_10757/viewer.asp?bookid=1

0757&chunkid=879254663

 This book contains a collection of database research written by a variety of

authors. It includes sections on query processing, data warehousing, data mining,

and database architecture. The data warehousing section contains research on

topics such as data cubes, view maintenance, and improving query performance in

a data warehouse environment. A section on transaction management presents

research on locking with b-tree indexes, as well as how locking affects

performance.

Hobbs, L., Hillson, S., & Lawande, S. (2003). Oracle 9iR2 data warehousing.

Burlington, MA: Digital Press. Retrieved March 13, 2008 from:

http://library.books24x7.com.dml.regis.edu/book/id_5958/viewer.asp?bookid=59

58&chunkid=0000000001

The authors of this edited book provide advice on how to design and tune a data

warehouse system utilizing the Oracle RDBMS (Relational database Management

System). They cover partitioning, indexing, compression, tuning, disaster

recovery, and many other topics. The section on query optimization is particularly

interesting and an explanation of indexes illustrates the concept of the bitmap

http://library.books24x7.com.dml.regis.edu/book/id_10757/viewer.asp?bookid=10757&chunkid=879254663
http://library.books24x7.com.dml.regis.edu/book/id_10757/viewer.asp?bookid=10757&chunkid=879254663
http://library.books24x7.com.dml.regis.edu/book/id_5958/viewer.asp?bookid=5958&chunkid=0000000001
http://library.books24x7.com.dml.regis.edu/book/id_5958/viewer.asp?bookid=5958&chunkid=0000000001

67

index architecture very well. Several partitioning techniques available in Oracle 9i

are explained and sample code is provided for creating the partitions.

Ingram, G. (2002). High performance oracle: Proven methods for achieving optimum

performance and availability. New York: Wiley.

 Describing proven methods to achieve optimum performance on an Oracle

database system is the purpose of this book. The author starts by explaining the

fundamentals of an Oracle system including software installation and database

setup. He moves into a series of chapters on performance tuning that covers topics

such as partitioning, indexes, managing growth, stress testing, and the use of

various performance management tools. The chapter on managing indexes is very

thorough and a section on database tuning fundamentals provides a great deal of

practical information.

Inmon, W., Rudin, K., Buss, C., & Sousa, R. (1999). Data Warehouse Performance. New

York: Wiley

This book describes how to design a high performance data warehouse system.

The book does not describe how to build a data warehouse system on a particular

database platform and doesn’t mention technical details. Instead, it provides

general advice on designing a data warehouse architecture and explains how the

various components of the system work together. Data marts, data cleansing, and

68

monitoring are covered, as well as the hardware required to support a high

performance data warehouse system.

Kimball, R. & Ross, M. (2002). The data warehouse toolkit: The complete guide to

dimensional modeling (2
nd

 ed.). New York: Wiley.

Dimensional modeling is the focal point of this edited book. The authors

introduce the concept of dimensional modeling and how to use it to design an

effective data warehouse system. The book doesn’t mention specific database

platforms or get into the technical details of implementing the dimensional model.

It mainly discusses the high level design of a data warehouse system using

dimensional structures which can contain denormalized data.

Kyte, T. (2005). Expert oracle database architecture: 9i and 10g programming

techniques and solutions. Berkely, CA: Apress.

This edited book authored by Oracle expert Tom Kyte provides a summary of

practical information about the Oracle RDBMS. The sections on bitmap indexes

and partitioning are of particular interest. Kyte illustrates how partitioning can

improve system performance and how the different partitioning methods work.

He provides sample PL/SQL scripts to set up partitioned tables and tips for using

partitioning effectively in different situations.

69

Lane, P, Schupmann, V., & Stuart, I. (2003). Oracle 10g database data warehouse guide.

Retrieved December 27, 2007 from

http://download.oracle.com/docs/cd/B14117_01/server.101/b10736.pdf

This guide to data warehousing with the Oracle Relational Database Management

System (RDBMS) covers a wide variety of topics. It includes sections on logical

design, physical design, disk I/O, partitioning, indexes, system maintenance, and

system performance. The sections providing information on the use of bitmap

indexes and partitioning to improve system performance are especially

informative.

Lightstone, S., Teorey, T., Nadeau, T. (2007). Physical database design: The database

professional’s guide to exploiting indexes, views, storage, and more. San

Francisco: Morgan Kaufmann.

 This book provides a glimpse into the complex world of physical database design.

