
Centr um voor  Wi sk unde en I nf or ma ti ca

 INformation Systems

RAM: Array processing over a relational DBMS

A.R. van Ballegooij, A.P. de Vries, M.L. Kersten

REPORT INS-R0301 MARCH 31, 2003

INS
Information Systems

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CWI's Institutional Repository

https://core.ac.uk/display/301644533?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


CWI is the National Research Institute for Mathematics and Computer Science. It is sponsored by the 
Netherlands Organization for Scientific Research (NWO).
CWI is a founding member of ERCIM, the European Research Consortium for Informatics and Mathematics.

CWI's research has a theme-oriented structure and is grouped into four clusters. Listed below are the names 
of the clusters and in parentheses their acronyms.

Probability, Networks and Algorithms (PNA)

Software Engineering (SEN)

Modelling, Analysis and Simulation (MAS)

Information Systems (INS)

Copyright © 2001, Stichting Centrum voor Wiskunde en Informatica
P.O. Box 94079, 1090 GB Amsterdam (NL)
Kruislaan 413, 1098 SJ Amsterdam (NL)
Telephone +31 20 592 9333
Telefax +31 20 592 4199

ISSN 1386-3681



RAM: Array Processing over a Relational DBMS

Alex van Ballegooij
alex.van.ballegooij@cwi.nl

Arjen P. de Vries
arjen.de.vries@cwi.nl

Martin Kersten
martin.kersten@cwi.nl

CWI

P.O. Box 94079, 1090 GB Amsterdam, The Netherlands

ABSTRACT

Developing multimedia applications in relational databases is hindered by a mismatch in computational frame-

works. Efficient manipulation of multimedia data calls for array-based processing, which at best is available

as a database add-on, not supported by the query optimizer. As a result, array-based processing ends up in

dedicated programs outside the DBMS: non-reusable black boxes.

The goal of our research is to reduce this gap between user-needs and system functionality by developing

a seemless integration of array processing in a relational algebra engine. The paper introduces a declarative

language for array-expressions based on the array comprehension, and its mapping to a relational kernel in a

prototype implementation.

The layered architecture of the resulting array database management system allows the use of structural

knowledge available in the array data type. This additional source of information can be exploited for query

optimization, which is demonstrated with a case study.

The experiments show how the performance of a standard tool for matrix computations can be achieved

without sacrificing data independence, highlighting however a critical aspect in the DBMS architecture proposed.

1998 ACM Computing Classification System: Database Management (H.2), Systems: Query processing

(H.2.4), Database Applications: Scientific databases (H.2.8)

Keywords and Phrases: Database Management System, Array Database, Multidimensional Array

Note: Work carried out in the CWI theme INS1: Data Mining and Knowledge Discovery.

This report is an extended version of a paper rejected for the ACM SIGMOD 2003 conference.

1. Introduction
Array data structures are common in many computationally intensive application domains, such as
multimedia analysis, scientific computing, and OLAP. Two explanations for their popularity readily
comes to mind. First, a multi-dimensional array naturally represents the structure of the under-
lying data, e.g. video data maps is a 3D composition of of a sequence (1D array) of images (2D
arrays of pixels). The multi-dimensional ordering between elements – modeled explicitly in the array
representation – carries an important part of their meaning: the location of a pixel in the image
(spatial/temporal information) is of equal importance as its value (the color representation).

Second, arrays enable efficient execution of bulk operations. A multi-dimensional array structure
enables direct lookups (i.e., it comes with a perfect index), and provides an efficient iterator over its
elements. Likewise, the array indices are used to relate elements in (aligned) source- and result-arrays;
the storage required can be easily deduced from the source operands.
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From a database perspective, using arrays in a conventional programming language violates the
principle of data independence. The price paid for efficient access is that the programmer is responsible
for providing a proper access plan and memory management of the result. As demonstrated in Section
1.1 however, expressing algorithms on array structures in a set-oriented declarative query languages
often results in (unnecessarily) complex query expressions, that are hard to read and debug for the
user, as well as difficult to optimize for the query optimizer in the DBMS.

This paper investigates an alternative approach, in which algorithms expressed as declarative array
manipulations are transformed into bulk operations over binary relations. Their physical representa-
tion provides a space- and processing-efficient structure. Furthermore, during the transformation we
can minimize the overhead introduced by the relational kernel, while maximizing effectiveness thanks
to the data independence acquired.

The main contributions of this paper can be summarized as follows:

• array-centric algorithms in a database setting can be supported by a concise declarative language;

• a small algebraic framework is sufficient to realize evaluation of the array-expressions;

• an optimizer can rewrite the algebraic programs to attain efficient execution plans;

• a case study with our approach, based on access to the internals of an efficient database kernel,
highlights the opportunities for this track. In light of the memory access costs, tight control
over the data-flow is shown to be a critical factor.

1.1 Motivating Example
In 1993, Maier and Vance argued convincingly for ‘a call to order’, because the deployment of (rela-
tional) database technology in computation oriented domains (such as multimedia analysis) had been
hindered by a serious mismatch of data models [1]:

Scientific applications are infrequent users of commercial database management systems.
We feel that a key reason is they do not offer good support for ordered data structures, such
as multidimensional arrays, that are needed for natural representation of many scientific
data types.

The research presented in this paper builds upon past experience with the implementation of multi-
media retrieval and analysis in a database setting, see e.g. [2, 3]. While set-oriented query processing
techniques have proved their potential value for multimedia analysis, the efficient manipulation of the
(inherently ordered) image data requires non-trivial data storage schemes. The resulting query plans
are rarely intuitive, while deriving such plans is a laborious and error-prone process; for, it is difficult
to keep track of the relationship between the algebraic operations in the relational query plan and the
steps in the original algorithms.

