
A Reference Structure for Modular
Model-based Analyses

Zur Erlangung des akademischen Grades eines

Doktors der Ingenieurwissenschaften

von der KIT-Fakultät für Informatik

des Karlsruher Instituts für Technologie (KIT)

genehmigte

Dissertation

von

Sandro Giovanni Koch

aus Lindenberg i. Allgäu

Tag der mündlichen Prüfung: 07. Juli 2023

Erster Gutachter: Prof. Dr. Ralf H. Reussner

Zweiter Gutachter: Prof. Dr. Bernhard Rumpe

Danksagung

Es ist gescha�t! Mit großer Freude und Dankbarkeit möchte ich meine Anerkennung

aussprechen. Mein aufrichtiger Dank gilt Ralf, dessen unermüdliche Unterstützung, Leitung

und Expertise maßgeblich dazu beigetragen haben, dass ich meine Dissertation erfolgreich

abschließen konnte. Unsere inspirierenden Gespräche und sein Engagement haben meine

akademische, aber auch meine persönliche Reise bereichert. Ebenfalls möchte ich meine

aufrichtige Dankbarkeit gegenüber Robert ausdrücken, der mir in zahlreichen Gesprächen

und Publikationsprojekten mit Rat und Tat zur Seite stand.

Ein besonderer Dank geht an meine Lebensgefährtin Miri, die bedingungslos an meiner

Seite stand, mich ermutigte, wenn die Hürden schier unüberwindbar schienen, und immer

Verständnis für die unzähligen Stunden hatte, die ich dieser Dissertation gewidmet habe.

Ihre Geduld und Nachsicht waren eine unverzichtbare Stütze, die mich zuversichtlich

voranschreiten ließ.

Auch meinen Eltern und meiner Schwester möchte ich von ganzem Herzen danken. Ihre

bedingungslose Unterstützung und grenzenlose Liebe haben mich durch Höhen und Tiefen

getragen. Ohne ihre stetige Ermutigung und Zuversicht hätte ich diesen Meilenstein nicht

erreichen können.

Ein herzlicher Dank geht auch an meinen Freund Marco, dessen motivierende Worte und

fester Glaube an mich mich dazu inspirierten, meinen Weg konsequent zu verfolgen.

Auch meinen geschätzten Kollegen möchte ich meinen Dank aussprechen. Die vielen

Gespräche über Gott und die Welt, die moralische Unterstützung und der fachliche Aus-

tausch haben meinen akademischen Weg bereichert und mir geholfen, neue Perspektiven

einzunehmen. Kiana und Axel möchte ich für ihre Unterstützung, auch über die Zeit am

Lehrstuhl hinaus, danken. Dominik und Stephan bin ich dankbar dafür, dass sie meinen

kulinarischen Horizont erweitert und mir meine Grenzen aufgezeigt haben. Danke auch

an Heiko für die o�ene Tür und die vielen Gespräche in der Mittagspause und nach Feier-

abend. Mein besonderer Dank gilt Jan, Frederik, Yves, Tobias, Dominik, Maximilian und

Nicolas, die mit mir zusammen die magischen Welten von Ikoria bis Zendikar erkundeten

und so die langen Stunden erträglicher gemacht haben.

Abschließend möchte ich all jenen danken, die mich auf diesem Weg begleitet haben, sei

es durch persönliche Begegnungen, aufmunternde Worte oder positive Gedanken. Ihr alle

habt dazu beigetragen, dass diese Dissertation zu einem Erfolg wurde.

i

Abstract

Context: In this thesis, we investigated the evolvability, understandability, and reusability

of model-based analyses. For this purpose, we studied the co-dependency between models

and analyses, particularly the structure and interdependence of artefacts and the feature-

based decomposition and composition of model-based analyses.

Challenges: Software developers use models of software systems to determine the evolv-

ability and reusability of an architectural design. These models enable them to analyse

the software architecture before writing the �rst line of code. However, due to evolu-

tionary changes, model-based analyses are also prone to the deterioration of evolvability,

understandability, and reusability. These problems can be traced back to the co-evolution

of the modelling language and the analysis. The purpose of an analysis is a systematic

examination or study of speci�c properties of a system under study. For example, suppose

software developers want to analyse new properties of a software system. In that case,

they must adapt features of the modelling language and the corresponding model-based

analyses before they can analyse new properties. Features in the context of the modelling

language are, for example, quality properties such as performance or reliability. Features in

a model-based analysis are, for example, an analysis technique that analyses such a quality

property. Such changes lead to the increased complexity of the model-based analyses

and, as a result, to di�cult-to-maintain model-based analyses. This increasing complexity

reduces the understandability of the model-based analyses. As a result, development

cycles lengthen, and software developers need more time to adapt the software system to

changing requirements.

State-of-the-Art: Current approaches allow the coupling of analyses on one system or

across distributed systems. These approaches provide the technical structure for coupling

simulations rather than a structure and process for how components can be (de)composed.

Another challenge in composing analyses is the behavioural aspect, in which the analysis

component in�uences what. By synchronising each participating simulation, the decom-

position of simulations increases the need for communication. State-of-the-art approaches

reduce communication overhead; however, decomposition and composition are left to the

user. There are also several approaches to modelling variability that use feature diagrams

to be able to use product line techniques. However, these approaches must provide a

process for identifying and structuring analysis features.

Contributions: This thesis aims to improve model-based analysis’s evolvability, under-

standability, and reusability. For this purpose, we take the reference architecture for

domain-speci�c modelling languages as a basis and investigate the transferability of the

structure of the reference architecture to model-based analyses. The layered reference

iii

Abstract

architecture maps the dependencies of the analysis features and components by assign-

ing them to speci�c layers. We developed three processes for applying the reference

architecture: (i) refactoring an existing model-based analysis, (ii) designing a new model-

based analysis, and (iii) extending an existing model-based analysis. In addition to the

reference architecture for model-based analyses, we have identi�ed recurring structures

that lead to problems in evolvability, understandability and reusability; in the literature,

these recurring structures are also called bad smells. In particular, we have investigated

the co-dependency of Domain-speci�c Modelling Languages (DSMLs) and model-based

analyses that lead to these recurring problems. So far, bad smells for DSMLs and source

code have been considered separately, although they are co-dependent. We examined

established model-based analyses and identi�ed and speci�ed thirteen bad smells. In

addition to specifying the bad smells, we provide a process for automatically identifying

them and strategies for refactoring them so that developers can avoid or �x them. We

also developed a modelling language for specifying this thesis’s structure and behaviour

of analysis components. Simulations are analyses to investigate a system when exper-

imenting with the existing system is too time-consuming, costly, dangerous or simply

impossible because the system does not exist (yet). Developers can use the speci�cation to

compare simulation components and thus identify identical components. Finding similar

simulation components allows developers to reuse existing components and reduce the

e�ort required to develop new components.

Validation: We evaluated our �rst contribution, the reference architecture for model-

based analyses, by applying it to four model-based analyses. We chose a scenario-based

evaluation that derives historical change scenarios from the repositories of the model-based

analyses. In the evaluation, we can show that evolvability and understandability improve

by determining the complexity, coupling, and cohesion. The metrics we used originate

from information theory but were already used to evaluate the reference architecture for

DSMLs. We evaluated our second contribution, the bad smells that emerge due to the

co-dependency of model-based analyses and their corresponding DSMLs, by searching four

model-based analyses for occurrences of our bad smells and �xing the found bad smells.

We also chose a scenario-based evaluation that derives historical change scenarios from the

repositories of the model-based analyses. We can show that bad smells negatively a�ect

evolvability and understandability by determining the complexity, coupling, and cohesion

before and after the refactoring. We evaluated our third contribution, the approach to

specify and �nd components of model-based analyses, by specifying components of two

model-based analyses and by applying our search algorithm to �nd analysis components

with similar structure and behaviour. The evaluation results show that we can �nd similar

analysis components and, as a result, that our approach can ease the search for analysis

components with similar structure and behaviour. Thus, it can ease the reuse of such

components.

Bene�ts: The contributions of our work support architects and developers in their day-to-

day work to develop maintainable and reusable model-based analyses. For this purpose, we

provide a reference architecture that aligns model-based analysis with the domain-speci�c

modelling language, thus facilitating co-evolution. In addition to the reference architecture,

we provide refactoring operations that allow architects and developers to align an existing

iv

Abstract

model-based analysis with the reference architecture. In addition to this technical aspect,

we have identi�ed three processes that enable architects and developers to develop a

new model-based analysis, modularise an existing model-based analysis and extend an

existing model-based analysis. Of course, this is done so that the results conform to the

reference architecture. In addition, our speci�cation allows developers to compare existing

simulation components and reuse them as needed. This avoids the need for developers to

re-implement components.

v

Zusammenfassung

Kontext: In dieser Arbeit haben wir die Evolvierbarkeit, Verständlichkeit und Wieder-

verwendbarkeit von modellbasierten Analysen untersucht. Darum untersuchten wir die

Wechselbeziehungen zwischen Modellen und Analysen, insbesondere die Struktur und

Abhängigkeiten von Artefakten und die Dekomposition und Komposition von modellba-

sierten Analysen.

Herausforderungen: Softwareentwickler verwenden Modelle von Softwaresystemen,

um die Evolvierbarkeit und Wiederverwendbarkeit eines Architekturentwurfs zu bestim-

men. Diese Modelle ermöglichen die Softwarearchitektur zu analysieren, bevor die erste

Zeile Code geschreiben wird. Aufgrund evolutionärer Veränderungen sind modellbasierte

Analysen jedoch auch anfällig für eine Verschlechterung der Evolvierbarkeit, Verständ-

lichkeit und Wiederverwendbarkeit. Diese Probleme lassen sich auf die Ko-Evolution

von Modellierungssprache und Analyse zurückführen. Der Zweck einer Analyse ist die

systematische Untersuchung bestimmter Eigenschaften eines zu untersuchenden Systems.

Nehmen wir zum Beispiel an, dass Softwareentwickler neue Eigenschaften eines Software-

systems analysieren wollen. In diesem Fall müssen sie Merkmale der Modellierungssprache

und die entsprechenden modellbasierten Analysen anpassen, bevor sie neue Eigenschaften

analysieren können. Merkmale in einer modellbasierten Analyse sind z. B. eine Analyse-

technik, die eine solche Qualitätseigenschaft analysiert. Solche Änderungen führen zu einer

erhöhten Komplexität der modellbasierten Analysen und damit zu schwer zu p�egenden

modellbasierten Analysen. Diese steigende Komplexität verringert die Verständlichkeit

der modellbasierten Analysen. Infolgedessen verlängern sich die Entwicklungszyklen,

und die Softwareentwickler benötigen mehr Zeit, um das Softwaresystem an veränderte

Anforderungen anzupassen.

Stand der Technik: Derzeitige Ansätze ermöglichen die Kopplung von Analysen auf

einem System oder über verteilte Systeme hinweg. Diese Ansätze bieten die technische

Struktur für die Kopplung von Simulationen, nicht aber eine Struktur wie Komponenten

(de)komponiert werden können. Eine weitere Herausforderung beim Komponieren von

Analysen ist der Verhaltensaspekt, der sich darin äußert, wie sich die Analysekomponenten

gegenseitig beein�ussen. Durch die Synchronisierung jeder beteiligten Simulation erhöht

die Modularisierung von Simulationen den Kommunikationsbedarf. Derzeitige Ansätze

erlauben es, den Kommunikationsaufwand zu reduzieren; allerdings werden bei diesen

Ansätzen die Dekomposition und Komposition dem Benutzer überlassen.

Beiträge: Ziel dieser Arbeit ist es, die Evolvierbarkeit, Verständlichkeit und Wiederver-

wendbarkeit von modellbasierten Analysen zu verbessern. Zu diesem Zweck wird die

vii

Zusammenfassung

Referenzarchitektur für domänenspezi�sche Modellierungssprachen als Grundlage ge-

nommen und die Übertragbarkeit der Struktur der Referenzarchitektur auf modellbasierte

Analysen untersucht. Die geschichtete Referenzarchitektur bildet die Abhängigkeiten der

Analysefunktionen und Analysekomponenten ab, indem sie diese bestimmten Schichten

zuordnet. Wir haben drei Prozesse für die Anwendung der Referenzarchitektur entwickelt:

(i) Refactoring einer bestehenden modellbasierten Analyse, (ii) Entwurf einer neuen mo-

dellbasierten Analyse und (iii) Erweiterung einer bestehenden modellbasierten Analyse.

Zusätzlich zur Referenzarchitektur für modellbasierte Analysen haben wir wiederkehrende

Strukturen identi�ziert, die zu Problemen bei der Evolvierbarkeit, Verständlichkeit und

Wiederverwendbarkeit führen; in der Literatur werden diese wiederkehrenden Strukturen

auch als Bad Smells bezeichnet. Wir haben etablierte modellbasierte Analysen unter-

sucht und dreizehn Bad Smells identi�ziert und spezi�ziert. Neben der Spezi�zierung

der Bad Smells bieten wir einen Prozess zur automatischen Identi�zierung dieser Bad

Smells und Strategien für deren Refactoring, damit Entwickler diese Bad Smells vermeiden

oder beheben können. In dieser Arbeit haben wir auch eine Modellierungssprache zur

Spezi�kation der Struktur und des Verhaltens von Simulationskomponenten entwickelt.

Simulationen sind Analysen, um ein System zu untersuchen, wenn das Experimentieren

mit dem bestehenden System zu zeitaufwändig, zu teuer, zu gefährlich oder einfach un-

möglich ist, weil das System (noch) nicht existiert. Entwickler können die Spezi�kation

nutzen, um Simulationskomponenten zu vergleichen und so identische Komponenten zu

identi�zieren.

Validierung: Die Referenzarchitektur für modellbasierte Analysen, haben wir evaluiert,

indem wir vier modellbasierte Analysen in die Referenzarchitektur überführt haben. Wir

haben eine szenariobasierte Evaluierung gewählt, die historische Änderungsszenarien

aus den Repositories der modellbasierten Analysen ableitet. In der Auswertung können

wir zeigen, dass sich die Evolvierbarkeit und Verständlichkeit durch die Bestimmung

der Komplexität, der Kopplung und der Kohäsion verbessert. Die von uns verwendeten

Metriken stammen aus der Informationstheorie, wurden aber bereits zur Bewertung der

Referenzarchitektur für DSMLs verwendet. Die Bad Smells, die durch die Co-Abhängigkeit

von modellbasierten Analysen und ihren entsprechenden DSMLs entstehen, haben wir

evaluiert, indem wir vier modellbasierte Analysen nach dem Auftreten unserer schlechten

Gerüche durchsucht und dann die gefundenen Bad Smells behoben haben. Wir haben

auch eine szenariobasierte Auswertung gewählt, die historische Änderungsszenarien aus

den Repositories der modellbasierten Analysen ableitet. Wir können zeigen, dass die

Bad Smells die Evolvierbarkeit und Verständlichkeit negativ beein�ussen, indem wir die

Komplexität, Kopplung und Kohäsion vor und nach der Refaktorisierung bestimmen. Den

Ansatz zum Spezi�zieren und Finden von Komponenten modellbasierter Analysen haben

wir evaluiert, indem wir Komponenten von zwei modellbasierten Analysen spezi�zieren

und unseren Suchalgorithmus verwenden, um ähnliche Analysekomponenten zu �nden.

Die Ergebnisse der Evaluierung zeigen, dass wir in der Lage sind, ähnliche Analysekom-

ponenten zu �nden und dass unser Ansatz die Suche nach Analysekomponenten mit

ähnlicher Struktur und ähnlichem Verhalten und damit die Wiederverwendung solcher

Komponenten ermöglicht.

viii

Zusammenfassung

Nutzen: Die Beiträge unserer Arbeit unterstützen Architekten und Entwickler bei ih-

rer täglichen Arbeit, um wartbare und wiederverwendbare modellbasierte Analysen zu

entwickeln. Zu diesem Zweck stellen wir eine Referenzarchitektur bereit, die die modellba-

sierte Analyse und die domänenspezi�sche Modellierungssprache aufeinander abstimmt

und so die Koevolution erleichtert. Zusätzlich zur Referenzarchitektur bieten wir auch

Refaktorisierungsoperationen an, die es Architekten und Entwicklern ermöglichen, eine

bestehende modellbasierte Analyse an die Referenzarchitektur anzupassen. Zusätzlich zu

diesem technischen Aspekt haben wir drei Prozesse identi�ziert, die es Architekten und

Entwicklern ermöglichen, eine neue modellbasierte Analyse zu entwickeln, eine bestehen-

de modellbasierte Analyse zu modularisieren und eine bestehende modellbasierte Analyse

zu erweitern. Dies geschieht natürlich so, dass die Ergebnisse mit der Referenzarchitektur

konform sind. Darüber hinaus ermöglicht unsere Spezi�kation den Entwicklern, bestehen-

de Simulationskomponenten zu vergleichen und sie bei Bedarf wiederzuverwenden. Dies

erspart den Entwicklern die Neuimplementierung von Komponenten.

ix

Contents Overview

Danksagung . i

Abstract . iii

Zusammenfassung . vii

I. Prologue 1

1. Introduction . 3

1.1. Motivation . 3

1.2. Problem Statements . 5

1.3. Contributions . 6

1.4. Thesis Outline . 8

2. Foundation . 11

2.1. Terms and De�nitions . 11

2.2. Foundational Concepts . 15

2.3. Foundational Concepts for the Decomposition and Composition of Model-

based Analyses . 20

2.4. Bad Smells in Di�erent Domains . 25

2.5. Foundational Concepts for the Reuse of Model-based Analysis Components 32

2.6. Foundation of the Evaluation . 35

2.7. Technical Foundation . 37

II. Improving Evolvability and Reusability of Model-based Analyses 39

3. Decomposition and Composition of Model-based Analyses 41

3.1. Hypothesis and Research Questions . 43

3.2. Requirements for the Reference Architecture 45

3.3. Decomposition of Model-based Analyses 48

3.4. Composition of Model-based Analyses 66

3.5. Application Process . 69

xi

CONTENTS OVERVIEW

3.6. Technical Contribution . 87

4. Bad Smells in Model-based Analyses . 93

4.1. Hypothesis and Research Questions . 94

4.2. Bad Smells in Model-based Analyses . 95

4.3. Identifying Bad Smells in Model-based Analyses 120

5. Reuse of Model-based Analysis Components . 127

5.1. Hypothesis and Research Questions . 128

5.2. Speci�cation of Model-based Analyses 130

5.3. Structure Comparison . 139

5.4. Behaviour Comparison . 140

5.5. Technical Contribution . 144

5.6. Limitations . 149

III. Validation 155

6. Case Studies . 157

6.1. Selection Criteria . 157

6.2. The Palladio Simulator . 158

6.3. Camunda . 161

6.4. KAMP and KAMP4aPS . 163

6.5. SmartGrid . 165

7. Reference Architecture Evaluation . 167

7.1. Discussion of the Requirements . 167

7.2. Research Goals and Metrics . 169

7.3. Evaluation Design . 170

7.4. Evaluation Results . 186

7.5. Threats to Validity . 189

7.6. Discussion . 193

8. Evaluation of Bad Smells in Model-based Analyses 197

8.1. Research Goals and Metrics . 197

8.2. Evaluation Design . 198

8.3. Evaluation Results . 210

xii

Contents Overview

8.4. Threats to Validity . 217

8.5. Discussion . 219

9. Specification and Reuse Evaluation . 223

9.1. Research Goals and Metrics . 223

9.2. Evaluation Results . 230

9.3. Threats to Validity . 233

9.4. Discussion . 234

IV. Epilogue 237

10. RelatedWork . 239

10.1. Decomposition and Composition of Model-based Analyses 240

10.2. Integration of DSMLs and Model-based Analyses 243

10.3. Bad Smells and Anti-Pattern in Model-based Analyses 245

10.4. Reuse of Simulation Components . 248

10.5. Discussion . 250

11. Conclusion and Future Work . 253

11.1. Decomposition and Composition of Model-based Analyses 253

11.2. Bad Smells in Model-based Analyses . 257

11.3. Speci�cation and Reuse of Model-based Analysis 260

Bibliography . 263

xiii

Contents

Danksagung . i

Abstract . iii

Zusammenfassung . vii

I. Prologue 1

1. Introduction . 3
1.1. Motivation . 3

1.2. Problem Statements . 5

1.3. Contributions . 6

1.4. Thesis Outline . 8

2. Foundation . 11
2.1. Terms and De�nitions . 11

2.1.1. Domain-speci�c Modelling Language 11

2.1.2. Model-based Analyses . 12

2.1.3. Roles . 13

2.1.3.1. Developer Role . 14

2.1.3.2. User Role . 14

2.2. Foundational Concepts . 15

2.2.1. A Reference Architecture for Metamodels 15

2.2.1.1. Language Features . 16

2.2.1.2. Feature Models in the Context of DSMLs 16

2.2.1.3. Modules and Dependencies 16

2.2.1.4. Extends Relation . 16

2.2.1.5. Layers . 17

2.2.1.6. Layers in Metamodels for Quality Modelling and Analysis 17

2.2.2. Hypergraph Metrics . 18

2.3. Foundational Concepts for the Decomposition and Composition of Model-

based Analyses . 20

2.3.1. Quality Property . 20

2.3.2. Modelling Language . 21

2.3.3. Feature Model . 21

2.3.4. Analysis Composition . 22

xv

Contents

2.3.5. Feature Composition . 23

2.3.6. Analysis Decomposition . 24

2.4. Bad Smells in Di�erent Domains . 25

2.4.1. Bad Smells in Object-oriented Software 25

2.4.2. Bad Smells in Domain-speci�c Modelling Languages 29

2.5. Foundational Concepts for the Reuse of Model-based Analysis Components 32

2.5.1. Satis�able Modulo Theories . 32

2.5.2. P versus NP . 33

2.5.3. Nondeterministic Polynomial Time 34

2.5.4. Graph Isomorphism . 34

2.5.5. Domain-speci�c Language . 35

2.6. Foundation of the Evaluation . 35

2.6.1. Validity Types . 35

2.6.2. Goal Question Metric Approach 36

2.7. Technical Foundation . 37

2.7.1. Eclipse Modelling Framework . 37

2.7.2. Xtext . 37

2.7.3. Xtend . 38

2.7.4. Neo4J . 38

2.7.5. Spoon . 38

II. Improving Evolvability and Reusability of Model-based Analyses 39

3. Decomposition and Composition of Model-based Analyses 41
3.1. Hypothesis and Research Questions . 43

3.2. Requirements for the Reference Architecture 45

3.3. Decomposition of Model-based Analyses 48

3.3.1. Modularisation Concepts for Model-based Analyses 49

3.3.1.1. Use of Feature Models 49

3.3.1.2. Language Feature and Analysis Feature 50

3.3.1.3. Language Component and Analysis Component 51

3.3.1.4. Layering . 52

3.3.1.5. Relation Between Modularisation Concepts 52

3.3.2. Layers in Model-based Quality Analyses 53

3.3.2.1. Paradigm Layer . 54

3.3.2.2. Domain Layer . 55

3.3.2.3. Quality Layer . 56

3.3.2.4. Analysis Layer . 56

3.3.2.5. Experiment Layer . 57

3.3.3. Refactoring Operations for Modularising Model-based Analyses . 57

3.3.3.1. Analysis Class Refactorings 58

3.3.3.2. Analysis Component Refactorings 63

3.4. Composition of Model-based Analyses 66

xvi

Contents

3.5. Application Process . 69

3.5.1. Modularisation of an Existing Model-based Analysis 69

3.5.1.1. Prerequisite: Modular DSML 70

3.5.1.2. Decomposition into Layers 71

3.5.1.3. Creating the Feature Model 73

3.5.1.4. Dependency Alignment 74

3.5.1.5. Decomposition Re�nement 76

3.5.1.6. Extracting Commonalities 77

3.5.1.7. Feature Re�nement . 77

3.5.1.8. Feature Model Forming 78

3.5.2. Developing a Model-based Analysis from Scratch 78

3.5.2.1. Language Feature Transfer 78

3.5.2.2. Identi�cation of Analysis Features 80

3.5.2.3. Reuse of Analysis Components 80

3.5.2.4. Creating the Feature Model 80

3.5.2.5. Introducing Layers . 81

3.5.2.6. Extracting the Paradigm Layer 82

3.5.2.7. Grouping of Features 82

3.5.2.8. Parent Feature Identi�cation 82

3.5.2.9. Adding the Remaining Dependencies 83

3.5.2.10. Implementing the Features 83

3.5.2.11. Revision and Re�nement 84

3.5.3. Extending a Model-based Analysis 84

3.5.3.1. Identi�cation of Analysis Features 84

3.5.3.2. Reusing Analysis Components 85

3.5.3.3. Extending the Feature Model 86

3.5.3.4. Implementing Remaining Features 86

3.5.3.5. Revision and Re�nement 87

3.6. Technical Contribution . 87

3.6.1. Analysis Library – Refactor Lizar 87

3.6.1.1. Accumulation of Dependencies Detection 88

3.6.1.2. Detection of Scattered of Dependencies 88

3.6.1.3. Layer Violation Detection 89

3.6.1.4. Dependency Cycle Detection 89

3.6.1.5. Metric Analysis . 90

3.6.2. Refactoring Library . 90

4. Bad Smells in Model-based Analyses . 93
4.1. Hypothesis and Research Questions . 94

4.2. Bad Smells in Model-based Analyses . 95

4.2.1. Abstraction . 97

4.2.1.1. Duplicated Abstraction 97

4.2.1.2. Missing Abstraction . 99

4.2.1.3. Unused Abstraction . 101

xvii

Contents

4.2.2. Encapsulation . 102

4.2.2.1. De�cient Encapsulation 102

4.2.3. Hierarchy . 104

4.2.3.1. Folded Hierarchy . 105

4.2.3.2. Missing Hierarchy . 107

4.2.3.3. Unexploited Hierarchy 108

4.2.4. Modularity . 110

4.2.4.1. Broken Modularity . 110

4.2.4.2. Degraded Modularity 112

4.2.4.3. Missing Modularity . 115

4.2.4.4. Rebellious Modularity 116

4.2.4.5. Weakened Modularity 118

4.3. Identifying Bad Smells in Model-based Analyses 120

4.3.1. Identi�cation of Abstraction Smells 120

4.3.1.1. Duplicated Abstraction 120

4.3.1.2. Missing Abstraction . 120

4.3.1.3. Unused Abstraction . 121

4.3.2. Identi�cation of the Encapsulation Smell 122

4.3.2.1. De�cient Encapsulation 122

4.3.3. Identi�cation of Hierarchy Smells 122

4.3.3.1. Folded Hierarchy . 122

4.3.3.2. Missing Hierarchy . 123

4.3.3.3. Unexploited Hierarchy 123

4.3.4. Identi�cation of Modularity Smells 124

4.3.4.1. Broken Modularity . 124

4.3.4.2. Degraded Modularity 124

4.3.4.3. Missing Modularity . 124

4.3.4.4. Rebellious Modularity 125

4.3.4.5. Weakened Modularity 125

5. Reuse of Model-based Analysis Components . 127
5.1. Hypothesis and Research Questions . 128

5.1.1. Model-based Analysis Speci�cation 129

5.1.2. Model-based Analysis Component Identi�cation 129

5.2. Speci�cation of Model-based Analyses 130

5.2.1. Discrete-event Simulation De�nition 130

5.2.2. Structure Speci�cation . 131

5.2.3. Behaviour Speci�cation . 132

5.2.4. Speci�cation Grammar . 133

5.2.5. Behaviour with Satis�able Modulo Theories 137

5.3. Structure Comparison . 139

5.4. Behaviour Comparison . 140

5.4.1. Comparing Schedules Relationships 141

5.4.2. Comparing Writes Relationships 142

xviii

Contents

5.5. Technical Contribution . 144

5.5.1. Tooling . 144

5.5.1.1. Speci�cation of Simulation Components 145

5.5.1.2. Identi�cation of Simulation Components 146

5.5.1.3. Con�guration . 147

5.5.1.4. Analysis Commands 147

5.5.1.5. Analysis Results . 148

5.6. Limitations . 149

5.6.1. Limitations of the Structure Comparison 150

5.6.2. Limitations of the Behaviour Comparison 150

III. Validation 155

6. Case Studies . 157
6.1. Selection Criteria . 157

6.2. The Palladio Simulator . 158

6.3. Camunda . 161

6.4. KAMP and KAMP4aPS . 163

6.5. SmartGrid . 165

7. Reference Architecture Evaluation . 167
7.1. Discussion of the Requirements . 167

7.2. Research Goals and Metrics . 169

7.3. Evaluation Design . 170

7.3.1. Evolution Scenarios . 170

7.3.2. Conduction of the Evaluation . 171

7.3.3. SimuLizar Refactoring . 171

7.3.4. Modular SimuLizar– mSimuLizar 172

7.3.4.1. Paradigm Layer . 173

7.3.4.2. Domain Layer . 174

7.3.5. SimuLizar Historical Evolution Scenarios 176

7.3.6. Camunda Refactoring . 176

7.3.7. Modular Camunda – mCamunda 176

7.3.7.1. Paradigm Layer . 178

7.3.7.2. Domain Layer . 179

7.3.8. Camunda Historical Evolution Scenarios 180

7.3.9. KAMP4aPS Refactoring . 180

7.3.10. Modular KAMP4aPS – mKAMP4aPS 180

7.3.10.1. Paradigm Layer . 180

7.3.10.2. Domain Layer . 182

7.3.10.3. Quality Layer . 183

7.3.11. KAMP4APS Historical Evolution Scenarios 183

7.3.12. SmartGrid Refactoring . 183

xix

Contents

7.3.13. Modular SmartGrid – mSmartGrid 185

7.3.13.1. Paradigm Layer . 185

7.3.13.2. Domain Layer . 186

7.3.13.3. Quality Layer . 186

7.3.14. SmartGrid Historical Evolution Scenarios 186

7.4. Evaluation Results . 186

7.5. Threats to Validity . 189

7.5.1. Internal Validity . 190

7.5.2. External Validity . 192

7.5.3. Construct Validity . 192

7.5.4. Conclusion Validity . 193

7.6. Discussion . 193

7.6.1. Complexity . 194

7.6.2. Coupling . 195

7.6.3. Cohesion . 195

8. Evaluation of Bad Smells in Model-based Analyses 197
8.1. Research Goals and Metrics . 197

8.2. Evaluation Design . 198

8.2.1. Evolution Scenarios . 198

8.2.2. Conduction of the Evaluation . 199

8.2.3. Refactoring Scenarios . 201

8.2.3.1. Duplicated Abstraction 201

8.2.3.2. Missing Abstraction . 203

8.2.3.3. Degraded Modularity 206

8.2.3.4. Rebellious Modularity 207

8.3. Evaluation Results . 210

8.3.1. Frequency of Occurrence Results 210

8.3.2. Evolvability, Understandability, and Reusability Results 211

8.3.2.1. Duplicated Abstraction 212

8.3.2.2. Missing Abstraction . 213

8.3.2.3. Degraded Modularity 214

8.3.2.4. Rebellious Modularity 216

8.4. Threats to Validity . 217

8.4.1. Internal Validity . 217

8.4.2. External Validity . 217

8.4.3. Construct Validity . 218

8.4.4. Conclusion Validity . 218

8.5. Discussion . 219

8.5.1. Existence . 219

8.5.2. Relevance . 220

9. Specification and Reuse Evaluation . 223
9.1. Research Goals and Metrics . 223

9.1.1. Applicability Metric . 224

xx

Contents

9.1.2. Accuracy Metric . 225

9.1.3. Scenarios . 226

9.1.4. Simulation Components of the Palladio Simulator 227

9.1.5. Simulation Components of Camunda 229

9.2. Evaluation Results . 230

9.2.1. Results for the Applicability Evaluation 230

9.2.2. Results for the Accuracy Evaluation 231

9.3. Threats to Validity . 233

9.3.1. Internal Validity . 233

9.3.2. External Validity . 233

9.3.3. Construct Validity . 234

9.3.4. Conclusion Validity . 234

9.4. Discussion . 234

9.4.1. Applicability . 234

9.4.2. Accuracy . 235

IV. Epilogue 237

10. RelatedWork . 239
10.1. Decomposition and Composition of Model-based Analyses 240

10.1.1. Analysis Integration . 240

10.1.2. Analysis Orchestration . 242

10.2. Integration of DSMLs and Model-based Analyses 243

10.2.1. Language Workbenches . 243

10.2.2. Language Engineering Tools . 244

10.3. Bad Smells and Anti-Pattern in Model-based Analyses 245

10.3.1. Bad Smell Detection . 245

10.3.2. Bad Smell Refactoring . 246

10.4. Reuse of Simulation Components . 248

10.4.1. Source Code Comparison . 248

10.4.2. Simulation Speci�cation and Reuse 249

10.5. Discussion . 250

11. Conclusion and Future Work . 253
11.1. Decomposition and Composition of Model-based Analyses 253

11.1.1. Summary . 253

11.1.2. Limitations . 256

11.1.3. Future Work . 256

11.2. Bad Smells in Model-based Analyses . 257

11.2.1. Summary . 257

11.2.2. Limitations . 259

11.2.3. Future Work . 259

11.3. Speci�cation and Reuse of Model-based Analysis 260

11.3.1. Summary . 260

xxi

Contents

11.3.2. Limitations . 262

11.3.3. Future Work . 262

Bibliography . 263

xxii

List of Figures

2.1. The Context of Domain-speci�c Modelling Languages (DSMLs), Models,

Analyses, and Results . 13

2.2. Reference Architecture for DSMLs – Concept 15

2.3. Graph vs Hypergraph . 18

2.4. Concept of Feature Models . 22

2.5. Graph Isomorphism . 34

3.1. Dependency Structure of SimuLizar and the PCM 46

3.2. Structure and Relations of the Reference Architecture 50

3.3. Feature and Component Relation . 52

3.4. Layering Structure for the Reference Architecture 54

3.5. Notational Elements . 58

3.6. Class Split . 58

3.7. Class Merge . 60

3.8. Breaking Dependency Cycles . 60

3.9. Breaking Dependency Cycles – Analysis and DSML 61

3.10. Dependency Inversion . 62

3.11. Dependency Inversion – Inheritance . 62

3.12. Dependency Inversion – Reference . 63

3.13. Dependency Inversion – Bidirectional Reference and Containment 63

3.14. Horizontal Split . 64

3.15. Vertical Split . 65

3.16. Merge . 65

3.17. Extension Extraction . 66

3.18. Modularisation Concept to a Feature Structure Tree 67

3.19. Modularisation – Process Overview . 71

3.20. Modularisation Step One: Decomposition into Layers 72

3.21. Modularisation Step Three: Dependency Alignment 75

3.22. New Model-based Analysis – Process Overview 79

3.23. Extending a Model-based Analysis – Process Overview 85

4.1. Classi�cation of Bad-Smells in Model-based Analyses 96

4.2. Duplicated Abstraction . 97

4.3. De�cient Encapsulation . 103

4.4. Folded Hierarchy . 105

4.5. Folded Hierarchy – Refactoring by Inheritance 107

4.6. Unexploited Hierarchy . 109

xxiii

List of Figures

4.7. Degraded Modularity . 113

4.8. Rebellious Modularity . 117

4.9. Weakened Modularity . 118

5.1. Structure Speci�cation Metamodel . 132

5.2. Behaviour Speci�cation Metamodel . 133

5.3. Graph-representation of Structural Elements 140

5.4. Speci�cation and Analysis Toolchain . 145

5.5. Simulation Speci�cation Tree-Editor . 152

5.6. Simulation Speci�cation Text-Editor . 153

5.7. Simulation Speci�cation Graph Visualisation 154

6.1. Dependency Structure of the Modular PCM 159

6.2. Dependency Structure of the Modular BPMN2 DSML 162

6.3. Dependency Structure of the Modular KAMP4aPS DSML 164

6.4. Dependency Structure of the Modular SmartGrid DSML 166

7.1. Dependencies of SimuLizar . 172

7.2. Refactored SimuLizar . 173

7.3. Dependencies of Camunda . 178

7.4. Refactored Camunda . 179

7.5. Refactored KAMP4aPS . 182

7.6. Refactored SmartGrid . 185

7.7. SimuLizar Evolvability Results . 188

7.8. Camunda Evolvability Results . 189

7.9. KAMP4aPS Evolvability Results . 190

7.10. SmartGrid Evolvability Results . 191

xxiv

List of Tables

7.1. SimuLizar – Historical Evolution Scenarios 177

7.2. Camunda – Historical Evolution Scenarios 181

7.3. KAMP4aPS – Historical Evolution Scenarios 184

7.4. SmartGrid – Historical Evolution Scenarios 187

7.5. SimuLizar Evolvability Results . 188

7.6. Camunda Evolvability Results . 189

7.7. KAMP4aPS Evolvability Results . 190

7.8. SmartGrid Evolvability Results . 191

7.9. Changes After the Refactoring . 194

8.1. Number of Occurrences of the Bad Smells 210

8.2. SimuLizar– Duplicated Abstraction Refactoring 212

8.3. KAMP4aPS – Duplicated Abstraction Refactoring 212

8.4. SmartGrid – Duplicated Abstraction Refactoring 213

8.5. SimuLizar – Missing Abstraction Refactoring 213

8.6. Camunda – Missing Abstraction Refactoring 213

8.7. KAMP4aPS – Missing Abstraction Refactoring 214

8.8. SmartGrid – Missing Abstraction Refactoring 214

8.9. SimuLizar – Degraded Modularity Refactoring 215

8.10. SmartGrid – Degraded Modularity Refactoring 215

8.11. SimuLizar – Rebellious Modularity Refactoring 215

8.12. Camunda – Rebellious Modularity Refactoring 216

8.13. KAMP4aPS – Rebellious Modularity Refactoring 216

8.14. SmartGrid – Rebellious Modularity Refactoring 217

9.1. Entities and Events in the Palladio Simulator 230

9.2. Entities and Events in Camunda . 231

9.3. Accuracy Results for the Palladio Simulator 232

9.4. Accuracy Results for Camunda . 232

9.5. Accuracy Results Compared . 233

xxv

List of Listings

2.1. SMT Declaration Example . 33

2.2. SMT Validity Example . 33

2.3. Cypher Syntax . 38

4.1. Using a Primitive Type (delay) . 99

4.2. Identi�cation of the Duplicated Abstraction Smell 121

4.3. Identi�cation of the Missing Abstraction Smell 121

4.4. Identi�cation of the De�cient Encapsulation Smell 122

4.5. Identi�cation of the Broken Modularity Smell 124

4.6. Identi�cation of the Degraded Modularity Smell 125

4.7. Identi�cation of the Rebellious Modularity Smell 125

5.1. Language Declaration – Main Parser Rules 134

5.2. Structure Speci�cation Syntax . 135

5.3. Behaviour Speci�cation Syntax . 135

5.4. Type Declaration . 136

5.5. Example of the Speci�cation Language . 136

5.6. Example of the Speci�cation Language with Behaviour 137

5.7. Delay Speci�cation . 137

5.8. Delay Speci�cation Modelled with SMT . 138

5.9. Write Speci�cation . 138

5.10. Write Speci�cation Modelled with SMT . 138

5.11. General Write Speci�cation . 139

5.12. General Write Speci�cation Modelled with SMT 139

5.13. Schedules-Relationships with Identical Behaviour 141

5.14. Example for Schedule Comparison . 142

5.15. General Schedule Comparison . 142

5.16. Writes-Relationships with Identical Behaviour 143

5.17. Example for the Write Comparison . 143

5.18. General Example for the Write Comparison 144

5.19. Z3 Theorem Prover Setup . 147

5.20. Neo4J Setup . 147

5.21. List all Simulation Components . 147

5.22. Compare Simulation Components Command 148

5.23. Compare with all Available Simulation Components Command 148

5.24. No Subgraph Found . 148

5.25. Successful Subgraph Analysis . 148

xxvii

List of Listings

5.26. Not Matching Behaviour . 149

5.27. Matching Behaviour . 149

xxviii

Acronyms

API Application Programming Interface. 87

aPS automated Production System. 163, 165, 180, 182, 183, 202

AS Automated System. 163

AST Abstract Syntax Tree. 38

BERT Bidirectional Encoder Representations from Transformers. 245, 246

BPMN Business Process Modeling Notation. 178, 179

BPMN2 Business Process Modeling Notation 2. 71, 107, 112, 114, 118, 119, 157, 161, 163,

176, 178

CLI Command Line Interface. 87, 144, 147, 149

CoDES Composable Discrete-Event Scalable Simulation. 242, 251

CPU Central Processing Unit. 160

CuBERT Code Understanding BERT. 245

DCRA Duplicated Code Refactoring Advisor. 247, 248

DES Discrete-event Simulation. 130–133, 149–151, 223, 224, 226, 227, 230, 234, 235, 249,

262

DEVS Discrete Event System Speci�cation. 242, 249, 251

DI Dependency Injection. 245

DIS Distributed Interactive Simulation. 5, 241, 250

DSL Domain-speci�c Language. 35, 38, 80, 86, 127, 130, 133, 139, 140, 144, 234, 243, 244,

261, 262

DSML Domain-speci�c Modelling Language. xxiii, xxiv, 3–9, 11–17, 21, 22, 24, 25, 29–32,

41–50, 52–55, 57–63, 69, 70, 73, 74, 77, 78, 80, 84, 86–89, 93–95, 97, 99–108, 110–112,

114–125, 130, 157–159, 161–168, 170, 176, 179, 180, 183, 185, 186, 192, 194, 197, 199–

203, 206, 207, 211, 218, 219, 221, 223, 224, 230, 231, 233, 239, 240, 243–249, 251–257,

259–262

xxix

Acronyms

EBNF Extended Backus–Naur Form. 37, 133

EMF Eclipse Modelling Framework. 31, 37, 111, 125, 144, 145, 243

EMOF Essential Meta-Object Facility. 16, 17, 37, 256, 259

EPC Event-driven Process Chains. 161

ETI Electronic Tool Integration. 241, 250

FMI Functional Mock-up Interface. 5, 241, 250

FoAA Field of Activity Annotations. 165

FOM Federate Object Model. 250

FST Feature Structure Tree. 23, 24, 67

GQM Goal Question Metric. 35–37, 168

HDD Hard Disk Drive. 160

HLA High-Level Architecture. 241, 250

IDE Integrated Development Environment. 25, 26, 63, 99–101, 115, 116, 125, 244

IEC International Electrotechnical Commission. 20, 169, 198

ISO International Organization for Standardization. 20, 161, 169, 198

KAMP Karlsruhe Architecture Maintainability Prediction. 110, 111, 163

KAMP4aPS Karlsruhe Architecture Maintainability Prediction for Automated Production

Systems. 157, 158, 163, 165, 180, 182–184, 186, 188, 190, 195, 201, 205, 208, 212, 214,

216, 255, 258

LOP Language Oriented Programming. 244

MMRUC3 Move Method Refactoring Using Coupling, Cohesion, and Contextual Similarity.

246

MOF Meta-Object Facility. 37

MOOS Measure Of Software Similarity. 248

MPM Multi-Paradigm Modelling. 242

MPS Meta Programming System. 244

NLP Natural Language Processing. 245

xxx

Acronyms

NP Nondeterministic Polynomial Time. 33, 34

NTM Nondeterministic Turing Machine. 34

OMG Object Management Group. 161

ONTOCEAN Ontology for Code smell Analysis. 246, 247

OOP Object-Oriented Programming. 24, 42, 58

OSORE Ontology for Software Refactoring. 246, 247

P Polynomial Time. 33

PCM Palladio Component Model. 46, 74, 97, 101, 106, 110, 157–159, 171, 173–175, 201, 220,

227

PLC Programmable Logic Controller. 163

PPU Pick and Place Unit. 163

RD Resource Demand. 228

RESYS Refactoring Recommender System. 246, 247

SEFF Service E�ect Speci�cation. 160, 174, 228

SMT Satis�able Modulo Theories. 32, 33, 128, 130, 137–143, 146, 147, 225, 250

SVN Apache Subversion. 176

SysML Systems Modelling Language. 11, 21

UI User Interface. 87, 146

UML Uni�ed Modelling Language. 11, 21, 244, 247

xxxi

“The choice of model a�ects the �exibility and reusability of the
resulting system.”

– Martin Fowler, Analysis Patterns

Part I.

Prologue

1. Introduction

In this thesis, we investigate the co-dependency of Domain-speci�c Modelling Languages

(DSMLs) and model-based analyses, signi�cantly how the structure of the DSML can a�ect

the evolvability, understandability, and reusability of its corresponding model-based anal-

yses. Co-dependency refers to the relationship between model-based analyses and DSMLs,

where a change in the DSML a�ects the functionality or behaviour of the model-based

analysis. Model-based analyses and DSMLs are tightly coupled, meaning they rely heavily

on one another and cannot function independently. We present a reference architecture

for model-based analyses that provides a guideline for (i) decomposing an already existing

model-based analysis, (ii) composing a model-based analysis, and (iii) developing a model-

based analysis from scratch. Also, we present newly identi�ed and speci�ed bad smells

that arise from the co-dependency of DSMLs and model-based analyses. Furthermore, we

present an approach to specify components of model-based analyses regarding their struc-

ture and behaviour to use these speci�cations to improve the reusability of model-based

analysis components. This chapter is structured as follows: In Section 1.1, we motivate

why considering the co-dependency of DSMLs and model-based analyses is a relevant

subject for improving the evolvability, understandability, and reusability of model-based

analyses. In Section 1.2, we present problems when considering the co-dependency of

DSMLs and model-based analyses. How we answered our research questions is presented

in Section 1.3 in the form of our contributions. We present the outline of this thesis in

Section 1.4.

1.1 Deteriorating Evolvability, Understandability, and
Reusability of Model-based Analyses

The internal quality of a software system a�ects its evolvability, understandability, and

reusability [ISO10]. Historically grown software systems are prime examples where

changes made during the software system’s lifetime successively reduce its internal qual-

ity. Reduced evolvability, understandability, and reusability of a software system mean

longer development cycles and delayed implementation of necessary changes, like in-

novations, regulations, or to a lesser degree, trends. To counteract the deterioration of

internal software quality, software developers have access to analyses that allows them

to investigate the internal software quality before implementing changes. Modelling the

software system with the planned changes allows for analysing the e�ect on the internal

quality, which leads to a better overall quality of the software system. Adverse e�ects

3

1. Introduction

on the internal software quality, like increased complexity or security breaches, can be

predicted and, if determined as harmful, also be avoided.

Analyses are built to answer questions about speci�c properties of a system under study.

Such an analysis usually does not take the real system as input; instead, it reasons about

a model of the system [Tal+21b]. Such analyses are called model-based analyses; in the

context of this thesis, do these analyses derive and communicate insights on the quality of

a software system by using modelling languages and models of software systems [ZMK18].

Model-based analyses are also software systems; ergo, they are prone to the deterioration

of their internal quality. Besides the model-based analyses, their input models deteriorate

over time [HSR19]. Due to changed or new requirements, the DSMLs of these input models

have to evolve over time; for example, when new properties of the system under study are

added to the DSML. If the model-based analyses that work with the DSML are not adapted

to support the changed DSML, they become less relevant for the analysis user because it

successively supports fewer features.

How to improve evolvability and reusability is well-researched for software systems.

The Gang of Four (E. Gamma, R. Helm, Ralph E. Johnson, and J. Vlissides) published

design patterns (reoccurring structures) for object-oriented software, where they present

reusable design patterns for object-oriented code [Gam+95] and Neill et al. [NLD11] present

patterns that negatively a�ect the quality of a software system. Besides design patterns

and anti-patterns, bad smells in object-oriented software can help software developers

�nd occurrences in their source code that can lead to a deterioration of the internal quality

of a software system.

Heinrich et al. [HSR19] investigated the evolvability and reusability of DSMLs. The

outcome of their research is a reference architecture for DSMLs that, on the one hand,

restricts the developer of DSMLs regarding their possible design decisions; on the other

hand, does their reference architecture improve the evolvability and reusability, if the

DSML follows the rules of their reference architecture. Strittmatter et al. [Str+16] derived

bad smells for DSMLs from the aforementioned bad smells for object-oriented software.

However, to the best of our knowledge, no approach considers the co-dependency of

DSMLs and their corresponding model-based analyses. Suppose software developers want

to analyse new properties of a software system. In that case, they have to adapt features

of the modelling language and the corresponding model-based analyses before they can

analyse these new properties. Features in the context of the modelling language are, for

example, quality properties such as performance or reliability. Features in the context of a

model-based analysis are, for example, an analysis technique that analyses such a quality

property. Such changes lead to complex and di�cult-to-maintain model-based analyses.

This increasing complexity reduces the understandability of the model-based analyses.

4

1.2. Problem Statements

1.2 Problem Statements

In this section, we present the problems we identi�ed that a�ect the evolvability, under-

standability, and reusability of model-based analyses. We identi�ed three major prob-

lems:

Problem Statement 1

The evolvability, understandability, and reusability of historically grown model-based

analyses su�er from increasing complexity.

The �rst problem we identi�ed is the deterioration of the evolvability, understandability,

and reusability of historically grown model-based analyses. Model-based analyses and

their corresponding DSML change during their lifetime, for example, due to changing

requirements or legal constraints. These changes lead to reduced software quality, neg-

atively a�ecting the maintainability, especially the evolvability, understandability, and

reusability of the model-based analyses. We consider di�cult-to-maintain software to be a

concern since it can lead to a range of issues. Increased development time and costs: When

code is challenging to comprehend or modify, it takes developers longer to make changes,

resulting in higher project costs. Reduced software reliability: Code that is di�cult to

maintain is more likely to contain bugs, which can lead to decreased software reliability.

Limited scalability: If the code is di�cult to comprehend and modify, scaling the software

to meet the users’ needs can be challenging. The di�culty for new developers: New

developers may need help understanding the codebase, which limits their capacity to

contribute. Overall, di�cult-to-maintain software makes it more di�cult to change and

adapt, resulting in lower quality, higher costs, and a reduced ability to meet user needs.

Heinrich et al. [HSR19] and Strittmatter [Str20] have shown that changes negatively a�ect

the evolvability, understandability, and reusability of DSMLs. They provide a reference

architecture for DSMLs that helps to improve these properties of the DSMLs. However,

their approach did only focus on DSMLs, the e�ect on the software that utilises the DSMLs

was ignored. Approaches like Functional Mock-up Interface (FMI) [Blo+12] or Distributed

Interactive Simulation (DIS) [IEE95] focus on improving the reusability of analyses, but

they only provide solutions for the analysis and not their corresponding DSML.

Problem Statement 2

The dependency of model-based analyses on their corresponding DSML results in a

deterioration of their evolvability, understandability, and reusability.

The second problem we identi�ed emerges because of the co-dependency of model-based

analyses and their associated DSML. The model-based analyses and the DSML, rely on

each other to function correctly. The following points are potential problems associated

with co-dependency in model-based analyses and DSMLs. Lack of autonomy: Model-based

analyses and DSMLs are co-dependent, and the model-based analysis cannot function

independently. The lack of autonomy limits the reuse of the model-based analysis in a

5

1. Introduction

di�erent context, making it di�cult to replace or update the DSML without a�ecting the

model-based analysis. Di�culty in identifying errors or bugs: Errors or bugs in model-

based analyses and DSMLs can be hard to identify, especially when it needs to be well

documented. Di�culty in resolving errors or bugs: Once identi�ed, errors or bugs in

model-based analyses and DSMLs can be challenging to resolve as a change might have

a cascading e�ect, which results in more changes than initially anticipated. Increased

complexity: Co-dependent model-based analyses and DSMLs can increase the overall

complexity of the software ecosystem and make it more di�cult to understand how they

work together. Increased maintenance cost: Co-dependent model-based analyses and

DSMLs systems require more maintenance and testing, which can increase the cost of

development and operations. Co-dependency in model-based analyses and DSMLs can

create a number of problems and make it di�cult to evolve, understand and reuse the

model-based analyses and DSMLs. It is essential to be aware of the co-dependency and to

identify common patterns that indicate problems that can negatively a�ect the evolvability,

understandability, or reusability of model-based analyses and DSMLs.

Problem Statement 3

Increasing complexity makes model-based analyses more challenging to understand

and, as a result, to maintain, extend, or reuse.

The third problem we identi�ed comes from the complexity of analysis components and

the e�ort required to identify reusable, already existing analysis components. It can be

challenging to �nd reusable analysis components for several reasons. Lack of standardi-

sation: There are many di�erent ways to write software, and components built for one

analysis may need to be compatible with another. No standardisation can make it di�cult

to �nd components that can be easily integrated into a new analysis. Discoverability: With

the vast amount of software available, �nding the necessary component is challenging.

There are many ways to discover reusable software components, such as searching on-

line or browsing through open-source repositories, but �nding the right one can still be

time-consuming. Reusable software components often require ongoing maintenance to

ensure they continue to work with the latest versions of other analyses and to �x any bugs.

Reusable analysis components require proper documentation to use them e�ectively. With

proper documentation, it can be easier to understand how to use an analysis component

or con�gure it to work with the needs of a speci�c project.

1.3 Contributions

In this section, we present an overview of the three contributions of this thesis. This

thesis aims to improve the evolvability, understandability, and reusability of model-based

analyses. The three contributions of this thesis do support architects and developers

in developing maintainable and reusable model-based analyses. The overall research

goal of this thesis aligns with the presented problems in Section 1.2. Although there are

approaches to improve the evolvability, understandability, and reusability of DSMLs and

6

1.3. Contributions

object-oriented software, respectively, we aim to improve these attributes by considering

the co-dependency of DSMLs and model-based analyses. Thus, we formulate the following

overall research goal for this thesis:

Overall Research Goal

We aim to improve the evolvability, understandability, and reusability of model-based

analyses.

To reach our overall research goal, we provide three contributions. The �rst contribution

extends the reference architecture for DSMLs by the domain of model-based analysis.

Furthermore, our second contribution provides reoccurring patterns that negatively a�ect

the evolvability, understandability, and reusability of model-based analyses. Our third and

last contribution is the speci�cation of analysis components to improve the reusability of

model-based analyses.

Contribution 1

We propose a reference architecture for model-based analyses with accompanying

processes to (i) modularise an existing model-based analysis, (ii) develop a model-based

analysis from scratch, and (iii) extend an already existing model-based analysis.

To address Problem Statement 1, we take the reference architecture for domain-speci�c

modelling languages [HSR19] as a basis and investigate the transferability of the structure

of the reference architecture to model-based analyses. We introduce a �ve-layer archi-

tecture that uses four layers of the reference architecture for domain-speci�c modelling

languages (basic features, domain-speci�c features, quality features and analysis con�gu-

ration) and extends them with an experiment layer. The layered reference architecture

maps the dependencies of the analysis features and components by assigning them to

speci�c layers. We developed three processes for applying the reference architecture: (i)

refactoring an existing model-based analysis, (ii) designing a new model-based analysis

from scratch, and (iii) extending an existing model-based analysis. We refactored four

representative model-based analyses and used them as case studies. After the refactoring,

we compared the modular model-based analyses with the original monolithic model-based

analyses regarding metrics complexity, coupling, and cohesion.

Contribution 2

We provide a set of bad smells for model-based analyses that emerge because of the

co-dependency of model-based analyses and their corresponding DSML. We also

provide identi�cation and refactoring strategies to identify and �x bad smells.

To address Problem Statement 2, we have identi�ed recurring structures that lead to

problems in evolutionary capability, comprehensibility and reusability; in the literature,

these recurring structures are also called bad smells. In particular, we have investigated the

co-dependency of DSMLs and model-based analyses that lead to these recurring problems.

7

1. Introduction

So far, bad smells for DSMLs and source code have been considered separately, although

they are co-dependent. Model-based analyses are based on the DSML they analyse, they

require the DSML as input for the analysis, and a change in the DSML leads to a change in

the corresponding model-based analyses. We examined established model-based analyses

and identi�ed and speci�ed thirteen bad smells. In addition to specifying the bad smells,

we provide a process for automatically identifying these bad smells and strategies for

refactoring them so that developers can avoid or �x them. To evaluate this contribution,

we searched established model-based analyses for our bad smells, so we could show that

the bad smells we speci�ed occur in real-world systems. We also investigated how �xing

the bad smells a�ects the evolvability, understandability and reusability of the model-based

analyses we studied. After refactoring, we compared the modular model-based analyses

with the original, unmodi�ed model-based analyses concerning the metrics complexity,

coupling and cohesion.

Contribution 3

We provide a DSML for the speci�cation of analysis components that allow the analysis

developer to �nd analysis components that are similar regarding their structure and

behaviour.

To address Problem Statement 3, we developed a modelling language for specifying the

structure and behaviour of simulation features. Simulations are analyses to investigate a

system when experimenting with the real-world system is too time-consuming, costly,

dangerous or simply impossible because the system does not exist (yet). Developers

can use the model to compare simulation features and thus identify identical features.

Finding similar simulation features allows developers to reuse existing features and reduce

the e�ort required to develop new features. To evaluate the approach, we speci�ed

features of two open-source simulations and compared them. By modelling these existing

simulations, we investigated the applicability of the approach. In addition to modelling

the structure and behaviour of simulation features, we also evaluated the accuracy of

identifying similar simulation features. We used our approach to compare the speci�ed

features with the speci�ed features of the case studies to determine the precision and

recall of the approach.

1.4 Thesis Outline

This chapter presented the problems and challenges that arise through the co-dependency

of DSMLs and model-based analyses. Based on the presented problems, we de�ned our

overall research goal. Furthermore, this chapter presents an overview of our contributions.

The remainder of this thesis is organised as follows:

Chapter 2: In the second chapter, we present the terms and de�nitions that are used

throughout this thesis. Terms and de�nitions that are dedicated to only one chapter are

placed in the respective chapter. We also present the foundation for our contributions

8

1.4. Thesis Outline

which mainly consists of the reference architecture for DSMLs by Heinrich et al. [HSR19]

and the validity types by Runeson et al. [Run+12].

Chapter 3: In the third chapter, we present our reference architecture for model-based

analyses. Besides our modularisation concepts for model-based analysis we also present the

processes for the decomposition and composition of model-based analyses. Furthermore,

we present refactoring operations to adapt an already existing model-based analyses and

a concrete instantiation of our reference architecture in the context of quality analyses.

Chapter 4: In the fourth chapter, we present the bad smells in model-based analyses

that arise through the co-dependency of DSMLs and their corresponding model-based

analyses. We categorise the bad smells we derived from bad smells in object orientation

and bad smells in DSMLs. Furthermore, we present strategies to identify our bad smells in

model-based analyses.

Chapter 5: In the �fth chapter, we present our approach to specify and reuse model-based

analyses components. First, we present our approach to specifying analysis components

regarding their structure and behaviour. Then, we present our approach to compare and

identify analysis components.

Chapter 6: In the sixth chapter, we present the four case studies we use throughout this

thesis. We discuss our selection criteria for the case studies and then brie�y overview each

case study. Not only do we present the model-based analyses, but we also present the four

DSMLs that the model-based analyses use.

Chapter 7: In the seventh chapter, we present the evaluation of our reference architecture

for model-based analyses. First, we present our research goals and metrics for this contri-

bution. Then, we present our evaluation design by presenting the evolution scenarios and

the details of the refactorings of the four case studies. After the refactorings, we present

the results of the evaluation. We close this chapter by discussing the threats to validity

and the conclusion.

Chapter 8: In the eighth chapter, we present the evaluation of our bad smells for model-

based analyses. First, we present our research goals and metrics for this contribution.

Then, we present our evaluation design by presenting the evolution scenarios, the analysis

details, and the refactorings of the four case studies. After the refactorings, we present the

results of the evaluation. We close this chapter by discussing the threats to validity and

the conclusion.

Chapter 9: In the ninth chapter, we present the evaluation of our speci�cation and reuse

approach for model-based analysis components. First, we present our research goals and

metrics for this contribution. Then, we present the results of the evaluation. We close this

chapter by discussing the threats to validity and the conclusion.

Chapter 10: In the tenth chapter, we present the related work to di�erentiate our work

from the state-of-the-art. For our �rst contribution, the reference architecture for model-

based analyses, we present related work concerning the decomposition and composition of

analyses. Then, we present related work that integrates DSMLs and model-based analyses.

For our second contribution, the bad smells in model-based analyses, we present related

9

1. Introduction

work concerning detecting and refactoring bad smells. For our third contribution, the

speci�cation and reuse of model-based analysis components, we present related work

comparing source code and the speci�cation and reuse of analysis components.

Chapter 11: In the eleventh chapter, we summarise our contributions and evaluation

results. We discuss our results in the context of our research goal and conclude this thesis.

Additionally, we discuss possible future work.

10

2. Foundation

In this chapter, we present the foundations of this thesis. First, in Section 2.1, we introduce

terms and de�nitions that are used throughout the whole thesis. We introduce DSMLs in

Section 2.1.1 and model-based analyses in Section 2.1.2. The roles we use to describe the

target audience of our approaches are presented in Section 2.1.3; we distinguish the role of

the developer (cf. Section 2.1.3.1) and the role of the user (cf. Section 2.1.3.2). Besides the

terms and de�nitions, we also present the foundational concepts in Section 2.2 on which

this thesis is built on. We then provide dedicated foundation sections for our contributions

in Section 2.3, Section 2.4, and Section 2.5. In Section 2.6, we present the foundation for our

evaluation. The validity types by Runeson et al. [Run+12] that we used for every evaluation

in this thesis are presented in Section 2.6.1 and the principles of the Goal Question Metric

Approach are presented in Section 2.6.2. Finally, we present the technical foundation in

Section 2.7.

2.1 Terms and Definitions

In this section, we present the terms and de�nitions that we use throughout all contribu-

tions. First, we introduce the term domain-speci�c modelling language in Section 2.1.1. In

Section 2.1.2, we introduce the term model-based analysis and what an analysis and an

analysis model is. The roles we use throughout this thesis are introduced in Section 2.1.3.

2.1.1 Domain-specific Modelling Language

Compared to general-purpose modelling languages like Uni�ed Modelling Language

(UML), DSMLs is explicitly tailored to the needs of particular application domains. They

are typically less expressive, concentrating instead on the essential ideas associated with

the pertinent domain. When compared to general-purpose modelling languages, these

specialised languages make it possible to express domain models in a manner that is

both more succinct and precise. Professionals specialising in a particular �eld or domain

can use established and widely recognised modelling languages such as UML [Rum17]

and Systems Modelling Language (SysML) [FMS14] to represent and design complex

systems. Alternatively, they may develop their DSML to suit their needs and requirements.

UML is a general-purpose modelling language that has become the industry standard

for modelling software-intensive systems. SysML is an extension of UML speci�cally

designed to support the modelling and analysis of complex systems, including hardware

11

2. Foundation

and software. On the other hand, DSMLs are modelling languages custom-built for a

particular domain or problem space, such as medical devices or �nancial systems. DSMLs

enable domain experts to model and design systems using concepts and abstractions

speci�c to their domain, leading to more e�cient and e�ective design and analysis. The

decision to use an established modelling language or develop a DSML depends on the

complexity and speci�city of the domain in question and the expertise and resources

available to the domain experts. Because it is simpler for domain experts to learn from

and comprehend a DSML than a general-purpose language, it is possible that using a

DSML may improve communication with domain experts, ultimately leading to higher

productivity [SVC06]. A modelling language is constructed from building blocks, including

explicit syntax and corresponding semantics. The words and the structure of the language,

often known as its "grammar"are referred to by the term syntax. For example, denotational

semantics can be realised through the mathematically sound de�nition of a semantic

mapping from well-formed models to an appropriate and well-understood semantic domain

[HR04]. Each modelling language has its semantic domain within which it operates. As an

illustration, statecharts make use of I / O-relations. The syntax of DSML can be textual or

graphical (including diagrams, for example). Even though diagrams can help gain a general

understanding of a concept, this understanding can quickly get clouded by confusion,

making it di�cult to traverse. Textual languages make acquiring an overall picture of the

model more challenging. However, they have the advantage of being compatible with well-

known development tools like copy and paste, syntax highlighting, and auto-completion.

There are two possible approaches to de�ning a textual domain-speci�c language, and

they are as follows: Grammar-based: De�ne a grammar to specify the language and a

metamodel will be generated based on the grammar de�nition provided. Mapping-based:

After independently constructing the metamodel and the concrete syntax, the next step is

to de�ne a mapping between the two.

2.1.2 Model-based Analyses

A model-based analysis is a type of analysis that uses models for reasoning about a system

and for communicating the results [ZMK18]; it is a tool for the engineer to understand

a problem better [Fow96]. A model-based analysis provides a detailed examination of

a model of a system under study. According to Talcott et al. [Tal+21a], the purpose of

model-based analyses can be: gaining structural, behavioural, or quality information about

a system. In the context of this thesis, these models are developed according to a DSML;

thus, the model-based analysis can analyse di�erent instances of a DSML. A model-based

analysis uses models for examining the structure, behaviour and quality of a process

or system and models are used for communicating the results. The system is modelled

with a DSML containing the information about the system required for the analysis. For

example, if the DSML speci�es the architecture of software systems, the engineer can

model a software system with di�erent architectures to �nd the software system with the

best performance. A bene�t of model-based analyses is that if the system is too complex,

too expensive or does not exist yet, an analysis can provide insights before the system

is implemented [Law15]. Instances of the DSML serve as input for the analysis. We

12

2.1. Terms and De�nitions

DSML MODEL ANALYSIS RESULT

Figure 2.1.: The Context of DSMLs, Models, Analyses, and Results

distinguish between analysis models that represent the “mental model” that describes how

the analysis solves the problem [Fow96] and analysis models that represent the system

the analysis reasons about [HSR19].

In Figure 2.1, we present the context of DSMLs, models, analyses, and the analysis results.

The DSML allows the engineer to model the system to be analysed. However, the engineer

only models the system with some possible details. For example, if the performance of soft-

ware architecture is analysed, the model does not contain details of the algorithm [Reu+16].

A model is always a reduction of the thing it represents [Sta73]. The DSML prevents

the engineer from modelling every detail of the system; it allows only to model of the

elements required by the analysis. The analysis takes an instance of the DSML, a model,

and produces the analysis results. An analysis can analyse di�erent properties of the model;

depending on the properties, the analysis results are di�erent. For example, in addition to

the aforementioned performance analysis, the same model can be analysed regarding other

properties, like reliability, performability, or security. The performance analysis provides

data containing the system’s throughput, whereas the security analysis can provide a list

of security breaches. We assume that the results of the analysis also follow a DSML; this

DSML can be part of the DSML that speci�es the input model; however, depending on

the analysis and the type of results it creates, the result DSML can be independent of the

input DSML. For example, if the results are required for another model-based analysis that

requires a di�erent DSML instance as input [KR19], then the results can be transformed

according to the desired DSML. The analysis contains algorithms that interpret the input

model, and analysis routines are called depending on the model type. These routines

contain the analysis algorithms that investigate properties, like performance or reliability,

of the system under study.

2.1.3 Roles

In this thesis, we distinguish two main roles involved in the development process of model-

based analyses. In Section 2.1.3.1, we present the developer role and all sub-roles associated

with it. We present the user role and all sub-roles associated with it in Section 2.1.3.1.

13

2. Foundation

2.1.3.1 Developer Role

Heinrich et al. [HSR19] de�ned the roles that specify and evolve a DSML. In this thesis,

these role speci�cations are extended by adding roles for specifying and developing a

model-based analysis.

Based on their interaction with analyses, we mainly distinguish between key developer

roles: analysis developer and tool developer. The analysis developer is accountable for

de�ning, developing, implementing, and maintaining the various components of an analy-

sis, such as modelling analysis requirements, debugging issues, implementing analysis

components, and adding new analysis features to the analysis speci�cation. On the other

hand, the tool developer is responsible for creating and maintaining tools that utilise the

analysis. This includes writing and modifying code to initiate the execution of the analysis

and utilise its results. In designing tools for orchestrating analyses, the tool developer must

possess knowledge of the various orchestration strategies. A choice of six orchestration

procedures is available to the tool developer [Hei+21a]. For future references, the term

developer will collectively refer to both roles.

Within the context of our approach, the role of the analysis developer is subdivided

even further into those of the analysis architect and the analysis component developer.
Analysis component dependencies, the feature model, and the feature de�nition are all

the responsibility of the analysis architect. For instance, they are responsible for the

creation of the analysis speci�cation, the validation of the analysis, the speci�cation

of new features, and the modi�cation of feature speci�cations in accordance with the

requirements currently in place or that may change in the future. It is the responsibility of

the analysis component developer to implement analysis components. In doing so, they

are responsible for implementing the features speci�ed by the analysis architect as distinct

components. Both roles work together while creating or changing analysis components.

2.1.3.2 User Role

In the thesis, we also discuss the role of the user, which refers to the person conducting

the model-based analysis. An analysis is carried out by the user with the use of tools that

function on DSML instances to detail the input and output of the model-based analysis

and start the process of carrying out the analysis. Because of this, we will refer to people

in this position as tool users. In the context of "DSMLs generate and alter models using

editors", the term "tool users"refers to those who use these editors. Within the scope of

model-based analysis, they conduct analyses utilising these models. When we speak of

abstractions and properties, we refer to speci�c groups of abstractions and properties that

are frequently employed together and have a central concept, also known as a concern.

Analysis of software structure and behaviour and studies into software performance are

just a few examples of activities that fall under this category.

14

2.2. Foundational Concepts

G

F

N

M
req

.

ex
cl

.

Language Feature

Language Component

Feature Relation

Module Dependency Optional Child

Mandatory Child Implements

Alternative OR

Layer

Figure 2.2.: Reference Architecture for DSMLs– Concept [HSR19]

2.2 Foundational Concepts

In this section, we present the concepts this thesis is based on. In Section 2.2.1, we introduce

the reference architecture for metamodels by Heinrich et al. [HSR19] that inspired our

reference architecture for model-based analyses and thus, also in�uences the bad smells

for model-based analyses. In Section 2.2.2, we present the metrics we used to evaluate our

contributions. Foundational concepts we used for only a single contribution will be placed

in dedicated sections.

2.2.1 A Reference Architecture for Metamodels

To improve the evolvability and reusability of metamodels, Heinrich et al. developed a ref-

erence architecture that provides a layered structure and a set of dependency rules [HSR19].

Figure 2.2 depicts the concepts of the reference architecture for DSMLs. In this section,

we present these concepts. They also provide a modularisation concept for metamodels

that allows the developer of a metamodel to modularise an existing, monolithic meta-

model. Besides the modularisation concepts, Heinrich et al. also provide guidelines on

applying their reference architecture for metamodels to existing metamodels and devel-

oping one that complies with their reference architecture. They provide a systematic

way of creating, extending and reusing metamodels or parts of these metamodels. In

their work, they transfer modularisation concepts from object-oriented design and the

idea of a reference architecture to metamodels for quality modelling. They gathered the

15

2. Foundation

requirements for the reference architecture from a historically grown metamodel. Their

reference architecture supports instance compatibility and non-intrusive, independent

extension of metamodels.

2.2.1.1 Language Features

A metamodel is equivalent to a DSML, composed of language features. Language features

allow the speci�cation of a language on a conceptual level. They di�erentiate between

atomic and composed language features, where atomic language features are an abstraction

of the subject that is modelled. A composed language feature consists of atomic language

features and other composed language features. The dependencies of the language features

are derived from the subject it represents.

2.2.1.2 Feature Models in the Context of DSMLs

To express the structure of a DSML, Heinrich et al. [HSR19] employ feature models

commonly used in the product line community. The feature models are used to restrict

the dependencies of the DSML. The dependencies of the feature model must be derived

from the dependencies of the language features. Restrictions like the prohibition of cycles

and strict parent feature relations give a framework for the DSML developer. Instead

of merely a graph of language features and the dependencies between them, a feature

model organises the language’s characteristics into a hierarchical structure. The developer

that works with the DSML, such as analysis developers, have an easier time selecting the

features they want to employ since they may begin their search at the top level of the

feature hierarchy and proceed only to the branches that are pertinent to their needs.

2.2.1.3 Modules and Dependencies

According to Heinrich et al. [HSR19], language features must be implemented. The

implementation happens in the metamodel modules; these modules are containers for

packages and classes with a dependency structure that follows the dependency structure

of the language features. However, the dependencies of the metamodel modules are more

concrete, where a language feature has two kinds of dependencies, optional and mandatory;

the dependencies of metamodel modules follow the dependencies that exist in metamodel

modelling. A metamodel divided into metamodel modules still counts as a metamodel.

2.2.1.4 Extends Relation

Another contribution of Heinrich et al. [HSR19] is the de�nition of an extends relation that

de�nes the dependencies between metamodel modules. They extended the Essential Meta-

Object Facility (EMOF) standard, as it cannot restructure metamodel module dependencies.

Without these extends relations, the EMOF extension would have violated the reference

16

2.2. Foundational Concepts

architecture for DSMLs. EMOF cannot add new class properties without hampering the

reusability of the DSML.

2.2.1.5 Layers

The reference architecture for DSMLs also uses layers to group language features and

metamodel modules. Language features and their corresponding metamodel modules

must be located on the same layer and only be placed on one layer. Although Heinrich

et al. [HSR19] do not set the number of layers for DSMLs, they propose a four-layered

reference architecture tailored to DSMLs for quality modelling and analysis.

2.2.1.6 Layers in Metamodels for Quality Modelling and Analysis

For the layering of a DSML that allows modelling and analysis of quality attributes,

Heinrich et al. [HSR19] propose a layered architecture with four layers.

Paradigm Layer: On the paradigm (π) layer is the fundamentals of the DSML located. It

contains structural and behavioural patterns that occur throughout the DSML. Especially

foundations independent of the domain are located on the π layer. The idea is that the π
layer contains only abstract concepts and, thus, can only be used with another layer.

Domain Layer: The domain (∆) layer follows the π layer; features on the ∆ layer

assign domain-speci�c semantics to the features on the π layer. For example, on the π
layer, concepts like classes and relations are de�ned. On the ∆ layer, classes of software

systems extend the notion of classes, and relations become more specialised by introducing

inheritance relations. On the ∆ layer, the developer can specify multiple domains. If

a developer is solely interested in software, then the metamodel module for software

components is all that is included in the ∆ layer. A DSML may consist only of the π and

the ∆ layer for designing and documenting a system not concerned with quality. However,

language features that can be used for modelling or analysing quality properties are not

placed on the ∆ layer; instead, they are a component of the following layers.

Quality Layer: The quality (Ω) layer follows the ∆ layer; on it can, the developer de�nes

the quality properties that can be modelled with the DSML. These quality properties are

built on domain-speci�c language features. For example, the developer can add quality

properties for each domain feature that specify a language feature’s performance or

reliability. The Ω layer is speci�c for DSMLs that model the quality of a system.

Analysis Layer: The analysis (Σ) layer follows the Ω layer; features on the Σ layer are

required by model-based analyses that use the DSML for analysis. If, for example, an

analysis needs attributes that are referenced on other layers, this information is located

on the Σ layer. The value of the attribute is altered over di�erent analysis executions. The

attribute is speci�ed in a module found in one of the more generic layers. Model-based

analyses that use the DSML can share the features on the Σ layer.

17

2. Foundation

n1
n2 n3

n4
n8

n5n6

n7

(a) Regular Graph

n1
n2 n3

n4
n8

n5n6

n7

e1
e2

e3

(b) Hypergraph

Figure 2.3.: Two Graphs with the Same Nodes (n1..n8) but the Regular graph has Edges (black lines) and the

hypergraph has Hyperedges (e1..e3)

2.2.2 Hypergraph Metrics

In this section, we present the hypergraph metrics we use to evaluate our case studies. The

hypergraph metrics are based on the work of Allen et al. [All02; AGG07]. These metrics

use graph and hypergraph abstractions of software systems to determine the information

entropy of a software system. The hypergraph metrics calculate a software system’s

complexity, coupling, and cohesion to determine the information entropy of a system. In

contrast to metrics that, for example, count the number of incoming and outgoing calls to

determine cohesion and coupling, the hypergraph metrics also consider the interconnection

of the software system. The higher a software system is interconnected, the more complex

the system is. Thus, the hypergraph metrics allow us also to consider the interconnection

to determine the complexity and, thus, the evolvability and understandability of a software

system.

The di�erence between a graph and a hypergraph is that graphs consist of nodes and

edges, and hypergraphs consist of nodes and hyperedges. An edge connects two graphs.

In contrast to an edge, a hyperedge can connect more than two edges. Another bene�t

of hyperedges, in contrast to regular graphs, is that they can model the set-use relation-

ships of public attributes [HSR19]. Figure 2.3 depicts the di�erence between graphs and

hypergraphs. Figure 2.3a shows a regular graph with eight nodes depicted as black circles.

The edges, depicted as black lines, create pairs of nodes (e. g., n1 and n7 or n1 and n8).

Figure 2.3b shows a hypergraph with eight nodes depicted as black circles. The hypergraph

contains three hyperedges. The �rst hyperedge e1 connects the nodes n1, n8, and n5. The

second hyperedge e2 connects the nodes n2, n3, n6, and n7. The third hyperedge contains

a single node, n4.

In our evaluation, we use the approach by Jung [Jun16] to extract hyperedges and hyper-

edge modules. Jung’s approach is based on the approaches by Schütt [Sch77] and Allen et

al. [AGG07], which describe how to extract hypergraphs from software systems. Jung’s

18

2.2. Foundational Concepts

approach separates a hypergraph into modules. We denote this modular hypergraph H.

A hypergraph module represents a set of nodes; each node can only be contained in one

module. According to Strittmatter [Str20], we distinguish between hyperedges that do

or do not cross module boundaries. A hyperedge that does not cross module boundaries

is called intra-module hyperedge. A hyperedge that crosses module boundaries is called

inter-module hyperedge.

Size (H) =
n∑
i=n

(−loд2pL(i)) (I)

Complexity (G) =

(
n∑
i=j

Size(Gj)

)
− Size(G) (II)

We use the size metric of Allen et al. [AGG07] to determine the complexity of a software

system. Equation (I) shows how to calculate the Size of a modular hypergraph H. The

sum is calculated over the probability pattern (pL(i)) for all nodes i in the hypergraph H.

We must calculate the size of the hypergraph, and therefore, we must establish a pattern

for each hypergraph. We �ll a vector with ones and zeros to represent the pattern. Each

entry represents the relation of hyperedges and its nodes. A one means the hyperedge is

connected, and a zero means the hyperedge is not connected to the node. Identical patterns

are grouped, and the number of occurrences is saved. The probability of each pattern p is

calculated by calculating the ratio of the number of occurrences and the number of nodes

in H [AGG07].

Equation (II) shows how to calculate the complexity of a system. The complexity function

takes a modular hypergraph G as input. The size is calculated for each modular hypergraph

Gj in G. The hypergraphGj is a hypergraph that contains a node j and all nodes connected

to j by hyperedges. After the size for each modular hypergraph is calculated, the size

metric �nally gets applied to the whole modular hypergraph G. According to Allen et

al. [AGG07] is the coupling of a modular hypergraph de�ned as the complexity of G,

whereas G is reduced by the intra-module hyperedges. We used Jung’s [Jun16] approach

to determine the modular hypergraph H ∗ that contains only inter-module hyperedges.

Based on the hypergraph H ∗ we calculated the complexity of the system.

Cohesion (MG) =
Complexity (MGo)

Complexity (MG(n))
(III)

Equation (III) shows how to calculate the cohesion of a system. According to Allen [All02],

cohesion, in terms of a hypergraph, is the ratio of the intra-module graph MGo
and the

complexity of the whole graph MG(n). We applied the cohesion metric to a regular graph.

We follow Jung’s method [Jun16] to calculate cohesion as with the previous metrics. The

19

2. Foundation

modular hypergraph H must be mapped to a regular graph MG, which replaces each

hyperedge with a set of edges connecting all nodes previously connected by the hyperedge.

The result MG gets stripped of all inter-module edges; the result is a graph MGo
with only

intra-module edges. MG also is used to create the complete graph MG(n).

