
C e n t r u m  v o o r  W i s k u n d e  e n  I n f o r m a t i c a

Software ENgineering

A systematic aspect-oriented refactoring and testing 
strategy, and its application to JHotDraw

A. van Deursen, A.M. Marin, L.M.F. Moonen

REPORT SEN-R0507 MARCH 2005

SEN
Software Engineering

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CWI's Institutional Repository

https://core.ac.uk/display/301657010?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


CWI is the National Research Institute for Mathematics and Computer Science. It is sponsored by the 
Netherlands Organization for Scientific Research (NWO).
CWI is a founding member of ERCIM, the European Research Consortium for Informatics and Mathematics.

CWI's research has a theme-oriented structure and is grouped into four clusters. Listed below are the names 
of the clusters and in parentheses their acronyms.

Probability, Networks and Algorithms (PNA)

Software Engineering (SEN)

Modelling, Analysis and Simulation (MAS)

Information Systems (INS)

Copyright © 2005, Stichting Centrum voor Wiskunde en Informatica
P.O. Box 94079, 1090 GB Amsterdam (NL)
Kruislaan 413, 1098 SJ Amsterdam (NL)
Telephone +31 20 592 9333
Telefax +31 20 592 4199

ISSN 1386-369X



A systematic aspect-oriented refactoring and testing
strategy, and its application to JHotDraw

ABSTRACT
Aspect oriented programming aims at achieving better modularization for a system's
crosscutting concerns in order to improve its key quality attributes, such as evolvability and
reusability. Consequently, the adoption of aspect-oriented techniques in existing (legacy)
software systems is of interest to remediate software aging. The refactoring of existing systems
to employ aspect-orientation will be considerably eased by a systematic approach that will
ensure a safe and consistent migration. In this paper, we propose a refactoring and testing
strategy that supports such an approach and consider issues of behavior conservation and
(incremental) integration of the aspect-oriented solution with the original system. The strategy is
applied to the JHotDraw open source project and illustrated on a group of selected concerns.
Finally, we abstract from the case study and present a number of generic refactorings which
contribute to an incremental aspect-oriented refactoring process and associate particular types
of crosscutting concerns to the model and features of the employed aspect language. The
contributions of this paper are both in the area of supporting migration towards aspect-oriented
solutions and supporting the development of aspect languages that are better suited for such
migrations.

2000 Mathematics Subject Classification:  -
1998 ACM Computing Classification System: D.2.7; D.2.5; D.1.5
Keywords and Phrases: Restructuring, test adequacy, cross cutting concerns





A Systematic Aspect-Oriented Refactoring and Testing
Strategy, and its Application to JHotDraw

Arie van Deursen1,2, Marius Marin2, and Leon Moonen2,1

1 Centrum voor Wiskunde en Informatica (CWI), The Netherlands
2 Software Evolution Research Lab, Delft Univ. of Technology, The Netherlands

Arie.van.Deursen@cwi.nl, A.M.Marin@ewi.tudelft.nl,
and Leon.Moonen@computer.org

Abstract. Aspect oriented programming aims at achieving better modulariza-
tion for a system’s crosscutting concerns in order to improve its key quality
attributes, such as evolvability and reusability. Consequently, the adoption of
aspect-oriented techniques in existing (legacy) software systems is of interest to
remediate software aging. The refactoring of existing systems to employ aspect-
orientation will be considerably eased by a systematic approach that will ensure
a safe and consistent migration.
In this paper, we propose a refactoring and testing strategy that supports such
an approach and consider issues of behavior conservation and (incremental) in-
tegration of the aspect-oriented solution with the original system. The strategy is
applied to the JHOTDRAW open source project and illustrated on a group of se-
lected concerns. Finally, we abstract from the case study and present a number of
generic refactorings which contribute to an incremental aspect-oriented refactor-
ing process and associate particular types of crosscutting concerns to the model
and features of the employed aspect language. The contributions of this paper are
both in the area of supporting migration towards aspect-oriented solutions and
supporting the development of aspect languages that are better suited for such
migrations.

1 Introduction

Aspect-oriented software development is a programming paradigm that addresses cross-
cutting concerns: behavior of a software system that is hard to decompose and isolate in
existing paradigms (as object orientation) and requires its implementation to be spread
across many different modules. Aspect-oriented software development aims to over-
come these limitations by capturing such crosscutting behavior in a new modularization
unit, the aspect, and offers (compile time) code generation facilities to weave aspect
code into the rest of the system. Claimed benefits include improved evolvability and
reusability of (parts of) the software system [12, 23].

Addressing the aforementioned modularization limitations and the resulting code
scattering and tangling does not only pay off in the development of new applications but
it will also have major benefits in existing software systems where these, and associated,
problems have become known as software aging [33] or software entropy [24–26].



The adoption of aspect-orientation in existing software requires refactoring: code
transformations that improve the internal structure of a system while preserving its ex-
ternal behavior. Existing work on aspect-introducing-refactorings has mainly focused
on presenting aspect-oriented solutions to typical crosscutting problems, especially in
the context of design patterns, and showing that this results in a better separation of
concerns [19, 23, 31, 32]. Also tool support for aspect extensions of refactorings, such
as method extraction, has been investigated [13].

We argue, however, that widespread adoption of aspect-oriented techniques in ex-
isting software systems is still hindered by a number of open issues:

– Lack of a systematic approach to refactor legacy code to employ aspect-oriented
solutions;

– Proper understanding of the testing challenges that rise from behavior preserving
migration towards a new or extended language, such as the development of an
aspect-oriented fault model and the definition of an explicit test adequacy criterion;

– Suitability of aspect languages. Analysis of crosscutting concerns that were iden-
tified in various object-oriented systems in earlier work ([29]) suggested that we
might encounter difficulties when trying to refactor those concerns into aspects: the
mechanisms offered by particular aspect languages, or the joint point model behind
the language were not always sufficient to capture all types of concerns that were
encountered;

– Availability of aspect-oriented and non-aspect-oriented implementations of the same
software system which can be used to show the evolution benefits of proposed so-
lutions; and, more generally,

– An overall assessment of the benefits of aspect-oriented software development.

These issues are the principal motivation for the work described in this paper. To address
them, we propose a language and system independent refactoring and testing strategy
to adopt aspect-oriented solutions in legacy code. The strategy consists of a number
of systematic steps that guide the transformation, ensure conservation of observable
behavior and help one deal with the intricacies of aspect-oriented migrations.

We demonstrate suitability of the proposed strategy in a case study in which we mi-
grate JHOTDRAW, a (relatively) large and well-designed open source Java application,
to AJHOTDRAW, a corresponding aspect-oriented version which is based on ASPECTJ,
an aspect language extending Java with crosscutting functionality.

Based on the difficulties that were encountered during our refactorings, we reflect
on the suitability of particular (features of) aspect languages for this type of work (i.e.
evolution of legacy systems as opposed to greenfield development). This provides de-
signers of aspect languages with valuable insights into situations that require model or
feature extensions to address these concerns.

The remainder of the paper is structured as follows: In the next section we propose
an aspect-oriented refactoring and testing strategy together with its accompanying fault
model and test adequacy criterion. This is followed by a section that presents general
considerations about the case study. Next, a number of selected crosscutting concerns
are discussed on an individual basis, depicting the context in which they occur, the
original and refactored implementation together with the benefits and drawbacks. In

2



Section 5, a number of generic refactorings are abstracted from the case study and asso-
ciations are made between types of crosscutting functionality and the aspect language
model and features. We conclude with a general discussion followed by an overview
of related work, summary of our contributions and present some directions for future
work.

2 The BETTAR Refactoring Strategy

The refactoring strategy we propose is called BETTAR: its objective is to obtain Better
Evolvability Through Tested Aspect Refactorings. We distinguish the following steps:

Identification of Crosscutting Concerns: Search for candidate aspects using “aspect
mining” techniques such as fan-in analysis or clone detection [6, 29, 36]. Assess the
scattering and tangling implications of the current non-aspect-oriented solution to
the crosscutting concerns identified.

Aspect Design: Identify how the concern could be implemented as an aspect. Assess
the pros and cons and compare these with the existing solution.