To illustrate these problems in a simplified yet realistic example, consider a computation taken
from a multimedia retrieval problem where image data is modeled with mixtures of Gaussians [4] (see
also the case study presented in Section 6). The ranking process computes the Mahalanobis distance
between the query image samples and a Gaussian mixture model for each image in the collection:

I∑
i=1

(xis − µic)2

σ2
ic

where the S samples x̄ from the query image are I-dimensional vectors, and the mixtures of Gaussians
consist of C components. Assume the collection consists of D images; for now, we postpone the
aggregating sum to Section 3.2.
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In RAM, the Relational Array Mapping language proposed in this paper, the distance computation
is concisely expressed through ‘array comprehension’:1

[ (X[d,s,i]-Mu[d,c,i])^2 / Sigma[d,c,i]^2 | d<D,s<S,c<C,i<I ]

Assuming that tables X(d,s,i,v), Mu(d,c,i,v), and Sigma(d,c,i,v) represent a set of 3D arrays,
the equivalent SQL expression reads:

SELECT X.d, X.s, X.i, Mu.c,
(X.v-Mu.v)^2/Sigma.v^2

FROM X, Mu, Sigma
WHERE X.d = Mu.d AND X.d = Sigma.d AND

X.i = Mu.i AND X.i = Sigma.i AND
Mu.c = Sigma.c AND
X.d >= 0 AND X.d < D AND
X.s >= 0 AND X.s < S AND
Mu.c >= 0 AND Mu.c < C AND
X.i >= 0 AND X.i < I;

The difference between the two expressions is evident. The former is less complex and much closer
to the intuitive mathematical description of the problem being addressed. The array expression is a
closed-form construction of a 4-d array, while the relational equivalent merely results in a physical
representation. Likewise, the location of elements within the source arrays is directly used to indicate
which elements to combine; in the relational variant, this selection must be made explicitly (through
predicates specifying equalities between and ranges of index-attributes in the WHERE clause).

Before we introduce RAM and its mapping to the underlying database we explore related work in
this important database research area.

2. Related Work
Arrays have been defined as an operational data structure in many instances, ranging from low level
programming language definitions to related work on query languages for arrays. A notable effort to
formalize arrays is the ‘Theory of Arrays’ [5], which contains many axioms and theorems with their
formal proof.

As mentioned above, [1] identified the failure of most DBMS systems to support ordered data
collections natively. The authors hypothesize that the mismatch in domains between database systems
based on unordered sets, and scientific problems, often based on ordered structures, explains why
DBMSses are not used widely in general science. The mismatch in domains causes unnatural encoding
of data in a DBMS, encouraging users to implement client-side processing while using a DBMS only
as a persistent data store. The authors give some pointers on the implementation of database support
for arrays, but also claim that most ideas hold for ordered structures in general.

The array query language AQL proposed in [6] has been an important contribution toward the
development of array support in database systems. AQL is a functional array language geared toward
scientific computation. It adds some syntactic sugar to NRCA, a nested relational calculus (NRC)
extended to support arrays as well as multi-sets. The proposed language takes the point of view that
an array is a function rather than a collection type, and is based on a comprehension-like syntax
defining arrays of complex objects. Although a prototype system enriched with AQL is reported, the
main contributions are of theoretical nature. NRCA supports most traditional set-based operations,
such as aggregation, through the manipulation of complex-objects, basically nested collections. The
authors proof that inclusion of array support to their nested relational language entails to the addition
of two functions: an operator to produce aggregation functions and a generator for intervals of natural
numbers.

1RAM syntax and semantics are deferred to Section 3.2.
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The RasDaMan DBMS is a domain independent array database system, implemented as an abstract
data type in the O2 object oriented DBMS [7, 8]. Its RasQL query language is a SQL/OQL like
query language based on a low level array algebra, the ‘RasDaMan Array Algebra’. This algebra
consists of three operators: an array constructor, an aggregation operation and a sorting operation.
The constructor is similar to the AQL array constructor, in that it defines a shape and a function
to compute the value for each array cell. The aggregation construction reduces an array to a scalar
value; the sorter facilitates the sorting of hyper planes over a single dimension. The RasDaMan DBMS
provides a nice example of an operational array based multimedia DBMS; although its implementation
as an ADT in an OO-DBMS which can be regarded as a special-purpose black-box blob approach.
Although RasDaMan is intended as a general purpose framework for ‘multi-dimensional discrete data’
(basically sparse arrays), its primary application so far has been image databases. An interesting
contribution of their work is an optimized arbitrary tiling system for the storage manager. The
RasDaMan storage manager fragments arrays into ‘tiles’ and optimizes the fragmentation pattern
automatically to best match observed access patterns.

A notable example of a higher-level work on multi-dimensional data management, tailored explicitly
to image databases, is AML, the Array Manipulation Language [9]. AML is a simple algebra based on 3
operators: subsample, merge and apply. The subsample operator reduces the size of an array, whereas
the merge operator merges multiple arrays into a single new array. The apply operator is a generalized
map operator that operates on sub-arrays rather than single cells. AML is more restrictive than the
generic array languages and no prototype appears to be implemented. An interesting characteristic of
AML is an alternative array definition and an unconventional set of operators, supposedly designed
to express image manipulation efficiently. In AML arrays are defined having infinite valence (x ×
y × z × 1× 1× · · · ) and sub-sampling is achieved through bit patterns over axes rather than explicit
index numbers. A point of concern, however, is that AML is not always applicable; for example, a
seemingly simple array operation, matrix-transposition, cannot be expressed elegantly – the source
must be decomposed entirely and the transposed matrix explicitly (re-)build.

