359 research outputs found

    A Systematic Aspect-Oriented Refactoring and Testing Strategy, and its Application to JHotDraw

    Full text link
    Aspect oriented programming aims at achieving better modularization for a system's crosscutting concerns in order to improve its key quality attributes, such as evolvability and reusability. Consequently, the adoption of aspect-oriented techniques in existing (legacy) software systems is of interest to remediate software aging. The refactoring of existing systems to employ aspect-orientation will be considerably eased by a systematic approach that will ensure a safe and consistent migration. In this paper, we propose a refactoring and testing strategy that supports such an approach and consider issues of behavior conservation and (incremental) integration of the aspect-oriented solution with the original system. The strategy is applied to the JHotDraw open source project and illustrated on a group of selected concerns. Finally, we abstract from the case study and present a number of generic refactorings which contribute to an incremental aspect-oriented refactoring process and associate particular types of crosscutting concerns to the model and features of the employed aspect language. The contributions of this paper are both in the area of supporting migration towards aspect-oriented solutions and supporting the development of aspect languages that are better suited for such migrations.Comment: 25 page

    Using FCA to Suggest Refactorings to Correct Design Defects

    Get PDF
    Design defects are poor design choices resulting in a hard-to- maintain software, hence their detection and correction are key steps of a\ud disciplined software process aimed at yielding high-quality software\ud artifacts. While modern structure- and metric-based techniques enable\ud precise detection of design defects, the correction of the discovered\ud defects, e.g., by means of refactorings, remains a manual, hence\ud error-prone, activity. As many of the refactorings amount to re-distributing\ud class members over a (possibly extended) set of classes, formal concept\ud analysis (FCA) has been successfully applied in the past as a formal\ud framework for refactoring exploration. Here we propose a novel approach\ud for defect removal in object-oriented programs that combines the\ud effectiveness of metrics with the theoretical strength of FCA. A\ud case study of a specific defect, the Blob, drawn from the\ud Azureus project illustrates our approach

    Package Evolvability and its Relationship with Refactoring

    Get PDF
    In this paper, we address a set of research questions investigating trends in changes to an open-source system (OSS). An interesting âpeak and troughâ effect trend was found to exist in the system studied, suggesting that developer activity comprises of a set of high and low periods. Trends in overall changes applied to the system were complemented with empirical evidence in refactoring data for the same system; this showed a similar peak and trough effect but at different versions of the same system. This result suggests a contrasting motivation between regular maintenance practice and that of refactoring. Our analysis of high-level package trends informed some interesting cross-comparisons with refactoring practice, and some insights into why refactoring might be applied after a burst of regular change activity, rather than consistently. We use data extracted from seven Java OSS as a basis for our refactoring analysis