It explores how the physical design of a database can affect its performance. Of

particular interest is a chapter detailing physical design considerations for data

warehousing and decision support systems. The book covers server resources and

configuration, as well as network based storage systems. A chapter on

denormalization presents a strategy for denormalizing data and gives an example

of a denormalized schema.

March, S. & Hevner, A. (2007) Integrated decision support systems: A data warehousing

perspective. Decision Support Systems 43(3), 1031 - 1043.

http://download.oracle.com/docs/cd/B14117_01/server.101/b10736.pdf

70

How data warehouse systems can be used in decision making is the main focus of

this paper. It describes what information should be provided by the warehouse

from the viewpoint of decision makers. Data warehouse architecture and

integrating a data warehouse into existing information systems are also discussed.

Mallach, E. (2000). Decision Support and Data Warehouse Systems. Boston: McGraw-

Hill

This is an entry level decision support/data warehousing book that does a good

job of introducing the concepts and vocabulary used in these types of systems.

Each chapter contains case studies meant to help to illustrate the ideas presented.

The book explains the need for decision support/data warehouse systems in

business and covers system modeling, architecture, and design. A chapter on data

quality stresses the importance of having high quality data.

Martyn, T. (2004). Reconsidering multidimensional schemas. ACM SIGMOD Record,

33(1), 83 -88.

The main idea behind this paper is that the technique of denormalizing database

tables in a data warehouse database to increase performance should be done with

care and only when necessary. The author points out a few problems with using

denormalized tables such as a loss of meaning, and problems with updates in

some systems. Guidelines to help database designers decide whether or not to

denormalize are also presented.

71

Morzy, T. & Wrembel, R. (2004). On querying versions of a multiversion data

warehouse. In Proceedings of the 7th ACM International Workshop on Data

Warehousing and OLAP (pp. 92 - 101). New York: Association for Computing

Machinery.

The authors of this paper describe a data warehouse system that is able to change

along with production systems. They propose a system that maintains different

versions of a data warehouse structure and data. In order to access these multiple

versions within the system, a special extended query language is presented. The

authors also describe the prototype system they have built to test their ideas.

Niemiec, R. (2007). Oracle database 10g performance tuning tips and techniques. New

York: McGraw-Hill

The objective of this book is to provide effective methods for tuning the Oracle

10g RDBMS. The book explains query tuning in great detail and has a thorough

section on index tuning. A chapter on disk configuration and the tuning of

database structures does a good job of illustrating why these key tuning areas

greatly affect system performance. The author also discusses the V$ views, X$

tables, the statspack utility, and how to tune the system using certain initialization

parameters.

72

O’Neil, P. & Quass, D. (1997). Improved query performance with variant indexes. In

Proceedings of the 1997 ACM SIGMOD International Conference on

Management of Data (pp. 38 - 49). New York: Association for Computing

Machinery.

Using variant indexes to increase performance is the focus of this paper. The

paper explores several types of indexes and how they function in the typically

read-only environment of the data warehouse. The performance enhancing

characteristics of the different indexes are described as well as the tasks for which

each is the most suited.

Palpanas, T. (2000). Knowledge discovery in data warehouses. ACM SIGMOD Record,

29(3), 98 - 109.

This paper explains how key information can be effectively mined when working

with very large amounts of data, such as those found in data warehouse systems.

The author describes the need for new tools and techniques that are specifically

designed for data mining using data warehouse systems. Sections on mining with

data cubes and association rules are also presented.

Powell, G. (2004). High Performance Tuning for Oracle 9i and 10g. Burlington, MA:

Digital Press.

73

 Database tuning for performance improvement is the focus of this edited book.

The author walks the reader through various tuning tools available in the Oracle

RDBMS including tkprof, SQL trace, statspack, dynamic performance views, and

the explain plan command. He also gives advice on how to read execution plans

and decipher the statistics generated by the statspack utility. The book contains a

section on hardware tuning and provides suggestions for tuning the low level

physical structures in the database for maximum performance.

Powell, G. (2005). Oracle data warehouse tuning for 10g. Burlington, MA: Digital Press

Tuning an Oracle database in a data warehouse environment is the idea behind

this edited book. The chapters in this book are well organized and cover a variety

of tuning techniques. The author explains the architecture of data warehouse

systems and how this architecture can affect tuning. SQL query tuning,

partitioning, and parallel processing are discussed, as well as how materialized

views can be utilized to reduce processing time for aggregate data. A section on

improving the performance of materialized views is also included.