To summarize, these query language initiatives provide a guideline for the minimal array operator
set: transformation, mapping and sorting. Transformation and mapping are supported explicitly by
all languages discussed. Sorting is present in the RasDaMan Array Algebra only. Two additional op-
erations, aggregation and selection, are either implemented directly as array operations, or supported
through (multi-)sets. AQL supports both operations only in the (multi-)set domain. The RasDaMan
Array Algebra explicitly has an aggregation construction. However, selection is supported only by
the encapsulating language RasQL. AML’s generalized mapping function supports aggregation, but
selection is not mentioned.

Multi-dimensional arrays are also the basis for Online Analytical Processing (OLAP) systems, for
an overview see [10, 11]. The multi-dimensional arrays, called data-cubes, are implemented with either
a relational DBMS (ROLAP) or by a special purpose multi-dimensional database system (MOLAP).
In ROLAP, the data-cube is stored in a so-called fact table: a relation between a multi-dimensional
index and values. Contrary, MOLAP systems are based on optimized implementations of arrays data
structures. Naturally the OLAP data model and operations are independent of the implementation
choice for a ROLAP or MOLAP system, as is shown for the MD system [12].

Although superficially, multi-dimensional databases used in the context of OLAP may seem closely
related to the more mathematical approach used in multimedia applications, some significant dif-
ferences exist between the two application domains. In practice, OLAP boils down to the repeated
selection of sub-cubes and aggregation of a given data-cube. Multimedia analysis on the other hand, is
mainly based on mathematical computation, generating large volumes of data that need be processed
at query time.

3. The RAM Language
RAM is a manipulation language for arrays. After defining what constitutes an array, primitives for
construction and manipulation of arrays are discussed.
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Symbolic RAM syntax Meaning
A A an array instance
SA shape(A) the shape of A,
TA type(A) the value type of A,
A [̄ı] A [̄ı] the value indexed by ı̄ in A

(the application of A to ı̄)
|SA| dim(A) the valence of A

Sj
A len(A, j) the length of axis j of A

Table 1: Array notation

3.1 Arrays
An array A is defined formally as a function that maps array indices, multi-dimensional discrete
numeric vectors, to scalar values (Table 1 summarizes our notation). The domain of this function is
called the shape (S), determined by the combination of its valence (the number of dimensions) and
the domains of its axes. The range of the array function, called value type T , can be any atomic type
defined in the database layer, i.e., T ∈ {oid, int, f loat, . . .}.

For notational convenience, we restrict the domain of an array axis to a finite consecutive range
of natural numbers starting at 0. A k-dimensional shape S corresponds therefore to a compact
hypercube in Nk

0 , located at the origin. Following this convention, the shape of an array can be
specified completely by giving the list of axis lengths.

Only Dense Arrays Note that we defined an array as a function, so it is dense by definition: an array
instance defines a single value for each possible index value. Nevertheless, the term ‘sparse array ’ is
encountered frequently in the literature. The idea of a sparse array originates from the ‘collection
type’ view on arrays. Arrays can be implemented with different data structures (or stored functions),
and many physical storage structures allow for ‘leaving holes’. This is beneficial for applications in
which most values are equal (like matrix and tensor algebra, where many values may be zero). A
second case for ‘sparse arrays’ arises when data is discretized on a regular grid, as the value for a grid
cell may simply be unknown. By explicitly representing missing data with a special nil value (for
‘unknown’), arrays remain dense and thus valid. In both cases, arrays with many equal values (be
they nil or zero) may be stored compactly by representing only those cells with non-default values.
Yet, our goal of data independence allows us to abstract from the particular storage structure chosen;
so we can safely restrict ourselves to dense arrays only.

Only Atomic Values Another issue is the possibility to nest arrays, and possibly even in combination
with other collection types. For now, we decided against allowing such complex types; aiming above all
for an efficient implementation to use in our work on multimedia retrieval. Yet, we expect to support
nested structures in later revisions of the language without running into fundamental problems. The
array type requires its values to have the same type, so arrays of arrays are still rectangular structures
that could be mapped transparently into a different array of higher dimensionality. Arbitrary nesting
of collection types (like arrays of sets of arrays) may be more difficult to achieve without paying the
price in efficiency. We defer this problem to future work on integrating RAM with the object algebra
presented in [13].

3.2 Query Language
The core of the RAM language consists of a comprehension style array constructor for defining array
shape and associated generation function (like the SELECT-FROM-WHERE in SQL), and a concatenation
operator to combine two existing arrays into a new one (like the UNION in SQL). These two language
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constructs are sufficiently powerful to create new arrays and reshape existing ones. Only when we
need to express types beyond the domain of arrays of atomic values, we need additional constructs.
Although we decided not to support complex types in the current language implementation, we have
extended the core language with a special operator for aggregation over dimensions – comparable to
the GROUP BY construction in SQL. Design decisions related to more powerful languages, allowing the
manipulation of arrays in combination with complex types like sets and lists are discussed in Section
3.3.

Array constructor The RAM array constructor defines the shape of the array and a function that
specifies the value of each cell given its array index. Its form and syntax uses a comprehension syntax
(see [14]), which is inspired by a similar construct in NRCA, the ‘low level’ array language that
supports AQL [6].