Refactoring Design: Devise a sequence of (small) steps, refactoring the object solu-
tion to the aspect solution. This may involve various traditional object-oriented
refactorings, in order to unplug the crosscutting concern from code implementing
other concerns, in addition to refactorings moving functionality to aspects.
Conduct trade-off analysis to determine whether the aspect benefits outweigh the
refactoring costs.

Test Suite Design: Conduct a baseline test on the existing implementation, and ana-
lyze the test adequacy of the current test suite with respect to the risks introduced
by the aspect-oriented solution as well as by the refactoring process itself. If neces-
sary, create or extend the test suite – see the next section for further details on this
step.

Execute and Test: Carry out the refactorings, and verify that the behavior of the sys-
tem is unaltered by means of the test suite.

In Section 4 we will apply these steps to various cross cutting concerns as occurring
in the open source JHOTDRAW system. As the interplay between refactoring and test-
ing, in particular in an aspect-oriented setting, has received very little attention in the
literature so far, we start by elaborating the testing steps.

2.1 Ensuring Behavior Preservation while Refactoring to Aspects

Refactoring is the process of changing a software system in such a way that it improves
the code’s internal structure, without altering its external behavior [14]. In order to
ensure the latter constraint, most literature on refactoring assumes the presence of a test
suite that verifies the correct functional behavior of the system to be refactored. As long
as this test suite is executed before and after each refactoring, we can assume that we
will be warned as soon as one of our refactorings affects the correct behavior of the
system.

3



In practice, however, the creation of such a test suite is challenged by a number of
issues. These hold in the general (pure object-oriented) situation, as well as in a setting
where the refactoring includes the introduction of aspects. These issues are:

– To test effectively, testing should be based on a fault model. Such a fault model
guides our search for test cases that give the highest probability of finding typical
faults [4]. The adoption of aspects opens opportunities for different types of faults,
calling for an explicit aspect-oriented fault model.

– Systematic testing makes use of an explicit test adequacy criterion (see, e.g., [4]),
usually expressed as a coverage percentage to be achieved in some coverage model.
Refactoring changes the internal structure of the code. Since test adequacy is ex-
pressed in terms of code structures covered, a refactoring may very well affect
coverage negatively — a phenomenon referred to as the antiextensionality axiom
by Weyuker [38].

– In addition to new faults introduced by using aspects, the mechanics of actually
carrying out a refactoring may lead to a new fault. For example, when we moved
part of a method from a class to an aspect, we did not copy-paste all statements.
At other times, refactorings affect the public interface of classes, for example when
moving a public method. This implies that the test suite needs to be adapted as well,
causing an extra risk of letting errors pass [11].

This calls for a testing approach that is dedicated to refactorings involving the in-
troduction of aspects. In this section, we provide such an approach. In order to do so,
we first propose an aspect-oriented fault model, as well as aspect-oriented test adequacy
criteria. Note that such a model and criteria can never be complete: we believe, however,
that our proposals represent an important first step.

The specific faults that can be made while refactoring depend on the actual refactor-
ing applied. Therefore, we will not provide a general fault model for refactorings, but
will indicate typical faults and testing implications when discussing some of the indi-
vidual refactorings that we have used. We will then also indicate whether the refactoring
may require changes to existing test cases.

The test strategy presented below is applicable to any development project making
use of aspects, and as such is independent of our case study on JHOTDRAW. In the
later sections we will discuss how we actually applied the proposed fault model and
adequacy criteria when while refactoring JHOTDRAW to AJHOTDRAW.

2.2 An Aspect-Oriented Fault Model

A fault model identifies relationships and components of the system under test that are
most likely to have faults [4]. We distinguish faults for inter-type declarations, point-
cuts, and advice.

Inter-type declarations are most error-prone (and most powerful) when used to cre-
ate polymorphic functions. Therefore, our fault model for introductions is based on
Binder’s existing fault models for polymorphism and inheritance [4, p.501]. Our model
distinguishes the following faults that are specifically related to polymorphism in intro-
ductions and inter-type declarations:

4



– Wrong method name in introduction, leading to a missing or unanticipated method
override.

– Wrong class name in a member-introduction, leading to a method body in the
wrong place in the class hierarchy.

– Inconsistent parent declaration, resulting in a (sub)class that violates Liskov’s and
Wing’s behavioral notion of subtyping [27] and/or Meyer’s design-by-contract rules
for inheritance (such as require no more, ensure no less) [30].

– Inconsistent overridden method introduction, also resulting in a violation of behav-
ioral subtyping.

– Omitted parent interface resulting in a method that was intended to implement an
interface method, but which now stands on its own.

Faults in pointcuts will have the effect that advice code is activated at the wrong
program execution points. Such faults include:

– Wrong primitive pointcut, using, for example, a call instead of an execution
construct.

– Errors in the conditional logic combining the individual pointcut conditions.
– Wrong type, method, field, or constructor pattern in pointcut. In particular, the use

of * as a pattern wildcard or in string matching easily leads to too many join points.
Furthermore, if the underlying classes are modified or extended, the wildcard may
become erroneous without the compiler being able to notice this.

Faults in advice will result in the wrong action at a certain point of execution. Such
faults include:

– Wrong advice specification (using before instead of after, using after with
the wrong argument, etc.).

– Wrong or missing proceed in around advice.
– Wrong or missing advice precedence.
– Advice code causing a method to break its class invariant or to fail to meet its

postcondition.

The fault model above states that aspect weaving should not conflict with class
invariants or method pre- and postconditions. The safe route to follow is that class re-
sulting from weaving is a proper subtype of the original class. Put in terms of design by
contract, the class invariant of the resulting class cannot be weaker, its method precon-
ditions cannot be stronger, and the postconditions cannot be weaker. Typical examples
are “harmless” aspects which add logging or tracing. In this situation, existing code
using the class need not be aware that new functionality has been woven into it. In
other words, the test suite for the original classes should pass on the classes extended
by introduction or advice as well, and doing so will help to find faults originating from
improper extensions.

An alternative route is that the aspect actually modifies the contract in a way that
conflicts with the inheritance rules from design-by-contract. This may include changes
in method pre- or postconditions, and may thus require weaving in additional code at
all affected call sites. A typical example is an aspect that adds security checks: this may
lead to additional exceptions which at some point should be handled in the original

5



application. Faults in this approach will not be restricted to the newly woven class,
but may be at any call site in the application. This setting is much harder to test and
immediate reuse of the test suite will not be possible.

Similar distinctions are made by Clifton and Leavens [7], who discuss the relation
between behavioral subtyping and aspect weaving, and distinguish observers from as-
sistants. Rinard et al [34] classifies interactions between woven code and the original
code, recognizing augmentation, narrowing, replacement, and combinations between
them. The key concern of these authors is modular reasoning: in our setting it is modu-
lar testing, and reuse of test suites to woven classes.

2.3 Aspect-Oriented Test Adequacy

A test adequacy criterion prescribes the elements of the implementation under test that
need to be exercised by a test suite. The coverage achieved by a test suite is the per-
centage of elements actually exercised. In this section we formulate adequacy criteria
for aspects targeting the faults presented in the previous section.

Due to the mixed nature of an aspect definition, which can address both static and
dynamic crosscutting using pointcuts, intertype declarations, and advice, it is not so
easy to obtain a single criterion that allows us to make meaningful statements of the
form “we have tested 75% of this aspect”. Instead, we will define different criteria for
the various elements in an aspect definition.

Introducing a new method m in a class C is akin to directly adding the method
to C. Therefore, normal coverage goals such as statement or branch coverage apply.
However, as we have seen in the fault model, the most powerful and dangerous intro-
ductions are those where polymorphic methods are added. Therefore, adequacy criteria
explicitly based on exercising all possible polymorphic bindings are in place as well.
Rountev et al [35] include an up to date overview of criteria for polymorphic bindings.
They distinguish the all-receiver-classes criterion which requires exercising all possible
classes of the receiver object at a call site, and the all-target-methods criterion which
requires exercising all possible bindings between a call site and the methods that may
be invoked by that site.