Sub-graph Extraction: Evolvability cannot be seen as the absolute property of a whole

software system; therefore, it should always be considered in a concrete evolution sce-

nario [Ros+15]. We implemented a scenario-based evaluation to create such evolution

scenarios by calculating the metrics for parts of the software system relevant to the evolu-

tion scenario. We could avoid applying the metrics to the case studies as a whole. Each

evolution scenario of a case study represents a sub-graph. For each case study, we extract

the relevant sub-graph per evolution scenario. When implementing the change of an

evolution scenario, the sub-graph represents the part of the software system that the

developer must inspect. Classes a�ected by the evolution scenario are a�ected classes. We

construct a sub-graph consisting of dependent classes by basing its composition on the

impacted classes and the nature of the change. For instance, if a method signature were to

change, the classes associated with that method would be added to the sub-graph.

2.3 Foundational Concepts for the Decomposition and
Composition of Model-based Analyses

In this section, we present supplemental concepts required to follow the contents of our

�rst contribution, the decomposition and composition of model-based analyses.

2.3.1 Quality Property

Quality property is a term de�ned in International Organization for Standardization

(ISO) / International Electrotechnical Commission (IEC) 25010 quality models [ISO10].

Examples of quality properties include performance, reliability, and maintainability. Part

of the evolvability of a software system is its maintainability and extensibility. Accord-

ing to the software evolvability model by Breivold et al. [BCE08], the model consists of

sub-characteristics analysability, integrity, changeability, extensibility, portability, and

testability. Breivold et al. [BCE08] presented the software evolvability model. This model

comprises the sub-characteristics of analysability, integrity, changeability, extensibility,

portability, and testability. According to the ISO / IEC 25010 software quality model [ISO10],

the characteristic of maintainability and portability map to the sub-characteristics of the

software evolvability model by Breivold et al. [BCE08]. The sub-characteristics analysabil-

ity, changeability, stability, and testability are part of the maintainability characteristic of

ISO / IEC 25010 and the sub-characteristics of adaptability, installability, co-existence, and

replaceability are part of the portability characteristic of ISO / IEC 25010.

20

2.3. Foundational Concepts for the Decomposition and Composition of Model-based Analyses

2.3.2 Modelling Language

One purpose of modelling languages is to design processes and systems. According to

Holldobler [HRW18], a modelling language is developed and used to de�ne models to

design and analyse systems e�ectively. They can be used to reason about the processes and

systems they represent. As a result, recurrent domain knowledge is captured in language

features and patterns, which are then used to construct instances of the modelling language

(i. e., models). Thus, they are called Domain-speci�c Modelling Languages (DSMLs). DSMLs

can be subdivided into grammar-based languages and metamodel-based languages [HSR19].

Modelling languages are developed and used to design and reason over processes and

systems e�ciently and e�ectively. Recurrent domain knowledge is captured in the form of

language features and patterns, which are then used to construct models. As a result, they

are referred to as DSMLs. Grammar-based languages and metamodel-based languages

are the two types of DSMLs. Recurrent domain knowledge is captured in the form of

language features and patterns, which are then used to construct models. In our research,

we are interested in metamodel-based DSMLs as our previous reference architecture is

tailored to DSMLs. By transferring our knowledge to model-based analyses, we expect

to improve their evolvability and reusability. Modellers can use standardised languages,

such as UML [Rum17] or SysML [FMS14] or they can design their own DSMLs [Com+18].

Language workbenches [SVC06; HKR21] enable describing extensible languages to capture

reoccurring domain knowledge. A modelling language feature is an abstraction of a thing

to be modelled [HSR19]. It is necessary to have a clear syntax and a corresponding set of

meanings, which together form the language’s explicit syntax and associated semantics,

to create a modelling language. The syntax de�nes the language’s words and structure,

while the semantics explains what the model means. For instance, denotational semantics

is usually achieved through a mathematically valid de�nition of semantic mapping from

well-formed models to a suitable and well-understood semantic domain [HR04]. State

charts use I / O relations to de�ne their semantic domain, while other languages may use

other approaches. The FOCUS approach [BS01; RR11] is an example of a mathematical

system model used for integrated semantics, which enables embedding other semantic

domains, such as SysML semantics.

2.3.3 Feature Model

A feature model [CE00] is a formal representation of the variability and interdependencies

among the features of a subject. The feature model determines a subset of the relevant

features to a particular scenario. This subset is determined by constructing a feature graph,

which is represented as a tree structure. Figure 2.4 shows tree structure and the relations of

features in a feature graph. The tree structure is formed through parent-child relationships

between features, where each feature, excluding the root node, has one parent, and the root

node has only child relationships. The relationships between parent and child features can

be mandatory, optional or part of an alternative set or an OR set [CE00]. Any mandatory

child features must also be selected if a parent feature is selected. Optional child features can

be chosen but are not required. In an alternative set, only one feature can be selected, and at

21

2. Foundation

optional

mandatory

Feature

Root

Alternative

Or

Figure 2.4.:Concept of Feature Models

least one must be selected from an OR set of features. Language features are implemented

by modelling language components [HSR19]. A modelling language component describes

language constituents, e. g., through metamodels or grammars, has explicit interfaces and

composition operators [But+19; HSR19] for other modelling language components, and

has an individual, composable semantics. Analysis features are implemented by analysis
components containing the analysis algorithms realised in source code. These analysis

components are executable on the required language features, have explicit interfaces, and

can be combined with other analysis components using composition operators.

We utilise feature models to express the features of DSMLs and model-based analyses.

Based on a feature model, subsets of the given features are selected to specify which

modelling language or analysis features are of current interest in analysis composition and

tool development [Str20]. In the context of our research, we allow the speci�cation of a set

of features that contains only one feature. That is uncommon for most feature models, but

the bene�t is that the feature set can be augmented with other features without modifying

the type of child relation. A feature selection is a subset of the features in the feature

model that adheres to the feature relations’ requirements [HSR19]. Requires and excludes
relationships between features are also possible. Relationships must be directional, and

mutual relationships are excluded.

2.3.4 Analysis Composition

Analysis composition combines sub-analyses into one complete analysis, where the in-

dividual sub-analyses adhere to their sub-language. The individual sub-results adhere

to their sub-analyses, and an appropriate orchestration of sub-analyses de�nes the order

and use of sub-results into a complete result. Analysis helps answer a question about a

system that might be too complex or not accessible; thus, analyses work with models (i. e.,

based on a DSML) of the system under study. The models represent relevant aspects of

the system under study that help to answer the questions the analysis is determined to

answer. Heinrich et al. [Hei+21b] de�ne an analysis as follows:

M,C `T Q A

22

2.3. Foundational Concepts for the Decomposition and Composition of Model-based Analyses

M, C, Q, and A are models of the system, the context, the question, and the answer domains,

respectively; T is an analysis technique used in the analysis. The de�nition of analyses can

also be mapped on sub-analyses. A sub-analysis answers a sub-questionQ using an analysis

technique T ; to answer the sub-question, it analyses a sub-language M under a context C.

Sub-analyses must be combined to create an analysis that can reason about multiple facets

of a system (i. e., sub-language). This composition of sub-analyses has many facets. Talcott

et al. [Tal+21a] distinguish three general forms of composition that we will apply: Model

composition (white-box composition) is the analysis input model, realised by language

integration. The composition of the analysis results by orchestrating encapsulated analyses

is called result composition (black-box composition). The composition of the analysis

techniques by orchestrating the steps of two or more analysis algorithms is called analysis

composition (grey-box composition). In [Tal+21a], they mathematically de�ne the concept

of analysis composition based on these three types of composition. Sub-analyses can

be selected from the feature model visualised in Figure 3.2 to con�gure and extend a

model-based analysis. Their associated analysis techniques are composed by selecting

sub-analysis from the feature model.

2.3.5 Feature Composition

Apel et al. [Ape+08] introduce the concept of a Feature Structure Tree (FST) for the feature

composition. An FST models a feature’s structural elements (source code artefacts), e. g.,

classes, �elds, or methods hierarchically. The concept of FST corresponds to our feature

and component notation; however, as depicted in Figure 3.2, two separate graphs represent

our notation of features and components. Nevertheless, our analysis feature and analysis

component notation can be transformed into the FST notation, see Figure 3.18.

For the transformation process, it is imperative to have both the feature graph and the

component graph. The existing structure of the feature graph can be utilised without

modi�cations. The analysis components are represented as double-lined rectangles with

rounded corners, which are then added to the feature graph as leaf nodes.

The implements dependency between an analysis component and an analysis feature is

transformed into a double-lined dependency, while the dotted implements arrow between

components becomes a dashed arrow. Each analysis component is added as a terminal

node to the feature graph, with a terminal node being de�ned as the last node in the graph

with no child nodes.

Dependencies on terminal nodes are represented as implements dependencies, and dotted

arrows between terminal nodes represent analysis component dependencies. As a result,

all the operations outlined in [Ape+08] can be applied to this model.

The following paragraphs provide an overview of the operators of Apel et al. [Ape+08]

and our extension for features and feature composition. A feature composition is de�ned

as:

f • д

23

2. Foundation

This rather abstract operator is divided into two sets, the introduction set I and the

modi�cations set M , as well as three operations:

⊕ : I × I → I , � : M ×M → M

and

� : M × I → I

An atomic introduction expresses basic features and their composition. An atomic in-

troduction is a part of implementing a basic feature, such as a method, �eld, class, or

package. Introductions are the basic units of di�erence between two basic features. The

superimposition of all paths/atomic introductions in its FST is a basic feature. Apel et

al. [Ape+08] model FST superimposition using the introduction sum. The introduction

sum operator ⊕ is an operation over the set I , adding two atomic introductions; the result

is a non-atomic introduction. Introduction sum ⊕ over the set of I of introductions forms

a non-commutative idempotent monoid (I , ⊕, ξ). The introduction sum is associative and

non-commutative. The identity is de�ned as follows:

ξ ⊕ i = i ⊕ ξ = i — ξ is an empty FST

The idempotence says that only the rightmost occurrence is e�ective in a sum; duplicates

have no e�ect:

i ⊕ j ⊕ i = j ⊕ i

For j = ξ follows i ⊕ j = i .

2.3.6 Analysis Decomposition

We de�ne analysis decomposition as separating one analysis into individual sub-analyses,

where a model that adheres to the language of the complete analysis can be projected into

individual sub-analyses. Decomposing an analysis result in: M,C `T Q A, per extracted

sub-analysis. In software engineering exist, di�erent approaches to determining modules;

in the context of analyses, we call them sub-analysis. The purpose of decomposing software

is to make each module more manageable. One core principle of programming software

is “Divide and Conquer”, separating software into functions [CKM22], classes [NKB00],

or frameworks [CLZ04] to separate concerns [CG20], or even hardware/software inter-

faces [DMV20]. For example, in a modularised software system, developers do not have to

understand each line of source code when they extend or maintain software. Instead, they

must know the module where the change must occur. In Object-Oriented Programming

(OOP), for example, classes are used to represent concepts of the software and to make the

software more manageable. In aspect-oriented programming, the software is decomposed

according to the aspects the software covers. For the development of DSMLs, Heinrich

et al. [HSR19] provide a decomposition concept for metamodels. However, to the best of

our knowledge, there is no approach that considers the modular structure of a DSML and

24

2.4. Bad Smells in Di�erent Domains

derives a decomposition concept for its corresponding model-based analyses. To �ll that

gap, in the following section, we will present our decomposition concept for model-based

analyses while considering the modular structure of their corresponding DSML.

2.4 Bad Smells in Di�erent Domains

In this section, we present supplemental concepts required to follow the contents of our

second contribution, bad smells in model-based analyses. Therefore, we explain the bad

smells of di�erent domains. We use these types of bad smells to derive bad smells for the

domain of model-based analyses. As bad smells reduce the evolvability and reusability of

software, our �rst goal is it, to identify and refactor bad smells in the domain of model-based

analyses.

According to Martin Fowler and Kent Beck are bad smells structures in the code that

suggest the possibility of refactoring [Fow99]. Bad smells are created from the experience

of developers that have looked at lots of code.

First, we explain bad smells on the code level, i. e. in object-oriented software. Second,

we explain bad smells in metamodels and DSMLs. Moreover, �nally, we discuss why

model-based analyses still have bad smells that are not covered by either object-oriented

bad smells nor DSML bad smells.

2.4.1 Bad Smells in Object-oriented So�ware

In this section, we focus on bad smells on the code level, code written in an object-oriented

programming language in particular. The term bad smell was shaped by Kent Back in

the late 20th century. Kent Beck and Martin Fowler initially identi�ed 21 bad smells

in 1999 [Fow99]. Since then, in 2018, Martin Fowler published a new revision of its

book “Refactoring”, and in it, they changed the names of some bad smells and added one

additional bad smell [Fow18]. We will refer to the new version of the bad smells. Although

not all bad smells are required to understand the bad smells of model-based analysis, we

want to give a brief overview of these 22 bad smells.

Mysterious Name: According to Fowler, it is fun to puzzle over words in detective

�ction rather than in code. The code may seem boring and straightforward, with no

suspense and immersion. Developers should put much care into naming functions, modules,

variables, and classes to express what they do and how to utilise them. Naming is one of

programming’s two hardest things [Fow18]. It is worth renaming things, even if it has

the slightest chance of improving the readability of the code. With modern Integrated

Development Environments (IDEs), renaming classes, methods, variables, or modules

requires almost no e�ort besides �nding a suitable name.

25

2. Foundation

Duplicated Code: The same code structure in multiple places makes software di�cult

to maintain. Unifying the code and consolidating it in one place will improve the main-

tainability of the software, as there is only one place where a change can occur. Duplicate

copies require careful reading to spot di�erences. Modern IDEs can spot identical code;

however, when the code is similar but not identical, they cannot identify it. The developer

must discover each duplicate code to change it. Having identical expressions in two

class methods is a sign of duplicated code. Fixing this smell requires extracting the code

from both places into one method. If the code is similar but not identical, using di�erent

statements allows one to organise it.

Long Function: Fowler et al. [Fow18] found that software with short functions lasts the

longest. Short functions have no computation, and the software is an in�nite delegation

of function calls. However, short functions are easier to explain, to share, and as they

are easier to understand, they are also easier to select. Longer functions are harder to

grasp, and subroutines of older languages create overhead that discourages short functions.

Modern languages have eliminated in-process call overhead. Good naming makes little

functions easier to understand, and if a function’s name is easy to understand, its body is

usually unnecessary. Functions should be decomposed more aggressively; for example,

instead of writing a comment, write a function [Fow18]. This function contains the code

the developer wanted to comment on but is titled after its purpose, not its function. The

key is the semantic di�erence between what a method does and how it accomplishes it.

Long Parameter List: A method call with a long parameter list indicates bad program-

ming. It indicates that there could be a problem with the implementation. There is no

de�nitive guideline for how many criteria are excessive. Usually, anything over three or

four is too many. However, functions require parameters if they have no access to global

data. Usually, there is a reason why the symptoms mentioned exist. A method may require

more information. The developer may have attempted to create a generic function to

handle many scenarios.

Global Data: Since the �rst days of programming software, we have been told of the

horrors of global data. The di�culty with global data is that it may be edited from

anywhere in the code base, and there are no means to detect which portion of code

touched it. This leads to problems that occur in a running system. Global variables are

the most apparent form of global data; however, class variables and singletons also cause

problems. Small amounts of global data are manageable, but the more global data exist,

the more complicated it becomes.

Mutable Data: Data changes can frequently result in unexpected results and complex

issues. When updating some data in one place, developers may need to realise that another

software component expects something di�erent. This can result in a failure that is

especially di�cult to detect if it only occurs in rare circumstances. As a result, a whole

programming paradigm is predicated on the idea that data should never change and that

altering a data structure should always provide a new copy of the structure with the

change, keeping the old data untouched. This paradigm was also introduced in Java with

lambdas and streams.

26

2.4. Bad Smells in Di�erent Domains

Divergent Change: Software changes over time [Leh80]; thus, the design of the software

should allow developers to implement changes with as less e�ort as possible. Locating

the spot to change should also be easy. If the developer cannot do so, it is a sign of the

Divergent Change smell. Divergent change happens when one module is frequently altered

di�erently for various reasons. Separating concerns by creating separate modules for each

concern mitigates the Divergent Change smell. As a result, when one context changes,

the developer needs to grasp only that context and ignore the rest.

Shotgun Surgery: The Shotgun Surgery smell is comparable to but not the same as the

Divergent Change smell. Small changes to di�erent classes occur every time the developer

changes something in the code, a sign of the Shotgun Surgery smell. When changes are

dispersed, they are challenging to locate, and it is simple to overlook a crucial change.

Overlooked changes can lead to unforeseen behaviour and even more changes.

Feature Envy: When decomposing and modularising software, the goal is to break the

code into modules to enhance interaction inside a module (cohesion) while minimising

dependencies between modules (coupling). An example of Feature Envy arises when a

function in one module has more dependencies and calls on functions or data in another

module than on functions or data in its module. Fowler et al. [Fow18] bring the example

of a function calling numerous getters of class to compute some value.

Data Clumps: The data that is semantically related tend to clump together, e. g. in �elds

of classes or as parameters of functions. These data collections commonly comprise a data

clump that is tightly related and often interdependent. As a result, they are frequently

utilised together as a group.

Primitive Obsession: Programming languages like Java utilise a set of primitive types

that are frequently used, for example, integers, �oating point numbers, and strings. Ac-

cording to Fowler et al. [Fow18], programmers must be more open to constructing their

own types bene�cial in their domain, such as money, coordinates, or ranges. As a result,

they implement calculations that treat monetary amounts as simple numbers or calcula-

tions of physical quantities that ignore units (increasing inches to millimetres). A correct

type typically includes consistent display logic for when it has to be presented in a user

interface, if nothing else.

Repeated Switches: Switch statements have fallen out of favour with the developers

of object-oriented software. Each switch statement could represent a not implemented

polymorphism, and in the �rst version of “Refactoring” by Fowler et al. [Fow99], they

had a bad smell called Switch Statements. Due to the advancement of switch statements,

they are okay; however, the issue with duplicate switches is that when a developer adds a

clause, they must �nd and update all the switches.

Loops: Loops are part of almost every modern C-like programming language, including

Java, C#, or Go. They can be very complex and, thus, hard to comprehend and main-

tain. However, modern concepts like streams and pipelines allow omitting loops entirely.

Pipeline operations like �lter and map let the developer easily determine which items are

included in the processing and what happens to them.

27

2. Foundation

Lazy Element: Introducing structure to a program element to allow variability or

reusability where there is no need to. It could be a function with the same name as its body

code or a class that is e�ectively just one simple function [Fow18]. This is when a function

is overengineered with the purpose for later use that never happens. The result is an

unnecessarily complex structure and, thus, more di�cult to maintain software systems.

Speculative Generality: Speculative Generality is similar to the Lazy Element smell.

Instead of a single element, it covers the concept of planned but never used elements and

functionality of a system. The added code makes it more di�cult for the developer to

understand the code, especially when they cannot di�erentiate between code used and

code just there for decorative purposes.

Temporary Field: Setting values of �elds inconsistently leads to misunderstandings and

code that is di�cult to understand. If a �eld is only sometimes set, it indicates that a class

covers multiple concerns.

Message Chains: This smell occurs when, in order to retrieve an object, a chain of other

objects is called. This cascading e�ect leads to a sequence of method calls prone to errors

when one part of the chain must be changed. It is also hard for the developer to understand,

as they must follow the chain of calls to determine which objects are part of the chain and

where the requested object originates.

Middle Man: The Middle Man smell is related to the Message Chains smell, where

functionality is delegated too often. This makes it di�cult for the developer to locate

certain functionality in the software. In the worst case, when the delegating entity is

changed, it can also a�ect the delegated.

Insider Trading: Insider Trading occurs when the modules of a software need to ex-

change data frequently. This unnecessarily increases the coupling between the modules,

and thus, it negatively a�ects the maintainability of the software system. Removing data

exchange between modules is not feasible, as it would create one monolithic module;

however, the goal is to reduce the exchange to a minimum.

Large Class: A class that combines multiple concerns tends to be very large. Such a class

has too many �elds and methods. When a class has too many �elds, duplicating code is

unavoidable. A class may only use some of its �elds all of the time.

Alternative Classes with Di�erent Interfaces: Classes that should be interchangeable

must have the same interfaces; otherwise, they are unsuitable as a substitute.

Data Class: Such classes can store and provide data but lack behaviour. Data classes

indicate behaviour in the wrong place, so relocating it from the client to the data class can

help. One exception is a record used as a function result.

Refused Bequest: Subclasses are intended to inherit the methods and �elds of their

parents. If they do not use these inherited methods and �elds, this is the Refused Bequest.

If a subclass reuses behaviour but does not support the superclass’s interface, it smells like

a denied bequest. Denying implementations does not bother us, but refusing interfaces

does.

28

2.4. Bad Smells in Di�erent Domains

2.4.2 Bad Smells in Domain-specific Modelling Languages

In this section, we present the bad smells in DSML de�ned by Hahn and Strittmatter [Hah17;

Str20]. They grouped the bad smells according to the methodology by Ganesh [GSS13].

For our contribution, we use the same methodology; therefore, we will present it in more

detail in Section 4.2. In addition to the 22 bad smells in object-oriented software, they

identi�ed 19 bad smells speci�c for the domain of DSMLs. In the following section, we

brie�y overview these 19 bad smells for DSMLs.

Missing Class: When a class contains more than one concept, some attributes and

references should be part of another class. It makes it di�cult for the modeller to identify

the concept of a class; hence it impedes the understandability and changeability of the

a�ected class. The Missing Class bad smell results from a mistake; however, moving the

a�ected attributes and references to a new class �xes it.

Dead Classi�er: If the modeller cannot create an instance of a classi�er, the classi�ers are

unusable. Strittmatter di�erentiates two types of classi�ers: the �rst are classes, and the

second and enums. The class misses incoming dependencies, and the enum is not used as

an attribute in a class. These dead classi�ers make the DSML more di�cult to understand

and are a proving ground for errors. Fixing this bad smell requires the language developer

to delete the a�ected classes and enums.

Inconsistent Abstraction: If a more package or DSML �le depends on a more specialised

package or DSML �le, the dependencies cross a boundary, resulting in an inconsistent

abstraction. These inconsistent abstractions can have negative e�ects on the maintain-

ability of the DSML, as changes to a more speci�c package or DSML can a�ect the more

generic one. Performing the dependency inversion refactoring presented by Heinrich et

al. [HSR19] �xes this bad smell.

Language Feature Scattering: If classes that are part of a feature are scattered over

di�erent packages, especially cross-cutting features, the understandability and maintain-

ability of the DSML are hampered. This bad smell results from changes to the DSML that

occur over time. Refactoring this bad smell is to move the a�ected classes into a common

feature.

God Class: A class containing too many properties, such as attributes and references, is

hard to understand. It is also a symptom of the amalgamation of multiple concepts in one

class. Setting a universal threshold for the size of a class that can be applied to any DSML

is impossible; the generation of false positives is inevitable. The developer has to decide

whether the God Class is predestined for refactoring. To �x a God Class, the developer

separates the properties in accordance with the concepts and moves these properties to

new classes accordingly.

Blob Package: If a package contains classes of di�erent language features, it requires

more e�ort to understand the package. Due to the unnecessarily high number of language

features in such a package, the developer has to di�erentiate the di�erent features. Also,

they must understand which class belongs to which feature. The result is a package that is

29

2. Foundation

di�cult to understand and maintain. To �x this bad smell, the developer groups the classes

according to their feature and moves them into new packages representing precisely one

feature.

Metamodel Monolith: If a DSML �le consolidates di�erent language features, it requires

more e�ort to understand the DSML �le. Due to the unnecessarily high number of language

features in such a DSML �le, the developer has to di�erentiate the di�erent features. Also,

they must understand which class belongs to which feature. The result is a DSML �le

that is di�cult to understand and maintain. To �x this bad smell, the developer groups

the classes according to their feature and moves them into new DSML �les that represent

exactly one feature.

Missing Hierarchy: Type information enclosed in a class using attributes and basic

data types prevents the developer from adding features selectively. Thus, features are

added to more basic classes and the complexity of the DSML increases. Instead of using

basic data types, the developer has to introduce specialised types representing the desired

information.

Instance Data Modelled by Inheritance: When a type models data that changes during

the lifetime of an instantiated object, it models state information instead of type information.

Such a structure is achieved by inheritance that models non-type information. The code

that works with instances of the DSML is getting more complex, as it must create new

objects to handle changes. Also, due to the increased inheritance depth, the DSML is more

complex than necessary. To �x this bad smell, the developer must replace the inheritance

with one or more attributes.

Redundancies in Hierarchy: If a subclass contains properties identical to the properties

of its parent or sibling class, it is a case of redundancies in hierarchy. Sibling classes

share the same superclass. Changes to one class a�ect all other classes with the same

properties; these classes can only evolve together. To �x this bad smell, the developer

must move the a�ected properties to the common superclass and remove the properties in

all subclasses.

Wide Hierarchy: If a class has an exceeding number of subclasses, the inheritance

hierarchy is di�cult to comprehend for the developer. Also, the tools that use the DSML

become more complex, as no intermediate superclass exists; thus, the type safety is

lost [Str20]. To �x this bad smell, the developer must introduce intermediate superclasses

to ensure type safety.

Speculative Hierarchy: An abstract class is created to allow multiple classes to inherit

common properties; however, if only one class inherits from the abstract class, it introduces

unnecessary complexity to the DSML. The abstract class is generated with the expectation

that, in the future, more than one class will inherit from it. However, if no class inherits

from the abstract class, the inheritance relationship has been introduced unnecessarily

and only complicates the DSML. The developer moves the properties from the abstract

class to its only subclass to �x this bad smell.

30

2.4. Bad Smells in Di�erent Domains

Deep Hierarchy: Theoretically, the chain of classes formed by inheritance relations can

be arbitrarily deep. In reality, the deeper the chain is, the more complex it becomes; thus,

it becomes more and more complex for the developer to comprehend such a structure

in the DSML. Combined with other smells like Speculative Hierarchy or Instance Data

Modelled by Inheritance, the �xes for these smells help to deal with the Deep Hierarchy

smell. Otherwise, if these other bad smells do not occur, the developer can merge classes

in the chain to reduce the depth.

Multipath Hierarchy: If a class inherits via di�erent paths from one class, it either

contains unnecessary dependencies or the concept is so complex that it requires such a

structure. If the dependency structure contains unnecessary dependencies, it makes the

DSML unnecessarily complex. Removing one path is not easy if none of the paths is a

direct dependency because the inherited properties of the classes in between would get

lost. As a result, the developer can delete all direct dependency paths. The remaining

paths must be analysed to determine whether they contain unnecessary dependencies,

i. e., inherited properties are not used.

Concrete Abstract Class: Classes in a DSML that are concrete but are never instantiated

should be abstract. Also, the supertype of multiple types and the concrete supertype of

abstract classes should be abstract. Such classes make it di�cult for the tool user to create

instances of the DSML, as the pool of classes they can instantiate is bigger than it should

be. The developer declares the a�ected class as abstract to �x this bad smell. They must

remember that instances that use the a�ected classes are not invalidated. To circumvent the

problem, the developer can provide a transformation that �xes the instances if needed.

Dependency Cycle: Dependency cycles can occur between di�erent entities of an DSML.

Strittmatter [Str20] di�erentiates three levels: cycles between classes, packages, and DSML

�les. They all have in common that they make it di�cult for the developer to understand

the DSML. They also worsen the maintainability of the DSML, as the e�ort required to

implement a change is unpredictable. Heinrich et al. introduce class and package level

refactorings to �x Dependency Cycles in DSMLs [HSR19] to �x this bad smell.

Container Relation: The Container Relation smell is exclusively present for DSMLs

that were created with the Eclipse Modelling Framework (EMF). In the context of this

dissertation, we do not exclusively focus on EMF-based DSMLs; however, the foundational

work on which our approaches are based uses the EMF-based DSMLs. Therefore, we

include the description of the Container Relation smell. In EMF, if a dependency is a

containment dependency is already de�ned by the framework; however, it is still possible

to create an explicit containment dependency. According to Strittmatter [Str20], adding

such a dependency adds unnecessary complexity to the DSML, especially when a class

has multiple containment dependencies. The tool developer must handle these additional

dependencies when the container is deleted; the dependency remains. Either the tool

user has to remove the remaining dependency, or the tool must implement a routine that

removes such pointless dependencies. If the user has to deal with it, it is an inconvenience

for them, but if the handling is integrated into the tool, each change to the dependency

structure will result in changes. To �x this bad smell, the developer must delete the

containment dependency.

31

2. Foundation

Obligatory Container Relation: The Obligatory Container Relation is when a type is

contained in multiple containers, but one of these dependencies has a multiplicity of one.

As a result, the type is always contained in the container with a multiplicity of one. The

other dependencies are, therefore, useless; they only increase the complexity of the DSML.

To �x this bad smell, the developer removes the dependency with the multiplicity with

one or all other dependencies.

Specialised Relation: Suppose the relation structure is redundant; for example, when

on the abstract level, the same relation exists as on a more concrete level. In that case, it

impedes the understandability and maintainability of the DSML. Due to the additional

relations, it is di�cult for the developer to determine whether they are legit or redundant.

If the relation on either level changes, all other redundant relations must also be changed.

To �x this bad smell, the developer removes the specialised relation so that the most

generic remains.

2.5 Foundational Concepts for the Reuse of Model-based
Analysis Components

In this section, we present supplemental concepts required to follow the contents of our

third contribution, the reuse of model-based analysis components.

2.5.1 Satisfiable Modulo Theories

The Satis�able Modulo Theories (SMT) problem is a decision problem concerned with the

satis�ability of �rst-order logic formulas with respect to a background theory. Examples of

possible theories are the theory of integers or the theory of real numbers. An SMT-Solver

is a software that solves this problem for as many instances as possible [DB11]. The

SMT problem is NP-hard, and as a result, it can be undecidable; the high computational

complexity of the SMT-problem forces most solvers to focus on classes of SMT-instances

that appear in practice [MB09]. As a result, researchers try to �nd decidable classes of

theories to extend the number of decidable SMT problems.

A formula P is satis�able if values are assigned to its function symbols so that P evaluates

to true. P is valid if P evaluates to true for all possible assignments of function symbols.

The relationship between validity and satis�ability can be expressed as follows:

P is valid ⇐⇒ ¬P is not satis�able

or alternatively:

P is not valid ⇐⇒ ¬P is satis�able

An SMT-Solver will only check a formula P for satis�ability and output a valid assign-

ment of values to function symbols if the solver can �nd such an assignment. With this

32

2.5. Foundational Concepts for the Reuse of Model-based Analysis Components

connection between satis�ability and validity, the solver can determine if a formula P is

valid by determining if ¬P is (not) satis�able.

SMT-LIB: The SMT-LIB standard [BFT17] de�nes a language to specify instances of the

SMT-problem. Based on the selected background theory, variables can be declared as

function symbols and conditions on these variables. Listing 2.1 shows the declaration of

an integer variable z and a condition that requires that z2 = 25.

1 (declare-fun z () Int)

2 (assert (= (* z z) 25))

3 (check-sat)

Listing 2.1: SMT Declaration Example

The condition is satis�able and any SMT-solver should �nd a valid assignment of z (e. g.,

z = 5). The condition can be negated and rechecked for satis�ability to check the formula

for validity, as shown in Listing 2.2.

1 (declare-fun z () Int)

2 (assert (not (= (* z z) 25)))

3 (check-sat)

Listing 2.2: SMT Validity Example

The result will show that the second formula is satis�able (e. g., for z = 15), i. e. the solver

found a counterexample to the validity of the original formula, implying that the original

formula is not valid.

2.5.2 P versus NP

In theoretical computer science, the P vs NP (Polynomial Time (P) vs Nondeterministic

Polynomial Time (NP) problem is an unsolved complexity theory problem. The question is

whether the set of problems that can be solved quickly (P) and the set of problems that can

be checked for correctness fast (NP) are identical. Quickly solvable or checkable implies

the existence of an algorithm that solves the problem; the computational e�ort (number of

computational steps) is bounded by a polynomial function depending on the amount of

the input. The input size is the number of elements fed into the algorithm. For example,

when sorting index cards, the size is the number of index cards.

For all problems that can be solved quickly, one can also quickly check the correctness

of a solution. This needs to be clari�ed in the opposite direction: For some problems, an

algorithm exists that can quickly check a proposed solution, but neither could an algorithm

be found that also quickly �nds a correct solution nor could the impossibility of such an

algorithm be proven. Thus, the question is unsolved. If one were to �nd an algorithm for

all quickly testable problems NP that also solves them quickly, then P = NP would apply.

33

2. Foundation

If it could be shown for at least one problem from NP that it cannot be solved quickly in

principle, P , NP would be proved.

2.5.3 Nondeterministic Polynomial Time

NP is a complexity class for decision problems where there is evidence for “yes” answers

that can be veri�ed e�ciently (in polynomial time). However, it can sometimes take time

to �nd such proof. So an alternative description of NP is the class of all decision problems

that can be solved by a non-deterministic Nondeterministic Turing Machine (NTM) with

respect to the input length in polynomial time. Here, an instance is answered “yes” if at

least one of the possible computations of the non-deterministic Turing machine answers

with “yes” [KT06].

NP-complete problems probably cannot be solved e�ciently. All known deterministic

algorithms for these problems require exponential computational e�ort, and it is a strong

hypothesis that there are no more e�cient algorithms. Con�rming or disproving this

hypothesis is the P-NP problem, one of computer science’s most important open problems.

The best-known NP-complete problem is the travelling salesman problem.

2.5.4 Graph Isomorphism

When two graphs are isomorph, they have a bijection between their vertex sets that

preserves the adjacency between them [McK+81]. An automorphism is an isomorphism

that exists between a graph and itself [MP14]. Figure 2.5 shows two graphs that are at

1

2

3

4

5

6

7

8
(a)

a d

f g

b c

e h

(b)

Figure 2.5.: Two Graphs with the Same Number of Nodes and Edges but Di�erent Node Names

�rst glance not identical; however, the graph isomorphism analysis allows us to determine

whether these two graphs are not identical. A bijection between their vertex sets and

preserving the adjacency of the vertex sets shows that the two graphs are structurally

identical. The result is 1 → a, 2 → b, . . . , 8 → h. The nodes’ and edges’ names and

identi�ers are not taken into account in the graph isomorphism analysis.

34

2.6. Foundation of the Evaluation

The collection of all automorphisms of a graph G is called the automorphism group

Aut(G) [MP14]. The graph isomorphism problem is concerned with determining if two

given graphs are isomorph i. e. if they are structurally identical. The nodes’ and edges’

names and identi�ers are not considered when determining if two graphs are isomorph.

The graph isomorphism problem is known to be one of the NP problems, but it needs to

be clari�ed whether it is NP-complete. From 1984 until 2015, the fastest running time was

set at eO(
√
(n·logn))

by Babai et al. [BKL83]. Since 2015 the fastest running time is set at

e(logn)
O (1)

also by Babai [Bab16].

2.5.5 Domain-specific Language

A Domain-speci�c Language (DSL) is a formal language designed and implemented to ease

the interaction between humans and computers for a speci�c domain. Due to DSLs, key

aspects of a domain can be formally expressed and modelled [SVC06]. A DSL possesses

a metamodel, including its static semantics and corresponding concrete syntax. When

designing a DSL for a domain, the goal is to have a high degree of problem speci�city:

The DSL should focus on the problems of the domain, and it should exclude anything that

is not part of the domain. This makes the DSL usable by domain experts without special

knowledge about general-purpose programming languages. The opposite of a DSL is a

general-purpose programming language, such as Java or C++, or a universally applicable

modelling language, such as UML. The bene�ts of a DSL are that the domain experts

can focus on the problem at hand without worrying about the syntactic speci�cities of a

general-purpose language. Due to the reduced complexity of a DSL, the e�ort to learn a

DSL is less than learning a general-purpose language. One drawback is that the semantics

of a DSL must be well documented [SVC06]. Another challenge is that the semantics of

the DSL must be intuitively clear to the modeler [SVC06]. DSL adopts concepts from the

problem space so that a domain expert will recognise its “domain language”. According to

Stahl et al. [SVC06], the semantics of a DSL are relevant when the modeller must know

the semantics of the language entities so that they can create reasonable models.

2.6 Foundation of the Evaluation

In this section, we present the foundation for the evaluation we used throughout this

thesis. We introduce the validity types that Runeson et al. [Run+12] de�ned that we used

throughout every evaluation in this thesis, and then we introduce the Goal Question

Metric (GQM) approach by Basili et al. [BCR94].

2.6.1 Validity Types

We use case studies to evaluate our contributions. To determine the validity of our approach,

we use the four types of validity introduced by Runeson et al. [Run+12]. They distinguish

35

2. Foundation

four types of validity for case study research in the area of software engineering: Internal,
external, construct, and conclusion validity. The better the case studies and the evaluation

addresses the validities, the more weight the conclusions we can draw from the results.

Internal Validity: In the case study-driven evaluation, the conductor of the experiment

should be able to link the e�ects observed in the case study to a cause. The internal

validity type deals with this circumstance. It concerns the cause and e�ect and whether

the observed e�ects can be linked to a cause. Regarding cause and e�ect, the conductor

must also consider possible side e�ects. In the best case, the e�ect is traceable to a speci�c

cause. This validity type is compromised when e�ects in the observed case study have

unknown causes.

External Validity: Case studies represent a type of system that, ideally, allows us to

conclude these types of systems in general. The external validity type deals with the ability

to generalise the conclusions drawn from the case study. External validity is compromised

if the case study sample is not su�ciently diverse to support valid conclusions for the

supposed scope to which the conclusions should apply.

Construct Validity: The case study and the evaluation must be constructed to measure

the desired information. In the case of this thesis, we have to ensure that the metrics

we use to measure our case studies analyse the desired property. This validity type is

compromised when the metrics are inappropriate for the desired case.

Conclusion Validity: Science is based on the repeatability of experiments, the repro-

ducibility of results and especially the unambiguousness of the conclusions drawn. There-

fore, the aim is that other researchers can conduct the evaluation and that they also obtain

the same results. The results should not leave room for interpretation. This validity type

is compromised, for instance, when the data and the tools are unavailable or when the

process of how the evaluation is conducted is unknown.

2.6.2 Goal Question Metric Approach

With software evaluation in mind, the GQM was developed by Basili et al. [BCR94]. The

idea of the GQM approach is to derive research questions and metrics from the goals we

want to achieve. In 2008, Koziolek [Koz08] stated that the GQM approach could also be

applied to evaluate approaches in other engineering domains. In contrast to bottom-up

processes, where the metrics are selected without a concrete goal, Basili et al. [BCR94]

proposes a top-down process, where de�ning the goal is the �rst step of the evaluation.

De�ning the goal �rst prevents the scientist from using metrics that measure irrelevant

attributes in their evaluation. The process of the GQM is as follows: First, the goals of the

topic that should be examined are speci�ed in detail. For example, we are implementing an

approach to compare software components to �nd software artefacts that could be reused

in another software project. There may be one or more questions that are de�ned for a goal.

For example, does the compare algorithm �nd all potentially �tting software artefacts that

could be reused? There may be one or more metrics that are de�ned for a query. In our

example, the metrics precision, recall and F1 are suited to determine whether all software

36

2.7. Technical Foundation

artefacts are identi�ed, no software artefact is wrongly identi�ed, and no software artefact

was forgotten. Following the measurement, the GQM strategy will undergo a bottom-up

evaluation. The questions can be answered by examining the metrics in question. How

the questions were answered enables us to draw judgments regarding their objective.

For each contribution, we provide a plan according to the GQM approach. First, we

de�ne the goals we want to achieve by evaluating our contributions. Therefore, to iden-

tify whether we have achieved our goals, we derive questions we answer. To answer

the evaluation questions, we de�ne metrics whose results we use to get a quantitative

measure.

2.7 Technical Foundation

In this section, we present the technical foundation, which includes the third-party tools

we use throughout this thesis.

2.7.1 Eclipse Modelling Framework

The EMF [Ste+09] is a framework for model-driven software development. It provides

various tools and frameworks to help develop metamodels and domain-speci�c languages.

EMF utilises the Ecore metamodel description approach to describe metamodels. Ecore

includes fundamental object-oriented modelling concepts such as packages, classes, ref-

erences and attributes. Ecore is based on a subset of the Meta-Object Facility (MOF)

metamodelling standard. EMF had a direct in�uence on the formulation of the EMOF

standard. As a result, Ecore serves as a reference implementation of EMOF. The EMF also

contains tools for generating Java classes, APIs, and graphical editors for model generation

and manipulation. When designing UI elements such as editors, it is possible to rely on

already provided functionality thanks to the integration with the Eclipse framework. These

UI elements o�er only a bare minimum of functionality, but this is often all required. Other

Eclipse projects, such as Sirius, can be utilised if more complex editors are necessary.

2.7.2 Xtext

Xtext is a framework for creating domain-speci�c languages that integrate with the

EMF [Bet16]. It uses a grammar-based approach to generate a parser, linker and editor

from a speci�ed grammar; however, Xtext can also integrate existing metamodels as part of

the abstract syntax. The language can then be extended by custom scoping, validation and

code generation. Xtext uses the Extended Backus–Naur Form (EBNF) syntax notation to

describe the terminal rules of the grammar. More details regarding Xtext and its grammar

language can be found at [ES21].

37

2. Foundation

1 (nodes)-[:relation]->(anotherNodes)

Listing 2.3:Cypher Syntax

2.7.3 Xtend

Xtend is a general-purpose programming language that compiles Java code, making it

interoperable with Java [Bet16]. Because of its template engine, Xtend is often used to

implement code generation for DSLs de�ned with Xtext. The functional aspects of Xtend,

such as Lambda-expressions and graph-transformation tools such as the create-methods,

make it suitable as a model transformation language.

2.7.4 Neo4J

Neo4J is a graph database that is implemented in Java
1
. It is developed as Open Source

software, and it has been available since 2010. Neo4j is an embedded, disk-based, transac-

tional database engine that stores data structured in graphs instead of tables. In Neo4j,

information is stored as an edge, a node or an attribute. A node can have any number of

attributes, and nodes and edges can have a label. The database uses schemas for indexing,

available via the query language Cypher. Cypher is a graph query language that allows

the user to retrieve data from the graph. The query language is comparable to SQL in

relational databases. The Cypher language has a syntax that visualises nodes and edges.

Listing 2.3 shows the syntax of the Cypher query language. Nodes are enclosed in rounded

brackets, and relations between nodes are represented as arrows. The type of relation can

be speci�ed by using square brackets.

2.7.5 Spoon

Spoon is an open-source library that allows the user to analyse, rewrite, and transform Java

source code. One bene�t of Spoon is that the source code must not compile in order for

Spoon to analyse it. Especially when the developer wants to analyse only parts of an model-

based analysis, they are not required to provide compilable source code. Spoon uses a

metamodel to represent the java source code, and its instances resemble an Abstract Syntax

Tree (AST). However, it is reduced in its complexity compared to the metamodel of Sun’s

compiler (javac). Other than a compiler-based AST (such as that provided by javac), the

Spoon metamodel of Java is intended to be easily understood by ordinary Java developers,

allowing them to build their own programme analyses and transformations. The Spoon

metamodel provides all information needed to generate compilable and executable Java

programmes (hence contains annotations, generics, and method bodies) [Paw+15].

1
https://www.neo4j.com

38

Part II.

Improving Evolvability and Reusability of
Model-based Analyses

3. Decomposition and Composition of
Model-based Analyses

Changes made to the software, especially when done under time and �nancial constraints,

have the potential to reduce software quality signi�cantly. Developers can utilise model-

based analyses to examine the impact on the quality of foreseen changes in software

systems before performing changes. Using model-based analyses can prevent bad reper-

cussions on software quality, such as performance drops, reduced reliability, or security

breaches. One type of these analyses is known as model-based analysis; such analyses

derive and communicate information on the quality of a software system by using mod-

elling languages and models of software systems [ZMK18]. In addition to the system,

a model-based analysis examines, the model-based analyses themselves are also prone

to changes over time. As a result, historically grown model-based analyses su�er from

increasing complexity and deterioration of internal software quality. If the model-based

analysis is not adapted to the changed requirements, it becomes less relevant for the

users.

Analysis developers must also adapt model-based analyses to changes of their correspond-

ing DSML, see Section 2.1.3. A corresponding DSML is the metamodel on which the

input models of the model-based analyses are based on. DSMLs evolve over time, and

therefore, they are also prone to decline quality, even if they evolve more slowly than

software systems [HSR19]. New features that are added to the DSML ideally do not a�ect

the corresponding analysis. When the changes are made in a non-intrusive way, for

example, when the DSML is developed according to the reference architecture for DSMLs

by Heinrich et al. [HSR19]. A non-intrusive change can be a new language feature that

inherits properties from an existing language feature; for example, an analysis developer

adds to a performance simulation of software systems the TCP/IP stack simulation to

simulate remote calls. If a corresponding model-based analysis needs no use of the newly

added feature, an analysis developer must adapt the model-based analysis to the feature of

its corresponding DSML.

Due to changes to the DSML and the resulting, inevitable change of the model-based

analysis, model-based analyses become more complex over time. Such historically grown

model-based analyses are hard to evolve and to reuse [KHR22a]. Ideally, analysis de-

velopers have no issues understanding the source code of the model-based analysis to

implement or change a feature without introducing the technical debt. The more complex

the code base of an model-based analysis is, the more time needs an analysis developer

to understand the code base and the more time a developer need for the implementation.

41

3. Decomposition and Composition of Model-based Analyses

In addition to a general deterioration in quality brought on by evolution, model-based

analyses are notoriously di�cult to reuse because they are frequently bound to a particular

domain and DSML. Our goal is to reduce the complexity and to improve the understand-

ability and reusability of model-based analyses. Therefore, instead of having two di�erent

architectural concepts, one for the model-based analysis and one for the DSML, we inves-

tigate whether we can apply the same architecture to the model-based analysis and its

associated DSML.

Since the beginning of software development, developers have aimed to divide software

into smaller pieces to make the software more manageable. Divide and Conquer is the

strategy for decomposing software into smaller entities to reduce the complexity of the

overall system. In OOP, classes are such entities to encapsulate concerns. Heinrich et

al., for example, propose a reference architecture suited to DSMLs in order to enhance

the evolvability and reusability of DSMLs [HSR19]. In software engineering, reference

architectures provide a general architecture for applications in a certain domain. For

example, the Java EE architecture is a layered reference design for developing Java ap-

plications, according to [Som18]. In software engineering, developers can choose from a

myriad of architectural patterns that propose how to decompose and modularise a software

system [Ric15].

Metamodel design and object-oriented design have many similarities. Composition, acyclic

dependencies, dependency inversion, and layering are all principles that can be transferred

from DSMLs to model-based analysis [HSR19]. Although model-based analyses are also

software systems and approaches that improve the quality of software systems (e. g. ,

separation of concerns, �xing bad smells) are also applicable to model-based analyses,

there are no solutions that are tailored to the co-evolution of model-based analyses and

their corresponding DSMLs to the best of our knowledge. However, to the best of our

knowledge, no approach considers the co-dependency of model-based analyses and their

corresponding DSML.

When discussing reference architectures for model-based analyses, we use the term refer-

ence architecture for convenience. Our research is aimed at the relationships between a

DSML and the model-based analyses that go with it. We apply our experience of DSML

structuring, development, and refactoring to model-based analyses. Our reference archi-

tecture enables independent development of analysis features and serves as a template

solution for methodically extending and reusing components of model-based analyses.

Features that have a representation in a DSML and a matching model-based analysis

can evolve and be utilised and reused together as a result of our research. In order to

accomplish this goal, the reference architecture establishes a framework for model-based

analyses that take into account the corresponding DSML. Therefore, we investigate how

the evolvability, understandability and reusability of model-based analyses are a�ected

when the structure of the associated DSML (i. e., layers, constraints of dependencies, the

introduction of features) is transferred to the structure of model-based analyses.

In this chapter, we present our �rst contribution: a reference architecture for model-based

analyses that takes the structure of the corresponding DSML into account to improve the

evolvability and reusability of model-based analyses: (i) decompose an already existing

42

3.1. Hypothesis and Research Questions

model-based analysis, (ii) compose a model-based analysis, and (iii) develop a model-based

analysis from scratch.

The chapter is structured as follows:

• After presenting the hypothesis and research questions in Section 3.1, we use an

application scenario to derive requirements for our reference architecture, which we

then present in Section 3.2.

• Section 3.3 provides our decomposition approach for the reference architecture. To

create these concepts, we have applied insights gained from the reference architecture

for DSMLs to model-based analyses and made adjustments where necessary. To

this end, we introduce the reference architecture tailored to model-based analyses.

Likewise, we present a concrete instantiation of our reference architecture with

layers tailored to model-based quality analyses and a set of features that are required

by model-based quality analyses.

• In Section 3.4, we introduce our composition concept for model-based analyses.

• In Section 3.5, we provide guidelines for implementing the reference architecture. We

present three processes on how to apply our approach, considering three application

scenarios: (i) refactoring an already existing model-based analysis, (ii) developing a

model-based analysis from scratch, and (iii) extending a model-based analysis.

• In Section 3.6, we present the technical foundation that we developed to decompose

and compose model-based analyses.

3.1 Hypothesis and Research Questions

In this section, we present research questions for the �rst contribution of this thesis.

Heinrich et al. [HSR19] proposed a reference architecture for DSMLs that separates a DSML

into language features and then distributes these language features on di�erent layers. Each

layer contains a set of features of the DSML. The reference architecture for DSMLs provides

a clear structure and extension mechanisms for DSMLs. To refactor existing, monolithic

DSMLs, they also provide refactoring operations on class and package level. Due to the

reference architecture for DSMLs, the refactoring operations and processes to modularise

monolithic DSMLs, they have shown that their approach improves the evolvability and

reusability of DSMLs. Unfortunately, their approach only considers DSMLs, software that

uses these DSMLs do not gain any advantage regarding evolvability or reusability. On a

conceptual level, the DSML and its corresponding model-based analyses, are separated.

Although the DSML is modularised and separated into layers, its corresponding model-

based analyses can still be monolithic or follow a totally di�erent architectural pattern. As

a result, analysis developers must understand the semantics of the DSML and, additionally,

must invest their time to understand the model-based analysis and how it is using the

DSML. We raised the question: “What if the DSML and its corresponding model-based

analyses follow the same architectural pattern?”. To the best of our knowledge, there have

43

3. Decomposition and Composition of Model-based Analyses

been no studies to date that have investigated whether the evolvability, understandability,

and reusability of model-based analyses improves, when the same architectural pattern

that is used by the DSML is also applied to the model-based analysis. In this thesis, we will

focus on the pattern of the reference architecture for DSMLs by Heinrich et al. [HSR19].

Thus, we derive the following hypothesis for transferring concepts of DSML development

to model-based analysis development:

Hypothesis 1

The evolvability, understandability, and reusability of a model-based analysis will

improve when transferring the concepts of the reference architecture for DSMLs to

model-based analysis.

The results of [HSR19] show that the reference architecture improves the evolvability

of DSMLs and it improves the need-speci�c use and reuse of language features. Ideally,

introducing a layered structure to a model-based analysis that resembles the structure and

the semantics of the corresponding DSML has the same positive e�ect on model-based

analyses.

We formulate the following research questions to determine whether the hypothesis 1 is

correct.

Research Question 3.1

Does using an isomorphic structure, which corresponds to the reference architecture

for modelling languages, improve the evolvability of model-based analyses?

The ability of a model-based analysis to evolve determines whether a model-based analysis

will stand the test of time. If the developers cannot implement new features or change

features to adapt the model-based analysis to changed requirements, the model-based

analysis will lose relevance for the user. As a result, the model-based analysis falls out

of users’ favour and is no longer used. Using the same concepts in both DSMLs and

model-based analysis, allows developers to transfer their knowledge about the structure

and the semantics of the DSML to their corresponding model-based analyses and vice versa.

Even when the analysis developers cannot transfer their understanding of the DSML to

the model-based analysis, for example, because they have no knowledge about the DSML,

having a modular model-based analysis should be better evolvable than its monolithic

counterpart. When each language feature in the DSML also has a feature representation

in the model-based analysis, developers can locate the spots to apply the changes in the

model-based analysis by consulting the DSML.

Research Question 3.2

Does using an isomorphic structure, which corresponds to the reference architecture

for modelling languages, improve the understandability of model-based analyses?

44

3.2. Requirements for the Reference Architecture

Understanding a model-based analysis and determining the use and semantics of language

features in the analysis is a non-trivial task. For the developer of the model-based analysis

it can be unclear whether a language feature is used in the model, whether the language

feature is used correctly in the model-based analysis, how it will a�ect the analysis result, or

if it a�ects the result at all [Hei+21b]. When the features of a DSML and a corresponding

model-based analysis are identical (i. e., have the same structure and semantics), the

developer can locate a analysis feature by investigating the features of the DSML. Having

an identical feature structure, analysis developers can identify whether a language feature

is used in the model-based analysis. When it is easier to identify the usage, the analysis

developers can focus on understanding how the language feature is used and how it a�ects

the analysis result. Even if the analysis developer has no knowledge about the DSML,

they can use the DSML as starting point to understand the structure of the system the

model-based analysis reasons about. We also assume that using a modular and layered

architecture with a �xed set of rules and constraints for model-based analyses will improve

the understandability, reducing the complexity of a model-based analysis.

Research Question 3.3

Does using an isomorphic structure, which corresponds to the reference architecture

for modelling languages, improve the reusability of model-based analyses?

The monolithic structure of a model-based analysis does impede the reuse of analysis

features in other model-based analyses, according to Heinrich et al. [Hei+21b]. When the

use of language features in a model-based analysis is not separated, i. e., one component

of the model-based analysis has dependencies on all language features, the bene�t of

having feature con�gurations is irrelevant, because all language features must be used no

matter the con�guration. The modular structure of a DSML developed according to the

reference architecture of Heinrich et al. allows the reuse of dedicated features [HSR19].

Transferring the modular structure of a modular DSML to a monolithic model-based

analysis introduces a modular feature structure to the model-based analysis. Thus, by

introducing a modular structure to a model-based analysis, the reusability of analysis

features should be improved.

3.2 Requirements for the Reference Architecture for
Model-based Analyses

Based on our research questions, we derive requirements for a reference architecture

for model-based analyses that supports evolvability, understandability, and reusability.

Before we can derive these requirements, we introduce an application scenario based on

an illustrative example model-based analysis. We use this application scenario and the

research questions to derive the requirements for reference architecture for model-based

analyses.

45

3. Decomposition and Composition of Model-based Analyses

Language
Feature analyses optional

Analysis
Component mandatory

SimuLizar

runtimestate

seff repository composition

simulated
component

software
composition

behaviour
seff

Figure 3.1.: Illustrative Example of the Dependency Structure of SimuLizar and the Palladio Component

Model (PCM)

We use the Palladio Simulator as an illustrative example in our application scenario. As part

of the Palladio Approach [Reu+16], the Palladio Simulator allows software architects to anal-

yse a software architecture based on a model. The Palladio Simulator allows analysing such

an architectural model regarding di�erent quality properties, such as performance [BKR09],

reliability [Bro+12], maintainability [Ros+17], and security [Sei+22; WHR22]. The cen-

tral component of the Palladio Approach is the Palladio Component Model (PCM). The

PCM is a DSML that allows the software architect to specify and to document software

architectures. For our application scenario, we focus on the performance analysis part

of the Palladio Simulator. The performance simulator of the Palladio Simulator is called

SimuLizar. SimuLizar does interpret the PCM to derive performance information about

the system under study; however, due to the size and deprecated language features of

the PCM, SimuLizar does not support all features of the PCM. SimuLizar is a historically

grown model-based analysis, with the typical deterioration of the internal quality over

time. In our chapter about the case studies (Chapter 6), we present more details regarding

SimuLizar and other historically grown model-based analyses. In this section, we focus

on the shortcomings of SimuLizar that in�uence its evolvability, understandability, and

reusability.

Project Structure Erosion: The model-based analysis SimuLizar has been continuously

extended and maintained since 2013. The continuous development resulted in software

corrosion [Par79]. Over time, more and more features were added to SimuLizar. Figure 3.1

illustrates the dependency structure of SimuLizar and the PCM. All dependencies on the

PCM are bundled in one component of SimuLizar, depicted as a white rectangle. A simpli-

�ed version of the features of the PCM is depicted as grey rectangles with rounded corners.

In its �rst version, SimuLizar was only capable of performing design-time performance

analysis for self-adapting systems.

46

3.2. Requirements for the Reference Architecture

Uncontrolled Dependency Growth: The features with dependencies on language fea-

tures were added to the same component of SimuLizar, where all dependencies on the

language features are located, resulting in a model-based analysis that has to ship every

feature, depends on a language feature, even if the language feature is not required. The

increasing amount of features resulted in a growing, monolithic structure that led to

uncontrolled dependency growth.

Feature Drift: This monolithic structure deteriorated evolvability, understandability, and

reusability. As a direct consequence, evolvability decreased, and feature drift occurred. The

term “feature drift” refers to the process by which developers add unnecessary features to

a system for the end user. Due to feature drift, users will need help determining whether

the simulated DSML features impact the analysis outcome.

We use these shortcomings (i. e., project structure erosion, uncontrolled growth of de-

pendencies, and feature drift) to derive the following requirements for the reference

architecture for model-based analyses:

• Requirement R1 (Improved Evolvability): The �rst requirement is that a model-

based analysis that is developed according to our reference architecture for model-

based analysis has better evolvability than a model-based analysis that is not devel-

oped according to our reference architecture. We assume that when the analysis

architect applies the reference architecture to a monolithic model-based analysis, the

evolvability of the model-based analysis improves. We determine the evolvability of

a model-based analysis as good when the model-based analysis has a low complexity,

a low coupling, and a high cohesion (cf. Section 7.2).

• Requirement R2 (Non-intrusive Extension): When the analysis architect extends

features of a model-based analysis, and they have to make changes to the existing

analysis features, other analysis features might be a�ected by such an extension.

Such intrusive extensions hamper the evolvability of model-based analysis, because

the e�ort to add an extension needs to be clari�ed. Also, due to the dependencies

of a more general feature on an extension, the feature can not be reused without

the extension. To avoid such intrusive and unnecessary changes to existing analysis

features, analysis developers should not alter the components they want to extend.

Therefore, we require that the reference architecture for model-based analysis must

guarantee that components of the remaining model-based analysis have no depen-

dencies on the extension. Extensions that do not alter the analysis features they

extend are non-intrusive. Non-intrusive extensions avoid the detrimental e�ects of

such dependencies.

• Requirement R3 (Consistent Dependencies): According to our �rst hypothesis,

we assume that the analysis architect uses the structure of the DSML to derive the

structure of model-based analysis. If the features of the DSML and the features of the

model-based analysis are not aligned, changes to the DSML can have unpredictable

e�ects on the model-based analysis. Features are not aligned when features and

feature dependencies of the DSML are di�erent from the features and feature de-

pendencies of the analysis. In the end, the DSML and the model-based analysis are

47

3. Decomposition and Composition of Model-based Analyses

inconsistent. Such inconsistencies occur when the dependencies of the DSML and its

corresponding model-based analysis are not aligned. These inconsistencies make

it di�cult for the analysis developer to determine the e�ort required to adapt the

model-based analysis to changes made in the DSML. It is impossible to predict the

development time of a feature, leading to a delayed feature release and the delay of

additional features. As a result, we require that the feature structure of reference

architecture for model-based analysis is consistent with the feature structure of its

corresponding DSML.

• Requirement R4 (Need-speci�c Reuse): Due to the monolithic nature of SimuLizar

and model-based analysis in general, it is hard for analysis developers to reuse

features of one model-based analysis in another. Also, analysis developers need to

understand a model-based analysis and its dependency structure as a whole to extract

components. It is especially tedious when the analysis developer must understand

all available features, although they do not want to reuse all these features of the

model-based analysis. These unnecessary dependencies can confuse and require

additional e�ort to comprehend by the analysis developer. Thus, we require that

the reference architecture for model-based analyses allows the analysis architect to

select analysis features for reuse without a�ecting other analysis features.

• Requirement R5 (Need-speci�c Use): When developing tools for composing a

model-based analysis, the developer of those tools needs to have a solid understand-

ing of the DSML as well as the model-based analysis that is based on DSML. The

complexity of creating such a model-based analysis presents a barrier to creating

useful tools. Additionally, the �nal model-based analysis may incorporate features

that are not used by the analysis that the tool user is performing. To address this

shortcoming, we require that the reference architecture allow the tool developer to

selectively use components of the model-based analysis based on their demands.

3.3 Decomposition of Model-based Analyses

For decomposing a monolithic model-based analysis, we assume that the models used

by the analysis follow a DSML. We also assume that the DSML is already modularised

according to the reference architecture for DSMLs by Heinrich et al. [HSR19]. This

assumption results from our Hypothesis 1 that the concepts of the modular DSML can

be transferred to the model-based analysis. In this section, we present our approach

for decomposing model-based analyses. In Section 3.3.1, we present concepts for the

modularisation of model-based analyses. To realise our modularisation concepts, we

divide the decomposition of model-based analyses into two parts. First, we introduce an

instantiation of our reference architecture for model-based analyses using the domain

of model-based quality analyses as an example. In the example, we provide a set of �ve

layers in our reference architecture (cf. Section 3.3.2). Second, we provide tools for the

analysis developer to refactor a monolithic model-based analysis into a modular model-

based analysis (cf. Section 3.3.3). We provide a set of refactoring operations to apply

48

3.3. Decomposition of Model-based Analyses

our reference architecture to existing model-based analyses. We di�erentiate between

refactorings on the class level (cf. Section 3.3.3.1) and refactorings on the component level

(cf. Section 3.3.3.2).

3.3.1 Modularisation Concepts for Model-based Analyses

We utilise feature models to represent features of model-based analyses. The feature

structure we introduced in this thesis is based on the layered reference architecture for

metamodels presented by Heinrich et al. [HSR19]. They di�erentiate language features

and language components (formerly de�ned as language module). Each language feature

and language component is placed at exactly one layer. In the context of the reference

architecture for DSMLs, a layer refers to a logical grouping of related language features and

language components. Language features and their corresponding language components

must be located on the same layer and only be placed on one layer. Although Heinrich

et al. [HSR19] do not set the number of layers for DSMLs, they propose a four-layered

reference architecture that is tailored to DSMLs for quality modelling and analysis.

We show the concepts of our extended layered reference architecture for model-based

analyses in Figure 3.2. As long as the DSML follows the reference architecture of Heinrich

et al., the following modularisation concepts can be applied to the model-based analysis

that uses the DSML for analysis. In our reference architecture, we distinguish features of

languages and model-based analyses, and components of languages and features. As in the

work of Heinrich et al., we place each feature and component at one layer. In the following

sections, we present our extended reference architecture in more detail and discuss the

reasoning behind our design decisions. In the remainder of this thesis, we refer to the

extended reference architecture as reference architecture for model-based analyses.

3.3.1.1 Use of Feature Models

We use feature models to structure the features of model-based analyses. Each node in

the feature graph represents either a feature of the DSML or a feature of the model-based

analysis. The analysis architect de�nes the feature dependencies in the feature model.

This dependency structure already restricts the dependencies at the feature level. The

dependency structure limits the possibility of the dependencies of the model-based analysis;

as a result, the complexity for the analysis component developer is limited. Additionally,

it provides guidance for the analysis component developer.

In contrast to feature modelling from, for example, the product line community, our

concept allows multiple root features to group other features. Multiple root features

are required to represent the concept of atomic analysis features and composed analysis

features. We also ban cycles in our feature models. Cycles can prevent the analysis

developers from selecting features individually, and cycles also prevent a straightforward

transition through the graph. The straightforward transition allows selecting features that

49

3. Decomposition and Composition of Model-based Analyses

Analysis FeatureAnalysis Component

Language FeatureLanguage Component

Feature Relation

Component Dependency Optional Child

Mandatory Child

ImplementsAlternative OR Layer separator req. requires

Model-based Analysis

req.

req.

req.

req.

req.

Figure 3.2.: Structure and Relations of the Reference Architecture for Model-based Analyses and DSMLs

are merely based on their feature dependencies (mandatory / optional) to more specialised

features (cf. Section 3.3.1.4).

3.3.1.2 Language Feature and Analysis Feature

Before we go into detail regarding our modularisation concepts for model-based analy-

ses, we present the language feature and language component de�nition by Heinrich et

al. [HSR19]. Heinrich et al. modularise a DSML by separating it into distinct language

features with a de�ned parent-child relation. The features represent the conceptual level

of the DSML and the model-based analysis. A language feature is the expression of a

concept without any detail regarding its technical realisation. In Figure 3.2, we depict the

language features as grey rectangles with rounded corners. The language architect creates

the language feature graph as they work on the conceptual level. The language architect

can add atomic language features or composed language features to the language feature

model. An atomic language feature models one abstraction, and a composed language

feature is comprised of atomic and other composed language features. When a language

feature represents the concerns of an analysis user, it is called a user language feature.

We map the modularisation concepts of Heinrich et al. to model-based analyses. In this

subsection, we extend the notion of language features by the notion of analysis features.

An analysis feature is a concept of the model-based analysis, e. g. an abstraction of a

system’s property to be analysed. In Figure 3.2, we depict the analysis features as white

rectangles with rounded corners. The analysis architect creates the analysis feature graph.

Regarding the creation of the feature graph, the analysis architect role is identical to the

role of the language architect. In comparison to the language feature denotation, we

50

3.3. Decomposition of Model-based Analyses

de�ne atomic analysis features, composed analysis features, and user analysis features. An

atomic analysis feature represents a concept of a system that the model-based analysis

can analyse, and a composed analysis feature comprises of atomic analysis features and

composed analysis features. Composed analysis features are required to cluster analysis

features that represent a broader concept and are always used together. A user analysis

feature is a special type of the generic analysis feature, as it represents concepts regarding

the analysis user. An analysis feature has a dependency on a language feature if it requires

the language feature for the analysis.

For the sake of comprehensibility, if we reference language features and analysis features,

respectively, we will call them feature. Dependencies between features in the same feature

graph, either the language feature graph or the analysis feature graph, are called feature
dependencies. The feature dependencies of the language feature graph determine the feature

dependencies in the analysis feature graph. The dependencies of an atomic analysis feature

are derived from the language features it analyses i. e. requires, and the dependencies of

a composed analysis feature are derived from the dependencies of the analysis features

it contains. We distinguish �rst- and second-class atomic features. An atomic feature

contained in a root feature is a �rst-class feature, and a second-class feature is only

contained transitively.

The two feature graphs are connected by the root feature that frames the model-based

analysis. This root feature is depicted as a white rectangle with rounded corners and a

dashed line as a contour. The model-based analysis represents all possible con�gurations

that can be derived from the language feature and analysis feature graph.

3.3.1.3 Language Component and Analysis Component

Heinrich et al. [HSR19] introduced the concept of language components. They require

that each language feature is implemented by a language component; thus each language

component has a implements dependency on language features. A language component

contains packages and classi�ers. Language components can have dependencies on other

language components and follow a set of restrictions (cf. metamodel module in [HSR19]).

In Figure 3.2 language components are depicted as grey rectangles.

We use the concept of language components to derive our concept of analysis components.

We require that each analysis feature is implemented by an analysis component; however,

in contrast to language components, an analysis component is a container that contains

classes, packages and especially analysis algorithms. An analysis component is realised in

source code; it also can have dependencies on other analysis components. The analysis

algorithms analyse language features; ergo, analysis features have requires dependencies

on language features. The dependencies are of a transitive nature, as only analysis features

have explicit dependencies on language features. In Figure 3.2 analysis components are

depicted as white rectangles.

51

3. Decomposition and Composition of Model-based Analyses

For the sake of comprehensibility, if we reference language components and analysis

components, respectively, we will call them component. The analysis component devel-

oper implements analysis components. We derive the dependencies on other analysis

components from the dependency structure of the analysis features. Thus, the dependency

structure must conform to the dependency structure of the corresponding features. We

do not require an identical dependency structure; the dependencies can conform directly

or transitively. Furthermore, components are not allowed to form dependency cycles

(cf. acyclic dependencies’ principle [Mar03]), as when components of a cycle are used or

changed, all other components in the cycle are a�ected. This hampers those components

that can be reused individually.

3.3.1.4 Layering

In the context of our reference architecture for model-based analyses, we de�ne a layer as a

logical grouping of features and components. A feature and its corresponding components

are located at the same layer, and features and components are only located at exactly one

layer. The number of layers depends entirely on the DSML and the model-based analysis.

Heinrich et al. recommend a maximum of four layers for DSMLs [HSR19]. We add an

additional layer to the architecture of model-based analyses (cf. Section 3.3.2). According to

the layered architecture pattern [RF20], features and components are placed in accordance

with their dependencies: Feature-required and -parent and component dependencies must

point in the same direction. To be more precise, the dependencies are only allowed to

point to the same or a more basic layer (the more abstract, the more basic the layer). The

more basic the layer is, the more on top it is located in our visual notation. More abstract

classes can be seen at the top, while inheritance / generalisation lines point up.

3.3.1.5 Relation Between Modularisation Concepts

N G

FM

Figure 3.3.: Feature and Component Relation [HSR19]. Legend see Figure 3.2

52

3.3. Decomposition of Model-based Analyses

Figure 3.3 depicts the relation of features and components. It represents no actual model-

based analysis; however, it serves as an example of an arbitrary model-based analysis. The

left graph represents the analysis component structure, and the right graph represents the

analysis feature structure. Each analysis component and analysis feature is located at one

layer; the notation of elements conforms to the legend shown in Figure 3.2.

Dependencies between analysis components are when classes, �elds, or methods of a

analysis component M depend on classes, �elds or methods of another analysis component

N. Dependencies can be, for example, the extension of a class, an aggregation of a class, or

a plain reference.

Regarding component-oriented design, Reussner et al. [Reu+16] di�erentiate requires and

provides roles. On the component level, we interpret these relations as dependencies.

When deriving dependencies from analyses, dependencies manifest as connections between

input and output [Hei+21a]. In addition to the structural input and output connection

dependencies, we derive behavioural dependencies between analysis components. By

adding events, analysis components can be coupled at a behavioural level [Koc+22]. We

model the behavioural dependencies at the component level, so our approach does not

require additional syntax. We focus on the presence and direction of the dependencies;

thus, the precise nature of the dependencies between analysis components is irrelevant at

the level of analysis components and their dependencies.

In the feature graph, the analysis features F and G are the corresponding analysis features

of the analysis components M and N. If there is a path in the feature graph from G to

F, then the dependency from N to M is considered supported. Each analysis component

dependency must be supported; otherwise, the analysis features and analysis components

are not individually reusable. For example, if the dependency of M to N is not supported,

these components are unrelated semantically. This means that the analysis feature G must

be used when the analysis feature F gets selected. If each analysis feature dependency is

supported, the analysis feature and analysis component models are conformal.

3.3.2 Layers in Model-based Quality Analyses

The layering concept shown in Figure 3.2 does represent the general idea of having layers

in model-based analyses. The analysis architect can choose an arbitrary number of layers

with an arbitrary semantics. To illustrate an instantiation of our reference architecture

for model-based analyses, we propose the layering system of our reference architecture

for model-based quality analyses. The layering system is based on the modularisation

concepts presented in Section 3.3.1. The �rst four layers of our architecture use the same

four layers as in the reference architecture for quality metamodels. We add a �fth layer;

as a result, our reference architecture for model-based quality analysis corresponds to

a �ve-layered architecture. For other types of model-based analyses, the number and

purpose of the layers can di�er; the layers are derived from the associated DSML.

Within our reference architecture for model-based analyses, we de�ne a layer as a logical

grouping of features and components. A layer consists of features and their corresponding

53

3. Decomposition and Composition of Model-based Analyses

components, and each feature and component is assigned to one layer only. The layering

restricts feature-required and -parent dependencies and component dependencies; they

must all point in the same direction. A layer represents an abstract grouping; a layer

can contain language features, language components, analysis features, and analysis

components equally. The layering only a�ects the dependency direction and grouping of

classes; the layering does not a�ect the behaviour of the analysis. Therefore, we can reuse

the four layers of the reference architecture for quality metamodels.

Furthermore, for each language feature, we have a corresponding analysis feature. Features

represent the conceptual level of the DSML and the model-based analysis. They are

expressed as a concept without technical detail. Analysis features have a dependency

on language features if they require them for analysis. The feature dependencies of the

language feature graph determine feature dependencies in the analysis feature graph. Due

to the conceptual nature of a feature, we can have the same structure of features in the

model-based analysis as in the DSML.

In addition to the layers paradigm (3.3.2.1), domain (3.3.2.2), quality (3.3.2.3), and analy-

sis (3.3.2.4) which are identical to the layers in the reference architecture for DSMLs, we

propose the experiment (3.3.2.5) as �fth layer of our reference architecture for model-based

quality analyses. Figure 3.4 depicts the �ve layers for model-based quality analyses.

Paradigm π

Domain Δ

Quality Ω

Analysis Σ

Experiment Φ

Figure 3.4.: Layering Structure for the Reference Architecture for Model-based Analyses. Legend see Fig-

ure 3.2

3.3.2.1 Paradigm Layer

The π paradigm layer is the most abstract layer in our reference architecture for model-

based quality analyses. The layer contains the building blocks of the model-based analysis,

54

3.3. Decomposition of Model-based Analyses

and it contains de�ning analysis features for reoccurring patterns of structure and be-

haviour. It does not contain any dynamic semantics; for example, in a performance analysis,

state or interfaces are speci�ed in π without specifying their usage. Features on the π
layer can reference the features on theπ layer on the DSML architecture. These references

are used for the analysis of the π features. In addition to the analysis of the π features,

theπ layer also contains basic features that are only relevant for the model-based analysis.

Due to the missing dynamic semantics, the π layer is not intended to be used without

another layer.

Dependencies on other layers are not allowed, as they would contradict the layering

principle and dependencies on more abstract layers are not possible, as π represents the

most abstract layer. The π layer can only have dependencies on features on the same

layer. It contains mostly abstract classes or interfaces, as the more concrete layers are

intended to add the dynamic semantics.

The analysis components for the π layer that the analysis developer develops must be so

generic that the analysis developer can reuse analysis components for di�erent domains.

For example, model-based analyses can share features like the speci�cation of users and

states. They are so generic that a user merely has a name, and a state has a �eld indicating

that the state is active. These features are so generic that one analysis uses these features

to analyse the behaviour of a user of a software system, and the other analysis uses

these features to analyse users in a hardware environment, for example, a production

plant. However, the analysis architect speci�es the specialisation of a feature on a more

specialised layer, for instance, the domain layer ∆.

3.3.2.2 Domain Layer

The domain layer ∆ is the �rst extension layer. It is placed after the π layer. The ∆ layer

extends the π layer by extending its abstract components. How a component is extended

depends on the underlying programming language. In Java for example, the analysis

developer extends the abstract classes and implements the interfaces of the π layer. Thus,

the analysis developer adds structure and behaviour to the model-based analysis.

The added structure and behaviour introduce domain-speci�c semantics to the model-

based analysis. For example, suppose the analysis developer wants to add the two domains

of software systems and hardware systems (e. g., production plants). In that case, they can

extend the features introduced in Section 3.3.2.1. The analysis developer adds a software

user, a software state, a hardware user, and a hardware-state features. This way, the

model-based analysis is able to analyse software and hardware systems.

The bene�t of separating the domain-speci�c features into hardware- and software-speci�c

features is that if the analysis developer does not need to analyse hardware systems, the

hardware-speci�c features can be ignored without a�ecting the software-speci�c features.

However, the domain layer is explicitly not restricted to one domain.

55

3. Decomposition and Composition of Model-based Analyses

Although the ∆ layer can contain atomic features, the analysis architect must consider

whether they should place such a feature at the π layer. Alternatively, they could extract

the fundamentals and place them at the π layer. The remainder remains at the ∆ layer.

An model-based analysis can consist of only the π and ∆ layer. The analysis user runs it

to reason about structural and behavioural properties. However, the analysis developer

can extend the analysis by adding features for modelling or analysing quality properties.

We recommend having π and ∆ in each model-based analysis. This allows the analysis

developer to reuse general features of a model-based analysis (π) and domain-speci�c

features (∆) for di�erent kinds of specialisations a model-based analysis can have. The

next layer illustrates the analysis of quality attributes, and it is such a specialisation a

model-based analysis can have.

3.3.2.3 Quality Layer

The quality layer Ω extends the model-based analysis by analysing quality properties.

Quality properties are, for example, the performance or reliability of a system. The security

and safety of a system are also quality properties. The Ω layer contains the main reason

why a model-based analysis exists, as it is crucial to determine the quality of a system

before spending resources implementing such a system. Thus, the analysis developer adds

the analysis that determines the quality of a modelled system to the Ω layer.

The added quality analysis features extend the model-based analysis by quality-speci�c

semantics. For example, if the analysis developer wants the user to be able to analyse

the performance and reliability of a system, they can utilise the domain-speci�c features.

Before implementing the analysis components, the analysis developer must determine

whether the quality analysis can be applied to each domain or whether the quality analysis

is speci�c to a certain domain. For example, considering the performance analysis of

software and hardware systems, the concept of queues can be applied to both domains.

Thus, the analysis developer extracts a common feature that the performance analysis of

both domains can use, and then they can develop the individual components. They place

the individual components also on the ∆ layer.

The bene�t of separating the quality-speci�c features is that if the analysis developer only

needs to analyse a certain quality attribute, the remaining quality analysis features can be

ignored. This �exibility allows the Ω layer to be explicitly not restricted to one quality

property.

3.3.2.4 Analysis Layer

The analysis layer Σ extends the model-based analysis by analysis features that are relevant

for a concrete analysis execution. Part of the Σ layer is the speci�cation of con�guration

data of the model-based analysis. Additionally, this layer holds the information of the

runtime state and the speci�cation of model-based analysis output. For example, if a

56

3.3. Decomposition of Model-based Analyses

reference to a model attribute is needed for a reachability analysis, the value range and

the reference to the attribute are located on Σ.

The features on the Σ layer utilise the features of the Ω layer. For example, the performance

and reliability analysis could be speci�ed separately; however, if the analysis developer

needs to combine both features to perform a performability analysis. The analysis developer

de�nes a feature that interprets the runtime state and the output of these two features to

determine the performability of the analysed system.

The features located at the Σ layer represent an experiment that the analysis could run.

Such an experiment is represented on a structural level. The experiment runs are located

at the Φ layer.

3.3.2.5 Experiment Layer

The experiment layer Φ extends the model-based analysis by analysis features that repre-

sent the experiment runs. If, for example, the model-based analysis provides setting seed

values for an experiment, the analysis developer places the seed value feature on the Φ
layer. More examples of features at the Φ layer are setting the initial states, termination

conditions or the sequence of actions; other features of the analysis are invoked. Especially

the sequence of actions is relevant when setting up more than one experiment runs. The

Φ layer allows creating of reproducible experiments that contain a sequence of analysis

runs.

3.3.3 Refactoring Operations for Modularising Model-based Analyses

In this section, we present the refactoring operations we provide for analysis developers.

The refactorings were �rst published in our technical report [KHR22a]. These refactoring

operations are meant to apply our reference architecture to an already existing model-

based analysis. The model-based analysis and its corresponding DSML must ful�l two

preconditions. The �rst and most important precondition is that the DSML already con-

forms to the reference architecture for metamodels [HSR19]. This means that the DSML is

already separated into layers, the language features and language components are cycle

free, and the dependencies point only to a more generic layer. The second precondition is

that the model-based analysis uses the DSML or instances of the DSML to reason about a

system.