    A Reference Structure for Modular Model-based Analyses

    Get PDF
    Kontext: In dieser Arbeit haben wir die Evolvierbarkeit, Verständlichkeit und Wiederverwendbarkeit von modellbasierten Analysen untersucht. Darum untersuchten wir die Wechselbeziehungen zwischen Modellen und Analysen, insbesondere die Struktur und Abhängigkeiten von Artefakten und die Dekomposition und Komposition von modellbasierten Analysen. Herausforderungen: Softwareentwickler verwenden Modelle von Softwaresystemen, um die Evolvierbarkeit und Wiederverwendbarkeit eines Architekturentwurfs zu bestimmen. Diese Modelle ermöglichen die Softwarearchitektur zu analysieren, bevor die erste Zeile Code geschreiben wird. Aufgrund evolutionärer Veränderungen sind modellbasierte Analysen jedoch auch anfällig für eine Verschlechterung der Evolvierbarkeit, Verständlichkeit und Wiederverwendbarkeit. Diese Probleme lassen sich auf die Ko-Evolution von Modellierungssprache und Analyse zurückführen. Der Zweck einer Analyse ist die systematische Untersuchung bestimmter Eigenschaften eines zu untersuchenden Systems. Nehmen wir zum Beispiel an, dass Softwareentwickler neue Eigenschaften eines Softwaresystems analysieren wollen. In diesem Fall müssen sie Merkmale der Modellierungssprache und die entsprechenden modellbasierten Analysen anpassen, bevor sie neue Eigenschaften analysieren können. Merkmale in einer modellbasierten Analyse sind z.\,B. eine Analysetechnik, die eine solche Qualitätseigenschaft analysiert. Solche Änderungen führen zu einer erhöhten Komplexität der modellbasierten Analysen und damit zu schwer zu pflegenden modellbasierten Analysen. Diese steigende Komplexität verringert die Verständlichkeit der modellbasierten Analysen. Infolgedessen verlängern sich die Entwicklungszyklen, und die Softwareentwickler benötigen mehr Zeit, um das Softwaresystem an veränderte Anforderungen anzupassen. Stand der Technik: Derzeitige Ansätze ermöglichen die Kopplung von Analysen auf einem System oder über verteilte Systeme hinweg. Diese Ansätze bieten die technische Struktur für die Kopplung von Simulationen, nicht aber eine Struktur wie Komponenten (de)komponiert werden können. Eine weitere Herausforderung beim Komponieren von Analysen ist der Verhaltensaspekt, der sich darin äußert, wie sich die Analysekomponenten gegenseitig beeinflussen. Durch die Synchronisierung jeder beteiligten Simulation erhöht die Modularisierung von Simulationen den Kommunikationsbedarf. Derzeitige Ansätze erlauben es, den Kommunikationsaufwand zu reduzieren; allerdings werden bei diesen Ansätzen die Dekomposition und Komposition dem Benutzer überlassen. Beiträge: Ziel dieser Arbeit ist es, die Evolvierbarkeit, Verständlichkeit und Wiederverwendbarkeit von modellbasierten Analysen zu verbessern. Zu diesem Zweck wird die Referenzarchitektur für domänenspezifische Modellierungssprachen als Grundlage genommen und die Übertragbarkeit der Struktur der Referenzarchitektur auf modellbasierte Analysen untersucht. Die geschichtete Referenzarchitektur bildet die Abhängigkeiten der Analysefunktionen und Analysekomponenten ab, indem sie diese bestimmten Schichten zuordnet. Wir haben drei Prozesse für die Anwendung der Referenzarchitektur entwickelt: (i) Refactoring einer bestehenden modellbasierten Analyse, (ii) Entwurf einer neuen modellbasierten Analyse und (iii) Erweiterung einer bestehenden modellbasierten Analyse. Zusätzlich zur Referenzarchitektur für modellbasierte Analysen haben wir wiederkehrende Strukturen identifiziert, die zu Problemen bei der Evolvierbarkeit, Verständlichkeit und Wiederverwendbarkeit führen; in der Literatur werden diese wiederkehrenden Strukturen auch als Bad Smells bezeichnet. Wir haben etablierte modellbasierte Analysen untersucht und dreizehn Bad Smells identifiziert und spezifiziert. Neben der Spezifizierung der Bad Smells bieten wir einen Prozess zur automatischen Identifizierung dieser Bad Smells und Strategien für deren Refactoring, damit Entwickler diese Bad Smells vermeiden oder beheben können. In dieser Arbeit haben wir auch eine Modellierungssprache zur Spezifikation der Struktur und des Verhaltens von Simulationskomponenten entwickelt. Simulationen sind Analysen, um ein System zu untersuchen, wenn das Experimentieren mit dem bestehenden System zu zeitaufwändig, zu teuer, zu gefährlich oder einfach unmöglich ist, weil das System (noch) nicht existiert. Entwickler können die Spezifikation nutzen, um Simulationskomponenten zu vergleichen und so identische Komponenten zu identifizieren. Validierung: Die Referenzarchitektur für modellbasierte Analysen, haben wir evaluiert, indem wir vier modellbasierte Analysen in die Referenzarchitektur überführt haben. Wir haben eine szenariobasierte Evaluierung gewählt, die historische Änderungsszenarien aus den Repositories der modellbasierten Analysen ableitet. In der Auswertung können wir zeigen, dass sich die Evolvierbarkeit und Verständlichkeit durch die Bestimmung der Komplexität, der Kopplung und der Kohäsion verbessert. Die von uns verwendeten Metriken stammen aus der Informationstheorie, wurden aber bereits zur Bewertung der Referenzarchitektur für DSMLs verwendet. Die Bad Smells, die durch die Co-Abhängigkeit von modellbasierten Analysen und ihren entsprechenden DSMLs entstehen, haben wir evaluiert, indem wir vier modellbasierte Analysen nach dem Auftreten unserer schlechten Gerüche durchsucht und dann die gefundenen Bad Smells behoben haben. Wir haben auch eine szenariobasierte Auswertung gewählt, die historische Änderungsszenarien aus den Repositories der modellbasierten Analysen ableitet. Wir können zeigen, dass die Bad Smells die Evolvierbarkeit und Verständlichkeit negativ beeinflussen, indem wir die Komplexität, Kopplung und Kohäsion vor und nach der Refaktorisierung bestimmen. Den Ansatz zum Spezifizieren und Finden von Komponenten modellbasierter Analysen haben wir evaluiert, indem wir Komponenten von zwei modellbasierten Analysen spezifizieren und unseren Suchalgorithmus verwenden, um ähnliche Analysekomponenten zu finden. Die Ergebnisse der Evaluierung zeigen, dass wir in der Lage sind, ähnliche Analysekomponenten zu finden und dass unser Ansatz die Suche nach Analysekomponenten mit ähnlicher Struktur und ähnlichem Verhalten und damit die Wiederverwendung solcher Komponenten ermöglicht. Nutzen: Die Beiträge unserer Arbeit unterstützen Architekten und Entwickler bei ihrer täglichen Arbeit, um wartbare und wiederverwendbare modellbasierte Analysen zu entwickeln. Zu diesem Zweck stellen wir eine Referenzarchitektur bereit, die die modellbasierte Analyse und die domänenspezifische Modellierungssprache aufeinander abstimmt und so die Koevolution erleichtert. Zusätzlich zur Referenzarchitektur bieten wir auch Refaktorisierungsoperationen an, die es Architekten und Entwicklern ermöglichen, eine bestehende modellbasierte Analyse an die Referenzarchitektur anzupassen. Zusätzlich zu diesem technischen Aspekt haben wir drei Prozesse identifiziert, die es Architekten und Entwicklern ermöglichen, eine neue modellbasierte Analyse zu entwickeln, eine bestehende modellbasierte Analyse zu modularisieren und eine bestehende modellbasierte Analyse zu erweitern. Dies geschieht natürlich so, dass die Ergebnisse mit der Referenzarchitektur konform sind. Darüber hinaus ermöglicht unsere Spezifikation den Entwicklern, bestehende Simulationskomponenten zu vergleichen und sie bei Bedarf wiederzuverwenden. Dies erspart den Entwicklern die Neuimplementierung von Komponenten