The intertype declaration of a new supertype or interface for a given class changes
the inheritance hierarchy it belongs to. This, again, calls for adequacy criteria taking
polymorphic calls into account. Observe that these adequacy criteria take into account
all call sites within the rest of the application. Thus, polymorphic coverage goals are not
just a percentage of the aspect definition itself, but a percentage of how well affected
call sites are covered.

To deal with adequacy for pointcuts, we will say that a test case T exercises a
pointcut P if T activates advice at a join point captured by P . An adequate test suite for
a pointcut should maximize our chance of finding errors in the pointcut. We distinguish
primitive pointcuts and compound pointcuts built from conditional operators.

Primitive pointcut operators (such as call, cflow, and so on) can capture a mul-
titude of join points. Which of these should we ensure we execute in order to maxi-
mize our chance of finding errors in the pointcut? In most cases we cannot answer this
question, so an arbitrary join point will do. For signature or type matching involving

6



wild cards, we can arrive at the equivalent of traditional boundary testing by ensur-
ing we have one case where the asterisk matches the empty string, and one where its
match is non-empty. When matching types in a hierarchy, for example in a call(*
Class+.*) expression, the class named is a boundary. Using the one × one criterion
[4] insisting on one point on the boundary, and one just outside it, we would obtain one
test case for Class, and one for each immediate superclass (interface) above it in the
hierarchy.

Tests for pointcut expressions composed from multiple conditions should exercise
every relevant condition combination. In traditional testing, the most rigorous approach
is to test each true/false combination, leading to 2N test cases for an expression with
N conditions. Alternatively, the Each-Condition/All-Conditions criterion can be used
which leads to N + 1 test cases by insisting on one test case for each condition making
that condition true and all others false, in addition to one making all conditions true (for
and logic, replacing true and false for or logic) [4]. Pointcut logic, however, is different
from normal Boolean logic, for example in that certain operators (such as target) are
primarily meaningful in combinations with others. Moreover, there are typical idioms
for using pointcuts, such as a sequence of a general pointcut (such as all public calls)
conjuncted with several exceptions (each using the negation operator) for classes or
methods that are to be excluded from the pointcut.

Test adequacy for advice itself can again be based on branch or statement coverage.
It is most natural to compare advice with a method that is called at relevant join points.
Thus, to achieve branch coverage for the advice, we do not need to exercise all branches
at every join point: it suffices to find one join point at which we exercise all branches.

Furthermore, it is natural to insist that each join point at which the advice is activated
is exercised. Typically, a test suite achieving statement coverage for the full unwoven
application will get a far way in covering all join points. One may be tempted to think
that covering all captured join points also achieves adequate pointcut coverage. This,
however, is not the case, since the pointcut may be defined as a complex expression,
parts of which are used to prevent firing at a particular join point.

Last but not least, there may be (abstract) reusable aspects whose pointcuts do not
refer to particular (named) classes or methods they should be woven into. To test such
aspects, a stub application needs to be created, to which the aspect can be applied.
When creating these stubs, the test adequacy issues presented above can be used as a
guideline, ensuring for example that it is indeed possible to exercise all conditions in
the pointcut. As far as we can see, reusable aspects themselves provide no further test
adequacy constraints.

2.4 The BETTAR Testing Strategy

The test strategy combining the fault model and various adequacy criteria consists of
three steps:

Responsibility-Based Testing (Black Box): Create or identify a functional test suite
for the concern at hand. Focus on answering the question whether the implementa-
tion of the concern does what it is supposed to do.

7



Risk-Based Testing (Grey Box): Use the fault model to refine the test suite so that
faults due to the refactoring process as well as the (aspect-oriented) target solution
are most likely to be captured.

Source-Based Test Adequacy Validation (White Box): Inspect the coverage of the
test suite developed so far (either by running it on instrumented code or by manual
analysis), and verify that relevant test adequacy criteria are indeed met. If not, re-
turn to the previous steps to create additional responsibility- or risk-based test cases
until the adequacy criteria are fullfilled.

If the refactorings do not affect the external interfaces of the classes under test, the
test suite can be applied to both the original and the refactored system. This has the
advantage that one can be certain that each new test also successfully passes on the
old implementation. If refactoring does require making adaptations to the test suite, the
following approaches are possible:

– Refactor the test suite so that it exercises more global functionality instead of invok-
ing the modified methods directly, making it more robust to future implementation
changes but potentially making it harder to achieve the desired coverage;

– Apply an additional refactoring to the application offering for example an ad-
ditional interface abstracting away from implementation differences between the
original and target solution;

– As a last resort, we could give up on our attempt to apply the test suite to the
original system, and apply new tests to the new system only, thereby losing them
as safeguard against behavior modification during refactoring. In our case study
we were never forced to do this, and could always refactor the test suite to permit
testing of both versions.

3 AJHOTDRAW: An Open Source Aspect-Oriented Showcase

To experiment with the feasibility of adopting aspect-oriented solutions in existing soft-
ware and demonstrate the strategy proposed earlier, we have created AJHOTDRAW: an
aspect-oriented refactoring of JHOTDRAW,3 a relatively large and well-designed open
source Java application. In order to allow other researchers to benefit from our work and
to enable comparative software evolution research on a real-life aspect-oriented system,
we decided to release AJHOTDRAW as an open source project.4

The next sections give a description of the case study and motivate the choice for
both the application and the refactoring language.

3.1 The JHOTDRAW Drawing Framework

JHOTDRAW is a (GUI-based) framework for drawing technical and structured 2D graph-
ics. The application was originally developed as an exercise to show a good use of

3 jhotdraw.org, version 5.4b1
4 ajhotdraw.sourceforge.netNote for the reviewer: we are currently in the process of

cleaning up our refactored code, upgrading it to JHotDraw 6.0, and moving it to the source-
forge server (see the release plan on sourceforge). Our internal version is available upon
request.

8



object oriented design patterns in a Java implementation. The fact that JHOTDRAW is
considered a well-designed application makes it an ideal candidate for aspect-oriented
migration as it is unlikely that evolvability improvements can be made otherwise. The
version of JHOTDRAW analyzed consists of approximately 40,000 lines of code, 300
classes, and 2800 methods.

The JHOTDRAW editor comprises drawing tools, a set of user defined (geometrical,
image, text, etc.) figures, drawing views, and a collection of (tool and menu-associated)
commands. A number of additionally supported features include (re-)storing drawings
(from/)to storage devices, undo/redo activities for commands, and animation functions.

3.2 Evolving a JHOTDRAW Test Suite

The version of JHOTDRAW under study was shipped without a test suite. At the time
of writing, the most recent version (v6.0beta1) has a number of empty test classes,
automatically generated using a Java doclet. The intent is to fill them with test cases,
but so far these have not been made available.5

To safeguard our refactorings, we have developed our own functional test cases on
a by need basis. Since we were, initially, not familiar with the JHOTDRAW code, the
development of these test cases served as our program comprehension strategy ([10]):
We formulated hypotheses on JHOTDRAW’s implementation, expressed them as test
cases, and then attempted to refute them by running these test cases. The test suite that
was developed passes on the original, pure object oriented version of JHOTDRAW, as
well as on AJHOTDRAW, the refactored, aspect-oriented version.

Our test suite is based on the JUnit framework [3]. Moreover, where needed, we
make use of Java 1.4 assertions to ensure that the alterations did not break invariants
or pre- and postconditions. Since we did wanted to minimize the number of changes to
the JHOTDRAW code, we injected these assertions by means of aspects. For ensuring
invariants, the aspect contains an inter-type declaration giving relevant classes a boolean
invariant method, as well as a pointcut ensuring this method is indeed checked
before and after each public method. Observe that the assertion aspects are independent
of our test suite, and can be woven into the production version of JHOTDRAW as well
in order to simplify debugging.

3.3 AJHOTDRAW Organization

AJHOTDRAW is organized into two parts: (1) the main project is the ASPECTJ imple-
mentation of the system, where the identified crosscutting concerns are refactored to
aspects; (2) the test subproject (JHDTest) comprises all the test cases aimed at ensuring
equivalence between the the original Java solution and the refactored ASPECTJ one.
The aspects are put in separate packages, one per concern. Changes to the original files
are restricted just to removing concerns that have been migrated to aspects.