We divide the refactoring operations into refactorings on the analysis class level and

refactorings on the analysis component level. The analysis class level refactorings consist

of operations that split or merge classes, �x dependency cycles and change the dependency

direction of classes. The analysis component level refactorings consist of operations

that split (horizontally or vertically) or merge components, and that extract features and

components, if needed.

57

3. Decomposition and Composition of Model-based Analyses

The refactorings we present are based on the DSML refactorings of Heinrich et al. [HSR19]

and OOP refactorings [Fow18]. The DSML structure (i. e., number of layers, features and de-

pendencies between features) serves as a template for the model-based analysis design (see

Figure 3.2). We apply the refactorings presented in this section to transform the monolithic

model-based analysis into the modular structure of our reference architecture.

The �gures in this section heavily rely on the legend depicted in Figure 3.5. Rectangles

that resemble a folder symbol represent components, and regular rectangles represent

classes. In order to distinguish between language and analysis elements, the language

elements are coloured grey, and the analysis elements are coloured white. If an element

represents both, it is �lled half grey and half white.

Reference Inheritance

Extension

Dependency

Refactoring
Operation

Analysis Class

Analysis ComponentLanguage Component

Language Class

Counts for both, Language and Analysis

Figure 3.5.: Legend for the Notational Elements Used to Depict the Refactoring Operations

3.3.3.1 Analysis Class Refactorings

The analysis class refactorings are the foundation to modularise an existing, monolithic

model-based analysis. These refactorings provide a toolset for the analysis developer to

adapt the structure of a model-based analysis to the structure of its corresponding DSML.

It is not always necessary for the analysis developer to use all refactorings to accomplish

a modularised model-based analysis. The refactorings are, per de�nition, not intended to

change the behaviour of the refactored system [Fow18]. We distinguish four refactoring

operations on the class level: class split, class merge, breaking of dependency cycles, and

dependency inversion.

C
E

C

L2

L1
L1

L2

C1

C2
S

L2

L1

(i) (ii)

Figure 3.6.:Class Split [KHR22a]

58

3.3. Decomposition of Model-based Analyses

Class Split Splitting a class is a common refactoring operation in software development.

The class split refactoring operation is where class elements, such as attributes and methods,

are extracted and transferred into one or more new classes [Fow18]. In language- and object-

oriented design, the goal of the class split refactoring is to separate di�erent concerns into

separate classes to improve the comprehensibility of individual classes. The refactoring

operation class split is shown in Figure 3.6. We require to split a class when it has

dependencies on di�erent language components. The analysis class C has dependencies

on the two language components L1 and L2. Our approach assumes that the underlying

language is already modularised and partitioned. Therefore, if possible, a class should be

split when it has more than one language component as a dependency. Another problem is

that after the refactoring, we must be able to distinguish whether the language components

are placed on one layer or distributed over several layers in the architecture. When a class

is split according to the structure of the language components, the refactored classes must

be distributed according to their dependencies in the same architecture layers. The analysis

developer can choose from two class splits. The �rst class split is shown in Figure 3.6

(i), the analysis class C, that needs to be split up, is extended by a new analysis class E.

Also, E takes properties of C; for this, the required properties are factored out from C to E.

Incoming dependencies remain on C.

From a purely syntactical view, attributes, methods, references, containments, and in-

heritance can be factored out on the class level without complications. In the case of

model-based analyses, it is often impossible to split a class according to the language struc-

ture. An analysis feature might need di�erent language features to perform an analysis.

However, the structure of the DSML requires that the analysis feature has no dependency

on the language feature i. e., has no knowledge about the language feature. However, given

the structure of the language, it is not always possible to separate a class as demanded

by the reference architecture of the metamodel. This can occur if, for example, language

components from di�erent layers are used with dependencies on each other. Besides

the elements that can be cleanly separated from a class and the components that do not

have dependencies on the language component, we propose encapsulating the inseparable

elements in a class and then placing them in the most speci�c layer. As it is shown in

Figure 3.6 (ii), a specialisation analysis class S is introduced, which uses the second split

class refactoring as shown in Figure 3.6 (i), but the incoming dependencies are shifted to S.

In the worst-case scenario, the classes cannot be fully split so that S holds dependencies of

L1 and L2.

Class Merge Like the class split, the class merge is also a common refactoring operation

that originates in object-oriented design [Fow18]. A class merge transfers attributes and

methods of a class to another class. In the context of our reference architecture for model-

based analyses, a class merge is required when two classes have dependencies on the same

language component.

The class merge is intended to combine concerns that are distributed across di�erent

classes. The class merge refactoring is shown in Figure 3.7. We di�erentiate between

a clean class merge Figure 3.7 (i) and a class merge with a rest Figure 3.7 (ii). When a

59

3. Decomposition and Composition of Model-based Analyses

C2

C1
L C L

(i)

C1
L

C2
(ii)

Figure 3.7.:Class Merge [KHR22a]

language component of the DSML has scattered dependencies, i. e., types of a language

component are referenced by multiple classes and levels, the class merge can be used

to merge these dependencies. A class merge is performed by extracting attributes and

methods of one class and then inserting them into another class. The result is an extended

target class with attributes and behaviour of the source class. Figure 3.7 (i) shows the

class merge, both classes can be combined to one class when both classes depend on only

language classes of the same language component. C1 and C2 have dependencies on the

same language component L; the merge combines C1 and C2 into one new class, C which,

as a result, shares the dependencies on the desired language component L.

When the classes that should be merged also depend on language classes from di�erent

language components, only the attributes and methods are allowed to be moved when

they depend on language classes of the same language component L. Figure 3.7 (i) shows

the class merge with a rest. The attributes and methods of C2 that had dependencies on

the language component L were moved to C1. The remaining attributes and methods of C2
that have dependencies on other language components were not moved. If the classes C1
and C2 were merged like shown in Figure 3.7 (i), we would have produced a scenario that

requires a class split as shown in Figure 3.6.

C1 C2
C1

C2
E

(i)

…
C1 C2

…
(ii)

Figure 3.8.: Breaking Dependency Cycles between Classes of the Model-based Analysis [KHR22a]

Breaking Dependency Cycles As stated in Section 3.3.1.1, a model-based analysis that

is modelled according to our reference architecture must be cycle free. If the bad smell

cyclic dependencies, known from object-oriented design, occurs, the following refactoring

operations show how developers can break such cycles. Dependency cycles prevent easy

extension of software systems [Par79], and according to Fowler [Fow01], dependency

60

3.3. Decomposition of Model-based Analyses

L1 A1
L1 A1

D

L1 A1

D

Figure 3.9.: Breaking Dependency Cycles between Classes of the Model-based Analysis and its associated

DSML

cycles make a system harder to understand, thus, harder to maintain. How to refactor

dependency cycles between classes of the model-based analysis is shown in Figure 3.8.

We assume that the DSML does not contain any dependency cycles [HSR19], and if our

reference architecture for model-based analyses is applied, the model-based analysis

should also not contain any dependency cycles. Due to the co-dependency of model-based

analyses and DSMLs, we distinguish two types of dependency cycles. The �rst type occurs

between classes of the model-based analysis (see Figure 3.8). The second type occurs

between classes of the model-based analysis and the DSML (see Figure 3.9).

First, we explain how dependency cycles between analysis classes can be broken up. As in

language- and object-oriented design, we distinguish two refactoring operations to break

dependency cycles. On the one hand, the previously presented class split can be used; on

the other hand, dependency inversion is also a valid option to break dependency cycles.

The initial state is that C1 and C2 depend on each other. The outgoing dependency of C1
is factored out into E if they contributed to the cycle. As a result, C1 is split, and C1 has

no dependency on E; thus, the cycle no longer exists see Figure 3.8 (i). The dependency

inversion is described in the following section. Dependency inversion is one technique to

tackle dependency cycles, as exempli�ed in Figure 3.8 (ii).

The language must have no dependencies on the analysis; otherwise, changes in the

analysis can trigger changes in the language. One DSML can be used by multiple model-

based analyses; as a result, a change in one model-based analysis could have a cascading

change e�ect on all remaining model-based analyses that are associated with the DSML.

Fixing a dependency cycle between language and analysis classes is depicted in Figure 3.9.

To break up dependency cycles between language (L1) and analysis classes (A1), the

analysis developer and the language developer must split the analysis class A1 to separate

the elements the language class depends on (D) from the remainder of the class (A1). If

possible, the elements of D can be added to a language feature, alternatively, D becomes

part of the generated language component.

Dependency Inversion According to Martin [Mar03], abstractions (A) must not depend

on speci�cs (S); instead, speci�cs must depend on abstractions. This statement is known

as the dependency inversion principle. It originated in the object-oriented design and was

later adapted by Heinrich et al. to suit the design of DSMLs [HSR19]. To tackle the problem

when dependencies violate the constraints of our reference architecture, we present a

refactoring solution that transfers the reference architecture for DSMLs to model-based

analyses. The general refactoring for dependency inversion is illustrated in Figure 3.10,

61

3. Decomposition and Composition of Model-based Analyses

A

S

A

S

(i)

A

S

A

S

(ii)

Figure 3.10.:Dependency Inversion [KHR22a]

dependency inversion by inheritance is shown in Figure 3.11, dependency inversion by

reference is shown in Figure 3.12, and dependency inversion by bidirectional reference

and containment is shown in Figure 3.13.

A

S

A

S

A

N
S

A

S
(i) (ii) (iii)

Figure 3.11.:Dependency Inversion – Inheritance [KHR22a]

In Figure 3.11, we present the dependency inversion by inheritance refactoring. If S is

a specialisation of A, the inheritance is in the wrong direction and must be inverted;

especially when A is a language class. Occurrences of S and A in the analysis code must be

switched Figure 3.11 (i). Inverting the inheritance means that concepts that are relevant

for A are moved from S to A. The inheritance can be removed entirely if a feature is

implemented by both A and S, as both implement the same functionality. Alternatively,

a subclass can be introduced to invert the inheritance. The new subclass (N) of A and S
is introduced Figure 3.11 (ii). Dependencies must be redirected to either A, S, or N; for

this, incoming dependencies of A and S are used. If S is not a specialisation of A but

if it is part of a �rst-class analysis component, the inheritance is removed and replaced

by a reference from S to A Figure 3.11 (iii). All these refactorings have in common that

when A is a language feature, the language model must be changed due to the problematic

dependency from the DSML to one analysis.

In Figure 3.12, we present an approach to invert a dependency by refactoring a reference.

A reference can be inverted using a class split, this type is presented in Figure 3.12 (i). A

new class E is introduced when inverting the reference. E replaces the reference from A
to S. This option should be chosen if S is part of a �rst-class analysis component (i. e.,

an instance of S does not depend on an instance of A). This refactoring is applicable for

refactoring language and analysis classes, as it �xes the dependency direction for both.

If S is part of a second-class analysis component, which extends the functionality of A
but is no further extended, a simple extends relation, in the case of an object-oriented

62

3.3. Decomposition of Model-based Analyses

A

S

A

E
S

A

S

A

S

N
…

(i) (ii) (iii)

Figure 3.12.:Dependency Inversion – Reference [KHR22a]

language inheritance, can be implemented Figure 3.12 (ii). However, if S needs to be

further specialised, introducing a common superclass N is advised Figure 3.12 (iii). The

third refactoring is only applicable for analysis classes, as A would still depend on a class

of a model-based analysis. When A and N are language classes, we recommend consulting

the refactoring operations for DSMLs proposed by Heinrich et al. [HSR19].

A

S

A

S

A

S

A

S

Figure 3.13.:Dependency Inversion – Bidirectional Reference and Containment [KHR22a]

A bidirectional reference between two classes A and S is the simplest form of a dependency

cycle (see Figure 3.8, and a special case of Figure 3.12). The bidirectional nature implies

a redundant reference, which is usually detected by an IDE like IntelliJ or Eclipse. To

remove one redundant reference, the parts in S that are referenced by A can be moved

from S to A, see Figure 3.13 (i). Containment references can be removed by extracting

an extension class S representing the desired feature. That way, features can be strictly

separated, see Figure 3.13 (ii). In both cases, if a language class depends on an analysis

class, the developer must consider the possible cascading changes that a�ect all associated

model-based analyses when modifying the DSML.

3.3.3.2 Analysis Component Refactorings

In addition to our refactoring operations on the class level, we present refactoring op-

erations that target analysis components instead of classes. What analysis developers

need for the class-level refactorings can be transferred to the component level. Instead of

performing single, small refactorings on the class level, when an analysis developer has to

adjust whole components, the refactoring can get tedious, depending on the number of

classes in a component. Therefore, we present �ve additional refactoring operations on

63

3. Decomposition and Composition of Model-based Analyses

the component level: horizontal split, vertical split, merge, extension extraction, and feature
support extraction.

M N M N

(i) (ii)

C

M N

C

M N

(iii) (iv)

[]

Figure 3.14.:Horizontal Split [KHR22a]

Horizontal Split An analysis component must be split horizontally by the analysis ar-

chitect if parts of an analysis component can be used independently of each other (cf.

Single Responsibility Principle [Mar+03]). An initial indicator to split an analysis compo-

nent is when an analysis component has dependencies on multiple language components.

Figure 3.14 (i) shows the potential best-case outcome; the components are unrelated. In

Figure 3.14 (ii), one of the analysis components is dependent on the other. In Figure 3.14

(iii), the potential worst case is shown. The new components M and N may still share

the original component’s common part C. The parenthesis around C indicates that this

component does not necessarily exist. All the analysis components may be mutually

dependent. The dependencies of M and N must be adjusted according to the dependencies

of the analysis feature they implement. The adjustment of the dependencies must be

made by the analysis architect and the analysis component developer in Figure 3.14 (iv)

the components M and N dependent on a common component C. The common analysis

component C also indicates an additional feature, which is an addition to the analysis

feature graph.

Vertical Split The vertical split is illustrated in Figure 3.15. The analysis architect per-

forms this refactoring if the layer to which an analysis component could be assigned is

unclear. An indicator to vertically split an analysis component is when said component

has dependencies on language components on di�erent layers. A horizontal split is rec-

ommended if the language components are on the same layer. However, if the language

64

3.3. Decomposition of Model-based Analyses

Figure 3.15.:Vertical Split [KHR22a]

components are located on di�erent layers, the analysis architect divides the analysis

component so that each resulting analysis component can be assigned to one layer. The

analysis component developer must split classes if necessary. After the refactoring, each

resulting analysis component is assigned to its layer by the analysis architect. The resulting

architecture could have dependencies that point from an abstract to a more speci�c layer. If

this is the case, the analysis component developer must perform dependency inversion.

Figure 3.16.:Merge [KHR22a]

Merge Figure 3.16 shows the component merge refactoring. A merge refactoring could

be advisable when more than one analysis component depends on the same language

component and if the analysis components are located on the same layer. The analysis

developer checks whether the dependent language features have a mandatory feature

relation or if the analysis components form a dependency cycle. If one of these constructs

can be found in the architecture, the analysis architect should consider merging those

features and their analysis components. There may be various dependency constellations

between the merged analysis components, like one-directional or bidirectional. Merging

analysis components could also be advisable if they have no dependencies but classes of

an analysis component that are abstract function as ubiquitous superclasses.

Extension Extraction The analysis architect uses the extension extraction refactoring if

an analysis component contains content that does not belong to the feature it implements.

An indicator for refactoring is if the optional content cannot be used independently. The

extension extraction refactoring is depicted in Figure 3.17 – the analysis architect factors out

the optional content of M into a new analysis component C. The remainder of M is denoted

as M’. The classes of component M must be split if they should be located in N but contain

optional properties that belong to M’. The analysis component developer also does this

refactoring. If a class has dependencies on multiple language components, which cannot

65

3. Decomposition and Composition of Model-based Analyses

M
M’

C

M’

C’

M’

C’

M’

C’

M’

C’

(i) (ii)

(iii) (iv)

Figure 3.17.: Extension Extraction [KHR22a]

be factored out, the class must be put in the most specialised analysis component. The

following step reverses all dependencies from elements of M’ to C. Incoming dependencies

on C must be considered for dependency inversion. The result of the dependency inversion

is shown as outgoing dependencies of C’. The refactoring can be performed if the analysis

components have no dependencies on any language component. However, if M has

dependencies on multiple language components, each dependency should be refactored

into one dedicated analysis component (see Figure 3.17 (ii)). If the optional content of N’
represents a dedicated analysis component that has no representation in the language,

N’ must be refactored into a dedicated analysis component with no dependencies on the

language (see Figure 3.17 (iii)). If it is reasonable to separate optional content, C’ but the

dependencies on one language component cannot be separated Figure 3.17 (iv) must be

applied.

3.4 Composition of Model-based Analyses

In this section, we present composition operators that allow the analysis architect to

compose model-based analysis features and components. The composition operators were

�rst published in our technical report [KHR22a]. We developed the composition operators

presented in this section to work with our reference architecture for model-based analyses.

As a result, a model-based analysis must follow our reference architecture so that the

composition operators in this section can be applied to it. After modularising an existing

model-based analysis with the refactoring operations presented in Section 3.3.3, the model-

based analysis is separated into features. These features can be used to create or extend

other model-based analyses by composing them with each other. The concepts presented

66

3.4. Composition of Model-based Analyses

in this chapter are heavily inspired by feature composition in general and the feature

composition by Apel et al. [Ape+08] in particular (cf. Section 2.3, Feature Composition).

AFAC

Model-based Analysis

AF

Model-based Analysis

AC

Analysis Feature
Analysis Component

Implements

Component Dependency

Analysis Component
as Terminal Node

Figure 3.18.: Transformation of Our Modularisation Concept to a Feature Structure Tree [KHR22a]

The composition operators that we will present operate on the structure of both the analysis

feature and analysis component, as depicted in Figure 3.18. Besides the introduction

sum of Apel et al. [Ape+08], we de�ne another operation, the Introduction Di�. The

introduction di� is needed to remove nodes from an FST. The introduction di� operator 	

is also an operation over the set of I , which removes atomic introductions; the result is

again a non-atomic introduction or an empty FST (ξ). Introduction di� 	 over the set of I
of introductions forms a non-commutative idempotent monoid (I , 	, ξ). The introduction

di� is non-associative and non-commutative. By means of non-associativity, without the

order of operations, the calculation is performed from left to right:

(f 	 д) 	 h , f 	 (д 	 h)

For j = ξ follows i 	 j = i .

A modi�cation speci�es how a feature a�ects another feature during composition and

how features are composed. Modi�cations consist of queries and changes. The queries

are for fetching the a�ected components to apply a set of changes to achieve the desired

composition. Their associated analysis techniques are composed by selecting sub-analysis

from the feature model. A modi�cation m has a query q, which selects a set of atomic

introductions, and a change c , which will be applied to the query resultm = (q, c). The

modi�cation application operator � is applied to the set M of modi�cations and the set I
of introductions. A modi�cation can return either the input introduction or a changed

introduction. The modi�cation is associative and non-commutative. The identity is de�ned

as follows:

ζ �m = m � ζ — ζ is a class of empty modi�cations.

67

3. Decomposition and Composition of Model-based Analyses

Modi�cations are not idempotent.

We identi�ed six modi�cation operations to aid the development of model-based analysis.

Each operation utilises the previously introduced composition operators. We distinguish

between two atomic modi�cation operations (add and delete) and four composite modi�ca-

tion operations (move, replace, merge, and split). The analysis developer proposes possible

change operations, which the analysis architect can then utilise.

Add a node to the graph: The add operationmadd�(f1⊕ f2) combines two features, f1 and

f2. The modi�cation operationmadd fetches the added features and their parent nodes. If the

added features are components, the modi�cation operation determines which extension

dependency has to be used. The modi�cation can be detailed, e. g. which extension

mechanism to use on which class, or it can be generic. Additionally, the modi�cation does

not need to be automated; manual steps can also be part of such a modi�cation.

Delete a node of the graph: The delete operation mdelete � (f1 	 f2) removes feature

f2 from feature f1. The mdelete fetches all child features of f2 and removes them from

the graph. Also, themdelete modi�cation operation removes dependencies concerting the

deleted features. This ensures that the graph no longer contains features representing a

specialisation of a feature that no longer exists. Furthermore, if extends dependencies are

no longer viable, components will be modi�ed.

Move a node of the graph: The move operationmmove �((f1	 f2)⊕ f2)moves the existing

feature f2. The move operation is a composite modi�cation operation that �rst deletes the

features f2 that must be moved. Then, the feature f2 is added to the new destination in

the graph. The modi�cation operation mmove adapts the dependencies of the features and

components a�ected by the move operation.

Replace a node of the graph: The replace operationmreplace � ((f1	 f2) ⊕ f3) replaces the

feature f2 with feature f3. The replace operation is also a composite modi�cation operation,

as the move operation. After removing the feature f2, the feature f3 replaces the feature f2
by adding it to the tree. The modi�cation operationmreplace adapts the dependencies in

the component nodes in the graph. If the new node replaces a feature without replacing

the dependent component,mreplace must ensure the compatibility between the feature and

component node.

Merge twonodes of the graph: Themerge operationmmerдe�(f1	 f2)merges the features

f1 and f2. The merge operation also is a composite modi�cation operation; it utilises the

delete operation to remove the feature f2 from the graph. Themmerдe modi�cation operation

moves the internals of feature f2 to feature f1, and all dependencies from the feature f2
are moved to the feature f1.

Split a node: The split operationmsplit � (f1 ⊕ f2) splits feature f1 in the features f1 and f2.
The split operation also is a composite modi�cation operation; it adds a new feature f2 to the

graph that inherits internals and dependencies of the feature f1. Themsplit modi�cation

operation moves this internals of feature f1 to the new feature f2, with dependencies

getting also modi�ed.

68

3.5. Application Process

3.5 Application Process

In this section, we present processes to apply our reference architecture for model-based

analyses in di�erent scenarios. We di�erentiate three scenarios in the development of an

model-based analysis where an analysis developer can apply our reference architecture

where we consider the state of the DSML and the state of the model-based analysis together.

The �rst scenario is the modularisation of an already existing model-based analysis (i).

The second scenario is the development of an model-based analysis from scratch (ii). The

third and last scenario is the extension of an model-based analysis (iii).

The steps di�er regarding the development stage of the DSML and the model-based analy-

sis. In the �rst scenario (i), the analysis developers already have access to implemented

analysis components that analyse the DSML. We assume that the DSML is already modu-

larised according to the reference architecture for metamodels; ergo, we assume that the

feature model already exists. Thus, the analysis developers must modularise the analysis

components according to the feature model. The refactoring operations for modularising

a model-based analysis are tailored to object-oriented software; therefore, the process for

the �rst scenario is applicable as long as the DSML follows the reference architecture for

DSMLs and the model-based analysis is implemented in an object-oriented programming

language.

In the second and third scenarios, the analysis developer creates the DSML and analysis

feature model before implementing (ii) or extending (iii) the analysis components. The

composition operators for implementing dedicated exchangeable and extendable analysis

components rely on the inheritance principle of object-oriented software. As a result, these

processes also require that the model-based analysis will be (scenario (ii)) or is (scenario

(iii)) implemented in an object-oriented language. These scenarios extend the application

processes for DSML modularisation and composition [HSR19].

Although the processes restrict the analysis developers in their freedom on how to design,

implement, and extend model-based analyses, the processes also have their bene�ts. The

processes provide a structure for the analysis developers that they can follow, which

uni�es the design, development, and extension process [HSR19]. Due to the processes, the

evolvability and reusability of the model-based analysis are improved.

This section is structured as follows: First, we present the process to modularise an existing

model-based analysis in Section 3.5.1. Second, we present the process to develop a model-

based analysis from scratch in Section 3.5.2. Finally, we present the process to extend a

model-based analysis in Section 3.5.3.

3.5.1 Modularisation of an Existing Model-based Analysis

The following applies to all processes; the analysis requires a corresponding DSML mod-

ularised according to the reference architecture for metamodels. We also assume that

a feature model of the language exists. We start with the modularisation of an already

69

3. Decomposition and Composition of Model-based Analyses

existing, monolithic, model-based analysis. The analysis developers’ goal is to adapt the

monolithic model-based analysis to our reference architecture. The steps in these processes

are not performed purely sequentially; therefore, we will discuss where it is advisable to

repeat certain steps.

To create these processes, we modularised the software performance analysis SimuLizar

and extracted our �ndings. We published a technical report in [KHR22a] for more details

regarding the refactoring. SimuLizar also serves as a case study in this thesis (cf. Section 6.2).

The analysis SimuLizar is not the only model-based analysis to which we applied our

reference architecture; we selected case studies from di�erent domains to have a variety

of model-based analyses (cf. Section 6.1). Thus, we can state that our process is applicable

to a variety of object-oriented model-based analyses.

To determine the modularisation potential, we de�ne the following criteria: The �rst

question an analysis developer has to answer is: Does the model-based analysis resemble

the structure of the corresponding DSML? They can answer it by identifying features of

the DSML in the model-based analysis, and the dependencies of these features can be

identical (i. e., direction, type, and connection of features). The analysis developer requires

information about the features so that they can create the feature model of the model-

based analysis. Ideally, they can place the features already on a layer in the reference

architecture. The analysis developer can utilise our refactoring operation of Section 3.3.3

and the composition operators of Section 3.4 to �x the dependency structure, breaking up

cycles and placing the analysis features and analysis components on the right layer. The

more the features and dependencies resemble the structure of the DSML, the less e�ort has

the analysis developer to adapt the model-based analysis to the reference architecture.

Figure 3.19 depicts the steps of modularising a monolithic, model-based analysis. The

process contains eight steps in total, one prerequisite step and seven steps for the modu-

larisation of model-based analyses. In the remainder of this section, we present the details

of each process step. For each step, we present the roles that are required for the step, a

detailed description, and the results.

3.5.1.1 Prerequisite: Modular DSML

Roles Involved: Language Architect, Language Component Developer

Each model-based analysis has a corresponding DSML that it can analyse. Before the

analysis developer can modularise an existing model-based analysis according to our

reference architecture, we require that the DSML follows the reference architecture of

Heinrich et al. [HSR19]. If the DSML is not modularised, the language architect must

refactor the DSML according to the reference architecture for metamodels. We recommend

refactoring the DSML before modularising the model-based analysis, as it requires less

e�ort to change a metamodel than to change the code-base of a model-based analysis.

70

3.5. Application Process

Prerequisites

Monolithic
Analysis Project

Modular
DSML Project

1: Decomposition into Components

2: Creating the Feature Model3: Dependency Alignment

4: Decomposition Refinement 5: Extracting Commonalities

7: Feature Model Forming 6: Feature Refinement

.

.

.

.

.

Figure 3.19.:Modularisation – Process Overview

3.5.1.2 Step One: Decomposition into Layers

Roles Involved: Analysis Architect, Analysis Component Developer, Language Architect,

Language Component Developer

Figure 3.20 depicts the detailed process of this step. For the visualisation, we use the

Business Process Modeling Notation 2 (BPMN2). The analysis architect checks the doc-

71

3. Decomposition and Composition of Model-based Analyses

Figure 3.20.:Modularisation Step One: Decomposition into Layers

72

3.5. Application Process

umentation and the source code of the model-based analysis to identify its features. To

identify the features of the model-based analysis, they can consider the package or module

structure of the source code. Then they identify the features that correspond to the fea-

tures of the DSML. If the DSML has features that the model-based analysis is missing, the

analysis architect can decide whether to add the feature to the model-based analysis or to

leave the feature out. When they decide to add the missing feature, the analysis architect

speci�es the feature so that the analysis developer can implement the corresponding

analysis component. If the model-based analysis has features that are not part of the

DSML, the analysis architect decides, together with the language architect, to add the

feature to the DSML. When they decide to add the feature to the DSML, the language

component developer must implement the language component. The result is a set of

analysis features and analysis components.

The next step for the analysis architect is to identify the problem of the accumulation of

dependencies to identify the analysis components that must be split up. This problem

occurs when an analysis component has dependencies on multiple analysis features of

di�erent layers. The analysis component developer can split these analysis components

up by using the horizontal split refactoring (cf. Section 3.3.3.2). The analysis component

developer performs the horizontal split refactoring until all accumulation of dependencies

is gone, or the remaining analysis components cannot be split up further. Finally, the

analysis component developer assigns the analysis components to their designated layer.

In SimuLizar, for example, the RDSEFFSwitch class, one of the biggest accumulation of

dependencies, were in the interpreter component of SimuLizar. We split the RDSEFFSwitch
into separate classes that we then could place on π , ∆, and Ω.

Result: As the analysis component developer did not �x any other problems, the result

is a set of highly interconnected analysis components that are placed at their designated

layer. The dependencies can point in the wrong direction (i. e., from a generic to a more

speci�c layer), and the dependencies can form cycles. These errors will be addressed in

the following steps.

3.5.1.3 Step Two: Creating the Feature Model

Roles Involved: Analysis Architect

In the second step, the analysis architect creates the feature model for the model-based

analysis. First, they populate the feature model with the features that are also present in

the feature model of the DSML; however, they exclude the features discarded in Step One:
Decomposition into Layers Section 3.5.1.2. Then, they check which analysis component

does not have a corresponding analysis feature. For each analysis component without

an analysis feature, they create a feature in the feature model; however, they ignore the

dependencies of the analysis components. As stated in Section 3.5.1.2, the dependencies of

the analysis components may not conform to our reference architecture. Thus, the analysis

architect models the feature dependencies according to our reference architecture.

73

3. Decomposition and Composition of Model-based Analyses

In our case study SimuLizar, the analysis contains an analysis component that supports

the recon�guration of an architecture model [KHR22a]. We declared for this analysis

component a new feature, which does not have a representation in the PCM. We place

this new feature in accordance with the constraints of our reference architecture and its

dependencies.

Result: The result is a feature model of the model-based analysis corresponding to the

feature model of the DSML. The feature model also contains new features that are exclusive

to the model-based analysis. The dependencies of the analysis features conform to our

reference architecture; however, the dependencies of the analysis components can violate

the constraints of our reference architecture (i. e., dependency cycles or wrong dependency

direction).

3.5.1.4 Step Three: Dependency Alignment

Roles Involved: Analysis Architect, Analysis Component Developer

Figure 3.21 depicts the process of this step. In the third step, the analysis architect checks

the dependencies of the analysis components. They identify where the dependencies

are aligned, which means they check whether a dependency at the analysis feature level

is present at the analysis component level. They also check whether a dependency is

missing at the analysis component level; i. e., the feature model has a dependency that is

missing at the analysis component level. The analysis architect also checks the direction

of the dependencies, whether they are aligned with the analysis feature dependencies, and

whether they conform to the constraints of our reference architecture. A good starting

point for checking the dependencies is at the most speci�c layer of the model-based

analysis, as the most speci�c analysis components have the least number of incoming

dependencies.

Aligning the dependencies requires that the analysis architect and the analysis component

developer looping through the following steps until the dependencies at the analysis com-

ponent level are aligned and conform to our reference architecture. The steps are for one

pair of analysis components and one dependency between these analysis components:

1. The analysis architect checks whether the two classes that are responsible for the

dependency are placed at the layers so that the dependency between these classes

points from the specialised to the more generic layer. If that is not the case, they

move the class at the more generic layer into the analysis component at the more

speci�c layer.

2. If they encounter a class that does not belong in one of the analysis components, they

determine an analysis component to which the class belongs. When they cannot

�nd a �tting analysis component, they move the class to a new analysis component.

This new analysis component can also host other classes that are extracted during

this process.

74

3.5. Application Process

Figure 3.21.:Modularisation Step Three: Dependency Alignment

75

3. Decomposition and Composition of Model-based Analyses

3. If they cannot move a class due to various reasons, they perform the dependency
inversion refactoring (cf. Figure 3.10) of the dependency.

4. For a missing dependency, the analysis architect can move a class that does not

belong to another analysis component but has the dependency to the desired analysis

component. They omit this step if there is no available class until a class with the

desired dependency is identi�ed.

Each step requires the analysis architect to update the feature model accordingly.

In the context of the model-based analysis SimuLizar, we had to split the RDSEFFSwitch
class in Step One. This split, however, created a cyclic dependency of three classes. To

break the cycle, we introduced a builder class that inverted the dependency at one class;

thus, we could break the cycle.

Result: The result is a modular model-based analysis that is free of dependency cycles

and wrong dependency directions. Thus, all dependencies, either between analysis com-

ponents on di�erent layers or analysis components on the same layer, are aligned with

the dependencies in the feature model.

3.5.1.5 Step Four: Vertical Decomposition

Roles Involved: Analysis Architect, Analysis Component Developer

Although the refactored model-based analysis is modular after Step Three, the analysis

architect cannot reuse the analysis features of the model-based analysis for other quality

properties or domains. If the model-based analysis still contains the accumulation of

dependencies that are located on exactly one layer, the analysis features and the analysis

component that form the blob are not reusable individually. Therefore, the analysis

component developer splits the a�ected analysis components to remove the accumulation

of dependencies. Step Four is done to improve the reusability of the model-based analysis.

In this step, the analysis architect also assigns analysis of the analysis components to the

same layer as their corresponding analysis feature.

In the context of the model-based analysis SimuLizar, the components resulting from the

RDSEFFSwitch split still contained the accumulation of dependencies. Therefore, we had

to split the components further to resolve this problem.

Result: The result of this step is a model-based analysis that contains features that an

analysis architect can reuse for di�erent domains and for the analysis of di�erent quality

properties.

76

3.5. Application Process

3.5.1.6 Step Five: Extracting Commonalities

Roles Involved: Analysis Architect, Analysis Component Developer

In the �fth step, the analysis architect re�nes the π layer. Until this step, the paradigm

layer only contains features that are present in both the language feature model and the

analysis feature model. The remaining analysis features in the ∆ layer can also contain

analysis-speci�c features that are so generic that they are relevant for other model-based

analyses, regardless of their domain. Therefore, the analysis architect identi�es analysis

features that are contained in the layers above π but are fundamental for model-based

analyses.

If the analysis architect must refactor an analysis component (e. g., move classes out of

the component) and the a�ected classes are not abstract, they create a new abstract class.

That abstract class contains the fundamentals of the analysis component. The analysis

component developer moves the remaining parts (attributes, methods) into the concrete

class. This concrete class inherits from the new abstract class. By performing these steps,

the domain-speci�c parts of a analysis component remain on the ∆ layer. As before, after

each performed refactoring, the analysis architect updates the analysis feature model.

In the context of the model-based analysis SimuLizar, we did not have to introduce more

generic components to the π layer. The reason is a tailored DSML that also considers the

analysis-speci�c features.

Result: This step results in a more tailored π layer and a more reusable ∆ layer, as the

generic features are decoupled from the domain features. However, analysis components

and classes could be too �ne-grained. An indicator for too �ne-grained analysis compo-

nents is the high number of classes that are contained in an analysis component or that

the size of some classes is small. We do not provide a counting metric to determine small

analysis components or classes; however, in the following step, we provide an indicator to

identify analysis components or classes that might not be ideally sized.

3.5.1.7 Step Six: Feature Refinement

Roles Involved: Analysis Architect, Analysis Component Developer

Until this step, the focus of the analysis architect was to modularise the model-based

analysis and to align the DSML and analysis feature models. The analysis architect

identi�es too �ne-grained analysis components and classes in this step. Therefore, they

search for scattered dependencies. The scattering of dependencies occurs when a feature

has incoming dependencies of di�erent analysis components. Often, the analysis architect

cannot avoid that an analysis feature has incoming dependencies of multiple analysis

components. Suppose these components, however, are located on the same layer, and they

also do not depend on multiple features. In that case, the analysis component developer

can perform the refactoring class merge to reduce the number of scattered dependencies.

77

3. Decomposition and Composition of Model-based Analyses

In the context of the model-based analysis SimuLizar, the merge of classes or analysis

components was not required.

Result: This step results in a more concise model-based analysis with analysis components

with a speci�c purpose.

3.5.1.8 Step Seven: Feature Model Forming

Roles Involved: Analysis Architect, Analysis Component Developer, Language Architect,

Language Component Developer

After creating and refactoring the feature model, the feature model must be created by

the analysis architect. The initial step is to create a root feature. Then, the steps Step Six:
Feature Grouping (Section 3.5.2.7), Step Seven: Parent Feature Identi�cation (Section 3.5.2.8),

and Step Eight: Child Feature Type Determination (Section 3.5.2.9) from the following

Section 3.5.2 are performed by the analysis architect.

Result: After �nishing this step, the result is a modular model-based analysis that conforms

to our reference architecture for model-based analyses.

3.5.2 Developing a Model-based Analysis from Scratch

In this section, we present the application process to create a new model-based analysis.

The following steps are intended to be executed iteratively. To express the variability, we

use feature models of the model model-based analyses (cf. Section 3.3, Apel et al. [AK09],

and Czarnecki et al. [Cza+12]). In some cases, it can be bene�cial for the analysis architect

to backtrack to a previous step, for example, if they overlooked a feature or they identi�ed

a feature that they can now split.

Figure 3.22 depicts steps in the process of developing a model-based analysis from scratch.

The process contains eleven steps in total; steps six to eleven are combined because they

would depict only small variations of the picture shown in step �ve. In the remainder of

this section, we present the details of each process step. For each step, we present the roles

that are required for the step, a detailed description, and the results after performing a

step.

3.5.2.1 Step One: Language Feature Transfer

Roles Involved: Analysis Architect

For this process to work, we assume that for the model-based analysis, we want to develop,

a corresponding DSML already exists. Furthermore, we require that the DSML corresponds

to the reference architecture for metamodels (cf. Heinrich et al. [HSR19]). If a DSML

exists, but the DSML is not modularised, we advise the language architect and language

developer to modularise the DSML before proceeding with this process.

78

3.5. Application Process

Prerequisites

Modular
DSML Project

1: Language Feature Transfer

2: Identification of Analysis Features3: Reusing Analysis Components

4: Creating the Feature Model 5: Introducing Layers

Steps 6 to 11
.

.

.

.

.

Figure 3.22.:New Model-based Analysis – Process Overview

In the �rst step, the analysis architect creates the analysis feature model. First, they add

the features to the feature model that also exist in the language feature model. They also

adopt the layers and feature dependencies from the language feature model.

Result: The result is an analysis feature model that mirrors the language feature model.

79

3. Decomposition and Composition of Model-based Analyses

3.5.2.2 Step Two: Identification of Analysis Features

Roles Involved: Analysis Architect, Analysis User

In the second step, the analysis architect identi�es features that exist exclusively in the

model-based analysis. Therefore, they work together with the analysis user, or if no

analysis user is available, the analysis architect estimates their concerns. The analysis

architect should elicitate the requirements after the feature model of the DSML is completed

to avoid unnecessary changes to the analysis feature model. If it is not avoidable for

the analysis architect because the DSML and model-based analysis development start

simultaneously, the potential e�ort to implement the changes are limited. In this starting

phase, no code is written; thus, the analysis components do not exist. If this step is visited

in a later development stage, the e�ort to implement the changes is higher, as the analysis

components are surely a�ected by the changes.

Result: The result of this step is an analysis feature model that contains analysis-speci�c

features.

3.5.2.3 Step Three: Reuse of Analysis Components

Roles Involved: Analysis Architect

In the third step, the analysis architect identi�es already existing analysis components.

Therefore, they can utilise our approach to identify already existing analysis components

by comparing the structure and behaviour of analysis components (cf. Chapter 5). We

do not distinguish between in-house analysis components or publicly available analysis

components.

The analysis architect selects an analysis feature and searches the available analysis com-

ponents for a component that matches the feature speci�cation. If the feature was speci�ed

with our DSL to specify the structure and behaviour of analysis features (Chapter 5), the

analysis architect can use our toolchain [KR22] to �nd matching analysis components

automatically. The analysis architect assigns the found analysis components to their

corresponding analysis feature in the analysis feature model.

Result: The result of this step is an extended feature model that contains reusable analysis

components.

3.5.2.4 Step Four: Creating the Feature Model

Roles Involved: Analysis Architect

In the fourth step, the analysis architect creates the feature model. Therefore, they create

the root node of the feature model and then label it. Usually, the root node gets labelled

after the name of the model-based analysis. In the case of SimuLizar, we called the root

node simply SimuLizar. Then, the analysis architect adds the identi�ed features from Step

80

3.5. Application Process

Two: Analysis Feature Identi�cation (Section 3.5.2.1) to the feature model. After they added

these features, they added the analysis-speci�c features identi�ed in Step Two: Analysis
Feature Identi�cation (Section 3.5.2.2).

Up to this point, the analysis architect added only features to the feature model without

considering the relationship between these features. To add the relationship between two

features A and B, we de�ne the following rules:

Application of Requires Relation

• if a reused analysis component that implements A has a dependency on a reused

analysis feature that implements B

• if analysis feature A is an extension of analysis feature B

• if analysis feature A is dependent on the content of analysis feature B

Application of Excludes Relation

• if analysis feature A prohibits analysis feature B or vice versa

As we prohibit cycles of requires-relations, the analysis architect has to break these cycles

up (e. g., by using the dependency inversion).

Result: The result of this step is a feature model of the model-based analysis.

3.5.2.5 Step Five: Introducing Layers

Roles Involved: Analysis Architect

The analysis architect introduces layers to the feature model in the �fth step. Therefore,

they assign each feature to a single layer by sticking to the constraints of our reference

architecture. In this step, they omit the π layer (cf. Step Six: Paradigm Extraction). To

distribute the features, the analysis architect must follow these steps:

1. The analysis architect assigns analysis features that also have representations in the

language to the same layer.

2. To extract features that are not relevant to the current layer, they create a new analysis

feature containing irrelevant parts. They assign to the current layer the original

analysis feature. The architect handles the newly generated, unassigned analysis

feature when the following layer is modularised. They declare a requires-relation

from the new analysis feature to the original one.

3. To conform to the layering, and the speci�ed dependency direction of the reference

architecture, they must reverse the feature dependencies of the more basic layers to

the analysis features of the current layer.

Result: This step results in a feature model where the features are separated into layers

while the π layer is still empty.

81

3. Decomposition and Composition of Model-based Analyses

3.5.2.6 Step Six: Extracting the Paradigm Layer

Roles Involved: Analysis Architect

In the sixth step, the analysis architect �lls the remaining empty π layer. Therefore, they

have to decide whether a analysis feature represents a fundamental feature of model-based

analyses. They also can create new analysis features and place them on the π layer. For

each feature on the π layer, they must add requires relations from features of the ∆ layer

if they depend on the new analysis features.

Result: This step results in a feature model where all layers are populated.

3.5.2.7 Step Seven: Grouping of Features

Roles Involved: Analysis Architect

In the seventh step, the analysis architect groups analysis features that share concepts

or properties. For example, analysis features can share types, structural abstractions or

behaviour. Therefore, the analysis architect does model a logical grouping of such features.

A hard restriction is that the analysis architect can only group features that are located on

the same layer. If they want to group analysis features of di�erent layers, they �rst have

to move the analysis features to the same layer.

The analysis architect groups features by introducing a new feature. This new feature is

then declared as a parent for each analysis feature in the group. The analysis architect also

adds alternative and OR conditions to the grouping. In this step, they also add excludes

relations to the features. For each excludes relation, they must ensure that an alternative

feature selection exists.

Result: The result of this step is a partially connected feature model that contains alterna-

tive and OR sets. The feature model also contains excludes relations.

3.5.2.8 Step Eight: Parent Feature Identification

Roles Involved: Analysis Architect

In the eighth step, the analysis architect identi�es the analysis features on theπ layer that

directly relates to the feature model’s root node. The indicators for the analysis architect

to identify such analysis features are:

• A composed analysis feature contains atomic analysis features that are fundamental

to the analysis. In the context of the analysis SimuLizar, such a feature would be a

simulation-type feature.

• A composed analysis feature contains atomic analysis features that are shared by

analyses. In the context of the analysis SimuLizar, such a feature would be the

de�nition of a time feature that is used throughout the analysis.

82

3.5. Application Process

• An analysis feature has no outgoing feature dependencies

The analysis architect then identi�es the parent features for the remaining analysis features.

An incoming requires-relation can identify the parent. When one feature extends another,

they de�ne a parent relationship from the extending feature to the extended feature. The

parent relationship always replaces an existing dependent relationship between the two

features. A parent relation, such as the requires-relations, must not refer to a more speci�c

layer.

Result: The result of this step is that the analysis features of the π layer are now con-

nected.

3.5.2.9 Step Nine: Adding the Remaining Dependencies

Roles Involved: Analysis Architect, Analysis Component Developer, Language Architect,

Language Component Developer

In the ninth step, the analysis architect connects the remaining analysis features in the

feature model by determining the child features in the feature model. In Step Seven: Feature
Grouping (Section 3.5.2.7), the analysis architect already connected some analysis features.

For the remaining features, the analysis architect determines the parent features. They

mark each parent feature as mandatory. The root analysis feature is the only feature in the

feature model that has no parent feature. Dependencies that cross theπ layer must be OR

sets; otherwise, the analysis features of the π layer could be selected without a analysis

feature of the next layer. As each analysis feature of theπ layer is abstract or an interface,

the analysis would not be usable. The OR set ensures that each analysis feature of the π
layer is selected with at least one child of the next layer. Dependencies that cross other

boundaries must be optional; otherwise, the next layer is mandatory.

Result: The result of this step is a fully interconnected feature model.

3.5.2.10 Step Ten: Implementing the Features

Roles Involved: Analysis Architect, Analysis Component Developer

In this step, the analysis component developer implements the analysis components

according to the feature model that the analysis architect developed in the previous steps.

Not every analysis feature has a corresponding analysis component; for example, the root

node and the parent node created to group features are merely containers to host the

model-based analysis (root node) or a logical group of analysis features.

The analysis component developer can add new dependencies while implementing the

components. When adding new dependencies, the analysis component developer must

adhere to the constraints of our reference architecture. The analysis architect then must

update the feature model accordingly.

83

3. Decomposition and Composition of Model-based Analyses

If the analysis component developer notices that an analysis component requires multiple

language features for an analysis, they create an analysis component for each language

feature. The analysis component developer then introduces an indirection. They create an

additional analysis component that references the other analysis components that depend

on the language feature.

Result: The result of this step is a analysis component model with corresponding analysis

code.

3.5.2.11 Step Eleven: Revision and Refinement

Roles Involved: Analysis Architect, Analysis Component Developer

In this �nal step, the analysis architect has a modular model-based analysis that corresponds

to our reference architecture. Until this step, the analysis architect and the analysis

component developer aligned the structure of the model-based analysis to its corresponding

DSML. To �nalise the modularisation of the model-based analysis, they can still make

changes to the analysis feature model. These changes are mostly done to re�ne the

model and the code. The analysis architect can use the insight gained by the analysis

component developer during the implementation of the analysis components for further

improvement.

Result: After �nishing the last iteration, the result is a newly developed modular model-

based analysis that conforms to our reference architecture for model-based analyses.

3.5.3 Extending a Model-based Analysis

In this section, we present the application process to extend an already existing model-

based analysis. Therefore, the model-based analysis that is extended must conform to our

reference architecture. The steps are intended to be executed sequentially; however, if

necessary, the analysis architect can backtrack no previously executed steps.

Figure 3.23 depicts the steps of developing a model-based analysis from scratch. The

process contains �ve steps in total. In the remainder of this section, we present the details

of each process step. For each step, we present the roles that are required for the step, a

detailed description, and the results.

3.5.3.1 Step One: Identification of Analysis Features

Roles Involved: Analysis Architect, Analysis User

In the �rst step, the analysis architect investigates the goal of the planned extension and

identi�es analysis features that are required by the extension but are not yet part of the

model-based analysis. They can use the concerns of the analysis user to identify new

analysis features for the model-based analysis. Alternatively, if the DSML has new features,

84

3.5. Application Process

Prerequisites 1: Identification of Analysis Features

2: Reusing Analysis Components3: Extending the Feature Model

4: Implementing Analysis Features 5: Revision and Refinement

.

.

.

.

.

Monolithic
Analysis Project

Modular
DSML Project

!
!

< />

< />

Figure 3.23.: Extending a Model-based Analysis – Process Overview

the analysis architect decides whether to add the new language features to the model-based

analysis.

Result: This step results in a set of new analysis features that are required for a planned

extension of the model-based analysis.

3.5.3.2 Step Two: Reusing Analysis Components

Roles Involved: Analysis Architect, Analysis Component Developer, Language Architect,

Language Component Developer

In the second step, the analysis architect identi�es already existing analysis components to

implement the new analysis features. Therefore, they can utilise our approach to identify

already existing analysis components by comparing the structure and behaviour of analysis

components (cf. Chapter 5 and [Koc+22; KR22]). We do not distinguish between in-house

analysis components or publicly available analysis components.

85

3. Decomposition and Composition of Model-based Analyses

The analysis architect selects one of the new analysis feature and searches the avail-

able analysis components for a component that matches the feature speci�cation. If the

feature was speci�ed with our DSL to specify the structure and behaviour of analysis

features (Chapter 5), the analysis architect can use our toolchain [KR22] to automatically

�nd matching analysis components. The analysis architect assigns the found analysis

components to their corresponding analysis feature in the analysis feature model.

Result: The result of this step is an extended feature model that contains reusable analysis

components.

3.5.3.3 Step Three: Extending the Feature Model

Roles Involved: Analysis Architect

In the third step, the analysis architect extends the analysis feature model by the newly

identi�ed features. If the feature corresponds to a language feature, they name the new

analysis feature accordingly. Also, the analysis architect places the new analysis feature in

the same layer with the same dependencies as their counterpart. New analysis features

with no representation in the DSML must be placed as described in Section 3.5.2.5 Step
Five: Layering. The dependencies are modelled following Section 3.5.2.8 Step Eight: Parent
Feature Identi�cation and Section 3.5.2.9 Step Nine: Adding the Remaining Dependencies.

Result: The result of this step is an extended feature model with its necessary dependen-

cies.

3.5.3.4 Step Four: Implementing the Remaining Analysis Features

Roles Involved: Analysis Architect, Analysis Component Developer

In the fourth step, the analysis component developer implements the new analysis compo-

nents according to the feature model that the analysis architect extended in the previous

steps (cf. Step Ten: Feature Implementation Section 3.5.2.10).

The analysis component developer can add new dependencies while implementing the

components. When adding new dependencies, the analysis component developer must

adhere to the constraints of our reference architecture. The analysis architect then must

update the feature model accordingly.

Result: The result of this step is an analysis component model with corresponding analysis

code.

86

3.6. Technical Contribution

3.5.3.5 Step Five: Revision and Refinement

Roles Involved: Analysis Architect, Analysis Component Developer

In this step, the analysis architect can make changes to the analysis feature model. These

changes are mostly done to re�ne the model and to use the insight gained by the analysis

component developer during the implementation of the analysis components. They can

return to the �rst step to iterate over the steps. Especially when, during the development

of the extension, the requirements change due to new insights (e. g., better performance

or new language features). Furthermore, to re�ne the extension, the analysis architect and

the analysis component developer can exchange or modify reused analysis components to

adapt to the changed requirements.

Result: After �nishing the last iteration, the result is a modular model-based analysis with

an extension that conforms to our reference architecture for model-based analyses.

3.6 Technical Contribution for the Analysis and the
Refactoring of Model-based Analyses

In this section, we present our tooling that aids the analysis architect and the analysis com-

ponent developer to analyse and refactor model-based analyses. Our tooling is separated

into an Application Programming Interface (API) that provides interfaces for analysing

and refactoring model-based analyses and a User Interface (UI) reference implementation

that allows the analysis architect and the analysis component developer to access the

analysis and refactoring capabilities of our tooling. We implemented the UI as a Command

Line Interface (CLI). We named our tool Refactor Lizar and the reference implementation

Refactor Lizar CLI. First, we present the analysis part of Refactor Lizar in Section 3.6.1.

Second, we present the refactoring capabilities of our tool in Section 3.6.2. The reference

implementation of Refactor Lizar can be found on GitHub [KWc].

3.6.1 Analysis Library – Refactor Lizar

We implemented the analysis part of Refactor Lizar as a Java library. The library is

available on GitHub [KWb] or Maven Central [KWa]. In this section about Refactor

Lizar, we will focus on the analysis capabilities that the analysis architect can utilise to

identify the parts of the model-based analysis that are not conforming to our reference

architecture. We di�erentiate between issues that result from the feature and component

structure of the model-based analysis and its corresponding DSML, and issues that result

from constraints of our reference architecture. First, we present in Section 3.6.1.1 the

identi�cation and refactoring of the accumulation of dependencies of one class on multiple

analysis features.

87

3. Decomposition and Composition of Model-based Analyses

3.6.1.1 Accumulation of Dependencies Detection

The accumulation of dependencies occurs when multiple language features are used in

one analysis component or one analysis class. In our previous work [Hei+21b], we provide

insights into the Palladio Simulator, where we derived problems that occurred during the

development of the Palladio Simulator. We identi�ed the accumulation of dependencies as

one of the problems that occurred during the development of the Palladio Simulator. In

order to �nd accumulated of dependencies, the analysis architect must provide the path

to the DSML and the path to the model-based analysis code. The model-based analysis

must be written in Java 17 or older in order for Refactor Lizar to be able to analyse the

model-based analysis. The analysis result is an analysis report that contains a list of

the a�ected language types and a�ected analysis components. If the analysis architect

needs a more detailed report, Refactor Lizar can also provide the a�ected classes in its

report. If these analysis components are located on multiple layers, the analysis architect

must merge these analysis components and place them on the same layer as the language

feature.

In the following Chapter 4, we analyse reoccurring patterns that negatively a�ect the evolv-

ability and reusability of model-based analyses. More details regarding the accumulation

of dependencies can be found in Section 4.2.4.4 – Rebellious Modularity.

3.6.1.2 Detection of Scattered of Dependencies

The accumulation of dependencies occurs when a type of a language feature is used in

multiple analysis components. In our previous work [Hei+21b], we provide insights into

the Palladio Simulator, where we derived problems that occurred during the development

of the Palladio Simulator. We identi�ed the scattering of dependencies as one of the

problems that occurred during the development of the Palladio Simulator. In order to

�nd a scattering of dependencies, the analysis architect must provide the path to the

DSML, and the path to the model-based analysis code. The model-based analysis must

be written in Java 17 or older in order for Refactor Lizar to be able to analyse the model-

based analysis. The analysis result is an analysis report that contains a list of the a�ected

language types and a�ected analysis components. If the analysis architect needs a more

detailed report, Refactor Lizar can also provide the a�ected classes in its report. If these

analysis components are located on multiple layers, the analysis architect must merge

these analysis components and place them on the same layer as the language feature.

In the following Chapter 4, we analyse reoccurring patterns that negatively a�ect the

evolvability and reusability of model-based analyses. More details regarding the scattering

of dependencies can be found in Section 4.2.4.2 – Degraded Modularity.

88

3.6. Technical Contribution

3.6.1.3 Layer Violation Detection

A layer violation occurs when dependencies of an analysis component point from a generic

to a more speci�c analysis component or if a dependency skips a layer. Another type of

layer violation is when an analysis feature is located on a di�erent layer as a corresponding

analysis component. In order to �x this problem, the analysis architect must either invert

the dependency (if it points in the wrong direction) or introduce a new analysis component

in between the skip. If the location of an analysis feature and an analysis component are

not the same, the analysis architect �x this smell by moving either the analysis feature of

the analysis component to the right layer. The layer identi�cation of analysis components

requires further annotation by the analysis developer, while the layer identi�cation of

referenced DSML types is made automatically. To help the analysis architect identify

layer violation occurrences, Refactor Lizar provides an interface to identify this bad smell

automatically.

In order to �nd occurrences of a layer violation, the analysis architect must provide the

path to the model-based analysis code. The model-based analysis must be written in Java

17 or older in order for Refactor Lizar to be able to analyse the model-based analysis. The

analysis result is an analysis report that contains a list of a�ected analysis components. If

the analysis architect needs a more detailed report, Refactor Lizar can also provide the

a�ected classes in its report.

In the following Chapter 4, we analyse reoccurring patterns that negatively a�ect the evolv-

ability and reusability of model-based analyses. More details regarding layer violations

can be found in Section 4.2.3.

3.6.1.4 Dependency Cycle Detection

A dependency cycle occurs when the dependencies of components or classes form a

loop. Such a dependency cycle hampers the extensibility or changeability of the a�ected

elements. To �x a dependency cycle, the analysis architect has to invert the dependency

of one or more classes of the cycle (cf. Section 3.3.3.1).

In order to �nd occurrences of dependency cycles, the analysis architect must provide the

path to the model-based analysis code. The model-based analysis must be written in Java

17 or older in order for Refactor Lizar to be able to analyse the model-based analysis. The

analysis result is an analysis report that contains a list of the a�ected analysis components.

If the analysis architect needs a more detailed report, Refactor Lizar can also provide the

a�ected classes in its report.

In the following Chapter 4, we analyse reoccurring patterns that negatively a�ect the

evolvability and reusability of model-based analyses. More details regarding dependency

cycles can be found in Section 4.2.4.5, where we investigate cycles that are formed between

a model-based analysis and a corresponding DSML.

89

3. Decomposition and Composition of Model-based Analyses

3.6.1.5 Complexity, Coupling, and Cohesion Analysis

For the evaluation of our reference architecture we implemented the metric calculation

as part of Refactor Lizar. Details regarding the metrics’ evaluation and selection can be

found in Chapter 7.

The metrics calculation is inspired by an implementation of Jung [Jun16]. Before we can

analyse a model-based analysis regarding these metrics, the analysis requires the path

to the source code that will be analysed. It also needs a set of classes part of the source

code the user wants to analyse. The set of classes allows for performing multiple analyses

under the same path. Suppose the user wants to analyse all classes or a set of classes with

certain parameters in the path’s folders and sub-folders. In that case, we allow regular

expressions to specify a desired subset. Furthermore, the analysis also allows to specify

data classes in the same way as those to analyse. Data classes dilute the result, although

they contain no behaviour; therefore, we allow omitting data classes when calculating the

metrics. We store this information in two separate text �les.

To start the analysis, Refactor Lizar needs the path to �les with the observed system (classes

to analyse) and to the �le with the data classes. Refactor Lizar calculates the observed

system’s cohesion, coupling, and complexity using the metrics introduced by Allen et

al. [All02]. The results are the metrics’ values cohesion, coupling, and complexity.

3.6.2 Refactoring Library

We implemented the refactoring part of Refactor Lizar as a Java library. The library is

available on GitHub [KWb] or on Maven Central [KWa]. In this section about Refactor

Lizar, we will focus on the refactoring features that the analysis architect needs to adapt a

model-based analysis so that it conforms to our reference architecture.

The following refactoring operations are supported by Refactor Lizar:

• Move type members of classes

• Introduce inheritance

• Adapt interface extension

• Change the visibility of members

• Change the visibility of methods

• Introduce new types

Refactor Lizar utilises these refactorings to implement refactorings presented in Sec-

tion 3.3.3. Refactor Lizar supports the following refactorings:

• Class Split (cf. Section 3.3.3.1)

• Class Merge (cf. Section 3.3.3.1)

90

3.6. Technical Contribution

• Breaking Dependency Cycles (i) (cf. Figure 3.8)

• Dependency Inversion (cf. Section 3.3.3.1)

• Horizontal Split (cf. Section 3.3.3.2)

• Vertical Split (cf. Section 3.3.3.2)

• Component Merge (cf. Section 3.3.3.2)

• Extension Extraction (cf. Figure 3.17)

91

4. Bad Smells in Model-based Analyses

In software engineering, developing software that can evolve over time is crucial. Evolv-

ability is determined by the e�ort required by developers to implement changes like

extending a feature or adding new features to a software system in a reasonable time

frame. In the previous chapter, we introduced our reference architecture for model-based

analyses to improve the evolvability and reusability of model-based analyses. However,

such a reference architecture is not the philosophers’ stone to solve all evolvability and

reusability issues of model-based software systems. The reference architecture gives

the analysis developer a structure which can guide them through the development and

extension process; however, the reference architecture does not prevent issues unrelated

to the architecture of a model-based analysis. When the analysis developers, for example,

use primitive types instead of dedicated types (cf. Missing Abstraction in Section 4.2.1.2),

or when they implement analysis behaviour multiple times (cf. Duplicated Abstraction

in Section 4.2.1.1). Such problems negatively a�ect the evolvability and reusability of

model-based analysis.

In this chapter, we focus on the improvement of the evolvability and reusability of model-

based analyses that arise due to the co-evolution of model-based analyses and their

corresponding DSMLs. Model-based analyses change over time due to new or changing

requirements, and developers must adapt them to meet these requirements. The ability

to adapt to such changing requirements is hampered by problematic structures in the

source code and the architecture. Such problematic structures are called bad smells. Bad

smells impede the evolvability and reusability of software systems. The term bad smell was

introduced by Martin Fowler and Kent Beck in the late 90s [Fow99]. According to Fowler et

al. [Fow99], bad smells are structures that have the potential for refactoring. Refactorings

change the structure of the source code (i . e., move attributes or methods), but they should

not change the behaviour of the software. Bad smells are not a theoretical construct; they

are derived from the experience of developers that have gathered experience by creating

and refactoring source code [Fow18].

Fowler and Beck initially de�ned 21 bad smells that can occur in object-oriented software.

Strittmatter identi�ed bad smells for DSMLs by using object-oriented bad smells as base-

line [Str20]. He identi�ed 13 bad smells for DSMLs. Both Fowler and Strittmatter provide

strategies on how to �x bad smells.

So far, bad smells for DSMLs and source code have been considered separately, although

they are co-dependent. Model-based analyses are based on the DSML they analyse; they

need the DSML as analysis input, and changing the DSML results in changes of their

corresponding model-based analyses. It is unclear whether such bad smells exist in the

93

4. Bad Smells in Model-based Analyses

domain of model-based analyses or which bad smells originate from the co-dependency of

DSMLs and their corresponding model-based analyses. Further, as there are no dedicated

bad smells for model-based analyses and their corresponding DSML, we do not know

how these dedicated bad smells in�uence the evolvability and reusability of model-based

analyses. If, for example, a DSML and its corresponding model-based analysis form a cycle,

the impact of a change to either the DSML or the model-based analysis is unpredictable.

Such structures can result in huge costs and the potential failure of a project, as changes to

either the DSML or the model-based analysis can result in unforeseen costs and e�ort.

In this chapter, we investigate the bad smells that are unique for DSMLs and their corre-

sponding model-based analyses. First, we present our hypothesis and research questions

in Section 4.1. We present the bad smells of model-based analyses in Section 4.2. Our

approaches to identify bad smells in model-based analyses are presented in Section 4.3.

In Chapter 8, we present the evaluation of the bad smells; in Section 10.3, we present the

related work to our approach. We present the conclusion and future work in Section 11.2.

4.1 Hypothesis and Research Questions

In this section, we present the hypothesis and research questions for the second contribu-

tion of this thesis. Detecting and �xing bad smells in object-oriented software [Fow18] or

domain-speci�c modelling language [Str20] helps to improve the internal quality of the

source code or the DSML. Such an internal quality improvement reduces the software’s

complexity and the DSML. Reducing the complexity allows the analysis developer to

comprehend the model-based analysis code faster, thus positively in�uencing the evolv-

ability and reusability. Recognising what �xing bad smells means for software systems

and DSMLs, respectively, we derive the following hypothesis for bad smells in the domain

of model-based analyses:

Hypothesis 2

The evolvability and reusability of a model-based analysis will improve when �xing

bad smells that originate from the co-dependency of model-based analysis and their

corresponding DSML.

In order to determine whether our hypothesis 2 is correct, we must answer the following

research questions.

Research Question 4.1

Which bad smells arise from the co-dependency of model-based analysis and their

corresponding DSML?

To the best of our knowledge, the co-dependency of model-based analyses and DSMLs

regarding potential bad smells is unexplored. Therefore, it is unknown whether bad smells

94

4.2. Bad Smells in Model-based Analyses

even exist for model-based analyses. Before further investigation, we must identify bad

smells that exist only in the domain of model-based analyses. Having dedicated bad smells

enables analysis developers to improve the internal quality of their model-based analysis

by identifying common problems obtained from our empirical analysis. These bad smells

can also a�ect the corresponding DSML, which will positively a�ect features of the DSML.

If, for example, due to refactorings, analysis features are identi�ed that are not used in

the model-based analysis although dependencies on the corresponding language feature

exist, both features have the potential to be deleted by the language architect and analysis

architect respectively.

Research Question 4.2

How to refactor bad smells of model-based analyses and their corresponding DSML

without a�ecting the behaviour of the analysis?

Refactoring operations are intended to change the structure of the software, but the

behaviour has to remain the same. For example, changing the name of a �eld does not

a�ect the behaviour of the code. Identifying bad smells in the domain of model-based

analyses is only the �rst step to improving their evolvability and maintainability. If an

analysis developer cannot refactor the bad smells without a�ecting the behaviour of the

model-based analysis, it would require more e�ort to �x the bad smells. Therefore, we

develop refactoring operations that analysis developers can use to �x bad smells in their

model-based analyses without altering their behaviour.

Research Question 4.3

How do bad smells of model-based analyses and their corresponding DSML in�uence

the evolvability and reusability of model-based analyses?

After bad smells in model-based analyses are identi�ed and refactored, the e�ect on

evolvability and reusability is unclear. Fixing bad smells is intended to improve the internal

quality of a software system. Having a system that is easier to evolve and reuse increases

the chance that such a system will longer be maintained and, thus, can longer exist in

the market. Therefore, we analyse model-based analyses to �nd and �x the bad smells

we identi�ed when answering research question 4.1. We use the results to determine the

e�ect of the refactorings on the evolvability and reusability of model-based analyses.

4.2 Bad Smells in Model-based Analyses

In this section, we explain the bad smells we derived from bad smells in object-oriented

software and from bad smells in DSMLs. We use the classi�cation of structural design

smells by Ganesh et al. [GSS13] to distinguish four types of bad smells: Abstraction,

Encapsulation, Hierarchy, and Modularity. Figure 4.1 shows the classes and the bad smells

95

4. Bad Smells in Model-based Analyses

Classes of Bad-Smells

Encapsulation Hierarchy

ModularityAbstraction
Duplicated Abstraction

Missing Abstraction

Unused Abstraction

Deficient Encapsulation Folded Hierarchy

Missing Hierarchy

Unexploited Hierarchy

Broken Modularity

Degraded Modularity

Missing Modularity

Rebellious Modularity

Weakened Modularity

Figure 4.1.:Classi�cation of Bad-Smells in Model-based Analyses

we identi�ed for model-based analyses. The naming scheme of our bad smells is oriented

on the four types by Ganesh et al. [GSS13]. They introduce four categories of bad smells:

Abstraction: “An abstraction denotes the essential characteristics of an object that dis-

tinguish it from all other kinds of objects and thus provide crisply de�ned conceptual

boundaries relative to the viewer’s perspective.”

Encapsulation: “Encapsulation is the process of compartmentalising the elements of an

abstraction that constitute its structure and behaviour; encapsulation serves to separate

the contractual interface of an abstraction and its implementation.”

Modularity: “Modularity is the property of a system that has been decomposed into a set

of cohesive and loosely coupled modules.”

Hierarchy: “Hierarchy is a ranking or ordering of abstractions.”

In the following subsections, we present the 12 bad smells we identi�ed and speci�ed by

analysing existing model-based analyses. We named the bad smells following the naming

guidelines by Ganesh et al. [GSS13]. For each bad smell, we developed a process for the

analysis developer how to identify and refactor them. We explain the negative e�ects on

the evolvability and reusability of each bad smell and what are the circumstances in which

the bad smells are created.

We start with the class of abstraction bad smells in Section 4.2.1. Then, we present the bad

smells associated with the encapsulation class in Section 4.2.2 In Section 4.2.3, we present

the bad smells associated with the hierarchy class. Finally, in Section 4.2.4, we present the

bad smells associated with the modularity class.

96

4.2. Bad Smells in Model-based Analyses

4.2.1 Abstraction

An abstraction is a representation of the basic characteristic of an object that sets it apart

from all other types of objects and, as a result, gives clearly de�ned conceptual boundaries

relative to the observer’s viewpoint.

4.2.1.1 Duplicated Abstraction

We derive the Duplicate Abstraction smell from the object-oriented Duplicated Code bad

smell (cf. Section 2.4.1). The bad smell also looks for duplicated structures; however, unlike

the duplicate source code smell, the duplicated abstraction focuses on the dependency

structure of the model-based analysis and its corresponding DSML. Figure 4.2 depicts

Analysis Class Language Class depends on

A

C

BZ Y

Figure 4.2.:Duplicated Abstraction

the duplicated abstraction smell. The dependency structure of analysis class Z and Y are

identical, which means that the analysis and language classes have the same dependency

structure. The analysis classes Z and Y depend on the language classes A, B, and C. Both

classes are part of the same model-based analysis.

E�ect: This bad smell indicates that the analysis class that depends on a language type

is implemented multiple times. The analysis class is part of an analysis component; the

analysis component implements an analysis feature (cf. feature in Chapter 2). In the event

of a change to either the language classes or to the implementation of the analysis class,

the analysis developer must modify multiple occurrences of such an analysis class, as

they presumably implement / analyse the same feature. If the analysis developer does not

know about the other occurrences of the analysis class, the model-based analysis will have

di�erent behaviour, depending on the invoked analysis class. For example, the tool user

models a software system with the PCM (cf. Chapter 2) and the resource demand of a

component is calculated in two di�erent analysis classes. If the invocation of the analysis

classes depends on factors that are not clear to the tool user, they cannot rely on the

analysis result. Another drawback is that the e�ort required to make changes is n-times

97

4. Bad Smells in Model-based Analyses

the number of duplicated analysis classes. If not all duplicated classes are changed during

a change, the Duplicated Abstraction smell leads to divergent behaviour and, thus, to bugs

that the analysis developer must �x. Even if all occurrences of the identical analysis classes

are changed, the e�ort required to implement a modi�cation is more than if the analysis

class exists only once.

Causes: When multiple analysis classes implement the same concern, the Duplicated
Abstraction bad smell arises. When multiple analysis algorithms are merged into one

class, a single algorithm might be unusable independently of the remainder of the analysis

class. As a result, separating the algorithms of the analysis class requires more e�ort than

implementing the required algorithm in a new class. The more analysis classes implement

the same algorithms, the harder it becomes for the analysis developer to comprehend

the model-based analysis. Thus, the analysis developers have di�culty knowing each

implemented feature of the model-based analysis. This knowledge gap leads to the multiple

implementation of an analysis feature.

Identi�cation: As shown in Figure 4.2, the Duplicated Abstraction smell occurs if multiple

classes in a model-based analysis have dependencies on the same set of language classes.

For each analysis class, the analysis developer collects its dependencies and removes all

dependencies that point to language classes. Given the set of dependencies, the analysis

developer searches for classes that depend on the same language classes. In our analysis,

we set the threshold of common dependencies to two so that if classes have only two or

fewer dependencies in common, we do not count them as Duplicated Abstraction smell.

If multiple analysis classes depend on the same language class is no absolute indicator

for the Duplicated Abstraction smell, as the analysis classes could also analyse di�erent

quality properties. Therefore, the analysis developer must decide whether the identi�ed

similarity in the dependency structure holds true for the Duplicated Abstraction smell. If

two analysis classes have identical dependencies, we determine it as the occurrence of the

Duplicated Abstraction smell.

Refactoring: The analysis developer can refactor the bad smell Duplicated Abstraction by

moving the dependencies into one class (cf. Refactorings in Section 3.3.3). The simplest

way to move all dependencies is to merge all a�ected classes into one class. Alternatively,

they can split the analysis classes so that the dependencies on the language types are

clearly separated. After splitting the class, each dependency is located in a dedicated class.

The analysis developer has to consider whether to merge the classes with the dependencies

or split the classes. The analysis developer has to decide how to refactor this bad smell.

Limitations: Suppose the analysis developer merges the analysis classes. In that case, the

result can produce the bad smell Rebellious Modularity (cf. Section 4.2.4.4) or if they split

classes so that each has a dependency on one language type they produce the bad smell

Degraded Modularity (cf. Section 4.2.4.2). An automated refactoring or a clear identi�cation

of the bad smell Duplicated Abstraction is not possible. The analysis developer has to

decide which occurrence to refactor, and they have to remember that the refactoring can

result in other bad smells. However, �nding occurrences of the Duplicated Abstraction
smell can also help the analysis developer �nd duplicated code and behaviour within one

model-based analysis. Even if they do not refactor the Duplicated Abstraction smell, the

98

4.2. Bad Smells in Model-based Analyses

analysis developer can �nd classes that represent similar behaviour; thus, they are less

likely to miss classes during a change of the behaviour if it occurs in multiple classes.

4.2.1.2 Missing Abstraction

The DSML introduces types to the model that the model-based analysis then can use to

perform an analysis; however, when the language developers and analysis developers

do not work together to coordinate the development of the DSML and the model-based

analysis, the types of the DSML become incomplete. We determine a type as incomplete

when the analysis developer requires the type to have more attributes than it actually has.

A hypothetical example of an incomplete type is a delay type in a simulation that does only

contain the delay time in milliseconds. When the model-based analysis needs the delay in

another unit than milliseconds, the type could contain a transformation from milliseconds

into the desired unit. When the delay type does not contain such a transformation, every

time the delay type occurs, the analysis developer needs to transform the type manually

if the unit of the delay type changes, every occurrence of the transformation must be

adapted by the analysis developer. Suppose analysis developers cannot introduce new

types to the DSML but must represent certain concepts. In that case, they can either

introduce new types in the context of the model-based analysis or use primitive types

to represent concepts of the analysis. The Missing Abstraction smell deals with these

primitive types. For example, in the Palladio Simulator (cf. Chapter 2), the delay in the

simulation is represented by a primitive type (i. e., integer) instead of a type in the DSML.

1 scheduleDelay(Event event, int delay, int iteration, int participants) {

2 while(isValid(delay))

3 addParticipants(participants);

4 waitDelay(delay);

5 iteration++;

6 event.fire();

7 }

Listing 4.1:Using a Primitive Type (delay)

Listing 4.1 shows a simple example referring to the Palladio Simulator example. The

second parameter of the method scheduleDelay has the primitive type integer. The delay

is used in the isValid and the waitDelay methods.

E�ect: If a concept is represented by a primitive type (e. g., integer, double, or string), the

comprehensibility of the source code gets worse. For example, when an analysis developer

must invoke a method with multiple parameters of the same type, they have to consult

the documentation or, when possible, the method itself to determine which parameter

represents what. Access to the invoked method is only possible when the source code is

available. Modern IDEs assist the analysis developer in identifying the correct parameter;

however, an IDE also needs access to the source code to aid the analysis developer. In the

Palladio Simulator example, the analysis developer can introduce bugs by accidentally

setting the parameters in the wrong order if a method requires the delay and some other

integer parameters. Modern IDEs provide some assistance to avoid such errors, but current

99

4. Bad Smells in Model-based Analyses

tools cannot distinguish the parameters by their semantics. As a result of the Missing
Abstraction smell, analysis developers require more e�ort to understand the code base of a

model-based analysis. Changing concepts represented by primitive types are elaborate

when the concepts are used throughout the model-based analysis. The analysis developer

has to trace each occurrence of a variable with the primitive type. Even with the aid of

modern IDEs, the analysis developer must change each occurrence manually.

Causes: Introducing new types, especially at the beginning of the development, is reason-

able to avoid introducing dedicated types. If it is unclear whether a type is used in a broader

scope or has just a single use, the e�ort to introduce new types is not justi�able. Therefore,

it is not uncommon to use primitive types in the beginning. Changing a primitive type,

for example, from an integer to a �oating point, in the context of one class or even one

method requires low e�ort; adapting a dedicated type, on the other hand, is more complex.

The analysis developer must coordinate with the language developer the extension of the

DSML. However, the technical debt increases when such a concept is represented by a

primitive type and the concept is used on multiple occasions in the model-based analysis.

Using a primitive type is quick to implement, with the cost that method signatures can

become too complex.

Identi�cation: To identify the Missing Abstraction smell, the occurrence of a primitive

type is the �rst indicator. Such a primitive type occurs in a method signature and the

method itself. The identi�cation is based on the primitive types the language supports;

therefore, the primitive types of the language must be identi�ed. Marking every occurrence

of a primitive type would create too many false positives, as an auxiliary variable would

also be part of the result. Therefore, we need a more elaborate process to identify the

Missing Abstraction smell. An indicator for the Missing Abstraction smell is when a variable

can be traced through di�erent methods / analysis classes, and it is advisable to use a

dedicated type. Alternatively, variables that have the same name but occur in di�erent

classes and methods are also an indicator of this bad smell.

Refactoring: Fixing this bad smell requires introducing a dedicated type that represents

the concept that is represented by a primitive type. In the context of the Palladio Simulator,

the analysis developer creates a class that represents the concept of a delay. The class

must contain a constructor that requires the primitive type as an input. If the concept is

also part of the DSML, the language architect also introduces the new type to the DSML,

either as part of a feature or, if the concept is more complex, as a new feature. If necessary,

the analysis developer adds behaviour to the new class. For example, determining the

delay regarding the resource (i. e., CPU or HDD) which causes the delay. After the new

type is created, all occurrences of the primitive type must be replaced by the new type.

Limitations: Every occurrence of a primitive type can indicate a Missing Abstraction smell.

To identify the Missing Abstraction smell, manual interaction by the analysis developer is

required. The analysis developer must identify whether a primitive type that is passed

through classes and methods represents a concept. Also, just because variables share

the same name does not mean they represent the same concept. Therefore, we need the

analysis developer to decide whether the variables that share the same name represent the

same concept.

100

4.2. Bad Smells in Model-based Analyses

4.2.1.3 Unused Abstraction

In the development of DSMLs and corresponding model-based analyses, especially in

historically-grown systems, some language types are not or no longer used. The Unused
Abstraction smell corresponds to the dead code bad smell. The dead code bad smell from

object-oriented design is a widespread problem in object-oriented software [Cai+21]. We

assume each available type in a DSML impacts the analysis result when modelled. This

assumption means the tool user has the guarantee to model all types with the assumption

that the modelled elements impact the analysis outcome. If the assumption does not hold,

in the best case, the modelled types do not a�ect the result or the interpretation of the

results. However, in the worst case, the tool user interprets the results involving unused

types. As a result, they can conclude that the modelled types a�ect the result, which can

lead to wrong conclusions.

E�ect: The negative e�ect on the assumptions and the conclusions is not the only e�ect

the Unused Abstraction smell can have. A single unused language type can drastically

impact the interpretation of the results and the complexity of the created models. The

tool user has no idea that a certain type has no e�ect on the analysis, so the model they

create can contain unnecessary model elements. Also, the evolvability or reusability of a

model-based analysis is a�ected, as the impression can arise that the type must be used

in the analysis or that the type is somewhere used. Furthermore, when the number of

unused types grows, the features of a DSML contain more types than necessary, which

makes the features convoluted. As a result, the analysis developer can assume usage of

a type in the model-based analysis, which can increase the e�ort required to �x bugs or

extend the model-based analysis.

Causes: During the lifetime of a DSML, due to changing requirements, features are

added or removed. Ideally, the DSML and its corresponding model-based analysis evolve

together. However, when features are no longer needed, they are no longer maintained

and are eventually removed from the latest version of the model-based analysis. Due

to the size di�erence of DSMLs and model-based analyses, DSMLs are usually smaller;

changing a DSML compared to a corresponding model-based analysis requires less e�ort.

The complexity of a DSML does increase when a few types are added; the PCM, for

example, has 209 types [HSR19]. Compared to the 200k lines of code of its corresponding

model-based analysis, changing the DSML requires comparably less e�ort. On the other

hand, the corresponding model-based analysis feature requires more maintenance e�ort.

Nevertheless, removing unused types in a DSML will improve its complexity. In the context

of the Palladio, for example, the PCM and its analyses have many features (cf. Chapter 6

and [HSR19]). These features depend on a certain Java version and a certain version of the

Eclipse IDE. At some point, some features were no longer needed or required too much

e�ort to keep them up-to-date. As a result, these features were no longer added to the

newest version of the Palladio Simulator. If the features added new types to the PCM, they

remained in the DSML, eventually resulting in unused types.