    Technical Debt Prioritization: State of the Art. A Systematic Literature Review

    Get PDF
    Background. Software companies need to manage and refactor Technical Debt issues. Therefore, it is necessary to understand if and when refactoring Technical Debt should be prioritized with respect to developing features or fixing bugs. Objective. The goal of this study is to investigate the existing body of knowledge in software engineering to understand what Technical Debt prioritization approaches have been proposed in research and industry. Method. We conducted a Systematic Literature Review among 384 unique papers published until 2018, following a consolidated methodology applied in Software Engineering. We included 38 primary studies. Results. Different approaches have been proposed for Technical Debt prioritization, all having different goals and optimizing on different criteria. The proposed measures capture only a small part of the plethora of factors used to prioritize Technical Debt qualitatively in practice. We report an impact map of such factors. However, there is a lack of empirical and validated set of tools. Conclusion. We observed that technical Debt prioritization research is preliminary and there is no consensus on what are the important factors and how to measure them. Consequently, we cannot consider current research conclusive and in this paper, we outline different directions for necessary future investigations

    A systematic aspect-oriented refactoring and testing strategy, and its application to JHotDraw.

    Get PDF
    Aspect oriented programming aims at achieving better modularization for a system's crosscutting concerns in order to improve its key quality attributes, such as evolvability and reusability. Consequently, the adoption of aspect-oriented techniques in existing (legacy) software systems is of interest to remediate software aging. The refactoring of existing systems to employ aspect-orientation will be considerably eased by a systematic approach that will ensure a safe and consistent migration. In this paper, we propose a refactoring and testing strategy that supports such an approach and consider issues of behavior conservation and (incremental) integration of the aspect-oriented solution with the original system. The strategy is applied to the JHotDraw open source project and illustrated on a group of selected concerns. Finally, we abstract from the case study and present a number of generic refactorings which contribute to an incremental aspect-oriented refactoring process and associate particular types of crosscutting concerns to the model and features of the employed aspect language. The contributions of this paper are both in the area of supporting migration towards aspect-oriented solutions and supporting the development of aspect languages that are better suited for such migration

    SPLAT '08

    Get PDF

    Feature-based methodology for supporting architecture refactoring and maintenance of long-life software systems