5 We have agreed with the JHOTDRAW maintainers that our test suite will be integrated in their
project.

9



The tests suite can be compiled with and executed on the archived binary files (jar)
of any of the two solutions. Building and executing the test suite is automated using
ANT.6

4 Refactoring of Selected Concerns from JHOTDRAW

Previously, we have employed fan-in analysis for the identification of crosscutting con-
cerns in JHOTDRAW [29]. This resulted in 10 types of concerns that were candidates
for refactoring into an aspect. In this section we discuss three of these concerns (per-
sistence, contract enforcement, and undo) in considerable detail, covering the BETTAR

steps aspect design, refactoring design, and test suite design.
A transparent, gradual process of refactoring is important for building confidence

in the aspect-oriented solution. Therefore, our refactorings aim at maintaining the con-
ceptual integrity and stay close to the original design. An additional advantage of this
approach is that this preserves the understandability of the refactored system for the
original maintainers.

4.1 Refactoring The Persistence Concern

Aspect Design Drawings in JHOTDRAW are collections of figures that can optionally
be stored and recovered (write/read operations) by the application. The concern de-
noting this functionality, persistence, is defined by the Storable interface that declares
two methods, write(StorableOutput) and read(StorableInput). The entire hierarchy of
storable elements in a drawing comprises 94 interfaces and classes, of which 40 belong
to the Figure class hierarchy.

Because the persistence concern is already distinguished in the original design,
refactoring it to an aspect is fairly straightforward. The aspect can use introductions in
order to have the persistent elements of a drawing (e.g., figures) implement the Storable
interface. If not all variables comprising the state of the class are accessible through
public getters and setters, the aspect will need access to private members as well. The
ASPECTJ way to achieve this is by declaring the aspect privileged.

The implementation of the Storable interface also implies an interesting enforce-
ment constraint: “Objects that implement this interface and that are resurrected by
StorableInput have to provide a default constructor with no arguments.” This constraint
cannot be enforced by ASPECTJ. A similar situation occurs when refactoring bean ob-
jects (see the “Bean Aspect” example in [2]) that must define no-argument constructors.

A concern related to persistence is serialization, which in JHOTDRAW is also imple-
mented for the Figure hierarchy. According to Java API specification, classes requiring
special handling during de-serialization, such as a number of figures in JHOTDRAW,
must implement a special private method (readObject(ObjectInputStream)). ASPECTJ
does not support introduction of private members into target classes. The visibility of
the inter-type declarations relates to the aspect and not to the target class. Although

6 ant.apache.org

10



already acknowledged as a shortcoming (see [2]) the language interpretation of visibil-
ity prevents a consistent refactoring of similar kinds (persistence and serialization) of
crosscutting concerns.

A summary of the various issues is provided in Figure 1.

Refactoring Design The refactoring itself is fairly straightforward, and just consists of
moving read and write method implementations to the persistence aspect. The complete
refactoring of the persistence concern can generally be described as Extract Interface
Implementation as discussed by [22].

Old situation Objects requiring persistence implement the Storable interface.
Aspect solution Implementation of Storable interface moved to aspect by means of intro-

ductions.
Code size Remains the same
Benefits All persistence related code in one aspect; classes oblivious of whether they

can be made persistent.
Risks Encapsulation broken since persistence aspect requires privileged access.
ASPECTJ issues Zero-argument constructor cannot be enforced; Private methods cannot be

introduced.

Fig. 1. Refactoring of the Persistence Concern

Test Suite Design Testing the persistence aspect is relatively simple. We nevertheless
discuss it in some detail, since the way of testing can be reused for other more compli-
cated concerns that we will discuss next.

When refactoring persistence to an aspect we run a number of risks: The first is that
in our aspect, we accidentally introduce a read or write method body for a given figure
in the wrong class. The second is that we make an error when copy-pasting the body of
a method to an aspect. Last but not least, our removal of the persistence code from, e.g.,
figures may be incomplete.

In order to test persistence we proceed as follows: First, we create a top level
StorableTest class, which has a test method that (1) creates a Storable (typically a fig-
ure), (2) writes it to a stream, (3) reads it back into a different object, and (4) checks the
equivalence between the two. Next, the creation of the actual figure is deferred to sub-
classes of the StorableTest class using a virtual factory method. Thus, the test hierarchy
mimics the hierarchy of classes to be stored. Finally, our equivalence checking method
should be based on structure, not on object identity. Such a method is not included in the
JHOTDRAW implementation. We injected this method into the class hierarchy using an
aspect. Observe that a collection of static equivalence methods included in, for exam-
ple the test class, would not work, since the equivalence method must be polymorphic
– which can be achieved by means of introductions in an aspect but not by means of
static methods.

This strategy implements Binder’s Polymorphic Server Test test design pattern [4]. It
can be used to verify that subclasses conform with superclass behavior, and that we are

11



setting up a correct polymorphic hierarchy. It requires exercising each superclass test
case to every possible subclass. In other words, we can reuse the write-read-compare
test case for every subclass of Storable.

4.2 Contract Enforcement in Commands

Aspect Design JHOTDRAW makes use of the Command design pattern in order to sep-
arate the user interface from the underlying model, and in order to support such features
as undoing and redoing user commands. Each command has to realize the Command in-
terface, for which a default implementation is provided in the AbstractCommand class.
The key method is execute, which takes care of actually carrying out the command
(such as pasting text, inserting an image, etc.).

Each execute method should start with a consistency check verifying that the un-
derlying “view” exists. Therefore, each concrete implementation of execute starts with
a call to the execute implementation in the superclass, which is always the one from the
AbstractCommand. This is illustrated in Figure 2.

public class AbstractCommand implements Command {
...
public void execute() {

if (view() == null) {
throw new JHotDrawRuntimeException(
"execute should NOT be getting called when view() == null");

} } }

public class PasteCommand extends AbtractCommand {
...
public void execute() {

super.execute();
...

} }

Fig. 2. Contract Enforcement using a super method idiom.

This is a typical example of what is called “contract enforcement” in the ASPECTJ
manual [2]. We implemented it using a pointcut capturing all execute methods, putting
the check itself in the advice. Observe that mimicking the implementation where the
check is in a super method is not possible in ASPECTJ: super methods cannot be ac-
cessed when advising a method. The resulting solution is shown in Figure 3.

The only surprise in this figure may be the within clause in the pointcut. It turns
out that anonymous subclasses of AbstractCommand do not implement the consistency
check. Such classes are used for simple commands such as printing, saving, and exiting
the application. Since ASPECTJ does not provide a direct way to exclude anonymous
classes in a pointcut, we used the within operator to exclude executions occurring in
the context of the top level object creating the full user interface. One can also argue
that the anonymous classes should include the check (in which case the exclusion can
be omitted from the pointcut), but at present we focus on keeping the behavior as it was,
not on modifying it.

12



pointcut commandExecute(AbstractCommand aCommand) :
this(aCommand)
&& execution(void AbstractCommand.execute())
&& !within(*..DrawApplication.*);

before(AbstractCommand aCommand) : commandExecute(aCommand) {
if (aCommand.view() == null) {

throw new JHotDrawRuntimeException("...");
} }

Fig. 3. Enforcing the consistency check using before advice.

The main benefit of the aspect approach is that consistency checks cannot be for-
gotten. This is illustrated by the anonymous classes, but also by one non-anoymous
command,7 which does not extend the AbstractCommand default implementation. Con-
sequently, it cannot reuse the consistency check using a supercall. Inspection of the
execute implementation, however, clearly shows that the code exits with a null pointer
exception in case the check fails. This suggests that the aspect that we are looking for
should implement the check not only for the AbstractCommand class, but for all imple-
mentations of the Command interface. Again, our current implementation does not yet
do this, but only injects the implementation in subclasses of AbstractCommand.

A summary of the main issues in the Contract Enforcement refactoring is provided
in Figure 4.

Old situation Each concrete execute invokes its super execute in order to conduct certain
consistency checks.