Identi�cation: In order to identify occurrences of the Unused Abstraction smell, the

analysis developer must analyse the dependencies of the model-based analysis on the DSML.

101

4. Bad Smells in Model-based Analyses

Each language type without an incoming dependency from the model-based analysis can

be considered unused. If multiple model-based analyses are associated with one DSML,

we recommend using our reference architecture for model-based analyses (cf. Chapter 3).

According to our reference architecture, the model-based analysis is modularised according

to the language features of the DSML. Due to our feature-based approach, each model-

based analysis corresponds to one feature con�guration. A feature con�guration is a valid

subset of all available features (cf. Section 3.3.1). If we want to �nd occurrences of the

Unused Abstraction smell considering all model-based analyses, we analyse whether all

types of a feature con�guration are used in the model-based analysis. This is necessary

because if we use all features instead of a feature con�guration, all features not part of the

con�guration automatically correspond to the Unused Abstraction smell, as they are not

used in the con�guration.

Refactoring: If a language type has no incoming dependencies, the language architect

can remove the language type from the DSML. If all types of a language feature are not

used by the model-based analysis, the language architect can also consider removing the

whole feature. However, if the DSML is developed according to the reference architecture

for DSMLs by Heinrich et al. [HSR19], the language feature can remain in the feature

structure of the DSML. The modular structure and the extension mechanisms of the

reference architecture for DSMLs allow removing features for a certain con�guration. This

is relevant when multiple model-based analyses use the DSML, but not each model-based

analysis requires the feature. Removing types from the DSML a�ects the model instances;

the tool user must change their models if the unused types are used in an instance.

Limitations: The refactoring of the Unused Abstraction smell, i. e., removing the unused

language type, can have negative e�ects if the DSML has a monolithic structure. If the

type is part of a cycle or other types have dependencies on the unused type, further

changes can be required. Also, deleting a language type could render the models and

tools like editors of the DSML useless. Therefore, we recommend applying the reference

architecture for DSMLs before making any deletions. When the reference architecture for

DSMLs and the reference architecture for model-based analyses are applied, the DSML

and the model-based analysis are cycle free, and as a result, implementing changes is more

predictable.

4.2.2 Encapsulation

The process of encapsulation involves modularising the components of an abstraction that

are responsible for the behaviour and structure. The primary role of the encapsulation is

to maintain the separation between an abstraction’s interface and its implementation.

4.2.2.1 Deficient Encapsulation

Historically grown DSMLs and model-based analyses will change during their lifespan;

otherwise, their quality declines [Leh80]. Adding new features is one cause for such

102

4.2. Bad Smells in Model-based Analyses

changes. Existing features or types could sometimes be merged as they represent the

same concept. For example, the network communication part of a software and hardware

simulation was initially implemented as a static delay. In order to add more functionality,

the ISO/OSI stack gets added to the DSML, and the model-based analysis. The static delay

Analysis Class Language Class depends on

A

B

X

Y

Z

AB

X

Y

Z
Bad Smell Solution

Figure 4.3.:De�cient Encapsulation

is no longer used in the analysis; even if a static delay is modelled, the analysis maps it

onto the ISO / OSI stack analysis. As a result, both features (i. e., static delay for network

communication and the ISO / OSI stack) are always used together. When language types

are always used together, we determine it as De�cient Encapsulation smell. Figure 4.3

depicts the bad smell and its solution. For the bad smell example on the left side, the

analysis classes X, Y, and Z depend on the same language classes A and B. These same

language classes The solution in Figure 4.3 depicts the same analysis classes X, Y, and Z,

however, now they depend on a single, new language class AB. In the refactoring part

of this section, we describe how to achieve the solution to the De�cient Encapsulation
smell.

E�ect: The De�cient Encapsulation smell indicates an unnecessarily high number of

language types in the DSML size is bigger than it needs to be. The size of the DSML and

the model-based analysis increases, and the number of types that should be used together is

also increased. The size of the DSML is bigger because of unnecessary language types, and

the size of the model-based analysis is bigger because of the additional dependencies on

the language types. Thus, the complexity of both the DSML and the model-based analysis

also bigger, as the analysis developer must know the types, their interaction with each

other, and their dependencies. If the analysis developer lacks this knowledge, the potential

for errors and bugs increases, as they might use types other than the language developer

intended. In the example of Figure 4.3, the analysis classes A and B are interchangeable.

Depending on which language type is present in the model, the analysis developer has to

cover all cases, resulting in duplicated analysis code. Due to the increasing complexity,

the e�ort to implement or change new features increases.

Causes: During the lifetime of a model-based analysis, due to changing requirements, new

language types are added to the DSML. These language types can require that they are only

103

4. Bad Smells in Model-based Analyses

used together with other, maybe already existing, language types. Another cause is that the

language architect anticipates that the language types are used individually, but the model-

based analysis was no use-case for the individual language types. Furthermore, to avoid

the Missing Abstraction smell (cf. Section 4.2.1.2), the analysis developer is encouraged to

introduce more language types to the model-based analysis to avoid using primitive types.

The result is a set of language types that are always used together. Another possible cause

is that the use of language types in the model-based analysis is unclear. This can happen

when the DSML is developed independently of the model-based analysis, for example, by

another team or company.

Identi�cation: A �rst indicator for the De�cient Encapsulation smell is that analysis

classes that depend on one type A also always depend on type B. Therefore, to identify

such an occurrence, we create pairs of each type and compare these pairs to the total

number of occurrences of one type. For example, when type A occurs �ve times and the

pair of type A and B also occurs �ve times, we have a positive match. To further investigate

the usage of both types, we analyse each class that contains the pair of type A and B. We

check each method signature for the usage of both types. If the result is that both types

always occur in pairs of the signature, we determine it as De�cient Encapsulation.

Refactoring: In order to �x this bad smell, the language developer introduces a new

language type; in the case of our example depicted in Figure 4.3, they create the language

class AB. After creating the language class AB, the language developer can choose whether

they move all characteristics (i. e., attributes, relations) of the a�ected types A and B to

the new language type AB. Alternatively, they move only the attributes and relations to

the new language class that creates dependencies. Changing the DSML could invalidate

corresponding model-based analysis or editors that are based on the DSML. Therefore,

instead of altering the DSML, the analysis developer can introduce a wrapper in the model-

based analysis that encapsulates both types that form the bad smell. The result is that the

analysis classes X, Y, and Z only depend on one language class AB.

Limitations: If adapting dependent model-based analyses and editors requires too much

e�ort, �xing theDe�cient Encapsulation smell is a trade-o� decision. The language architect

and the analysis architect must decide whether or not �xing it is worth increasing the

technical debt. The more the doubled language types are used, the more complex it

becomes to distinguish the language types. The example in Figure 4.7 shows only two

redundant language types; however, if the number of these redundant types grows, the

more complex the DSML and the model-based analysis becomes. Furthermore, if changes

to the language would break existing model-based analyses or another tooling like editors,

it also a�ects the decision-making regarding changing the DSML.

4.2.3 Hierarchy

A ranking or ordering of abstractions is what we mean when we talk about hierarchies.

The bad smells Folded Hierarchy and Unexploited Hierarchy can be detected when the

model-based analysis is developed according to our reference architecture for model-based

104

4.2. Bad Smells in Model-based Analyses

analyses. In Chapter 3, we introduce our reference architecture for model-based analyses,

and in Section 3.3.1.4, and Section 3.3.2 we explain the layering of our reference architecture

for model-based analyses.

4.2.3.1 Folded Hierarchy

According to Heinrich et al. [HSR19] and our reference architecture for model-based anal-

yses, language features, analysis features, language components, and analysis components

are separated into layers, and each feature and each component is located on a single layer.

More details regarding layering of model-based analyses are presented in Section 3.3.2. An

analysis component can have dependencies on a language component of the same layer or

of a more generic layer. Both are possible; we distinguish strict layering (i. e., dependencies

A

B

Y A

BZ

Analysis Class Language Class depends on Layer Separator

regular layering strict layering

Figure 4.4.: Folded Hierarchy

are allowed only on language components of the same layer) and regular layering (i. e.,

dependencies on language component of the same or a more generic layer). Figure 4.4

depicts violations of the strict (orange, Z to A) and the regular (red, Y to B) layering. The

analysis class Y and the language class A are located on a more generic layer. The analysis

class Z and the language class B are on a more speci�c layer. The dependency from Z to A
is a violation when strict layering is applied. If we apply regular layering, this dependency

is allowed. The dependency from Y to B is not allowed in both.

E�ect: We di�erentiate the e�ects of strict and regular layering. Strict layering has a

clear dependency structure that allows the analysis developer to place and locate the

usage of language classes in the model-based analysis. When ignoring the rule of strict

layering, the model-based analysis is harder to comprehend, as its structure diverges

from the structure of the DSML. Violating the rule that the dependency of a generic on a

speci�c layer is forbidden, the more generic layer is no longer independent of, the more

speci�c layer. Ergo, the layers cannot be reused independently of each other. The Folded
Hierarchy smell enables dependency cycles between layers when the Weakened Modularity
smell (cf. Section 4.2.4.5) is also present. As a result, it impedes the maintainability of the

model-based analysis (cf. Section 3.3).

105

4. Bad Smells in Model-based Analyses

Causes: If the DSML and the model-based analysis are developed independently, the

language architect cannot anticipate how language classes are used. As a result, they

can introduce specialised types that might be needed by an analysis class on a more

generic layer. If the DSML does not add such a generic type, the analysis developer cannot

comply with the regular layering. Then, the specialised analysis class must depend on the

language type on the more specialised layer. Violations of either strict or regular layering

can originate in the lack of understanding on the part of the analysis developer regarding

the DSML. In the modular version of the PCM [SHR18], some language types on di�erent

layers have the same name due to inconsistent naming. This resulted in occurrences of

the Folded Hierarchy smell, and the analysis developer has to guess which type to use.

Identi�cation: In order to identify violations of the Folded Hierarchy smell, each incoming

dependency of a language class is analysed. Only incoming dependencies originating from

analysis classes are relevant; thus, all other incoming dependencies are discarded. If the

dependency occurs between classes on the same layer, no violation is detected, and the

dependency is discarded. However, suppose the dependency occurs from an analysis class

located on a layer that is more speci�c on a language class located on a more generic

layer. In that case, the strict layering is violated (cf. Figure 4.4, orange dependency). These

occurrences are categorised and collected as dependencies that violate strict layering. If

the violations of the strict layering are irrelevant, these dependencies also get discarded.

The category of layering violations that occur from an analysis class located on a more

generic layer, on a language class that is more speci�c, is always accounted to the Folded
Hierarchy smell (cf. Figure 4.4, red dependency).

Refactoring: In order to refactor the Folded Hierarchy smell, the analysis developer

collects the dependencies of the analysis classes on the language classes that break the

regular and the strict layering rule. For each violation of the layering rules, the analysis

developer must adapt the dependencies so that they no longer violate the layering rules.

If, for example, the red dependency in Figure 4.4 is the only dependency of Y, the analysis

developer can move the analysis class Y to the same layer as the language class B. If an

analysis class has dependencies on multiple layers, the a�ected �elds and methods with

dependencies on the same layer are extracted into a new analysis class. The dependencies

of the analysis class Z in Figure 4.4 prevent that the analysis developer can move Z on the

same layer as language class A, as they would create another layer violation. Therefore,

the analysis developer creates a new analysis class on the same layer as the language

class A. Then, they identify the attributes and methods in the analysis class Z that depend

on the language class A. After identifying the attributes and methods, they move them

into the newly created analysis class. However, if the analysis class cannot be split, and

it is a strict layer violation, the language architect has the option to introduce a new

language type on the required layer. In our example, the language architect introduces a

language class C on the same layer as B. Then, C inherits from language class A and the

orange dependency is replaced by a dependency on C. Figure 4.5 depicts the refactoring

by inheritance; introducing a new language class C to �x the dependency error.

Limitations: Strict layering is not always possible, for example, when an analysis algo-

rithm requires a language type of a more generic layer. In the refactoring section, we

106

4.2. Bad Smells in Model-based Analyses

A

BZ

A

BZ C

Analysis Class Language Class depends on Layer Separatorinherits

Figure 4.5.: Folded Hierarchy – Refactoring by Inheritance

proposed that the language architect introduces a new type on the required layer. In our

example, the language architect had to introduce a new language class C on the same layer

as B. Then, they made language class C inhering from language class A and replaced the

orange dependency (Z on A) with a dependency on C. However, if the DSML is not change-

able, for example, when it implements a standard (cf. the BPMN2 metamodel [HSR19]),

introducing new types is impossible.

4.2.3.2 Missing Hierarchy

This bad smell originates from the object-oriented bad smell Switch Statements. Switch

statements indicate a lack of polymorphism in the object-oriented design. However, the

excessive use of language types in switch statements indicates that polymorphism is

missing in the DSML design. The switch statements in the model-based analysis indicate

missing subtypes in the DSML.

E�ect: Maintaining switch statements requires more e�ort than the maintenance of a

type hierarchy. Each new case must be changed in the switch statements, resulting in more

changes as switch statements exist. Thus, the model-based analysis is harder to evolve and

reuse. Switch statements also mask possible polymorphism, which can also a�ect the time

to develop new features or maintain existing features (cf. Repeated Switches in [Fow18]).

Furthermore, di�erentiating language types based on their attributes is hard to follow, as

the analysis developer has to understand the e�ect the state of the attribute has on the

analysis. Therefore, such constructs are prone to errors, and changes to the semantics of

the attributes can a�ect each switch statement that handles such an attribute.

Causes: If the DSML does not provide subtypes, switch statements are a fast solution

to di�erentiate states of a language type. Needing a fast solution also can result in

implementing switch statements instead of changing the DSML. As changing the DSML

could a�ect other dependent model-based analyses and editors. Such changes would

initially require more e�ort than using a switch statement. Furthermore, changing the

DSML would create inconsistencies; for example, when it implements a standard (cf.

the BPMN2 metamodel [HSR19]), introducing new types to the DSML, would make it

inconsistent to the standard. Diverging from a DSML standard would render the tooling

incompatible with models that are developed with another language that follows the

107

4. Bad Smells in Model-based Analyses

standard. So, if an analysis developer wants to use the DSML that complies with the

standard, they must use helper constructs like the switch statement to cope with this

disadvantage of the DSML.

Identi�cation: In order to identify the Missing Hierarchy smell, each analysis class in the

model-based analysis is analysed. If the analysis class that contains a switch statement

contains a dependency on a language type, the analysis class is marked for further analysis.

If the switch statement has a language type as a condition, we determine it as an occurrence

of the Missing Hierarchy smell. According to Fowler et al. [Fow18], in their revision of the

object-oriented bad smells, only some occurrences of a switch statement are problematic.

However, if in the model-based analysis the analysis developer has two distinct cases

of a language type, the switch statement makes the analysis code convoluted; therefore,

we advocate marking every switch statement that meets our conditions for the Missing
Hierarchy smell.

Refactoring: We de�ne two approaches to refactor the Missing Hierarchy smell. The �rst

approach introduces subtypes and uses dynamic dispatch to replace the switch statements.

The method call replaces the switch statement itself, and each case is implemented as a

method that replaces the case. The second approach is implementing the visitor pattern to

replace the switch statement. If the states of the language types are unrelated and new

operations are needed frequently, it is highly inconvenient for developers to implement a

new subclass for each new operation.

Limitations: As mentioned in the Causes section of this smell, it is not always possible

to introduce new types to the DSML. Either because the DSML is not open source and,

therefore, cannot be changed or the DSML is implemented according to a standard and

changing it would require changing either the standard or models that follow the standard

cannot be analysed.

4.2.3.3 Unexploited Hierarchy

We assume that the model-based analysis is developed according to our reference archi-

tecture for model-based analyses model-based analysis (cf. Chapter 3). The model-based

analysis has distinct layers, and each analysis component of the model-based analysis is

located in one of these layers. According to our reference architecture for model-based

analyses, dependencies between analysis components are allowed when the analysis com-

ponents are located on the same layer. A dependency from an analysis component to

an analysis component on a more generic layer is also allowed. A dependency from an

analysis component to an analysis component on a more speci�c layer is forbidden. If

an analysis component has a dependency on a more generic layer that is not adjacent, it

is only a problem when the layering is strict. The left side in Figure 4.6 depicts a valid

dependency structure with two layers. One class is located in a generic (top layer), and

two classes are located in a specialised layer (bottom layer). The right side depicts a

three-layered architecture. The orange arrow (A to B) indicates a layer violation because a

layer in between is omitted. It is only a problem when the layered architecture is intended

108

4.2. Bad Smells in Model-based Analyses

Analysis Class depends on Layer Separator

C

D

B

A

Figure 4.6.:Unexploited Hierarchy

to be strict. The red arrow (B to D) indicates a layer violation because a generic class

depends on a more specialised class.

E�ect: We di�erentiate the e�ects of strict and normal layering. Strict layering has a

clear dependency structure that allows the analysis developer to exchange components

within a layer without the need to modify components on a more generic layer. When

ignoring the rule of strict layering, the model-based analysis is harder to comprehend.

When a dependency skips a layer, for example, to improve the performance, it increases

the coupling of the model-based analysis. When an analysis class depends on an analysis

class on a more speci�c layer, the more generic layer is no longer independent of, the

more speci�c layer. Ergo, the layers cannot be reused independently of each other. It

also enables dependency cycles between layers, which impedes the maintainability of the

model-based analysis (cf. Section 3.3).

Causes: A lack of understanding of the layers of the model-based analysis by the analysis

developer can result in component misplacement in the architecture. Or, if analysis

developers want to improve the performance, they let dependencies skip layers and, thus,

violate the strict layering. Another case that generates layer violations is when analysis

developers remove a component, which can result in a skipped layer. The removed

component is part of a chain of dependencies, for example, the second class in the middle

of the chain. When the second class is removed, the third class that depended on the

second one now needs a replacement. A new class is introduced on the same layer as the

second class, which would have no e�ect, or the second class is replaced by a dependency

from the third to the �rst class.

Identi�cation: Identifying if an analysis component is placed in the right layer is only

possible when a mapping to a layer is documented. For example, annotating each com-

ponent with its designated layer or creating a map that documents the components and

their layers. With this mapping, each dependency has to be analysed. Dependencies

within a layer are discarded. Then, starting from the most generic layer, each remaining

109

4. Bad Smells in Model-based Analyses

dependency is checked. The most generic layer should have no remaining dependencies;

however, if a dependency remains, it automatically violates the layering rules, as the most

generic layer must not have dependencies on other layers. For the remaining layers, each

dependency is analysed to determine whether it points only to a more generic layer and, if

necessary if it points only to an adjacent layer. Checking whether the dependencies point

to a more generic layer is unnecessary for the most generic layer. These dependencies are

not part of the result, and the remaining dependencies are violations of the Unexploited
Hierarchy smell.

Refactoring: The refactoring of a model-based analysis, especially introducing layers and

�xing layer violations, is presented in Section 3.3.3. When a dependency of an analysis class

points to a more speci�c analysis class, we de�ne the dependency inversion refactoring

to �x it. The dependency inversion refactoring is divided in Dependency Inversion by
Inheritance (cf. Figure 3.11), Dependency Inversion by Reference (cf. Figure 3.12), Dependency
Inversion by Bidirectional Reference and by Containment (cf. Figure 3.13). In this chapter, we

will not provide further details regarding the refactoring of model-based analysis; please

go to Chapter 3 for more details.

Limitations: One disadvantage of a layered approach is that the code required to route

and manipulate data across a layer might slow down the performance of the model-based

analysis. This is especially noticeable in portions of the model-based analysis where

the data would be better suited structurally in deeper layers than in the layers they are

authorised to access. Reports o�ering aggregated data, such as totals or averages, are

prominent instances of this, as data aggregated on a generic layer could be moved up

several layers without any modi�cation before it is printed. If the performance of the

model-based analysis is crucial, the bene�ts of the layered approach are neglected in the

aforementioned application scenarios in favour of faster execution.

4.2.4 Modularity

The capability of a system to be decomposed into a collection of self-contained and loosely

coupled modules is referred to as its modularity. The loosely coupled modules of a model-

based analysis allows the developer to change individual modules without changing other

modules. Also, a clear dependency structure of the modules, like the reference architecture

for model-based analysis improves the evolvability and reusability of model-based analyses

(cf. Chapter 3).

4.2.4.1 Broken Modularity

The DSML should have no dependencies on the tool in which it is used, as a DSML can be

used by di�erent model-based analyses. Each of these model-based analyses could analyse

di�erent quality properties; see, for example, the Karlsruhe Architecture Maintainability

Prediction (KAMP) methodology [HBK18]. The Palladio-Simulator utilises the PCM to

analyse the performance of software systems based on an architectural model. The PCM

110

4.2. Bad Smells in Model-based Analyses

is also utilised by the KAMP approach to analyse the impact of changes in the domain

of software systems and business processes. To avoid that changes in the model-based

analysis a�ecting the DSML, we forbid dependencies from the DSML to its corresponding

model-based analyses. If a dependency of the DSML to the model-based analysis occurs,

we call it the Broken Modularity smell.

E�ect: Suppose the DSML would know the model-based analyses, i. e. has dependencies on

its tooling, all model-based analyses that use the DSML have to deal with these unnecessary

dependencies. Changes to one model-based analysis can result in changes of the DSML,

which in return can result in changes to other corresponding model-based analyses. Such

dependencies increase the coupling of the DSML and its corresponding model-based

analyses, and as a result, they are more di�cult to maintain, evolve or reuse. It also allows

dependency cycles between the DSML and the model-based analysis, resulting in even

more maintenance, evolvability, and reusability di�culties.

Causes: Adding features that should be located in the model-based analysis instead of

the DSML can happen if the language architect adds analysis concerns of the DSML. For

example, when the language architect adds the type of simulation (continuous, discrete,

event-based; cf. Chapter 2) to the DSML, the model instances contain this simulation-

speci�c information in their model. Simulations are a subset of analyses that examine a

system over time. They are used when experimenting with the real system is too time-

consuming, costly, dangerous or simply impossible because the system does not exist (yet).

Analyses that use no simulation approaches have to deal with model elements representing

the kind of simulation the modeller intended. In the best case, the elements can be ignored

by the analysis. However, if the analysis developer has no idea how to interpret model

elements that are not part of the DSML, they could use such elements in their analysis.

Even if during the analysis only the presence of the unused model elements is checked,

a change to the DSML that modi�es these elements would also require a change in the

model-based analysis. A change that could have been avoided if the elements were at

the right place (i. e. part of the model-based analysis instead of the DSML) from the

beginning.

Identi�cation: In order to detect the Broken Modularity smell, the outgoing dependencies

of the DSML must be analysed. Therefore, we collect all dependencies of the DSML and

discard all incoming dependencies, as tools like editors and model-based analyses require

the DSML either to model or to analyse model instances. Also, we discard all internal

dependencies of the DSML, for example, a dependency that points to a type of the DSML.

The dependencies that remain are dependencies on external tools and libraries. The last

step is to remove all dependencies on libraries that are required for the DSML; for example,

if the DSML was created with the EMF, we discard these dependencies. Dependencies on

the standard Java library or other DSMLs are also required and, thus, discarded. What

remains are the outgoing dependencies on tools like editors and model-based analysis. We

regard the remaining dependencies as the Broken Modularity smell.

Refactoring: Fixing this smell requires the language architect and the analysis architect to

work together. The knowledge of both, about the domain of the DSML and the model-based

analysis, is required to identify and �x wrongly placed language features in the DSML. For

111

4. Bad Smells in Model-based Analyses

each outgoing dependency that is marked as Broken Modularity smell, the architects must

decide whether the whole feature or only the types that create the dependency must be

moved to the model-based analysis. If the types of the DSML can be moved to the model-

based analysis, the language types are removed from the feature of DSML and added to

the corresponding feature in the model-based analysis. For the case that the model-based

analysis does not have such a feature, the analysis architect introduces a corresponding

feature in the model-based analysis. Alternatively, if multiple language types must be

moved to the model-based analysis, it could be su�cient to move the whole feature to the

model-based analysis. For example, if the simulation types are part of a feature with the

same name. The analysis architect creates a feature with the same name, and the analysis

component developer implements the corresponding components (cf. Chapter 3).

Limitations: Identi�cation of the Broken Modularity smell is only possible when the

source code of the DSML is accessible, and the same is true for changes that a�ect the

DSML. Even if the DSML is accessible, if the DSML implements a standard, for example,

the BPMN2 standard, the language architect might want to avoid changing the DSML.

Changing the DSML means that it no longer conforms to the standard. Ergo, model-based

analyses that expect a model that conforms to the standard can no longer use instances

of the changed DSML. The same goes for each tool that is based on the standard DSML.

Another problem when �xing the Broken Modularity smell is that the developers must

change each corresponding tool of the DSML. In the long term, we recommend �xing

this bad smell, as it creates unpredictable changes to the DSML and its corresponding

tooling; however, the e�ort that comes with �xing the bad smell should be considered

and planned for each corresponding tool. Otherwise, each tooling is only usable once the

smell is �xed.

4.2.4.2 Degraded Modularity

If a language component is used by multiple analysis components, the analysis developer

has to make many changes to many di�erent analysis components when the language

component is modi�ed. The Degraded Modularity is inspired by the Shotgun Surgery

smell [Fow18]. A single responsibility, in the case of the DSML, a language feature, is split

up among analysis components. Figure 4.7 depicts the Degraded Modularity smell. It shows

three analysis components that depend on one language component, such a dependency

results from dependencies of analysis classes that are part of an analysis component. An

analysis component can have multiple classes that depend on a language component.

E�ect: Due to the scattering of language components all over analysis components, the

code is di�cult to comprehend. The three analysis components shown in Figure 4.7 could

implement the same analysis algorithm of the language component, or each analysis

component implements a di�erent variant of the same analysis algorithm, or each analysis

component implements a di�erent analysis algorithm. In order to understand how these

analysis components work together or how they work, the analysis developer has to

consult the documentation of each analysis component, which makes it time-consuming

and di�cult to comprehend. Another e�ect is that changes to one language component

112

4.2. Bad Smells in Model-based Analyses

Analysis Component Language Component depends on

Figure 4.7.:Degraded Modularity

can require that the analysis developer must change multiple analysis components; hence,

the similarity to the bad smell Shotgun Surgery (cf. Chapter 2). The coupling between

the analysis components and the language component is increased, and if the analysis

components also depend on each other, reusing a single analysis components is di�cult.

Furthermore, the increased coupling hampers the evolvability of the model-based analysis,

as changes to one of the analysis components can lead to changes in the remaining analysis

components.

Causes: During the lifetime of a model-based analysis, analysis developers add and change

analysis components of the analysis. A language component that was used by a single

analysis component could then add to other analysis components. Such errors happen

easily without restrictions that give a warning or prevent the analysis developer from

adding the dependency. If the analysis developer must implement a new analysis, they

must know every analysis component and their intent. Only then can they determine

whether the new analysis must be part of an already existing analysis component or

whether they must implement a new one. Even if the analysis developer is aware that an

analysis component already exists, they could decide to implement a new analysis com-

ponent to avoid understanding the existing code and implement the analysis code faster.

Another cause for the Degraded Modularity smell is cross-cutting concerns of language

components. If a language component is required in a variety of analysis components, it

is better to split the language component up instead of consolidating each dependency in

one language component. This is only possible when the analysis components depend

on di�erent classes of the language component. If the analysis component represents

multiple concerns, it is more di�cult to comprehend, evolve, and reuse due to its many

dependencies on other language components and other analysis components. It is di�cult

to reuse an analysis component that implements di�erent concerns. If an analysis compo-

nent implements multiple concerns, for example, if an analysis component determines

a system’s performance and reliability analysis, reusing the performance part requires

reusing the reliability part also. The analysis component needs information about the

system’s performance part (e. g. , throughput, processing time) and about the reliability

(e. g. , mean time to failure). These requirements create either dependencies on other anal-

113

4. Bad Smells in Model-based Analyses

ysis components or, if the analysis developer decides to contain them all in one analysis

component, the analysis component gets too complex.

Identi�cation: To identify whether a language component is used in multiple analysis

components, we analyse all incoming dependencies of a language component. A depen-

dency is an incoming dependency when it points from an analysis component to the

analysed language component. To identify incoming dependencies, we determine an lan-

guage component and search all analysis components for dependencies on the respective

language component. If the language component has incoming dependencies of multiple

analysis components, we determine it as Degraded Modularity smell. For example, if the

DSML and the model-based analysis are layered according to our reference architecture

for model-based analyses (cf. Chapter 3), we analyse and compare only the incoming

dependencies of one layer at a time. Due to the modularisation of the analysis, language

components are needed on di�erent layers; therefore, we count only incoming dependen-

cies of the same layer. Ergo, in a layered architecture, a language component can have

incoming dependencies from di�erent layers. If an incoming dependency originates from

a more specialised layer, it corresponds to the Folded Hierarchy smell (cf. Section 4.2.3.1).

Refactoring: If the a�ected analysis components do not depend on other language

components, merging these components will �x this bad smell, as all dependencies on

the language component now come from a single analysis component. However, if these

components represent di�erent concerns (i. e., have dependencies on other language

components), merging these components would create the bad smell Rebellious Modularity
(cf. Section 4.2.4.4). Alternatively, the analysis developer can move the classes of the

analysis component that depend on the language component. These classes can either be

moved to a new analysis component or to an analysis component with dependencies on

the language component. However, even a class could contain dependencies on multiple

language components; therefore, the analysis developer can move the a�ected �elds and

methods to �x this bad smell. Another way to �x the Degraded Modularity smell is to split

the language component up. Heinrich et al. [HSR19] introduced refactoring operations for

splitting a language class or language component up. The goal is to group the language

types by incoming dependencies from their corresponding model-based analysis. The

result in the case of our example shown in Figure 4.7, the number of language components

is increased from one to three, and each analysis component depends on one, di�erent

language component.

Limitations: Identifying the Degraded Modularity smell does not always require access

to the DSML. If the DSML implements a standard, for example, the BPMN2 standard, the

language architect might want to avoid changing the DSML. Therefore, they can choose

to merge the a�ected analysis components; however, they must be aware that merging

the analysis components can create the Rebellious Modularity smell (cf. Section 4.2.4.4).

If the language architect must change the DSML and the DSML is developed according

to a standard, changing the DSML means it no longer conforms to the standard. Ergo,

model-based analyses that expect a model conforming to the standard can no longer use

instances of the changed DSML. The same goes for each tool that is based on the standard

114

4.2. Bad Smells in Model-based Analyses

DSML. Another problem when �xing the Degraded Modularity smell is that the developers

must change each corresponding tool of the DSML.

4.2.4.3 Missing Modularity

This bad smell heavily refers to our reference architecture for model-based analyses

(cf. Chapter 3). Our reference architecture requires a layered structure of the model-based

analysis, similar to the reference architecture for DSMLs [HSR19]. The layering helps the

analysis developer to locate analysis components and reuse components. The layering also

helps to avoid cycles of the analysis components (cf. Section 4.2.3.3) and cycles of analysis

components and language components (cf. Section 4.2.3.1). The Missing Modularity smell

is only applicable when the model-based analysis should have layers because then when

the model-based analysis does not contain any or just one layer, we determine it as Missing
Modularity smell. Having no layer or one layer is the same, cf. Section 3.3.2.

E�ect: Due to the missing layers, it is harder to identify the role of an analysis component

in the context of the model-based analysis. The model-based analysis is missing a clear

structure that allows the analysis developer to locate concerns and, if necessary, make

changes or add new features without understanding each analysis component in the

analysis. If, for example, an analysis component is located on the domain layer (cf. Sec-

tion 3.3.2.2) of the model-based analysis, the analysis component represents some form of

domain-relevant information. If the analysis developer wants to add new domain-speci�c

behaviour, they only have to consider the analysis components on the respective layer

for the desired extension. However, if such a structure is missing, the analysis developer

has to search the source code of the analysis component to determine its concern in the

model-based analysis. Also, the layered structure provides a clear dependency structure:

only cross-layer dependencies from a layer to a more generic layer are allowed. This

allows layers to be exchanged without a�ecting more generic layers.

Causes: Missing layers in an existing model-based analysis can have multiple causes.

One is that the DSML is already modularised according to a layered architecture like the

reference architecture for DSMLs by Heinrich et al. [HBK18]. In Chapter 3, we investigate

the e�ects of modularising a model-based analysis according to the layered structure of

the DSML. However, the Missing Modularity smell is more a suggestion than a clear smell

when the DSML is already layered, but its corresponding model-based analysis follows

none or another architecture pattern. Therefore, we consider this smell as not essential

for the quality of the model-based analysis.

Identi�cation: The model-based analysis either has layers or not; there is little to do to

identify the Missing Modularity smell. The analysis developer must ensure the layers are

identi�able for the other analysis developers working on the model-based analysis. How

to de�ne layers depends on the programming language and, under some circumstances,

also on the IDE. In Java and Eclipse, for example, the layers could be organised by projects,

where each project represents a layer, and each package represents an analysis component

of the layer. However, reusing single packages is not provided by the Java programming

115

4. Bad Smells in Model-based Analyses

language; thus, we recommend using a project to represent an analysis component and

group the analysis components that are located on the same layer in working groups of

the Eclipse IDE.

Refactoring: Ideally, the model-based analysis corresponds to a DSML that is already

modularised according to the reference architecture for DSMLs. If that is the case, we

explain the refactoring operations in Section 3.3.3 and Section 3.5.1 and the process to mod-

ularise a model-based analysis. However, if the DSML does not correspond to the reference

architecture for DSMLs, we recommend refactoring the DSML �rst; see [HSR19].

Limitations: The Missing Modularity smell is only applicable if the model-based analysis

is intended to have layers. If the layers are not identi�able due to language restrictions

or missing documentation, the smell can indicate such problems. However, if a layered

structure is already applied, the smell cannot detect problems in the layering itself. To

�nd problems regarding the layering of the model-based analysis visit the smells Folded
Hierarchy in Section 4.2.3.1 and Unexploited Hierarchy in Section 4.2.3.3.

4.2.4.4 Rebellious Modularity

A language component can contain multiple concerns. Even if the DSML is modularised

according to the reference architecture for DSMLs [HSR19], the language architect might

not be able to anticipate how the concerns are structured. As a result, the language architect

can model the concerns very �ne-grained, which means that the concern is separated into

multiple language components. For example, instead of having a control �ow language

component in a DSML for software architectures, the language architect separates the

control �ow language component into multiple language components. However, the

corresponding model-based analysis would only need a level of detail in the model. The

indicator for a concern that is separated over di�erent language components is multiple

outgoing dependencies from one analysis component to di�erent language components.

Outgoing dependencies are dependencies from an analysis component to a language

component. The dependencies result from classes of the analysis component that either

extend or use classes from the language component. Figure 4.8 depicts the Rebellious
Modularity smell, it shows one analysis component that depends on three language

components.

E�ect: The analysis component a�ected by the Rebellious Modularity contains many lines

of code across multiple classes, similar to a god class (cf. Chapter 2); it either contains

many classes or complex classes that cover di�erent concerns. This analysis component

cover di�erent concerns; hence the dependencies on multiple language components. Due

to the high number of classes or the large classes, the analysis component is complex and

di�cult to comprehend for the analysis developer. Also, reusing a subset of the language

components with the analysis component is di�cult, as all language components are

required by the analysis component. As a result, due to the complexity of the analysis

component, the evolvability is hampered, and the reusability is also problematic when

some required language components cannot be used.

116

4.2. Bad Smells in Model-based Analyses

Analysis Component Language Component depends on

Figure 4.8.: Rebellious Modularity

Causes: The causes for the Rebellious Modularity smell on the model-based analysis

can have two origins: (I) When the analysis component represents multiple concerns,

it contains many classes that depend on di�erent language components. Extending the

analysis component by adding dependencies on language components requires less e�ort

than splitting the analysis component or creating a new analysis component. (II) When

the language components represent only a fraction of a concern, the language architect

might not understand how the DSML is used. Alternatively, during the development of

the DSML, the intended use of the language components shifted, and the �ne-grained

modular structure remained. For example, �rst, the language architect intended to use

the aforementioned detailed control �ow structure. However, while developing the corre-

sponding model-based analysis, they discovered that the increased e�ort in modelling such

a �ne-grained structure does not bene�t the analysis result. Therefore, they decided not

to use the detailed elements of the DSML in the model-based analysis, but the possibility

to model such details was not removed from the DSML.

Identi�cation: Each analysis component is analysed regarding its outgoing dependencies.

Outgoing dependencies are the dependencies from an analysis component to a language

component. We disregard the dependencies between analysis components; as for the

Rebellious Modularity, only the dependencies between analysis components and language

components are relevant. If an analysis component depends on any number of language

components above a threshold n, we determine it as Rebellious Modularity. The threshold

n allow the analysis developer to de�ne how many dependencies are allowed before they

count as Rebellious Modularity smell.

Refactoring: If the cause for the bad smell is (I) that an analysis component represents

multiple concerns, we split the analysis component into multiple components. Regarding

Figure 4.8, we create two additional components, each depending on one language compo-

nent respectively. To split an analysis component, the classes which contain undesired

dependencies (i. e., dependencies on another language component than the required one)

are moved to another or a new analysis component. If the classes contain dependencies on

multiple language components, we split them. More details regarding the refactoring can

be found in Section 3.3.3. If the cause for the bad smell is (II), the language components rep-

117

4. Bad Smells in Model-based Analyses

resent the same concern; we merge the language components. The refactoring operations

of merging analysis components and analysis classes are presented in Section 3.3.3.

Limitations: Identifying the Rebellious Modularity smell does not always require access

to the DSML components. If the DSML implements a standard, for example, the BPMN2

standard, the language architect might want to avoid changing the DSML. If the language

architect must change the DSML and the DSML is developed according to a standard,

changing the DSML means that it no longer conforms to the standard. Ergo, model-based

analyses that expect a model conforming to the standard can no longer use instances of

the changed DSML.

4.2.4.5 Weakened Modularity

When language components depend on analysis components, then this corresponds to

the bad smell Broken Modularity (cf.Section 4.2.4.1). However, when dependencies from

language components on analysis components exist, they can form dependency cycles

between the DSML and its corresponding model-based analysis. Figure 4.9 depicts such a

Analysis Component Language Component depends on

Figure 4.9.:Weakened Modularity

dependency cycle. The depicted cycle contains three components; however, the smallest

cycle can exist between a language component and one analysis component. An analysis

developer can easily detect and �x such examples, but if the cycles are complex, e. g.

containing a dozen components, it is di�cult for the analysis developer to detect them.

E�ect: Dependency cycles between language components and analysis components have

the same negative e�ect as dependency cycles in DSMLs [Str20] or in object-oriented

software [Fow18]. If an analysis developer changes an analysis component in such a

dependency cycle, it is most likely that they must also adapt the remaining components in

the cycle. Maintenance steps become unpredictable, and in the worst case, they are a great

risk because the e�ort required to realise a change cannot be estimated. The more complex

the cycles in the model-based analysis, the higher the risk of changing existing code or

118

4.2. Bad Smells in Model-based Analyses

adding new features. If the DSML is used by multiple model-based analyses, changes can

a�ect not only one model-based analysis but all model-based analysis that depend on the

DSML.

Causes: An analysis developer either introduces cycles into a system on purpose, without

knowing the dire consequences or by accident. Ignoring the consequences of dependency

cycles are inexcusable but unavoidable if done deliberately. Introducing dependency cycles

by accident is only avoidable if the cycles are small enough so the analysis developer can

detect them manually. Adding a language component as a dependency to an analysis

component can form a cycle when somewhere exists a dependency from a language

component on an analysis component.

Identi�cation: In order to detect the Weakened Modularity smell, the analysis developer

can transform the DSML and model-based analysis elements (i. e., classes, methods, at-

tributes, packages, and DSML �les) into a directed graph. They then apply a cycle detection

algorithm like Floyd’s cycle detection algorithm [Flo67] to that graph. Alternatively, the

analysis developers can use a graph database like Neo4J
1

and its apoc extension
2

to

detect cycles. For example, a graph can be created according to Strittmatter [Str20] when

packages are transformed into nodes and dependencies between packages are transformed

into edges. This transformation into a graph is applicable for both the DSML and the

model-based analysis.

Refactoring: Fixing this smell requires understanding the DSML and the model-based

analysis. If the types of the DSML can be moved to the model-based analysis, the language

types are removed and added to the model-based analysis. This applies when the analysis

developer �nds in addition to the cycle also the Broken Modularity smell (cf. Section 4.2.4.1).

Then, they can perform the refactoring described in the refactoring paragraph of the

Broken Modularity smell. Alternatively, if multiple language types must be moved to the

model-based analysis, it could be su�cient to move the whole feature. In order to move

a whole feature, the refactoring of the Broken Modularity smell is applied to each class

that corresponds to the a�ected feature. Also, dependency inversion can be performed

to �x this bad smell (cf. Figure 3.8). Therefore, the language architect must inverse the

dependency from the language component on the analysis component.

Limitations: Identi�cation of the Weakened Modularity smell is only possible when the

source code of the DSML is accessible, and the same is true for changes that a�ect the

DSML. Even if the DSML is accessible, if the DSML implements a standard, for example,

the BPMN2 standard, the language architect might want to avoid changing the DSML.

Changing the DSML means that it no longer conforms to the standard. Ergo, model-based

analyses that expect a model that conforms to the standard can no longer use instances

of the changed DSML. The same goes for each tool that is based on the standard DSML.

Another problem when �xing the Weakened Modularity smell is that the developers must

change each corresponding tool of the DSML. In the long term, we recommend �xing this

1
https://neo4j.com/

2
https://neo4j.com/labs/apoc/4.1/overview/apoc.nodes/apoc.nodes.cycles/

119

4. Bad Smells in Model-based Analyses

bad smell, as it creates unpredictable changes to the DSML and its corresponding tooling;

however, the e�ort that comes with �xing the bad smell should be considered and planned

for each corresponding tool. Otherwise, each tooling is unusable until it is �xed.

4.3 Automatically Identify Bad Smells in Model-based
Analyses

In Section 4.2 we introduced the twelve bad smells we identi�ed; furthermore, we explained

for each bad smell how to identify them. In this section, we show which bad smells we

can automatically identify and, especially, how we are able to identify them. In order to

identify the following bad smells, the model-based analysis must have an associated DSML

that conforms to the reference architecture for DSMLs by Heinrich et al. [HSR19].

4.3.1 Identification of Abstraction Smells

In this section, we present how we identify bad smells related to the abstraction category

presented in Section 4.2.1.

4.3.1.1 Duplicated Abstraction

We are able to identify the Duplicated Abstraction smell automatically. We transform the

dependencies of analysis classes on language classes into a graph notation. To be able

to create the graphs, the developer who performs the analysis must provide the path to

the DSML and the path to the model-based analysis. Each analysis class and language

class is represented as a node in the graph. If an analysis class uses a language class,

these dependencies are represented as edges between these nodes. Our tool identi�es

each analysis class that shares a certain number of dependencies on language classes.

The developer who performs the analysis can set the threshold of shared dependencies

according to their needs. Listing 4.2 shows the sequencing when identifying the Duplicated
Abstraction smell.

4.3.1.2 Missing Abstraction

We can automatically identify the Missing Abstraction smell. We collect all methods of

the analysis classes and identify the methods with a primitive type in the signature. The

extract the methods, the developer who performs the analysis must provide the path to

the analysis. Our tool identi�es each method that has a primitive type in its signature.

The developer who performs the analysis must determine whether the found signature

should be contemplated for further investigation. Listing 4.3 shows the sequencing when

identifying the Missing Abstraction smell.

120

4.3. Identifying Bad Smells in Model-based Analyses

1 def duplicatedAbstractionIdentification(threshold):

2 analysisClasses.foreach(class ->

3 var dependenciesOnLanguageClasses =

4 getDependenciesOnLanguageClasses(class)

5 var sameDependencies =

6 compareToDependenciesOnRemainingAnalysisClasses

7 (dependenciesOnLanguageClasses)

8 var sameDependencies = filterDependencies(threshold)

9)

10 return sameDependencies

11

12 def compareToDependenciesOnRemainingAnalysisClasses

13 (dependenciesOnLanguageClasses):

14 var dependencies

15 analysisClasses.foreach(

16 dependencies.

17 add(sameDependencies(

18 dependenciesOnLanguageClasses,

19 analysisClass))

20)

21 return dependencies

Listing 4.2: Identi�cation of the Duplicated Abstraction Smell

1 def missingAbstractionIdentification(path):

2 var classes = getAllAnalysisClasses(path)

3 classes.foreach(class ->

4 methods = class.getMethods()

5 methods = methods

6 .filter(it::hasPrimitiveParameter)

7)

Listing 4.3: Identi�cation of the Missing Abstraction Smell

4.3.1.3 Unused Abstraction

In order to identify the Unused Abstraction smell automatically, we transform the depen-

dencies of analysis classes on language classes into a graph notation. To be able to create

the graphs, the developer who performs the analysis must provide a link to the DSML and

the model-based analysis. Each analysis class and language class is represented as a node

in the graph. If an analysis class uses a language class, these dependencies are represented

as edges between these nodes. We then search for each language class node that is not

connected to an analysis class node and provide a list of all identi�ed nodes as a result of

the analysis.

121

4. Bad Smells in Model-based Analyses

1 def deficientEncapsulationIdentification(languagePath, analysisPath):

2 var parameterTuples

3 var methods = getAllMethodsFromAnalysis(analysisPath)

4 filterParameters(methods)

5 methods.foreach(method ->

6 parameterTuples.add(createTuples(method))

7)

8 removeIdenticalPairs(tuples) // {a,a} or {b,b}

9 countTupleOccurrences(tuples)

Listing 4.4: Identi�cation of the De�cient Encapsulation Smell

4.3.2 Identification of the Encapsulation Smell

In this section, we present how we identify the bad smell related to the encapsulation

category presented in Section 4.2.2.

4.3.2.1 Deficient Encapsulation

We can partially identify the De�cient Encapsulation smell automatically. The developer

who performs the analysis must provide the path to the DSML and the path to the model-

based analysis. We collect all types of the language and all methods of the model-based

analysis. The methods with only one parameter are discarded. For each parameter pair,

we generate a tuple, but we omit tuples that contain the same parameter. Then, we count

the occurrence of each tuple. The resulting tuples and the number of occurrences are

documented as De�cient Encapsulation smell. The developer who performs the analysis has

to decide whether these tuples of language types can be merged. Our tool identi�es each

parameter tuple that occurs in the methods of the model-based analysis and counts the

number of occurrences. Listing 4.4 shows the sequencing when identifying the De�cient
Encapsulation smell.

4.3.3 Identification of Hierarchy Smells

In this section, we present how we identify bad smells related to the hierarchy category

presented in Section 4.2.3.

4.3.3.1 Folded Hierarchy

We can automatically detect the Folded Hierarchy smell when the layer information is

available in the DSML and the model-based analysis that gets analysed. The developer who

performs the analysis must provide the path to the DSML and the model-based analysis.

Furthermore, they must provide the layers that are used by the DSML and model-based

analysis. We transform the language and analysis classes’ dependencies into a graph

122

4.3. Identifying Bad Smells in Model-based Analyses

notation. Each class is represented as a node in the graph. If an analysis class references a

language class, these dependencies es represented as an edge between these nodes. Each

class node contains information on which layer the class is located and which order number

the layer has. The more generic a layer is the smaller its number. We distinguish between

two violations of the layering. The �rst violation is when an analysis class (source) depends

on a language class (target) on a more speci�c layer. To detect this violation, we compare

the order number of the classes. If the order number of the source class is less than the

order number of the destination class, the aforementioned layering rule is violated. The

second violation is when an analysis class (source) depends on a language class (target) on

a more generic layer. To detect this violation, we compare the order number of the classes.

If the di�erence between the order numbers, source minus destination, is greater than

zero, the aforementioned layering rule is violated.

4.3.3.2 Missing Hierarchy

We can automatically detect the conditions that lead to the Missing Hierarchy smell. The

developer who searches for the Missing Hierarchy smell must provide the path to the

DSML and the model-based analysis. First, we search the analysis classes and extract all

references on the DSML. Then, we �lter the reference and remove all references that do not

originate from a switch statement. The developer must analyse the remaining references

to determine whether they contribute to the Missing Hierarchy smell.

4.3.3.3 Unexploited Hierarchy

We can automatically detect the Unexploited Hierarchy smell when the layer information

is available in the model-based analysis that gets analysed. The developer who performs

the analysis must provide the path to the model-based analysis. Furthermore, they must

provide the layers that the model-based analysis uses. We transform the dependencies

of the analysis classes into a graph notation. Each analysis class is represented as a node

in the graph. If an analysis class references another analysis class, these dependencies es

represented as an edge between these nodes. Each analysis class node contains information

on which layer the class is located and which order number the layer has. The more generic

a layer is the smaller its number. We distinguish between two violations of the layering.

The �rst violation is when an analysis class (source) depends on another analysis class

(target) on a more speci�c layer. To detect this violation, we compare the order number

of the classes. If the order number of the source class is less than the order number of

the destination class, the aforementioned layering rule is violated. The second violation

is when an analysis class (source) depends on another analysis class (target) on a non-

adjacent layer. To detect this violation, we compare the order number of the classes. If

the order number of the source class is greater than the order number of the destination

class, and if the di�erence between these numbers is greater than one, the aforementioned

layering rule is violated.

123

4. Bad Smells in Model-based Analyses

1 def brokenModularityIdentification(languagePath, analysisPath):

2 var languageTypes = getAllLanguageTypes(languagePath)

3 var analysisTypes = getAllAnalysisTypes(analysisPath)

4 var references = collectAllReferences(languageTypes)

5 references.foreach(reference ->

6 if not referencesAnalysisType(reference, analysisTypes):

7 references.remove(reference)

8)

Listing 4.5: Identi�cation of the Broken Modularity Smell

4.3.4 Identification of Modularity Smells

In this section, we present how we identify the bad smells that are related to the modularity

category presented in Section 4.2.4.

4.3.4.1 Broken Modularity

To automatically detect the Broken Modularity smell, the developer who performs the

analysis must provide the path to the DSML and the path to the model-based analysis. We

collect all references of the language types in the DSML, and we also collect the analysis

types of the model-based analysis. For each reference of the language, we �lter out each

reference that does not depend on an analysis type. The remaining references violate the

Broken Modularity smell. Listing 4.5 shows the sequencing when identifying the Broken
Modularity smell.

4.3.4.2 Degraded Modularity

To automatically detect the Degraded Modularity smell, the developer who performs the

analysis must provide the path to the DSML and the path to the model-based analysis. We

collect all language types and analysis types of the path provided by the developer. Then,

we collect all references of analysis types to language types. Of the collected references,

we �lter the references on language types that originate from di�erent analysis types.

Listing 4.6 shows the sequencing when identifying the Degraded Modularity smell.

4.3.4.3 Missing Modularity

We can automatically detect the Missing Modularity smell when the layer information

is part of the DSML and the model-based analysis. Currently, we support Eclipse Plugin

projects. The developer who performs the analysis must provide the path to the DSML

and the model-based analysis. We assume that the layer information is located in the

meta�le of the plugin. If the meta�le does not contain information regarding the layer, we

determine that the projects are missing a layered structure.

124

4.3. Identifying Bad Smells in Model-based Analyses

1 def degradedModularityIdentification(languagePath, analysisPath):

2 var languageTypes = getAllLanguageTypes(languagePath)

3 var analysisTypes = getAllAnalysisTypes(analysisPath)

4 var references = collectAndGroupAllReferencesOnLanguageTypes(

5 languageTypes,

6 analysisTypes)

7 references.foreach(referenceGroup ->

8 if not containsDifferentAnalysisTypes(referenceGroup):

9 references.remove(reference)

10)

Listing 4.6: Identi�cation of the Degraded Modularity Smell

1 def degradedModularityIdentification(languagePath, analysisPath):

2 var languageTypes = getAllLanguageTypes(languagePath)

3 var analysisTypes = getAllAnalysisTypes(analysisPath)

4 var references = collectAndGroupAllReferencesOnLanguageTypes(

5 languageTypes,

6 analysisTypes)

7 references.foreach(referenceGroup ->

8 if not (containsDifferentLanguageTypes(referenceGroup)

9 and originateFromOneAnalysisType(referenceGroup)):

10 references.remove(reference)

11)

Listing 4.7: Identi�cation of the Rebellious Modularity Smell

4.3.4.4 Rebellious Modularity

To automatically detect the Rebellious Modularity smell, the developer who performs the

analysis must provide the path to the DSML and the path to the model-based analysis. We

collect all language types and analysis types of the DSML and model-based analysis. Then,

we collect all references of analysis types to language types. Of the collected references,

we �lter the references on language types that originate from the same analysis type.

Listing 4.6 shows the sequencing when identifying the Degraded Modularity smell.

4.3.4.5 Weakened Modularity

IDEs, like Eclipse and IntelliJ, are already capable of identifying cycles between classes,

components, and projects. The cycles between a DSML and its corresponding model-based

analysis can occur when the code for the DSML is generated and altered afterwards. As

our approach is based on EMF-based metamodels, the generated code is embedded in

regular Eclipse plugin projects. Eclipse provides a cycle detection for its plugins that is

based on the meta�les of the plugin projects. Therefore, it is unnecessary to implement

our own cycle detection.

125

5. Reuse of Model-based Analysis
Components

After presenting decomposition and composition approaches for model-based analyses,

and after presenting bad smells dedicated to model-based analyses and how to identify,

categorise, and refactor these bad smells, in this �nal contribution chapter, we present

an approach to specify, compare, and identify model-based analysis components. Our

speci�cation and identi�cation approach decreases the e�ort required for reusing model-

based analysis components. After identifying and refactoring bad smells in model-based

analysis and modularising existing model-based analyses according to the process pre-

sented in Chapter 3 and Chapter 4, the analysis architect has a repository �lled with

analysis features and their corresponding analysis components. As motivated in Chapter 3,

modularisation is necessary to reuse analyses in di�erent analyses. However, reusing

an analysis component is more than just using an analysis component more than once.

Specifying a component regarding its desired structure and behaviour and identifying

a possible analysis component that complies with a desired speci�cation is also part of

reusing an analysis component.

As a model-based analysis’ complexity grows, it becomes more di�cult to understand

and, as a result, to maintain, extend, or reuse. Because of the increased complexity of the

mode-based analysis, already created model-based analysis components must be reused

in succeeding model-based analysis projects. Reusing model-based analysis components

allows for saving time and resources. On the other hand, the specialisation of model-based

analyses for a particular domain or even a speci�c system limits reusability for other

domains or systems. On a syntactic level, the structure of a component (i. e., classes,

interfaces) might be identi�ed as a possible match for a reuse candidate. However, because

a model-based analysis depends on a domain or system, it is di�cult to determine whether

the discovered component is a semantic match (i. e., exhibits the required behaviour). If

the number of components to be analysed is vast or the components are complex, it may

be prohibitively expensive.

In this chapter, we present an approach for specifying model-based analyses structure and

behaviour. We use the speci�cation of model-based analyses to �nd analysis components

with a similar structure and behaviour. To specify model-based analysis components,

we use a modelling technique based on metamodels and on a DSL. We also present an

approach for identifying similar model-based analysis components by comparing model-

based analysis components in structure and behaviour. The process of comparing analysis

components is separated into two stages: We begin by comparing model-based analysis

127

5. Reuse of Model-based Analysis Components

components regarding their structure. We then transform the requirements into graph

notation and perform a graph-isomorphism analysis to detect similar structures. Second,

we compare model-based analysis components based on their behaviour by translating

the speci�cation to the SMT notation and then detecting similar behaviour utilising an

SMT-Solver. We decided to use an SMT-Solver because they are capable of processing a

wide variety of theories, such as arithmetic, bit-vectors, arrays and others. SMT-Solvers are

highly e�cient and can quickly solve complex logical formulas. They use a combination

of decision procedures, heuristics, and optimisations to explore the search space and �nd

a solution e�ciently.

The contribution in this chapter is based on our previous publications regarding the

speci�cation and reuse of model-based analysis components [Koc+22] and [KR22]. Our

contributions in this chapter are structured as follows: After presenting the research

questions in Section 5.1 and additional terms and de�nitions necessary to understand

the content of this chapter in Section 2.5, we introduce the speci�cation approach for

specifying the structure and behaviour of model-based analyses in Section 5.2. Our

approach to compare speci�ed analysis components based on their structure is presented

in Section 5.3. Our approach to compare speci�ed analysis components based on their

behaviour is presented in Section 5.4.

5.1 Hypothesis and Research Questions

In this section, we present the hypothesis and research questions for the third contribution

of this thesis. Finding the suitable model-based analysis feature and its corresponding

model-based analysis component is a non-trivial task. The analysis architect has to analyse

each available model-based analysis component using its documentation or source code.

Even if the analysis component is documented and the documentation is up-to-date, it is a

costly and time-consuming task if done manually. We derive the following hypothesis for

improving the reuse of model-based analysis components:

Hypothesis 3

The reuse of a model-based analysis will improve when we reduce the barrier to

�nding reusable analysis components.

To determine whether the analysis component �ts the required needs, the analysis archi-

tect has to understand the analysis component they want to reuse in the model-based

analysis. Instead of analysing the source code or the documentation, an analysis compo-

nent speci�cation could be used to compare analysis components. We distinguish between

the speci�cation of model-based analysis components and compare model-based analysis

components.

128

5.1. Hypothesis and Research Questions

5.1.1 Model-based Analysis Specification

Before comparing an analysis component, we need a common speci�cation for model-

based analyses which serves as the foundation to compare and identify model-based

analysis components. Therefore, we ask the �rst research question:

Research Question 5.1

What methods or techniques can be employed to specify model-based analysis com-

ponents that enable comparison between di�erent components?

The speci�cation needs to be an abstraction of the structure of the analysis component.

Thus, we derive a sub-research question RQ 5.1.1: How to specify the structure of a model-
based analysis? However, more than the structure of an analysis component may be

needed to determine if a component �ts the desired needs of the analysis architect. Even if

the component �ts structurally (i. e., programming language and interfaces), the analysis

architect still must read the documentation or analyse the source code to determine whether

the analysis component has the desired behaviour. Therefore, besides the structure, the

speci�cation must also be able to specify the behaviour of an analysis component. Thus,

we derive another sub-research question RQ 5.1.2: How to specify the behaviour of a
model-based analysis?

5.1.2 Model-based Analysis Component Identification

After specifying analysis components, the analysis architect must be able to identify

existing components based on their speci�cation rather than their documentation or, in

the worst-case based on their source code. Therefore, we derive the second research

question for this contribution:

Research Question 5.2

What methods can compare and accurately identify similar model-based analysis

components?

The identi�cation of analysis components utilises the two aspects of the speci�cation.

First, an analysis component should be identi�ed based on its structure. Therefore, we

derive the sub-research question RQ 5.2.1: How to identify model-based analysis compo-
nents with a similar structure? There needs to be more than the structure to determine

whether the behaviour also �ts the desired speci�cation. Thus, we derive the second

sub-research question RQ 5.2.2: How to identify model-based analysis components with a
similar behaviour?

129

5. Reuse of Model-based Analysis Components

5.2 Structure and Behaviour Specification of Model-based
Analyses

In this section, we present our speci�cation approach to address RQ 5.1.1: modelling

the structure of a model-based analysis and RQ 5.1.2: modelling the behaviour of a

model-based analysis. We focus on a subset of model-based analyses, the discrete event

simulations. The structure and behaviour modelling will be done via a DSL that we

have developed. To process the models speci�ed via the DSL, we de�ne a metamodel as

the underlying abstract syntax of the language. We keep the language on a high level

of abstraction. Hence, a comparison between simulation speci�cations has to handle

as little unnecessary complexity as possible while still being precise enough to detect

behavioural similarities. As a result, the language does not allow the speci�cation of

simulation output parameters or the creation and �ow of entities between events. We keep

the language on a high level of abstraction; as a result, a comparison between simulation

speci�cations has to handle as unnecessary complexity as possible. The most crucial

generalisation we make is to always refer to entities and attributes on the type-level, i. e.,

referring to static objects instead of speci�c instances; there is no tracking of the �ow of

entities between events or their creation and destruction. Furthermore, we exclude the

speci�cation of the simulation output because the de�nition of the simulation result does

not impact simulation behaviour. Our DSL and our metamodel are separated regarding

the entities concerned with the structure of a simulation from the entities concerned with

a simulation’s behaviour.

First, we de�ne a discrete-event simulation in Section 5.2.1. Our speci�cation DSML,

which consists of a language feature to model the structure of a Discrete-event Simulation

(DES), presented in Section 5.2.2 and a language feature to model the behaviour of a DES,

presented in Section 5.2.3. Then, we introduce our grammar used in our DSL to model the

structure and behaviour of DES, presented in Section 5.2.4. Finally, we introduce our SMT

representation of the behaviour, presented in Section 5.2.5.

5.2.1 Discrete-event Simulation Definition

A simulation is a representation of a system and its behaviour over time. The purpose of a

simulation is to analyse a system to get information that would otherwise be impossible

to attain. Simulations have been proven helpful for characterising behaviour patterns in a

target system [Dur21]. Simulations are utilised when experimenting with an existing sys-

tem is too time-consuming, expensive, dangerous, or impossible since the system does not

exist. A system is a collection of entities that interact according to mathematical or logical

relationships in the context of simulations [DLK94]. A simulation has multiple analysis

components. In the context of a simulation, an analysis feature is part of a simulation that

re�ects a simulation functionality, such as task scheduling or time progression. One or

more analysis components are in charge of implementing a simulation feature [Hei+21b].

A simulation model represents and re�ects the structure of a system. The simulation

130

5.2. Speci�cation of Model-based Analyses

model generates the system’s behaviour [Top+16]. The simulator, or the running part of a

simulation, provides the behaviour used to understand the simulation model and handle

events. The simulation world depicts the current condition of the system entities. Events

can alter the state of one or more entities.

We categorise simulations regarding their understanding of time. In continuous simulations,

model attributes such as state variables change continuously with respect to time. Examples

of continuous simulations are tra�c simulations, where the exact positions of vehicles

are observed, or weather simulations, concerned with temperatures and wind speeds.

In discrete simulations, model attributes only change at discrete, separated points in

time. In this thesis, we will focus on DESs. DES is a type of discrete simulation where

states only change at instantaneous points in time. These points in time are called events.
Because state changes can only occur at events, no processing is required between two

events. Simulation time can be advanced from one event to the next without consuming

unnecessary computation time. In DES, the state of the simulation world is represented by

a set of entities, each with a set of attributes. A common example for DES is the simulation

of persons waiting in a queue. The queue represents an entity that contains a list of

persons, and the list of persons represents one attribute of the entity. An example of an

event is when a person is added to the queue or when a person is removed from the queue.

We de�ne a simulation S as a set of entities E, events V , and a starting event e0:

S = { E,V , e0}

We de�ne the state of an Entity as Z , the initial state of an entity is Z0, and the state of

an entity at a given time is de�ned as Zt = Z0 ⊕ ∆Zm. The state of an entity is a set of

attributes a:

Zt = {a1 . . . an}

Only events can change the state of an entity. We de�ne an event et as follows:

et (E) = {E
′,V ′}

An event can change multiple entities, which are de�ned as a set of entities E. The result

of an event is a set of entities E′ that are changed by the event and a set of events V ′ that

are scheduled by the event et (E).

5.2.2 Model-based Structure Specification of Discrete Event Simulations

We de�ne the structure of a simulation as the set of basic building blocks described in

Section 2.5: events, entities and attributes. In this structural view of a simulation, an event

is merely an identi�able object without any behavioural aspects attached to it. Figure 5.1

depicts the metamodel to model the structure of a discrete event simulation. A simulation
contains a set of Entities and Events, and each entity contains a set of typed Attributes.
Additionally, we model a reads relationship between events and attributes to describe

131

5. Reuse of Model-based Analysis Components

Package

Simulation

Attribute

DataType

0..* entities 0..* events

0..* attributes 0..* read

0..1 type

Entity Event

Figure 5.1.:Metamodel for Specifying the Structure of DES Components

which attributes a�ect the behaviour of an event. This relationship is part of the structural

metamodel because a read-operation on an attribute does not a�ect the simulation world.

5.2.3 Model-based Behaviour Specification of Discrete Event Simulations

While there are di�erent de�nitions of the term behaviour, we de�ne the behaviour of a

simulation as the e�ects of events on the state of the simulation world, i. e., the changes

to attributes triggered through events. Besides the simulation structure, two additional

concepts are necessary to specify the behaviour of a simulation. A simulation changes the

simulation world during its runtime. In order to describe those changes, the language must

allow a speci�cation of changed attributes as part of the simulation speci�cation. Attribute

changes can be linked to events during which they occur since in DES, such changes can

only happen at events. This is always the case in DES because an event is de�ned as any

point in time that marks a change in the simulation world (cf. Section 2.5). The state of

the simulation world is indirectly a�ected by the order and time that events are scheduled.

Events may cause other events to be scheduled with a certain delay. Figure 5.2 shows the

metamodel to describe these behavioural aspects.

The Schedules and WritesAttribute classes represent the aforementioned behavioural con-

cepts. In addition to the references to events and attributes, these classes contain expres-

sions to de�ne the schedules- and writes-relationships further. Expressions can be constant

values, attributes (as long as there is a reads-relationship for the corresponding event and

attribute) or a combination of other expressions with the common logical and arithmetic

functions. Expressions are used to describe the delay of a schedules-relationship and the

new attribute value of a writes-relationship. Additionally, both elements can de�ne a

132

5.2. Speci�cation of Model-based Analyses

Package

BehaviourContainer

Expression

DataType

startEvent: Event

endEvent: Event

Schedules

event: Event

attribute: Attribute

WritesAttribute
0..* schedules 0..* writes

0..1 condition
0..1 delay

0..1 condition
0..1 write

0..1 type

Figure 5.2.:Metamodel for Specifying the Behaviour of DES Components

condition expression that restricts when an event should be scheduled or an attribute

should be overwritten.

It is generally allowed to model multiple schedules- and writes-relationships between two

events or between an event and an attribute. For schedules-relationships, this results in an

event A scheduling multiple instances of event B, for example, with di�erent delays. For

writes-relationships, di�erent values can be written to the same attribute under di�erent

conditions.

5.2.4 Grammar-based Specification of Discrete Event Simulations

In this section, we present the concept of modelling a DES by utilising a grammar-based

modelling approach. Therefore, we present the technical realisation to motivate and

describe the concepts of our modelling approach. The speci�cation grammar, the linchpin

of our speci�cation approach, utilises the metamodels for structure and behaviour. We use

the grammar language of Xtext, a variation of the EBNF, to specify the grammar of our

DSL. A simulation S is a set of simulation components SC . A simulation component SC
also consists of a set of entities E, eventsV , and a starting event e0: SC = { E,V , e0}. Thus,

we can de�ne a simulation S as a set of simulation components SC : S = {SC}.

The user can de�ne each S and SC individually. The non-terminal symbols of the grammar

that serve as an entry point for the parser determine whether a simulation or a simulation

component is speci�ed. The non-terminal symbols are presented in Listing 5.1. The main

non-terminal, or grammar speci�cation, as it is called in Xtext, is the ModelElement; it

produces either a SimulationComponent or a simulation. The simulation, indicated by the

simulation keyword, de�nes a simulation. It consists of an arbitrary amount of simulation

components (S = {SC}). To enable a better understanding of a speci�ed simulation, we

added the possibility of adding a description.

133

5. Reuse of Model-based Analysis Components

1 ModelElement: SimulationComponent | Simulation;

2

3 SimulationComponent: ’component’ name=QualifiedName

4 (uses+=UseComponent)*
5 (events+=Event | entities+=Entity | enums+=EnumDeclaration)*;

6

7 Simulation: ’simulation’ name=ID ’{’

8 (’description’ ’=’ description=STRING)?

9 ’components’ components+=[SimulationComponent|QualifiedName]

10 (’,’ components+=[SimulationComponent|QualifiedName])*
11 ’}’;

12

13 UseComponent: ’use’ component=[SimulationComponent];

Listing 5.1: Language Declaration – Main Parser Rules

The simulation components SC , indicated by the component keyword, can depend on other

simulation components, as they can schedule events and a�ect the attributes of other

simulation components. The UseComponent grammar speci�cation and the use keyword

make the events and attributes of other simulation components available. A quali�ed name

references each simulation component; thus, it is possible to separate the components’

de�nition from the simulation’s de�nition. A simulation component consists of the

structure elements shown in Figure 5.1, namely Events, Entities, and EnumDeclarations.

Listing 5.2 depicts the grammar speci�cation for the structural elements of a simulation

component. First, we have the de�nition of events (et (E) = {E
′,V ′}). An event has a name

that serves as an identi�er and can read attributes of other components; the attributes

of other components are made available via the use keyword. Besides reading attributes,

an event can also schedule other events or change attributes. Scheduling other events

and changing attributes are part of the behaviour speci�cation presented in the next

paragraph. The structure speci�cation syntax also supports the de�nition of entities. An

entity, indicated by the entity keyword, is identi�ed by a name and consists of attributes.

Listing 5.3 depicts the grammar speci�cation for the behaviour elements of a simulation.

The grammar speci�cation Schedules, indicated by the schedules keyword, allows specifying

which events are scheduled. The delay can be added if an event is scheduled later. The

delay is indicated by the with and delay keywords. Some events are only scheduled if a

condition is met. To both, the delay and the condition are expressions assigned. The delay

can get integers or �oats assigned, and the condition gets a boolean expression assigned.

The grammar speci�cations WriteToValue and WriteToArray represent the assignment of

values to attributes.

Listing 5.4 depicts the grammar speci�cation for the type declaration of the speci�cation

language. The grammar speci�cation Type can either be a PrimitiveType, an EnumType
or an ArrayType. Primitive types are integers, doubles, or booleans. Enums allow the

de�nition of dedicated types, as indicated by the datatype keyword. ArrayTypes are used

when more than one type is needed.

134

5.2. Speci�cation of Model-based Analyses

1 Event returns structure::Event:

2 (’event’ {GEvent} name=ID ’{’

3 (’reads’ readAttributes+=[structure::Attribute|QualifiedName]

4 (’,’ readAttributes+=[structure::Attribute|QualifiedName])*)?

5

6 (schedules+=GSchedules | writeAttributes+=GWritesAttribute |

7 definitions+=Definition)*
8 ’}’);

9

10 Entity returns structure::Entity:

11 ’entity’ name=ID (’{’

12 (attributes+=Attribute)*
13 ’}’)?;

14

15 Attribute returns structure::Attribute:

16 name=ID ’:’ type=Type;

Listing 5.2: Structure Speci�cation Syntax

1 Schedules:

2 ’schedules’ endEvent=[structure::Event]

3 (delaySpec=Delay? & (conditionSpec=Condition)?);

4

5 WritesAttribute:

6 ’writes’ writeFunction=(WriteToValue | WriteToArray)

7 (conditionSpec=Condition)?;

8

9 Delay: ’with’ ’delay’ ’=’ delay=Expression;

10 Condition: ’when’ condition=Expression;

11

12 WriteToValue returns WriteFunction:

13 {WriteToValue} attribute=[structure::Attribute|QualifiedName]

14 ’=’ value=Expression;

15

16 WriteToArray returns WriteFunction:

17 {WriteToArray} attribute=[structure::Attribute|QualifiedName]

18 ’[’ index=Expression ’]’ ’=’ value=Expression;

19

20 Definition: ’def’ name=ID ’=’ expression=Expression;

Listing 5.3: Behaviour Speci�cation Syntax

Listing 5.5 shows an example simulation to demonstrate the textual syntax for the simula-

tion structure. For the sake of brevity, the example omits the de�nition of events. We will

present an example in the following paragraph. Consider a pedestrian light that switches

between the colours red and green and keeps track of the number of waiting pedestrians.

We can model this concept with a single entity and two events. The example shows the

de�nition of datatypes, entities and events, and the reads-relationships. In line one, the

type Colour with two states, Red and Green is modelled. The entity Tra�cLight is modelled

135

5. Reuse of Model-based Analysis Components

1 Type returns datatypes::DataType:

2 {datatypes::BaseDataType} primitiveType=PrimitiveType |

3 {datatypes::EnumType} declaration=[datatypes::EnumDeclaration] |

4 ArrayType;

5

6 ArrayType returns datatypes::ArrayDataType: ’ARRAY’ ’[’ contentType=Type ’]’;

7

8 EnumDeclaration returns datatypes::EnumDeclaration:

9 ’datatype’ name=ID ’{’

10 (literals+=ID) (’,’ literals+=ID)*
11 ’}’;

12 enum PrimitiveType returns datatypes::PrimitiveType: INT | DOUBLE | BOOL ;

Listing 5.4: Type Declaration

1 datatype Colour { Red, Green }

2

3 entity TrafficLight {

4 waitingPedestrians: INT

5 colourPedestriansLight: Colour

6 colourTrafficLight: Colour

7 }

8

9 event PedestrianGreen { ... }

10 event PedestrianRed { ... }

Listing 5.5: Example of the Speci�cation Language

in lines three to seven. The tra�c light consists of the number of waiting pedestrians, the

colour of the pedestrian light and the tra�c light.

Listing 5.6 extends the structural speci�cation of the PedestrianGreen event by the be-

havioural aspects. The event switches the pedestrian light to green and resets the number

of waiting pedestrians (if there are any). It also schedules the event to switch the light back

to red with a delay of 15 seconds. Line one to nine de�nes the event when the pedestrian

light turns green, PedestrianGreen. It reads the number of waiting pedestrians in line

two. It also changes two attributes in the simulation world. In line four, it changes the

pedestrian light to green, and in line 5, the number of waiting pedestrians is reduced to

zero. In the simulation, we assume that all pedestrians waiting at the pedestrian light want

to cross the street; therefore, after the light turns green, all pedestrians will leave their

waiting position. The number of waiting pedestrians is only reduced to zero if it had people

waiting at the light. The event also schedules another event with some delay, shown in

line eight. The event PedestrianRed is not shown, as it is similar to PedestrianGreen.

136

5.2. Speci�cation of Model-based Analyses

1 event PedestrianGreen {

2 reads TrafficLight.waitingPedestrians

3

4 writes TrafficLight.colourPedestriansLight = Colour.Green

5 writes TrafficLight.waitingPedestrians = 0

6 when waitingPedestrians != 0

7

8 schedules PedestrianRed with delay = 15.0

9 }

10

11 event PedestrianRed { ... }

Listing 5.6: Example of the Speci�cation Language with Behaviour

5.2.5 Representing Behaviour with Automated Reasoning and Logical
Formulas

In this section, we present how we compare the behaviour of simulation components by

modelling the e�ect of their schedules- and writes-relationships on the simulation world.

To represent these e�ects, we use automated reasoning and logical formulas. Therefore, we

specify the instances of the behaviour metamodel as logical formulas and transform them

into SMT statements. We distinguish between relationships that directly or indirectly a�ect

the attributes of the simulation world. The attributes are indirectly a�ected by schedules-

relationships; these relationships can schedule events, and these events can directly a�ect

attributes of the simulation world. To determine that two schedules-relationships have

the same behaviour, these relationships must schedule the same event with an identical

delay. Listing 5.7 shows the de�nition of waiting passengers and a concrete delay of 15

seconds.

1 ∃ waitingPassengers ∈ Z :

2 waitingPassengers > 0 ∧

3 ∃ delay ∈ R :

4 delay = 15

Listing 5.7:Delay Speci�cation

In order to compare two schedules-relationships, it is su�cient to model the condition and

delay the expression of a schedules-relationship as separate SMT formulas (cf. Listing 5.8).

The following SMT statements are written in the SMT-LIB syntax. These statements depict

variable declarations for all attributes accessed in those statements. Formulas that specify

the value of a variable (i. e., delays and write-functions) also include a declaration for the

variable. The SMT equivalent to the given logical formula statement is shown in Listing 5.7.

We consider two writes-relationships to have the same behaviour if they a�ect the attribute

in the same way, i. e., if the attribute value after the speci�ed write-action is the same for

every given assignment of input values. The condition cannot be modelled independently

from the write-function for writes-relationships because the new attribute value depends

137

5. Reuse of Model-based Analysis Components

1 // condition:

2 (declare-fun waitingPassengers () Int)

3 (assert (> waitingPassengers 0))

4

5 // delay:

6 (declare-fun delay () Double)

7 (assert (= delay 15))

Listing 5.8:Delay Speci�cation Modelled with SMT [Koc+22]

on both the condition and the write-function. An attribute will obtain the value speci�ed

by the write-function if the condition evaluates to true; otherwise, the attribute will keep

its old value (cf. Section 5.2.3).

1 ∀ old, value, input ∈ N :

2

3 ((input > 0) → (value = old + 1)) ∧

4 (¬(input > 0) → (value = old))

Listing 5.9:Write Speci�cation

Listing 5.10 shows this correlation in SMT-LIB syntax with two implications. An attribute

of type integer will be increased by one if the condition input > 0 is met.

The SMT equivalent to the given logical formula in Listing 5.9 is:

1 (declare-fun old () Int) // old attribute value

2 (declare-fun value () Int) // new attribute value

3 (declare-fun input () Int) // additional input

4

5 (assert (=> (input > 0) (= value (+ old 1))))

6 (assert (=> (not (input > 0)) (= value old)))

Listing 5.10:Write Speci�cation Modelled with SMT

This formula uses quanti�ers to assert that the relationships hold for all integer values of

old, value, and input. The �rst assertion states that if the input is greater than 0, the value

should be equal to old + 1. The second assertion states that the value should be equal to

old if the input is not greater than 0.

As described in Section 5.2.3, multiple writes-relationships to the same attribute from the

same event are allowed. Because the �nal value of an attribute depends on all of those

writes-relationships, a combination of all writes-relationships can represent the e�ect of

an event on the attribute. The representation of writes-relationships can be extended to

meet this requirement by creating an implication for each relationship. Then the attribute

keeps its old value if none of the conditions is met.

For n writes-relationships from event A to attribute C with condition-expressions C1..n

and write-functions F1..n. Listing 5.11 shows the general write speci�cation to describe

the e�ect A has on C.

138

5.3. Structure Comparison

1 ∃ old ∈ Z, value ∈ Z :

2 (C1 ⇒ value = F1) ∧ ... ∧ (Cn ⇒ value = Fn) ∧

3 (¬(C1 ∨ . . . ∨ Cn) ⇒ value = old)

Listing 5.11:General Write Speci�cation

Listing 5.12 shows the combined SMT formula based on Listing 5.11.

1 (declare-fun old () Int)

2 (declare-fun value () Int)

3 (declare-fun ...) // additional inputs

4

5 (assert (=> (C1) (= value F1)))
6 ...

7 (assert (=> (Cn) (= value Fn)))
8 (assert (=> (not (or C1 .. Cn)) (= value old)))

Listing 5.12:General Write Speci�cation [Koc+22]

5.3 Utilising Model-based and Grammar-based Specification
of Discrete Event Simulations for Structure Comparison

In this section, we present our approach to compare the structure of speci�ed analysis

components modelled with our DSL. We developed this approach to address research

question RQ 5.2.1, identifying simulations based on their structure. We use a graph-based

representation of these speci�cations with annotated nodes and edges. Entities, events and

attributes are represented as nodes, while schedules- and writes-relationships, and parent-

child relationships between entities and attributes are represented as edges. Figure 5.3

shows an example of such a graph representation. The picture shows the aforementioned

tra�c light simulation, modelled as a graph. The entity Tra�c Light has two attributes,

the colour the tra�c light can take and the number of waiting pedestrians that wait at

the tra�c light. The graph also contains two events that read the number of waiting

pedestrians and write to the colour attribute i. e., change the colour of the tra�c light. The

distinction between structure and behaviour in our metamodel di�ers slightly from the

distinction we make for comparing structure and behaviour. The behaviour metamodel

contains the entire speci�cation of schedules- and writes-relationships; the presence

of these relationships can be integrated into the graph representation of the elements

from the structure metamodel. However, this information is irrelevant to the structure

comparison, and thus, we omit it in Figure 5.3. The entire simulation speci�cation cannot

be compared using a graph-based approach because of the use of expressions in schedules-

and writes-relationships, representing a paradigm orthogonal to the graph notation.

