Motivation: Prediction of phenotypes from high-dimensional data is a crucial
task in precision biology and medicine. Many technologies employ genomic
biomarkers to characterize phenotypes. However, such elements are not
sufficient to explain the underlying biology. To improve this, pathway analysis
techniques have been proposed. Nevertheless, such methods have shown lack of
accuracy in phenotypes classification. Results: Here we propose a novel
methodology called MITHrIL (Mirna enrIched paTHway Impact anaLysis) for the
analysis of signaling pathways, which has built on top of the work of Tarca et
al., 2009. MITHrIL extends pathways by adding missing regulatory elements, such
as microRNAs, and their interactions with genes. The method takes as input the
expression values of genes and/or microRNAs and returns a list of pathways
sorted according to their deregulation degree, together with the corresponding
statistical significance (p-values). Our analysis shows that MITHrIL
outperforms its competitors even in the worst case. In addition, our method is
able to correctly classify sets of tumor samples drawn from TCGA. Availability:
MITHrIL is freely available at the following URL:
http://alpha.dmi.unict.it/mithril