The array constructor specifies arrays through array-comprehension syntax, which defines an n-
dimensional array by associating its indices ı̄ = (i1, i2, ..., in) with their cell values f (̄ı). Since we
defined the array indices as consecutive ranges of natural numbers starting from 0, the shape of
the array is defined completely by giving its index generators of the form {ij ∈ N0|ij < Sj

A}. For
convenience, these generators are denoted by the shorthand notation ij < Sj

A.
The resulting syntax for the array constructor has the following form:

[f(i1, i2, ..., in)|i1 < S1
A, i2 < S2

A, . . . , in < Sn
A]

An alternative notation (used for readability in the remainder of the paper) is [f (̄ı)|̄ı < SA]. Function f
may apply the operators defined on the base type in the database layer to values indexed in previously
defined arrays, the index values themselves, as well as constant values. A simple example follows:
The matrix:

0 1 2
3 4 5
6 7 8

[x + 3 · y|x < 3, y < 3] =⇒ [[0, 1, 2], [3, 4, 5], [6, 7, 8]]
Although the array-comprehension syntax is related to set-comprehension syntax (the foundation of

database query languages like SQL), its semantics are fundamentally different. A set-comprehension
{x ∈ D|C1, C2, . . . , Cn} (easily recognized in the SQL variant SELECT * FROM D WHERE C1 AND C2

AND . . . AND CN;) specifies which elements from D are part of the result through selection conditions
C1, C2, . . . , Cn, whereas the array-comprehension requires specification of the process that generates
the result from its index values.2 This distinction in style is best demonstrated through an example;
if we want to specify the even numbers smaller than 10, using an array-comprehension forces us to
make explicit our knowledge about generating five even numbers: [(2 · (x + 1))|x < 5]. The set-
comprehension is more elegant, as it only requires the selection criteria: {x ∈ N|x < 10, isEven(x)}.
As illustrated in Section 1.1 however, if an important part of the query encompasses the construction
of an intermediate result, the array-comprehension syntax is preferable.

Concatenation The RAM array constructor is a generative construct, which relies on shape proper-
ties and a value expression. A constructive mechanism for RAM arrays is the concatenation operator
++, which merges arrays by appending the second array to the first over the last dimension. A
prerequisite for applying the concatenation over two arrays A and B is that their value types match,
TA = TB , and they have compatible shape, init(SA) = init(SB). The operator is not commutative,
i.e. A + +B 6= B + +A.

2Notice that the more generic list-comprehension allows to combine generators and selections freely, but therefore
allows also the definition of values that violate the constraints on array shapes.
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For example concatenating a [2, 2]- and a [2, 1] array:

A B
C D

+ + X Y =
A B
C D
X Y

Concatenation of two arrays over a dimension other than the last one requires an array transforma-
tion first, e.g. pivoting the source arrays to make the concatenation dimension the last one, and after
concatenation pivoting the result to the dimension order of the source arrays:(

A B
C D

T

+ +
X
Y

T
)T

=
A B X
C D Y

The required transformations of arrays (a matrix transposition) are easily specified declaratively
using the previously defined array-comprehension, e.g.:

[A[j, i]|i < S1
A, j < S2

A]

Aggregation Recall our motivating example introduced in Section 1.1; the final summation in the
computation of the Mahalanobis distance still remains unsolved:

I∑
i=1

(xis − µic)2

σ2
ic

The intermediate result T constructed in Section 1.1 is an intermediate 4-d array, over which the
summation, i.e. aggregation, must be performed to produce the desired 3-d result array:

[T [d, s, c, 0] + T [d, s, c, 1] + · · ·+ T [d, s, c, (I − 1)]
|d < D, s < S, c < C]

Obviously, summing all elements for a given dimension explicitly is unacceptable: it is inconvenient,
and impossible to define generic aggregates without explicitly fixing the axis length. Unfortunately,
the idea of generic aggregation operators implies at least one level of nesting – which we tried to avoid
so far because of the difficulties we expect for producing effective query plans. We propose the same
solution as has been taken traditionally in relational databases with SQL’s GROUP BY clause: sub-sets
are modeled through the addition of a group id attribute to each element denoting the group, i.e.
sub-set, that the element belongs to.

The following language construction allows such grouping of array elements in the array language:

[sum{T [d, s, c, i]|i < I}|d < D, s < S, c < C]

Denoting the aggregation expression in curly brackets is a reminder that we are actually generating
an intermediate ‘array of sets’, just before the aggregate function is applied. To simplify the expression
of aggregation over array dimensions, a shorthand notation is defined:

[sum{T [d, s, c, ]}|d < D, s < S, c < C]

Aggregation over dimensions is considered a natural array operator, since it has the same properties
as the other language constructs introduced: the sizes of the resulting array, the intermediate array,
and each of the groups constructed are known in advance, and the location of each participating
element is explicitly specified through its array index.
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(a)
A B C
D E F
G H I

(b) (c) (d)

x y value
0 0 A
1 0 B
2 0 C
0 1 D
1 1 E
2 1 F
0 2 G
1 2 H
2 2 I

Index
y Ref
0 Table 0
1 Table 1
2 Table 2

Table 0 Table 1 Table 2
x value
0 A
1 B
2 C

x value
0 D
1 E
2 F

x value
0 G
1 H
2 I

f(x, y) = x + 3 ∗ y
f(x, y) value

0 A
1 B
2 C
3 D
4 E
5 F
6 G
7 H
8 I

(a) A Simple 2D Array
(b) Explicit relation between indexes and values
(c) Dimensional reduction through indirection/table fragmentation
(d) Compressed relation through dimensional reduction function

Table 2: Array to table mapping schemes

3.3 Discussion
The array manipulations discussed so far have one thing in common; they are natural array operations
in which indices play an important role. An example of an operation that does not fit this paradigm
is the value-based selection of cells, e.g. finding (or, counting) all black pixels in an image. Similarly,
the aggregation primitive does not allow grouping by value.

