9,965 research outputs found

    Transient protein-protein interface prediction: datasets, features, algorithms, and the RAD-T predictor

    Get PDF
    BACKGROUND: Transient protein-protein interactions (PPIs), which underly most biological processes, are a prime target for therapeutic development. Immense progress has been made towards computational prediction of PPIs using methods such as protein docking and sequence analysis. However, docking generally requires high resolution structures of both of the binding partners and sequence analysis requires that a significant number of recurrent patterns exist for the identification of a potential binding site. Researchers have turned to machine learning to overcome some of the other methods’ restrictions by generalising interface sites with sets of descriptive features. Best practices for dataset generation, features, and learning algorithms have not yet been identified or agreed upon, and an analysis of the overall efficacy of machine learning based PPI predictors is due, in order to highlight potential areas for improvement. RESULTS: The presence of unknown interaction sites as a result of limited knowledge about protein interactions in the testing set dramatically reduces prediction accuracy. Greater accuracy in labelling the data by enforcing higher interface site rates per domain resulted in an average 44% improvement across multiple machine learning algorithms. A set of 10 biologically unrelated proteins that were consistently predicted on with high accuracy emerged through our analysis. We identify seven features with the most predictive power over multiple datasets and machine learning algorithms. Through our analysis, we created a new predictor, RAD-T, that outperforms existing non-structurally specializing machine learning protein interface predictors, with an average 59% increase in MCC score on a dataset with a high number of interactions. CONCLUSION: Current methods of evaluating machine-learning based PPI predictors tend to undervalue their performance, which may be artificially decreased by the presence of un-identified interaction sites. Changes to predictors’ training sets will be integral to the future progress of interface prediction by machine learning methods. We reveal the need for a larger test set of well studied proteins or domain-specific scoring algorithms to compensate for poor interaction site identification on proteins in general

    DACH1: its role as a classifier of long term good prognosis in luminal breast cancer

    Get PDF
    Background: Oestrogen receptor (ER) positive (luminal) tumours account for the largest proportion of females with breast cancer. Theirs is a heterogeneous disease presenting clinical challenges in managing their treatment. Three main biological luminal groups have been identified but clinically these can be distilled into two prognostic groups in which Luminal A are accorded good prognosis and Luminal B correlate with poor prognosis. Further biomarkers are needed to attain classification consensus. Machine learning approaches like Artificial Neural Networks (ANNs) have been used for classification and identification of biomarkers in breast cancer using high throughput data. In this study, we have used an artificial neural network (ANN) approach to identify DACH1 as a candidate luminal marker and its role in predicting clinical outcome in breast cancer is assessed. Materials and methods: A reiterative ANN approach incorporating a network inferencing algorithm was used to identify ER- associated biomarkers in a publically available cDNA microarray dataset. DACH1 was identified in having a strong influence on ER associated markers and a positive association with ER. Its clinical relevance in predicting breast cancer specific survival was investigated by statistically assessing protein expression levels after immunohistochemistry in a series of unselected breast cancers, formatted as a tissue microarray. Results: Strong nuclear DACH1 staining is more prevalent in tubular and lobular breast cancer. Its expression correlated with ER-alpha positive tumours expressing PgR, epithelial cytokeratins (CK)18/19 and 'luminal-like' markers of good prognosis including FOXA1 and RERG (p , 0.05). DACH1 is increased in patients showing longer cancer specific survival and disease free interval and reduced metastasis formation (p , 0.001). Nuclear DACH1 showed a negative association with markers of aggressive growth and poor prognosis. Conclusion: Nuclear DACH1 expression appears to be a Luminal A biomarker predictive of good prognosis, but is not independent of clinical stage, tumour size, NPI status or systemic therapy

    Post-transcriptional knowledge in pathway analysis increases the accuracy of phenotypes classification

    Get PDF
    Motivation: Prediction of phenotypes from high-dimensional data is a crucial task in precision biology and medicine. Many technologies employ genomic biomarkers to characterize phenotypes. However, such elements are not sufficient to explain the underlying biology. To improve this, pathway analysis techniques have been proposed. Nevertheless, such methods have shown lack of accuracy in phenotypes classification. Results: Here we propose a novel methodology called MITHrIL (Mirna enrIched paTHway Impact anaLysis) for the analysis of signaling pathways, which has built on top of the work of Tarca et al., 2009. MITHrIL extends pathways by adding missing regulatory elements, such as microRNAs, and their interactions with genes. The method takes as input the expression values of genes and/or microRNAs and returns a list of pathways sorted according to their deregulation degree, together with the corresponding statistical significance (p-values). Our analysis shows that MITHrIL outperforms its competitors even in the worst case. In addition, our method is able to correctly classify sets of tumor samples drawn from TCGA. Availability: MITHrIL is freely available at the following URL: http://alpha.dmi.unict.it/mithril

    Structure-Guided Recombination Creates an Artificial Family of Cytochromes P450

    Get PDF
    Creating artificial protein families affords new opportunities to explore the determinants of structure and biological function free from many of the constraints of natural selection. We have created an artificial family comprising ~3,000 P450 heme proteins that correctly fold and incorporate a heme cofactor by recombining three cytochromes P450 at seven crossover locations chosen to minimize structural disruption. Members of this protein family differ from any known sequence at an average of 72 and by as many as 109 amino acids. Most (>73%) of the properly folded chimeric P450 heme proteins are catalytically active peroxygenases; some are more thermostable than the parent proteins. A multiple sequence alignment of 955 chimeras, including both folded and not, is a valuable resource for sequence-structure-function studies. Logistic regression analysis of the multiple sequence alignment identifies key structural contributions to cytochrome P450 heme incorporation and peroxygenase activity and suggests possible structural differences between parents CYP102A1 and CYP102A2

    Structure-based Prediction of Protein-protein Interaction Networks across Proteomes

    Get PDF
    Protein-protein interactions (PPIs) orchestrate virtually all cellular processes, therefore, their exhaustive exploration is essential for the comprehensive understanding of cellular networks. Significant efforts have been devoted to expand the coverage of the proteome-wide interaction space at molecular level. A number of experimental techniques have been developed to discover PPIs, however these approaches have some limitations such as the high costs and long times of experiments, noisy data sets, and often high false positive rate and inter-study discrepancies. Given experimental limitations, computational methods are increasingly becoming important for detection and structural characterization of PPIs. In that regard, we have developed a novel pipeline for high-throughput PPI prediction based on all-to-all rigid body docking of protein structures. We focus on two questions, ‘how do proteins interact?’ and ‘which proteins interact?’. The method combines molecular modeling, structural bioinformatics, machine learning, and functional annotation data to answer these questions and it can be used for genome-wide molecular reconstruction of protein-protein interaction networks. As a proof of concept, 61,913 protein-protein interactions were confidently predicted and modeled for the proteome of E. coli. Further, we validated our method against a few human pathways. The modeling protocol described in this communication can be applied to detect protein-protein interactions in other organisms as well as to construct dimer structures and estimate the confidence of protein interactions experimentally identified with high-throughput techniques
    • …
    corecore