Aspect solution The consistency check is implemented as advice, which is invoked before
each call to execute, as captured in a simple pointcut.

Code size 17 explicit consistency calls replaced by one pointcut; consistency check
itself moved from class to advice.

Benefits Reliability: it becomes impossible to forget the consistency check. Omitted
checks can be fixed automatically thanks to the refactoring.

Risks Check required that omissions are not on purpose.
ASPECTJ issues No direct support to capture anonymous classes; Cannot refer to super meth-

ods in method advice.

Fig. 4. Refactoring Contract Enforcement for Commands.

Refactoring Design The restructuring can generally be described as an Advise Method
Overrides refactoring, as presented in Section 5.

Test Suite Design Simple as the pointcut in Figure 3 may be, it nevertheless illustrates
some of the issues involved in testing refactorings that make use of pointcuts.

7 Namely, the UndoableCommand.

13



First of all, adequate testing of the consistency check in the original (non-aspect)
JHOTDRAW version would typically correspond to branch coverage. This yields two
test cases for the top level execute method (one in which the consistency check passes,
and one in which it fails) in addition to one dedicated test for the execute implementa-
tion in each subclass. Since the super call can be resolved statically, even polymorphic
adequacy models will not add test cases to this.

It is interesting to observe that such a test suite would not capture the subtleties
involved in designing the aspect from Figure 3. For example, the test suite does not
exercise anonymous classes, nor execute methods occurring outside the scope of Ab-
stractCommand.

The aspect-specific test adequacy criteria as discussed in Section 2.1, however, do
suggest creating the relevant additional test cases. Inspection of the pointcut leads to
the following tests:

– Since AbstractCommand occurs in a type match, we would like to test classes just
off this boundary as well, leading to a test case checking what happens for the
Command interface itself.

– Since the pointcut is a conditional expression, we also want to investigate what
happens if one of the conditions fails. This means that we want to verify that the
within clause does fire for anonymous classes.

Actually creating these test cases may, however, not be as easy as it seems. Testa-
bility is affected by controllability and observability, which are poor for anonymous
classes and join point execution.

In order to verify (observe) that our pointcut from Figure 3 does indeed capture
anonymous classes correctly, we created special advice used for testing purposes only,
which keeps track where a certain pointcut expression has fired. To do this, we first
refactored the aspect so that the individual conditions are in separate pointcuts, as shown
in Figure 5. The production aspect uses these pointcuts to perform the consistency check
at the right places. The testing aspect uses exactly the same pointcut definitions to weave
in code that keeps track of where (i.e. at which joinpoints) those pointcuts have fired.
This set of joinpoints is then used to verify intended behavior.

abstract aspect ContractEnforcementPointcut {

pointcut commandExecute(AbstractCommand aCommand) :
this(aCommand)
&& inExecuteMethod()
&& ! inAbstractClass()

pointcut inAbstractClass() :
within(*..DrawApplication.*);

pointcut inExecuteMethod() {
execution(void AbstractCommand.execute());

} }

Fig. 5. Separate pointcuts for each condition to improve aspect testability.

14



Concerning controllability, the instances of the anonymous classes are hard to ac-
cess. They are normally activated via a mouse event, which must be mimicked in or-
der to trigger the command’s execute method. We avoided the need for generating
mouse events by using an aspect: we intercept the constructors for anonymous com-
mand classes, and collect them in a set: after the full application has been built we can
apply the execute method to each command.

4.3 Refactoring the Undo Concern

Background and Current Approach Support for “undo” is a newly added feature in
the analyzed version of JHOTDRAW. As can be imagined, it is a concern that crosscuts
across many different classes. More than 30 elements of the JHOTDRAW framework,
comprising commands, tools and handles, have associated undo constructs to revert the
changes spawned by their underlying activities. The discussion here will focus on the
commands group, as it is the largest in terms of defined undo activities.

Some participants in JHOTDRAW’s undo implementation are shown in Figure 6:

– Each command is associated with one undo activity, whose method undo can be
invoked to revert the command.

– The undo activity is implemented in a nested class of the command, which is in-
stantiated using a factory method called createUndoActivity.

– The primary abstraction in the undo activity is the list of affected figures: when the
command’s execute method is invoked, the relevant state of the affected figures is
stored in the undo activity.

– Undo activities are maintained on a stack by the undo manager.

<interface>
Undoable

undo()
Figure

*

                     affectedFigures

UndoableAdapter

<interface>
Command

execute()
createUndoActivity()

                undoActivity

AbstractCommand

ConcreteUndoableConcreteCommand
                   has nested class

UndoManager

*

DrawingEditor

Fig. 6. Participants in JHOTDRAW’s undo implementation.

15



public class PasteCommand extends FigureTransferCommand {
public void execute() {

...
FigureSelection selection =

(FigureSelection)Clipboard.getClipboard().getContents();
if (selection != null) {

setUndoActivity(createUndoActivity());
... //core command logic and other undo setup
FigureEnumeration fe = insertFigures(...);
getUndoActivity().setAffectedFigures(fe);
...

} } }

Fig. 7. The original PasteCommand class.

Aspect Design The aspect solution to undo we propose consists of associating an undo-
dedicated aspect to each undo-able command. The aspect implements the entire undo
functionality for the given command, while the associated class remains oblivious to its
secondary concern. By convention, for enforcing the relation with the command class,
each aspect will consistently be named by appending “UndoActivity” to the name of the
command class. In a successive step, the command’s nested UndoActivity class moves
to the aspect. The factory methods for the undo activities (createUndoActivity()) also
move to the aspect, from where they are introduced back into the associated command
classes using inter-type declarations.

The statements in the execute method that are responsible for setting up the undo
activity, are taken out of the execute method, and woven into it by means of advice.
In some cases the corresponding pointcut simply needs to capture all execute method
calls; in other cases the pointcut is more complex, depending on the way the undo code
is mixed with the regular code.

As an example, consider the paste command, whose execute method consists of
retrieving the selected figures from the clipboard, inserting them into the current view,
and clearing the clipboard. All this is done in a single method, using local variables and
if-then-else statements to deal with such situations as an empty clipboard. The undo
aspect will require the same conditional logic, and access to the same data in the same
order. The following aspect solutions are possible:

– If all getters are side effect free, an approach is to setup the undo activity in a simple
before advice. In JHOTDRAW, however, this is not the case, for example because
of figure enumerators that have an internal state.

– The alternative route is to intercept relevant getters, keep track of the data locally
in the advice as well, and inject advice after all data has been collected. This is
the approach we follow, but some of the pointcuts are somewhat artificial. Figure 8
illustrates such a pointcut in the undo aspect for the PasteCommand, which is also
shown in figure 7. The execute callClipboardgetContents() pointcut captures the
call that sets the reference to be checked by both the command’s core logic and the
undo functionality in the aspect.

– The last possibility is to refactor the long execute method into smaller steps using
non-private methods. The extra method calls can be intercepted allowing smooth
extension with setting up the undo activity, at the cost of creating a larger interface
and breaking encapsulation.

16



public aspect PasteCommandUndoActivity {
//store the Clipboard’s contents - common condition
FigureSelection selection;

pointcut execute_callClipboardgetContents() :
call(Object Clipboard.getContents()) && withincode(void PasteCommand.execute());

after() returning(Object select) : execute_callClipboardgetContents() {
selection = (FigureSelection)select;

}
...

pointcut executePasteCommand(PasteCommand cmd) :
this(cmd) && execution(void PasteCommand.execute());

// Execute undo setup
void after(PasteCommand cmd) : executePasteCommand(cmd) {

// the same condition as in the advised method
if(selection != null) {

cmd.setUndoActivity(cmd.createUndoActivity());
...
cmd.getUndoActivity().setAffectedFigures(...);

} } }

Fig. 8. The undo aspect for PasteCommand.

The resulting system differs in two ways from the original design. First, the original
design uses static nested classes to enforce a syntactical relation between the undo ac-
tivity and its enclosing command class. Since the ASPECTJ mechanisms do not allow
introduction of nested classes, the post-refactoring association will only be an indirect
one, based on naming conventions. This is a weaker connection than the one provided
by the original solution. A second difference is that the visibility of certain methods
has been altered, since ASPECTJ cannot be used to introduce, for example, the required
factory method as protected.