The choice not to support value based operations on arrays has been deliberate: it is much more
convenient to express these operations in the set domain. Each array [v] can be converted into
the equivalent set {(̄ı, v)} whenever necessary. In addition to array structures, an (array) database
system should therefore also provide rudimentary support for (multi-)sets and the complementary set
comprehensions.

Another limitation that raises issues is the restriction to arrays of atomic values. The lack of
direct support for tuples causes an unexpected problem for sorting arrays by their values using the
≤ condition as ordering criterion. The problem is not so much the sort operation itself; yet, in most
cases the indices in the source arrays have a clear semantics, and cannot be just discarded. Consider
for example the ranking of an array of images represented as feature vectors by their similarity to the
feature vector of an example image. Re-ordering the array of computed similarity scores discards the
positional information that relates the scores to the original feature vectors; yet, it is not the scores of
the most similar images we were after, but the identifiers of the images themselves. The sort operation
cannot simply return the sorted array of index-value pairs, because of the restriction to atomic types.
To circumvent this limitation, the result of a sorting operation is the array of indices only. We can
always access the original values through indirection.
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4. Relational Storage Model
Instead of developing an array database system from scratch, arrays could also be added to existing
database management systems. Mapping arrays to relations seems a viable approach to achieve a tight
integration. The remainder of this work describes a prototype implementation of an array database
built on top of the relational query engine MonetDB, an open source database kernel (see [15] and [16]
for more information). Its decomposed storage model and implementation optimized for main memory
environments have proven to result in high-performance for computationally demanding applications.

4.1 Arrays as Relations
Recall that arrays are functions, associating unique array indices (keys) to atomic values. Because
of the restrictions on array shape, the keys indexing the values are of integer type, and the relation
representing this function is defined for all index values within a given range. So, the obvious method
to store an array in a relational database is to model the relation between indices and values explicitly,
as depicted in Table 2.b. Unfortunately, the large storage overhead introduced by explicitly storing D
index values for each value in a D-dimensional array makes this mapping impractical because of the
induced processing cost in I/O and memory usage.

Alternative mappings improve upon the cost of query processing by a combination of two techniques:
reducing storage overhead and pre-ordering elements in anticipated access patterns. Storage overhead
can be reduced by aiming for a smaller set of index values. Therefore, a multi-dimensional array is
represented by arrays of lower dimensionality, either through a level of indirection, or by introducing
a functional mapping from the original array indices to lower-dimensional indices.

Using indirection (Table 2.c) results in iterative query plans over different array axes, which can
only be performed efficiently if the fragmentation pattern fits the access pattern. Its main advantage
is the often significant reduction of data that must be loaded simultaneously, which is important in
cases where the data set is much larger than then the available memory.

The functional dimension reduction alternative (Table 2.d) uses (a variant of) the standard polyno-
mial indexing function common in the implementation of programming languages; multi-dimensional
indices of the original array are mapped on a single dimension in a one-dimensional array with Equa-
tion 4.1:

f(i1, i2, ...) =
D−1∑
k=0

(ik ·
k−1∏
l=0

dl) (4.1)

This mapping function f assigns an ordinal number to each element in the bounded multi-dimensional
array. Processing queries using this storage method requires the inverse mapping of these ordinal
numbers into indices in the original array.

4.2 Decomposed Storage
Multi-column relations can be decomposed following [17] (also known as vertical fragmentation): a
unique oid is assigned to each tuple in a relation, followed by splitting the relation into a set of binary
relations (one for each column).

The three mapping alternatives result in very similar physical representations. Indirection alter-
native c is equivalent to mapping b assuming that it is implemented through an index to a series of
views on a single stored table of all values. Table 3 shows how applying a decomposed storage scheme
makes table mapping d identical to table mapping b without storing index tables x and y. The choice
between these mappings boils down to the choice whether or not to persistently store the index tables,
as they can always be generated ‘on-the-fly’. Note that this is not a difficult choice: generating the
required index tables on demand is cheaper than loading them from persistent storage. In principle, it
may even be possible to reuse some of these temporarily generated indexes for subsequent operations.
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0 1 2
0 A B C
1 D E F
2 G H I

⇒

x y value
0 0 A
1 0 B
2 0 C
0 1 D
1 1 E
2 1 F
0 2 G
1 2 H
2 2 I

⇒

oid x
0 0
1 1
2 2
3 0
4 1
5 2
6 0
7 1
8 2

oid y
0 0
1 0
2 0
3 1
4 1
5 1
6 2
7 2
8 2

oid value
0 A
1 B
2 C
3 D
4 E
5 F
6 G
7 H
8 I

Table 3: Mapping the explicit relation to a decomposed storage model

5. Relational Array Mapping
The remaining step is to transform the RAM expressions into query plans in binary relational al-
gebra. Directly mapping the complex array-comprehensions is a rather difficult process to perform
optimally, so we define an intermediate algebra to simplify the transformation process. Also, an addi-
tional layer between the complex comprehensions and binary relational algebra seems to provide the
adequate abstraction to perform optimizations based on the additional knowledge provided by the
array structure.

5.1 Intermediate Algebra
Our implementation of the mapping from array comprehensions to binary relational algebra uses the
algebraic operators shown in Table 4.

The operator new const constructs an array with a fixed value in each element; new index uses the
index generator as a function to assign the element values. The map operator of a collection type
applies a function to each element. In the case of arrays, the map can be generalized to work on
multiple identically shaped arrays (called aligned arrays): if arrays A1 . . . Ak are aligned, the k-way
map is defined as [f(A1[̄ı], ..., Ak[̄ı])|̄ı < SA].