Saharia, A. & Babad, Y. (2000). Enhancing data warehouse performance through query

caching. ACM SIGMIS Database, 31(2), 43 - 63.

Improving the performance of a data warehouse system through the use of query

caching is the primary concept behind this paper. The author proposes that an

efficient query cache could improve query response times for ad hoc queries. An

74

explanation of how different types of queries would be positively affected by the

caching system is provided. Algorithms for detecting subsumption and query

modification are also described.

Sen, A. & Sinha, A. (2005). A comparison of data warehousing methodologies.

Communications of the ACM, 48(3), 79 - 84.

This journal article provides a comparison of various data warehousing

methodologies. The authors describe keys tasks involved in designing a data

warehouse system and how they fit into the stages of the development process.

The strengths/weaknesses of each methodology are discussed as well as how they

are categorized. Each methodology is rated based on certain attributes that are

commonly seen in a data warehouse environment.

Shasha, D. (1996). Tuning databases for high performance. ACM Computing Surveys,

28(1), 113 - 115.

This paper is about tuning database systems to achieve the best performance

possible. Transaction tuning techniques are presented and methods for tuning

concurrency control are discussed. The purpose of concurrency control algorithms

is explained and techniques are detailed for avoiding problems with deadlock

situations. Partitioning and sparse clustering indexed are also discussed.

75

Shasha, D. & Bonnet, P. (2003). Database tuning: Principles, experiments, and

troubleshooting techniques. San Francisco: Morgan Kaufmann.

The authors of this edited book introduce database tuning techniques and provide

troubleshooting guidelines for many common database performance problems.

Two chapters apply to data warehouse environments. The first chapter focuses on

how data warehouses are used by companies to make decisions, while the second

chapter provides advice on tuning these systems. The book includes a section that

presents database tuning case studies from the author’s experiences in a financial

environment. The case studies discuss how various real world database tuning

problems were solved and contain a good deal of practical tuning advice.

Stackowiak, R., Rayman, J., & Greenwald, R. (2007). Oracle data warehousing and

business intelligence solutions. Indianapolis, IN: Wiley.

This book explains how data warehousing works in an Oracle environment. The

text provides an introduction to the data warehousing tools and features available

in the Oracle RDBMS. A section on tuning and monitoring discusses strategies

for improving performance using the available Oracle tools. Although the book

specifically focuses on data warehousing in an Oracle environment, it does not go

into a great amount of technical detail. Instead, the authors provide more of a high

level overview of what data warehousing on an Oracle system entails.

76

Stockinger, K., Wu, K., Shoshani, A. (2002). Strategies for processing ad hoc queries on

large data warehouses. In Proceedings of the 5th ACM international workshop on

Data Warehousing and OLAP (pp. 72 – 79). New York: Association for

Computing Machinery.

In this paper the authors describe techniques for running ad hoc queries on large

data warehouse systems. The use of bitmap indexes to improve performance is

discussed and the effect of compression on bitmaps. Several types of bitmap

indexes are introduced and their effect on performance in various scenarios

explained. Performance gains using vertical partitioning are detailed as well as the

advantages gained when use vertical partitioning over b-tree indexes.

Wrembel, R. & Koncilia, C. (2007). Data warehouses and OLAP: Concepts,

architectures, and solutions. Hershey, PA: IRM Press.

This text covers a variety of data warehousing topics, from database design to

system tuning. Star schema queries are discussed and a brief section on star query

optimization is presented. A chapter on tuning bitmap indexes is particularly

interesting and goes into depth on subjects such as bitmap compression and

binning. The bitmap index offerings of major database vendors are also

summarized toward the end of the chapter.

77

Wu, M. (1999). Query Optimization for Selections Using Bitmaps. In Proceedings of the

1999 ACM SIGMOD International Conference on Management of Data (pp. 227

– 238). New York: Association for Computing Machinery.

This paper focuses on strategies for using bitmap indexes to improve the speed of

database queries. The author describes static and dynamic query optimization and

describes the attributes of each classification. He goes on to propose a tree

reduction technique he developed to improve the performance of an algorithm

used in bit sliced indexes. Analytical and probabilistic cost models are also

proposed which the author claims will lead to improved query execution plans.

	Regis University
	ePublications at Regis University
	Spring 2009

	A Strategy for Reducing I/O and Improving Query Processing Time in an Oracle Data Warehouse Environment
	Chris Titus
	Recommended Citation

	TitusChris_3
	TitusChris