    Get PDF
    Zusammenfassung Langlebige Software-Systeme durchlaufen viele bedeutende Veraenderungen im Laufe ihres Lebenszyklus, um der Weiterentwicklung der Problemdomaenen zu folgen. Normalerweise ist es schwierig eine Software-Systemarchitektur den schnellen Weiterentwicklungen einer Problemdomaene anzupassen und mit der Zeit wird der Unterschied zwischen der Problemdomaene und der Software-Systemarchitektur zu groß, um weitere Softwareentwicklung sinnvoll fortzufuehren. Fristgerechte Refactorings der Systemarchitektur sind notwendig, um dieses Problem zu vermeiden. Aufgrund des verhaeltnismaeßig hohen Gefahrenpotenzials und des zeitlich stark verzoegerten Nutzens von Refactorings, werden diese Maßnahmen normalerweise bis zum letztmoeglichen Zeitpunkt hinausgeschoben. In der Regel ist das Management abgeneigt Architektur-Refactorings zu akzeptieren, außer diese sind absolut notwendig. Die bevorzugte Vorgehensweise ist, neue Systemmerkmale ad hoc hinzuzufuegen und nach dem Motto ”Aendere nie etwas an einem funktionierenden System!” vorzugehen. Letztlich ist das Ergebnis ein Architekturzerfall (Architekturdrift). Die Notwendigkeit kleiner Refactoring-Schritte fuehrt zur Notwendigkeit des Architektur-Reengineerings. Im Gegensatz zum Refactoring, das eine normale Entwicklungstaetigkeit darstellt, ist Reengineering eine Form der Software- ”Revolution”. Reengineeringprojekte sind sehr riskant und kostspielig. Der Nutzen des Reengineerings ist normalerweise nicht so hoch wie erwartet. Wenn nach dem Reengineering schließlich die erforderlichen Architekturaenderungen statt.nden, kann dies zu spaet sein. Trotz der enormen in das Projekt gesteckten Bemuehungen erfuellen die Resultate des Reengineerings normalerweise nicht die Erwartungen. Es kann passieren, dass sehr bald ein neues, kostspieliges Reengineering erforderlich wird. In dieser Arbeit werden das Problem der Softwareevolution und der Zerfall von Softwarearchitekturen behandelt. Eine Methode wird vorgestellt, welche die Softwareentwicklung in ihrer entscheidenden Phase, dem Architekturrefactoring, unterstuetzt. Die Softwareentwicklung wird sowohl in technischer als auch organisatorischer Hinsicht unterstuetzt. Diese Arbeit hat neue Techniken entwickelt, welche die Reverse-Engineering-, Architecture-Recovery- und Architecture-Redesign-Taetigkeiten unterst uetzen. Sie schlaegt auch Aenderungen des Softwareentwicklungsprozesses vor, die fristgerechte Architekturrefactorings erzwingen koennen und damit die Notwendigkeit der Durchfuehrung eines Architektur- Reengineerings vermeiden. In dieser Arbeit wird die Merkmalmodellierung als Hauptinstrument verwendet. Merkmale werden genutzt, um die Abstraktionsluecke zwischen den Anforderungen der Problemdomaene und der Systemarchitektur zu fuellen. Merkmalmodelle werden auch als erster Grundriss fr die Wiederherstellung der verlorenen Systemarchitektur genutzt. Merkmalbasierte Analysen fuehren zu diversen, nuetzlichen Hinweisen fuer den erneuten Entwurf (das Re-Design) einer Architektur. Schließlich wird die Merkmalmodellierung als Kommunikationsmittel zwischen unterschiedlichen Projektbeteiligten (Stakeholdern) im Verlauf des Softwareengineering-Prozesses verwendet und auf dieser Grundlage wird ein neuer Anforderungsde.nitionsprozess vorgeschlagen, der die erforderlichen Architekturrefactorings erzwingt.The long-life software systems withstand many significant changes throughout their life-cycle in order to follow the evolution of the problem domains. Usually, the software system architecture can not follow the rapid evolution of a problem domain and with time, the diversion of the architecture in respect to the domain features becomes prohibiting for software evolution. For avoiding this problem, periodical refactorings of the system architecture are required. Usually, architecture refactorings are postponed until the very last moment, because of the relatively high risk involved and the lack of short-term profit. As a rule, the management is unwilling to accept architecture refactorings unless they become absolutely necessary. The preferred way of working is to add new system features in an ad-hoc manner and to keep the rule ”Never touch a running system!”. The final result is an architecture decay. The need of performing small refactoring activities turns into need for architecture reengineering. In contrast to refactoring, which is a normal evolutionary activity, reengineering is a kind of software ”revolution”. Reengineering projects are risky and expensive. The effectiveness of reengineering is also usually not as high as expected. When finally after reengineering the required architecture changes take place, it can be too late. Despite the enormous invested efforts, the results of the reengineering usually do not satisfy the expectations. It might happen that very soon a new expensive reengineering is required. This thesis deals with the problem of software evolution and the decay of software architectures. It presents a method, which assists software evolution in its crucial part, the architecture refactoring. The assistance is performed for both technical and organizational aspects of the software evolution. The thesis provides new techniques for supporting reverse engineering, architecture recovery and redesigning activities. It also proposes changes to the software engineering process, which can force timely architecture refactorings and thus avoid the need of performing architecture reengineering. For the work in this thesis feature modeling is utilized as a main asset. Features are used to fill the abstraction gap between domain requirements and system architecture. Feature models are also used as an outline for recovering of lost system architectures. Through feature-based analyses a number of useful hints and clues for architecture redesign are produced. Finally, feature modeling is used as a communication between different stakeholders of the software engineering process and on this basis a new requirements engineering process is proposed, which forces the needed architecture refactorings
    • …
    corecore