We consider two simulation speci�cations structurally similar if their graph representations

are isomorphic, i. e., if there is a bijection between the structural elements (i. e., entities,

139

5. Reuse of Model-based Analysis Components

<<entity>>
TrafficLight

<<attribute>>
colourTraffic

<<attribute>>
waitingPed.

<<event>>
Red

<<event>>
Green

writes

reads

Figure 5.3.:Graph-representation of Structural Elements

attributes, and events) of both simulations. Regarding entities and attributes, graph

isomorphism ensures that the simulation worlds of both simulations can store the same

information. A bijection between the events of both simulations ensures that each event

in simulation A has a uniquely associated event in simulation B that schedules the same

events. Furthermore, the reads- and writes-relationships ensure that mapped events access

the same properties of the simulation world. We will use this bijection as a starting point

for a behaviour comparison that takes the expressions into consideration that specify the

behaviour of schedules- and writes-relationships. There may be multiple isomorphisms

between the graph representations of the two simulations. This is possible if two attributes

of an entity only participate in reads-relationships from the same event. In this case,

both attributes are structurally indistinguishable, and a behaviour comparison needs to be

employed for each isomorphism.

5.4 Utilising Model-based and Grammar-based Specification
of Discrete Event Simulations for Behaviour Comparison

In this section, we present our approach comparing speci�ed analysis features addressing

research question RQ 5.2.1, identifying simulations based on their behaviour. To explain

our approach, we use the tra�c light example shown in Figure 5.3. We will demonstrate

how the example is modelled with our DSL and how the behaviour is represented as

SMT formula. The usage of expressions in the behavioural metamodel renders the graph-

isomorphism approach unusable for behaviour comparison, even though a description of

the structure of simulations with the structural metamodel contains su�cient information

to utilise a graph-based structural comparison. The expressions specifying the behaviour

in the simulation speci�cation are �rst-order logic statements. We use these statements as

part of SMT instances (as introduced in Section 2.5). We use the �rst-order logic statements

to derive SMT statements to build SMT instances whose satis�ability /validity helps to

identify the behavioural similarity of two events [Koc+22].

Our approach compares simulation behaviour on a per-event basis, i. e., it will verify if

an event in simulator A and simulator B share the same behaviour. With the de�nition

of simulation behaviour explained in Section 5.2.3, this is the case if the events have the

140

5.4. Behaviour Comparison

1 // simulator S1
2 event A {

3 reads Z.input

4 schedules E with delay = 2 * (5 + input)

5 }

6 // simulator S2
7 event B {

8 reads Z.input

9 schedules F with delay = 10 + 2 * input

10 }

Listing 5.13: Schedules-Relationships with Identical Behaviour

same e�ect on the simulation world, i. e., they write the same values to the same attributes

and schedule the same events.

First, we will introduce a representation of the behavioural concepts event schedules
event and event writes attribute in SMT-LIB syntax. We will demonstrate the behaviour

comparison on a simple example, and from there, we derive a general formula. When

comparing behaviour between speci�cations of simulations S1 and S2 we assume that a

structural isomorphism has already been found, i. e., for every attribute and event of S2
there is an attribute or event respectively in S2 with equal structural characteristics.

5.4.1 Comparing Schedules Relationships

For every pair of events Ea and Eb , we assume one schedules-relationship from Ea to Eb .

Finding a bijection between the schedules-relationship from Ea to Eb in both simulator

speci�cations will allow the developer to expand the following concepts to numerous

schedules-relationships. This is feasible because each schedules-relationship’s impact

on the simulation world is self-contained and not dependent on the e�ects of any other

schedules-relationships; however, this is not the case with writes-relationships. With this

assumption and mapping of events, we can compare the (unique) schedules-relationship

from event A to event E in simulator S1 with the schedules-relationship from event B
to event F in simulator S2, where A and B as well as E and F need to be a structural

match [Koc+22].

When we compare the scheduled events E and F the behaviour of event A and B is identical,

if the delay- and condition-expressions are equivalent.

Consider the example depicted in Listing 5.13: The events A and B in simulator S1 and S2
respective schedule an event (that has been matched between the simulators S1 and S2)
with slightly di�erent delay expressions that always evaluate to the same value.

According to the representation of expressions in SMT-LIB syntax that we presented in

Section 2.5, we can combine both delay speci�cations in a single SMT formula and declare

them delayA and delayB to verify their equality. The SMT-LIB example is depicted in

Listing 5.14. They are equivalent if they always evaluate to the same value for all possible

141

5. Reuse of Model-based Analysis Components

1 (declare-fun input () Double)

2 (declare-fun delayA () Double)

3 (declare-fun delayB () Double)

4

5 (assert (= delayA (* 2 (+ 5 input))))

6 (assert (= delayB (+ 10 (* 2 input))))

7 (assert (not (= delayA delayB)))

Listing 5.14: Example for Schedule Comparison

1 (declare-fun ...) // all read-attributes

2

3 (assert (not (= CA CB)))

4 (assert (not (= DA DB)))

Listing 5.15:General Schedule Comparison [Koc+22]

assignments of input variables, i. e., if the expression (assert (= delayA delayB)) is

valid, or equivalently if the negation of that expression is not satis�able.

To compare conditions of the schedules-relationship, we de�ne: Let CA and CB be the

condition-expressions of the schedules-relationships from event A and B respectively and

DA and DB the delay-expressions [Koc+22]. As a result, if the SMT statement depicted in

Listing 5.15 is unsatis�able, the behaviour of the schedules-relationships is identical.

A statement is satis�able when the SMT solver �nds an assignment of input variables

where the condition- or delay-expressions show not identical values. This allows our

approach to determine whether two events have the same behaviour and generate a

mapping of attribute values (a subset of attribute states) to show how they match.

5.4.2 Comparing Writes Relationships

When comparing writes-relationships, we assumed that for schedules-relationships exist

at most one schedules-relationship between one event and another. This assumption is

plausible since schedules-relationships e�ects are independent. Additionally, a method for

identifying schedules-relationships that are similar to those that satisfy the assumption

can be expanded to support any number of schedules-relationships between two events.

We cannot make a similar assumption for write-relationships. We assume that it exists one

write-relationship in event A that writes to attribute C, at most. The combination of all

write-relationships from A to C is the result of the e�ect of A on C. As a result, we cannot

compare write-relationships separately. To illustrate our assumption, �rst, we present a

single write-relationship that a�ects one attribute. Second, we derive a general statement

that represents the concept. Listing 5.16 shows the statement, where two events a�ect an

identical attribute: waitingPassengers. The presented conditions are not the same; however,

the two conditions have the same e�ect on the attributes.

142

5.4. Behaviour Comparison

1 // simulator S1
2 event A {

3 reads Z.waitingPassengers

4 writes Z.waitingPassengers = 0

5 when waitingPassengers != 0

6 }

7

8 // simulator S2
9 event B {

10 reads Z.waitingPassengers

11 writes Z.waitingPassengers = 0

12 }

Listing 5.16:Writes-Relationships with Identical Behaviour [Koc+22]

1 (declare-fun old () Int)

2 (declare-fun newA () Int)

3 (declare-fun newB () Int)

4

5 // writes-relationship of S1:
6 (assert (=> (not (= old 0)) (= newA 0)))

7 (assert (=> (= old 0) (= newA old)))

8

9 // S2, simplified, because the condition is always true:

10 (assert (= newB 0))

11 (assert (not (= delayA delayB)))

Listing 5.17: Example for the Write Comparison

The example in Listing 5.16 illustrates how the expression describing the new value of the

attribute and the condition cannot be compared separately, as it is possible with schedules-

relationships. We can use the SMT representation of writes-relationships introduced

in Section 5.2.5 to combine both writes-relationships in a joint SMT formula using two

variables to represent the two write-action outputs, as shown in Listing 5.17. A single

variable is used for the old attribute value in the combined formula to assert that both write-

functions access the same state of the simulation world. Similar to schedules-relationships,

the joint formula will be satis�able if there is a state of the simulation world for which

both writes-relationships write di�erent values to the same attribute, proving di�erent

behaviour.

Generalisation for the write comparison: The e�ect of an event A on an attribute C
is the result of the combination of all write-relationships from A to C, each of which can

contain a condition. Using the representation of multiple writes-relationships from A to C
explained earlier, and this comparison can be extended to a general formula. Let CA,1..n

and CB,1..m be those conditions of event A and B respectively and FA,1..n and FB,1..m the

corresponding write-functions. Then the e�ect of A and B on the attribute is identical if

the SMT formula shown in Listing 5.18 is not satis�able:

143

5. Reuse of Model-based Analysis Components

1 (declare-fun old () Sort)

2 (declare-fun newA () Sort)

3 (declare-fun newB () Sort)

4 (declare-fun ...) // all read-attributes

5

6 // write-functions of event A

7 (assert (=> (CA,1) (= newA FA,1)))
8 ...

9 (assert (=> (CA,n) (= newA FA,n)))
10 (assert (=> (not (or CA,1 .. CA,n)) (= newA old)))

11

12 // write-functions of event B

13 (assert (=> (CB,1) (= newB FB,1)))
14 ...

15 (assert (=> (CB,m) (= newB FB,m)))

16 (assert (=> (not (or CB,1 .. CB,m)) (= newB old)))

17 (assert (not (= newA newB)))

Listing 5.18:General Example for the Write Comparison

5.5 Technical Contribution

In this section, we present the toolchain that allows analysis architects to specify the

structure and behaviour of simulation components. Our toolchain follows our metamodel-

based approach to specifying the structure and behaviour of simulation components

presented in Section 5.2. We provide the analysis architect with a model-based textual

editor for the speci�cation of simulation components. The textual editor is based on

our DSL to specify the structure and behaviour of simulation components presented in

Section 5.2.4. Furthermore, we provide a tool that empowers the analysis architect to

identify similar simulation components. In our toolchain, we implemented the structural

and behavioural comparison according to Section 5.3 and Section 5.4.

5.5.1 Toolchain for Simulation Component Specification and Comparison

Our approach is separated into specifying and identifying simulation components; as a

result, we also separated our toolchain accordingly. The �rst part of our toolchain is for

specifying the structure and behaviour of simulation components. The second part of our

toolchain is for comparing simulation components to �nd simulation components that

are similar regarding structure and behaviour. Figure 5.4 displays the tools we created to

realise simulation component speci�cation and identi�cation and the third-party tools we

used in our toolchain. Our tools are depicted with black icons: the Simulation Speci�cation
Editor, the Analysis CLI, and the Analysis Results. The external tools we use in our toolchain

are Eclipse, EMF, Xtext for the speci�cation; Neo4J and Docker to store the speci�cation; the

Z3 Solver and Neo4J for the comparison. This section explains how we use and implement

the toolchain in detail.

144

5.5. Technical Contribution

Neo4J

DockerSimulation
Specification
Editor

Analysis
Result

Analysis
CLI

Z3

queries creates

calls result

fillsprovides

SPECIFICATION IDENTIFICATION

EMF

Eclipse

Xtext

Figure 5.4.: Speci�cation and Analysis Toolchain [KR22]

5.5.1.1 Specification of Simulation Components

The speci�cation approach utilises the metamodels for specifying the structure (cf. Fig-

ure 5.1) and behaviour (cf. Figure 5.2) of simulation components. We created the meta-

models in EMF. EMF provides graphical and textual editors to create such metamodels.

Furthermore, it provides generators for creating code stubs of the metamodel classes,

editing classes, and rudimentary tree editors. As shown in Figure 5.4, we use the EMF

technology stack to create the simulation speci�cation editors. Figure 5.5 depicts the tree

editor with an example model. The tree editors are suited for small models and rapid pro-

totyping; however, the tree editors are hard to navigate and understand. Therefore, we use

Xtext to create a grammar for a textual editor. The grammar is presented in Section 5.2.4.

Figure 5.6 shown the textual editor. The textual editor allows the analysis architect to

specify structure and behaviour.

The analysis architect can work exclusively with the text editor; the model instances are

created automatically. In the editor, each simulation component is stored in a *.simspec

�le, and the generated model �les are stored in the *.structure �les.

Each node in the editor has a distinct ID and name property. In addition to the ID and

name, the developer can add a description to the root node, representing the simulation

component. Entities and events are contained in the root node. Attributes on all entities are

base datatypes like integers, booleans, arrays, or enums. Each event can relate to several

attributes to express a reads relationship. The behaviour is represented independently to

separate the structure from the behaviour. The structural and behaviour metamodels are

built using the reference architecture for domain-speci�c modelling languages [HSR19].

This allows us to individually maintain and extend the metamodels while using an editor

that accesses both metamodels. Writes attributes and schedules relationships comprise

the behaviour. According to our metamodel is, each writing attribute associated with a

single event. When the event is triggered, the writes attribute has a condition that, if true,

changes the referenced attribute. The writes attribute also models how an attribute is

changed.

145

5. Reuse of Model-based Analysis Components

Events can also schedule other events. Developers can add the schedules node to the tree

editor to model event scheduling. A schedules node refers to the scheduling event and

the event to be scheduled. The node also contains the condition and a reference to the

attributes assessed to decide whether the simulation component plans an event. For the

speci�cation to be used for comparison, we convert it into a graph. As seen in Figure 5.4,

the speci�cation is saved in graph form in the graph database Neo4J
1
. Our tool has an

interface for saving the speci�cation to a database. For an easy setup of the Neo4J database,

we propose running the database in a Docker container.

Although the Neo4J database is utilised to store the transformed speci�cations and exe-

cute the structural comparison, users can view each stored graph via the Neo4J UI. We

recommend using the UI only for debugging purposes because the graphs are created from

scratch for each analysis run. The graphs are created each time new because we want to

avoid inconsistencies between the speci�cation and the data stored in the Neo4J database.

The graphs in Figure 5.7 depict six simulation components of varying complexity. The

blue nodes represent a simulation component. The yellow nodes represent simulation

component instances. The red nodes re�ect simulation component events. The grey nodes

are the simulation component’s datatypes. Reads and writes are represented by arrows

connecting events and datatypes. Arrows between events represent schedule-relationships

as well. Besides the structural information that is depicted in Figure 5.7, the behavioural

information is encoded as SMT statements that are annotated at the nodes and edges

where necessary. Although the graphs in the Neo4J user interface can be modi�ed, the

speci�cation in the tree editor cannot be automatically updated depending on the new

graph. As a result, we advocate only using the text editor to amend the speci�cations.

5.5.1.2 Identification of Simulation Components

The speci�cation of simulation components alone serves as a documentation tool. Using

the speci�cation for the identi�cation of simulation components regarding their structure

and behaviour, we present the second part of our toolchain: The second part of our

toolchain accesses the graphs that are stored in the Neo4J database. We use these graphs

to compare simulation components based on their speci�cation. When we compare two

simulation components, we use two approaches to �rst compare the structure and second,

to compare the behaviour. As the �rst step, the tool performs a subgraph isomorphism

analysis [Ull76], searching whether a graph can be part of another graph. To perform

the graph-isomorphism analysis, we utilise a Neo4J plugin developed by Cordio [Cor22].

After the sub-graph isomorphism analysis con�rms that the two graphs have structural

similarities, the similarity analysis proceeds with the behaviour analysis. The annotations

that store the behaviour information and the reads- and writes-relations of the metamodel

are transformed into SMT statements based on the SMT-LIB standard
2
. We transmit the

statements to an SMT-Solver to determine whether the behaviour is identical. We use for

1
https://neo4j.com/

2
https://smtlib.cs.uiowa.edu/

146

5.5. Technical Contribution

the behaviour analysis the Z3 Theorem Prover by Microsoft [Z3P19]. The theorem prover

solves the SMT problems we extracted from the simulation component speci�cations.

5.5.1.3 Configuration

To compare simulation components based on their speci�cation and to avoid invoking

the subgraph isomorphism and behaviour analysis manually, we developed a CLI. Before

starting the analysis, the tool must know where the Z3 Theorem Prover is located. The

PATH variable must be extended to provide the location of our toolchain. We provide a

command in the CLI to add the path to the Z3 installation to the PATH variable of the

operating system; thus, the user must install the Z3 Theorem Prover manually. Our CLI

provides the following command to provide the location of the Z3 installation:

1 sim-compare z3 <PATH TO libz3.dylib>

2 sim-compare z3java <PATH TO libz3java.dylib

Listing 5.19: Z3 Theorem Prover Setup

It depends on the used operating system whether the user must manually change PATH

variable or use the CLI. Currently, the z3 and z3java commands are tested for MacOS.

Please consult the o�cial Z3 website
3

or the GitHub page
4

for more information.

Neo4J can run locally or remotely; however, we assume the user has a standard Neo4J

instance that runs locally. Suppose that is not the case; the user uses another IP address or

username and password. In that case, the user must invoke the following commands to

change the IP, username, and password according to their Neo4J installation:

1 sim-compare neoip <IP>

2 sim-compare neousr <USER>

3 sim-compare neopw <PASSWORD>

Listing 5.20:Neo4J Setup

5.5.1.4 Analysis Commands

The user can check which simulation components are saved in the Neo4J database; these

are available for searching for similar simulation components. To display the available

simulation components, the CLI can list all simulation components that are stored in the

Neo4J database by name:

1 sim-compare list

Listing 5.21: List all Simulation Components

3
https://www.microsoft.com/en-us/research/project/z3-3/

4
https://github.com/Z3Prover/z3

147

5. Reuse of Model-based Analysis Components

The main feature of our toolchain is the search for similar simulation components in

structure and behaviour. To compare two simulation components, the user can invoke the

analysis with the following command:

1 sim-compare compare <SIM_A> <SIM_B>

Listing 5.22:Compare Simulation Components Command

This inconspicuous command consolidates the approaches to compare simulation compo-

nents regarding their structure (cf. Section 5.3) and behaviour (cf. Section 5.4). Invoking the

command for each simulation component can be tedious for the user when the database

contains hundreds of simulation components. Thus, we recommend using the following

command to search for one speci�c simulation component:

1 sim-compare list | xargs -L1 sim-compare <SIM_A>

Listing 5.23:Compare with all Available Simulation Components Command

The �rst part of the command lists all available simulation components that are stored in

the Neo4J database. The list is piped into the sim-compare command, where <SIM_A> is

the simulation component searched in the remaining available simulation components.

5.5.1.5 Analysis Results

After invoking the sim-compare compare <SIM_A> <SIM_B> command, the analysis result

can have four outcomes. The �rst outcome is that the two compared simulation components

do not match structurally. Listing 5.24 shows the result when the structure of the simulation

component SIM_A is compared to the structure of the simulation component SIM_B and

the subgraph isomorphism yields no result.

1 Compare SIM_A and SIM_B

2 No isomorphism between simulator graphs!

Listing 5.24:No Subgraph Found

Listing 5.25 shows an excerpt of the result when the subgraph isomorphism analysis

was successful. Instead of the output No isomorphism between simulator graphs!, the

analysis compares the subgraphs’ mappings. The currently analysed mapping is indicated

by the placeholder n, and the total number of mappings is indicated by the placeholder

m.

1 Compare SIM_A and SIM_B

2 ...

3 Testing mapping n out of m:

Listing 5.25: Successful Subgraph Analysis

148

5.6. Limitations

After the subgraph isomorphism analysis, each mapping that yields a positive result for the

subgraph isomorphism analysis (i. e., they are identical on a structural level) is analysed

regarding the matching behaviour. As the subgraph isomorphism can yield more than one

result, each result will be compared until the SMT-Solver �nds a solution or the behaviour

is not identical. Listing 5.26 shows the results for a mapping that is not identical (SMT

status: NOT SATISFIABLE). For each attribute that is compared, the CLI will print an

info line like in line 4 of Listing 5.26.

1 Compare SIM_A and SIM_B

2 ...

3 Testing mapping n out of m:

4 Comparing ’XYZ writes demand’ with ’ABC writes demand’

5 SMT status: NOT SATISFIABLE

Listing 5.26:Not Matching Behaviour

If the subgraph isomorphism analysis was successful and the behaviour is identical, the

results show a mapping of the events and entities that yielded the result. Listing 5.27

shows the result of a successful subgraph isomorphism and behaviour analysis.

1 ...

2 Testing mapping n out of m:

3 Comparing ’XYZ writes demand’ with ’ABC writes demand’

4 Behaviour identical with mapping:

5 [Event] EventA = EventC

6 ...

7 [Entity] EntityA = EntityZ

8 ...

Listing 5.27:Matching Behaviour

5.6 Limitations

While our approaches for comparing the structure and behaviour of DES components

have shown promising results, it is essential to acknowledge their limitations. In this

section, we will discuss these limitations to provide a comprehensive understanding of

our methods and their potential weaknesses.

In Section 5.6.1, we will discuss the limitations of the structure comparison approach.

One limitation is that the structure comparison approach only considers isomorphic

components with the same structure. However, components with di�erent structures can

have the same behaviour, which could result in false negatives. Additionally, the approach

relies on the availability of a formal speci�cation, which may only sometimes be the case.

Furthermore, due to the computational cost of identifying isomorphism, the approach may

only be suitable for a small and complex DES component.

149

5. Reuse of Model-based Analysis Components

In Section 5.6.2, we will discuss the limitations of the behaviour comparison approach.

One limitation is that the approach relies on the availability of input-output traces, which

may only sometimes be available or may be di�cult to obtain. Additionally, the approach

assumes that components with similar behaviour are functionally equivalent, which may

not always be the case. Furthermore, the approach may not be able to detect subtle

di�erences in behaviour that could be important in some applications.

By acknowledging these limitations, we hope to provide a clear understanding of the

scope and applicability of our approaches. While these limitations may constrain the

e�ectiveness of our methods in speci�c scenarios, they provide a solid foundation for

future research in DES comparison and veri�cation.

5.6.1 Limitations of the Structure Comparison

The �rst step in comparing DES components is to perform a structure comparison. This

step is not intended to identify identical components but rather to �lter the DES compo-

nents with the same structure, i.e., isomorphic components. However, these isomorphic

components can have di�erent semantics and di�erent behaviour.

For example, two DES components may have the same structure but di�erent semantics.

As a result, even though they may look identical, they have di�erent meanings and

functions. Similarly, two DES components with the same structure and semantics may

exhibit di�erent behaviour when subjected to the same input.

Using graph isomorphism is one way to preselect DES components based on their structure.

Graph analysis can be used to check for isomorphism between DES components e�ciently.

This preselection step is important because comparing the behaviour of every available

DES speci�cation with the desired speci�cation can require a lot of computation time due

to the complexity of the task. By preselecting DES components based on their structure,

the SMT solver can focus only on those likely to be behaviourally equivalent to the

desired speci�cation, which can signi�cantly reduce the computation time of the behaviour

comparison process.

In conclusion, performing a structure comparison is an essential �rst step when comparing

DES components. Although isomorphic components may have the same structure, they

can have di�erent semantics and behaviour. Preselecting DES components based on

their structure using the structural comparison can help avoid the need to compare the

behaviour of every available DES speci�cation with the desired speci�cation, which can

save time and computational resources.

5.6.2 Limitations of the Behaviour Comparison

The time required for behaviour comparison of a DES component increases with the

number of events and entities involved in the system. However, the preselection approach

150

5.6. Limitations

through structural comparison cannot guarantee that it only discards the DES compo-

nents with the same behaviour. Nevertheless, preselection is still necessary to reduce the

number of DES components that require behaviour comparison, thus reducing the overall

computation time of the behaviour comparison.

It is essential to note that the behaviour speci�cation focuses only on events and the

variables that change due to those events. It does not consider computations of the DES

components that are not a�ected by events. The speci�cation approximates the behaviour

of a DES component, which results in the behaviour comparison being a heuristic to reduce

the search space for the developer. While this heuristic helps reduce the computation time,

it is still the developer’s responsibility to analyse the matching components to ensure their

suitability for the desired purpose.

Furthermore, the approach’s limitations in comparing the structure and behaviour of DES

components need to be considered. One such limitation is the inability to identify complex

behaviours due to the simplicity of the behaviour speci�cation. Additionally, the structural

comparison approach may need to be revised to identify the subtle di�erences between

the components with di�erent behaviours.

Another limitation could be the assumptions about the behaviour speci�cation, which can

result in the behaviour comparison being an approximation. As a result, the developer

needs to be cautious when interpreting the results of the behaviour comparison.

In conclusion, the preselection approach through structural comparison helps reduce

the number of DES components that require behaviour comparison, thus reducing the

computation time. However, the limitations of this approach and the approximations made

in the behaviour speci�cation need to be considered while interpreting the results of the

behaviour comparison. Ultimately, the developer is responsible for analysing the matching

components to ensure their suitability for the desired purpose.

151

5. Reuse of Model-based Analysis Components

Figure
5.5.:

S
i
m

u
l
a
t
i
o

n
S
p

e
c
i
�

c
a
t
i
o

n
E

d
i
t
o

r
–

T
r
e
e
-
E

d
i
t
o

r
[
K

R
2
2
]

152

5.6. Limitations

Fi
gu
re
5.
6.
:S

i
m

u
l
a
t
i
o

n
S
p

e
c
i
�

c
a
t
i
o

n
E

d
i
t
o

r
–

T
e
x
t
-
E

d
i
t
o

r
[
K

R
2
2
]

153

5. Reuse of Model-based Analysis Components

Figure
5.7.:

S
i
m

u
l
a
t
i
o

n
S
p

e
c
i
�

c
a
t
i
o

n
G

r
a
p

h
V

i
s
u

a
l
i
s
a
t
i
o

n

154

Part III.

Validation

6. Case Studies

In this chapter, we introduce the case studies we use throughout evaluating our contribu-

tions. The research questions and metrics to validate our contributions are designed to

work in the context of particular systems and particular cases. A suitable method for gath-

ering the metrics and answers to our research questions is applying our approaches to such

systems. According to Wohlin [Woh21] must, an empirical case study is a contemporary,

real-world phenomenon. They must be actively developed to make case studies valuable

for evaluation. Therefore, we decided to use four model-based analyses originating from

di�erent domains: SimuLizar [Reu+16], SimuLizar is a software architecture performance

analysis tool based on the PCM; Camunda BPM [Gei+18], Camunda is a BPMN2-based

work�ow and simulation engine; the Karlsruhe Architecture Maintainability Prediction for
Automated Production Systems (KAMP4aPS) [Hei+18], KAMP4aPS is an analysis for predict-

ing the maintainability of automated production systems utilising change impact analysis;

Moreover, the Smart Grid Topology (SmartGrid) [Ras+15], SmartGrid is a resilience analysis

to reason about energy network grid topologies.

We use case studies to evaluate our three contributions. To evaluate our reference architec-

ture for model-based analyses, we modularised the case studies so that they comply with

the reference architecture. To evaluate the bad smells that arise from the co-dependency

of DSMLs and model-based analyses, we searched the case studies for occurrences of bad

smells. Further, we �xed the bad smells in the case studies to determine the impact on

evolvability, understandability, and reusability. For evaluating our speci�cation and reuse

approach, we speci�ed analysis components of the case studies and used the speci�cation

to apply our search approach.

In Section 6.1, we explain the criteria for selecting the model-based analyses. We present the

case study SimuLizar in Section 6.2. The case study Camunda is presented in Section 6.3.

KAMP4aPS is presented in Section 6.4, and the case study SmartGrid is presented in

Section 6.5.

6.1 Selection Criteria

The selection criteria for the case studies are separated into four requirements. Our �rst

requirement is independent of the contribution and the approach we want to evaluate.

In order to be able to evaluate our contributions through representative case studies, we

need to be able to change the source code of the model-based analyses. Therefore, the �rst

and most important selection criteria the case studies must meet is that the model-based

157

6. Case Studies

analyses must be publicly available as open-source software. Otherwise, we cannot test

our hypothesis on real-world case studies.

Our second requirement is independent of the contribution and the approach we want to

evaluate. The main research goal of this thesis is to improve the evolvability and reusability

of model-based analyses. Ergo, the second selection criteria the case studies must meet is

that the case studies use models as input, and the model must be based on a DSML.

Our third requirement concerns the �rst contribution, a reference architecture for model-

based analyses, and the second contribution, bad smells in model-based analyses. We must

be able to derive historical evolution scenarios from the case studies to determine the

e�ect of our contributions on the evolvability of the case studies we investigate. In order to

derive representative changes that happened during the development of the case studies,

the developers of the model-based analysis must use some source code versioning.

The fourth requirement concerns the �rst contribution, a reference architecture for model-

based analyses, and the second contribution, bad smells in model-based analyses. Our �rst

and second contribution assumes that the DSML is modularised according to the reference

architecture for DSMLs by Heinrich et al. [HSR19]. Hence, we focus on the four already

modularised DSMLs: the PCM, the BPMN2, the KAMP4aPS metamodel, and the SmartGrid

metamodel. Due to the pre-selection of metamodels, we could not in�uence the number

of available analyses and the size of the case studies, which range from about 10.000 lines

of code to more than 500,000 lines of code. Furthermore, we assume the corresponding

analyses have decomposition potential due to the metamodels’ decomposition potential.

We investigated di�erent kinds of model-based analyses in terms of new vs old, small vs

large size, many vs few layers, and di�erent domains.

6.2 The Palladio Simulator – So�ware Architecture Quality
Prediction

The Palladio Simulator is an established software architecture quality analysis tool based

on the PCM. It consists of three analyses (SimuLizar, SimuCom, and EventSim), each of

which employs a distinct analysis approach and can make performance predictions based

on the PCM.

The model-based analysis SimuLizar uses instances of the PCM to assume the modelled

system’s performance and reliability. Furthermore, SimuLizar can change the model and

simulate recon�gurations of the system during runtime. SimuLizar is the most sophisti-

cated and the best maintained of the three analyses; thus, we have selected it as a case

study. SimuLizar represents a historically grown and versatile model-based analysis that

can analyse multiple aspects of software quality.

The Palladio Simulator and the PCM are publicly available Open Source software. Heinrich

et al. [HSR19] modularised the PCM so that it conforms to their reference architecture for

DSMLs. Figure 6.1 shows the language components of the modular PCM. The modular

158

6.2. The Palladio Simulator

Paradigm π

Domain Δ

Quality Ω

identifier

base variables

stoex

probfunction

units

annotations composition repository seff

usage

environment

software
composition

software
repository

software
usage resources

resource
interfaces

software
seff

abstract
component typesinfrastructure allocation

eventsinternal
behaviour

performance
annotations

performance
reliability

annotations

reliability

Language Component Language Component Dependency Layer Separator

π
Paradigm

Δ
Domain

Ω
Quality

Figure 6.1.:Dependency Structure of the modular PCM [SHR18]

PCM consists of three layers; on the paradigm layer, they locate the essential language

components needed to model software systems on an architectural level.

Paradigm Layer: The paradigm layer contains twelve language components. The units,
identi�er, variables, and base provide the basic building blocks for modelling software

systems on an architectural level. The se� component allows the user to model the

behaviour of entities of the DSML. For modelling the behaviour, statistical expressions are

required; thus, the modular PCM provides the stoex language component. It depends on the

probfunction, which allows the modelling of statistical distributions. To store and compose

entities of the DSML, the modular PCM provides the repository and the composition
component. The composition language component serves as a generic framework for

all structures within the PCM. It incorporates the concept of composition, introducing a

new superclass Containable, which serves as the base for all classes that can be included

within a ComposedStructure. AssemblyContexts and Connectors are de�ned as Containable
elements in this language component. The repository language component encompasses

159

6. Case Studies

the fundamental abstractions of the repository view type. The repository component

comprises Components, Interfaces, and their associated relationships (Roles).

Domain Layer: The domain layer contains the language components that are required

for the domain of architecture and behaviour modelling of software systems. Therefore,

the basic building blocks from the paradigm layer are extended to allow the user to model

the architecture of software systems. The software composition extends the composition
component; further specialisations are the software repository to store modelled software

components, and the software se� and the software usage to model the behaviour of

software components. The software repository language component extends its counterpart

on the paradigm layer by incorporating domain-speci�c elements, including exceptions and

interfaces that provide operations. It also de�nes an atomic component with an abstract

class that serves as a generic extension point to specify the e�ects of services. While

using this extension point, the language component for describing behaviour software
se� is not limited to behaviour-speci�c speci�cations and can be utilised for other service

e�ect speci�cations. As a result, the software repository language component is devoid of

behaviour-related content. The software repository language component can be utilised to

de�ne software components, their interfaces, and operations. However, it is commonly

used with the composition and se� language components. The environment component

of the paradigm layer gets extended to allow the modelling of resources like Hard Disk

Drives (HDDs) and Central Processing Units (CPUs), which can be allocated by di�erent

software components. The resources language component extends the functionality of

the environment language component by incorporating hardware resource speci�cations

into its containers and links. These speci�cations serve dual purposes; they can either be

utilised solely for documentation or to simulate performance. These resources process

the resource demands that can be extended into Service E�ect Speci�cations (SEFFs).

In addition to the dependency on the environment language component, the resources
language component also relies on units. The software composition language component

extends the concepts from the composition language component on the paradigm layer by

domain-speci�c abstractions. It provides concrete implementations of abstract composition

concepts through several classes, including System, CompositeComponent, SubSystem, and

various Connectors. This language component is designed to be utilised with the software
repository language component to describe the internal structure of ComposedStructures

such as Systems and CompositeComponents. The infrastructure language component

is an extension of the se�, repository, and composition view types. It introduces new

abstractions, such as component types, interfaces, roles, connectors, and calls, referred to

as infrastructure, to model middleware.

Quality Layer: On the quality layer, they annotated the two quality attributes performance
and reliability. The quality layer introduces the analysis of two quality properties. First, it

provides the performance and the performance annotations components that allows the

user to analyse the performance of a software system. Second, it provides the reliability
and the reliability annotations components that allows the user to analyse the reliability of

a software system.

160

6.3. Camunda

6.3 Camunda – Business Process Workflow and Simulation
Engine

We selected the model-based analysis Camunda as our second case study. The analysis

Camunda is a work�ow and simulation engine that uses models of business processes.

These business process models are based on the DSML BPMN2, developed by the Object

Management Group (OMG). The BPMN2 standard serves as an ISO standard for modelling

business processes. It provides symbols for domain experts to model and document business

processes and work�ows. The standard contains a formal description of the execution

semantics for each model element. In the model instances, it is possible to compose

and correlate events, supporting the description of human interaction in processes. The

BPMN2 model is a type of �owchart which follows the tradition of programme sequence

visualisation. The BPMN2 is related to Event-driven Process Chains (EPC), also used for

modelling business processes.

The model-based analysis Camunda is also a software project developed as Open Source

software; thus, it ful�ls our �rst requirement for case studies. The developers of Camunda

also use a source code versioning system, which ful�ls our third requirement. It covers

the additional domain of business process analysis, besides the standard BPMN2, it also

supports the Case Management Model and Notation (CMMN 1.1) and the Decision Model

Notation (DMN 1.1). Camunda is a fork of the free work�ow management system Activiti,

developed in 2010. In 2013 Camunda BPM was forked from Activiti as an open-source

project by the company Camunda in Berlin. Our refactorings focus on the Camunda BPM

Platform, consolidating the metamodel’s dependencies. Due to the size of the Camunda

BPM Platform (over 500,000 lines of code), we were unable to refactor it in a reasonable

time frame; therefore, we focused our refactorings on our scenarios’ a�ected components

and �les.

Figure 6.2 depicts an excerpt of the modular BPMN2 DSML [SHR18]. The DSML is

separated into three layers, the paradigm layer, the domain layer, and a layer that does not

correspond to the reference architecture for DSMLs by Heinrich et al. [HSR19].

Paradigm Layer: The paradigm layer contains the fundamental features for �ow dia-

grams like activities, resources, or �ows. Furthermore, it contains the core component,

which implements fundamental concepts in BPMN2 modelling, including De�nitions (root

container for all models), RootElement (superclass for all primary concepts), Documenta-

tion, and BaseElement (provides ID and documentation reference). It also contains the

language component expressions, which implements informal and formal expressions.

Many BPMN2 concepts, such as Gateways, Subprocesses, Loops, Correlations, and Re-

sources, use expressions to express conditions. The BPMN2 speci�cation provides a services
package that serves as a language component for modelling services. This package de�nes

interfaces consisting of operations and service endpoints that can be extended externally.

The services language component relies on the messaging component. Furthermore, this

language component also has a transitive dependency on the core module. The DSML

contains the resources language component on the paradigm layer for allocating resources

161

6. Case Studies

Paradigm π

Domain Δ

Diagram Layer

Language Component Language Component Dependency Layer Separator

π
Paradigm

Δ
Domain

BPMN Diagram
Interchange

Diagram
Interchange

Diagram
Commons

process
resources

advanced event
expressions choreographies

collaborations

conversations

human
resources

advanced
events

auditing and
monitoring

human
interaction processes

expressions

resources

activities

flowscorrelations

services

externals

core

messaging

Figure 6.2.:Dependency Structure of the Modular BPMN2 DSML [SHR18]

to activities. According to the BPMN2 speci�cation, correlation is utilised to link a speci�c

message to an ongoing conversation between two process instances.

Domain Layer: The language components required to model business processes are

on the domain layer. It allows modelling human interaction of activities and human
resources. The language component human resources provides speci�c concepts related to

human resources in BPMN2 modelling. Its sole dependency is on the resources language

component. The concept of processes is introduced on the domain layer. It is part of the

162

6.4. KAMP and KAMP4aPS

domain layer due to domain-speci�c properties. The processes depends on artefacts and

services. The advanced events contains BPMN2 speci�c events that are too speci�c to

be part of the paradigm layer. Collaborations are employed to express the interaction

between processes. As such, the collaboration language component references the process
language component. Choreographies are utilised to specify the sequential interaction

between processes. The choreographies language component depends on the collaborations
language component, as choreography is a specialisation of collaboration. Conversations
provide an overview of participant interaction. They may reference collaborations between

participants.

Diagram Layer: The diagram layer is an exception to the reference architecture for

DSMLs; it contains exchange-speci�c information that should not be part of the DSML.

However, because the DSML follows the BPMN2 standard, the features on the diagram

layer remain in the DSML.

6.4 KAMP and KAMP4aPS – Change Propagation Analysis

We selected the model-based analysis KAMP4aPS as our third case study. The DSML

used by the KAMP4aPS model-based analysis is a single-purpose DSML; its metamodel

is only used by a single model-based analysis. Although the methodology [HBK18] of

the KAMP-Framework is designed to support the domains of software systems [Ros+15],

business processes [Ros+17], production systems [Hei+18], and the software of automated

production systems that runs on Programmable Logic Controllers (PLCs) [Bus+18], each

domain requires a dedicated analysis and metamodel. The analysis must contain the

change propagation rules for the change scenarios that work on instances of their domain

metamodel. For example, in the domain of automated Production System (aPS), the

KAMP4aPS analysis contains the metamodel that allows the analysis user to model aPS.

The KAMP4aPS DSML was used as a case study by Heinrich et al. [HSR19]; as we need a

modularised DSML for our evaluation, we will focus on the KAMP4aPS. In addition to the

Palladio Simulator and Camunda, the DSML KAMP4aPS does cover an additional domain.

Thus, we can further extend the diversity of our case studies. The KAMP4aPS metamodel

and analysis has been under development since 2016; it contains six components, one of

which consolidates the dependencies on the metamodel.

Figure 6.3 depicts an excerpt of the modular KAMP4aPS DSML. The DSML is separated

into three layers, the paradigm layer, the domain layer, and the quality layer. The domain

is further separated into three layers; due to the separation, the DSML architect can model

the dependencies from a concrete aPS (Pick and Place Unit (PPU)) to the more generic aPS

and the most generic Automated System (AS) domain.

Paradigm Layer: The paradigm layer contains the fundamental features for entity han-

dling and modi�cations. It contains the basic language component, allowing model entities

with a unique identi�er and a name. The modi�cation marks language component provides

163

6. Case Studies

Language Component Language Component
Dependency

Layer Separator

π
Paradigm

Δ
Domain

Ω
Quality

Paradigm π

Domain Δ (as)

Quality Ω

basic modification marks

as K4aPS AS

aps

Domain Δ (aps)

ppu
Domain Δ (ppu)

as foaa as modification
marks

aps modification
marks

ppu modification
marks

K4aPS APS

K4aPS PPU

K4aPS FoAA

Figure 6.3.:Dependency Structure of the Modular KAMP4aPS DSML [SHR18]

the starting point for the change propagation analysis, where an arbitrary entity can be

selected as the initial change.

Domain Layer: The domain layer contains the features required to model production

systems. Strittmatter et al. [Str20] decided to separate the domain layer. They created three

layers: one for the modelling of a wide range of automated systems (as); another layer for

modelling specialised as automated production systems (aps). Moreover, the last domain

layer allows modelling a pick-and-place-unit (ppu), a subset of automated production

systems. The domain layer also contains the language components for modelling non-

structural elements. In the context of the KAMP framework, these non-structural elements

164

6.5. SmartGrid

are called Field of Activity Annotations (FoAA). These FoAAs allow annotating additional

elements like tests or documentation to the aPS elements. This allows re�ning the change

impact analysis to consider artefacts that are not part of the aPS but are also a�ected by a

change.

Quality Layer: On the quality layer are the features contained that allow the user to model

modi�cation information and further a�ected elements that are not part of the domain. The

layer encompasses the as foaa language components, which implement modular design

and solely incorporate the most generic concepts from the AS language component. Such

elements are, for example, documentation or tests. All language components within the

layer are situated here as they establish abstract representations required for evaluating the

sustainability of a given automated system. Also, the quality layer introduces speci�cation

for the modi�cation marks for the three domains (as, aps, and ppu).

6.5 SmartGrid – Energy Network Simulation

Like the model-based analysis KAMP4aPS, the model-based analysis SmartGrid also works

with a single-purpose DSML. The SmartGrid energy network simulation performs an

impact and resilience analysis. The metamodel is used to model topologies of smart grid

energy networks. It also adds the domain of energy network analysis to our case studies;

it is the second-youngest analysis; the development started in 2014.

Figure 6.4 depicts an excerpt of the modular SmartGrid DSML. The DSML is separated

into three layers, the paradigm layer, the domain layer, and the quality layer.

Paradigm Layer: The paradigm layer contains the fundamental features for entity han-

dling and graph notation. The base language component constitutes an abstract superclass

and acts as a foundational element of all other language components. It inherits the

attributes of both name and ID to its dependent components. Owing to its wide usage,

dependencies on the base language component are not explicitly stated. Additionally, it is

independent of any external components and has no incoming dependencies. Notably, the

base language component is not a language construct and was factored out to serve the

needs of multiple language components that required its functionality. The graph language

component is an abstract representation that de�nes a basic network graph structure. The

nodes in this graph are interlinked by logical and physical connections and can be attached

to a power supply. This structure serves as the foundation for more complex network

con�gurations, providing a clear and concise representation of the relationships between

nodes in the network.

Domain Layer: The domain layer contains the features required to model topologies of

di�erent types. The devices language component provides a suite of device types tailored

explicitly for use in smart grid systems. These device types are integrated into the network

graph structure through subtyping. As a result, this language component is dependent

on the graph language component. The devices language component provides a well-

de�ned and specialised set of device types for use in smart grid networks. This language

165

6. Case Studies

Paradigm π

Domain Δ

Quality Ω

base graph

topo typerepo

input output

SGT.Topology

SGT.DeviceTypes

SGT.ImpactAnalysis

SGT.Input SGT.Output

Language Component Language Component
Dependency

Layer Separator

π
Paradigm

Δ
Domain

Ω
Quality

Figure 6.4.:Dependency Structure of the Modular SmartGrid DSML [SHR18]

component enables the construction of complex network con�gurations, where the various

components of the grid are represented as interconnected devices. The typerepo language

component extends the graph and topo language components. The types of the typerepo
are stored in a separate repository, independent of any speci�c smart grid topology. The

extended classes reside within the topo and graph language components. The typerepo
language component provides a centralised repository for managing di�erent types of

smart grid components, enabling a clear separation of concerns and simplifying the

maintenance and evolution of the smart grid system.

Analysis Layer: The features contained on the quality layer allow the user to model the

input and outputs required for the analysis.

166

7. Reference Architecture Evaluation

In this chapter, we present the evaluation of our reference architecture for model-based

analyses. In Section 7.1, we discuss whether our reference architecture ful�ls the require-

ments, and in Section 7.2, we explain the goals and metrics for the evaluation. In Section 7.3,

we present the design of our evaluation, and in Section 7.4, we present the results of the

evaluation. In Section 7.5, we discuss the threats to validity. Finally, in Section 7.6, we

summarise our �ndings and discuss the evaluation. In our evaluation, we use analysis

components and not the analysis features for our discussion because we evaluate the

source code of the case studies.

7.1 Discussion of the Requirements

In Chapter 6, we introduced the case studies we use throughout this thesis. Before we

introduce our goals and metrics that show whether the requirements are met, we discuss

the requirements that we can show are ful�lled by refactoring these four case studies.

The �rst requirement we discuss is R2 (Non-intrusive Extension). During the refactoring

process on the case study model-based analyses, we had to analyse the models that the

system uses, identify the system’s features, and then refactor the case studies to make them

more modular and extensible. By analysing the models, we gained a deeper understanding

of the case studies underlying structures, which have informed our decision-making during

the refactoring process. Identifying the system’s analysis features has helped us determine

which parts of the system were only part of the model-based analysis and which parts

represent the features of the corresponding DSML. We also identi�ed when we had to

introduce an extension inherited from more generic classes and analysis components. If

the extension required to extend multiple classes, we had to introduce new interfaces, as

Java does not allow multiple inheritance. As an interface alternative, we use aggregation

or composition to introduce extensions. All these types of extensions have in common

that they do not a�ect the more generic classes and analysis components, as none of the

extended classes becomes altered. Thus, we can state that our reference architecture for

model-based analyses meets the requirement R2, as extensions follow the structure of the

DSML transitively.

The following requirement we discuss is R3 (Consistent Dependencies). This thesis hy-

pothesises that transferring the reference architecture for DSMLs to model-based analysis

improves the evolvability, understandability, and reusability of the resulting model-based

analyses. This hypothesis is based on the assumption that the concepts of the reference

167

7. Reference Architecture Evaluation

architecture for DSMLs provide a consistent and structured approach to modelling that can

be transferred from one domain (DSMLs) to another (model-based analyses). To test this

hypothesis, we refactored the case studies to follow the structure of their corresponding

DSMLs. This involved making the structure of the DSML and its corresponding model-

based analysis consistent, as outlined in Section 3.2. Through the process of refactoring

the case studies, we were able to achieve a consistent structure of DSML and correspond-

ing model-based analysis. This consistency demonstrates that the reference architecture

for model-based analyses meets requirement R3, providing a structured approach to

modelling that can be applied across di�erent domains, leading to increased evolvability,

understandability, and reusability of resulting models.

The third requirement we discuss is R4 (Need-speci�c Reuse). Our reference architecture

for model-based analyses uses feature models and the feature notation to modularise a

model-based analysis. This way, the analysis architect can specify features of a model-based

analysis. Each con�guration (i. e., sub-graph) in our reference architecture can be reused

in another, model-based analysis. An analysis architect can also use a con�guration as an

individual model-based analysis. A con�guration of a model-based analysis is a valid subset

of the whole feature model of the model-based analysis. This is only possible because the

requirement R2 (Non-intrusive Extensions) is met by our reference architecture; the only

constraint is that the con�guration must not depend on other con�gurations. Therefore, we

can state that our reference architecture for model-based analyses meets the requirement

R4 (Need-speci�c Reuse).

The following requirement we discuss is R5 (Need-speci�c Use). The analysis architect can

also choose to extend a con�guration to create a new or extend an already existing model-

based analysis. Another possibility is that the analysis architect uses two con�gurations

separately, for example, performance and reliability. If the analysis architect needs a

performability analysis, they can combine these two con�gurations to create a new model-

based analysis. Ideally, they can combine those two con�gurations; in a real-world example,

they must add new features so that the two con�gurations can work together. Therefore, we

can state that our reference architecture for model-based analyses meets the requirement

R5 (Need-speci�c Use).

The last requirement we want to discuss is R1 (Improved Evolvability). Regarding the

requirement R1 (Improved Evolvability), we cannot determine whether it is satis�ed by

merely discussing the application of the reference architecture for model-based analyses to

our four case studies, especially the evolvability of such complex systems, as our four case

studies require additional research. Therefore, we present and run a GQM-based [CR94]

evaluation to determine whether our reference architecture for model-based analyses

improves the evolvability and understandability of our four case studies.

168

7.2. Research Goals and Metrics

7.2 Research Goals and Metrics

We separated the goals and metrics section into three parts. The �rst part introduces our

two research goals regarding the requirement R1 (Improved Evolvability). The second

part introduces our metrics to evaluate whether we reached our goals. Finally, the third

part describes the structure of the scenario-based evaluation.

The �rst goal (G1) we derived from R1 (Improved Evolvability) is:

Research Goal 7.1

We want to analyse whether our reference architecture for model-based analyses

improves the evolvability of model-based analyses.

The second goal (G2) we derived from R1 (Improved Evolvability) is:

Research Goal 7.2

We want to analyse whether our reference architecture for model-based analyses

improves the understandability of model-based analyses.

For both research goals G1 and G2, we use the four case studies introduced in Chapter 6.

We compare the original, monolithic model-based analysis with its modular model-based

analysis counterpart for each case study. We modularised each modular model-based

analysis according to our reference architecture. Due to the size of the case studies, we

focused on the metrics of the refactored scenarios. Modularising the whole model-based

analyses is not feasible, as it does not alter the evaluation results (cf. Section 7.3). Also, we

use the same metrics for both research goals G1 and G2 the same metrics to determine

evolvability and understandability for both research goals.

We apply the properties of the software evolvability model by Breivold et al. [BCE08] to

determine the evolvability of our approach. This model comprises the sub-characteristics

of analysability, integrity, changeability, extensibility, portability, and testability. Regarding

the ISO/IEC 25010 software quality model [ISO10], the characteristic of maintainability

and portability map to the sub-characteristics of the software evolvability model. The

sub-characteristics analysability, changeability, stability, and testability are part of the

maintainability characteristic of ISO/IEC 25010, and the sub-characteristics of adaptability,

installability, co-existence, and replaceability are part of the portability characteristic of

ISO/IEC 25010. According to Briand et al. [BWL01], and Cruz-Lemus et al. [Cru+10],

cognitive complexity a�ects the analysability and modi�ability of software. To measure

the cognitive complexity of a system, we refer to the amount of structural information

within a system. We choose the same metrics as Heinrich et al. [HSR19] to measure the

cognitive complexity of a system. They use the hypergraph metrics of Allen et al. [AGG07],

which uses information size, complexity, and coupling to measure the information entropy

of a software system. The formal de�nitions by Briand et al. [BMB96] are the foundation

for the metrics by Allen et al. [AGG07].

169

7. Reference Architecture Evaluation

The hypergraph metrics to evaluate our case studies are presented in Section 2.2.2.

7.3 Evaluation Design

In this section, we explain the reasoning behind the evaluation design. We explain which

types of evolution scenarios we consider and how we selected the concrete evolution

scenarios for each case study.

7.3.1 Evolution Scenarios

In general, we distinguish between modi�cation changes and extension changes. However,

these two changes are identical regarding the developer’s e�ort. The analysis developer

must understand the code base before modifying or extending the model-based analysis.

Therefore, our evaluation does not distinguish between modi�cation and extension changes

to determine evolvability and understandability. An evaluation scenario represents changes

in a model-based analysis. Ideally, each evolution scenario represents a change in one of

the case studies. However, deriving real changes is sometimes possible (i. e., lost commit

history, restricted access). Therefore, we distinguish three types of evolution scenarios. We

present the types from the best (most representative) to the worst (least representative).

Historical Evolution Scenarios: The �rst type is the historical evolution scenario. A

historical evolution scenario is derived from real changes in one case study. In the devel-

opment history of a model-based analysis, analysis developers must adapt or extend a

model-based analysis based on changes to the corresponding DSML. For example, when

new features are added to the DSML, they can change existing components, resulting in a

historical change. We searched the commit history of our four case studies to �nd such

historical changes. The only constraint is that the change a�ects classes that depend on

the DSML. It is su�cient if only one class has such a dependency; otherwise, our selection

criteria are too strict about yielding results.

Potential Evolution Scenarios: The second type is the potential evolution scenario.

Potential evolution scenarios were the �rst fallback when the search for historical evolution

scenarios yielded insu�cient results. If, for example, the commit history is lost, incomplete,

or not accessible, the potential evolution scenarios can serve as an alternative to generating

evolution scenarios. To generate a potential evolution scenario, the evaluation conductor

must analyse the source code of the model-based analysis. They must identify classes that

could be a�ected by a change. An example is to search for classes containing analysis

algorithms with dependencies on language features of the DSML.

Random Evolution Scenarios: The third and last type is the random evolution scenario.

The random evolution scenario is the last resort to generating evolution scenarios. If the

conductor of the evaluation cannot access historical data and cannot identify potential

evolution scenarios, they have to create random evolution scenarios. In such a scenario,

170

7.3. Evaluation Design

the conductor randomly picks classes of the model-based analysis and groups them into

one evolution scenario.

We created 40 evolution scenarios from historical data for our four case studies. Nonethe-

less, we decided to contain the potential and random evolution scenario as an option

for further case studies. Our evaluation scenarios and raw results are available in our

supplementary material [KHR22b] and our technical report [KHR22a].

7.3.2 Conduction of the Evaluation

We use the four case studies presented in Chapter 6 for the evaluation. For each case study,

we selected ten evolution scenarios. The repositories of the case studies are all publicly

available; thus we were able to extract ten historical evolution scenarios per case study.

After we selected the historical evolution scenarios, we extracted the a�ected classes per

scenario.

We refactored each scenario according to our reference architecture. For the refactoring,

we used the refactoring techniques presented in Section 3.3.3. We also used our tool

Refactor Lizar to fasten the refactoring process (cf. Section 3.6).

We compare the original evolution scenario to the refactored evolution scenario to assess

whether the evolvability and understandability have improved. The refactoring can result

in a di�erent number of classes. We only consider the classes that would be a�ected by

the change of the evolution scenario. For example, a change can a�ect only one line in a

class method with over 500 lines of code. After the refactoring, we might have moved the

method to another class; thus, the change would no longer a�ect the original class. As a

result, we omit classes that are no longer a�ected by a change.

For each evolution scenario before and after the refactoring, we calculate the complexity,

coupling, and cohesion according to Section 2.2.2. To calculate the metrics, we also use

our tool Refactor Lizar (cf. Section 3.6). We present the results in the following section.

7.3.3 SimuLizar Refactoring

We started the modularisation with the release of version 4.3 of the Palladio-Simulator and

used the modularised PCM presented in [HSR19; SHR18]. Before modularising SimuLizar,

we had to exchange the PCM with its modularised counterpart, the modular PCM. In order

to exchange the PCM, we had to change each dependency of SimuLizar from the PCM on the

modular PCM. Changing the dependencies is necessary, as the modular PCM is not used in

the Palladio-Simulator. After changing the dependencies, we analysed SimuLizar regarding

the problems like the accumulation of dependencies, the scattering of dependencies,

layer violations or cycles. We used our tool Refactor Lizar to �nd an accumulation of

dependencies to identify which classes we have to separate the components into the three

desired layers. The scattering of dependencies indicates which classes and components

could be merged, as the refactoring of the accumulation of dependencies results in many

171

7. Reference Architecture Evaluation

small classes. The accumulation of dependencies analysis resulted in 18 occurrences,

and the scattering of dependencies analysis resulted in 33 occurrences. The cycles and

layer violations occurred during the refactoring; thus, we have no initial number of

occurrences or �xes. First, we focused on accumulating dependencies of components that

are supposed to be on di�erent layers. Therefore, we applied horizontal-split refactoring

to separate the analysis component in the layers π , ∆, and Ω, which resulted in three

components. Then, we applied vertical-split refactorings to the three layers to separate

the accumulation of dependencies still present in these layers. The �nal step was to merge

the components where the language features were scattered over di�erent classes and

components. We could not �x all occurrences of the scattering of dependencies; for certain

analysis operations, multiple language features are required. The model observing part of

SimuLizar requires the modelobserver language feature and the software usage language

feature. This resulted in nine components on π , 22 on ∆, and one on Ω. The component

count increased from one component to 32 components. We reduced the number of

accumulating dependencies from 18 to zero and the number of scattering dependencies

from 33 to ten. In the following sections 7.3.4.1 and 7.3.4.2, we present detailed information

about the modular structure of SimuLizar after refactoring. The details regarding the

refactoring, especially the classes before and after the refactoring, can be found in our

supplementary material [KHR22b].

org.palladiosimulator
.simulizar

Language
Feature analyses optional mandatory

Figure 7.1.: SimuLizar Dependencies on the mPCM, simpli�ed [KHR22a]

7.3.4 Modular SimuLizar– mSimuLizar

Figure 7.2 depicts the structure of SimuLizar after the modularisation. In Figure 7.2, we

exclude the analysis components without representation in the language, e. g. events, the

interpreter component, or the recon�guration component, as most analysis components

172

7.3. Evaluation Design

depend on them. Including these additional components renders the already complex

�gure unintelligible.

runconfig

paradigm
runtimestate

paradigm
utils

domain
utils

constants

composition

repositoryseff usage variables

behavior seff

Infrastructure
composition

modelobserver

modelobserver
environment

domain
repository

runtimestate simulated
component

software
composition

software repositorysoftware usage

usage
model

notification

Paradigm π
Domain Δ

Analysis Component Analysis Component Dependency Layer Separator

π
Paradigm

Δ
Domain

Figure 7.2.: Refactored SimuLizar, simpli�ed

7.3.4.1 Paradigm Layer

Composition: The composition component handles the assembly of resources of the PCM.

On the paradigm layer, the functionality of the composition component is prepared to

handle any resources. The assembly of component types includes the preparation of

resources. Preparing a resource means setting the context and the context hierarchy of

the resource. The composition component provides functionality for adding or deleting a

resource and the connectors required to compose resources.

Constants: The constants component provides the constants required by the analysis of

all PCM instances.

173

7. Reference Architecture Evaluation

Repository: The repository component on the paradigm layer manages the roles de�ned in

the PCM. The PCM de�nes required and provided roles for components. In this component,

the roles, e. g. provided and required roles are managed. It provides interfaces to receive

these roles, and also it provides interfaces to receive the signatures de�ned in the PCM. The

central portion of the repository component is the repository switch. The switch contains

the interpretation of the roles. It also contains the analysis code concerning the required

and provided roles. The signatures are implicitly used throughout the analysis code.

Runtimestate: The runtimestate component provides abstract classes and interfaces for

managing the state of the analysis. It holds the PCM instance, the event noti�cation helper,

and a registry of the analysed components. The component registry is an interface for

validating whether a component is available for analysis. It also provides add and fetch
operations for the PCM components. The event noti�cation helper is an interface for �ring

events and removing listeners.

Se�: The SEFF in the PCM represents the basic actions of a component. The se� component
provides the interpretation and the analysis code for the elements of the se� language

feature of the PCM. The se� component contains the interpreter for the se� types. For

each se� type, the se� component contains the analysis code required for the elements.

Usage: The usage component provides the handling of probabilities de�ned in the usage

language feature of the PCM. Probabilities are required when the analysis encounters a

branch. The usage component determines in which direction the analysis must proceed.

Besides branches, the usage component also provides the scheduling of delays. Another

part of the usage component is the handling of loops. Based on the size of a loop, the

usage component determines the time required to �nish the loop. Furthermore, the usage

component provides an interface to manage user actions.

Variables: The variables component provides the evaluation of the model instance. It

creates an evaluator instance containing the variable characterisation of the PCM and

the model evaluator. The evaluation provides a condition checker, which checks whether

a boolean expression in a condition holds. The variable component also provides the

generation of random variables.

7.3.4.2 Domain Layer

Behaviour Se�: The behaviour se� component provides the analysis code for the PCM

model elements external call action, acquire action, collection iterator action, set variable
action, and release action. The analysis code requires information about the infrastructure;
thus, the dependencies remain on the infrastructure language feature in this compo-

nent. The behaviour se� component also provides analysis code determining probabilistic

transitions when encountering branches.

Domain Repository: The domain repository component provides an interface for imple-

menting the analysis code for the PCM model elements provided role and signature.

174

7.3. Evaluation Design

Infrastructure Composition: The infrastructure composition component provides the

analysis code for the PCM model elements assembly infrastructure connector and required
infrastructure delegation connector. The component utilises the composition and repository

component of the π layer.

Modelobserver: The modelobserver component provides the analysis code for the PCM

model elements: communication link resource speci�cation, linking resource, processing
resource speci�cation, resource container, workload, closed workload, open workload, and

usage scenario. In addition to the modelobserver language feature, the component requires

the software usage language feature; thus, it holds dependencies on PCM types of these

two language features.

Modelobserver Environment: The modelobserver environment component provides the

analysis code for the PCM model element resource environment. This component handles

the modelobserver component and provides observers for the said model and the resource

environment.

Noti�cation: The noti�cation component provides the analysis code for the PCM model

elements: operation provided role, operation signature, external call action, entry level system
call, and usage scenario. This component has dependencies on four language features to

perform the analysis.

Runtimestate: The runtimestate component provides the analysis code for the PCM

model elements resource environment, and assembly context. The runtimestate component

has only two dependencies on two language features, but it consolidates the state of the

analysed system. It utilises direct knowledge (i. e., usage model component), or it utilises

the modelobserver component to manage the runtime state of the analysis.

Simulated Component: The simulated component provides the analysis code for the

PCM model element passive resource. It represents two types of components mSimuLizar

can analyse. The �rst component is a basic component that can be monitored, and it

can acquire and release resources. The second component is a composite component,

consisting of a set of basic components.

Software Composition: The software composition component provides the analysis

code for the PCM model elements: assembly connector, required delegation connector, and

composite component.

Software Repository: The software repository component provides the analysis code for

the PCM model elements basic component and service e�ect speci�cation.

Software Usage: The software usage component provides the analysis code for the PCM

model elements: entry level system call, usage scenario, and usage switch.

Usage Model: The simulated component provides the analysis code for the PCM model

elements: usage model, usage scenario, workload, closed workload, open workload, software
usage package.

Before the refactoring, the state of SimuLizar was that all dependencies on the metamodel

PCM were consolidated in one analysis component. First, we applied horizontal-split

175

7. Reference Architecture Evaluation

refactoring to separate the analysis component in the layers π , ∆, and Ω, which resulted

in three components. Then, we applied vertical-split refactorings to the three layers to

separate the language blobs still present on these layers. This resulted in 9 components on

π , 22 components on ∆, and 1 component on Ω. The analysis grew from 21 components

to 52 components.

7.3.5 SimuLizar Historical Evolution Scenarios

The third requirement for the case studies is that the developers of the model-based

analysis use some source code versioning. In the case of SimuLizar, the developers �rst

used Apache Subversion (SVN) and then they migrated the source code to git. The commit

history was migrated from SVN to git; thus, we had access to the whole commit history.

The source code is available on GitHub
1
. In Section 7.3.5, we provide an overview of

the historical evolution scenarios extracted from the commit history of SimuLizar. Tor

transparency reasons, we also provide the commit hash and the number of a�ected �les if

someone wants to recreate the change scenarios themselves.

7.3.6 Camunda Refactoring

Before we modularised Camunda, we had to exchange the BPMN2 DSML with its modu-

larised counterpart the modular BPMN2 (mBPMN2) [HSR19; SHR18]. In order to exchange

the BPMN2 DSML, we had to change each dependency of Camunda from the BPMN2 DSML

on mBPMN2 DSML. Changing the dependencies is necessary, as the mBPMN2 is not used

in Camunda. The turquoise nodes in Figure 7.3 are the modules that had to be modi�ed.

The dependencies of the Camunda BPM Platform regarding the mBPMN2 metamodel are

similar to the structure shown in Figure 7.1. In the org.camunda.bpm.model module is

the dependencies on the mBPMN2 metamodel consolidated. The details regarding the

refactoring, especially the classes before and after the refactoring, can be found in our

supplementary material [KHR22b].

7.3.7 Modular Camunda –mCamunda

Figure 7.4 depicts the structure of Camunda after the modularisation of the scenarios.

We did not refactor the whole analysis. Therefore, we present only the components of

Camunda that are a�ected by our refactoring and relevant for our calculation of the metrics

complexity, coupling, and cohesion.

1
https://github.com/PalladioSimulator/Palladio-Analyzer-SimuLizar

176

7.3. Evaluation Design

Sc
en

ar
io

N
o.

N
am

e
C
om

m
it
ID

N
o.

A
�
ec
te
d
Fi
le
s

S
c
e
n

a
r
i
o

0
1

R
e
p

o
s
i
t
o

r
y

C
o

m
p

o
n

e
n

t
S
w

i
t
c
h

E
x
t
e
n

s
i
o

n
7
5
4
2
1
3
4
2

4

S
c
e
n

a
r
i
o

0
2

D
e
l
e
t
e
d

M
o

d
e
l
A

c
c
e
s
s

C
l
a
s
s

5
3
4
d

5
5
2
1

2
8

S
c
e
n

a
r
i
o

0
3

F
i
x

P
r
o

j
e
c
t

S
t
r
u

c
t
u

r
e

0
2
5
1
1
a
3
7

5

S
c
e
n

a
r
i
o

0
4

E
x
p

l
i
c
i
t
l
y

S
w

i
t
c
h

B
a
s
e
d

o
n

S
u

p
e
r
c
l
a
s
s

d
9
7
3
5
1
1
5

3

S
c
e
n

a
r
i
o

0
5

A
d

d
M

o
n

i
t
o

r
R

e
p

o
s
i
t
o

r
y

t
o

F
e
a
t
u

r
e

D
e
p

e
n

d
e
n

c
i
e
s

(
S
V

N
)

r
3
4
1
8
1

4

S
c
e
n

a
r
i
o

0
6

F
i
x
e
d

M
e
t
a
d

a
t
a

f
o

r
t
h

e
H

D
D

P
a
t
c
h

(
S
V

N
)

r
3
3
8
2
0

2

S
c
e
n

a
r
i
o

0
7

I
n

c
l
u

d
e

N
e
w

A
g
g
r
e
g
a
t
i
o

n
P

l
u

g
i
n

(
S
V

N
)

r
3
2
8
0
4

7

S
c
e
n

a
r
i
o

0
8

O
n

l
y

R
e
c
o

r
d

R
u

n
t
i
m

e
M

e
a
s
u

r
e
m

e
n

t
s

(
S
V

N
)

r
3
2
4
1
6

2
5

S
c
e
n

a
r
i
o

0
9

G
e
n

e
r
a
l
i
z
e
d

R
e
s
p

o
n

s
e

T
i
m

e
s

A
g
g
r
e
g
a
t
o

r
(
S
V

N
)

r
3
2
1
6
6

4

S
c
e
n

a
r
i
o

1
0

A
d

d
M

i
s
s
i
n

g
R

e
c
o

n
�

g
u

r
a
t
i
o

n
R

u
l
e

(
S
V

N
)

r
3
1
8
0
0

6

Ta
bl
e
7.
1.
:O

v
e
r
v
i
e
w

o
f

t
h

e
H

i
s
t
o

r
i
c
a
l
E

v
o

l
u

t
i
o

n
S
c
e
n

a
r
i
o

s
o

f
t
h

e
S
i
m

u
L

i
z
a
r

C
a
s
e

S
t
u

d
y

f
o

r
t
h

e
E

v
o

l
v
a
b
i
l
i
t
y

a
n

d
R

e
u

s
a
b
i
l
i
t
y

E
v
a
l
u

a
t
i
o

n
o

f
t
h

e
R

e
f
e
r
e
n

c
e

A
r
c
h

i
t
e
c
t
u

r
e

f
o

r
M

o
d

e
l
-
b
a
s
e
d

A
n

a
l
y

s
e
s

177

7. Reference Architecture Evaluation

analysis components
to modify

language components remaining analysis
components

Figure 7.3.:Camunda BPM Platform Dependency Structure

7.3.7.1 Paradigm Layer

Core: The ecore component of Camunda contains the BaseElement class. It also provides

a builder to create elements in the analysis context. We placed the BPMN2 class also in

this component, as it de�nes and, thus, contains all identi�ers of the BPMN2 entities.

Furthermore, variables are also de�ned in this component.

Flows: The �ow component provides the notion of �ows and classes to build �ows. We

placed the AbstractFlowNodeBuilder in this component. In addition to regular �ows, the

component also handles the sequencing of �ows.

Messaging: The messaging component provides the foundation for the messaging in the

analysis. It allows the user to build sender and receiver in the context of the Business Pro-

cess Modeling Notation (BPMN) analysis. We had to refactor the AbstractSendTaskBuilder
and the AbstractReceiveTaskBuilder.

178

7.3. Evaluation Design

user task timer

event catcher

BPMN Events

events

core

human
interaction

flowsartifacts

messaging

Paradigm π
Domain Δ

Analysis Component Analysis Component Dependency Layer Separator

π
Paradigm

Δ
Domain

Figure 7.4.: Refactored Camunda, simpli�ed [KHR22a]

Events: In the events component were the most changes located. In total, we had to

refactor 98 classes across all ten scenarios that are correlated to this component. A class

could be part of multiple scenarios; therefore the number of 98 classes represents not the

number of di�erent classes. The events component de�nes events in the context of the

BPMN analysis. The StartEvent, EndEvent, and ThrowEvent are related to this component.

Event Catcher: The event catcher component is a utility component that manages the

aggregation of events in the analysis.

Artefacts: The artefacts component is the abstract representation of model elements in

the analysis. In the context of our refactoring, we had no classes that belonged to that

component; however, the AbstractFlowNodeBuilder class located at the �ows component

hat dependencies to the language component artefacts that we were unable to refactor.

7.3.7.2 Domain Layer

User Task: The user task component is only part of the model-based analysis and is not

part of the DSML. This component de�nes the analysis task and correlates to the tool

user.

Time: The time component represents the notion of time in the analysis context. This

component is only part of the model-based analysis and not part of the DSML.

Advanced Events: The advanced events component represents specialised events that

are tailored to the domain of the business process analysis. Thus, it has dependencies of

the language componentadvanced events.

Human Interaction: The human interaction component integrates the modelled human

interaction into the analysis.

179

7. Reference Architecture Evaluation

7.3.8 Camunda Historical Evolution Scenarios

The third requirement for the case studies is that the developers of the model-based

analysis use some sort of source code versioning. In the case of Camunda, the source code

is versioned with git. The source code is available on GitHub
2
. In Section 7.3.8, we provide

an overview of the historical evolution scenarios we extracted from the commit history of

Camunda. Tor transparency reasons, we also provide the commit hash and the number of

a�ected �les if someone wants to recreate the change scenarios by themselves.

7.3.9 KAMP4aPS Refactoring

Before we modularised the analysis KAMP4aPS, we had to exchange the KAMP4aPS DSML

with its modularised counterpart, the modular KAMP4aPS DSML [HSR19; SHR18]. In order

to exchange the KAMP4aPS DSML, we had to change each dependency of the KAMP4aPS

analysis from the KAMP4aPS DSML on the modular KAMP4aPS DSML. Changing the

dependencies is necessary, as the modular KAMP4aPS DSML is not used in the analysis

KAMP4aPS. The dependencies of the analysis regarding the modular metamodel are

like the structure shown in Figure 7.1. The dependencies on the modular KAMP4aPS

metamodel are consolidated in the KAMP4aPS module.

The details regarding the refactoring, especially the classes before and after the refactoring,

can be found in our supplementary material [KHR22b].

7.3.10 Modular KAMP4aPS –mKAMP4aPS

Figure 7.5 depicts the structure of the analysis KAMP4aPS after the modularisation of the

scenarios. We did not refactor the whole analysis. Therefore, we present only the compo-

nents of Camunda that are a�ected by our refactoring and relevant for our calculation of

the metrics complexity, coupling, and cohesion.

7.3.10.1 Paradigm Layer

Activity: The activity component represents the user’s activity to change the desired

domain or system. KAMP4aPS analyses the domain of aPS; thus, the extension will handle

the activities that are required to perform changes in an aPS. None of the classes located

on the ∆ or Ω layer were included in the scenarios; thus, the activity component has no

incoming dependencies.

Workplan: The workplan component provides the functionality to derive and create a

work plan. The components on the domain layer are specialisations of types that are

analysed to create a work plan.

2
https://github.com/camunda/camunda-bpm-platform

180

7.3. Evaluation Design

Sc
en

ar
io

N
o.

N
am

e
C
om

m
it
H
as
h

N
o.

A
�
ec
te
d
Fi
le
s

S
c
e
n

a
r
i
o

0
1

A
d

d
T

i
m

e
o

u
t

T
a
s
k

L
i
s
t
e
n

e
r

d
5
3
5
8
3
a
1

8

S
c
e
n

a
r
i
o

0
2

I
n

t
r
o

d
u

c
e

E
r
r
o

r
M

e
s
s
a
g
e

1
d

b
5
4
6
9
e

2

S
c
e
n

a
r
i
o

0
3

A
d

d
V

a
r
i
a
b
l
e

S
p

e
c
i
�

c
a
t
i
o

n
1
4
a
d

9
7
a
e

7

S
c
e
n

a
r
i
o

0
4

R
e
m

o
v
e

I
n

c
r
e
m

e
n

t
a
l

I
n

t
e
r
v
a
l
s

P
r
o

p
e
r
t
y

a
3
3
7
b
8
f
6

1
0

S
c
e
n

a
r
i
o

0
5

S
e
t

M
a
r
k

e
r

i
n

E
x
c
l
u

s
i
v
e

G
a
t
e
w

a
y

7
c
f
3
c
d

�
2

S
c
e
n

a
r
i
o

0
6

R
e
m

o
v
e
d

E
r
r
o

r
M

e
s
s
a
g
e

A
t
t
r
i
b
u

t
e

4
a
5
d

7
b

c
7

1
1

S
c
e
n

a
r
i
o

0
7

A
d

d
e
d

E
r
r
o

r
D

e
�

n
i
t
i
o

n
V

a
r
i
a
b
l
e
s

3
1
e
9
a
1
3
2

1
8

S
c
e
n

a
r
i
o

0
8

A
d

d
C

o
n

v
e
n

i
e
n

c
e

M
e
t
h

o
d

s
1
d

2
a
5
0
8
c

7

S
c
e
n

a
r
i
o

0
9

M
e
s
s
a
g
e

w
i
t
h

t
h

e
F
l
u

e
n

t
B

u
i
l
d

e
r

6
7
7
b
3
c
6
b

7

S
c
e
n

a
r
i
o

1
0

A
d

d
S
u

p
p

o
r
t

f
o

r
C

o
n

n
e
c
t
o

r
E

x
t
e
n

s
i
o

n
c
3
0
d

b
c
8
e

6

Ta
bl
e
7.
2.
:O

v
e
r
v
i
e
w

o
f

t
h

e
H

i
s
t
o

r
i
c
a
l
E

v
o

l
u

t
i
o

n
S
c
e
n

a
r
i
o

s
o

f
t
h

e
C

a
m

u
n

d
a

C
a
s
e

S
t
u

d
y

f
o

r
t
h

e
E

v
o

l
v
a
b
i
l
i
t
y

a
n

d
R

e
u

s
a
b
i
l
i
t
y

E
v
a
l
u

a
t
i
o

n
o

f
t
h

e
R

e
f
e
r
e
n

c
e

A
r
c
h

i
t
e
c
t
u

r
e

f
o

r
M

o
d

e
l
-
b
a
s
e
d

A
n

a
l
y

s
e
s

181

7. Reference Architecture Evaluation

workplanactivity

modulecomponent

module changescomponent changes

change propagationlabeling

interface changes

interface

versioning persistency

Paradigm π
Domain Δ

Quality Ω

Analysis Component Analysis Component Dependency Layer Separator

π
Paradigm

Δ
Domain

Ω
Quality

Figure 7.5.: Refactored KAMP4aPS, simpli�ed [KHR22a]

Versioning: The KAMP4aPS analysis provides the functionality to analyse di�erent

versions of a system to derive changes. Although we had to refactor a class part of this

component, it had no signi�cant role in the evolution scenarios. Thus, the versioning

component has no incoming dependencies.

Persistency: The persistency component allows the tool user to generate task lists con-

taining the derived tasks necessary to perform changes in the analysed system. Although

we had to refactor a class part of this component, it had no signi�cant role in the evolution

scenarios. Thus, the persistency component has no incoming dependencies.

7.3.10.2 Domain Layer

Interface: The interface component contains aPS interfaces. For example, it does contain

the BusInterface with specialised classes for a di�erent bus system that can be used in an

aPS. Besides the bus types, it also contains mechanical interfaces like screws and bolts.

Component: The component component contains the basic building blocks of an aPS.

Such building blocks are, for example, sensors and actors that are used in a production

plant.

Module: The module component is a container that can contain other aPS components

or modules. The di�erentiation is required by the tool user, as they have to distinguish

182

7.3. Evaluation Design

aPS components from modules that can also be complex entities like a conveyor belt or a

robotic arm.

7.3.10.3 Quality Layer

Interface Changes: The interface change component contains the change propagation

rules for all interfaces in an aPS. These rules determine if an interface has to be changed,

which can also a�ect other entities connected to the interface.

Component Changes: The component change component contains the change propaga-

tion rules for all aPS components. These rules determine if a component has to be changed,

and other entities connected to the component can also be a�ected by the change.

Module Changes: The module change component contains the change propagation rules

for all modules in an aPS. These rules determine if a module has to be changed, and the

change can also a�ect other entities connected to the module.

Labeling: The labelling component annotates roles and documents to tasks. It also can

annotate the estimated time required to perform a task. The estimated time is required

when the tool user analyses multiple change scenarios. If the costs are annotated, they

can select the most cost-e�ective scenario.

Change Propagation: The change propagation component coordinates the initial changes.

The initial changes determine where the starting point of the analysis is located. It

also coordinates the change impact analyses between the modules, components and

interfaces.

7.3.11 KAMP4APS Historical Evolution Scenarios

The third requirement for the case studies is that the developers of the model-based

analysis use some source code versioning. In the case of KAMP4aPS, the source code is

versioned with git. The source code is available on GitHub
3
. In Section 7.3.11, we provide

an overview of the historical evolution scenarios extracted from the commit history of

KAMP4aPS. Tor transparency reasons, we also provide the commit hash and the number

of a�ected �les if someone wants to recreate the change scenarios themselves.

7.3.12 SmartGrid Refactoring

Before we modularised the analysis SmartGrid, we had to exchange the SmartGrid DSML

with its modularised counterpart, the modular SmartGrid DSML [HSR19; SHR18]. In order

to exchange the SmartGrid DSML, we had to change each dependency of the SmartGrid

3
https://github.com/KAMP-Research

183

7. Reference Architecture Evaluation

Scenario
N
o.