Refactoring Design The complexity of the refactoring is determined by the complexity
of unplugging undo from the commands themselves. We distinguish different levels of
unpluggability:

1. The nested undo activity class of the command, and all its uses can be safely re-
moved from the command. The fairly simple ChangeAttributeCommand class is an
example in this category.

2. The command’s core logic makes use of some of the data stored in the undo activity.
This is typically done for the list of affected figures. Since there is no real need for
this, we could easily refactor the core logic so that it does not refer to the undo
activity anymore.

3. The nested undo activity not only deals with undo, but also contains core logic
needed for the proper execution of the command. An example is the InsertIm-
ageCommand: its undo activity contains a method called insertImage which ac-
tually inserts the image (instead of undoing it). We consider this a design violation.
Our solution consists of applying traditional refactorings before starting with the
aspect refactoring, so that the command does not depend on the undo activity any-
more.

17



4. The nested undo activity is not only used for this particular command, but also
for similar commands. This is the case for the PasteCommand. Our aspect refac-
toring will rename the undo activity, and hence requires a simple change to these
commands.

We anticipate that any non-trivial aspect refactoring will require similar object-
oriented refactorings, before the crosscutting concern can be taken out of the available
system. A more detailed discussion of the undo concern refactoring, accompanied by
code snippets, is presented in [28].

Old situation Each command’s execute sets up a corresponding undo activity, which is
implemented through a nested class.

Aspect solution One aspect per command, which contains the undo activity implementation,
and introduces the association into the command. Execute method inter-
cepted to setup the proper undo activity state.

Code size Remains the same.
Benefits Strong tangling between commands and their undo activity eliminated;

commands are easier to understand.
Risks Undo activity may require sophisticated pointcuts to intercept all relevant

state modifications of the command; Refactoring of commands needed in
order to unplug undo support from them.

ASPECTJ issues No support for introducing nested classes. Visibility affected since protected
methods cannot be introduced. Modular reasoning affected by keeping track
of data set in the advised method.

Fig. 9. Refactoring Undo.

Test Suite Design In testing undo, we essentially combine the testing approaches of
the persistence and contract enforcement concerns discussed previously.

First of all, we create a reusable test suite at the Command level. This test can be
used for any command subclass, and ensures that each subclass complies with then
intended semantics. This test set takes care of:

– Setting up an appropriate JHOTDRAW application in which a concrete command
can be created. The actual command created is deferred to subclasses of the test
class.

– Bringing the application in a setting in which the execute can be carried out (for
example, many commands require that some figures in the drawing are selected),
and actually invoking it.

– Comparing the effects of the command execution with the intended behavior —
this step is specific to the actual command and deferred to subclasses. It usually
consists of comparing the modified selected figures with a set of figures actually
constructed in the test case.

– Invoking the undo method on the command’s undo-activity, and comparing that the
effects are indeed canceled. Again, this comparison typically involves the set of
affected figures.

18



Thus, the test case follows the template method design pattern, and defers the details of
certain steps to its subclasses.

To test the various pointcuts, the approach described for contract enforcement was
adopted, weaving in special advice that allowed us to observe which pointcut actually
fires.

5 Contributing to the Catalog of Refactorings

Several authors have proposed catalogs of aspect-oriented refactorings [22, 31, 32], in
the spirit of Fowler’s catalog of object-oriented refactorings [14]. We were able to
reuse several of these existing refactorings, such as Monteiro’s Encapsulate Implements
with Declare Parents, and Move Method from Class to Inter-type, or Laddad’s Extract
Method Calls refactoring which encapsulates calls to a method from multiple places
into an aspect.

In this section we add our contribution to these existing catalogs, casting some of
the experiences we obtained from building AJHOTDRAW into generally reusable refac-
torings.

An open question is at what level of abstraction such refactorings should be defined.
Is introducing some design pattern considered a refactoring? It is, but Fowler’s book has
explicit refactorings described for just a few design patterns, not all. The reason for this
is, most likely, that the mechanics for introducing such a design pattern can hardly be
described in a reusable way, and for that reason the refactoring description would not
add much useful information to the pattern description. In this respect an interesting
approach is taken by Kerievsky [21], who explicitly addresses refactorings to patterns.
He focuses on a subset of the design patterns, namely those for which common coding
tricks are known that do not yet provide the benefits of using the full pattern, such as in
his Replace Hard-Coded Notifications with Observer refactoring.

A similar distinction holds for aspect refactorings. Introducing refactorings for each
of the prototypical concerns listed in, for example, the ASPECTJ programming guide
[2] may not be particularly useful. But in some cases, the “old”, non-aspect solution can
be reasonably well described (for example an Observer implementation following the
guidelines from [15]), and it does make sense to describe how such an implementation
can be refactored into an aspect solution (such as the one from [19]).

If we look at the refactorings from Monteiro, these can be categorized as fairly
technical, elementary refactorings, such as introducing an inter-type declaration [31].
The refactorings from Laddad [22] are more of a mixed style, some being elementary,
others being closer to typical concerns from the ASPECTJ manual. Below we try to
provide some building blocks for creating refactoring descriptions that give concrete
advice how certain concerns can be turned into aspects.

Move Role to Aspect Though not discussed in the previous section, several of our
refactorings involve the creation of an aspect-oriented implementation of a design pat-
tern. As an example, JHOTDRAW contains several instantiations of the Observer pat-
tern, which we essentially implemented according to the approach proposed by Hanne-
mann and Kiczales [19].

19



The participants in this pattern can be an observer or a subject. The existing JHOT-
DRAW implementation does have a separate interface for the observer role, but not for
the subject role. We propose to refactor this and introduce a subject interface via an
aspect in order to: (a) make the two different roles explicit, and (b) remove the observer
pattern details from the primary concerns. Note that in some cases, one class can be
involved in multiple design patterns adopting different roles for them. For example, a
composite figure is a subject as well as an observer, listening to changes in its subfigures
while being listened to by, for example, drawings. The total number of methods imple-
mented by such multi-role classes can be substantial, making them hard to understand;
a problem addressed by moving the roles to aspects.

Thus, Move Role to Aspect creates an interface for a particular role in a design
pattern, and superimposes this role on an existing class by means of an aspect.

Move Observer to Aspect A more high level refactoring is to move an observer imple-
mentation into an aspect. This is a compound refactoring, involving three elementary
steps: first, the Move Role to Aspect refactoring is applied twice, once for the subject
and once for the observer role. Subsequently, the calls made in subjects to notify the
observers of changes are captured into a pointcut and extracted into advice.

Override Method with Advice for Overlapping Roles Just like one class can fullfil
multiple roles from one or more different design patterns, one method can implement
features related to multiple roles. This is common in Java Swing design and also occurs
in one of our JHOTDRAW refactorings. This refactoring dealt with the CommandMenu,
which acts as both view and controller for the interactive drawing editor of the appli-
cation. The method exhibiting the overlapping roles, checkEnabled(), enables/disables
menu items according to the status (executable/non-executable) of the command to be
activated when the item is selected. Although the method belongs to the interface of the
view component, allowing to set the view’s elements status, its implementation relies
on controller decisions.

The proposed refactoring places the method’s definition into the interface for the
role to which it belongs, in this case, the view role, making it accessible to the developer
of the GUI. Furthermore, the controller aspect uses an around advice to override the
default behavior of the method and to make it context(command)-aware.

Advise Method Overrides This refactoring aims at removing duplication arising from
statements that are common to (the start or end of) all method overrides of a given
(superclass) method. Such statements are replaced by advice to any refinement of the
superclass method. Examples in JHOTDRAW include the contract enforcement we dis-
cussed previously (the check at the beginning of each execute method), as well as a call
to the checkDamage method that is contained at the end of each execute method.

6 Discussion

What did we learn from refactoring JHOTDRAW to aspects and validating behavior
conservation by means of testing?