The ability to reshape arrays and relocate values within an array is supported by the transform
operator. The operator takes S as input, the shape of the desired result. Its second argument is
an index transformation function g, that associates each index of S to an array index in SA (thus,
indexing elements in array A). The result is constructed by creating an array of the desired shape S,
and then retrieving values from A identified by applying g to its indices.

The aggregate operation takes as arguments an array A and a set-aggregate f , a function that
reduces a set to an atomic value. Similar to the concatenation operator, it aggregates over the highest
dimension only; grouping elements over all remaining dimensions. By applying f to each of the implied
subsets, an array of reduced dimensionality is obtained. As a special case, aggregation over a 1-d array
results in an array with only one element, a 1-d (singleton) array.

Operation Meaning
new const(S, c) [c|̄ı < S]
new index(S, j) [ij |̄ı < S]
map(f,A1, . . . , Ak) [f(A1[̄ı], . . . , Ak[̄ı])|̄ı < SA1]
transform(S, A, g) [A[g(̄ı)]|̄ı < S]
aggregate(f,A) [f{A[i1, . . . , in−1, ]}|̄ı < S0..n−1

A ]

Table 4: Basic Array Operations
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Array Algebra MIL Equivalent
new const(S, c) generate const(|S|, c)
new index(S, j) generate range(Sj ,

∏
S0..j−1,

∏
S/
∏
S0..j)

map(f,A1, . . . , Ak) [f ](A1′, . . . , Ak′)
transform(S, A, g) join([pA(g(̄ı))|̄ı < S]′, A′)
aggregate(f,A) f(join(reverse(generate range(

∏
S0..n−1,Sn

A, 1)), A′))
A + +B union(A′, index shift(B′,SA))

Table 5: MIL implementation of Array Operations

Translating comprehension The intermediate algebra gives sufficient functionality to map complex
RAM array comprehensions into an execution plan for the relational back-end. This process is based
on decomposing the expressions within the array comprehensions into elementary sub-expressions.

Simple array comprehensions only use indices and constants in the function application:

[f (̄ı, c)|̄ı < S].

These are decomposed into three parts, each of which can be expressed directly in the intermediate
algebra:
a = [ij |̄ı < S] , new index(S, j)
b = [c|̄ı < S] , new const(S, c)

[f(a, b)|̄ı < S] , map(f, a, b)
More complex array comprehensions also index into existing arrays or perform aggregation:

[f(A[g(̄ı)], h{B[i1, . . . , in, ]})|̄ı < S].

Again, we handle the transformation by decomposing it into the creation of a series of aligned arrays
(one for each of the arguments), followed by mapping function f over these arrays:
a = [A[g(̄ı)]|̄ı < S] , transform(S, A, g)
d = [h{B[i1, . . . , in, ]}|̄ı < S] , aggregate(h, B)

[f(a, b)|̄ı < S] , map(f, a, b)

5.2 Binary Relational Mapping
Storage of arrays in the prototype system is realized through the decomposed storage scheme discussed
in Section 4, taking care to generate the object identifiers (oids) in such a way that the generated
index number corresponds always to the application of the polynomial indexing function to the actual
index vector (see Equation 4.1). The physical representation A′ of array A is thus defined by its shape
SA, its polynomial indexing function pA, and, a binary association table A′ representing the array:
A′ = {(pA(̄ı), v)}.

Translation of the intermediate algebra into MIL – MonetDB’s query language, defined in [18] –
requires only a small subset of the full set of binary relational operations offered. We added only two
(low-level) functions for initial array generation to realize support of the language proposed in this
paper. The MIL equivalent for each of the operations in the intermediate algebra is summarized in
Table 5.

The most basic primitives in our intermediate algebra, the new const and new index operators used
to generate new arrays, cannot be expressed in standard relational operators. This is not really surpris-
ing, as the relational paradigm is based on selection, and not directly suited to support a language built
on the principle of generation. The desired functionality can however easily be added to the back-end
in the form of two low-level user-defined functions, corresponding directly to the primitive array genera-
tors:
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generate const(n, c) = {(i, c)|∀i ∈ N : 0 ≤ i < n} and generate range(a, b, c) = {((ia · b · c + ib ·
c + ic), ib)|∀(ia, ib, ic) ∈ N3 : 0 ≤ ia < a, 0 ≤ ib < b, 0 ≤ ic < c}.

MIL provides a specialized operator constructor, the multiplex, which turns a function f over atomic
values into a function [f ] that applies f to each of the values in a set of (aligned) tables. Because
identically shaped arrays will always be constructed using the same basic operators, aligned arrays
necessarily result in aligned tables. Therefore, the multiplex operator constructor provides precisely
the functionality we need to implement the map primitive.

The array transformation primitive is a special case of mapping; application of a stored function, the
array, over a set of (transformed) indices. An array transformation can be decomposed in two steps:
an index-transformation followed by the application of a (stored) function. Transforming indices is
simply a basic instance of mapping the transformation function over generated indices and can thus
be evaluated by using the new index and map primitives. Stored function application is performed in
bulk by the relational join operator. Instead of joining each of the index-dimensions separately, the
oid generating function pA is mapped over the transformation array, creating the appropriate oids
before applying the join.

The problem with aggregation in relational systems, which makes it such an expensive operation,
is that grouping by the value of a particular attribute provides little information. In our case, we
have much more information, since we know a-priori the number of groups, the constant group-size,
as well as the precise location of all group elements. By exploiting this domain knowledge, a grouping
index that combines all n− 1 dimensions can be directly generated using the generate range function.
In addition to providing a single attribute index to speed up a complex multi-dimensional grouping
condition, the group ids thus generated correspond directly to the element oids appropriate for the
target array.