N
am

e
C
om

m
itH

ash
N
o.A

�
ected

Files

S
c
e
n

a
r
i
o

0
1

I
m

p
l
e
m

e
n

t
K

A
M

P
4
a
P

S
E

v
a
l
u

a
t
i
o

n
S
c
e
n

a
r
i
o

3
1
2
6
5
8
0
b

5

S
c
e
n

a
r
i
o

0
2

U
p

d
a
t
e

K
A

M
P

4
a
P

S
S
c
e
n

a
r
i
o

2
d

3
7
d

c
0
2

5

S
c
e
n

a
r
i
o

0
3

A
d

d
C

l
a
s
s

f
o

r
M

i
c
r
o

S
w

i
t
c
h

C
h

a
n

g
e

c
1
7
f
9
8
6
e

7

S
c
e
n

a
r
i
o

0
4

A
d

d
M

e
t
a
c
l
a
s
s

f
o

r
C

h
a
n

g
e

1
f
7
8
d

0
c
0

1
4

S
c
e
n

a
r
i
o

0
5

U
p

d
a
t
e

L
a
s
t

S
c
e
n

a
r
i
o

3
f
5
a
c
d

2
9

2

S
c
e
n

a
r
i
o

0
6

A
p

p
l
y

R
e
n

a
m

e
d

C
l
a
s
s
e
s

8
4
9
1
d

d
9
b

4

S
c
e
n

a
r
i
o

0
7

H
M

I
I
m

p
l
e
m

e
n

t
e
d

d
5
4
5
1
1
f
e

5

S
c
e
n

a
r
i
o

0
8

C
h

a
n

g
e
-
i
m

p
a
c
t

A
n

a
l
y

s
i
s

M
o

d
i
�

e
d

5
d

a
e
8
8
0
b

6

S
c
e
n

a
r
i
o

0
9

A
d

a
p

t
A

n
n

o
t
a
t
i
o

n
L

o
o

k
-
U

p
a
5
d

c
c
0
0
c

5

S
c
e
n

a
r
i
o

1
0

A
d

a
p

t
M

o
d

e
l

L
o

o
k

-
U

p
2
9
9
1
9
9
f
0

3

Table
7.3.:

O
v
e
r
v
i
e
w

o
f

t
h

e
H

i
s
t
o

r
i
c
a
l
E

v
o

l
u

t
i
o

n
S
c
e
n

a
r
i
o

s
o

f
t
h

e
K

A
M

P
4
a
P

S
C

a
s
e

S
t
u

d
y

f
o

r
t
h

e
E

v
o

l
v
a
b
i
l
i
t
y

a
n

d
R

e
u

s
a
b
i
l
i
t
y

E
v
a
l
u

a
t
i
o

n
o

f
t
h

e
R

e
f
e
r
e
n

c
e

A
r
c
h

i
t
e
c
t
u

r
e

f
o

r
M

o
d

e
l
-
b
a
s
e
d

A
n

a
l
y

s
e
s

184

7.3. Evaluation Design

analysis from the SmartGrid DSML on the modular SmartGrid DSML. Changing the depen-

dencies is necessary, as the modular SmartGrid DSML is not used in the analysis SmartGrid.

The dependencies of the SmartGrid regarding the modular SmartGrid metamodel are like

the structure shown in Figure 7.1. The dependencies on the modular SmartGrid metamodel

are consolidated in the smartgrid.attackersimulation and the smartgrid.impactanalysis
module. Although technically, these two modules represent two di�erent analyses; we

consider them one. Each represents an analysis feature of the SmartGrid analysis. The

Analysis Component Analysis Component Dependency Layer Separator

π
Paradigm

Δ
Domain

Ω
Quality

output

simulation
controller

topo

graph

impact
analysis

controller

time
Paradigm π
Domain Δ

Quality Ω

Figure 7.6.: Refactored SmartGrid, simpli�ed [KHR22a]

details regarding the refactoring, especially the classes before and after the refactoring,

can be found in our supplementary material [KHR22b].

7.3.13 Modular SmartGrid –mSmartGrid

Figure 7.6 depicts the structure of the analysis SmartGrid after the modularisation of the

scenarios. We did not refactor the whole analysis. Therefore, we present only the compo-

nents of Camunda that are a�ected by our refactoring and relevant for our calculation of

the metrics complexity, coupling, and cohesion.

7.3.13.1 Paradigm Layer

Graph: The graph component represents a network graph structure. Either logical or

physical edges can connect the nodes in this graph.

Simulation Controller: The simulation controller component provides the building

blocks for running the simulation. This component is only part of the model-based

analysis and has no representation in the DSML.

185

7. Reference Architecture Evaluation

Time: The time component provides a notion of time for the analysis. In the attacker

propagation analysis, the time component is not used. This component is only part of the

model-based analysis and has no representation in the DSML.

7.3.13.2 Domain Layer

Topo: The devices in a smart-grid topology are contained in the topo component. This

topology uses the graph structure provided in the π domain.

Controller: The controller component extends the simulation controller component of

the π layer. It can handle the simulation and analysis of the smart-grid topology. This

component is only part of the model-based analysis and has no representation in the

DSML.

7.3.13.3 Quality Layer

Impact Analysis: The impact analysis component utilises change propagation rules,

similar to the rules in KAMP4aPS, to determine the vulnerability of a smart-grid topology.

It de�nes di�erent types of attackers that can traverse through the system.

Output: The output component provides the information the analysis produces. Regarding

the de�nition of our reference architecture for model-based analysis, the output should

not be located at the Ω layer. However, we apply the reference architecture regarding the

structure of the DSML and ignore possible bugs and errors. Therefore, we did not �x the

layering issue.

7.3.14 SmartGrid Historical Evolution Scenarios

The third requirement for the case studies is that the developers of the model-based

analysis use some sort of source code versioning. In the case of SmartGrid, the source

code is versioned with git. The source code is available on GitHub
4
. In Section 7.3.14,

we provide an overview of the historical evolution scenarios extracted from the commit

history of SmartGrid. Tor transparency reasons, we also provide the commit hash and the

number of a�ected �les if someone wants to recreate the change scenarios themselves.

7.4 Evaluation Results

In this section, we present the evolvability and understandability evaluation results. In the

presented results, we compare our scenarios’ cohesion, coupling, and complexity before

and after the refactoring.

4
https://github.com/kit-sdq/Smart-Grid-ICT-Resilience-Framework

186

7.4. Evaluation Results

Sc
en

ar
io

N
o.

N
am

e
C
om

m
it
H
as
h

N
o.

A
�
ec
te
d
Fi
le
s

S
c
e
n

a
r
i
o

0
1

P
a
s
s

D
a
t
a

t
o

P
o
w

e
r

L
o

a
d

d
f
e
1
9
9
8
1

2

S
c
e
n

a
r
i
o

0
2

R
e
p

o
r
t

G
e
n

e
r
a
t
i
o

n
c
8
2
8
0
9
3
9

2

S
c
e
n

a
r
i
o

0
3

S
u

p
p

o
r
t

S
t
r
i
n

g
I
D

s
7
2
e
c
a
a
7
3

2

S
c
e
n

a
r
i
o

0
4

A
d

d
P

a
r
a
m

e
t
r
i
s
e
d

I
n

i
t
i
a
l
i
s
a
t
i
o

n
2
d

7
a
9
c
4
6

8

S
c
e
n

a
r
i
o

0
5

S
e
a
r
c
h

f
o

r
V

i
r
a
l

H
a
c
k

e
r

1
6
4
8
6
3
6
e

4

S
c
e
n

a
r
i
o

0
6

F
i
n

a
l
i
z
i
n

g
R

C
P

C
o

m
m

a
n

d
s

a
a
e
4
a
8
9
4

1
0

S
c
e
n

a
r
i
o

0
7

R
e
m

o
v
e

L
a
u

n
c
h

C
o

n
�

g
u

r
a
t
i
o

n
6
3
a
e
1
f
4
9

4

S
c
e
n

a
r
i
o

0
8

R
a
n

d
o

m
l
y

H
a
c
k

i
n

g
o

f
N

o
d

e
s

3
d

8
1
d

a
9
e

1

S
c
e
n

a
r
i
o

0
9

A
t
t
a
c
k

e
r

S
i
m

u
l
a
t
i
o

n
D

i
s
a
b
l
i
n

g
R

o
o

t
5
e
e
7
2
f
7
0

2

S
c
e
n

a
r
i
o

1
0

A
t
t
a
c
k

e
r

S
i
m

u
l
a
t
i
o

n
U

s
a
b
l
e

A
t
t
r
i
b
u

t
e
s

4
c
2
5
7
b

e
a

2

Ta
bl
e
7.
4.
:O

v
e
r
v
i
e
w

o
f

t
h

e
H

i
s
t
o

r
i
c
a
l
E

v
o

l
u

t
i
o

n
S
c
e
n

a
r
i
o

s
o

f
t
h

e
S
m

a
r
t
G

r
i
d

C
a
s
e

S
t
u

d
y

f
o

r
t
h

e
E

v
o

l
v
a
b
i
l
i
t
y

a
n

d
R

e
u

s
a
b
i
l
i
t
y

E
v
a
l
u

a
t
i
o

n
o

f
t
h

e
R

e
f
e
r
e
n

c
e

A
r
c
h

i
t
e
c
t
u

r
e

f
o

r
M

o
d

e
l
-
b
a
s
e
d

A
n

a
l
y

s
e
s

187

7. Reference Architecture Evaluation

SIMULIZAR Complexity Coupling Cohesion
before after before after before after

Scenario 01 580.92 360.81 7.99 7.99 0.0309 0.0114
Scenario 02 1210.85 992.80 123.08 26.37 0.0011 0.0011

Scenario 03 0 0 0 0 0.0148 0.0148

Scenario 04 202.96 106.86 11.99 7.99 0.0721 0.0637

Scenario 05 578.92 234.91 7.99 0 0.0309 0.0288

Scenario 06 415.04 127.03 0 0 0.0744 0.0803
Scenario 07 674.65 666.09 9 7.07 0.0064 0.0064

Scenario 08 1042.06 876.01 120.85 41.90 0.0019 0.0016

Scenario 09 373.43 334.59 15.14 4 0.0199 0.01629

Scenario 10 242.44 122.75 0 0 0.0080 0.0090

Table 7.5.: Evolvability Metric Results for the Case Study SimuLizar

0

1
SimuLizar (PCM) Monolith Modular

0

1

1 2 3 4 5 6 7 8 9 10
Scenario

0

1

C
oh

es
io

n
C

ou
pl

in
g

C
om

pl
ex

it
y

Figure 7.7.:Normalised Evolvability Metric Results for the Case Study SimuLizar

We present the raw results and the visualised results for each case study. To visualise our

evaluation results, we created four diagrams. Each diagram represents the results of one of

the four case studies. Figure 7.7 shows the results for the case study SimuLizar, Section 7.4

shows the results for the case study Camunda, Section 7.4 shows the results for the case

study KAMP4aPS, and Section 7.4 shows the results for the case study SmartGrid. Each

diagram is separated into three rows to represent the metrics we used in the evaluation.

The rows are labelled on the right side. The results for the complexity metric are shown in

188

7.5. Threats to Validity

CAMUNDA Complexity Coupling Cohesion
before after before after before after

Scenario 01 131.54 53.67 0 0 1.55e-2 5.29e-2
Scenario 02 119.42 10.56 0 0 2.93e-2 3.35e-2
Scenario 03 85.04 74.43 20 31.90 4.18-5 1.46e-5

Scenario 04 208.67 186.08 19.02 8 8.74e-5 9.72e-5
Scenario 05 152.58 145.24 0 0 0.0054 0.0073
Scenario 06 119.43 39.50 0 8 5.64e-5 1.21e-5

Scenario 07 115.68 33.77 8 18.25 5.61e-5 5.94e-5
Scenario 08 117.41 115.92 0 0 6.25e-4 6.91e-4
Scenario 09 160.40 37.22 0 0 9.94e-4 1.4e-2
Scenario 10 206.14 206.14 47.12 47.12 8.80e-5 8.93e-5

Table 7.6.: Evolvability Metric Results for the Case Study Camunda

Figure 7.8.:Normalised Evolvability Metric Results for the Case Study Camunda

the �rst row. In the second row, the results of the coupling metric are shown. The results

for the cohesion metric are shown in the third row.

We normalised the results to the range of zero to one. The results of the scenarios vary;

for example, a low value like 0.0000121 and a high value like 206.14. The value range of

the raw results is unbound. Due to the high variance of the results, we could not print the

results in a meaningful way, and some results would not be visible. The normalisation is

unproblematic, as we only compare the results of one scenario to each other. Ergo, the

results per metric and scenario are shown on an ordinal scale. We set the higher value to

1.0 and calculated the smaller value concerning the higher value. This was necessary, as

the di�erence was too big for some scenarios, so the di�erence could not be shown.

The value scale is shown on the y-axis, and the scenario number is shown on the x-axis.

The results of the case study before the refactoring are shown in black, and the results of

the refactored case study after the refactoring are shown in grey.

The results do not show a bar when the a�ected classes do not depend on one another. We

can determine the ratio of our current cohesion concerning the cohesion of the maximal

cohesive graph based on the results of the cohesion calculation. We were required to

normalise the results because, without doing so, some graphs would have been illegible. A

high level of cohesion is a positive indicator since it indicates that the classes have fewer

outbound dependencies, which means that changes made to one class are less likely to

a�ect the other classes.

7.5 Threats to Validity

In this section, we discuss the four types of validity by Runeson et al. [Run+12]. The four

validity types are explained in Section 2.6.1.

189

7. Reference Architecture Evaluation

KAMP4APS Complexity Coupling Cohesion
before after before after before after

Scenario 01 146.30 46.28 27.08 0 9.85e-3 7.75e-3

Scenario 02 387.13 121.55 34.79 86.73 1.09e-2 3.13-3

Scenario 03 303.31 119.64 8 0 1.23e-2 1.06e-2

Scenario 04 251.17 95.46 64.10 65.29 2.65e-3 5.39e-3
Scenario 05 218.45 121.02 8 0 4.46e-2 5.46e-2
Scenario 06 43.04 43.04 0 41.24 2.16e-2 7.69e-4

Scenario 07 563.83 177.92 108.20 0 9.31e-3 1.43e-2
Scenario 08 538.55 265.57 57.88 16 7.42e-3 7.98e-3
Scenario 09 686.31 257.64 63.48 0 7.25e-3 6.33e-3
Scenario 10 444.12 117.31 24.77 0 1.17e-2 4.28e-3

Table 7.7.: Evolvability Metric Results for the Case Study KAMP4aPS

0

1
KAMP4aPS (KAMP) Monolith Modular

0

1

1 2 3 4 5 6 7 8 9 10
Scenario

0

1

C
oh

es
io

n
C

ou
pl

in
g

C
om

pl
ex

it
y

Figure 7.9.:Normalised Evolvability Metric Results for the Case Study KAMP4aPS

7.5.1 Internal Validity

In our evaluation, we analysed four case studies regarding their evolvability and reusability.

We extracted scenarios from historical change scenarios, ten per case study. We modu-

larised the a�ected classes in each scenario according to our reference architecture for

model-based analyses. Then we compared the metrics complexity, coupling, and cohesion

for each scenario in its state before and after the refactoring. To address the internal

validity, we have to ensure that the structure of the reference architecture we have applied

190

7.5. Threats to Validity

SMART. Complexity Coupling Cohesion
before after before after before after

Scenario 01 187.457 32.729 0 0 0.027 0.025

Scenario 02 8.264 2.75 0 0 0.133 0.172
Scenario 03 797.130 898.998 0 589.431 0.090 0.015

Scenario 04 1007.02 156.265 8.264 8.265 0.018 0.007
Scenario 05 372.145 103.701 5.510 5.510 0.007 0.008
Scenario 06 601.112 278.481 103.364 70.421 0.003 0.003

Scenario 07 315.851 45.995 7.489 2.75 0.115 0.009
Scenario 08 153.047 154.547 0 29.510 0.112 0.057
Scenario 09 256.969 88.281 0 0 0.041 0.567
Scenario 10 16.223 16.223 0 2.755 0.113 0.062

Table 7.8.: Evolvability Metric Results for the Case Study SmartGrid

0

1
Smart Grid Topology Monolith Modular

0

1

1 2 3 4 5 6 7 8 9 10
Scenario

0

1
C

oh
es

io
n

C
ou

pl
in

g
C

om
pl

ex
it
y

Figure 7.10.:Normalised Evolvability Metric Results for the Case Study SmartGrid

to the scenarios created the metrics changes. One possible cause for the change in the

results is when we also �xed bugs and bad smells (cf. Chapter 4) unrelated to the reference

architecture. Therefore, we only applied refactorings that helped us to apply the reference

architecture to the case studies.

Two di�erent developers refactored the four case studies. The case studies SimuLizar,

Camunda, and KAMP4aPS were refactored by the same developer, and the case study

SmartGrid was refactored by another developer. Although the structure of the reference

191

7. Reference Architecture Evaluation

architecture is the same for each case study, how a developer selects and sequences the

refactorings to reach the desired structure can di�er. Thus, the result also might di�er,

depending on the developer who refactors the case study. Using more than one developer

ensures that the developer’s experience does not in�uence the results.

7.5.2 External Validity

Selecting a sample case study that is not as generic as possible to represent a concrete sys-

tem can allow gaining deeper insight and better realism of the system under study [Run+12].

The selected case studies represent no generic case study covering every model-based

analysis possible. Ergo, the results we generated by analysing the four case studies do not

represent every other arbitrary model-based analysis. Each case study has its individual

properties. The case studies, however, emerge from di�erent domains, and thus, they allow

us to gain insights and model-based analyses with similar properties. In addition, our

reference architecture might need to be more helpful or practical for generic model-based

analysis depending on the circumstances. We decided to go with heterogeneous model-

based studies so that we could address this threat. Chapter 6 provides details regarding

our selection process and the case studies in general.

7.5.3 Construct Validity

The construct validity would be compromised if we selected case studies that would

bene�t the most when transferring them to our reference architecture, for example, a

highly monolithic model-based analysis. We selected the same case studies as Heinrich

et al. [HSR19] to avoid this case. They selected case studies with di�erent degrees of

modularity. Although they focussed on the DSML of the case studies, we reviewed

the corresponding model-based analyses regarding their modularity. The model-based

analyses also have di�erent levels of modularity. This is the case because their structure is

similar to their corresponding DSMLs. As a result, we could reuse these case studies, as

their model-based analyses also show di�erent levels of modularity. Due to our �ndings,

we came to the knowledge that the more modular an analysis was and the model-based

analysis was aligned with its corresponding DSML; the less improvement regarding the

complexity metric we could see. For example, the case study Camunda was already well

modularised. This case study shows where the analysis was already well modularised and,

in some cases, well adapted to the structure of the DSML. Although Camunda was well

modularised, adapting it to our reference architecture has shown that the results we got

present improvements regarding complexity.

To address this threat further, we selected case studies rooted in di�erent domains (i. e.,

information systems, business processes, production automation, and smart grids). Due to

the di�erent domains, we can ensure that the bene�ts of our reference architecture are not

restricted to a single domain. We can conclude that model-based analyses of the domains

we selected to bene�t from our reference architecture for model-based analyses.

192

7.6. Discussion

We focused only on the scenarios and the a�ected source code �les instead of the whole

model-based analyses. Furthermore, we do not test the functionality after the refactoring,

which can be another threat to construct validity. However, the refactorings we perform

only change the structure of the model-based analysis but not its behaviour. Our reference

architecture does not a�ect the analysis algorithms; therefore, we consider this a minor

threat.

Our selection process for the evolution scenario could also threaten the construct validity.

How we selected the case studies is explained in Chapter 6, and how we selected the

evolution scenarios is explained in Section 7.3. To address this threat, we de�ned three evo-

lution scenarios: historical, potential, and randomised synthetic. The historical evolution

scenarios present a minor threat because these evolution scenarios are derived from actual

change scenarios of the model-based analyses. These changes in the historical evolution

scenarios were applied in the past. The potential evolution scenarios threaten the construct

validity as they represent changes that have the potential that the analysis developers will

apply them. A guarantee, however, does not exist. The randomised synthetic evolution

scenarios present a signi�cant threat to the construct validity as they are changes that

were selected randomly. Such changes have the potential that they will always be kept

the same. Due to the very well-documented and accessible commit history of all our case

studies, we could derive only historical evolution scenarios. Thus, we could avoid our

fall-back scenarios of potential and randomised synthetic scenarios.

7.5.4 Conclusion Validity

To omit that only one researcher must interpret the results of our evaluation, we use

objective metrics based on information theory. These metrics provide reasonable proof

and limit the need for interpretation, eliminating the possibility of a researcher providing

their subjective interpretation of the data. The purpose of the evaluation is to discredit the

e�ects that could be attributed to the interpretation of a single researcher. If the evaluation

is repeated for more case studies in the future, this will contribute statistically to the

con�rmation of the results.

7.6 Discussion

In this section, we discuss the results of the evolvability/understandability evaluation of

our reference architecture for model-based analyses. We investigate the factors that led to

the di�erences in �ndings between the modular and the original version of the evolution

scenarios, as well as the implications of those distinctions.

193

7. Reference Architecture Evaluation

7.6.1 Complexity

The lower the value for the complexity metric, the better the result. Regarding the 40

evolution scenarios, 34 of them showed a decrease in complexity after we refactored them.

In four scenarios, complexity has neither improved nor worsened. The complexity of the

remaining two scenarios increased after the refactorings. The complexity of nine scenarios

dropped for each of the case studies SimuLizar, Camunda, and KAMP4aPS. One scenario

for each of these three case studies stayed the same. In the SmartGrid case study, the level

of complexity for seven di�erent scenarios was reduced, while the level of complexity for

two other scenarios grew, and one scenario maintained its previous level of complexity.

Scenario 1 2 3 4 5

SimuLizar +38% +18% +-0% +47% +59%

Camunda +59% +91% +13% +11% +5%

KAMP4aPS +68% +69% +61% +64% +45%

SmartGrid +83% +67% -11% +84% +72%

Scenario 6 7 8 9 10

SimuLizar +69% +1% +16% +10% +49%

Camunda +67% +71% +1% +77% +-0%

KAMP4aPS +-0% +68% +51% +62% +74%

SmartGrid +54% +85% -1% +66% +-0%

Table 7.9.:Overview – Changes of the Complexity Metric After the Refactoring

In the 34 scenarios where the complexity was improved, we can relate the improvement

to the restrictive nature of our reference architecture for model-based analysis. Especially

the analysis architect and the analysis component developer are limited regarding the

design of the dependencies. The limitation results from the separation into layers and

the strict layering. In addition, does our reference architecture permit dependency cycles

and the model-based analysis must be aligned with the DSML. Also, is the design space

restricted regarding slicing the remaining analysis features and analysis components.

Each model-based analysis speci�c feature has a de�ned place on one of the layers. The

only freedom the analysis architect has is how to separate features of the model-based

analysis. This structure resulted in analysis components that are small and specialised.

Due to the specialisation, the analysis components have ideally no overlap with other

analysis features. The four evolution scenarios that show neither improved nor worsened

complexity were already aligned with the DSML; thus, they did not need much change.

The two outlier scenarios, in which the complexity was increased, were the result of many

changes with di�erent intentions. As a consequence, this led to a large commit that a�ected

a large number of �les; consequently, the number of �les a�ected in the modularised

version was signi�cantly higher. The overall complexity of the case studies remained the

same. However, we discovered that the complexity of the model-based analysis is lowered

194

7.6. Discussion

in the sections of the analysis that are relevant for the analysis developer who is working

on an evolution scenario.

7.6.2 Coupling

The lower the value for the coupling metric, the better the result. The results for the

coupling metric of all four evolution scenarios are mixed. In 16 out of 40 evolution scenarios,

we were able to reduce the coupling. For 14 evolution scenarios, the coupling did not

change, despite our refactorings. The coupling of ten evolution scenarios increased due to

our refactorings.

The only case study where the coupling did not increase is SimuLizar. In six of ten

evolution scenarios, we could decrease the coupling. The remaining four scenarios stayed

the same.

For the case study Camunda, in one out of ten evolution scenarios, the coupling did

decrease. In six of ten evolution scenarios, the coupling stayed the same. In the remaining

three scenarios, the coupling increased.

The case study with the most improvements in the coupling metric is the model-based

analysis KAMP4aPS. In seven of ten evolution scenarios, the coupling decreased. The

remaining three evolution scenarios decreased regarding the coupling metric.

For the case study SmartGrid, in two out of ten evolution scenarios did, the coupling

decrease. In four of ten evolution scenarios, the coupling stayed the same. In the remaining

four scenarios, the coupling increased. The SmartGrid case study yields the worst results

regarding the coupling metric.

7.6.3 Cohesion

The higher the value for the cohesion metric, the better the result. The cohesion metric

produces mixed results for the four scenarios as well; however, the results are more drastic.

In 17 of the 40 scenarios, cohesion was increased; in four cases, it stayed unchanged,

and in 19 cases, it was decreased. For the case study SimuLizar, cohesion increased in

two scenarios, deteriorated in �ve, and remained constant in three. For the case study

Camunda, cohesion improved in eight scenarios while remaining unchanged in two. For

the case study KAMP4aPS, cohesion improved in four scenarios while it deteriorated in six

others. For the case study SmartGrid, cohesion increased in three scenarios, deteriorated

in six, and remained constant in one. The key element that resulted in the worst results is

the separation of components and classes, as they convert sections of component cohesion

into coupling. Methods in large classes relied on private methods in the same class;

splitting such a class resulted in extra dependencies and, as a result, increased coupling.

The coupling was not impacted; however, the cohesion was reduced by lowering class

internal calls. We skipped refactoring methods to add more private methods, address

object-oriented design smells, and improve cohesiveness.

195

8. Evaluation of Bad Smells in
Model-based Analyses

In this section, we present the evaluation of the bad smells we de�ned in Chapter 4. In

Section 8.1, we explain the goals and metrics of our evaluation. In Section 8.2, we present

the evaluation design; in Section 8.3, we present the results of the evaluation. In Section 8.4,

we discuss the threats to validity. Finally, in Section 8.5, we summarise our �ndings and

discuss the evaluation.

8.1 Research Goals and Metrics

We split the goals and metrics section for the bad smells evaluation into three parts.

The �rst part introduces our research goals regarding the e�ect of bad smells on the

evolvability of model-based analyses and the relevance of bad smells in general. The

second part introduces our metrics to evaluate whether we reached our goals. Finally, the

third part explains the structure of our scenarios and their use in the evaluation.

We derive the �rst research goal (G1) from our hypothesis (cf. Hypothesis 2) and the

�rst research question (cf. Research Question 4.1), which bad smells arise from the co-

dependency of DSMLs and model-based analyses:

Research Goal 8.1

We want to determine whether the bad smells we de�ned exist in model-based analy-

ses.

The second research goal (G2) we derived from our hypothesis (cf. Hypothesis 2) and the

second (cf. Research Question 4.2) and third (cf. Research Question 4.3) research questions.

The second research question asks how to refactor bad smells for model-based analyses,

and the third research question asks how bad smells a�ect the evolvability and reusability

of model-based analyses and their corresponding DSMLs.

Research Goal 8.2

We want to determine whether the bad smells we identi�ed negatively a�ect the

evolvability and reusability of model-based analyses.

197

8. Evaluation of Bad Smells in Model-based Analyses

In order to determine whether we reached the goals G1 and G2 we utilise the four case

studies we introduced in Chapter 6. For each case study, we determine the number of bad

smells in their source code, and we refactor each bad smell to determine the e�ect on the

evolvability of the a�ected �les. Each bad smell is searched by utilising the identi�cation

description we provide in Chapter 4, and to �x the bad smells, we utilise the refactoring

description, also provided in Chapter 4. Due to the size and complexity of the case studies,

we focus on �ve occurrences per bad smell per case study.

Breivold et al. [BCE08] presented the software evolvability model. This model comprises

the sub-characteristics of analysability, integrity, changeability, extensibility, portabil-

ity, and testability. Regarding the ISO/IEC 25010 software quality model [ISO10], the

characteristic of maintainability and portability map to the sub-characteristics of the

software evolvability model. The sub-characteristics analysability, changeability, stability,

and testability are part of the maintainability characteristic of ISO/IEC 25010, and the

sub-characteristics of adaptability, installability, co-existence, and replaceability are part

of the portability characteristic of ISO/IEC 25010. According to Briand et al. [BWL01], and

Cruz-Lemus et al. [Cru+10], cognitive complexity a�ects the analysability and modi�ability

of software. To measure the cognitive complexity of a system, we refer to the amount

of structural information within a system. We choose the same metrics as Heinrich et

al. [HSR19] to measure the cognitive complexity of a system. They use the hypergraph

metrics of Allen et al. [AGG07], which uses information size, complexity, and coupling to

measure the information entropy of a software system. The formal de�nitions by Briand

et al. [BMB96] are the foundation for the metrics by Allen et al. [AGG07].

The hypergraph metrics to evaluate our case studies are presented in Section 2.2.2.

8.2 Evaluation Design

In this section, we present our evaluation design for bad smells in model-based analyses.

In Section 8.2.1, we introduce the evaluation scenarios and their selection process. How

we conducted the evaluation is presented in Section 8.2.2.

8.2.1 Evolution Scenarios

To answer research questions 3.1 to 3.3 and to check whether we reached our goals G1
and G2, we have to refactor the bad smells of the case studies and determine whether our

refactorings can improve the evolvability and reusability of the case studies. These varied

case studies allow us to empirically evaluate whether our approach improves model-based

analysis evolvability and reusability. Wohlin [Woh21] states that an empirical case study

must be a contemporary, real-world phenomenon. All case studies are actively developed,

making them relevant. Instead of comparing the source code of a whole case study before

and after the refactoring, we derive change scenarios of the case studies to determine

the e�ect of our refactorings regarding evolvability and reusability. We decided to use

198

8.2. Evaluation Design

change scenarios because when implementing a change, it is unnecessary for the analysis

developer to modify the whole class; instead, they must change parts of a class of the

model-based analysis. It is also unnecessary for the analysis developer to understand

classes of the model-based analysis una�ected by the change. Thus, change scenarios

better represent how changes occur in a software system. If we did not �nd occurrences

of a bad smell, we would discuss the implications of their absence and possible adverse

e�ects on evolvability and reusability.

In the context of this evaluation, we distinguish two types of change scenarios. The

�rst type is derived from actual changes made in the case study; thus, we call them

historical evolution scenarios. During the development of a model-based analysis, the

analysis developer makes changes that a�ect code containing bad smells. To derive a

historical change scenario, we searched the commit history of a case study for commits

that contain a bad smell. A historical evolution scenario contains a set of classes that are

part of the commit. It is irrelevant at which point of the commit history we extract the set

as long as the classes before and after the refactoring originate from the same commit. If

the commit history does not contain commits that a�ect �les with bad smells, we derive

potential evolution scenarios. A potential evolution scenario represents an arti�cial change

scenario that could occur in the future. For example, extending an interface or changing

an analysis technique can lead to changing a set of classes.

For our four case studies, we were able to derive 13 evolution scenarios for the bad smell

Duplicate Abstraction, 20 evolution scenarios for the bad smell Missing Abstraction, ten

evolution scenarios for the bad smell Degraded Modularity, and 16 evolution scenarios

for the bad smell Rebellious Modularity. We were able to derive 59 evolution scenarios in

total.

8.2.2 Conduction of the Evaluation

In Chapter 4, we presented twelve bad smells that we derived from the co-dependency of

bad smells in open-source software and DSMLs. To check whether we achieved the goalsG1
and G2, we use the four case studies presented in Chapter 6. For the �rst research goal G1,

we analyse how often each bad smell occurs per case study (Frequency of Occurrence) and

for the second research goal G2, we determine how these bad smells a�ect the evolvability

and reusability of the scenarios (Evolvability and Reusability).

To identify the frequency of occurrences of our twelve bad smells, evaluating goal G1, we

determine how often each bad smell occurs in the four case studies. In order to calculate

the number of bad smells, we use our tool RefactorLizar, where we implemented the

identi�cation algorithms for each bad smell presented in Section 4.2.

For the evaluation of goal G2, to assess whether the evolvability and reusability have

improved after refactoring a bad smell, we compare the original evolution scenario to the

refactored evolution scenario. The refactoring can result in a di�erent number of classes.

We only consider the classes that would be a�ected by the change of the evolution scenario.

For example, a change can a�ect only one line in a class method with over 500 lines of

199

8. Evaluation of Bad Smells in Model-based Analyses

code. After the refactoring, we might have moved the method to another class; thus, the

change would no longer a�ect the original class. As a result, we omit classes that are no

longer a�ected by a change.

For each evolution scenario before and after the refactoring, we calculate the cohesion,

coupling, and complexity according to the metrics presented in Section 2.2.2. We also use

our tool RefactorLizar to calculate the metrics. We present the results in the following

section.

We cannot evaluate the second goal G2 for every bad smell, either because �xing the bad

smell would mainly a�ect the DSML and not the model-based analysis, or the bad smell

was not present in any of our case studies. The bad smells we were unable to evaluate

are Unused Abstraction, De�cient Encapsulation, all Hierarchy smells, Broken Modularity,

Missing Modularity, and Weakened Modularity.

The Unused Abstraction smell contains the language types not used in the model-based

analysis. The unused language types must be removed from the DSML to �x this bad

smell; however, �xing this bad smell does not a�ect the metrics complexity, coupling and

cohesion of the analysis code because the model-based analysis will not change. However,

removing language types of the DSML does improve the evolvability of the DSML, as it

reduces the total number of elements in the DSML.

The De�cient Encapsulation smell indicates that some language types of the DSML are

always used together and, thus, that the language types could be merged. To �x this bad

smell, the language architect must merge the language types, which reduces the complexity

of the models, as there are fewer types to consider. We did not �x this bad smell, as we need

to know whether these types are always used together in every model-based analysis that

uses the DSML. However, merging language types reduces the coupling of the model-based

analysis and the DSML, as the number of dependencies is reduced. Ergo, we can deduce

that merging language types a�ected by the De�cient Encapsulation improves the metrics

coupling and complexity of a model-based analysis.

The Hierarchy smells, and the Broken Modularity smell depend on a hierarchical structure

of the DSML and the model-based analysis. We present a reference architecture for model-

based analyses in Chapter 3; this reference architecture introduces such a hierarchical

structure. We evaluate the bene�ts of the reference architecture for model-based analyses

in Chapter 7; thus, we omit the evaluation in this section.

Fixing the Broken Modularity smell would require modifying the DSML when the DSML

has dependencies on the model-based analysis. In the context of our four case studies, we

did not �nd occurrences of the Broken Modularity smell; thus, we could not evaluate the

impact on the metrics’ complexity, coupling, and cohesion. Nevertheless, we can deduce

that when the DSML depends on a model-based analysis, the complexity of the DSML

increases due to unnecessary dependencies.

Cyclic dependencies make code challenging to comprehend and di�cult to maintain over

time. This, in turn, opens the door to software systems that are prone to errors and are

challenging to test. If an architecture contains circular dependencies, any modi�cation to

200

8.2. Evaluation Design

a single module would probably produce a ripple e�ect of errors for the rest of the compo-

nents in the cycle. We focus on cycles that form between the DSML and its corresponding

model-based analysis. Dependency cycles negatively a�ect the maintainability of software

systems, and they can increase the technical debt in such a system [Lil19]. As we could

not �nd occurrences of the Broken Modularity smell, the Weakened Modularity smell can

also not occur.

8.2.3 Refactoring Scenarios

In this section, we present the refactoring scenarios we selected to evaluate the e�ect of

refactoring the bad smells on the evolvability and reusability of model-based analyses.

8.2.3.1 Refactoring Scenarios – Duplicated Abstraction

The Duplicated Abstraction smell occurs when two analysis classes depend on the same set

of language classes. We ignored when two analysis classes depend on exactly one or two

language classes. To refactor the Duplicated Abstraction smell, we introduce an indirection

layer that encapsulates the access of the language components.

SimuLizar: For refactoring theDuplicated Abstraction smell, we selected three occurrences

of the bad smell in the SimuLizar case study. In the �rst scenario DA_S_S1, the class

EventNoti�cationHelper and the class LogDebugListener depend on four types of the DSML

PCM. These language types are OperationSignature, ExternalCallAction, UsageScenario,

and EntryLevelSystemCall. We identi�ed one commit with the id 3aad7b that a�ects both

the EventNoti�cationHelper and the LogDebugListener class.

In the second scenario DA_S_S2, the class ComposedStructureInnerSwitch and the class

RepositoryComponentSwitch depend on four types of the DSML. These types are Assem-
blyContext, ComposedStructure, Signature, and Connector. We found one commit with the

id fdc988 that a�ects both the ComposedStructureInnerSwitch and the RepositoryCompo-
nentSwitch class.

In the third and last scenario DA_S_S3, the class AbstractInterpreterListener and the class

AbstractProbeFrameworkListener also depend on four types of the DSML. These types of

the DSML are OperationSignature, ExternalCallAction, UsageScenario, and EntryLevelSys-
temCall. We identi�ed one commit with the id 3aad7b that a�ects both classes.

KAMP4aPS: For refactoring the Duplicated Abstraction smell, we selected �ve occurrences

of the bad smell in the KAMP4aPS case study. In the �rst scenario DA_K_S1, the class

SignalInterfacePropagation and the class InterfaceChanges depend on �ve types of the

DSML. These types are Interface, ModifyInterface, ModifyComponent, ChangePropagation-
DueToHardwareChange, and Component. We were unable to �nd a commit that a�ects

both classes; therefore, we created a potential evolution scenario, which contains the

classes InterfaceChanges, ScrewingChanges, and SignalInterfacePropagation. The screwing

in the context of the KAMP4aPS metamodel is an interface that connects two hardware

201

8. Evaluation of Bad Smells in Model-based Analyses

components of an aPS. These changes a�ect the generic class InterfaceChange and can also

a�ect the screwing, as screwing is a specialisation of the Interface class. Such a change

can also a�ect the propagation of the element type, in this case, the propagation between

interfaces.

In the second scenario DA_K_S2, the class RampChange and the class SignalInterfacePropa-
gation depend on four types of the DSML. These types are ModifyInterface, ModifyCompo-
nent, ChangePropagationDueToHardwareChange, and Component. We were unable to �nd

a commit that a�ects both classes; therefore, we created a potential evolution scenario,

which contains the classes ComponentChanges, RampChange, and SignalInterfacePropa-
gation. The ramp in an aPS is a hardware component used as a slider to move elements

in the system. Changes that a�ect the generic component can also a�ect changes in any

specialised component, such as a ramp. The components in an aPS are connected via

hardware interfaces; changes to the components can also a�ect the change propagation

between the components via the interfaces; hence, the SignalInterfacePropagation can also

be a�ected by a change.

In the third scenario DA_K_S3, the class SignalInterfacePropagation and the class Switch-
Changes depend on four types of the DSML. These types are Interface, ModifyInterface,
ChangePropagationDueToHardwareChange, and Component. We were unable to �nd a com-

mit that a�ects both classes; therefore, we created a potential evolution scenario, which

contains the classes Change, SignalInterfacePropagation, and SwitchChange. The generic

class Change can a�ect a speci�c change like the SwitchChange and how changes propagate

through the system. Hence the SignalInterfacePropagation can also be a�ected.

In the fourth scenario DA_K_S4, the class ScrewingChanges and the class SignalInterface-
Propagation depend on four types of the DSML. These types are Interface, ModifyInterface,
ModifyComponent, and ChangePropagationDueToHardwareChange. We were unable to �nd

a commit that a�ects both classes; therefore, we created a potential evolution scenario,

which contains the classes InterfaceChanges, ScrewingChanges, SensorChanges, and Signal-
InterfacePropagation. The screwing of a component in an aPS is an interface that connects

components in the system, and a sensor can be such a component that needs to be screwed

on another component in the aPS.

In the �fth scenario DA_K_S5, the class SwitchChanges and the class SignalInterfaceProp-
agation depend on four types of the DSML. These types are ModifyInterface, Change-
PropagationDueToHardwareChange, Component, and Interface. We were unable to �nd

a commit that a�ects both classes; therefore, we created a potential evolution scenario,

which contains the classes Change, InterfaceChanges, ScrewingChanges, and SignalIn-
terfacePropagation. If the generic class Change is modi�ed, this can a�ect the speci�c

classes InterfaceChanges and ScrewingChanges, and it also can a�ect the propagation rules;

therefore, it can a�ect the class SignalInterfacePropagation.

SmartGrid: For refactoring the Duplicated Abstraction smell, we selected �ve occurrences

of the bad smell in the SmartGrid case study. In the �rst scenario DA_SG_S1, the class

DFSStrategy and the class GraphAnalyzer depend on four types of the DSML. These four

types are On, EntityState, NamedEntity, and Cluster. We were unable to �nd commits that

202

8.2. Evaluation Design

a�ect both the class DFSStrategy and the class GraphAnalyzer; therefore, we created a

potential evolution scenario, which contains the classes DFSStrategy and GraphAnalyzer.
Both classes could change together, as the strategy for a depth-�rst search (DFS) determines

how to search a graph.

In the second scenario DA_SG_S2, the class LoadOutputModelConformityHelper and the

class GraphAnalyzer depend on six types of the DSML. These six types are SmartGrid-
Topology, EntityState, NetworkEntity, Identi�er, and ScenarioResult. We were unable to

�nd commits that a�ect both the LoadOutputModelConformityHelper class and the Graph-
Analyzer class; therefore, we created a potential evolution scenario which contains the

classes GraphAnalyzer and LoadOutputModelConformityHelper. These classes could change

together when the loaded model is changed, a�ecting how the graphs are analysed.

In the third scenario DA_SG_S3, the class ViralHacker and the class GraphAnalyzer depend

on �ve types of the DSML. These �ve types are SmartGridTopology, On, EntityState,
Identi�er, Cluster, and ScenarioResult. We were unable to �nd commits that a�ect both

the ViralHacker and the GraphAnalyzer class; therefore, we created a potential evolution

scenario which contains the classes GraphAnalyzer, ScenarioModelHelper, and ViralHacker.
These three classes may change together; the models the scenario model helper handles

can a�ect how a viral hacker model is handled.

In the fourth scenario DA_SG_S4, the class GraphAnalyzer and the class AttackStrategies
depend on seven types of the DSML. These seven types are On, EntityState, Communicatin-
gEntity, LogicalCommunication, NetworkEntity, Cluster, and PhysicalConnection. We were

unable to �nd commits that a�ect both the GraphAnalyzer class and the AttackStrategies
class; therefore, we created a potential evolution scenario which contains the classes

AttackStrategies, BFSStrategy, DFSStrategy, and GraphAnalyzer. These three classes may

change together when the strategies change.

In the �fth scenario DA_SG_S5, the class LoadOutputModelConformityHelper and the class

ScenarioModelHelper depend on four types of the DSML. These four types are SmartGrid-
Topology, EntityState, NamedEntity, and ScenarioResult. We were unable to �nd commits

that a�ect both the LoadOutputModelConformityHelper class and the ScenarioModelHelper
class; therefore, we created a potential evolution scenario which contains the classes

LoadOutputModelConformityHelper, ScenarioModelHelper, and ViralHacker. The helper

classes may change together, a�ecting the viral hacker model.

8.2.3.2 Refactoring Scenarios – Missing Abstraction

The Missing Abstraction smell occurs when the model-based analysis uses primitive types

instead of dedicated types. To refactor theMissing Abstraction smell, we introduce dedicated

types and replace the occurrences of the primitive types with the new dedicated types.

SimuLizar: For the refactoring of the Missing Abstraction smell, we selected �ve occur-

rences in the SimuLizar case study. In the �rst scenario MA_S_S1, the class QVToRecon�gu-
rationTest uses primitive types for measurements and paths. Instead of strings for the path,

203

8. Evaluation of Bad Smells in Model-based Analyses

we use the Path class by the java.io package, and for the measurements, we introduce a

dedicated type. The commit with the id be9224 a�ects the QVToRecon�gurationTest class;

thus, we selected this commit for the �rst scenario.

For the second scenario MA_S_S2, we found primitive types in the class ResourceUtil that

are used to transport �le and path information. We introduce a new class for �le handling,

and for path handling, we utilise the java.io package. The commit with the id 8277cd a�ects

the ResourceUtil class; thus, we selected this commit for the second scenario.

In the third MA_S_S3, and fourth MA_S_S4 scenario, the SimulatedBasicComponentInstance
uses multiple primitive types to represent the notion of time. We replaced these primitive

types with a time class representing the notion of time. A�ected by this change is the

SimulatedBasicComponentInstance; therefore, we searched for a commit that at least a�ects

the SimulatedBasicComponentInstance class. The commit with the id 534d55 is suitable

for this scenario; therefore, we selected it for the third scenario. The commit with the id

a55386 �ts as a scenario; therefore, we selected it for the fourth scenario.

Camunda: For the refactoring of the Missing Abstraction smell, we selected �ve occur-

rences in the Camunda case study. In the �rst scenario MA_C_S1, the identi�er of a job in

the analysis is submitted as a string instead of a dedicated type. Thus, we introduced a new

identi�er class and replaced the primitive ids with the dedicated type. One class a�ected

by that change is the ManagementServiceImpl class. We chose the commit with the id

5e6d48 for the historical evolution scenario because it a�ects the ManagementServiceImpl
class.

For the second scenario MA_C_S2, in the ActivityImpl class, the exclusiveness of an

asynchronous activity is set with a primitive boolean type. However, in addition to one

boolean parameter that sets the exclusiveness of the activity, further parameters of the

same primitive type are always used together. Instead of introducing a new type, we

restructured the ActivityImpl class to reduce the parameters to one boolean per method.

We chose the commit with the id 01b4b3 for the historical evolution scenario because it

a�ects the ActivityImpl class.

In the third scenario MA_C_S3, the identi�er of a worker in the analysis is submitted as a

string instead of a dedicated type. Thus, we introduced a new identi�er class and replaced

the primitive identi�ers with the dedicated type. One class a�ected by that change is

the ExternalTaskService class. We chose the commit with the id 3b3e99 for the historical

evolution scenario because it a�ects the ManagementServiceImpl class.

In the fourth scenario MA_C_S4, the results of an analysis task are submitted as an integer

instead of a dedicated type. We introduce a new dedicated class that can store integer-based

results to replace the primitive result types. Two classes a�ected by that change are the

OptimizeHistoricVariableUpdateQueryCmd and the OptimizeService class. We chose the

commit with the id 8ebe48 for the historical evolution scenario because it a�ects the two

aforementioned classes.

For the �fth scenario MA_C_S5, we changed the handling of databases and database

statements. The database type and the database statements are submitted as primitive

204

8.2. Evaluation Design

strings. We introduced new classes that represent the database and the database statements.

A�ected by this change is the class DbSqlSessionFactory. We chose the commit with the

id 18b7ed for the historical evolution scenario because it a�ects the DbSqlSessionFactory
class.

KAMP4aPS: For the refactoring of the Missing Abstraction smell, we selected �ve occur-

rences in the KAMP4aPS case study. In the �rst scenario MA_K_S1, we found primitive

types in the class APSArchitectureVersionPersistency that are used to transport �le and path

information. For the �le and the path handling, we utilise the java.io package instead

of the primitive type string. We chose the commit with the id 5dae88 for the historical

evolution scenario because it a�ects the aforementioned class.

For the second scenario MA_K_S2, we found primitive types in the class that are used to

represent the version of an architecture version. We introduce a new dedicated type that

represents the version of an architecture, for example, the version number and version

name. As mentioned earlier, we chose the commit with the id 5dae88 for the historical

evolution scenario because it a�ects the class.

In the third MA_K_S3, fourth MAK_S4, and �fth scenario MAK_S5, the identi�er of a label

in the analysis is submitted as a string instead of a dedicated type. Thus, we introduced a

new identi�er class and replaced the primitive ids with the dedicated type. One class that

is a�ected by that change is the LabelCustomizing class. The commit with the id 47d3cc
�ts as a scenario; thus, we selected it for the third historical evolution scenario. We chose

the commit with the id 8e7cb9 for the fourth historical evolution scenario. We chose the

commit with the id 69ab43 for the �fth historical evolution scenario because they a�ect

the LabelCustomizing class.

SmartGrid: For the refactoring of the Missing Abstraction smell, we selected �ve occur-

rences in the SmartGrid case study. In the �rst MA_SG_S1, second MA_SG_S2 and fourth

scenario MA_SG_S4, in the class LocalHacker the primitive type string is used to represent

the hacking style and hacking speed of a hacker in the system. We introduce a dedicated

type that contains the hacking style and speed to replace the occurrences of the primitive

types. For the �rst historical evolution scenario MA_SG_S1, we chose the commit with

the id 4b7c2b because it a�ects the LocalHacker class. We chose the commit with the id

2d7a9c for the second historical evolution scenario MA_SG_S2 because it a�ects the class

as mentioned above. For the fourth historical evolution scenario MA_SG_S4, we chose the

commit with the id 1f8a57 f because it a�ects the LocalHacker class.

In the third MA_SG_S3 and �fth scenario MA_SG_S5, we found primitive types in the

class RmiServer that are used to transport �le and path information. For the �le and path

handling, we utilise the java.io package. We chose the commit with the id 0fd5fe for the

third historical evolution scenario because it a�ects the aforementioned RmiServer class.

We chose the commit with the id 0a4229 for the �fth historical evolution scenario because

it a�ects the aforementioned RmiServer class.

205

8. Evaluation of Bad Smells in Model-based Analyses

8.2.3.3 Refactoring Scenarios – Degraded Modularity

The Degraded Modularity smell occurs when components of the model-based analysis

depend on the same language component of the DSML. To refactor theDegradedModularity
smell, we merge classes of the analysis components and move them to a common analysis

component. When the classes depend on di�erent language components, we split the

classes before we are able to merge them.

SimuLizar: For the refactoring of the Degraded Modularity smell, we selected �ve occur-

rences in the SimuLizar case study. In the �rst scenario DM_S_S1, the analysis classes

ControllerMappingImpl, EventNoti�cationHelper, and ControllerMapping depend on the

language type OperationProvidedRole. To �x this bad smell, we moved the dependencies

on the language type into a dedicated class. We could not �nd a commit that a�ects all

three classes; therefore, we created the �rst potential evolution scenario containing the

classes mentioned above.

For the second scenario DM_S_S2, we selected the Degraded Modularity smell that af-

fects the analysis classes QVToRecon�gurationTest, ComposedStructureInnerSwitch, and

RepositoryComponentSwitch that depend on the language type Connector. To �x this

bad smell, we moved the dependencies of the classes ComposedStructureInnerSwitch and

RepositoryComponentSwitch that depend on the language type Connector into a dedicated

class. The test class is not part of the model-based analysis; thus, we did not refactor it. We

found a commit that a�ects the class RepositoryComponentSwitch; as a result, we created

the second evolution scenario as a historical evolution scenario based on the commit with

the id e0facd.

Based on the Degraded Modularity smell of the second scenario, we derived further his-

torical evolution scenarios for the evaluation. For the third scenario DM_S_S3, we were

able to select a commit that a�ects the classes ComposedStructureInnerSwitch, Reposito-
ryComponentSwitch and 20 more. As a result, we created the third evolution scenario as

a historical evolution scenario based on the commit with the id fdc988. For the fourth

scenario DM_S_S4, we were able to select a commit that a�ects the classes ComposedStruc-
tureInnerSwitch, RepositoryComponentSwitch and twelve more. As a result, we created the

third evolution scenario as a historical evolution scenario based on the commit with the

id 7e1b98. For the �fth scenario DM_S_S5, we were able to select a commit that a�ects

the classes ComposedStructureInnerSwitch, RepositoryComponentSwitch and six more. As a

result, we created the third evolution scenario as a historical evolution scenario based on

the commit with the id 657cbf.

SmartGrid: For the refactoring of the Degraded Modularity smell, we selected �ve occur-

rences of it in the SmartGrid case study. In the �rst scenario DM_SG_S1, the analysis classes

ScenarioModelHelper, GraphAnalyzer, and LoadInputModelConformityHelper depend on

the language type ScenarioState. To �x this bad smell, we moved the dependencies on the

language type ScenarioState into a dedicated class. We were unable to �nd a commit that

a�ects all three classes; therefore, we created the �rst potential evolution scenario that

contains the aforementioned classes.

206

8.2. Evaluation Design

For the second scenario DM_SG_S2, we selected the Degraded Modularity smell that

a�ects the analysis classes ScenarioModelHelper, GraphAnalyzer, LoadInputModelConformi-
tyHelper, ViralHacker, and LoadOutputModelConformityHelper that depend on the language

type SmartGridTopology. To �x this bad smell, we moved the dependencies that depend on

the language type into a dedicated class. We were unable to �nd a commit that a�ects the

aforementioned classes; as a result, we created the second evolution scenario as a potential

evolution scenario.

In the third DM_SG_S3, fourth DM_SG_S4, and �fth DM_SG_S5 scenario, we selected

commits of the case study SmartGrid that a�ect a subset of the classes that are part of

the Degraded Modularity smell. For the third scenario, we selected a commit that a�ects

the classes GraphAnalyzer, ViralHacker and �ve other classes. As a result, we created the

third evolution scenario as a historical evolution scenario based on the commit with the id

430554. For the fourth scenario, we were able to select a commit that a�ects the classes

GraphAnalyzer, LoadOutputModelConformityHelper, ViralHacker and three other classes.

As a result, we created the fourth evolution scenario as a historical evolution scenario

based on the commit with the id 959f06. For the �fth scenario, we selected a commit that

a�ects the classes GraphAnalyzer and LoadInputModelConformityHelper. As a result, we

created the �fth evolution scenario as a historical evolution scenario based on the commit

with the id 64d4fc.

8.2.3.4 Refactoring Scenarios – Rebellious Modularity

The Rebellious Modularity smell occurs as an analysis component of the model-based

analysis depending on multiple language components of the DSML. To refactor the Re-
bellious Modularity smell, we split the analysis classes to separate the dependencies on

the language types into dedicated analysis classes or analysis components. We created

historical evaluation scenarios based on the same commits, as di�erent �les are a�ected by

the bad smells in the scenarios. For example, the scenarios RM_K_S4 and RM_K_S5 have

the same commit, but the commit contains multiple Rebellious Modularity smells. We only

refactored one bad smell and left the remaining unchanged not to spoil our evaluation

results.

SimuLizar: For the refactoring of the Rebellious Modularity smell, we selected �ve occur-

rences in the SimuLizar case study. In the �rst scenario RM_S_S1, the class LogDebugListener
depends on the language components mpcm.domain.repository, mpcm.domain.se�, and

mpcm.domain.usage. After the refactoring, we identi�ed the commit with the ba19f7 that

includes the LogDebugListener and twelve other classes. Based on the commit, we created

the �rst historical evolution scenario.

For the second scenario RM_S_S2, we found that the analysis class MonitorReposito-
ryUtil depends on the language components mpcm.domain.se�, mpcm.domain.usage,

mpcm.paradigm.se�, and mpcm.paradigm.repository. After the refactoring, we selected

the commit with the id 055e9a that includes the MonitorRepositoryUtil. Regarding the

207

8. Evaluation of Bad Smells in Model-based Analyses

commit, we created the second historical evolution scenario to evaluate the Rebellious
Modularity smell in the SimuLizar case study.

In the third scenario RM_S_S3, the class PeriodicallyTriggeredUsageEvolver depends on

the language components mpcm.domain.usage and mpcm.paradigm.variables. After the

refactoring, we selected the commit with the id 2d215c that includes the PeriodicallyTriggere-
dUsageEvolver and 24 other classes. Based on the commit, we created the third historical

evolution scenario.

For the fourth scenario RM_S_S4, we found that the analysis class AbstractInterpreterLis-
tener depends on the language components mpcm.domain.repository, mpcm.domain.se�,

mpcm.domain.usage, and mpcm.paradigm.repository. After the refactoring, we selected

the commit with the id f066ea that includes the AbstractInterpreterListener and �ve other

classes. Based on the commit, we created the fourth historical evolution scenario.

In the �fth scenario RM_S_S5, the class RepositoryComponentSwitch depends on the lan-

guage components mpcm.domain.repository, mpcm.domain.composition, mpcm.paradigm.

composition, mpcm.paradigm.base, mpcm.paradigm.repository, and mpcm.quality.perfor-

mance. After the refactoring, we selected the commit with the id 45e128 that includes the

RepositoryComponentSwitch and �ve other classes. Based on the commit, we created the

�fth historical evolution scenario.

Camunda: For the refactoring of the Rebellious Modularity smell, we selected one occur-

rence in the Camunda case study. In the only scenario RM_C_S1, the class BpmnModelEx-
ecutionContext depends on the language components �ows-paradigm and core-classes.

After the refactoring, we identi�ed the commit with the id b85d83 that includes the Bpmn-
ModelExecutionContext and 13 other classes. Based on the commit, we created the historical

evolution scenario for refactoring Camunda in the context of the Rebellious Modularity
smell.

KAMP4aPS: For the refactoring of the Rebellious Modularity smell, we selected �ve occur-

rences in the KAMP4aPS case study. In the �rst scenario RM_K_S1, the class SensorChanges
depends on the language components mkamp.as.mm, mkamp.aps.mm, edu.kit.ipd.sdq.

kamp.model.modi�cationmarks, and mkamp.aps. After the refactoring, we identi�ed the

commit with the 1f78d0 that includes the SensorChanges class and nine other classes. Based

on the commit, we created the �rst historical evolution scenario.

For the second scenario RM_K_S2, we found that the analysis class SignalInterfaceProp-
agation depends on the language components mkamp.as.mm and mkamp.as. After the

refactoring, we selected the commit with the id 1f78d0 that includes the SignalInterface-
Propagation and nine other classes. Regarding the commit, we created the second historical

evolution scenario to evaluate the Rebellious Modularity smell in the KAMP4aPS case

study.

In the third scenario RM_K_S3, the class SwitchChanges depends on the language com-

ponents mkamp.as.mm, mkamp.aps.ppu, mkamp.as, edu.kit.ipd.sdq.kamp.model.modi�-

cationmarks, and mkamp.aps. After the refactoring, we selected the commit with the id

208

8.2. Evaluation Design

47d3cc that includes the SwitchChanges and 24 other classes. Based on the commit, we

created the third historical evolution scenario.

For the fourth scenario RM_K_S4, we found that the analysis class RampChange depends

on the language components edu.kit.ipd.sdq.kamp4aps.basic, mkamp.as.mm, mkamp.as,

and mkamp.aps. After the refactoring, we selected the commit with the id 2d37dc that

includes the RampChange and three other classes. Based on the commit, we created the

fourth historical evolution scenario.

In the �fth scenario RM_K_S5, the class ModuleChanges depends on the language com-

ponents mkamp.as.mm, edu.kit.ipd.sdq.kamp4aps.basic, mkamp.as, and edu.kit.ipd.sdq.

kamp.model.modi�cationmarks. After the refactoring, we selected the commit with the id

2d37dc that includes the ModuleChanges and three other classes. Based on the commit, we

created the �fth historical evolution scenario.

SmartGrid: For the refactoring of the Rebellious Modularity smell, we selected �ve oc-

currences in the SmartGrid case study. In the �rst scenario of the SmartGrid case study,

RM_SG_S1, the class GraphAnalyzer depends on the language components msmartgrid.

paradigm.graph, msmartgrid.domain.topo, msmartgrid.paradigm.base, msmartgrid.analy-

sis.output, and msmartgrid.analysis.input. After the refactoring, we identi�ed the commit

with the e4ce4f that includes the GraphAnalyzer class and two other classes. Based on the

commit, we created the �rst historical evolution scenario.

For the second scenario RM_SG_S2, we found that the analysis class AttackStrategies de-

pends on the language components msmartgrid.paradigm.graph and msmartgrid.analysis.

output. After the refactoring, we selected the commit with the id a2dc4f that includes the

AttackStrategies class and ten other classes. Regarding the commit, we created the second

historical evolution scenario to evaluate the Rebellious Modularity smell in the SmartGrid

case study.

In the third scenario RM_SG_S3, the class LocalHacker depends on the language compo-

nents msmartgrid.domain.topo, and msmartgrid.analysis.output. After the refactoring, we

selected the commit with the id d06686 that includes the LocalHacker and 26 other classes.

Based on the commit, we created the third historical evolution scenario.

In the fourth scenario RM_SG_S4, the class GraphAnalyzer depends on the language

components msmartgrid.paradigm.graph, msmartgrid.domain.topo, msmartgrid.paradigm.

base, msmartgrid.analysis.output, and msmartgrid.analysis.input. After the refactoring,

we identi�ed the commit with the d06686 that includes the GraphAnalyzer class and 26

other classes. Based on the commit, we created the fourth historical evolution scenario.

In the �fth scenario RM_SG_S5, the class ViralHacker depends on the language components

msmartgrid.domain.topo, msmartgrid.paradigm.base, and msmartgrid.analysis.output. Af-

ter the refactoring, we selected the commit with the id a2dc4f that includes the ViralHacker
and three other classes. Based on the commit, we created the �fth historical evolution

scenario.

209

8. Evaluation of Bad Smells in Model-based Analyses

Sim
uL
iza
r

Ca
m
un
da

KA
M
P4
aP
S

Sm
ar
tG
rid

Duplicated Abstraction 15 0 76 18

Missing Abstraction 41 1153 5 12

Unused Abstraction 891 270 169 75

De�cient Encapsulation 6 1 9 4

Folded Hierarchy 0 0 0 0

Missing Hierarchy 0 0 0 0

Unexploited Hierarchy 0 0 0 0

Broken Modularity 0 0 0 0

Degraded Modularity 9 0 0 15

Missing Modularity 441 2201 28 60

Rebellious Modularity 13 4 21 11

Weakened Modularity 0 0 0 0

Table 8.1.:Number of Occurrences of the Bad Smells in the Four Case Studies.

8.3 Evaluation Results

In this section, we present the results for the Frequency of Occurrences of the bad smells in

the four case studies to determine whether we reached our goal G1, and we present the

results for the Evolvability and Reusability. We also present the results for the Frequency
of Occurrences to determine whether we reached our goal G2; we show the number of

bad smells for each case study. In the results for the Evolvability and Reusability, we

compare our scenarios’ metrics cohesion, coupling, and complexity before and after the

refactoring.

8.3.1 Frequency of Occurrence Results

The Duplicated Abstraction smell predominately occurs in the KAMP4aPS case study and

only in the Ecore-based model-based analyses. In KAMP4aPS, the smell does occur 76 times,

in SmartGrid 18 times, and in SimuLizar 15 times. In the case study Camunda, we could not

�nd occurrences of the Duplicated Abstraction smell. The Missing Abstraction smells occurs

predominately in the Camunda case study, 19 times more than in the remaining three case

studies combined. In Camunda, the smell occurs 1153 times, in SimuLizar 41 times, in

SmartGrid 12 times and in KAMP4aPS �ve times. The Unused Abstraction smell occurs

predominately in the SimuLizar case study, 1,7 times more than in the remaining three case

studies combined. In the case study SimuLizar, the smell occurs 891 times, in Camunda 290

times, in KAMP4aPS 169, and in Smart Grid 75 times. The number De�cient Encapsulation
smells in the case studies is low. In the case study SimuLizar, the smell occurs six times, in

Camunda one time, in KAMP4aPS nine times and in SmartGrid four times. The Folded
Hierarchy smell occurs predominately in the SmartGrid and the SimuLizar case studies.

210

8.3. Evaluation Results

The smell occurs 80 times in SmartGrid and 72 times in SimuLizar. In the KAMP4aPS

case study, the smell occurs 26 times, and the Camunda case study has the lowest number

with four occurrences. We could not �nd occurrences of the Missing Hierarchy smell in

any of the four case studies. Why we could not �nd the smell and why the smell is still

relevant will be discussed in Section 8.5. The Unexploited Hierarchy smell only occurs in

the SmartGrid case study with 19 �ndings. The Degraded Modularity smell occurs in the

SimuLizar and the SmartGrid case study with 9 and 15 occurrences, respectively. The bad

smell with the highest number of �ndings in total and the highest number of �ndings

in one case study is the MissingModularity smell. In the case study SimuLizar the smell

occurs 441 times, in Camunda 2201 times, in KAMP4aPS 28 times and in SmartGrid 60

times. The Rebellious Modularity smell predominately occurs in the KAMP4aPS case study.

In KAMP4aPS, the smell occurs 21 times, in SimuLizar 13 times, in SmartGrid eleven times

and in Camunda four times. The last bad smell Weakened Modularity occurs in the case

studies SimuLizar and Camunda with 20 and seven occurrences, respectively.

8.3.2 Evolvability, Understandability, and Reusability Results

Before we can start presenting the refactoring results, we discuss why we could not refactor

all bad smells and why they are still relevant when we discuss recurring patterns that

negatively a�ect the evolvability and reusability of model-based analyses. The bad smells

we were unable to refactor manually or automatically are Duplicated Abstraction, Unused
Abstraction, Folded Hierarchy, Missing Hierarchy, Unexploited Hierarchy, Broken Modularity,

and Missing Modularity.

The bad smells related to the hierarchical structure of the DSML and its corresponding

model-based analysis are addressed when the reference architecture for model-based

analysis we present Chapter 3 is applied to the model-based analysis. How the hierarchical

structure and the compliance to the reference architecture a�ects the evolvability and

reusability is presented in Chapter 7.

We could not evaluate the Broken Modularity smell, as the case studies consist only of

one model-based analysis that uses one of the DSMLs. We could not investigate the e�ect

of refactoring multiple model-based analysis that use the same DSML. Nevertheless, the

Broken Modularity smell negatively a�ects the evolvability and reusability of model-based

analysis. If the DSML depends on one model-based analysis, changes to the model-based

analysis can trigger changes in the DSML, which can a�ect the other depending model-

based analysis. For example, suppose the DSML references the analysis engine of a speci�c

model-based analysis to use its notion of time (i. e., milliseconds). In that case, all other

model-based analyses must use the same notion of time. If the notion of time changes, the

DSML and all correlated model-based analyses also have to change.

211

8. Evaluation of Bad Smells in Model-based Analyses

Complexity Coupling Cohesion
before after before after before after

DA_S_S1 1804 1785 253 254 1.68E-4 1.54E-4

DA_S_S2 1475 1430 355 355 9.70E-4 9.25E-4

DA_S_S3 1983 1983 265 265 1.59E-4 1.59E-4

Table 8.2.: SimuLizar– Duplicated Abstraction Refactoring

Complexity Coupling Cohesion
before after before after before after

DA_K_S1 298 216 183 115 0.016651 0.016654
DA_K_S2 129 61 69 19 0.021 0.030
DA_K_S3 30 27 13 10 0.038 0.038

DA_K_S4 295 206 183 113 0.01311 0.01305

DA_K_S5 320 207 197 109 0.01402 0.01406

Table 8.3.:KAMP4aPS – Duplicated Abstraction Refactoring

8.3.2.1 Duplicated Abstraction

In this section, we present the results for the Duplicated Abstraction refactorings. The

tables show for each scenario the complexity, coupling, and cohesion before and after the

refactoring.

The results for the case study SimuLizar are shown in Table 8.2. We refactored three change

scenarios from the case study SimuLizar. The complexity and the cohesion improved in the

�rst scenario DA_S_S1, but the coupling deteriorated. The complexity and cohesiveness

improved in the second scenario DA_S_S2, but the coupling remained unchanged. The

refactorings of the third scenario DA_S_S3 had no in�uence on the metrics’ complexity,

cohesion, or coupling.

The case study KAMP4aPS results are shown in Table 8.3. We refactored �ve change

scenarios from the case study KAMP4aPS. After the refactoring, the complexity in the

�rst DA_K_S1 and second scenario DA_K_S2 improved, as did the coupling and cohesion.

Only the complexity and coupling improved in the third scenario DA_K_S3, while the

cohesion did not change. The complexity and coupling improved in the fourth scenario

DA_K_S4, but the cohesion deteriorated. The three metrics complexity, coupling, and

cohesion improved for the �nal scenario DA_K_S5.

Table 8.4 displays the results for the case study SmartGrid. We also refactored �ve scenarios

from the SmartGrid case study. The complexity in the �rst scenario DA_SG_S1 improved,

as did the coupling, but the cohesion deteriorated. The complexity and cohesion improved

in the second scenario DA_SG_S2, but the coupling deteriorated. Only the complexity

improved in the third scenario DA_SG_S3, while the coupling and cohesion deteriorated.

The complexity improved in the fourth scenario DA_SG_S4, but the coupling and cohesion

worsened. The three metrics complexity, coupling, and cohesion improved for the �nal

scenario DA_SG_S5.

212

8.3. Evaluation Results

Complexity Coupling Cohesion
before after before after before after

DA_SG_S1 991 909 110 98 0.060 0.056

DA_SG_S2 1001 920 110 111 0.053 0.056
DA_SG_S3 1200 1130 160 161 0.021 0.020

DA_SG_S4 997 971 114 145 0.037 0.032

DA_SG_S5 251 221 55 45 0.0126 0.0135

Table 8.4.: SmartGrid – Duplicated Abstraction Refactoring

Complexity Coupling Cohesion
before after before after before after

MA_S_S1 1023 1077 109 155 0.00264 0.00251

MA_S_S2 348 341 76 81 8.88E-3 6.97E-3

MA_S_S3 2421 2429 510 510 2.5E-4 2.6E-4
MA_S_S4 70 83 11 11 0.105 0.107

Table 8.5.: SimuLizar – Missing Abstraction Refactoring

8.3.2.2 Missing Abstraction

In this section, we present the results for the Missing Abstraction refactorings. The

tables show for each scenario the complexity, coupling, and cohesion before and after the

refactoring.

The results for the case study SimuLizar are shown in Table 8.5. We refactored four

cases from the case study SimuLizar. The metrics complexity, coupling, and cohesion

deteriorated in the �rst scenarioMA_S_S1. The complexity improved in the second scenario

MA_S_S2, but the coupling and cohesion worsened. Only the cohesion improved in the

third scenario, MA_S_S3, while the coupling remained unchanged and the complexity

deteriorated. The complexity of the fourth scenario MA_S_S4 decreased; the coupling did

not change, but the cohesion improved.

The results for the case study Camunda are shown Table 8.6. We refactored �ve cases

from the case study Camunda. The metrics complexity and cohesion improved in the �rst

MA_C_S1 and second MA_C_2 scenarios, while the coupling worsened. The metrics did

Complexity Coupling Cohesion
before after before after before after

MA_C_1 286 267 82 87 2.7E-4 2.6E-4

MA_C_2 166 112 40.5 40.9 2.3E-4 1.9E-4

MA_C_3 30 30 12 12 1.34E-3 1.34E-3

MA_C_4 101 103 11 14 0.023 0.021

MA_C_5 647 648 173 174 2.71E-3 2.66E-3

Table 8.6.:Camunda – Missing Abstraction Refactoring

213

8. Evaluation of Bad Smells in Model-based Analyses

Complexity Coupling Cohesion
before after before after before after

MA_K_S1 991 1023 445 477 4.2E-3 3.9E-3

MA_K_S2 991 769 445 366 4.2E-3 4.9E-3
MA_K_S3 5499 5553 2259 2222 1.81E-4 1.80E-4

MA_K_S4 68 11 8 21 1.09E-5 1.08E-5

MA_K_S5 179 181 65 51 1.3E-3 1.2E-3

Table 8.7.:KAMP4aPS – Missing Abstraction Refactoring

Complexity Coupling Cohesion
before after before after before after

MA_SG_S1 352 351 41 37 0.030 0.026

MA_SG_S2 1321 1316 161 157 0.020 0.018

MA_SG_S3 312 314 76 77 0.03 0.02

MA_SG_S4 198.7 198.2 22 17 0.06 0.05

MA_SG_S5 312 314 76 77 0.03 0.02

Table 8.8.: SmartGrid – Missing Abstraction Refactoring

not change in the third scenario MA_C_3. The complexity, coupling, and cohesion all

deteriorated for the fourth MA_C_4 and �fth MA_C_5 scenarios.

The case study KAMP4aPS results are shown in Table 8.7. We refactored �ve scenarios from

the case study KAMP4aPS. The metrics complexity, coupling, and cohesion deteriorated in

the �rst scenario, MA_K_S1. The metrics complexity, coupling, and cohesion improved for

the second scenario, MA_K_S2. The metric coupling improved while the metrics complexity

and cohesion deteriorated in the third scenario, MA_K_S3. The metrics complexity and

cohesion improved, while the metric coupling deteriorated in the fourth scenario, MA_K_-
S4. The metric coupling improved, but the metrics complexity and cohesion deteriorated

in the �fth scenario, MA_K_S5.

The results for the case study SmartGrid are shown in Table 8.8. We refactored �ve scenarios

from the SmartGrid case study. The metrics complexity and coupling improved in the �rst

MA_SG_S1 and second MA_SG_S2 scenarios, whereas metric cohesion deteriorated. The

metrics complexity, coupling, and cohesion deteriorated in the third scenario, MA_SG_S3.

The metrics complexity and coupling improved, but the metric cohesion deteriorated in the

fourth scenario, MA_SG_S4. The metrics complexity, coupling, and cohesion deteriorated

in the �fth scenario, MA_SG_S5.

8.3.2.3 Degraded Modularity

The results for the case study SimuLizar are shown in Table 8.9. We refactored �ve cases

from the SimuLizar case study. The metrics complexity and coupling improved while metric

cohesion deteriorated in the �rst scenario, DM_S_S1. The metrics complexity, coupling,

and cohesion improved in the second scenario, DM_S_S2. For the third scenario, DM_S_S3,

214

8.3. Evaluation Results

Complexity Coupling Cohesion
before after before after before after

DM_S_S1 403 379 63 52 0.019 0.018

DM_S_S2 105 97 11 10 0.12 0.16
DM_S_S3 1475 1431 355 347 9.7E-4 9.6E-4

DM_S_S4 1254 1235 252 253 2.78E-3 2.81E-3
DM_S_S5 892 872 55 54 5.8E-3 5.9E-3

Table 8.9.: SimuLizar – Degraded Modularity Refactoring

Complexity Coupling Cohesion
before after before after before after

DM_SG_S1 1050.39 1050.30 143 143 0.022 0.023
DM_SG_S2 528 554 75 86 0.01 0.01

DM_SG_S3 42 35 14 13 0.027 0.033
DM_SG_S4 374 373 61 65 4.8E-3 5.0E-3
DM_SG_S5 4600 4600 1131 1129 1.0E-4 1.0E-4

Table 8.10.: SmartGrid – Degraded Modularity Refactoring

the metrics complexity and coupling improved while the metric cohesion deteriorated.

The metrics complexity and cohesion improved, and the metric coupling decreased in the

fourth scenario, DM_S_S4. The complexity, coupling, and cohesion metrics improved in

the �fth scenario, DM_S_S5.

The results for the case study SmartGrid are displayed in Table 8.10. Five scenarios were

refactored from the SmartGrid case study. The metric complexity improved, the metric

coupling did not change, and the metric cohesion improved in the �rst scenario, DM_SG_S1.

The metrics complexity and cohesion declined in the second scenario, DM_SG_S2, while

coupling remained unchanged. The metrics complexity, coupling, and cohesion improved

for the third scenario,DM_SG_S3. The metrics complexity and cohesion improved while the

metric coupling deteriorated in the fourth scenario, DM_SG_S4. The metrics complexity

and cohesion did not change in the �fth scenario, DM_SG_S5, and coupling improved.

Complexity Coupling Cohesion
before after before after before after

RM_S_S1 303 296 62 66 0.0016 0.0021
RM_S_S2 93 93 60 60 0.01 0.01

RM_S_S3 805 790 23 22 8.26E-4 8.34E-4
RM_S_S4 306 306 47 47 0.006 0.008
RM_S_S5 675 652 43 46 0.009 0.010

Table 8.11.: SimuLizar – Rebellious Modularity Refactoring

215

8. Evaluation of Bad Smells in Model-based Analyses

Complexity Coupling Cohesion
before after before after before after

RM_C_S1 3532 3526 368 357 4.93E-4 4.94E-4

Table 8.12.:Camunda – Rebellious Modularity Refactoring

Complexity Coupling Cohesion
before after before after before after

RM_K_S1 844 841 520 517 0.0021 0.0022
RM_K_S2 844 844 520 520 0.002 0.002

RM_K_S3 1007 997 545 543 5.0E-3 5.1E-3
RM_K_S4 1007 989 545 534 5.02E-3 5.03E-3
RM_K_S5 5499 5470 2259 2231 2.0E-4 2.0E-4

Table 8.13.:KAMP4aPS – Rebellious Modularity Refactoring

8.3.2.4 Rebellious Modularity

The results for the case study SimuLizar are shown in Table 8.11. We refactored �ve cases

from the case study SimuLizar. The metric complexity and cohesion improved in the

�rst scenario RM_S_S1, but the metric coupling deteriorated. The metrics complexity

and cohesion deteriorated in the second scenario, but coupling stayed unchanged in the

second scenario RM_S_S2. The metrics complexity, coupling, and cohesion improved

for the third scenario,RM_S_S3. For the fourth scenario, RM_S_S4, the metric cohesion

improved while the metrics complexity and coupling remained the same. The metrics

complexity and cohesion improved, while the metric coupling deteriorated in the �fth

scenario RM_S_S5.

The �ndings from the Camunda case study are presented in Table 8.12. We refactored one

scenario from the Camunda case study. The complexity, coupling, and cohesion metrics

improved for scenario RM_C_S1.

The results for the case study acKAMP4APS are shown in Table 8.11. We refactored �ve

scenarios from the case study KAMP4aPS. Complexity, coupling, and cohesion metrics all

improved in the initial scenario RM_K_S1. The complexity, coupling, and cohesion metrics

were unchanged in scenario RM_K_S2. Complexity, coupling, and cohesion metrics all

improved for scenario RM_K_S3. The metrics complexity, coupling, and cohesion increased

for scenario RM_K_S4. Improvements were made for the metrics complexity, coupling,

and cohesion in scenario RM_K_S5.

The results for the case study SmartGrid are shown in Table 8.14. We refactored �ve scenar-

ios from the SmartGrid case study. The metrics complexity and cohesion improved in the

�rst scenario RM_SG_S1, while the metric coupling declined. The metrics complexity and

coupling deteriorated in the second scenario RM_SG_S2, while metric cohesion remained

unchanged. The metrics complexity and coupling improved for the third scenario, RM_-
SG_S3, while metric cohesion remained unchanged. The metrics complexity and coupling

improved, whereas the metric cohesion degraded in the fourth scenario, RM_SG_S4. The

216

8.4. Threats to Validity

Complexity Coupling Cohesion
before after before after before after

RM_SG_S1 1181 1147 207 211 0.0220 0.0223
RM_SG_S2 540 549 142 148 0.003 0.003

RM_SG_S3 6289 6041 2239 2012 0.002 0.002

RM_SG_S4 6696 6289 2559 2239 1.548E-3 1.546E-3

RM_SG_S5 540 573 142 163 0.003 0.003

Table 8.14.: SmartGrid – Rebellious Modularity Refactoring

metrics complexity and coupling declined in the �fth scenario RM_SG_S5, while the metric

coupling remained unchanged.

8.4 Threats to Validity

In this section, we discuss the four types of validity by Runeson et al. [Run+12]. The four

validity types are explained in Section 2.6.1.

8.4.1 Internal Validity

In our evaluation, we analysed four case studies regarding 12 bad smells dedicated to

model-based analyses. We investigated the relevance of the bad smells in four case studies

and how they a�ect evolvability and reusability. We identi�ed the occurrences of each bad

smell in each case study. Based on these occurrences, we derived change scenarios based

on historical or potential changes. Then, we compared the metrics complexity, coupling,

and cohesion for each scenario before and after the refactoring. To address the internal

validity, we have to ensure that the refactoring of the bad smell we have applied to the

scenarios created the changes in the metrics. One possible cause for the change in the

results is when we also �xed bugs and bad smells (cf. Chapter 4) unrelated to the bad smell

under study. Therefore, we only applied refactorings that helped us to �x the bad smell

under study to the case studies.

8.4.2 External Validity

Choosing a sample case study that is not as general as possible to depict a concrete system

will provide greater insight and a better understanding of the system under investigation

[Run+12]. The case studies we chose do not represent a generic case study that covers

all possible model-based analyses. As a result, the �ndings from the four case studies

do not represent every other arbitrary model-based research. On the other hand, the

case studies derive from distinct domains, allowing us to get insights into model-based

analyses with similar qualities. To counter this issue, we chose to conduct heterogeneous

217

8. Evaluation of Bad Smells in Model-based Analyses

model-based analyses. Chapter 6 goes through our selection procedure and the case studies

in general.