20



First of all, we once again learned that testing is actually needed for such refactor-
ings. In several cases, we detected errors in our pointcuts, introductions, and copy-paste
activities thanks to our test suite. Although all of us will agree with this need for test-
ing, it is alarming, to say the least, that neither the popular textbooks on aspect-oriented
programming (such as [23, 2, 16]) nor the existing work on aspect-oriented refactoring
[22, 32] provides any advice on how to approach aspect-oriented testing in a systematic
way.

Second, our fault model as well as our adequacy criteria illustrate how easy it is to
make errors during aspect-oriented programs, and how much needs to be done in or-
der to have a reasonable chance of finding these errors using tests. Moreover, both the
observability (did this pointcut fire?) and the controllability (which inputs will cause a
pointcut to be exercised?) of aspect-oriented programs typically are problematic. Ad-
mittedly, at several points in time we were tempted to omit the testing since it seemed
too complicated to create a test suite capable of achieving the required coverage. Testing
tool support may very well help here: but this requires an adequacy model first, which
is what we proposed in the paper.

Concerning the refactorings themselves, our experiments illustrate that being oblvi-
ous to future extensions is not as easy as it may seem. For example, the undo concern
was added only in version 5.4 of JHOTDRAW. Could this have been implemented as a
separate aspect without modifying JHOTDRAW version 5.3? Our refactoring shows the
direction this would take. But for some commands, such as the paste command, artifi-
cial pointcuts are needed, which are very brittle if the underlying primary logic in the
command changes.

For most cases, assessing the benefits of an aspect-oriented refactoring turned out
to be a fairly subjective process that is hard to quantify. The aspect design step looks
for such solutions that would enhance the system’s evolvability; that is, to achieve a
better modularization for the, otherwise, scattered and tangled parts of a concern, and
to provide an implementation that better reflects the concern-based reasoning over the
system. It is not always apparent, however, in the context of a (relatively) large sys-
tem as the analyzed case study, that the new, aspect solution surpasses the legacy one.
Although we argue to have improved the separation of concerns, for some more com-
plex refactorings, e.g, undo, the downfalls of the aspect-oriented implementation make
it difficult to asses the improvements for the overall system, or even the gains in modu-
lar reasoning over the refactored crosscutting concern. Difficulties could also occur for
less demanding refactorings as for example, contract enforcement, depending on the
uniformity of the places where the contract needs to be enforced.

Last but not least, it is striking that almost every refactoring we experimented with
raised one or more issues concerning ASPECTJ (such as visibility modifiers, nested
classes, or anymous classes). Some of these limitations are quite technical in nature,
and are likely to be resolved in future versions of ASPECTJ. Also, other aspect-oriented
frameworks, such as AspectWerkz 28 , may offer solutions to some of the issues. Other
limitations are more fundamental (such as the constraint that a class should offer a
zero-argument constructor or the inability to access super methods), and call for a more
rigorous reconsideration of existing aspect-oriented models.

8 aspectwerkz.codehaus.org

21



7 Related Work

An important part of research into the area of refactoring to aspect-orientation has an-
alyzed aspect solutions to a number of (sometimes complex) concerns that typically
crosscut the primary decomposition of a system [22, 19, 23]. The association between
the concern and its aspect solution is an important indication of how a specific language
model is intended to address types of crosscuttings. However, the specific implications
of applying the refactorings in the context of a large system, where deviations from the
examples used to describe the refactorings are very likely, are not considered. In this
paper we showed some of the difficulties that arise when these solutions are applied to
concerns in a large system.

A number of authors investigated the possibility of building catalogs of aspect refac-
torings. Monteiro and Fernandes [32] proposed a set of code transformations from Java
to ASPECTJ specific modularization units, describing steps in a feature extraction pro-
cess. The approach has followed the format used by Fowler [14] to describe object-
oriented refactorings, and was further significantly extended [31]. The study empha-
sized the mechanics associated to code transformations as opposed to the relation with
typical crosscutting concerns [22, 2, 19]. A similar list is also proposed by Iwamoto and
Zhao [20], but the authors do not provide details about any of the specific refactor-
ings. The attention tends to focus on potential conflicts between the aspect refactorings
and the traditional, object-oriented ones. This issue is also addressed by Hanenberg et
al [17], as well as Hannemann et al, who discuss the possibility of a refactoring ap-
proach based on a developer-tool dialog [18].

Specific techniques, like program slicing, are employed by Ettinger and Verbaere [13]
to extract tangled code into method and further into advice, as an extension of the
object-oriented refactoring to aspects.

Closely related to the work described in this paper, Coady et al investigate the bene-
fits of aspect-oriented solutions for evolving operating system code and for better man-
aging its variability [8, 5]. To that end they describe, for example, how the prefetching
concern can be separated from the page handling code in the FreeBSD kernel code [9].
Although their work aims at assessing the benefits of aspect-oriented software develop-
ment, in contrast to the work presented in this paper, it has not led to a publicly available
aspect-oriented and non-aspect-oriented version of the same software system which can
be used for comparative experimental software evolution research by other researchers.

However, none of this refactoring work mentions a testing strategy that accompanies
the migration process. The attention given to testing in the context of aspect-orientation
is limited and not with concerns to refactoring. Few published test adequacy criteria
for aspect-oriented programming have been formulated: the only work we are aware of
is by Alexander et al, who propose a candidate model and raise a number of research
questions [1]. Ubayashi and Tamai [37] use model checking to verify object crosscut-
ting properties in aspect-oriented programs. As a first attempt to define an approach
for testing aspect-oriented programs, Zhao [39] proposes a data-flow-based unit test-
ing. The tests are oriented towards aspect and class modules that can potentially be
targeted by multiple aspects. Based on the modules’ accessibility three levels of testing
are considered, i.e., intra-module, inter-module, and intra-aspect or intra-class.

22



8 Concluding Remarks

Refactoring to aspect-orientation aims at improving the evolvability and reusability of a
system. Important issues to be considered in this context are (1) the adequacy of the as-
pect solutions discussed by a number of authors when applied to a large application, (2)
the assessment of the support for and improvements brought by refactoring to aspects,
and (3) the challenges of behavior conservation when migrating to aspect-supported
implementations.

This paper addresses these problems by proposing a refactoring and testing strat-
egy to guide the migration process, and successively by applying it to an open source
Java system. The testing strategy aimed at ensuring migration consistency, introduces
an aspect-oriented fault model and adequacy criteria. Further, aspect and refactoring de-
signs are analyzed for selected concerns in the system under investigation, which also
include new, complex examples of crosscuttings. The analysis consists of a proposed
aspect solution, associated validating tests, and a trade-off review of the pre- and post-
refactoring implementations. The difficulties in assessing overall improvements due to
refactoring are turned into considerations about the suitability of the language features
and model for better supporting the types of identified crosscutting concerns. We be-
lieve that the development of aspect languages could benefit from catalogs that associate
types of crosscutting concerns to language mechanisms, and we provide further input
for such catalogs.

The paper’s main contributions are (1) an aspect-oriented fault model and adequacy
criteria; (2) a refactoring strategy that emphasizes testing and the use of aspect-oriented
solutions; (3) a detailed discussion of aspect refactorings and their testing implications,
as carried out on an existing system; and (4) the initiation of an open source project that
can be used to experiment with aspect-oriented testing and refactoring, and that can be
used to compare an object with an aspect solution.

The work described in this paper can be extended in various ways. First, we will
continue to experiment with AJHOTDRAW and other case studies, in order to further
extend the fault model, adequacy criteria, and refactoring catalogs. Second we will use
the proposed models and the experience gained from these case studies to come up with
automated tool support for both testing and refactoring of aspect-oriented programs.
Last but not least, we will analyze the risks and benefits of the various aspect solutions,
and reflect on ways in which some of the limitations of the current solutions can be
resolved.

In order to put our work in a broader perspective, we would like to refer to Bray et
al who state: “assessment of aspect-oriented software development in general is still
arguably in its early days” [5]. We argue that one of the prerequisites for such an as-
sessment is the availability of an aspect-oriented and non-aspect oriented version of the
same software system. Our work aims to create such versions for a publicly available
open source software system and thereby enables experimental comparative software
evolution research to asses the benefits of aspect-orientation.