Similar to the multiplex operator constructor for mapping, MIL provides an operator constructor
for grouped aggregation, the pump. It turns a basic aggregation function f , which works on a single
set, into a function {f} suitable for repeated aggregation grouped by an appropriate grouping index.
Applying this pump operator constructor after generation of the appropriate index, the array primitive
aggregate is implemented straightforwardly.

The last operation to translate is the array concatenation. Array concatenation of two arrays,
A++B, entails shifting the domain of the second operand so that the domains of both arrays become
disjunct at which point they can be merged by taking their union. Shifting the second array is achieved
by adding the cardinality of the first to its index ids.

5.3 Optimization Techniques
Mapping to relations allows for new types of query optimization in the DBMS.

Materialization Heuristics The most important heuristic that has been implemented is the ‘push
materialization up’, which is related to the classic ‘push select down’ heuristic used in relational query
optimization. The idea is to keep intermediate results as small as possible, for as long as possible.

Consider for example the following expression: [sin(2 · π · c) · A[̄ı]|̄ı < SA] (c represents a variable
with a scalar value). The standard evaluation pattern first creates aligned arrays for each argument
in the function application, and then applies the operators one by one:
map(·,map(sin, map(·,map(·, new const(S, 2),
new const(S, π)), new const(S, c))),
transform(S, A, g(x) = x)).

Postponing the materialization of the constant arrays to the last possible moment produces an
alternative query plan that performs significantly less work, since the constant expression is evaluated
only once:
c′ = sin(2 · π · c)
map(·, new const(S, c′), transform(S, A, g(x) = x)).

An extension of this idea (that has not yet been implemented) pushes array transformations up or
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down through the expressions, depending on whether it increases or decreases the size of the array.

Arithmetic Optimization Another optimization technique based on the explicit knowledge of result
sizes exploits the semantics of the mathematical expressions themselves.

Consider for example the expression [(A[g1(̄ı)]/B[g2(̄ı)])2 |̄ı < S], where (|SA| + |SB |) < |S|, and
the functions g1 and g2 choose elements from arrays A and B given result indices ı̄. By using basic
arithmetic, this expression can be rewritten to a more efficient alternative, reducing the number of
squares that need to be taken from |S| to the much smaller (|SA|+ |SB |):

[A[g1(̄ı)]2/B[g2(̄ı)]2 |̄ı < S]

6. A Case Study
This Section presents a case study of multimedia retrieval implemented in RAM, applied to the
content-based ranking of shots (sequences of frames) in a probabilistic video retrieval system. Each
individual shot is ranked by the likelihood that a statistical model of its keyframe could generate the
samples observed in a query image [4]. More precisely, the score for each shot in the database is
computed by computing its log-likelihood:

P (xs|ωd) =
C∑

c=1

P (θi,c)
1√

(2π)I |Σ|
e−

1
2‖x−µ‖Σ

log L(ωd) =
S∑

s=1

log(P (xs|ωd)).

This formula is expressed in RAM as follows:

Psample <- [sum{[P[d,c]*exp(-0.5*
sum{[(Q[s,i]-Mu[d,c,i])^2/S[d,c,i]^2

| d<D,s<S,c<C,i<I][d,s,c,_]})
/sqrt(2*pi^I*

prod{[S[d,c,i]^2|d<D,c<C,i<I][d,c,_]})
| d<D,s<S,c<C][d,s,_]}

| d<D,s<S];
logL <- [sum{log(Psample[d,s])|d<D,s<S][d,_]}/S | d<D];

Naturally, the expression looks complicated; a result of the multiple aggregations causing nested
array comprehensions. The reader is invited to verify in detail how it relates to the mathemati-
cal expression above, differing only marginally from e.g. the LATEX expressions used to produce the
equations.

6.1 Experimental Evaluation
Experiments are performed on a PC running RedHat Linux 7.2, with a AMD Athlon MP/1800+ CPU
using 2GB of main memory. Each experiment computes the likelihood for D = 300 statistical models
of images: Gaussian mixtures of C = 8 components describing a I = 14-dimensional feature space,
everything stored as double values. The query image is represented by S = 1320 samples of same
dimensionality and type.3

Naive query plan: Generation of a naive relational query plan for the RAM expression, using
standard relational operators only, results in a query plan that takes almost four minutes to evaluate;
using over two hundred binary relational operations. Examining the query plan in detail provides
a number of opportunities to reduce cost, investigated in the following series of experiments. Their
execution times are summarized in Table 6.

3The number of samples and image models results in an intermediate array of approximately 350MB.
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Method Execution time
Naive query plan 238s
Push materialization up 197s
Job Fragmented 117s
Push selection down 44s
Index generation 38s
Grouping 16s

Table 6: Query performance

Push materialization up: The first opportunity for optimization has been described in Section 5.3:
by pushing operations though enlarging transformations, computations are computed over a smaller
number of elements. For instance, this rules applies to computing σ2 for all D,C, I, S by pre-computing
an intermediate array for all D,C, I values, saving a factor S = 1320 of work.

Fragmentation: The database kernel assumes by design that the cost of materialization is out-
weighted by the speed-up gained in subsequent operations [15]. The resulting memory consumption
is a critical factor in the case study: large intermediate results force the system to swap data to
and from disk. Dividing the work into several smaller chunks reduces the execution time by a factor
two. The overhead introduced by fragmentation is negligible: selection of ranges in arrays is efficient
through positional lookup, and merging partial results is simple concatenation. Although the study
used manual fragmentation, we believe that array comprehensions provide enough declarativeness to
automate this process.