8.4.3 Construct Validity

The construct validity will be compromised if we choose case studies that would pro�t

the most from �xing the bad smells, such as those with many bad smells. We chose the

same case studies as Heinrich et al. [HSR19] to avoid this issue. Heinrich et al. focussed

on the DSML and its evolvability and reusability; we, on the other hand, reviewed the

corresponding model-based analyses regarding the occurrences of the bad smells. Each

case study that we analysed has a di�erent number of bad smells. Based on our �ndings,

we concluded that removing bad smells can improve the complexity of a model-based

analysis.

In order to better address this threat, we chose case studies that originated from various

diverse domains (i. e., information systems, business processes, production automation,

and smart grids). Because of the several domains, we ensure that the bene�ts of removing

bad smells are not limited to a single domain. We can conclude that improving the internal

quality by removing bad smells in model-based analyses would be bene�cial to the model-

based analyses of the domains we choose.

Our decision-making process for the evolution scenario could likewise jeopardise the

construct validity. Chapter 6 explains how we chose the case studies, and Section 7.3

explains how we choose the evolution scenarios. To handle this issue, we established two

evolution scenarios: historical and potential. The historical evolution scenarios pose the

least risk because they are generated from actual change scenarios of the model-based

analyses. These historical evolution scenario changes were used in the past. The potential

evolution scenarios risk the construct’s validity because they indicate changes the analysis

developers may apply, but we cannot guarantee these changes will occur. We were able to

extract historical and potential evolution scenarios from the very well-documented and

available commit history of all of our case studies.

8.4.4 Conclusion Validity

To omit that only one researcher must interpret the results of our evaluation, we use

objective metrics based on information theory. These metrics provide reasonable proof

and limit the need for interpretation, eliminating the possibility of a researcher providing

their subjective interpretation of the data. The purpose of the evaluation is to discredit the

e�ects that could be attributed to the interpretation of a single researcher. If the evaluation

is repeated for more case studies in the future, this will contribute statistically to the

con�rmation of the results.

218

8.5. Discussion

8.5 Discussion

In this section, we discuss if the �ndings of the existence and relevance evaluation of our

bad smells for model-based analyses indicate that we have accomplished our objectives.

8.5.1 Existence

The results for the existence evaluation show that we found seven out of 12 bad smells in the

four case studies. The bad smells we did not �nd are smells from the hierarchical category

and the Weakened Modularity smell. We could not �nd these bad smells because they

exist only in model-based analyses that follow our reference architecture for model-based

analysis. Because we did refactor the case studies according to our reference architecture

for model-based analyses, it is impossible that the model-based analysis contains these

bad smells, else they would violate the constraints of our reference architecture. However,

during the refactoring to apply our reference architecture, we used our tool RefactorLizar

to identify occurrences of the bad smells to identify points in the model-based analysis

that needed more refactoring. Therefore, we conclude that although the initial results

did not contain occurrences of the hierarchical and the Weakened Modularity smell, the

de�nition and identi�cation can guide the analysis developer to implement our reference

architecture for model-based analysis.

Regarding the Broken Modularity smell, we were unable to �nd occurrences of it because

the smell requires multiple model-based analysis that correspond to one DSML However,

we only investigated one model-based analysis per DSML. Thus, the Broken Modularity is

the only bad smell we cannot determine whether it exists in model-based analyses.

Surprisingly, Camunda, as an industrial product, has more bad smells than, for example,

SimuLizar, which was developed exclusively in a university context. An industrial product

intending to thrive and be maintainable and evolvable should have enough resources

available to improve and polish the product over time. We put the higher number of bad

smells down to the di�erence in the size of the case studies; the more extensive the case

study, the more bad smells can occur.

We demonstrated that of the remaining seven bad smells, all can be found in our case

studies. The most common bad smells we found are the Missing Modularity smell with

a total number of 2730 occurrences, the Unused Abstraction with 1405 occurrences, and

the Missing Abstraction smell with 1211 occurrences in the four case studies. The high

number of occurrences of the Missing Modularity smell is an exception because the case

studies we investigated have no layering structure; thus, each component corresponds to

one bad smell. In model-based analyses with a layered structure, the Missing Modularity
smell can help �nd classes and components that are not part of a layer in the system. The

smell Unused Abstraction occurs 1405 times, and the Missing Abstraction smell occurs 1211

times in all four case studies combined. The reason that the smell of Unused Abstraction is

a typical bad smell can be explained by the fact that not all types from the language are

needed in the analyses. The analysis SimuLizar, for example, is specialised in performance

219

8. Evaluation of Bad Smells in Model-based Analyses

simulation and therefore does not need the types in the PCM that cover e. g. failure

probabilities of components. The number of Missing Abstraction smells can be explained

by the evolutionary development process and the size of the case studies. At the beginning

of the development, it is often unclear what kind of specialised types are needed; thus,

the analysis developer sticks with basic types. The bigger the analysis, the more e�ort

the developer requires to replace primitive types with dedicated types, which are often

discarded because new features are prioritised. This explains why the smell Missing
Abstraction occurs more frequently in the largest case study Camunda than in the remaining

smaller ones. The remaining bad smells Duplicated Abstraction, De�cient Encapsulation,

Degraded Modularity, and Rebellious Modularity occur under 200 times per bad smell.

Nevertheless, except for the Broken Modularity, each bad smell occurs in the case studies

we investigated. As a result, we conclude that the bad smells we de�ned exist in model-

based analyses. The following section discusses the results regarding the relevance of the

bad smells.

8.5.2 Relevance

The results for the relevance evaluation show that the Duplicated Abstraction smell nega-

tively a�ects the complexity of a model-based analysis and its evolvability; a system that

is hard to comprehend, due to its complexity, is also hard to evolve and maintain, as the

e�ects of changes are unpredictable. Although we did not �nd the Duplicated Abstraction
smell in each case study and the number of �ndings ranged from 15 to 76 occurrences,

we determine the Duplicated Abstraction smell as a relevant bad smell that, when �xed,

positively impacts the evolvability and reusability of model-based analyses. Therefore, it

is worth �xing the Duplicated Abstraction smell.

The results for the Missing Abstraction smell need to be clari�ed. After the refactoring, the

complexity is reduced in ten scenarios and worsened in eight. Introducing dedicated types

can add more complexity to a model-based analysis, especially when it is a one-to-one

substitution. If, for example, in a method signature, one primitive type is replaced by

one dedicated type, the developer does not gain any advantage. The scenarios where the

complexity worsened were such one-to-one substitutions. However, if �xing the Missing
Abstraction smell means that multiple method parameters can be replaced, the complexity

can be reduced. The scenarios where the complexity improved were such substitutions.

Therefore, we determine that the analysis developer must decide whether introducing

dedicated types to the model-based analysis has any positive e�ects on the existing code

base. Alternatively, the analysis developer can accept a deterioration of the complexity

in the short-term, for the possibility to avoid the Missing Abstraction smell in the future.

Thus, we determine the Missing Abstraction smell as relevant in developing model-based

analyses.

The results for the Degraded Modularity show that it negatively a�ects the complexity of

model-based analyses. Of the ten scenarios we refactored, the complexity improved for

eight of the ten scenarios when we �xed the Degraded Modularity smell. The Degraded
Modularity smell only occurred in 50% of our case studies with a total number of 24.

220

8.5. Discussion

Although the smell occurred not often, in 80% of the scenarios, we improved the complexity

of the evolution scenarios. Fixing the Degraded Modularity smell requires that the analysis

developer moves dependencies from analysis classes on language types. As we provide

refactorings (cf. Section 3.3.3) to �x this bad smell, we determine the e�ort of �xing it as

mitigable. Due to the positive e�ect on the internal quality when �xing the bad smell, and

the rare occurrences of the bad smell as well as the mitigable e�ort that is required to �x

the bad smell, we determine the Degraded Modularity smell as a relevant bad smell that is

worth �xing.

The results for the Rebellious Modularity show that it negatively a�ects the complexity of

model-based analyses. Of the eleven scenarios we refactored, the complexity improved for

eight scenarios when we �xed the Degraded Modularity smell, and the remaining three

did not change. The Rebellious Modularity smell occurs in every case study we analysed

with a total number of 49 occurrences. Fixing the bad smell requires access to the DSML,

with the possibility of making changes or splitting the a�ected analysis class. The best

refactoring is di�erent for each case, but for the refactoring of the model-based analysis,

we provide refactorings on class and component level (cf. Section 3.3.3). We determine the

e�ort of refactoring the model-based analysis as mitigable, especially if we consider the

improved evolvability when �xing the bad smell. Due to the positive e�ect on the internal

quality when �xing the bad smell, and the mitigable e�ort that is required to �x the bad

smell, we determine the Degraded Modularity smell as a relevant Therefore, we determine

the Rebellious Modularity smell as a relevant bad smell worth �xing.

Relevance of the remaining bad smells: In this section, we discuss why the bad smells

we did not evaluate with the complexity, coupling, and cohesion metrics are nonetheless

relevant for the evolvability and reusability of model-based analyses and their corre-

sponding DSML. The Unused Abstraction smell does not directly a�ect the evolvability

and reusability of a model-based analysis; however, if types of a DSML are not used,

the language is unnecessarily complex. The unused type can lead the tool user to make

false assumptions regarding the e�ect of types on the analysis result. If, for example, the

analysis does not use the de�ned bandwidth that can be modelled with the DSML, the tool

user could connect the result to the irrelevant bandwidth. Furthermore, the model can be

unnecessarily complex, as unused types can still be modelled.

The De�cient Encapsulation smell also does a�ect primarily the DSML and not the model-

based analysis. Across all model-based analysis that use a DSML, if types are always used

together, merging them reduces the number of types and the dependencies between types

and components of a language. As a result, the DSML becomes cleaner and easier to

understand for the tool user.

The Folded Hierarchy smell a�ects the dependencies of specialised analysis classes on

more generic language classes. According to Heinrich et al. [HSR19], these dependencies

will change more specialised classes if generics change. It results in unnecessary changes

and more e�ort for the analysis developer when the corresponding DSML changes. In

Chapter 3 and Chapter 7, we present a layered reference architecture for model-based

analyses. The remaining bad smells related to the hierarchical structure and the modularity

of the DSML and the model-based analysis are evaluated in Chapter 7.

221

9. Evaluation of the Model-based Analysis
Specification and Reuse of
Model-based Analysis Components

In this section, we present the evaluation of our approach to specify and compare simulation

components. The evaluation goals and metrics are presented in Section 9.1. The evaluation

results for the applicability of the simulation speci�cation are presented in Section 9.2.1,

and the results for the accuracy of the approach to compare simulation components, based

on their speci�cation, are presented in Section 9.2.2. The threats to validity are discussed

in Section 9.3, and the discussion of the results is presented in Section 9.4.

9.1 Research Goals and Metrics

We split the goals and metrics section to evaluate our speci�cation and compare approaches

into three parts. The �rst part introduces our research goals regarding the applicability

and accuracy of our speci�cation metamodel to DESs. The second part introduces our

metrics to evaluate whether we reached our goals. Finally, the third part explains the

structure of our scenarios and their use in the evaluation.

We derive the �rst research goal (RG 9.1) from our hypothesis (cf. Hypothesis 3) and

the �rst research question Research Question 5.1, how to specify model-based analysis

components to enable analysis component comparison:

Research Goal 9.1

We want to determine how applicable our DSML for the speci�cation of DES is, which

covers structural and behavioural information when it is used to specify components

of real-world DES.

The second and third research goals (RG 9.2 and RG 9.3) we derived from our hypothesis

(cf. Hypothesis 3) and the second research question (cf. Research Question 5.2), how to

compare and correctly identify similar model-based analysis components:

Research Goal 9.2

We want to determine how accurately our approach can identify similar simulation

components based on their structure speci�cation.

223

9. Speci�cation and Reuse Evaluation

Research Goal 9.3

We want to determine how accurately our approach can identify similar simulation

components based on their behaviour speci�cation.

We split the Research Question 5.2 into two goals because our approach is separated

into two steps. The �rst step is to compare the speci�cations of simulation components

regarding their structure. The second step is to compare the speci�cations of simulation

components regarding their behaviour. We use two di�erent DES that serve as case studies

to evaluate our approach. The evaluation of our speci�cation DSML and our comparing

approach follow the Goal Question Metric (GQM) approach [BCR94].

In order to determine whether we reached the goals RG 9.1, RG 9.2, and RG 9.3, we utilise

the case studies Palladio Simulator and Camunda that we introduced in Chapter 6. We

derive ten scenarios for each case study, each containing one simulation component.

We use our speci�cation language to model each scenario to determine whether we can

model the simulation component with our speci�cation language, i. e., how applicable

our speci�cation language is to real-world simulation components. After we modelled

the scenarios, we used our approach to compare the speci�cations of the simulation

components to each other. To compare speci�cations, we use our approach to compare

the speci�cations of simulation components regarding their structure (cf. Section 5.3)

and to compare the speci�cations of simulation components regarding their behaviour

(cf. Section 5.4).

9.1.1 Applicability Metric

In this section, we introduce the applicability metric we used to check whether we reached

the Research Goal 9.1. We select components of a model-based simulation to identify

whether the metamodel to specify components of a model-based simulation is suitable

for modelling simulation components. Then we model these components with our speci-

�cation language. How we selected the components of the model-based simulations is

described in Section 9.1.3. For the evaluation, we use two of the case studies presented

in Chapter 6, Camunda and the Palladio Simulator. For each simulation component, we

identify the entities and events it contains. Regarding the events, we have to identify

how an event a�ects the simulation world, i. e., which attributes are changed and how the

change a�ects the scheduled delay of the event. Furthermore, we also have to identify

which attributes are read by an event and which other events are scheduled by each event.

As a result, events can schedule events of other simulation components; therefore, we

also have to identify these components and their events. After identifying the simulation

components’ entities and events, we modelled each component. We checked whether we

could model each entity and event with our speci�cation DSML. We calculate for each

simulation component how many elements are covered by our DSML as follows:

Mn = Emodel +Vmodel

224

9.1. Research Goals and Metrics

Sn = Esimulation +Vsimulation

Cn =
Mn

Sn

We calculate the coverage C for the simulation component n by dividing the sum of the

modelled entities of the component Emodel and the events of the component Vmodel by the

sum of entities in the component Esimulation and the events in the component Vmodel . After

calculating the coverage of each simulation component, we determine the applicability

A of our speci�cation language for simulation components by calculating the average

coverage C over the number of simulation components m.

A =

∑m
1
Cm

m

9.1.2 Accuracy Metric

To determine whether we reached the goals Research Goal 9.2 and Research Goal 9.3, we

also use a scenario-based evaluation to determine how accurate our approach can identify

similar simulation components based on their structure and behaviour speci�cation. How

we selected the components of the model-based simulations for the scenarios is described

in Section 9.1.3. First, we compare the structure speci�cation of the simulation components

of the scenarios by using the graph-isomorphism approach presented in Section 5.3. Then,

if we could identify a structural match, we compare the behaviour using our SMT-based

approach presented in Section 5.4. We determine the accuracy of our approach to �nding

simulation components by comparing their structure and behaviour speci�cation. To

determine the accuracy, we calculate the metric F1 score. The F1 score is the harmonic

mean of precision and recall. Precision and recall aggregate the number of true positives,

false positives, and false negatives. The number of true positives (tp), false positives (fp),

and false negatives (fn) is calculated by comparing the list of identi�ed components with

the list of components that should be identi�ed. Identifying tp , tn, and fn is scenario

speci�c. Therefore, we explain how we identify them when we introduce the scenarios.

Given the amount true positives, false positives, and false negatives, precision and recall

are calculated as [Pow20]:

precision =
tp

tp + fp

and

recall =
tp

tp + fn

The F1 score is calculated as the harmonic mean of precision and recall:

f1 = 2

precision × recall

precision + recall

225

9. Speci�cation and Reuse Evaluation

9.1.3 Scenarios

We developed �ve scenarios to answer the Research Question 5.2 and to show whether our

approach can �nd the right simulation component when it is compared to other simulation

components or to �nd a simulation component in a set of simulation components that

represent a whole DES. In addition to the speci�cation of the simulation components

CC1 to CC10 and CE1 to CE10, we also added obfuscated simulation components O1 to O20.

We obfuscated the names of the entities, attributes, and events in the speci�cation of the

simulation components to have a di�erence in the naming of the elements. For example,

the event identify_task becomes a name with no relation to other events or the domain of

the simulation component. The scenarios can be divided into two categories: The �rst

category (scenarios S1 and S2) evaluates whether the suitable simulation component can be

identi�ed in a set of simulation components by individually comparing each. The second

category (scenarios S3 to S5) evaluates whether a simulation component can be identi�ed

in a set of simulations representing a DES. We distinguish the following scenarios:

The �rst scenario, S1, shows that our approach can identify the suitable simulation com-

ponent in a set of di�erent components. Therefore, the simulation components of the

two case studies are compared to �nd the correct match. For example, we compare CC1

to the other simulation components of Camunda CC2 to CC10 and itself. This example is

correctly identi�ed when CC1 is identi�ed as a matching simulation component. It counts

as wrongly identi�ed when the result is any of the other simulation components CC2

to CC10. If the correct simulation component is identi�ed, we count it as tp ; if a wrong

simulation component is identi�ed, we count it as fp . If the simulation component cannot

be identi�ed, we count it as fn.

The second scenario, S2, shows that our approach can identify the suitable simulation

component in a set of obfuscated simulation components. Therefore, each simulation

component of the two scenarios is compared to each obfuscated component O1 to O20 to

�nd the correct match. For example, we compare CC1 to the other obfuscated simulation

components O1 to O20. This example is correctly identi�ed when O1 is identi�ed as a

matching simulation component. It counts as wrongly identi�ed when the result is any

of the other simulation components O2 to O20. If the correct simulation component is

identi�ed, we count it as tp ; if a wrong simulation component is identi�ed, we count it as

fp . If the simulation component cannot be identi�ed, we count it as fn.

The third scenario, S3, shows that our approach can identify a simulation component in

a set of simulation components that represent a DES. Therefore, we modelled a simula-

tion speci�cation CC0 that contains all the simulation components CC1 to CC10 and the

simulation speci�cation CE0 that contains all the simulation components CE1 to CE10. The

simulation speci�cation CC0 is searched for each component CC1 to CC10, and the simula-

tion speci�cation CE0 is searched for each component CE1 to CE10. For example, we search

CC0 for the simulation component CC1. This example counts as correctly identi�ed when

our approach �nds a mapping of the simulation component CC1 that is contained in CC0

onCC1. It counts as wrongly identi�ed when the result is any other mapping that does not

contain the complete elements ofCC1. If the suitable simulation component is identi�ed in

226

9.1. Research Goals and Metrics

CC0 or CE0, we count it as tp ; if a wrong simulation component is identi�ed, we count it as

fp . If the simulation component cannot be identi�ed, we count it as fn.

The fourth scenario, S4, demonstrates that our approach can identify a simulation compo-

nent in a set of simulation components that represent a DES even if it was obfuscated.

Therefore, we created an obfuscated simulation speci�cation O0 that contains all simula-

tion components O1 to O20. The simulation O0 is searched for each simulation component

CC1 to CC10 and CE1 to CE10. For example, we search O0 for the simulation component CC1.

This example counts as correctly identi�ed when our approach �nds a mapping of the

simulation component O1 that is contained in O0 on CC1. It counts as wrongly identi�ed

when the result is any other mapping that does not contain the complete elements of CC1.

If the proper component is identi�ed in O0, we count it as tp ; if a wrong component is

identi�ed, we count it as fp , and if the component cannot be identi�ed, we count it as fn.

The �fth scenario, S5, serves as an inverse example. It demonstrates that no component

can be identi�ed when another set of simulation components that represent a DES, that

does not contain any of the components CC1 to CC10 or CE1 to CE10 is searched for. For

this example, we search the speci�cations of Camunda for speci�cations of the Palladio

Simulator, and we search the Palladio Simulator speci�cation of Camunda. If a component

is not identi�ed, we count it as tp ; if a component is identi�ed, we count it as fp ; if the

search yields no result, we count it as fn. We count it a fn when the search takes more

than one minute and the search has to be terminated.

9.1.4 Simulation Components of the Palladio Simulator used for the
Evaluation

The �rst case study is the simulator EventSim; EventSim is part of a simulator for the

quality analysis of software architectures, the Palladio Simulator. The Palladio-Simulator

is part of the Palladio approach [Reu+16]. This tool-supported approach allows for the

modelling and analysis of software architectures for di�erent quality properties such as

performance, reliability [Bro+12], and maintainability [Ros+17]. EventSim represents a

historically grown and versatile model-based analysis that can analyse more than one

aspect of software quality. As input, EventSim requires an instance of the PCM. The PCM

is also part of the Palladio approach; it allows for the speci�cation, documenting, and

analysis of software architectures. The components we selected in our �rst case study

should be reusable in the same domain; hence, each component is related to performance

simulation or software architecture simulation. The following components we modelled

consist of 48 entities and 60 events:

CE1– Add Process to Resource: This component takes a resource, for example, a CPU or

HDD, with a �xed set of computational capacity, for example, ten CPU workload units per

second. Moreover, it determines whether the demand matches the available capacity of

the resource, for example. If the check is successful, the resource is blocked for the time

the demand requires, and the following process is added to the list of processes waiting to

be processed by the resource.

227

9. Speci�cation and Reuse Evaluation

CE2– Calculate Resource Demand: This component calculates the demand for a resource,

such as a CPU or HDD, by considering the latency of a linking resource, the demand for

the resource, and the throughput.

CE3– Closed Workload: This component represents a closed workload with a �xed popula-

tion count that schedules processes if the queue is not empty. A closed workload contains

a �xed number of concurrent workers isolated from one another and completes a de�ned

sequence of tasks (the workload) in a loop. If a process is �nished, the population count is

increased.

CE4– Open Workload: In contrast to the closed workload, where the population is �xed, the

open workload determines an interarrival time and schedules processes according to this

time. The pace at which new workers are spawned in an open workload is set. Workers are

segregated from one another and complete a prede�ned set of tasks before being removed.

Started workers are autonomous, and new workers are launched independently of the

status of presently active workers.

CE5– External Call: This component calculates the demand when an external resource

is called. It contains the number of bytes transmitted to the external resource and the

throughput. The throughput can be ignored; then, a �xed demand is returned. Exter-

nalCallAction represents the execution of a service de�ned in a required interface. As

a result, it refers to a Role from which the giving component can be determined and a

Signature that speci�es the called service. ExternalCallActions represent synchronous

calls to necessary services, in which the caller waits for the called service to complete

execution before resuming execution.

CE6– HDD Demand: This component calculates the demand for a hard disk drive. It

contains the read-and-write processing rate and considers the abstract demand of a request

when calculating the actual demand.

CE7– RDSEFF: This is a rather complex component; it represents the Resource Demand

(RD) of a SEFF. A SEFF is the abstract representation of the control �ow of a software

component. It simulates the e�ect of calling a speci�c service of a basic component. To

identify the speci�ed service, it refers to a Signature from an Interface for which the

component has a ProvidedRole. It depends on CE1 and CE8, and CE7 invokes these two

scenarios.

CE8– Release Resource: This component releases a resource if the demand for the resource

is ful�lled. Releasing a resource means that a task no longer occupies it, and the resource

is free for the next task.

CE9– Sharing Resources: Represents a processor sharing resource. It determines whether

the capacity of a sharing resource is not exceeded and calculates the processing speed

according to the capacity.

CE10– Usage Scenario: This component schedules delays and events provided by other

components.

228

9.1. Research Goals and Metrics

9.1.5 Simulation Components of Camunda used for the Evaluation

CC1– Handle External Task: CC1 receives a task and checks whether the task exists and

whether the task is unlocked, and then the task gets scheduled to be executed. CC1 consists

of a Worker entity with an identi�er and an External Task entity that can be locked. The

initial event execute of CC1 checks whether the External Task exists and is not locked.

When the conditions for execute are met, the CC1’s second event is called: schedule task.

CC2– Lock External Task: CC2 receives a task and checks whether the task exists, then the

task gets locked when the expiration date for the lock is set after the current simulation

time. CC2 consists of a Task entity that can be locked and has an expiration date until the

task must be resolved. Besides the Task entity, it also has a Date entity to represent the

expiration date of Task. The only event of CC2 is the execute event. It checks whether the

lock task is free and whether the expiration date has not passed. If all conditions are met,

the task is locked, and an expiration date is set.

CC3– Resolve Task: CC3 also receives a task and checks whether the task is already resolved

and if the task was scheduled by another task (parent task). If the conditions are met, an

update event is triggered. CC3 consists of a Task entity with an assignee and a parent task.

If the task is updated, it triggers an event. The initial event execute of CC3 schedules the

resolve event and the trigger update event. The event resolve checks whether the task is

�nished and has an assignee to inform about the update of the task.

CC4– Save Task: CC4 takes the revision of a task as input, and if it is the �rst time the

task gets scheduled, the task gets initialised. Then the metrics of the task get saved. CC4

consists of a Command Context entity, a Task entity, a Metrics entity, and a Process Engine
Con�guration entity. The initial event execute of CC4 schedules the init event. The init
event schedules the metrics calculate event as well as the authorisation event. If the task is

authorised, the trigger update event is scheduled.

CC5– Set Task Priority: CC5 receives a task, sets its priority, and schedules an update event

so that the simulation can take the new priority of the task into account. CC5 consists of a

Task entity which can be updated. The initial event execute of CC5 sets the task’s priority

and schedules a trigger update event.

CC6– Unlock User: This component unlocks a user if the task is authorised and has admin

privileges. CC6 consists of a Context entity which checks whether a user is an admin

and whether a user is authorised. The User entity represents the user. The initial event

execute checks whether a user is an admin and authorised, using the Context entity. If the

conditions are met, the user gets unlocked via the unlock user event.

CC7– Job Retry: This component manages the retry of a job. It takes care that a job’s retries

are correctly handled. CC7 consists of the Job entity, which has an identi�er and a retry

count. If a retry is performed, the CC7 components schedule the decrement retry event to

manage the retry count of the Job entity.

229

9. Speci�cation and Reuse Evaluation

CC8– Fetch Events of a Task: This component is small compared to the remaining compo-

nents; it gets all the events of a task. CC8 consists of a Task entity with an identi�er and

contains a set of events. The execute event fetches all events of a given task.

CC9– Handle Task Escalation: This component handles the escalated task by verifying that

the task still exists and then scheduling an escalation event. CC9 consists of a Task entity

which has an identi�er. It also is marked as an active task. The component also consists

of the Escalation and a Activity Execution entity, which determines whether the task is

running and which escalation strategy has to be used. The initial event execute checks

the task by its identi�er and the escalation to schedule a escalation event depending on

the desired escalation strategy. The escalation event checks the active task and sets the

activity execution.

CC10– Execute Jobs: This component checks whether the job and execution context is valid.

Then that job is set as the current job, and an event is scheduled that executes the selected

job. CC10 consists of a Job entity which consists of an identi�er and a Job Execution Context.
The initial event execute checks the job and its context, and after that, it schedules the

check update job and then sets the active job for execution.

9.2 Evaluation Results

In this section, we present the results for the applicability of our speci�cation approach

where we determine whether we reached our goal Research Goal 9.1: how applicable

is our DSML for the speci�cation of DES. We also present the results for the accuracy

of our approach to compare speci�ed analysis components based on their structure and

behaviour. We determine whether we reached our goals Research Goal 9.2 and Research

Goal 9.3: how accurate our approach can identify similar simulation components based on

their structure and behaviour speci�cation.

9.2.1 Results for the Applicability Evaluation

C E
1

C E
2

C E
3

C E
4

C E
5

C E
6

C E
7

C E
8

C E
9

C E
1
0

To
ta
l

Emodel 2 4 10 8 3 3 4 1 2 7 44

Vmodel 2 2 14 13 1 1 7 2 1 12 55

Table 9.1.:Number of Entities and Events per Simulation Component – Palladio Simulator - EventSim

The ten components (CE1 toCE10) of the case study Palladio Simulator – EventSim contain

44 entities. The component with the most entities is CE3– Closed Workload, with ten

entities, and CE8– Release Resource, contains one entity; this is the component with the

least number of entities. We modelled all 44 entities with our DSML. Besides the entities,

230

9.2. Evaluation Results

the components also contain 55 events in total. The component with the most entities is

CE3– Closed Workload with a total of fourteen events, and CE5– External Call, CE6– HDD
Demand, and CE9– Sharing Resources are the components that contain a single event; thus,

they are the components with the least number of events. We modelled each of the 55

events of the case study Palladio Simulator – EventSim.

C C
1

C C
2

C C
3

C C
4

C C
5

C C
6

C C
7

C C
8

C C
9

C C
1
0

To
ta
l

Emodel 2 2 1 4 1 2 1 1 3 2 19

Vmodel 2 1 3 6 2 2 1 1 2 6 26

Table 9.2.:Number of Entities and Events per Simulation Component – Camunda

The ten components (CC1 to CC10) of the case study Camunda contain 19 entities. We

modelled all 19 entities with our DSML. Besides the entities, the components also contain

26 events in total. Almost every component contains an event called execute as its initial

event. The behaviour of this event is di�erent for each component; thus, we had to

model each individually. We were able to model each of the 26 events. We designed

our DSML to model the structure and behaviour of simulation components. The results

show that precisely this is the case. However, without further investigation regarding the

identi�cation of components, the ability to model simulations has no bene�t or additional

value. Therefore, we need the results of the accuracy evaluation to justify the existence of

the DSML and our approach to compare and �nd simulation components based on their

speci�cation.

9.2.2 Results for the Accuracy Evaluation

The results for precision, recall and F1 are depicted in Table 9.3, Table 9.4, and Table 9.5.

In Table 9.3, we present the accuracy results for the case study EventSim. In Table 9.4, we

present the accuracy results for the case study Camunda, and the total results for both

case studies are shown in Table 9.5. Regardless of identical components (S1) or obfuscated

components (S2), the results for scenarios S1 and S2 show that our approach can identify

individual components for both case studies. Also, for these scenarios, was no component

missing or misinterpreted. These results lead to a score of precision, recall, and F1 of 1.0.

Analysing a whole simulation with all components (S3) and all obfuscated components

(S4) yielded di�erent case study results. For the EventSim case study in scenario S3, in

three cases, we had to stop the analysis manually, which resulted in seven tp and three fn,

a precision of 0.70, a recall of 1.00 and F1 of 0.82. For the EventSim case study in scenario

S4, in one case, we had to stop the analysis manually, which resulted in nine tp and one fn,

a precision of 0.90, a recall of 1.00 and F1 of 0.95. For the Camunda case study, in scenarios

S3 and S4, our approach could identify all ten components in the whole simulation with all

components (S3) and the whole simulation with all obfuscated components (S4). These

results lead to a score of precision, recall, and F1 of 1.0. The results for the �fth and

231

9. Speci�cation and Reuse Evaluation

�nal scenario S5 show that for EventSim, all components were not present in the other

simulation. These results lead to a score of precision, recall, and F1 of 1.0. The results

for Camunda show that eight of the ten components could not be found in a di�erent

simulation. Two components, CC7 and CC8 had a match in EventSim. These results lead to

a precision of 1.00, a recall of 0.80 and F1 of 0.88. In total, 94 components were identi�ed

by our approach; four were missing, and two were falsely identi�ed. The case study

EventSim yielded 0.92 for precession, 1.00 for recall, and 0.96 for the F1 score. The case

study Camunda yielded 1.00 for precession, 0.96 for recall, and 0.98 for the F1 score. The

overall results for our evaluation are 0.96 for precision, 0.98 for recall and 0.97 for F1.
E
v
e
n
t
S
i
m
S 1

E
v
e
n
t
S
i
m
S 2

E
v
e
n
t
S
i
m
S 3

E
v
e
n
t
S
i
m
S 4

E
v
e
n
t
S
i
m
S 5

To
ta
l

tp 10 10 7 9 10 46
fn 0 0 3 1 0 4
fp 0 0 0 0 0 0

Prec. 1.00 1.00 0.70 0.90 1.00 0.92
Rec. 1.00 1.00 1.00 1.00 1.00 1.00
F1 1.00 1.00 0.82 0.95 1.00 0.96

Table 9.3.: Results for the Accuracy Evaluation of the Case Study Palladio Simulator – EventSim

C
a
m

u
n
d
a
S 1

C
a
m

u
n
d
a
S 2

C
a
m

u
n
d
a
S 3

C
a
m

u
n
d
a
S 4

C
a
m

u
n
d
a
S 5

To
ta
l

tp 10 10 10 10 8 48
fn 0 0 0 0 0 0
fp 0 0 0 0 2 2

Prec. 1.00 1.00 1.00 1.00 1.00 1.00
Rec. 1.00 1.00 1.00 1.00 0.80 0.96
F1 1.00 1.00 1.00 1.00 0.88 0.98

Table 9.4.: Results for the Accuracy Evaluation of the Case Study Camunda

The results for comparing simulation components are promising. We can identify com-

ponents that match the structure and behaviour of individual components. We had to

terminate four searches in the EventSim case study manually. Due to the size and com-

plexity of the case studies, our approach is better suited to search and identify individual

components. The two outlier results in scenario S5 of the Camunda case study are where

our approach identi�ed a matching graph in another simulation speci�cation, although

no results were expected. We assume that the components CC7 and CC8 are too small and,

therefore, can easily �nd a matching structure. Regarding the behaviour, CC7 has a simple

232

9.3. Threats to Validity

E
v
e
n
t
S
i
m

C
a
m

u
n
d
a

To
ta
l

tp 46 48 94
fn 4 0 4
fp 0 2 2

Prec. 0.92 1.00 0.96
Rec. 1.00 0.96 0.98
F1 0.96 0.98 0.97

Table 9.5.: Results for the Accuracy Evaluation of the Case Studies Palladio Simulator and Camunda Com-

pared

decrement operation, a common occurrence in software. CC8 is a simple fetch operation

that is common in software. Thus, it is no surprise that such small operations can be found

in not only one simulation.

9.3 Threats to Validity

Following the classi�cation of Runeson et al. [Run+12], we distinguish four classes of

threats to validity. The four validity types are explained in Section 2.6.1.

9.3.1 Internal Validity

In our evaluation, we modelled twenty simulation components of two case studies with our

DSML to specify simulation components based on their structure and behaviour. Based

on the speci�ed simulation components, we developed an approach to compare their

structure and behaviour speci�cations. One of the case studies is a commercially used

process simulation, and the other is a publicly available software performance simulation.

Both are used outside a purely scienti�c context; thus, the case studies represent real-

world simulation examples. The evaluation results depend on the quality of the simulation

components that have been modelled.

9.3.2 External Validity

We evaluated the modelling and identi�cation of simulation components. As a result, the

�ndings may not be generalisable to other �elds. However, the discipline of process and

performance simulation comprises general aspects, such as entities, scheduling events, and

changing or reading the states of entities. As a result, we demonstrated how our approach

233

9. Speci�cation and Reuse Evaluation

might be used for various event-based simulations. The goal is to demonstrate how our

approach may help improve the reuse of simulation components.

9.3.3 Construct Validity

The case studies in our evaluation only represent some of the many types of event-based

simulations. On the other hand, we did not select an event-based simulation that is just a

small running example. We have chosen to extract the simulation components from two

open-source simulations used in scienti�c and commercial environments. The application

of our approach to an event-based simulation demonstrates that using our approach for

modelling and �nding simulation components can identify already existing components.

Thus, it is possible to avoid implementing existing simulation components and improve

the reuse of simulation components.

9.3.4 Conclusion Validity

To omit that only one researcher must interpret the results of our evaluation, we use

objective metrics based on information theory. These metrics provide reasonable proof

and limit the need for interpretation, eliminating the possibility of a researcher providing

their subjective interpretation of the data. The purpose of the evaluation is to discredit the

e�ects that could be attributed to the interpretation of a single researcher. If the evaluation

is repeated for more case studies in the future, this will contribute statistically to the

con�rmation of the results.

9.4 Discussion

In this section, we discuss if the �ndings of the applicability and accuracy evaluation of

our approach for specifying and �nding simulation components indicate that we have

accomplished our objectives.

9.4.1 Applicability

The applicability evaluation results show that we could model all of the 20 simulation

components of our case studies. We selected existing DES that are established in the

community of process analysis and process simulation (Camunda) and the community of

performance analysis (Palladio Simulator). We selected ten simulation components for

each case study that we speci�ed with our DSL. We chose di�erent sizes of simulation

components to have a diverse set of simulation components. The smallest simulation

component contains one entity and one event; the biggest contains ten entities and fourteen

events. Due to the diversity of the simulation components and our chosen established

234

9.4. Discussion

simulations, we could demonstrate that the �rst goal Research Goal 9.1 is reached. The

results show that our speci�cation language can specify the structure, behaviour, or a

real-world simulation.

9.4.2 Accuracy

The results for the accuracy evaluation show promising results regarding identifying

simulation components. Regarding the Research Goal 9.2, identifying simulation compo-

nents based on their structure, the results show that our approach can identify similar

structures. However, the structure alone is insu�cient to identify a simulation component.

The results also show that our approach can reach the Research Goal 9.3, identifying

simulation components based on their behaviour. In a set of individual components, we

can identify components that match regarding structure and behaviour. For the case

study Palladio Simulator, we had in S3 three simulation components and S4, we had one

simulation component, where we had to stop the analysis. We deduce that our approach is

better suited to compare the speci�cation of simulation components to each other instead

of searching a whole DES that consists of many speci�ed simulation components. For the

case study Camunda, we had two outlier results in scenario S5. Our approach identi�ed a

matching graph in the overall simulation speci�cation, although no results were expected.

We assume that the size of the components CC7 and CC8 are too small, making it easy to

�nd a matching structure. Regarding the behaviour,CC7 has a simple decrement operation,

a common occurrence in software. CC8 is a simple fetch operation, a common occurrence

in software. Thus, it is of no surprise that such small operations can be found in not only

one simulation.

235

Part IV.

Epilogue

10. RelatedWork

In this thesis, we focus on improving the internal quality of software systems that use

models of other systems to gain insight without the need to have the system at hand. In

this thesis, we focus on models that are based on DSMLs, and we also focus on software

systems that take these models as input to reason about them.

In our research, we concentrate on improving the internal quality properties evolvability,

understandability, and reusability of model-based analyses. In contrast to the work of

Heinrich et al. [HSR19] and Strittmatter [Str20], where they focus on the internal quality

of DSMLs or the wide range of improving the internal quality of object-oriented software,

we focus on the co-dependency of DSMLs and model-based analyses. We are particularly

interested in aligning their architectural structure, i. e. having the same features, compo-

nents, and dependency structure, and how it a�ects the aforementioned internal quality

properties.

Aligning the structure of both the DSML and the model-based analysis requires that the

analysis developer modularises the source code of the model-based analysis. Therefore,

we are interested in related research that decomposes analysis code into components.

Before the structure of the model-based analysis can be aligned with its corresponding

DSML, we are looking into related research that allows the developer to modularise model-

based analyses. Besides the decomposition of model-based analyses, we are especially

interested in related work that creates model-based analyses from analysis components.

In particular, we looked into research that integrates components of model-based analyses

with a di�erent notion of time, di�erent DSMLs or components that come from di�erent

domains. Furthermore, we are also looking into research that investigates the orchestration

of model-based analyses and model-based analyses components.

In addition to the decomposition and composition of model-based analyses, we looked

into related research that integrates DSMLs and model-based analyses. We focussed on

language workbenches that could integrate a model-based analysis into their development

capabilities. In addition to language workbenches, we looked into research that provides

tools for developing DSMLs and how they handle tools, especially model-based analyses,

that work with the developed DSMLs.

We also researched reoccurring patterns in the structure of DSMLs and model-based

analyses that negatively a�ect the evolvability, understandability, and reusability of model-

based analyses that result from the co-dependency of both. Therefore, we looked into

related research that copes with detecting bad smells, especially in DSMLs and model-

based analysis and how they incorporate their co-dependency. Furthermore, we looked

239

10. Related Work

into related research that deals with �xing bad smells in both DSMLs and model-based

analyses.

When a DSML and its corresponding model-based analysis follow a modular structure, we

wanted to provide an approach to �nd model-based analysis components that already exist

and �t into the requirements of another model-based analysis. The goal is to enhance the

reusability of already existing model-based analysis components. In our research, we focus

on model-based simulation components, a sub-set of model-based analysis components.

Nevertheless, we looked into related research that allows the analysis developer to compare

analysis components on the code level. We focus on approaches that support at least

object-oriented source code, like code written in Java, C++, or C#. Furthermore, we looked

into related research that provides approaches to specify and reuse simulations or parts of

simulations.

This chapter is structured as follows: In Section 10.1, we introduce related research related

to the decomposition and composition of analyses. This section looks into approaches

that cover all kinds of analyses, not only model-based analyses. First, in Section 10.1.1, we

address related research that focuses on integrating analyses. Second, in Section 10.1.2,

we address related research that focuses on the orchestration of analyses. In Section 10.2,

we introduce related research concerned with the integration of DSMLs and model-based

analyses. First, in Section 10.2.1, we address related research on language workbenches.

Second, in Section 10.2.2, we address related research on language engineering tools. In

Section 10.3, we look into related research that covers bad smells in DSMLs and object-

oriented software. First, in Section 10.3.1, we address related research that focuses on

detecting bad smells. Second, in Section 10.3.2, we address related research that focuses

on refactoring bad smells. In Section 10.4, we look into related research that covers the

reuse of model-based simulation components. First, in Section 10.4.1, we address related

research that compares source code. Second, in Section 10.4.2, we address related research

that focuses on the speci�cation and reuse of simulations. Finally, in Section 10.5, we

summarise the related work and set the contributions of this thesis in the overall context.

10.1 Decomposition and Composition of Model-based
Analyses

Research in the domain of decomposing and composing analyses has yielded relevant

contributions to reusing and composing analysis fragments to create analyses. This section

presents related approaches to decomposing and composing fragments of analyses.

10.1.1 Analysis Integration

The coupling of analysis components is essential to integrating analyses because the

coupling describes how the desired analyses can be combined. There are various coupling

approaches for various analyses, some of which are mentioned in the next paragraph.

240

10.1. Decomposition and Composition of Model-based Analyses

FMI [Blo+12], DIS [IEE95], and its successor High-Level Architecture (HLA) [IEE10] enable

the coupling of simulations on one system but also across distributed systems. DIS and

HLA were developed for co-simulation. Co-simulation refers to combining numerous

simulations that were not designed to function together in the �rst place. An overview

of challenges and state-of-the-art of co-simulation is presented in [Gom+18]. There

are extensions for FMI [Tav+16; Bog+15; FG19] and HLA [Awa+15]. The coupling of

FMI and HLA is still the subject of current research [FG19]. Existing approaches for

simulation coupling are limited to event exchange to allow interoperability between

simulations. However, in contrast to our reference architecture, they only provide the

technical structure to couple simulations, but they do not provide a structure or a process

of how the components can be (de)composed. However, they focus on aligning the concept

of time but still need decomposition and composition concepts.

Another challenge when integrating analyses is the behavioural aspect, manifested by

which analysis component in�uences what [Lam78; MM79]. By synchronising each

participating simulation, the decomposition of simulations increases communication

overhead. Approaches such as computation allocation [Muz+10; VV14], bridging the

hierarchical encapsulation [VV15], or dead-reckoning models [Lee+00] make it possible

to reduce the communication e�ort. Also, the decomposition and composition are left

to the user with these approaches. Ptolemy II [Pto14], a framework for actor modelling,

an orchestrator block is introduced to manage a set of connected actors. Although an

actor can be seen as a simulation unit composed of simulation features, Ptolemy does not

provide decomposition support for existing simulations. There also are various approaches

to model variability (e. g., [KCO15], [Mén+16b]) utilising feature diagrams to apply product

line techniques. However, in contrast to our work, these approaches do not provide a

process for identifying and structuring analysis features.

An approach where analysis tools can be merged based on evidence is proposed by Dwyer

et al. [DE10]. The authors argue for a standard representation and storage of analytical

outcomes and meaningful composition of these results but disregard the analysis structure

and the dependent metamodel or language in contrast to our work. ToolBus [BK96] and

the Electronic Tool Integration (ETI) [BMW97] platform are two approaches to integrating

analyses. Both approaches share similar assumptions and goals: integrating existing

tools into foreign processes is a di�cult task that requires e�ective data exchange and

communication channels with these technologies. The problem is that, in contrast to

our reference architecture, these approaches assume nothing about the structuring of the

analysis and do not incorporate any dependent language or metamodel.

At a particular abstraction level, modelling analysis can also be regarded as a form of

model transformation. However, the typical model transformation approaches [Tae+05] do

not help to cope with the complexity of analytical algorithms. Usually, analysis techniques

include complex intermediate states and data structures, but they are used in a straightfor-

ward sequential manner. We do not regard the research �eld of model transformations as

more relevant for our endeavour and therefore omit a detailed discussion.

241

10. Related Work

10.1.2 Analysis Orchestration

Analyses like discrete event-based simulations, for example, can be speci�ed by the com-

position approaches Discrete Event System Speci�cation (DEVS) or Composable Discrete-

Event Scalable Simulation (CoDES). Implementing a simulation strictly according to the

CoDES [TS08] speci�cation makes a semantic composition of component-based simu-

lations possible. DEVS represents a formalism with which simulations can be modelled

and analysed [Zei76]. Also, DEVS o�ers the possibility to specify parallel running sim-

ulations [Cho96]. In contrast to our reference architecture, DEVS and CoDES do not

specify how to slice features or incorporate them into a simulation. All these composition

approaches also lack a decomposition concept for already existing analyses.

Multi-Paradigm Modelling (MPM) is an approach that proposes to address the challenges

associated with the composition of analyses by viewing languages and work�ows as

distinct paradigms [Amr+19; Amr+21]. MPM is designed to establish the foundations

for formalising paradigms, accomplished by representing them as the combination of

languages and work�ows. In this approach, languages are de�ned as sets of domain-

speci�c concepts, syntax rules, and semantics, while work�ows are sequences of actions

executed on a set of inputs to produce a set of outputs. By de�ning languages and

work�ows as paradigms, MPM aims to facilitate the development of a formal framework

for characterising and analysing paradigms. However, while MPM has been proposed as

a promising approach for addressing the challenges associated with the composition of

analyses, the outcomes of the approach in the direction of formalisation have yet to be

demonstrated. More research is needed to determine the e�ectiveness of MPM in achieving

its objectives and to assess its potential for improving the e�ciency and e�ectiveness of

analysis composition. Furthermore, the development of MPM requires the integration of

multiple disciplines, including formal methods, domain-speci�c languages, and work�ow

management, which presents additional challenges that must be addressed. Despite these

challenges, MPM represents a promising approach for advancing the �eld of analysis

composition and is an area of active research.

In conclusion, the current methods used for analysing coupling and orchestration in model-

based analyses need to be revised to provide a comprehensive semantic decomposition and

composition of analyses. While these approaches can manage the interoperability between

model-based analyses, they need to provide a deeper understanding of the meaning and re-

lationships between the di�erent components of the analyses. Coupling and orchestration

are essential concepts in model-based analyses, where multiple analyses are combined to

provide a more comprehensive understanding of a system or process. However, the current

approaches often focus solely on the technical aspects of interoperability, such as data

exchange and synchronisation, while neglecting the more nuanced semantic relationships

between the di�erent components of the analyses. More scienti�c and advanced methods

are needed to provide a deeper understanding of the meaning and relationships between

the di�erent components of the analyses. These methods should focus on semantic de-

composition and composition of the model-based analyses, allowing for a more nuanced

understanding of how the di�erent components of the analyses relate to one another and

242

10.2. Integration of DSMLs and Model-based Analyses

how they contribute to the overall understanding of the system or process being studied.

Overall, the current approaches to analysing coupling and orchestration in simulations

need to be expanded to provide a more comprehensive understanding of the meaning and

relationships between the di�erent components of the analyses. This can be achieved by

developing more advanced methods focusing on semantic decomposition and composition

of the analyses.

10.2 Integration of Domain-specific Modelling Languages and
Model-based Analyses

The �eld of software language engineering has made signi�cant contributions to creating

modelling languages by reusing and combining language fragments. This section describes

various approaches that have been developed to combine modelling languages with model-

based analyses.

10.2.1 LanguageWorkbenches

In this section, we present di�erent tools and workbenches that focus on modelling,

building and composition of modelling languages. Neverlang is an open-source language

workbench that allows developers to design and implement programming languages

and DSLs [CV13]. It provides a set of tools and frameworks for creating and modifying

language syntax and semantics, as well as for generating parsers and compilers. The goal of

Neverlang is to simplify the process of language design and implementation, making it more

accessible to a wider range of developers and users. It allows for the reuse and composition

of language components. Neverlang is similar to action-semantics modules [DM03] and

role-based composition of language syntaxes with interpreters [Wen12], but it does not

support the orchestration of analysis features.

AToMPM, is a framework for building modelling languages and tools, with support for

graphical editors and code generation [Syr+13]. GEMOC Studio [CBW17] is an open-source

development environment that allows users to create speci�c DSMLs and their correspond-

ing workbenches. The software provides tools and frameworks, such as graphical editors,

simulation engines, model transformation engines, and code generation facilities, which

facilitate the creation of DSMLs and workbenches. With GEMOC Studio, users can develop

custom DSMLs and workbenches for diverse domains, including software engineering,

system engineering, and scienti�c modelling. The software is based on the EMF, which

o�ers a modular architecture and APIs for modelling tools and applications. Additionally,

GEMOC Studio can integrate with other Eclipse-based plugins, like EMF, Xtext, and Sirius.

However, the compositionality of GEMOC is purely syntactic, based on the composition

mechanisms of the Java programming language. This means that GEMOC Studio does

not support the semantic composition of modelling languages and analyses, unlike our

243

10. Related Work

reference architecture. LISA [Mer13] and Xtext [Bet16] also support methods for reusing

specialised syntax.

Further tools are, for example, MetaEdit+, which is a tool for creating modelling languages

and tools, which includes support for creating graphical editors and code generation [TR03],

and Papyrus, an open-source modelling tool that provides support for designing and

customising modelling languages and tools, with an emphasis on UML modelling [Lan+09].

Meta Programming System (MPS) [Völ11] is an open-source, language workbench and

IDE designed for building DSMLs and Language Oriented Programming (LOP) systems.

MPS is a software development tool that allows users to design and develop languages.

With MPS, users can create their own DSLs and build customised IDEs that are tailored

to their speci�c needs. MPS provides a number of features to support DSL development,

including a projectional editor, language composition mechanisms, type-system support,

code generation, and refactorings. MPS is written in Java and is built on top of the IntelliJ

IDEA platform, which provides a rich set of tools for software development. It is also

highly extensible and customisable, allowing users to add their own plugins and tools

to the IDE. Another tool for the generation of code, which is based on the programming

language python is TextX [Dej+17].

However, none of these workbenches support the semantic composition of model-based

analyses, which is a key feature of our reference architecture.

10.2.2 Language Engineering Tools

The �eld of language engineering has contributed various tools that cater to speci�c

aspects of language artefacts, including syntax de�nition and transformation speci�cation.

Such tools aim to aid in the composition of language artefacts. Some examples of such tools

are ATL [Jou+06], Epsilon Transformation Language [KPP08], and Xtend [Bet16] code

generation language. However, these tools do not provide support for the semantic compo-

sition of analyses. EMF Splitter [Gar+14] is a tool that decomposes monolithic metamodels

based on their structure but neglects semantics. In contrast, GTSMorpher [GTS23] is a

tool based on GEMOC studio that facilitates the safe composition of behavioural analyses

through structured operational semantics. Puzzle [Mén+16a] is an application that detects

speci�cation clones and extracts reusable language modules to facilitate the refactoring of

modelling languages. This tool helps to improve the maintainability of language artefacts

by reducing the duplication of code, which can lead to consistency issues and increase

the complexity of the system. EMF Refactor [Fou23] is a tool that identi�es and refactors

design smells based on model metrics in modelling languages. This tool can help improve

the quality of language artefacts by removing any design issues that may lead to incorrect

or suboptimal performance. In summary, the �eld of language engineering has produced

a variety of tools that cater to di�erent aspects of language artefacts, including syntax

de�nition, transformation speci�cation, the semantic composition of analyses, and design

refactoring. These tools aid in the development of high-quality language artefacts by

improving their maintainability, performance, and consistency.

244

10.3. Bad Smells and Anti-Pattern in Model-based Analyses

The aforementioned approaches rely on abstract syntaxes, either with restricted variability

of the abstract syntax or coupled with interpreters, but do not account for the semantic

structure of analyses. To address this limitation, it is imperative for existing techniques to

incorporate the semantics of analyses when decomposing and composing modelling lan-

guages and model-based analyses. Additionally, when modular model-based analyses are

utilised, their composition is strictly syntactic. Regrettably, current approaches disregard

the semantics of a given domain or quality attribute.

10.3 Bad Smells and Anti-Pattern in Model-based Analyses

Research in bad smell de�nition and detection has yielded relevant contributions to improve

internal quality attributes of DSMLs and software systems. In this section, we present

related approaches regarding detecting and refactoring bad smells and anti-patterns in the

domain of DSMLs and software systems.

10.3.1 Bad Smell Detection

Catalogues of bad smells, for example, for code smells [Fow18], Dependency Injection

(DI) [Lai+22], or anti-patterns [Bro+98; Lar12] contain descriptions of the bad smells

and how they can be detected. However, in contrast to our approach, bad smells that

arise due to the co-dependency of DSMLs and model-based analysis are not researched.

Furthermore, our approach can automatically detect the thirteen bad smells we found.

Studies of code smells [Lac+20; SSS14] focus on code in general; the speci�c context of

DSMLs and corresponding model-based analyses is not researched.

Strittmatter [Str20] proposes a set of bad smells and anti-patterns for DSMLs. They derive

bad smells from object-oriented design, and in contrast to a mere catalogue, they provide

automated detection of these bad smells. However, they focus solely on DSMLs; the

bad smells that arise from the co-dependency of DSMLs and corresponding model-based

analyses are not researched.

Llano et al. [LP09] analyse software systems based on their architecture. They use UML-

based anti-pattern speci�cations and propose transformations to correct these anti-patterns.

However, their approach focuses on anti-patterns in object-oriented design; ergo, it anal-

yses software on an architectural level. In contrast to our work, it neither does analyse

DSMLs regarding bad smells and anti-patterns nor does their approach analyse bad smells

that arise from the co-dependency of DSMLs and model-based analyses.

Besides metric-based bad smell detection approaches exist machine learning approaches

Kovačević et al. [Kov+22] propose an approach with pre-trained neural source code embed-

dings for code smell detection. They used pre-trained Code Understanding BERT (CuBERT)

embeddings that outperformed the detection of metric-based bad smell. Bidirectional En-

coder Representations from Transformers (BERT) and CuBERT are used in the Natural

Language Processing (NLP) community for the pre-training of transformer-based NLP

245

10. Related Work

models [Dev+18]. BERT can also be used to analyse architectural design decisions [Kei+20]

and for the classi�cation of requirements [Hey+20]. However, their approach is limited

to detecting the God Class and Long Method smells [Kov+22] or is unable to detect bad

smells in DSMLs and model-based analyses [Kei+20; Hey+20].

Tools like SonarQube [Son23] can detect duplicated code, and its capabilities are well

researched [Paa16]. The performance of SonarQube as the de facto industry standard is

used to measure the capability of similar approaches [FS15]. However, SonarQube cannot

handle DSMLs, let alone the co-dependency of DSMLs and model-based analyses.

10.3.2 Bad Smell Refactoring

The e�ect of refactorings on the internal quality of the software is well-researched. How

refactorings a�ect the security of a system is analysed by Almogahed et al. [AOZ22]. The

e�ects on testability [EA09; EA11; EA12], adaptability [EA11; EA12; MJ19], complete-

ness [EA11; EA12; MJ19], and reliability [AAE13], �exibility [AAE13] are well documented.

Furthermore, are the aspects of maintainability and the e�ect of refactorings [MC16; MJ19;

EA12] like understandability, abstraction, modi�ability and extensibility also well re-

searched [MC16]. These references show only a small part of the research investigating

the e�ects of refactorings on internal software quality. However, these categories are not

su�ciently comprehensive, as there is no broad coverage of refactoring techniques and

internal quality attributes. They are limited to a set of refactoring techniques that do not

cover the refactorings of DSMLs and model-based analyses.

Strittmatter [Str20] proposes, in addition to the set of bad smells and anti-patterns for

DSMLs, refactoring operations to �x aforementioned bad smells in DSMLs. However, as

for the detection of their bad smells, they focus solely on DSMLs; the bad smells that

arise from the co-dependency of DSMLs and corresponding model-based analyses are not

researched.

The Move Method Refactoring Using Coupling, Cohesion, and Contextual Similarity

(MMRUC3) approach [Rah+18], developed by Rahmann et al., focuses on the feature

envy bad smell. It proposes a solution by analysing the source code and providing the

refactoring move method. The authors showed that their approach improves the metrics

coupling and cohesion. Their MMRUC3 approach uses contextual information based

on information retrieval techniques, along with dependency information, to derive the

recommendations. To detect refactorings, MMRUC3 utilises the tools Ref-Finder [Bav+15]

and JDeodorant [Fok+11]. Although their approach helps increase software modularisation

by incorporating static and non-static entities in the recommendation process, their

approach is limited to �xing one bad smell. MMRUC3 recommends points in the could

that could refactor one bad smell; our approach, on the other hand, can identify up to

twelve bad smells. Furthermore, is the MMRUC3 approach limited to smells on the code

level, DSMLs and the co-dependency to model-based analysis is not considered.

Carvalho et al. [Car+17b] developed the Refactoring Recommender System (RESYS) ap-

proach to link the ontologies Ontology for Software Refactoring (OSORE) and Ontology

246

10.3. Bad Smells and Anti-Pattern in Model-based Analyses

for Code smell Analysis (ONTOCEAN) [Car+17a] for automatically chose refactorings

and semantically link each refactoring to the causing bad smell. The authors based their

OSORE ontology on their previous ontology ONTOCEAN. OSORE is a catalogue of refac-

torings that can use semantic information to support the recommendation of refactorings.

It also contains a collection of templates to show how each refactoring can be applied.

Our approach and RESYS together with OSORE have in common that both can point to

the place in the code where the bad smell is located. However, the approach by Carvalho

et al. [Car+17b] is limited to smells on the code level, DSMLs and the co-dependency to

model-based analysis is not considered.

Tsantalis et al. [Tsa+13] propose an approach to analyse the refactoring activity in a

software development project. The authors extract changes between revisions of the code.

Based on the revisions, their tool Refactoring Miner and Ref-Detector create a simpli�ed

UML model. With that model, they derive whether a refactoring was applied in that

revision. Their approach is also able to determine which refactoring operation was applied.

Cedrim et al. [Ced+17; Ced+16] used the tools Refactoring Miner and Ref-Detector to

determine which refactoring operations are often used, whether a refactoring reduced the

total number of bad smells or even if the refactorings introduced new bad smell. Although

the overall analysis of the impact of refactorings is fascinating, unfortunately, the authors

do not consider bad smells in DSMLs or model-based analyses.

The tool JDeodorant [Fok+11] is a tool that supports the bad smells Feature Envy [TCC08;

FTC07], Type/State Checking [TC10; TCC08], Long Method [TC11], God Class [Fok+12;

Fok+09] and Duplicated Code [TMK15; TMR17]. This tool can detect bad smells in Java

source code and recommend refactorings to resolve the bad smells. Sehgal et al. [SMB17],

for example, use JDeodorant to determine the positive e�ect of refactorings on the internal

code quality. However, the JDeodorant is limited to code smells of Java source code; thus,

it cannot detect bad smells of DSMLs and the co-dependency to model-based analysis.

Higo et al. [Hig+04] propose the tool CCShaper as a solution for identifying and refactoring

the bad smell Duplicated code. Their tool utilises the refactoring operations Extract Method
and Pull Up Method to �x the Duplicated code smell. However, the CCShaper is limited to

code smells of object-oriented source code; thus, it cannot �nd bad smells that arise from

the co-dependency DSMLs and model-based analyses.

Liu et al. [Liu+16] propose an approach that analyses the e�ect of refactoring methods

on other methods. Their change impact analysis is limited to the refactoring of moving

a method. They utilise the approach Extract Method Detector by Wenmei et al. [LL16] to

identify methods that could be extracted. In contrast to our approach, the change impact

analysis focuses only on source code; thus, it cannot handle bad smells that arise from the

co-dependency of DSMLs and model-based analyses.

Fontana et al. [FZZ15] propose their approach Duplicated Code Refactoring Advisor

(DCRA) that can detect the bad smell Duplicated code in Java source code. Their approach

also suggests refactorings that remove the Duplicated Code smell. The claim is that their

approach can suggest the best refactoring that solves the Duplicated Code smell. Therefore,

they classify code clones intending to reduce manual interaction when refactoring the

247

10. Related Work

bad smell. In contrast to our approach, the DCRA approach is limited to Java source code

and only one bad smell; as a result, it is unable to handle bad smells that arise from the

co-dependency of DSMLs and model-based analyses.

10.4 Reuse of Simulation Components

In this section, �rst, we present related research that is concerned with �nding source

code identical in structure and behaviour. Then, we present related research that deals

with the speci�cation and the reuse of simulations.

10.4.1 Source Code Comparison

Prechtel et al. [PMP02] propose JPlag, a tool to �nd similarities in Java, C#, C, and C++

source code �les to detect software plagiarism. The tool JPlag takes source code as input

and compares �les pair-wise. For each pair, it computes a similarity score and a set of

similarity regions. As an output, it provides a detailed, thorough hyperlink navigable

report.

The tool SIM, developed by Gitchel et al. [GT99], can compare programs written in the

programming languages C, Java, Pascal, and Lisp. Similar to JPlag, it uses a tokeniser

approach to compare the source code. Furthermore, SIM compares the correctness, style

and uniqueness of a program. Each programme is �rst parsed with a lexical analyser,

producing a sequence of tokens. The tokens for keywords, special characters and comments

are prede�ned, while the tokens for identi�ers are dynamically assigned and stored in a

common symbol table.

Schleimer et al. [SWA03] developed the tool Measure Of Software Similarity (MOOS).

According to Ahadi et al. [AM19], MOOS supports the programming languages C, C++,

Java, C#, Python, Visual Basic, JavaScript, FORTRAN, ML, Haskell, Lisp, Scheme, Pascal,

Modula2, Ada, Perl, TCL, Matlab, VHDL, Verilog, Spice, MIPS assembly, a8086 assembly,

a8086 assembly, MIPS assembly, and HCL2. MOOS uses the k-gram approach that divides

a document into adjacent substrings. The distance k can be determined by the user of

MOOS.

Although similar source code �les exhibit similar behaviour, the focus of JPlag, SIM

and MOOS is �nding similarities in the source code structure and not in the program’s

behaviour.

Bonchi et al. [Bon+18] propose a simulation-based matching of cloud components. Their

approach considers the behaviour when matching applications in a cloud environment.

The approach by Bonchi et al. [Bon+18] extends the work of Brogi et al. [BS16] to identify

whether operations of a component are equivalent. Their approach de�nes management

protocols to determine the equivalence of component operations. Furthermore, the ap-

proach by Bonchi et al. can substitute an operation with a sequence of other provided

248

10.4. Reuse of Simulation Components

operations to create the desired behaviour. Further approaches, for example, the match-

making for OWL-S services by Klusch et al. [KFS09] or a heuristic black-box matching

approach by Eshuis et al. [EG07], consider the input and output data when matching

software components. In their paper, Reussner et al. [RBF04] outline an approach for

adjusting components using parametric contracts, which allow for the modi�cation of

interfaces based on contextual properties in a potentially more expressive manner than

our approach. They utilise �nite state machines to model interaction protocols. In contrast

to the approaches for matching components and interfaces, our approach does focus on

the events and the entities in a DES; none of the presented related approaches considers

the e�ects of events on the overall simulation state. Furthermore, due to the focus on DES,

the analysis developer can focus on modelling the interaction of events and entities; thus,

it is a lightweight approach as the internal behaviour of a simulation component is not

considered.

10.4.2 Simulation Specification and Reuse

In this section, we list related approaches and research concerned with reuse in simulation

and the description and comparison of discrete event simulations. The FOCUS approach

gives mathematical semantics for the structure and behaviour of software systems [RR11],

and it also supports the representation of quality properties and domain-speci�c proper-

ties [Mao+17]. However, these approaches are too broad and ambiguous for non-domain

experts to model DES. Various approaches to specifying DES are in use today. Graphi-

cal approaches such as UML-based Activity Diagrams, Flow Diagrams or Activity Cycle

Diagrams can be used to describe the structure of a simulation and specify the �ow of

events [BM03]. These diagrams are well suited to convey the behaviour of a simulation to

other people but need a formal metamodel for behaviour speci�cation. Usually, the edges

are labelled in natural language, complicating the automated comparison of behaviour.

Heinrich et al. [HSR19] propose a reference architecture for DSMLs used for quality analy-

sis. Their reference architecture focuses on improving the evolvability and reusability of

quality models. However, their reference architecture focuses only on the input models of

the quality analysis/simulation.

Approaches like �rst-order predicate logic [Tom13] investigate logical implications for

various forms of logic. Milner [Mil89] investigates relation re�nement and various forms of

(bi)-simulation dependencies. Clarke et al. [CES86] investigate the satisfaction of temporal

logic formulas by automata, and Richters et al. [RG00] check the consistency of object

structures regarding data structures (e. g., class structure). The DEVS formalism [ZPK00]

is a formal approach to describing and analysing discrete event systems. In the DEVS

formalism, a discrete event system model consists of a set of input and output events, a

set of states and functions that de�ne the lifetime of states and how the state should be

updated in response to input events or the elapsed time of a state. The Coupled DEVS

formalism allows the modularisation of system speci�cations by de�ning sub-components

and their connections. The simpli�cation of the simulation world to a set of states and the

behaviour to a sequence of input and output events are a drawback for the speci�cation

249

10. Related Work

of a complex system where a set of entities with attributes might be more desirable to

describe the simulation world.

There are approaches to combining a formal simulation speci�cation with an intuitive de-

scription language, such as the Condition Speci�cation Language [ON85] or the OMNeT++

framework, primarily focused on network simulation. Because of the imperative nature

of the behaviour speci�cations in these approaches (often in C- or Java-like code), it is

di�cult to extract a description that can be compared between simulations. Our approach

allows the straightforward transformation of declarative expressions to SMT-instances

and their comparison with an SMT-solver.

The HLA, developed by the Modelling and Simulation Coordination O�ce of the US

Department of Defence, is standard de�ning an architecture for distributed simulation

with a focus on enabling interoperability and reuse [IEE10]. The Object Model Template

Speci�cation speci�es how HLA federates exchange information through object models,

e. g. the Federate Object Model (FOM) that de�nes data objects and interactions a federation

provides. Moeller et al. [ML07] investigate how new developments in the HLA standard can

ease the reuse of federates with modular FOMs. The FMI [Blo+12] is a standard de�ning

an interface for exchanging information and coupling between heterogeneous software

systems used for Model Exchange and Co-Simulation. Falcone et al. [FG19] combine the

HLA and FMI standards to facilitate the reuse of simulation models in complex engineered

systems with minimal changes to the reused system. However, these approaches need to

cover the identi�cation of components/simulations that match a given speci�cation.

10.5 Discussion

In this chapter, we discussed the related work regarding the three contributions of this

thesis. Regarding our �rst contribution, we discussed the importance of coupling when

integrating analyses, and we presented various coupling approaches for simulations,

such as FMI, DIS, and HLA. We also highlighted the challenges of co-simulation and the

limitations of existing approaches. We have shown that the presented approach either

lacks concepts for the decomposition or the composition of model-based analyses. We

discussed the behavioural aspect of integrating analyses, such as the communication

overhead and decomposition and composition concepts, along with various approaches

to address them and that these approaches lack processes for identifying or structuring

analysis features. We also brie�y touched upon other approaches to integrating analyses,

such as ToolBus and the ETI platform, but highlighted their limitations in incorporating

dependent language or metamodel. The predicament lies in the fact that, in opposition to

our reference architecture, these approaches make no presumptions about the organisation

of the analysis and neglect to integrate any interdependent language or metamodel.

We have also discussed that the current approaches used for coupling and orchestration

of analyses require revision to provide a more comprehensive semantic decomposition

and composition of the analyses. While these approaches can manage the interoperability

250

10.5. Discussion

between the analysis component, they need to provide a deeper understanding of the

meaning and relationships between the di�erent components of the analyses. In contrast to

our contribution, current methods such as DEVS and CoDES lack a decomposition concept

and do not specify how to slice features or incorporate them into a simulation. Advanced

methods are required to provide a more nuanced understanding of the meaning and

relationships between the di�erent components of the analyses. Our approach focuses on

semantic decomposition and composition of the analysis components, allowing for a more

comprehensive understanding of model-based analyses and their corresponding DSML.

Overall, our approach provides a more comprehensive understanding of the meaning and

relationships between the di�erent components of the analyses, which is necessary to

advance the �eld of analysis composition.

Regarding the integration of DSMLs and model-based analyses, tools like the GEMOC

Studio that enable the creation of modelling languages using metamodels with built-

in interpretation and analyses focus only on syntactic compositionality, whereas our

reference architecture supports semantic compositionality of modelling languages and

analyses. Other tools also enable language component reuse and composition, but they do

not support orchestrating analysis features. Our reference architecture, on the other hand,

allows the orchestration of analysis features and analysis components with regard to its

corresponding DSML.

The �eld of language engineering has produced various tools that aid in the development of

language artefacts by addressing di�erent aspects, such as syntax de�nition, transformation

speci�cation, design refactoring, and semantic composition of analyses. However, most of

these tools do not incorporate the semantics of analyses when decomposing and composing

model-based analyses. Current approaches only support the syntactic composition of

model-based analyses, but semantic compositionality is essential for more e�ective and

e�cient analysis. Therefore, our approach considers the semantics of the domain or quality

attributes when composing model-based analyses.

Regarding our second contribution, bad smells and anti-patterns in model-based analyses,

we discussed various catalogues for bad smells, such as code smells, design patterns,

and anti-patterns, which provide descriptions of the bad smells and how they can be

detected. However, in contrast to our contribution, these catalogues do not investigate

bad smells arising from the co-dependency of DSMLs and model-based analyses. On the

other hand, we have shown approaches for the automated detection of bad smells and

anti-patterns for DSMLs, but their approach is limited to DSMLs only. Similarly, other

approaches provide anti-patterns for software systems based on their architecture and

provide transformations to correct these anti-patterns, but these approaches focus on

anti-patterns in object-oriented design and do not analyse bad smells that arise from

the co-dependency of DSMLs and model-based analyses. Additionally, machine learning

approaches, such as pre-trained neural source code embeddings, have been proposed for

bad smell detection, but they are limited in their ability to detect bad smells in DSMLs

and model-based analyses. Finally, industry-standard tools like SonarQube can detect

duplicated code, but they cannot handle DSMLs or the co-dependency of DSMLs and

model-based analyses.

251

10. Related Work

The impact of refactorings on the internal quality of software has been extensively re-

searched, with studies analysing their e�ects on security, testability, adaptability, com-

pleteness, reliability, �exibility, and maintainability. However, these studies do not provide

comprehensive coverage of all refactoring techniques and internal quality attributes, with

some studies limited to a set of refactoring techniques that do not cover refactoring of

DSMLs and model-based analyses. Some studies have proposed solutions to speci�c bad

smells in DSMLs and on the code level, but none has addressed their co-dependency.

Other approaches focus on the feature of certain smells or use semantic information to

recommend refactorings. In contrast to our contribution, they are all limited to smells on

the code level and do not consider the co-dependency between DSMLs and model-based

analyses.

Regarding our third contribution, the reuse of simulation components, we discussed tools

for source code comparison. For example, JPlag is a tool that uses a pairwise comparison of

Java, C#, C, and C++ source code �les to detect software plagiarism. It computes a similarity

score and similarity regions for each pair of �les and produces a detailed report. Similarly,

the tool SIM, uses a tokeniser approach to compare C, Java, Pascal, and Lisp programs and

evaluates their correctness, style, and uniqueness. In contrast to our contribution, focus

the presented tools on detecting similarities in source code structure rather than program

behaviour.

We also discussed various approaches and research related to simulation reuse and the

description of discrete event simulations. Some of the approaches discussed include

FOCUS, UML-based activity diagrams, �rst-order predicate logic, DEVS formalism, and

HLA and FMI standards. While these approaches provide a formal and structured way

of describing simulations, they may be too broad or ambiguous for non-domain experts

to use. In contrast, our approach can identify simulation components that match a given

speci�cation.

252

11. Conclusion and Future Work

In this chapter, we bring this thesis to an end. For each contribution, we summarise

our achievements and discuss whether we reached our research goals. We identify the

limitations of our contributions, and we address possible future work. We discuss our

�rst contribution in Section 11.1, the reference architecture for model-based analyses. We

discuss our second contribution, the bad smells in model-based analyses, in Section 11.2. In

Section 11.3, we discuss our third contribution, the speci�cation and reuse of model-based

simulation components.

11.1 Decomposition and Composition of Model-based Analyses

In this section, we conclude our �rst contribution, the reference architecture for model-

based analysis. First, in Section 11.1.1, we summarise the contribution and set our �ndings

into the context of our research questions. In Section 11.1.2, we address the approach’s

limitations; in Section 11.1.3, we present possible future work.

11.1.1 Summary

As our �rst contribution, we presented a novel reference architecture for model-based

analyses. We used the concept of a reference architecture for DSMLs to create a reference

architecture for model-based analyses that considers the architecture of its corresponding

DSML. The reference architecture for model-based analyses provides an approach for

specifying model-based analyses and an approach to modularise a model-based analysis

according to the structure of its associated DSML. By using the structure of the DSML

as a guideline for the model-based analysis, the analysis developer has a reference for

designing and implementing features of a model-based analysis. Due to the alignment of

both the DSML and the model-based analysis, our reference architecture for model-based

analyses gives a solution for Problem Statement 1, the deterioration of the evolvability,

understandability, and reusability of model-based analyses due to evolutionary changes.

First, we improved the understandability of model-based analyses by introducing a refer-

ence architecture for model-based analyses which follows the structure of the reference

architecture for DSMLs. Therefore, extended the concept of language features and lan-

guage components by Heinrich et al. [HSR19] to introduce analysis features and analysis

components. A language feature is the expression of a concept, a system property, and

253

11. Conclusion and Future Work

a language component is the implementation of a system property. We transferred the

concept of features and components to model-based analyses. In the context of a model-

based analysis is an analysis feature, the abstraction of the analysis of a system property

and the analysis component implements the analysis of the system property. An analysis

feature analyses the system property represented by a language feature. The separation

into features allows the analysis developer to distinguish the concerns of a model-based

analysis. Due to the dependency between the DSML and the model-based analysis, the

reference architecture for model-based analyses considers the structure of the model-based

analysis and its corresponding DSML. In our approach, each language feature has an

associated analysis component; thus, we can ensure that each language feature can be

analysed.

Second, we improved the evolvability and reusability of model-based analyses, by arranging

the analysis features and components of an model-based analysis into layers. Analysis

components that implement an analysis feature are located on the same layer as the

analysis feature. The dependencies of the analysis components are restricted. The reference

architecture allows only dependencies on analysis components on the same or a more

generic layer. Thus, components on the same layer are interchangeable, and changes

to components on a more speci�c layer do not a�ect components on a more generic

layer. In general, the number of layers is determined by the layers of the DSML; however,

in our contribution, we created an example instantiation of our reference architecture

for model-based quality analyses. Our reference architecture for model-based quality

analyses consists of �ve layers, which supports four layers of the reference architecture

for DSMLs (basic features π , domain-speci�c features ∆, quality-related features Ω, and

analysis con�guration Σ). In addition to these four layers, we added the experiment layer

(Φ) to the structure of the reference architecture. The Φ layer is only part of the model-

based analysis; it does not a�ect the architecture of the DSML. The layered architecture

serves as a template structure, reducing internal quality erosion. The template structure

prevents the uncontrolled growth of dependencies and the erosion of the project structure

(cf. Section 3.2). Because of the layered architecture and the template structure, the model-

based analyses that use our reference architecture are better understood. A structure that is

easier to understand is also better evolvable, as the architecture of the model-based analysis

follows strict dependency and extension rules. The strict dependency rules improve the

reusability of analysis features and analysis components.

As a third measure to make model-based analyses better evolvable, understandable, and

reusable, we present refactoring operations for analysis developers to transform an existing,

arbitrary model-based analysis to our reference architecture. The DSML must already

conform to the reference architecture for DSMLs that separates it into layers and ensures

that dependencies are directed in a speci�c way. The refactorings are divided into those

that operate on the analysis class level (splitting or merging classes, �xing dependency

cycles) and those that operate on the analysis component level (splitting or merging

components, extracting features). The refactorings are based on previous work in DSML

refactorings and object-oriented programming refactorings. They transform a monolithic

model-based analysis into a modular structure that follows our reference architecture.

Suppose any problems presented in Section 3.2 (i. e., project structure erosion, uncontrolled

254

11.1. Decomposition and Composition of Model-based Analyses

growth of dependencies, and feature drift) occur in a model-based analysis. In that case,

the refactoring operations are designed to �x and prevent evolvability, understandability,

and reusability deterioration.

Besides the layered structure of the reference architecture, we provide processes to apply

our reference architecture for model-based analyses. We di�erentiate three scenarios

during the lifetime of a model-based analysis where an analysis developer can apply the

reference architecture: (i) refactoring an existing model-based analysis, (ii) developing a

model-based analysis from scratch, and (iii) extending an existing model-based analysis.

Although the processes restrict the analysis developers’ freedom to design, implement,

and extend model-based analyses, they provide a structure for the analysis developers can

follow, which uni�es the design, development, and extension process [HSR19]. Because

of the processes, analysis developers can easily apply our reference architecture, which

in return makes the a�ected model-based analyses better evolvable, understandable, and

reusable.

For the evaluation of our approach, we refactored four case studies from di�erent domains

to our reference architecture for model-based analyses. Due to the size of the case studies,

we focussed on historical evolution scenarios. We derived these scenarios from the commit

history of the case studies. We refactored the historical evolution scenarios according

to our guidelines using the refactoring operations provided in Section 3.3.3. The case

studies are (i) the Palladio Simulator, a performance and reliability analysis for component-

based software systems; (ii) Camunda, a business process analysis and work�ow engine;

(iii) KAMP4aPS, a maintainability analysis for automated production systems; and (iv)

SmartGrid, an impact and resilience analysis of energy networks.

We used the four case studies to evaluate whether the application of our reference archi-

tecture improved the evolvability, understandability, and reusability of the model-based

analyses, and thus, our �rst contribution solves Problem Statement 1. We chose the

entropy-based metrics complexity, coupling, and cohesion. We calculated the metrics on

hypergraphs that we transformed from the source code of the case studies. The entropy-

based metrics are better suited than simple counting metrics. Per case study, we extracted

ten historical evolution scenarios. After refactoring the forty evolution scenarios, we

compared the complexity, cohesion, and coupling of the modular model-based analyses

with the original, monolithic, model-based analyses’ complexity, cohesion, and coupling.

The results for cohesion and coupling show that they are interchangeable. Improving one

of them results in the deterioration of the other. However, we could demonstrate that for

the evolution scenarios, the complexity was reduced. Therefore, the results show that our

�rst hypothesis (Hypothesis 1) is true: the evolvability, understandability and reusability of

model-based analyses improve when we transfer the concepts of the reference architecture

for DSMLs to model-based analyses. We could transfer the concepts of the reference

architecture for DSMLs to model-based analyses. With the evaluation, we have shown

that our reference architecture reduced the complexity of the refactored case studies;

thus, we can answer Research Question 3.1 and Research Question 3.2 that our reference

architecture is able to improve the evolvability and understandability of model-based

255

11. Conclusion and Future Work

analysis. We could also answer Research Question 3.3, that due to the reduced complexity,

our reference architecture improves the reusability of model-based analysis.