Acknowledgments We would like to thank Magiel Bruntink (CWI), Hylke van Dijk
(TU Delft), Marco Lormans (TU Delft), and Tom Tourwé (CWI), for reading earlier
drafts of this paper.

23



Partial support was received from SENTERNovem, (Delft University of Technol-
ogy, project MOOSE, ITEA 01002, and CWI, project IDEALS, hosted by the Embed-
ded Systems Institute).

References

1. R. Alexander, J.M. Bieman, and A. A. Andrews. Towards the systematic testing of aspect-
oriented programs. Technical Report CS-4-105, Colorado State University, 2004.

2. The AspectJ Team. The AspectJ Programming Guide. Palo Alto Research Center, 2003.
Version 1.2.

3. K. Beck and E. Gamma. Test infected: Programmers love writing tests. Java Report, 3(7):51–
56, 1998. www.junit.org.

4. R. V. Binder. Testing Object-Oriented Systems: Models, Patterns, and Tools. Addison-
Wesley, 2000.

5. S. Bray, M. Yuen, Y. Coady, and M. E. Fiuczynski. Managing variability in systems: Oh
what a tangled OS we weave. In D. Beuche, K. Czarnecki, M. Mezini, C. Schwanninger,
and M. Voelter, editors, Managing Variabilities Consistently in Design and Code (MVCDC
OOPSLA04), 2004.

6. M. Bruntink, A. van Deursen, R. van Engelen, and T. Tourwé. An evaluation of clone de-
tection techniques for identifying cross-cutting concerns. In Proc. of Int. Conf. on Software
Maintenance (ICSM 2004). IEEE CS, 2004.

7. C. Clifton and G. Leavens. Obliviousness, modular reasoning, and the behavioral subtyping
analogy. In Workshop on Software-Engineering Properties of Languages for Aspect Tech-
nologies (SPLAT’03), 2003. http://www.daimi.au.dk/˜eernst/splat03/.

8. Y. Coady and G. Kiczales. Back to the future: A retroactive study of aspect evolution in
operating system code. In Mehmet Akşit, editor, Proc. of 2nd Int. Conf. on Aspect-Oriented
Software Development (AOSD), pages 50–59. ACM Press, March 2003.

9. Y. Coady, G. Kiczales, M. Feeley, and G. Smolyn. Using AspectC to improve the modularity
of path-specific customization in operating system code. In Proc. of 8th European Softw.
Eng. Conf. (ESEC/FSE), pages 88–98. ACM Press, 2001.

10. A. van Deursen. Program comprehension risks and benefits in extreme programming. In
E. Burd, P. Aiken, and R. Koschke, editors, Proc. 8th Working Conf. on Reverse Engineering
(WCRE 2001), pages 176–185. IEEE CS Press, 2001.

11. A. van Deursen and L. Moonen. The video store revisited - thoughts on refactoring and
testing. In M. Marchesi and G. Succi, editors, Proc. of 3nd Int. Conf. on Extreme Program-
ming and Flexible Processes in Software Engineering (XP2002), pages 71–76. University of
Cagliari, May 2002.

12. T. Elrad, M. Aksit, G. Kiczales, K. Lieberherr, and H. Ossher. Discussing aspects of AOP.
Communcations of the ACM, 44(10):33–38, 2001.

13. R. Ettinger and M. Verbaere. Untangling: A slice extraction refactoring. In Proc. of 3rd Int.
Conf. on Aspect-Oriented Software Development. ACM Press, 2004.

14. M. Fowler. Refactoring: Improving the Design of Existing Code. Addison Wesley, 1999.
15. E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns: Elements of Reusable

Object-Oriented Software. Addison-Wesley, 1994.
16. J. D. Gradecki and N. Lesiecki. Mastering AspectJ - Aspect Oriented Programmingin Java.

Wiley Publishing, Inc., 2003.
17. S. Hanenberg, C. Oberschulte, and R. Unland. Refactoring of aspect-oriented software. In

Proc. of Net.ObjectDays Conference, pages 19–35. Springer-Verlag, 2003.

24



18. J. Hannemann, T. Fritz, and G. C. Murphy. Refactoring to aspects: an interactive approach.
In Proc. of 2003 OOPSLA Workshop on Eclipse technology eXchange, pages 74–78. ACM
Press, 2003.

19. J. Hannemann and G. Kiczales. Design pattern implementation in Java and AspectJ. In
Proc. of 17th Annual ACM conf. on Object-Oriented Programming, Systems, Languages,
and Applications (OOPSLA), pages 161–173. ACM Press, 2002.

20. M. Iwamoto and J. Zhao. Refactoring aspect-oriented programs. In Proc. of 4th AOSD
Modeling With UML Workshop, UML’2003, San Francisco, California, USA, 2003.

21. J. Kerievsky. Refactoring to Patterns. Addison-Wesley, 2004.
22. R. Laddad. Aspect-oriented refactoring. www.theserverside.com, December 2003.
23. R. Laddad. AspectJ in Action - Practical Aspect Oriented Programming. Manning, 2003.
24. M. M. Lehman. On understanding laws, evolution and conservation in the large program life

cycle. Journal of Systems and Software, 1(3):213–221, 1980.
25. M. M. Lehman. Programs, life cycles and laws of software evolution. Proceedings of the

IEEE, 68(9):1060–1076, September 1980. Special Issue on Software Engineering.
26. M. M. Lehman, D. E. Perry, and J. F. Ramil. Implications of evolution metrics on software

maintenance. In T. M. Koshgoftaar and K. Bennett, editors, Proc. of Int. Conf. on Softw.
Maintenance (ICSM 1998), pages 208–217. IEEE CS Press, 1998.

27. B. Liskov and J. M. Wing. A behavioral notion of subtyping. ACM Trans. Program. Lang.
Syst., 16(6):1811–1841, 1994.

28. M. Marin. Refactoring JHotDraw’s Undo concern to AspectJ. In Proc. of First Workshop on
Aspect Reverse Engineering (WARE). Delft University of Technology, 2004.

29. M. Marin, A. van Deursen, and L. Moonen. Identifying aspects using fan-in analysis. In
Proc. of 11th Working Conf. on Reverse Engineering (WCRE2004). IEEE CS, 2004.

30. B. Meyer. Object-Oriented Software Construction. Prentice-Hall, 2nd edition, 1997.
31. M.P. Monteiro. Catalogue of refactorings for AspectJ. Technical Report UM-DI-GECSD-

200401, Universidade do Minho, 2004.
32. M.P. Monteiro and J.M. Fernandes. Object-to-aspect refactorings for feature extraction. In

Proc. of 3rd Int. Conf. on Aspect-Oriented Software Development. ACM Press, 2004. Indus-
try paper.

33. D. L. Parnas. Software aging. In Proc. of 16th Int. Conf. on Softw. Eng. (ICSE), pages
279–287. IEEE CS Press, 1994.

34. M. C. Rinard, A. Salcianu, and S. Bugrara. A classification system and analysis for aspect-
oriented programs. In Proc. of 12th ACM SIGSOFT Int. Symp. on Foundations of Software
Engineering (FSE), pages 147–158. ACM Press, 2004.

35. A. Rountev, A. Milanova, and B. G. Ryder. Fragment class analysis for testing of polymor-
phism in Java software. IEEE Trans. Softw. Eng., 30(6):372–387, 2004.

36. P. Tonella and M. Ceccato. Migrating interface implementation to aspect oriented program-
ming. In Proc. of Int. Conf. on Softw. Maintenance (ICSM 2004). IEEE CS Press, 2004.

37. N. Ubayashi and T. Tamai. Aspect-oriented programming with model checking. In Proc.
of 1st Int. Conf. on Aspect-oriented software development (AOSD), pages 148–154. ACM
Press, 2002.

38. E. Weyuker. The evaluation of program-based software test data adequacy criteria. Commu-
nications of the ACM, 31(6):668–675, June 1988.

39. J. Zhao. Data-flow-based unit testing of aspect-oriented programs. In Proc. of the 27th
Annual IEEE Int. Computer Software and Applications Conference (COMPSAC), pages 188–
197. IEEE CS, 2003.

25