Push selection down: Similar to the first improvement, which ‘pushed materialization up’, we can
reduce intermediate result sizes by the classic ‘push select down’ heuristic. When processing data
one slice at a time it is inefficient to fetch data from the large source arrays during query evaluation.
By first selecting those parts of the source arrays that are needed to compute a batch, memory
consumption during evaluation is further reduced, improving evaluation time with more than 60%.

Index generation: As indicated in Section 4.2, the decomposed storage model results in a mapping
scheme based on the ‘on-the-fly’ generation of array indexes. These indexes are used primarily during
array transformation. If identical transformations occur multiple times, their indexes can be reused
instead of generated. Additionally in certain situations the naive query translator inserts unnecessary
identity transformations, that can obviously be avoided.

Grouping: Aggregation operations can be performed considerably more efficiently because both
result set sizes and group sizes are known in advance when aggregating over array axes.

It is interesting to observe that careful generation of the relational query plan, exploiting knowledge
derived by the array structure, produces such a dramatic improvement in performance. Most intra
comprehension optimizations can be derived without value information as they are based on manipu-
lations of array shape only. Index reuse can be handled comfortably by multi query optimizers, such
as the one discussed in [19].

6.2 Implications on DBMS Architecture
Not unexpected, a native implementation of the computation outperforms the generated relational
query. Benchmarking the same computation using a commercial tool popular among our target audi-
ence, Matlab [20], shows there is some room for further improvement. Under the same experimental
settings Matlab performs the likelihood computation in 6 seconds, which is still 2.7 times faster than
our optimized plan.

The following analysis of the performance difference between an optimized matrix manipulation
tool and our optimized relational query plan indicates that the explicit materialization of intermediate
results in the database kernel inhibits the full utilization of the hardware.
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Operation Execution time
transform(S, Q, f(x)) 706ms
transform(S,Mu, g(x)) 718ms
map(−, · · · , · · · ) 580ms
map(xy, · · · , new const(S, 2)) 482ms
transform(S,Mu, g(x)) 697ms
map(/, · · · , · · · ) 645ms
aggregate(sum, · · · ) 1087ms
Total time: 4915ms

Table 7: Detailed timings

During query execution most time is spent evaluating only a small part of the expression, namely
the Mahalanobis distance between the individual query samples and the Gaussian mixture models:

I∑
i=1

(xis − µic)2

σ2
ic

.

This corresponds to the following RAM expression:

sum{[((Q[s,i]-Mu[d,c,i])^2) / S2[d,c,i] | d<D,s<S,c<C,i<I][d,s,c,_]}.

Table 7 summarizes timings of its algebraic translation:
aggregate(sum, map(/,map(̂ ,map(−, transform(S, Q, f(x)), transform(S,Mu, g(x))),
new const(S, 2)), transform(S, S2, g(x)))).
Note that the squares of the covariances, σ2, have been precomputed in array S2 and that timings
reflect one third of the total workload since, as described in Section 6, the total workload has been
split into three distinct batches.

Hardware characteristics of our experimentation platform (specifically the memory bandwidth) limit
the amount of data that can flow through relatively simple operations, such as mapping simple base
functions over high data volumes (clearly demonstrated experimentally in [21]). In the query plan
studied, it is indeed the memory bandwidth that limits the number of computations, not the CPU.
Consequently, mapping the ternary f(a, b, c) = (a−b)2

c function directly over the source arrays is three
times more efficient than the three successive scans performed otherwise.

Similarly, explicit materialization of the transformed source arrays is costly due to the amount
of memory access involved. Avoiding the large intermediate results, by direct operator pipelining,
reduces the volume of the data that passes through memory significantly and thus increasing overall
performance.

We conclude that the database kernel must take control of the dataflow by ‘just-in-time’ compilation
of operator sequences, avoiding the need for explicit materialization of each intermediate result. This
conclusion is supported by the following experiment: compilation of the full operator sequence shown
in Table 7 (as a user defined function in the database) brings the total execution time down to the
same 6 seconds it takes Matlab.

A remaining concern is how much of the RAM approach can be generalized to database manage-
ment systems not optimized for query processing in main memory. In more traditional, disk based,
architectures the applicability of these techniques may not be immediately apparent.

The relational mapping proposed can be implemented on top of any relational database system,
however the experiments discussed demonstrate a strong dependency on low level code optimizations
in the DBMS. Even a database kernel optimized for computationally intensive query processing could
not provide the efficiency required by our target audience, without resorting to non-trivial optimization
techniques.
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7. Conclusions and Future Work
Processing multimedia data in a database setting calls for an effective multi-dimensional array abstrac-
tion. Providing such an abstraction makes existing database management systems more accessible to
users that require a computation oriented framework, e.g. developers of multimedia retrieval systems.
Currently the prototype implementation of the RAM translation system described in this paper is
deployed in the development of a video retrieval system. Preliminary experiences indicate that the
comprehension based array language is indeed a step forward in providing a framework suitable for
declarative expression of multimedia data manipulation.

The introduction of an additional layer between array comprehensions and binary relational algebra
provides a suitable place to perform query optimization by exploiting explicit structure knowledge
available within the array domain. It is precisely this structural knowledge that arrays offer over sets
that introduces the opportunity for new optimizations.

Experimental results demonstrate how control over the low-level data flow in the DBMS forms a
critical performance factor in the efficient execution of generated query plans. A possible solution
could be provided by just-in-time compilation of relational operator sequences.

Dynamic adaptation of data fragmentation matching the observed access-patterns seems a fruitful
direction for further research, inspired by related work on the RasDaMan system. Additionally,
extending the RAM language with support for sets and tuples (and perhaps arbitrary nesting) are
crucial steps towards providing a complete multimedia database management system.
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