11.1.2 Limitations

In this thesis, we investigated model-based analyses that work with EMOF-based DSMLs.

Therefore, we can only claim that our reference architecture for model-based analyses

improves the evolvability, understandability, and reusability of model-based analyses

that work with EMOF-based DSMLs. Developers, for example, could use ontologies or

grammars to create DSMLs; however, we cannot claim that our reference architecture also

works for ontology-based or grammar-based DSMLs.

Another limitation is that the DSML must follow the reference architecture for DSMLs. If

the DSML cannot be changed, we cannot determine whether our reference architecture

has the same impact on the evolvability, understandability, or reusability. Furthermore, we

only evaluated model-based analyses that analyse quality attributes of their corresponding

DSML. As a result, we cannot claim that our reference architecture for model-based analysis

has the same positive impact on other kinds of model-based analyses.

Furthermore, in our evaluation, we investigated three types of model-based quality anal-

yses. We have shown that our reference architecture improves the evolvability, under-

standability, and reusability of discrete event simulations, process analyses, and change

propagation analyses. Our reference architecture for model-based analysis is so designed

that it applies to other model-based analyses, as long as they work with a DSML. However,

as we only investigated the types of analyses mentioned above, we cannot claim that

our reference architecture for model-based analyses generally improves the evolvability,

understandability, and reusability of all kinds of model-based analyses.

11.1.3 Future Work

The evaluation of our reference architecture for model-based analyses could be extended to

include case studies that analyse di�erent attributes of their corresponding DSML instead

of only quality attributes to address the limitations. Furthermore, as long as the software

works with a DSML, we could investigate whether our reference architecture is applicable

for model-based software in general. Therefore, we must modularise further DSMLs and

software systems, preferably of di�erent domains.

In this thesis, we focused on DSMLs that are used for quality analyses; however, DSMLs

are also used for other purposes, for example, to model software and generate code. Align-

ing the structure of the generated code or the transformations that generate the code

with the reference architecture could also improve the understandability and reusabil-

ity of the generated code and the evolvability, understandability, and reusability of the

transformations.

256

11.2. Bad Smells in Model-based Analyses

Furthermore, the tooling could be extended to create the foundation for an integrated tool-

set to develop model-based analyses and model-based software. The integrated tooling

could support automated analysis and refactoring of model-based software. In addition

to the automation of our tooling, we plan to add features for visualising the feature and

component structure to allow drag-and-drop actions to simplify the refactoring process.

11.2 Bad Smells in Model-based Analyses

In this section, we conclude our second contribution, the model-based analysis bad smells.

First, in Section 11.2.1, we summarise the contribution and set our �ndings into the context

of our research questions. In Section 11.2.2, we address the approach’s limitations, and in

Section 11.2.3, we present possible future work.

11.2.1 Summary

As our second contribution, we presented 12 novel bad smells in model-based analyses that

arise because of the co-dependency of a DSML and their associated model-based analyses.

This contribution is the solution for Problem Statement 2, avoiding the deterioration of

the evolvability, understandability, and reusability of model-based analyses because of the

co-dependency of model-based analyses and their corresponding DSML. In addition to

describing the bad smells, we provided strategies to identify each bad smell and proposed

a refactoring strategy per bad smell. We discussed the potential for bad smells in model-

based analysis and the corresponding DSMLs, and we found that the co-dependency of

these areas regarding bad smells has not been explored yet. We identi�ed bad smells

speci�c to model-based analyses. Therefore, we analysed existing model-based analyses

and derived 12 bad smells from bad smells in object orientation and bad smells in DSMLs.

We separated the 12 bad smells into four categories, introduced by Ganesh et al. [GSS13]:

abstraction, encapsulation, modularity, and hierarchy. The categories help the analysis

developer to understand the cause and e�ect of the bad smells on a broader scale. We

found three bad smells for the categories abstraction and hierarchy, respectively. We found

�ve bad smells for the category modularity, and for the category encapsulation, we found

one bad smell.

First, we presented the 12 bad smells we found. We analysed the bad smells regarding their

adverse e�ects on the evolvability, understandability, and reusability of each bad smell and

the causes that lead to the occurrences of the bad smells. For each bad smell, we presented

a process for the analysis developer to identify and refactor them. These processes help

the analysis developer to better understand the root of the bad smell, and they provide a

solution to make the model-based analysis better evolvable, understandable, and reusable.

We started with the bad smells in the abstraction category. An abstraction refers to

identifying and representing an object’s fundamental characteristics that distinguish it

from other types of objects. This process results in establishing clearly de�ned conceptual

boundaries, as the observer perceives.

257

11. Conclusion and Future Work

Following the abstraction category, we presented the bad smells of the encapsulation
and of the hierarchy category. Encapsulation is a software design principle that involves

modularising the elements of an abstraction that determine its behaviour and structure.

The primary objective of encapsulation is to maintain the separation between the interface

and implementation of abstraction to promote encapsulation and maintain the integrity of

the abstraction. A hierarchical organisation, or order, of abstractions, is referred to as a

hierarchy. In model-based analysis, bad smells of the hierarchical type can be identi�ed

when the analysis is developed following our reference architecture for model-based

analyses.

The modularisation category is the last one we discussed. Modularity refers to the ability of

a system to be divided into a collection of self-contained and loosely coupled modules. In

the context of model-based analysis, the loose coupling of modules allows for modi�cations

to be made to individual modules without a�ecting the functionality of other modules.

Additionally, a well-de�ned dependency structure, such as that provided by a reference

architecture for model-based analysis, can enhance the evolvability and reusability of

model-based analyses.

For the evaluation of our second contribution, we analysed four case studies from di�erent

domains and whether they contained bad smells. Due to the size of the case studies and

the number of bad smells, we did not �x every bad smell that occurred. We focussed on

historical evolution scenarios derived from the case studies commit history. The case

studies are (i) the Palladio Simulator, a performance and reliability analysis for component-

based software systems; (ii) Camunda, a business process analysis and work�ow engine;

(iii) KAMP4aPS, a maintainability analysis for automated production systems; and (iv)

SmartGrid, an impact and resilience analysis of energy networks.

We used the four case studies to evaluate the relevance of the bad smells by determining

the number of occurrences of the bad smells. To count the occurrences of bad smells, we

implemented an automated identi�cation analysis, allowing us to analyse all case studies’

complete source code. Furthermore, we evaluated the e�ects of the bad smells on evolv-

ability, understandability, and reusability. We chose entropy-based metrics complexity,

coupling, and cohesion that we extracted by transforming the source code into hyper-

graphs. The entropy-based metrics are better suited than simple counting metrics. Per case

study and bad smell, we refactored up to ten occurrences. After refactoring the bad smells,

we compared the complexity, cohesion, and coupling of the scenario with the original

scenario’s complexity, cohesion, and coupling. We could show that for the evolution

scenarios, the complexity could be reduced for the Duplicated Abstraction, the Degraded
Modularity, and the Rebellious Modularity smell. Fixing the Missing Abstraction, bad smells

showed mixed results because refactoring primitive types can result in more types and,

thus, more dependencies. The bad smells of the hierarchical type emerge due to the wrong

application of our reference architecture. The evaluation of our reference architecture

has shown that it positively a�ects the evolvability, understandability, and reusability of

model-based analyses. Therefore, the results show that our �rst hypothesis (Hypothesis 2)

is true: the evolvability, understandability and reusability of model-based analyses improve

258

11.2. Bad Smells in Model-based Analyses

when we �x bad smells that originate from the co-dependency of model-based analyses

and their corresponding DSML.

We answered Research Question 4.1 by deriving bad smells from object-oriented software

development and DSML development and searching our four case studies for the occur-

rences of the bad smells of model-based analyses. We answered Research Question 4.2 by

developing refactoring strategies and applying these refactorings to the occurrences in our

case studies. To answer the last research question Research Question 4.3, we refactored

the bad smells we found in our four case studies. With the evaluation, we have shown

that the bad smells of model-based analyses impede the evolvability, understandability

and reusability of model-based analyses.

11.2.2 Limitations

We derived our bad smells by investigating model-based analyses that analyse quality

attributes of systems modelled with their corresponding DSML. Thus, we cannot determine

whether the bad smells also apply to model-based analyses that analyse di�erent system

attributes, even if the bad smells are generally valid for model-based analyses. Furthermore,

we looked only at DSMLs based on the EMOF standard. Therefore, we can only claim

that our bad smells of model-based analyses a�ect the evolvability, understandability,

and reusability of model-based analyses that work with EMOF-based DSMLs. We must

determine if the number of bad smells we identi�ed is complete. Another limitation is

that the DSML must be changed to �x bad smells. When the DSML cannot be changed, for

example, because it follows a standard, we cannot �x the bad smells that require a change

of the DSML.

It can be di�cult for the analysis developer to identify the source of the smell. In some

cases, it can be challenging to pinpoint the exact source of a bad smell in a software

system, which can make it challenging to address the problem. It can also be di�cult

for the analysis developer to understand the source code and the metamodel. Even if

the source of a bad smell is identi�ed, it may be challenging to understand the code,

especially if it is a legacy codebase or written by someone else. Due to the co-dependency

of the model-based analyses and its DSML, the impact on other system components can

be di�cult to determine before �xing the bad smell. Fixing bad smells in one part of

the system may have unintended consequences on other parts of the system, which can

be challenging to anticipate and address. The process of �xing bad smells can be time-

consuming. Identifying and �xing bad smells in a model-based analysis can be tedious,

especially if the model-based analysis is large and complex.

11.2.3 Future Work

To address the limitations, further model-based analyses, especially analyses of di�erent

domains, could be analysed to derive more bad smells. Especially software that works with

259

11. Conclusion and Future Work

a DSML could be investigated �rst to determine whether the bad smells also apply to model-

based software in general and second, to determine whether the bad smells can improve

the evolvability, understandability, and reusability of model-based software in general.

Furthermore, we plan to extend our tooling to create the foundation for an integrated tool-

set to develop model-based analyses and model-based software. The integrated tooling

could support automated analysis and refactoring of bad smells of model-based software.

In addition to the automation of our tooling, we plan to add features for visualising the

feature and component structure to allow drag-and-drop actions to simplify the refactoring

process.

11.3 Structure and Behaviour Specification and Reuse of
Model-based Analysis Components

In this section, we conclude our third contribution, the speci�cation and reuse of the

structure and behaviour of model-based analysis components. First, in Section 11.3.1, we

summarise the contribution and set our �ndings into the context of our research questions.

In Section 11.3.2, we address the approach’s limitations; in Section 11.3.3, we present

possible future work.

11.3.1 Summary

As our third contribution, we presented a novel domain-speci�c modelling language for

specifying simulation components’ structure and behaviour. Our approach is dedicated

to decreasing the e�ort required to reuse model-based analysis components. This con-

tribution serves as the solution to Problem Statement 3, the increasing complexity and

the reduced reusability of model-based analyses due to historical changes. Developers

can use the speci�cation to compare and identify simulation components that match

the desired speci�cation. The structure comparison transforms the speci�cation into a

graph notation. We use a graph-isomorphism approach to identify similar structures of

speci�ed simulations based on the graph notation. The behaviour comparison transforms

the speci�cation into an SMT notation, which we use to identify similar behaviour of

speci�ed simulations. Finding similar simulation components enables developers to reuse

existing simulation components and reduce the e�ort required to develop new simulation

components.

Our contribution involves identifying and refactoring bad smells in model-based analysis,

and we presented a process for modularising existing analyses. The goal is to make a

repository �lled with analysis components or publicly available analysis components

searchable. We did emphasise the importance of modularisation for enabling the reuse of

analysis components. We also note that specifying and identifying a component with a

desired structure and behaviour is also a part of reusing an analysis component. When

the complexity of a model-based analysis increases, it becomes harder to understand and

260

11.3. Speci�cation and Reuse of Model-based Analysis

maintain, extend, or reuse. To address this problem, we suggest reusing model-based

analysis components in future projects to save time and resources. However, a model-based

analysis for a speci�c domain or system can limit its reusability for other domains or

systems. We discussed the di�culty of determining whether a discovered component is

a semantic match (i. e. exhibits the required behaviour) for a reuse candidate, as it may

be challenging to determine whether the component is a semantic match, mainly if the

number of components to be analysed large or the components are complex. We presented

an approach for specifying the structure and behaviour of model-based analyses using a

modelling technique based on metamodels and a Domain-Speci�c Language (DSL). The

approach also includes a method for identifying similar model-based analysis components

by comparing them in structure and behaviour. The process of comparing components is

divided into two stages, �rst by comparing the structure of the components using graph

notation and graph-isomorphism analysis and second by comparing their behaviour using

Satis�able Modulo Theories (SMT) notation and an SMT-solver.

For the evaluation of our third contribution, we used two case studies to evaluate the

applicability of the DSML. Then we modelled these components with our speci�cation

language. Therefore, we calculated the coverage by counting the entities and events we

could model for each simulation component. Furthermore, we evaluated the accuracy of

our approach to identifying similar simulation components based on their structure and

behaviour speci�cations. We developed �ve evaluation scenarios that cover the search

for a simulation component in a set of components and the search for the functionality

of a component in a larger component. Furthermore, we obfuscated the components we

searched for in three scenarios, showing that our approach does not simply compare

the names of the entities and events contained in the speci�cations. We determined the

accuracy of our approach by calculating the F1 score, a metric that combines precision

and recall. The F1 score is calculated by comparing the identi�ed components with the

expected components and counting the number of true positives, false positives, and false

negatives. The identi�cation of these values is speci�c to the scenario being considered.

The evaluation results show that our third hypothesis (Hypothesis 3) is true: the reusabil-

ity of model-based analyses improves when we reduce the barrier of �nding reusable

analysis components. We answered Research Question 5.1 by developing a DSL to specify

model-based simulation components’ structure and behaviour. We evaluated this research

question by specifying the components of two simulations. By modelling these exist-

ing simulations, we evaluated the applicability of our approach. Besides modelling the

structure and the behaviour of simulation components, we also evaluated the accuracy

of identifying similar simulation components. We answered Research Question 5.2 by

comparing the speci�cations of the simulation components and identifying the right match.

We utilised our approach to compare the speci�ed components with those of the case

studies to assess the accuracy of our approach. The �ndings show that our approach can

identify simulation components with similar structures and behaviour.

261

11. Conclusion and Future Work

11.3.2 Limitations

In this work, however, we have only tested the applicability of our approach by modelling

and analysing two case studies. We plan to model more simulations to investigate our

approach’s applicability further. We derived our speci�cation DSL by investigating model-

based analyses that analyse quality attributes of systems modelled with their corresponding

DSML. We looked only at model-based DES and no other analyses. Therefore, we can only

claim that our approach improves the reusability of model-based DES. Another limitation

is that to specify simulation components, we need manual labour for the creation. Thus,

we cannot exclude manual errors and speci�cation styles, which can negatively a�ect the

result when comparing the speci�cations. Furthermore, we evaluated only model-based

DES that analysed quality attributes of their corresponding DSML. As a result, we cannot

claim that our approach works for DES or even model-based analyses in general.

11.3.3 Future Work

To address the limitations, our approach to specifying and comparing model-based sim-

ulation DES could be extended to include model-based DES components that analyse

di�erent attributes of their corresponding DSML. The speci�cation approach could be

extended to support model-based analyses in general. In this case, the challenge is �nding

a formalism that generalises events. In this contribution, we focused on model-based

simulations used for quality analyses; however, simulations are also used for other pur-

poses. Making all kinds of analysis components searchable could improve the reusability

of analysis components in general. Furthermore, we plan to extend our tooling to create

the foundation for an integrated tool-set to develop model-based analyses and model-based

software. In the future, we intend to provide a transformation to extract the simulation

speci�cation automatically or semi-automatically. We also intend to apply our approach

to other domains to investigate di�erent application areas.

262

Bibliography

[AAE13] M. Alshayeb, H. Al-Jamimi, and M. O. Elish. “Empirical taxonomy of refac-

toring methods for aspect-oriented programming”. In: Journal of Software:
Evolution and Process 25.1 (2013), pp. 1–25.

[AGG07] E. B. Allen, S. Gottipati, and R. Govindarajan. “Measuring size, complexity,

and coupling of hypergraph abstractions of software: An information-theory

approach”. In: Software Quality Journal 15.2 (2007), pp. 179–212.

[AK09] S. Apel and C. Kästner. “An overview of feature-oriented software develop-

ment.” In: J. Object Technol. 8.5 (2009), pp. 49–84.

[All02] E. B. Allen. “Measuring graph abstractions of software: an information-

theory approach”. In: Software Metrics, 2002. Proceedings. Eighth IEEE Sympo-
sium on. 2002, pp. 182–193.

[AM19] A. Ahadi and L. Mathieson. “A Comparison of Three Popular Source code

Similarity Tools for Detecting Student Plagiarism”. In: ACM International
Conference Proceeding Series. Association for Computing Machinery, 2019,

pp. 112–117.

[Amr+19] M. Amrani, D. Blouin, R. Heinrich, A. Rensink, H. Vangheluwe, and A. Wort-

mann. “Towards a Formal Speci�cation of Multi-Paradigm Modelling”. In:

22nd International Conference on Model Driven Engineering Languages and
Systems Companion. IEEE. 2019, pp. 419–424.

[Amr+21] M. Amrani, D. Blouin, R. Heinrich, A. Rensink, H. Vangheluwe, and A. Wort-

mann. “Multi-paradigm modelling for cyber–physical systems: a descriptive

framework”. In: Software and Systems Modeling 20 (2021), pp. 611–639.

[AOZ22] A. Almogahed, M. Omar, and N. H. Zakaria. “Refactoring codes to improve

software security requirements”. In: Procedia Computer Science 204 (2022),

pp. 108–115.

[Ape+08] S. Apel, C. Lengauer, B. Möller, and C. Kästner. “An algebra for features and

feature composition”. In: Lecture Notes in Computer Science 5140 LNCS (2008),

pp. 36–50.

[Awa+15] M. U. Awais, W. Mueller, A. Elsheikh, P. Palensky, and E. Widl. “Using the

HLA for distributed continuous simulations”. In: Proceedings - 8th EUROSIM
Congress on Modelling and Simulation. IEEE, 2015, pp. 544–549.

[Bab16] L. Babai. “Graph isomorphism in quasipolynomial time”. In: Proceedings
of the forty-eighth annual ACM symposium on Theory of Computing. 2016,

pp. 684–697.

263

http://dx.doi.org/10.1145/3286960.3286974
http://dx.doi.org/10.1145/3286960.3286974
http://dx.doi.org/10.1007/s10270-021-00876-z
http://dx.doi.org/10.1007/s10270-021-00876-z
http://dx.doi.org/10.1007/978-3-540-79980-1_4
http://dx.doi.org/10.1007/978-3-540-79980-1_4
http://dx.doi.org/10.1109/EUROSIM.2013.96
http://dx.doi.org/10.1109/EUROSIM.2013.96

Bibliography

[Bav+15] G. Bavota, A. De Lucia, M. Di Penta, R. Oliveto, and F. Palomba. “An ex-

perimental investigation on the innate relationship between quality and

refactoring”. In: Journal of Systems and Software 107 (2015), pp. 1–14.

[BCE08] H. P. Breivold, I. Crnkovic, and P. J. Eriksson. “Analyzing Software Evolvabil-

ity”. In: 32nd Annual IEEE International Computer Software and Applications
Conference. 2008, pp. 327–330.

[BCR94] V. R. Basili, G. Caldiera, and H. D. Rombach. “The goal question metric

approach”. In: Encyclopedia of Software Engineering 2 (1994), pp. 528–532.

[Bet16] L. Bettini. Implementing domain-speci�c languages with Xtext and Xtend.

Packt Publishing, 2016.

[BFT17] C. Barrett, P. Fontaine, and C. Tinelli. The SMT-LIB Standard: Version 2.6.

Tech. rep. Department of Computer Science, The University of Iowa, 2017.

[BK96] J. A. Bergstra and P. Klint. “The ToolBus coordination architecture”. In:

International Conference on Coordination Languages and Models. Springer.

1996, pp. 75–88.

[BKL83] L. Babai, W. M. Kantor, and E. M. Luks. “Computational complexity and

the classi�cation of �nite simple groups”. In: 24th Annual Symposium on
Foundations of Computer Science. 1983, pp. 162–171.

[BKR09] S. Becker, H. Koziolek, and R. Reussner. “The Palladio component model for

model-driven performance prediction”. In: Journal of Systems and Software
82 (2009), pp. 3–22.

[Blo+12] T. Blockwitz, M. Otter, J. Akesson, M. Arnold, C. Clauß, H. Elmqvist, M.

Friedrich, A. Junghanns, J. Mauss, D. Neumerkel, H. Olsson, and A. Viel.

“Functional Mockup Interface 2.0: The Standard for Tool independent Ex-

change of Simulation Models”. In: 9th International Modelica Conference.
2012.

[BM03] S. Balsamo and M. Marzolla. “Simulation modeling of UML software archi-

tectures”. In: 17th European Simulation Mulitconference. Vol. 3. Society for

Modelling and Simulation International. SCS European Publishing House,

2003, pp. 562–567.

[BMB96] L. C. Briand, S. Morasca, and V. R. Basili. “Property-based software engineer-

ing measurement”. In: IEEE Transactions on Software Engineering 22.1 (1996),

pp. 68–86.

[BMW97] V. Braun, T. Margaria, and C. Weise. “Integrating tools in the ETI platform”.

In: International Journal on Software Tools for Technology Transfer (STTT) 1

(1997), pp. 31–48.

[Bog+15] S. Bogomolov, M. Greitschus, P. G. Jensen, K. G. Larsen, M. Mikucionis, T.

Strump, and S. Tripakis. “Co-Simulation of Hybrid Systems with SpaceEx

and Uppaal”. In: Proceedings of the 11th International Modelica Conference.
Vol. 118. Linköping University Electronic Press, 2015, pp. 159–169.

264

http://dx.doi.org/10.1016/j.jss.2015.05.024
http://dx.doi.org/10.1016/j.jss.2015.05.024
http://dx.doi.org/10.1016/j.jss.2015.05.024
http://dx.doi.org/10.1.1.104.8626
http://dx.doi.org/10.1.1.104.8626
http://dx.doi.org/10.1109/SFCS.1983.10
http://dx.doi.org/10.1109/SFCS.1983.10
https://doi.org/10.1016/j.jss.2008.03.066
https://doi.org/10.1016/j.jss.2008.03.066
https://elib.dlr.de/78486/
https://elib.dlr.de/78486/
http://dx.doi.org/10.3384/ecp15118159
http://dx.doi.org/10.3384/ecp15118159

Bibliography

[Bon+18] F. Bonchi, A. Brogi, A. Canciani, and J. Soldani. “Simulation-based match-

ing of cloud applications”. In: Science of Computer Programming 162 (2018),

pp. 110–131.

[Bro+12] F. Brosch, H. Koziolek, B. Buhnova, and R. Reussner. “Architecture-Based Reli-

ability Prediction with the Palladio Component Model”. In: IEEE Transactions
on Software Engineering 38.6 (2012), pp. 1319–1339.

[Bro+98] W. H. Brown, R. C. Malveau, H. W. S. McCormick, and T. J. Mowbray. An-
tiPatterns: refactoring software, architectures, and projects in crisis. John Wiley

& Sons, Inc., 1998.

[BS01] M. Broy and K. Stølen. Speci�cation and Development of Interactive Systems.
Focus on Streams, Interfaces and Re�nement. Springer, 2001.

[BS16] A. Brogi and J. Soldani. “Finding available services in TOSCA-compliant

clouds”. In: Science of Computer Programming 115 (2016), pp. 177–198.

[Bus+18] K. Busch, J. Rätz, S. Koch, R. Heinrich, R. Reussner, S. Cha, and B. Vogel-

Heuser. “A Metamodel-Based Approach to Calculate Maintainability Task

Lists of PLC Programs for Factory Automation”. In: 44th Annual Conference
of the IEEE Industrial Electronics Society (IECON). IEEE, 2018.

[But+19] A. Butting, R. Eikermann, O. Kautz, B. Rumpe, and A. Wortmann. “Systematic

Composition of Independent Language Features”. In: Journal of Systems and
Software 152 (2019), pp. 50–69.

[BWL01] L. C. Briand, J. Wüst, and H. Lounis. “Replicated Case Studies for Investi-

gating Quality Factors in Object-Oriented Designs”. In: Empirical Software
Engineering 6.1 (2001), pp. 11–58.

[Cai+21] D. Caivano, P. Cassieri, S. Romano, and G. Scanniello. “An Exploratory Study

on Dead Methods in Open-Source Java Desktop Applications”. In: Proceed-
ings of the 15th ACM / IEEE International Symposium on Empirical Software
Engineering and Measurement. ESEM. Association for Computing Machinery,

2021.

[Car+17a] D. S. L. P. Carvalho, R. Novais, D. N. L. Salvador, and D. M. M. G. Neto.

“An ontology-based approach to analyzing the occurrence of code smells in

software”. In: ICEIS 2017 - Proceedings of the 19th International Conference on
Enterprise Information Systems. Vol. 2. 2017, pp. 155–165.

[Car+17b] L. P. d. S. Carvalho, R. L. Novais, L. d. N. Salvador, and M. G. d. M. Neto. “An

approach for semantically-enriched recommendation of refactorings based

on the incidence of code smells”. In: International Conference on Enterprise
Information Systems. Springer. 2017, pp. 313–335.

[CBW17] B. Combemale, O. Barais, and A. Wortmann. “Language Engineering with

the GEMOC Studio”. In: 2017 IEEE International Conference on Software Ar-
chitecture Workshops (ICSAW). 2017, pp. 189–191.

[CE00] K. Czarnecki and U. W. Eisenecker. Generative Programming: Methods, Tools,
and Applications. Addison Wesley, 2000, p. 864.

265

http://dx.doi.org/10.1109/TSE.2011.94
http://dx.doi.org/10.1109/TSE.2011.94
http://dx.doi.org/10.1016/j.jss.2019.02.026
http://dx.doi.org/10.1016/j.jss.2019.02.026
http://dx.doi.org/10.1145/3475716.3475773
http://dx.doi.org/10.1145/3475716.3475773
http://dx.doi.org/10.5220/0006359901550165
http://dx.doi.org/10.5220/0006359901550165
http://dx.doi.org/10.1109/ICSAW.2017.61
http://dx.doi.org/10.1109/ICSAW.2017.61

Bibliography

[Ced+16] D. Cedrim, L. Sousa, A. Garcia, and R. Gheyi. “Does refactoring improve soft-

ware structural quality? a longitudinal study of 25 projects”. In: Proceedings
of the 30th Brazilian Symposium on Software Engineering. 2016, pp. 73–82.

[Ced+17] D. Cedrim, A. Garcia, M. Mongiovi, R. Gheyi, L. Sousa, R. de Mello, B. Fonseca,

M. Ribeiro, and A. Chávez. “Understanding the impact of refactoring on

smells: A longitudinal study of 23 software projects”. In: Proceedings of the
2017 11th Joint Meeting on foundations of Software Engineering. 2017, pp. 465–

475.

[CES86] E. M. Clarke, E. A. Emerson, and A. P. Sistla. “Automatic Veri�cation of

Finite-State Concurrent Systems Using Temporal Logic Speci�cations”. In:

ACM Trans. Program. Lang. Syst. 8.2 (1986), pp. 244–263.

[CG20] J. P. Castellanos Ardila and B. Gallina. “Separation of Concerns in Process

Compliance Checking: Divide-and-Conquer”. In: Systems, Software and Ser-
vices Process Improvement. Springer International Publishing, 2020, pp. 135–

147.

[Cho96] A. C. Chow. “Parallel DEVS: A parallel, hierarchical, modular modeling

formalism and its distributed simulator”. In: Transactions of the Society for
Computer Simulation 13.2 (1996), pp. 55–67.

[CKM22] A. Cortinovis, D. Kressner, and S. Massei. “Divide-and-Conquer Methods for

Functions of Matrices with Banded or Hierarchical Low-Rank Structure”. In:

SIAM Journal on Matrix Analysis and Applications 43.1 (2022), pp. 151–177.

[CLZ04] H. C. Cunningham, Y. Liu, and C. Zhang. “Using the divide and conquer

strategy to teach Java framework design”. In: Proceedings of the 3rd interna-
tional symposium on Principles and practice of programming in Java. 2004,

pp. 40–45.

[Com+18] B. Combemale, J. Kienzle, G. Mussbacher, O. Barais, E. Bousse, W. Cazzola,

P. Collet, T. Degueule, R. Heinrich, J.-M. Jézéquel, M. Leduc, T. Mayerhofer, S.

Mosser, M. Schöttle, M. Strittmatter, and A. Wortmann. “Concern-Oriented

Language Development (COLD): Fostering Reuse in Language Engineering”.

In: Computer Languages, Systems & Structures (2018).

[Cor22] S. Cordio. csb/neo4j-plugins/subgraph-isomorphism atmaster ·msstate-dasi/csb.

2022.

[CR94] V. R. B. G. Caldiera and H. D. Rombach. “The goal question metric approach”.

In: Encyclopedia of software engineering (1994), pp. 528–532.

[Cru+10] J. A. Cruz-Lemus, A. Maes, M. Genero, G. Poels, and M. Piattini. “The Im-

pact of Structural Complexity on the Understandability of UML Statechart

Diagrams”. In: Information Sciences 180.11 (2010), pp. 2209–2220.

[CV13] W. Cazzola and E. Vacchi. “Neverlang 2–Componentised Language Devel-

opment for the JVM”. In: International Conference on Software Composition.

Springer. 2013, pp. 17–32.

266

http://dx.doi.org/10.1145/5397.5399
http://dx.doi.org/10.1145/5397.5399
http://dx.doi.org/10.1137/21M1432594
http://dx.doi.org/10.1137/21M1432594
https://github.com/msstate-dasi/csb/tree/master/neo4j-plugins/subgraph-isomorphism
http://dx.doi.org/10.1007/978-3-642-39614-4_2
http://dx.doi.org/10.1007/978-3-642-39614-4_2

Bibliography

[Cza+12] K. Czarnecki, P. Grünbacher, R. Rabiser, K. Schmid, and A. Wąsowski. “Cool

Features and Tough Decisions: A Comparison of Variability Modeling Ap-

proaches”. In: Proceedings of the Sixth International Workshop on Variability
Modeling of Software-Intensive Systems. VaMoS ’12. Association for Comput-

ing Machinery, 2012, pp. 173–182.

[DB11] L. De Moura and N. Bjørner. “Satis�ability modulo Theories: Introduction

and Applications”. In: Commun. ACM 54.9 (2011), pp. 69–77.

[DE10] M. B. Dwyer and S. Elbaum. “Unifying veri�cation and validation techniques”.

In: FSE/SDP workshop on Future of software engineering research. ACM, 2010.

[Dej+17] I. Dejanović, R. Vaderna, G. Milosavljević, and Ž. Vuković. “Textx: a python

tool for domain-speci�c languages implementation”. In: Knowledge-based
systems 115 (2017), pp. 1–4.

[Dev+18] J. Devlin, M. Chang, K. Lee, and K. Toutanova. “BERT: Pre-training of Deep

Bidirectional Transformers for Language Understanding”. In: Computing
Research Repository (CoRR) abs/1810.04805 (2018).

[DLK94] R. B. Deal, A. M. Law, and W. D. Kelton. “Simulation Modeling and Analysis”.

In: Technometrics 36.4 (1994), pp. 2–8.

[DM03] K.-G. Doh and P. D. Mosses. “Composing programming languages by com-

bining action-semantics modules”. In: Science of Computer Programming 47.1

(2003), pp. 3–36.

[DMV20] S. Dustdar, O. Mutlu, and N. Vijaykumar. “Rethinking Divide and Con-

quer—Towards Holistic Interfaces of the Computing Stack”. In: IEEE Internet
Computing 24.6 (2020), pp. 45–57.

[Dur21] J. M. Durán. “A Formal Framework for Computer Simulations: Surveying the

Historical Record and Finding Their Philosophical Roots”. In: Philosophy &
Technology 34.1 (2021), pp. 105–127.

[EA09] K. O. Elish and M. Alshayeb. “Investigating the E�ect of Refactoring on

Software Testing E�ort”. In: 2009 16th Asia-Paci�c Software Engineering Con-
ference. 2009, pp. 29–34.

[EA11] K. O. Elish and M. Alshayeb. “A classi�cation of refactoring methods based on

software quality attributes”. In: Arabian Journal for Science and Engineering
36.7 (2011), pp. 1253–1267.

[EA12] K. O. Elish and M. Alshayeb. “Using Software Quality Attributes to Classify

Refactoring to Patterns.” In: Journal of Software 7.2 (2012), pp. 408–419.

[EG07] R. Eshuis and P. Grefen. “Structural matching of bpel processes”. In: Fifth
European Conference on Web Services (ECOWS’07). IEEE. 2007, pp. 171–180.

[ES21] S. E�tinge and M. Spoenemann. The grammar language. 2021.

[FG19] A. Falcone and A. Garro. “Distributed Co-Simulation of Complex Engineered

Systems by Combining the High Level Architecture and Functional Mock-up

Interface”. In: Simulation Modelling Practice and Theory 97 (2019), p. 101967.

267

http://dx.doi.org/10.1145/2110147.2110167
http://dx.doi.org/10.1145/2110147.2110167
http://dx.doi.org/10.1145/2110147.2110167
http://dx.doi.org/10.1145/1995376.1995394
http://dx.doi.org/10.1145/1995376.1995394
http://dx.doi.org/10.1145/1882362.1882382
http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1810.04805
http://dx.doi.org/10.2307/1269971
http://dx.doi.org/10.1016/S0167-6423(02)00107-7
http://dx.doi.org/10.1016/S0167-6423(02)00107-7
http://dx.doi.org/10.1109/MIC.2020.3026245
http://dx.doi.org/10.1109/MIC.2020.3026245
http://dx.doi.org/10.1007/s13347-019-00388-1
http://dx.doi.org/10.1007/s13347-019-00388-1
http://dx.doi.org/10.1109/APSEC.2009.14
http://dx.doi.org/10.1109/APSEC.2009.14
https://www.eclipse.org/Xtext/documentation/301_grammarlanguage.html
http://dx.doi.org/https://doi.org/10.1016/j.simpat.2019.101967
http://dx.doi.org/https://doi.org/10.1016/j.simpat.2019.101967
http://dx.doi.org/https://doi.org/10.1016/j.simpat.2019.101967

Bibliography

[Flo67] R. W. Floyd. “Nondeterministic Algorithms”. In: J. ACM 14.4 (1967), pp. 636–

644.

[FMS14] S. Friedenthal, A. Moore, and R. Steiner. A practical guide to SysML: the
systems modeling language. Morgan Kaufmann, 2014.

[Fok+09] M. Fokaefs, N. Tsantalis, A. Chatzigeorgiou, and J. Sander. “Decomposing

object-oriented class modules using an agglomerative clustering technique”.

In: IEEE International Conference on Software Maintenance, ICSM. 2009, pp. 93–

101.

[Fok+11] M. Fokaefs, N. Tsantalis, E. Stroulia, and A. Chatzigeorgiou. “JDeodorant:

Identi�cation and application of extract class refactorings”. In: Proceedings -
International Conference on Software Engineering. 2011, pp. 1037–1039.

[Fok+12] M. Fokaefs, N. Tsantalis, E. Stroulia, and A. Chatzigeorgiou. “Identi�cation

and application of Extract Class refactorings in object-oriented systems”. In:

Journal of Systems and Software 85.10 (2012), pp. 2241–2260.

[Fou23] E. Foundation. EMF Refactor. https://www.eclipse.org/emf-refactor.

accessed 2023.

[Fow01] M. Fowler. “Reducing coupling”. In: IEEE Software 18.4 (2001), pp. 102–104.

[Fow18] M. Fowler. Refactoring: improving the design of existing code. Addison-Wesley

Professional, 2018.

[Fow96] M. Fowler. Analysis Patterns: Reusable Object Models. Object Technology

Series. Addison-Wesley, 1996.

[Fow99] M. Fowler. Refactoring: Improving the Design of Existing Code. Addison-

Wesley, 1999.

[FS15] S. Fu and B. Shen. “Code bad smell detection through evolutionary data

mining”. In: 2015 ACM/IEEE International Symposium on Empirical Software
Engineering and Measurement (ESEM). IEEE. 2015, pp. 1–9.

[FTC07] M. Fokaefs, N. Tsantalis, and A. Chatzigeorgiou. “JDeodorant: Identi�cation

and removal of feature envy bad smells”. In: IEEE International Conference on
Software Maintenance, ICSM. 2007, pp. 519–520.

[FZZ15] F. A. Fontana, M. Zanoni, and F. Zanoni. “A duplicated code refactoring

advisor”. In: vol. 212. Springer Verlag, 2015, pp. 3–14.

[Gam+95] E. Gamma, R. Helm, R. E. Johnson, and J. Vlissides. Design patterns: elements
of reusable object-oriented software. Addison-Wesley Professional, 1995.

[Gar+14] A. Garmendia, E. Guerra, D. Kolovos, and J. Lara. “EMF splitter: A structured

approach to EMF modularity”. In: 3rd Workshop on Extreme Modeling (2014),

pp. 22–31.

[Gei+18] M. Geiger, S. Harrer, J. Lenhard, and G. Wirtz. “BPMN 2.0: The state of

support and implementation”. In: Future Generation Computer Systems 80

(2018), pp. 250–262.

268

http://dx.doi.org/10.1145/321420.321422
http://dx.doi.org/10.1109/ICSM.2009.5306332
http://dx.doi.org/10.1109/ICSM.2009.5306332
http://dx.doi.org/10.1145/1985793.1985989
http://dx.doi.org/10.1145/1985793.1985989
http://dx.doi.org/10.1016/j.jss.2012.04.013
http://dx.doi.org/10.1016/j.jss.2012.04.013
https://www.eclipse.org/emf-refactor
https://www.safaribooksonline.com/library/view/analysis-patterns-reusable/9780134271453/
http://dx.doi.org/10.1109/ICSM.2007.4362679
http://dx.doi.org/10.1109/ICSM.2007.4362679
http://dx.doi.org/10.1007/978-3-319-18612-2_1
http://dx.doi.org/10.1007/978-3-319-18612-2_1
http://dx.doi.org/https://doi.org/10.1016/j.future.2017.01.006
http://dx.doi.org/https://doi.org/10.1016/j.future.2017.01.006

Bibliography

[Gom+18] C. Gomes et al. “Co-Simulation: A Survey”. In: ACM Computing Surveys 51.3

(2018), pp. 1–33.

[GSS13] S. Ganesh, T. Sharma, and G. Suryanarayana. “Towards a Principle-based

Classi�cation of Structural Design Smells.” In: J. Object Technol. 12.2 (2013),

pp. 1–1.

[GT99] D. Gitchell and N. Tran. “Sim: A utility for detecting similarity in computer

programs”. In: SIGCSE Bulletin (Association for Computing Machinery, Special
Interest Group on Computer Science Education) 31.1 (1999), pp. 266–270.

[GTS23] GTS-Morpher. Timed PLS (Gemoc). https://github.com/gts-morpher/
timed_pls_gemoc. accessed 2023.

[Hah17] R. Hahn. “Bad Smells and Anti-Patterns in Metamodeling”. Master’s Thesis.

Karlsruhe Institute of Technology, 2017.

[HBK18] R. Heinrich, K. Busch, and S. Koch. “A Methodology for Domain-spanning

Change Impact Analysis”. In: 2018 44th Euromicro Conference on Software
Engineering and Advanced Applications (SEAA). IEEE, 2018, pp. 326–330.

[Hei+18] R. Heinrich, S. Koch, S. Cha, K. Busch, R. Reussner, and B. Vogel-Heuser.

“Architecture-based change impact analysis in cross-disciplinary automated

production systems”. In: Journal of Systems and Software 146 (2018), pp. 167–

185.

[Hei+21a] R. Heinrich, E. Bousse, S. Koch, A. Rensink, E. Riccobene, D. Ratiu, and M.

Sirjani. “Integration and Orchestration of Analysis Tools”. In: Composing
Model-Based Analysis Tools. Springer International Publishing, 2021, pp. 71–

95.

[Hei+21b] R. Heinrich, J. Henss, S. Koch, and R. Reussner. “Challenges in the Evolution

of Palladio—Refactoring Design Smells in a Historically-Grown Approach to

Software Architecture Analysis”. In: Composing Model-Based Analysis Tools.
Springer International Publishing, 2021, pp. 235–257.

[Hey+20] T. Hey, J. Keim, A. Koziolek, and W. F. Tichy. “NoRBERT: Transfer Learning

for Requirements Classi�cation”. In: 2020 IEEE 28th International Requirements
Engineering Conference (RE). 2020, pp. 169–179.

[Hig+04] Y. Higo, T. Kamiya, S. Kusumoto, and K. Inoue. “Refactoring support based on

code clone analysis”. In: International Conference on Product Focused Software
Process Improvement. Springer. 2004, pp. 220–233.

[HKR21] K. Hölldobler, O. Kautz, and B. Rumpe. MontiCore Language Workbench and
Library Handbook: Edition 2021. Aachener Informatik-Berichte, Software

Engineering, Band 48. Shaker Verlag, 2021.

[HR04] D. Harel and B. Rumpe. “Meaningful Modeling: What’s the Semantics of

”Semantics”?” In: IEEE Computer 37.10 (2004), pp. 64–72.

[HRW18] K. Hölldobler, B. Rumpe, and A. Wortmann. “Software language engineering

in the large: towards composing and deriving languages”. In: Computer
Languages, Systems & Structures 54 (2018), pp. 386–405.

269

http://dx.doi.org/10.1145/384266.299783
http://dx.doi.org/10.1145/384266.299783
https://github.com/gts-morpher/timed_pls_gemoc
https://github.com/gts-morpher/timed_pls_gemoc
http://dx.doi.org/10.1109/SEAA.2018.00060
http://dx.doi.org/10.1109/SEAA.2018.00060
http://dx.doi.org/https://doi.org/10.1016/j.jss.2018.08.058
http://dx.doi.org/https://doi.org/10.1016/j.jss.2018.08.058
http://dx.doi.org/10.1007/978-3-030-81915-6_5
http://dx.doi.org/10.1007/978-3-030-81915-6_11
http://dx.doi.org/10.1007/978-3-030-81915-6_11
http://dx.doi.org/10.1007/978-3-030-81915-6_11
http://dx.doi.org/10.1109/RE48521.2020.00028
http://dx.doi.org/10.1109/RE48521.2020.00028
http://www.monticore.de/handbook.pdf
http://www.monticore.de/handbook.pdf
http://dx.doi.org/10.1109/MC.2004.172
http://dx.doi.org/10.1109/MC.2004.172
http://dx.doi.org/10.1016/j.cl.2018.08.002
http://dx.doi.org/10.1016/j.cl.2018.08.002

Bibliography

[HSR19] R. Heinrich, M. Strittmatter, and R. H. Reussner. “A Layered Reference Archi-

tecture for Metamodels to Tailor Quality Modeling and Analysis”. In: IEEE
Transactions on Software Engineering (2019).

[IEE10] IEEE. 1516-2010 - IEEE Standard for Modeling and Simulation (M&S) High
Level Architecture (HLA). Tech. rep. 2010, pp. 1–38.

[IEE95] IEEE 1278.2-1995. Standard for Distributed Interactive Simulation - Communi-
cation Services and Pro�les. Tech. rep. IEEE, 1995.

[ISO10] ISO/IEC. ISO/IEC 25010 - Systems and software engineering - Systems and
software Quality Requirements and Evaluation (SQuaRE) - System and software
quality models. Tech. rep. ISO/IEC, 2010.

[Jou+06] F. Jouault, F. Allilaire, J. Bézivin, I. Kurtev, and P. Valduriez. “ATL: a QVT-like

transformation language”. In: Companion to the 21st ACM SIGPLAN sympo-
sium on Object-oriented programming systems, languages, and applications.
ACM. 2006, pp. 719–720.

[Jun16] R. Jung. “Generator-Composition for Aspect-Oriented Domain-Speci�c Lan-

guages”. Doctoral thesis. Kiel University, 2016.

[KCO15] T. Kühn, W. Cazzola, and D. M. Olivares. “Choosy and picky: con�guration of

language product lines”. In: 19th International Conference on Software Product
Line. ACM. 2015, pp. 71–80.

[Kei+20] J. Keim, A. Kaplan, A. Koziolek, and M. Mirakhorli. “Does BERT Understand

Code? – An Exploratory Study on the Detection of Architectural Tactics

in Code”. In: Software Architecture. Springer International Publishing, 2020,

pp. 220–228.

[KFS09] M. Klusch, B. Fries, and K. Sycara. “OWLS-MX: A hybrid Semantic Web

service matchmaker for OWL-S services”. In: Journal of Web Semantics 7.2

(2009), pp. 121–133.

[KHR22a] S. Koch, R. Heinrich, and R. Reussner. Supplementary Material for the Evalu-
ation of the Publication – A Layered Reference Architecture for Model-based
Quality Analysis. Tech. rep. Karlsruher Institut für Technologie (KIT), 2022.

74 pp.

[KHR22b] S. Koch, R. Heinrich, and R. Reussner. Supplementary Material to "A Layered
Reference Architecture for Model-based Quality Analysis". 2022.

[Koc+22] S. Koch, E. Hamann, R. Heinrich, and R. Reussner. “Feature-based Investi-

gation of Simulation Structure and Behaviour”. In: European Conference on
Software Architecture. Springer. 2022, p. 8.

[Kov+22] A. Kovačević, J. Slivka, D. Vidaković, K.-G. Grujić, N. Luburić, S. Prokić, and

G. Sladić. “Automatic detection of Long Method and God Class code smells

through neural source code embeddings”. In: Expert Systems with Applications
204 (2022), p. 117607.

[Koz08] H. Koziolek. “Goal, Question, Metric”. In: Dependability Metrics: Advanced
Lectures. Springer Berlin Heidelberg, 2008, pp. 39–42.

270

http://dx.doi.org/10.1109/TSE.2019.2903797
http://dx.doi.org/10.1109/TSE.2019.2903797
http://dx.doi.org/10.1109/IEEESTD.2010.5553440
http://dx.doi.org/10.1109/IEEESTD.2010.5553440
https://standards.ieee.org/standard/1278%7B%5C_%7D2-2015.html
https://standards.ieee.org/standard/1278%7B%5C_%7D2-2015.html
http://dx.doi.org/10.1145/2791060.2791092
http://dx.doi.org/10.1145/2791060.2791092
http://dx.doi.org/10.5445/IR/1000146803
http://dx.doi.org/10.5445/IR/1000146803
http://dx.doi.org/10.5445/IR/1000146803
http://dx.doi.org/10.6084/m9.figshare.19228377.v1
http://dx.doi.org/10.6084/m9.figshare.19228377.v1
http://dx.doi.org/10.1007/978-3-540-68947-8_6

Bibliography

[KPP08] D. S. Kolovos, R. F. Paige, and F. A. Polack. “The epsilon transformation

language”. In: International Conference on Theory and Practice of Model Trans-
formations. Springer. 2008, pp. 46–60.

[KR19] S. Koch and F. Reiche. “Towards a Correspondence Model for the Reuse

of Software in Multiple Domains”. In: 10. Workshop „Design For Future –
Langlebige Softwaresysteme“. 2019 (May 6–8, 2019). Softwaretechnik-Trends.

Softwaretechnik-Trends, 2019, pp. 41–42.

[KR22] S. Koch and F. Reiche. “A Toolchain for Simulation Component Speci�cation

and Identi�cation”. In: European Conference on Software Architecture. accepted,

to appear. Springer. 2022, p. 16.

[KT06] J. Kleinberg and E. Tardos. Algorithm design. Pearson Education India, 2006.

[KWa] S. Koch and M. Wittlinger. Maven Central – Refactorlizar . url: https://
search.maven.org/search?q=g:org.mosim.refactorlizar (visited on

07/12/2022).

[KWb] S. Koch and M. Wittlinger.MoSimEngine/RefactorLizar . url: https://github.

com/MoSimEngine/RefactorLizar (visited on 07/12/2022).

[KWc] S. Koch and M. Wittlinger. MoSimEngine/RefactorLizarCLI . url: https :

//github.com/MoSimEngine/RefactorLizarCLI (visited on 07/12/2022).

[Lac+20] G. Lacerda, F. Petrillo, M. Pimenta, and Y. G. Guéhéneuc. “Code smells and

refactoring: A tertiary systematic review of challenges and observations”. In:

Journal of Systems and Software 167 (2020), p. 110610.

[Lai+22] R. Laigner, D. Mendonça, A. Garcia, and M. Kalinowski. “Cataloging depen-

dency injection anti-patterns in software systems”. In: Journal of Systems
and Software 184 (2022), p. 111125.

[Lam78] L. Lamport. “Time, Clocks, and the Ordering of Events in a Distributed

System”. In: Communications of the ACM 21.7 (1978), pp. 558–565.

[Lan+09] A. Lanusse, Y. Tanguy, H. Espinoza, C. Mraidha, S. Gerard, P. Tessier, R.

Schnekenburger, H. Dubois, and F. Terrier. “Papyrus UML: an open source

toolset for MDA”. In: Proc. of the Fifth European Conference on Model-Driven
Architecture Foundations and Applications (ECMDA-FA 2009). Citeseer. 2009,

pp. 1–4.

[Lar12] C. Larman. Applying UML and patterns: an introduction to object oriented
analysis and design and interative development. Pearson Education India, 2012.

[Law15] A. M. Law. Simulation Modeling & Analysis. 5th ed. McGraw-Hill, 2015.

[Lee+00] B. S. Lee, W. Cai, S. J. Turner, and L. Chen. “Adaptive dead reckoning

algorithms for Distributed Interactive Simulation”. In: International Journal
of Simulation: Systems, Science and Technology 1.1-2 (2000), pp. 21–34.

[Leh80] M. Lehman. “Programs, life cycles, and laws of software evolution”. In: Pro-
ceedings of the IEEE 68.9 (1980), pp. 1060–1076.

271

https://search.maven.org/search?q=g:org.mosim.refactorlizar
https://search.maven.org/search?q=g:org.mosim.refactorlizar
https://search.maven.org/search?q=g:org.mosim.refactorlizar
https://github.com/MoSimEngine/RefactorLizar
https://github.com/MoSimEngine/RefactorLizar
https://github.com/MoSimEngine/RefactorLizar
https://github.com/MoSimEngine/RefactorLizarCLI
https://github.com/MoSimEngine/RefactorLizarCLI
https://github.com/MoSimEngine/RefactorLizarCLI
http://dx.doi.org/10.1145/359545.359563
http://dx.doi.org/10.1145/359545.359563
http://dx.doi.org/10.1109/PROC.1980.11805

Bibliography

[Lil19] C. Lilienthal. Sustainable Software Architecture: Analyze and Reduce Technical
Debt. dpunkt. verlag, 2019.

[Liu+16] H. Liu, Y. Wu, W. Liu, Q. Liu, and C. Li. “Domino e�ect: Move more methods

once a method is moved”. In: 2016 IEEE 23rd International Conference on
Software Analysis, Evolution, and Reengineering (SANER). Vol. 1. IEEE. 2016,

pp. 1–12.

[LL16] W. Liu and H. Liu. “Major motivations for extract method refactorings:

analysis based on interviews and change histories”. In: Frontiers of Computer
Science 10.4 (2016), pp. 644–656.

[LP09] M. T. Llano and R. Pooley. “UML speci�cation and correction of object-

oriented anti-patterns”. In: 2009 Fourth International Conference on Software
Engineering Advances. IEEE. 2009, pp. 39–44.

[Mao+17] S. Maoz, F. Mehlan, J. O. Ringert, B. Rumpe, and M. von Wenckstern. “OCL

Framework to Verify Extra-Functional Properties in Component and Connec-

tor Models”. In: Workshop on Model-Driven Engineering for Component-Based
Software Systems. Vol. 2019. CEUR workshop proceedings. 3rd International

Workshop on Executable Modeling, Austin (USA). RWTH Aachen, 18, 2017.

[Mar+03] R. Martin, J. Rabaey, A. Chandrakasan, J. Newkirk, B. Nikolić, and R. Koss.

Agile Software Development: Principles, Patterns, and Practices. Alan Apt series.

Pearson Education, 2003.

[Mar03] R. C. Martin. Agile Software Development: Principles, Patterns, and Practices.
Prentice Hall, 2003.

[MB09] L. de Moura and N. Bjørner. “Satis�ability Modulo Theories: An Appetizer”.

In: Formal Methods: Foundations and Applications. Springer Berlin Heidelberg,

2009, p. 24.

[MC16] R. Malhotra and A. Chug. “An empirical study to assess the e�ects of refac-

toring on software maintainability”. In: 2016 International Conference on
Advances in Computing, Communications and Informatics (ICACCI). IEEE.

2016, pp. 110–117.

[McK+81] B. D. McKay et al. Practical graph isomorphism. 1981.

[Mén+16a] D. Méndez-Acuña, J. A. Galindo, B. Combemale, A. Blouin, and B. Baudry.

“Puzzle: A Tool for Analyzing and Extracting Speci�cation Clones in DSLs”.

In: Software Reuse: Bridging with Social-Awareness. Springer, 2016, pp. 393–

396.

[Mén+16b] D. Méndez-Acuña, J. A. Galindo, T. Degueule, B. Combemale, and B. Baudry.

“Leveraging software product lines engineering in the development of exter-

nal dsls: A systematic literature review”. In: Computer Languages, Systems &
Structures 46 (2016), pp. 206–235.

[Mer13] M. Mernik. “An Object-oriented Approach to Language Compositions for

Software Language Engineering”. In: Journal of Systems and Software 86

(2013), pp. 2451–2464.

272

http://dx.doi.org/10.1109/SANER.2016.14
http://dx.doi.org/10.1109/SANER.2016.14
https://books.google.de/books?id=0HYhAQAAIAAJ
http://dx.doi.org/10.1016/j.jss.2013.04.087
http://dx.doi.org/10.1016/j.jss.2013.04.087

Bibliography

[Mil89] R. Milner. Communication and concurrency. PHI Series in computer science.

Prentice Hall, 1989.

[MJ19] R. Malhotra and J. Jain. “Analysis of refactoring e�ect on software qual-

ity of object-oriented systems”. In: International Conference on Innovative
Computing and Communications. Springer. 2019, pp. 197–212.

[ML07] B. Möller and B. Löfstrand. “Use cases for the HLA Evolved modular FOMs”.

In: 2007.

[MM79] K. Mani Chandy and J. Misra. “Distributed Simulation: A Case Study in

Design and Veri�cation of Distributed Programs”. In: IEEE Transactions on
Software Engineering SE-5.5 (1979), pp. 440–452.

[MP14] B. D. McKay and A. Piperno. “Practical graph isomorphism, II”. In: Journal of
Symbolic Computation 60 (2014), pp. 94–112.

[Muz+10] A. Muzy, L. Touraille, H. Vangheluwe, O. Michel, M. K. Traoré, and D. R. Hill.

“Activity regions for the speci�cation of discrete event systems”. In: Spring
Simulation Multiconference 2010, SpringSim’10. ACM Press, 2010, p. 1.

[NKB00] R. V. van Nieuwpoort, T. Kielmann, and H. E. Bal. “Satin: E�cient Parallel

Divide-and-Conquer in Java”. In: Euro-Par 2000 Parallel Processing. Springer

Berlin Heidelberg, 2000, pp. 690–699.

[NLD11] C. J. Neill, P. A. Laplante, and J. F. DeFranco. Antipatterns: managing software
organizations and people. CRC Press, 2011.

[ON85] C. Overstreet and R. Nance. “A Speci�cation Language to Assist in Analysis

of Discrete Event Simulation Models.” In: Commun. ACM 28 (1985), pp. 190–

201.

[Paa16] T. Paananen. “Analyzing Java EE application security with SonarQube”.

Master’s Thesis. JAMK University of Applied Sciences, 2016.

[Par79] D. L. Parnas. “Designing software for ease of extension and contraction”. In:

IEEE transactions on software engineering 2 (1979), pp. 128–138.

[Paw+15] R. Pawlak, M. Monperrus, N. Petitprez, C. Noguera, and L. Seinturier. “Spoon:

A Library for Implementing Analyses and Transformations of Java Source

Code”. In: Software: Practice and Experience 46 (2015), pp. 1155–1179.

[PMP02] L. Prechelt, G. Malpohl, and M. Philippsen. “Finding plagiarisms among a

set of programs with JPlag”. In: Journal of Universal Computer Science 8.11

(2002), pp. 1016–1038.

[Pow20] D. M. W. Powers. “Evaluation: from precision, recall and F-measure to ROC,

informedness, markedness and correlation”. In: Computing Research Reposi-
tory (CoRR) abs/2010.16061 (2020). arXiv: 2010.16061.

[Pto14] C. Ptolemaeus. System Design, Modeling, and Simulation. Using Ptolemy II.
Ptolemy.org, 2014, p. 690.

273

https://www.researchgate.net/publication/266262825_Use_cases_for_the_HLA_Evolved_modular_FOMs
http://dx.doi.org/10.1109/TSE.1979.230182
http://dx.doi.org/10.1109/TSE.1979.230182
http://dx.doi.org/https://doi.org/10.1016/j.jsc.2013.09.003
http://dx.doi.org/10.1145/1878537.1878679
http://dx.doi.org/10.1145/2786.2792
http://dx.doi.org/10.1145/2786.2792
http://dx.doi.org/10.1002/spe.2346
http://dx.doi.org/10.1002/spe.2346
http://dx.doi.org/10.1002/spe.2346
https://arxiv.org/abs/2010.16061
https://arxiv.org/abs/2010.16061
https://arxiv.org/abs/2010.16061

Bibliography

[Rah+18] M. M. Rahman, R. R. Riyadh, S. M. Khaled, A. Satter, and M. R. Rahman.

“MMRUC3: A recommendation approach of move method refactoring using

coupling, cohesion, and contextual similarity to enhance software design”.

In: Software: Practice and Experience 48.9 (2018), pp. 1560–1587.

[Ras+15] W. Raskob, V. Bertsch, M. Ruppert, M. Strittmatter, L. Happe, B. Broadnax,

S. Wandler, and E. Deines. “Security of electricity supply in 2030”. In: Critical
infrastructure protection and resilience Europe (CIPRE) conference & expo, The
Hague, The Netherlands. 2015.

[RBF04] R. H. Reussner, S. Becker, and V. Firus. “Component composition with para-

metric contracts”. In: Tagungsband der Net. ObjectDays 2004 (2004), pp. 155–

169.

[Reu+16] R. H. Reussner, S. Becker, J. Happe, R. Heinrich, A. Koziolek, H. Koziolek, M.

Kramer, and K. Krogmann. Modeling and Simulating Software Architectures –
The Palladio Approach. MIT Press, 2016. 408 pp.

[RF20] M. Richards and N. Ford. Fundamentals of Software Architecture: An Engi-
neering Approach. O’Reilly Media, 2020.

[RG00] M. Richters and M. Gogolla. “Validating UML Models and OCL Constraints”.

In: «UML» 2000 - The Uni�ed Modeling Language, Advancing the Standard,
Third International Conference. Vol. 1939. LNCS. Springer, 2000, pp. 265–277.

[Ric15] M. Richards. Software architecture patterns. Vol. 4. O’Reilly Media, Incorpo-

rated 1005 Gravenstein Highway North, Sebastopol, CA, 2015.

[Ros+15] K. Rostami, J. Stammel, R. Heinrich, and R. Reussner. “Architecture-based As-

sessment and Planning of Change Requests”. In: 11th International Conference
on Quality of Software Architectures. ACM, 2015, pp. 21–30.

[Ros+17] K. Rostami, R. Heinrich, A. Busch, and R. Reussner. “Architecture-based

Change Impact Analysis in Information Systems and Business Processes”. In:

2017 IEEE International Conference on Software Architecture (ICSA2017). IEEE,

2017, pp. 179–188.

[RR11] J. O. Ringert and B. Rumpe. “A Little Synopsis on Streams, Stream Processing

Functions, and State-Based Stream Processing”. In: International Journal of
Software and Informatics 5 (2011), pp. 29–53.

[Rum17] B. Rumpe. Agile Modeling with UML: Code Generation, Testing, Refactoring.

Springer, 2017.

[Run+12] P. Runeson, M. Höst, A. Rainer, and B. Regnell.Case Study Research in Software
Engineering: Guidelines and Examples. 2012.

[Sch77] D. Schütt. “On a Hypergraph Oriented Measure For Applied Computer

Science”. In: COMPCON Fall ’77. 1977, pp. 295–296.

[Sei+22] S. Seifermann, R. Heinrich, D. Werle, and R. Reussner. “Detecting Violations

of Access Control and Information Flow Policies in Data Flow Diagrams”.

In: The journal of systems and software 184 (2022). 46.23.03; LK 01, Art.–Nr.

111138.

274

http://dx.doi.org/10.1002/spe.2591
http://dx.doi.org/10.1002/spe.2591
http://dx.doi.org/10.1007/3-540-40011-7_19
http://dx.doi.org/10.1002/9781118181034
http://dx.doi.org/10.1002/9781118181034
http://dx.doi.org/10.1016/j.jss.2021.111138
http://dx.doi.org/10.1016/j.jss.2021.111138

Bibliography

[SHR18] M. Strittmatter, R. Heinrich, and R. Reussner. Supplementary Material for the
Evaluation of the Layered Reference Architecture for Metamodels to Tailor Qual-
ity Modeling and Analysis. Tech. rep. 11. Karlsruhe Institute of Technology,

2018. 42 pp.

[SMB17] R. Sehgal, D. Mehrotra, and M. Bala. “Analysis of code smell to quantify the

refactoring”. In: International Journal of System Assurance Engineering and
Management 8.2 (2017), pp. 1750–1761.

[Som18] I. Sommerville. Software Engineering. 10th. Addison-Wesley, 2018.

[Son23] SonarSource. SonarQube. https://www.sonarqube.org/. accessed 2023.

[SSS14] G. Suryanarayana, G. Samarthyam, and T. Sharma. Refactoring for software
design smells: managing technical debt. Morgan Kaufmann, 2014.

[Sta73] H. Stachowiak. Allgemeine Modelltheorie. 1973.

[Ste+09] D. Steinberg, F. Budinsky, M. Paternostro, and E. Merks. EMF: Eclipse Model-
ing Framework. 2nd ed. Eclipse Series. Addison-Wesley, 2009.

[Str+16] M. Strittmatter, G. Hinkel, M. Langhammer, R. Jung, and R. Heinrich. “Chal-

lenges in the Evolution of Metamodels: Smells and Anti-Patterns of a

Historically-Grown Metamodel”. In: 10th International Workshop on Models
and Evolution (ME). CEUR Vol-1706, 2016.

[Str20] M. Strittmatter. “A Reference Structure for Modular Metamodels of Quality-

Describing Domain-Speci�c Modeling Languages”. PhD thesis. Karlsruhe

Institute of Technology (KIT), 2020.

[SVC06] T. Stahl, M. Völter, and K. Czarnecki. Model-driven software development:
technology, engineering, management. John Wiley & Sons, Inc., 2006.

[SWA03] S. Schleimer, D. S. Wilkerson, and A. Aiken. “Winnowing: Local Algorithms

for Document Fingerprinting”. In: Proceedings of the ACM SIGMOD Interna-
tional Conference on Management of Data. 2003, pp. 76–85.

[Syr+13] E. Syriani, H. Vangheluwe, R. Mannadiar, C. Hansen, S. Van Mierlo, and H.

Ergin. “AToMPM: A web-based modeling environment”. In: Joint proceedings
of MODELS’13 Invited Talks, Demonstration Session, Poster Session, and ACM
Student Research Competition co-located with the 16th International Confer-
ence on Model Driven Engineering Languages and Systems (MODELS 2013):
September 29-October 4, 2013, Miami, USA. 2013, pp. 21–25.

[Tae+05] G. Taentzer, K. Ehrig, E. Guerra, J. d. Lara, L. Lengyel, T. Levendovszky, U.

Prange, D. Varro, and S. Varro-Gyapay. “Model transformation by graph

transformation: A comparative study”. In: Model Transformation in Practice
(2005).

[Tal+21a] C. Talcott, S. Ananieva, K. Bae, B. Combemale, R. Heinrich, M. Hills, N.

Khakpour, R. Reussner, B. Rumpe, P. Scandurra, and H. Vangheluwe. “Com-

position of Languages, Models, and Analyses”. In: Composing Model-Based
Analysis Tools. Springer International Publishing, 2021, pp. 45–70.

275

http://dx.doi.org/10.5445/IR/1000089243
http://dx.doi.org/10.5445/IR/1000089243
http://dx.doi.org/10.5445/IR/1000089243
https://www.sonarqube.org/
http://dx.doi.org/10.1007/978-3-7091-8327-4
http://ceur-ws.org/Vol-1706/
http://ceur-ws.org/Vol-1706/
http://ceur-ws.org/Vol-1706/
http://dx.doi.org/10.5445/KSP/1000098906
http://dx.doi.org/10.5445/KSP/1000098906
http://dx.doi.org/10.1007/978-3-030-81915-6_4
http://dx.doi.org/10.1007/978-3-030-81915-6_4

Bibliography

[Tal+21b] C. Talcott, S. Ananieva, K. Bae, B. Combemale, R. Heinrich, M. Hills, N.

Khakpour, R. Reussner, B. Rumpe, P. Scandurra, H. Vangheluwe, F. Durán,

and S. Zschaler. “Foundations”. In: Composing Model-Based Analysis Tools.
Springer International Publishing, 2021, pp. 9–37.

[Tav+16] J. P. Tavella, M. Caujolle, S. Vialle, C. Dad, C. Tan, G. Plessis, M. Schumann, A.

Cuccuru, and S. Revol. “Toward an accurate and fast hybrid multi-simulation

with the FMI-CS standard”. In: IEEE International Conference on Emerging
Technologies and Factory Automation, ETFA. Vol. 2016-Novem. Institute of

Electrical and Electronics Engineers Inc., 2016.

[TC10] N. Tsantalis and A. Chatzigeorgiou. “Identi�cation of refactoring opportu-

nities introducing polymorphism”. In: Journal of Systems and Software 83.3

(2010), pp. 391–404.

[TC11] N. Tsantalis and A. Chatzigeorgiou. “Identi�cation of extract method refactor-

ing opportunities for the decomposition of methods”. In: Journal of Systems
and Software 84.10 (2011), pp. 1757–1782.

[TCC08] N. Tsantalis, T. Chaikalis, and A. Chatzigeorgiou. “JDeodorant: Identi�cation

and removal of type-checking bad smells”. In: Proceedings of the European
Conference on Software Maintenance and Reengineering, CSMR. 2008, pp. 329–

331.

[TMK15] N. Tsantalis, D. Mazinanian, and G. P. Krishnan. “Assessing the Refactorability

of Software Clones”. In: IEEE Transactions on Software Engineering 41.11

(2015), pp. 1055–1090.

[TMR17] N. Tsantalis, D. Mazinanian, and S. Rostami. “Clone Refactoring with Lambda

Expressions”. In: IEEE/ACM 39th International Conference on Software Engi-
neering. 2017, pp. 60–70.

[Tom13] P. Tomassi. “An Introduction to First Order Predicate Logic”. In: Logic. Rout-

ledge, 2013, pp. 189–264.

[Top+16] O. Topçu, L. Yilmaz, H. Oguztüzün, and U. Durak. “Distributed simulation”.

In: A Model Driven Engineering Approach. Springer (2016), p. 9.

[TR03] J.-P. Tolvanen and M. Rossi. “Metaedit+ de�ning and using domain-speci�c

modeling languages and code generators”. In: Companion of the 18th annual
ACM SIGPLAN conference on Object-oriented programming, systems, languages,
and applications. 2003, pp. 92–93.

[TS08] Y. M. Teo and C. Szabo. “CoDES: An integrated approach to composable

modeling and simulation”. In: 41st Annual Simulation Symposium. IEEE, 2008,

pp. 103–110.

[Tsa+13] N. Tsantalis, V. Guana, E. Stroulia, and A. Hindle. “A Multidimensional Em-

pirical Study on Refactoring Activity”. In: Proceedings of the 2013 Conference
of the Center for Advanced Studies on Collaborative Research. CASCON ’13.

IBM Corp., 2013, pp. 132–146.

276

http://dx.doi.org/10.1007/978-3-030-81915-6_2
http://dx.doi.org/10.1109/ETFA.2016.7733616
http://dx.doi.org/10.1109/ETFA.2016.7733616
http://dx.doi.org/10.1016/j.jss.2009.09.017
http://dx.doi.org/10.1016/j.jss.2009.09.017
http://dx.doi.org/10.1016/j.jss.2011.05.016
http://dx.doi.org/10.1016/j.jss.2011.05.016
http://dx.doi.org/10.1109/CSMR.2008.4493342
http://dx.doi.org/10.1109/CSMR.2008.4493342
http://dx.doi.org/10.1109/TSE.2015.2448531
http://dx.doi.org/10.1109/TSE.2015.2448531
http://dx.doi.org/10.1109/ICSE.2017.14
http://dx.doi.org/10.1109/ICSE.2017.14
http://dx.doi.org/10.1109/ANSS-41.2008.24
http://dx.doi.org/10.1109/ANSS-41.2008.24

Bibliography

[Ull76] J. R. Ullmann. An Algorithm for Subgraph Isomorphism. Tech. rep. 1. 1976,

pp. 31–42.

[Völ11] M. Völter. “Language and IDE Modularization, Extension and Composition

with MPS”. In: Pre-proceedings of Summer School on Generative and Transfor-
mational Techniques in Software Engineering (GTTSE) LNCS Vol. 7680 (2011),

pp. 383–430.

[VV14] Y. Van Tendeloo and H. Vangheluwe. “Activity in PythonPDEVS”. In: ITM
Web of Conferences 3 (2014), p. 01002.

[VV15] Y. Van Tendeloo and H. Vangheluwe. “PythonPDEVS: A distributed parallel

DEVS simulator”. In: Simulation Series. Vol. 47. 8. 2015, pp. 91–98.

[Wen12] C. Wende. “Language Family Engineering - with Features and Role-Based

Composition”. PhD thesis. Technische Universität Dresden, 2012.

[WHR22] M. Walter, R. Heinrich, and R. Reussner. “Architectural Attack Propagation

Analysis for Identifying Con�dentiality Issues”. In: 2022 IEEE 19th Interna-
tional Conference on Software Architecture (ICSA). 2022, pp. 1–12.

[Woh21] C. Wohlin. “Case Study Research in Software Engineering—It is a Case, and

it is a Study, but is it a Case Study?” In: Information and Software Technology
133 (2021), p. 106514.

[Z3P19] Z3Prover. z3: The Z3 Theorem Prover . 2019.

[Zei76] B. P. Zeigler. Theory of modelling and simulation. 1976.

[ZMK18] B. P. Zeigler, A. Muzy, and E. Kofman. Theory of Modeling and Simulation:
Discrete Event and Iterative System Computational Foundations. 3rd. Academic

Press, Inc., 2018.

[ZPK00] B. P. Zeigler, H. Prähofer, and T. G. Kim. Theory of modeling and simulation
: integrating discrete event and continuous complex dynamic systems. 2. ed.

Academic Press, 2000.

http://dx.doi.org/10.1145/321921.321925
http://dx.doi.org/10.1007/978-3-642-35992-7_11
http://dx.doi.org/10.1007/978-3-642-35992-7_11
http://dx.doi.org/10.1051/itmconf/20140301002
http://dx.doi.org/10.1109/ICSA53651.2022.00009
http://dx.doi.org/10.1109/ICSA53651.2022.00009
http://dx.doi.org/https://doi.org/10.1016/j.infsof.2021.106514
http://dx.doi.org/https://doi.org/10.1016/j.infsof.2021.106514
https://github.com/Z3Prover/z3
http://dx.doi.org/10.2307/3008999
http://www.gbv.de/dms/goettingen/302567488.pdf
http://www.gbv.de/dms/goettingen/302567488.pdf

	Danksagung
	Abstract
	Zusammenfassung
	Prologue
	Introduction
	Motivation
	Problem Statements
	Contributions
	Thesis Outline

	Foundation
	Terms and Definitions
	Domain-specific Modelling Language
	Model-based Analyses
	Roles
	Developer Role
	User Role

	Foundational Concepts
	A Reference Architecture for Metamodels
	Language Features
	Feature Models in the Context of DSMLs
	Modules and Dependencies
	Extends Relation
	Layers
	Layers in Metamodels for Quality Modelling and Analysis

	Hypergraph Metrics

	Foundational Concepts for the Decomposition and Composition of Model-based Analyses
	Quality Property
	Modelling Language
	Feature Model
	Analysis Composition
	Feature Composition
	Analysis Decomposition

	Bad Smells in Different Domains
	Bad Smells in Object-oriented Software
	Bad Smells in Domain-specific Modelling Languages

	Foundational Concepts for the Reuse of Model-based Analysis Components
	Satisfiable Modulo Theories
	P versus NP
	Nondeterministic Polynomial Time
	Graph Isomorphism
	Domain-specific Language

	Foundation of the Evaluation
	Validity Types
	Goal Question Metric Approach

	Technical Foundation
	Eclipse Modelling Framework
	Xtext
	Xtend
	Neo4J
	Spoon

	Improving Evolvability and Reusability of Model-based Analyses
	Decomposition and Composition of Model-based Analyses
	Hypothesis and Research Questions
	Requirements for the Reference Architecture
	Decomposition of Model-based Analyses
	Modularisation Concepts for Model-based Analyses
	Use of Feature Models
	Language Feature and Analysis Feature
	Language Component and Analysis Component
	Layering
	Relation Between Modularisation Concepts

	Layers in Model-based Quality Analyses
	Paradigm Layer
	Domain Layer
	Quality Layer
	Analysis Layer
	Experiment Layer

	Refactoring Operations for Modularising Model-based Analyses
	Analysis Class Refactorings
	Analysis Component Refactorings

	Composition of Model-based Analyses
	Application Process
	Modularisation of an Existing Model-based Analysis
	Prerequisite: Modular DSML
	Decomposition into Layers
	Creating the Feature Model
	Dependency Alignment
	Decomposition Refinement
	Extracting Commonalities
	Feature Refinement
	Feature Model Forming

	Developing a Model-based Analysis from Scratch
	Language Feature Transfer
	Identification of Analysis Features
	Reuse of Analysis Components
	Creating the Feature Model
	Introducing Layers
	Extracting the Paradigm Layer
	Grouping of Features
	Parent Feature Identification
	Adding the Remaining Dependencies
	Implementing the Features
	Revision and Refinement

	Extending a Model-based Analysis
	Identification of Analysis Features
	Reusing Analysis Components
	Extending the Feature Model
	Implementing Remaining Features
	Revision and Refinement

	Technical Contribution
	Analysis Library – Refactor Lizar
	Accumulation of Dependencies Detection
	Detection of Scattered of Dependencies
	Layer Violation Detection
	Dependency Cycle Detection
	Metric Analysis

	Refactoring Library

	Bad Smells in Model-based Analyses
	Hypothesis and Research Questions
	Bad Smells in Model-based Analyses
	Abstraction
	Duplicated Abstraction
	Missing Abstraction
	Unused Abstraction

	Encapsulation
	Deficient Encapsulation

	Hierarchy
	Folded Hierarchy
	Missing Hierarchy
	Unexploited Hierarchy

	Modularity
	Broken Modularity
	Degraded Modularity
	Missing Modularity
	Rebellious Modularity
	Weakened Modularity

	Identifying Bad Smells in Model-based Analyses
	Identification of Abstraction Smells
	Duplicated Abstraction
	Missing Abstraction
	Unused Abstraction

	Identification of the Encapsulation Smell
	Deficient Encapsulation

	Identification of Hierarchy Smells
	Folded Hierarchy
	Missing Hierarchy
	Unexploited Hierarchy

	Identification of Modularity Smells
	Broken Modularity
	Degraded Modularity
	Missing Modularity
	Rebellious Modularity
	Weakened Modularity

	Reuse of Model-based Analysis Components
	Hypothesis and Research Questions
	Model-based Analysis Specification
	Model-based Analysis Component Identification

	Specification of Model-based Analyses
	Discrete-event Simulation Definition
	Structure Specification
	Behaviour Specification
	Specification Grammar
	Behaviour with Satisfiable Modulo Theories

	Structure Comparison
	Behaviour Comparison
	Comparing Schedules Relationships
	Comparing Writes Relationships

	Technical Contribution
	Tooling
	Specification of Simulation Components
	Identification of Simulation Components
	Configuration
	Analysis Commands
	Analysis Results

	Limitations
	Limitations of the Structure Comparison
	Limitations of the Behaviour Comparison

	Validation
	Case Studies
	Selection Criteria
	The Palladio Simulator
	Camunda
	KAMP and KAMP4aPS
	SmartGrid

	Reference Architecture Evaluation
	Discussion of the Requirements
	Research Goals and Metrics
	Evaluation Design
	Evolution Scenarios
	Conduction of the Evaluation
	SimuLizar Refactoring
	Modular SimuLizar– mSimuLizar
	Paradigm Layer
	Domain Layer

	SimuLizar Historical Evolution Scenarios
	Camunda Refactoring
	Modular Camunda – mCamunda
	Paradigm Layer
	Domain Layer

	Camunda Historical Evolution Scenarios
	KAMP4aPS Refactoring
	Modular KAMP4aPS – mKAMP4aPS
	Paradigm Layer
	Domain Layer
	Quality Layer

	KAMP4APS Historical Evolution Scenarios
	SmartGrid Refactoring
	Modular SmartGrid – mSmartGrid
	Paradigm Layer
	Domain Layer
	Quality Layer

	SmartGrid Historical Evolution Scenarios

	Evaluation Results
	Threats to Validity
	Internal Validity
	External Validity
	Construct Validity
	Conclusion Validity

	Discussion
	Complexity
	Coupling
	Cohesion

	Evaluation of Bad Smells in Model-based Analyses
	Research Goals and Metrics
	Evaluation Design
	Evolution Scenarios
	Conduction of the Evaluation
	Refactoring Scenarios
	Duplicated Abstraction
	Missing Abstraction
	Degraded Modularity
	Rebellious Modularity

	Evaluation Results
	Frequency of Occurrence Results
	Evolvability, Understandability, and Reusability Results
	Duplicated Abstraction
	Missing Abstraction
	Degraded Modularity
	Rebellious Modularity

	Threats to Validity
	Internal Validity
	External Validity
	Construct Validity
	Conclusion Validity

	Discussion
	Existence
	Relevance

	Specification and Reuse Evaluation
	Research Goals and Metrics
	Applicability Metric
	Accuracy Metric
	Scenarios
	Simulation Components of the Palladio Simulator
	Simulation Components of Camunda

	Evaluation Results
	Results for the Applicability Evaluation
	Results for the Accuracy Evaluation

	Threats to Validity
	Internal Validity
	External Validity
	Construct Validity
	Conclusion Validity

	Discussion
	Applicability
	Accuracy

	Epilogue
	Related Work
	Decomposition and Composition of Model-based Analyses
	Analysis Integration
	Analysis Orchestration

	Integration of DSMLs and Model-based Analyses
	Language Workbenches
	Language Engineering Tools

	Bad Smells and Anti-Pattern in Model-based Analyses
	Bad Smell Detection
	Bad Smell Refactoring

	Reuse of Simulation Components
	Source Code Comparison
	Simulation Specification and Reuse

	Discussion

	Conclusion and Future Work
	Decomposition and Composition of Model-based Analyses
	Summary
	Limitations
	Future Work

	Bad Smells in Model-based Analyses
	Summary
	Limitations
	Future Work

	Specification and Reuse of Model-based Analysis
	Summary
	Limitations
	Future Work

	Bibliography

