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ABSTRACT
Motivation: Prediction of phenotypes from high-dimensional data is a crucial task 

in precision biology and medicine. Many technologies employ genomic biomarkers to 
characterize phenotypes. However, such elements are not sufficient to explain the 
underlying biology. To improve this, pathway analysis techniques have been proposed. 
Nevertheless, such methods have shown lack of accuracy in phenotypes classification.

Results: Here we propose a novel methodology called MITHrIL (Mirna enrIched 
paTHway Impact anaLysis) for the analysis of signaling pathways, which extends 
the work of Tarca et al., 2009. MITHrIL augments pathways with missing regulatory 
elements, such as microRNAs, and their interactions with genes. The method takes as 
input the expression values of genes and/or microRNAs and returns a list of pathways 
sorted according to their degree of deregulation, together with the corresponding 
statistical significance (p-values). Our analysis shows that MITHrIL outperforms its 
competitors even in the worst case. In addition, our method is able to correctly 
classify sets of tumor samples drawn from TCGA.

Availability: MITHrIL is freely available at the following URL: http://alpha.dmi.
unict.it/mithril/

INTRODUCTION

The prediction of phenotypes, such as diseases, 
or of responses to therapies from the large amount 
of genotypic high-dimensional data obtained through 
Next-Generation Sequencing techniques is an 
extremely important task in translational biology and 
precision medicine. However, the gap between current 
analysis techniques and the ability to obtain accurate 
knowledge is broad.

High-throughput sequencing and gene profiling 
techniques are radically transforming medical research, 
allowing the full monitoring of a biological system. 
The use of these technologies typically generates a 
list of differentially expressed elements (i.e. genes or 
microRNAs) whose behavior varies significantly among 
the phenotypes under examination.

Furthermore, compared to traditional gene 
expression extraction techniques (eg. Microarray), deep 
sequencing methods, such as RNA-Seq, provide much 
larger lists of differentially expressed genes, increasing, 
therefore, the complexity of the analysis. The common 
approach to simplify and make the analysis of such data 
more fruitful consisted in grouping genes into smaller 
sub-sets according to some relationship, leveraging on 
existing knowledge-bases such as ontologies or pathways. 
The analysis of this type of data at the functional level is 
crucial since it allows a strong reduction of dimensionality, 
thus providing greater insights on the biology of the 
phenomenon under study [1].

An extensive class of techniques known as Pathway 
Analysis [2] goes in this direction. In the past, such term 
has been associated to the analysis of ontological terms, 
protein-protein interaction (PPI) networks, or to the inference 
of gene regulatory networks from expression data. More 
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recently, great interest has shifted toward a class of methods 
called Knowledge base-driven pathway analysis [3]. Such 
methods leverage on existing databases, such as the Kyoto 
Encyclopedia of Gene and Genomes (KEGG) [4, 5] or 
Pathway Commons [6], to identify those pathways that may be 
affected by the expression changes in the observed phenotype. 
Knowledge base-driven pathway analysis techniques can be 
grouped into three generations of approaches [3]: i) Over-
Representation Analysis (ORA); ii) Functional Class Scoring 
(FCS); iii) Pathway Topology-based (PT).

First-generation methods statistically evaluate the 
number of altered genes in a pathway with respect to the set 
of all analyzed genes. After filtering the resulting gene set 
of an expression assessment experiment, ORA strategies 
[7–13] typically divide the list of genes according to the 
pathway each gene belongs to. By applying an hypothesis 
test (i.e. hypergeometric, chi-square, or binomial) they are 
able to determine if the number of such genes is over- or 
under-represented. These methods, however, have some 
major limitations. Firstly, considering only the number 
of differentially expressed genes, while omitting their 
expression, implies that the magnitude of their change 
be unimportant for pathway activity. Furthermore, 
considering only statistically significant differential 
expression may exclude those genes whose coordinated 
alteration may lead to remarkable effects, although their 
differential expression may not be statistically significant. 
Finally, they consider individual genes and pathways, 
respectively, in an manner independent of the surrounding 
biological context, eluding what truly happens in reality.

A first generation method, DIANA-miRPath [14], 
assesses the impact of miRNAs in biological processes by 
identifying the pathways in which they are significantly 
involved. The software performs the functional annotation 
of one or more miRNAs by means of a hypergeometric 
distribution, or an unbiased empirical distribution, or a 
statistical meta-analysis. Moreover, it allows the identification 
of sub-sets of miRNAs which significantly regulate a 
collection of pathways, on the basis of experimental data.

Second-generation methods compensated some of the 
disadvantages of ORA approaches. Typically FCS methods 
compute a gene-level statistic from their expression 
levels, by means of a statistical approach (i.e. ANOVA, 
Q-statistic, signal-to-noise ratio, t-test, or Z-score). Such 
a statistic is calculated considering all genes in a pathway 
[15–21] and its statistical significance is estimated through 
an appropriate null hypothesis [16, 22–24]. FCS methods 
avoid some of the limitations of the ORA approaches by 
ranking all genes through their expression level and by 
considering the dependencies within a pathway. However, 
by using only expression values to compute the gene-level 
statistic, they do not take into account the magnitude of their 
de-regulation when estimating pathway activity.

In order to overcome the disadvantages of FCS 
methods, the third class of techniques models a pathway as 
a graph, considering its topology when computing scores. 

A thorough analysis of all PT-based approaches has been 
provided in [25].

In Draghici et al. [26], an analytical technique called 
impact factor (IF) was introduced. The impact factor is 
a pathway-level score that takes into account biological 
factors such as the magnitude of change in genes expression, 
the type of interactions between genes, and their location 
in the pathway. In Draghici et al. [26], each pathway is 
modeled as a graph in which nodes represent genes, while 
edges represent interactions between them. Authors also 
define a gene-level statistic (called perturbation factor, PF) 
as a linear function of the change in gene expression and 
the perturbation of its neighborhood. Such a statistic is then 
combined for each element in a pathway, and a p-value is 
computed by means of exponential distribution.

The analysis method presented by Draghici et al. 
[26], has been further improved by the SPIA algorithm 
[27] which attenuates the dominant effect exercised by 
the change in expression within PFs computation, while 
reducing the high rate of false positives when the input 
list of genes is small. SPIA uses a bootstrap procedure to 
evaluate the significance of the observed perturbation in 
the pathway. All this is combined with a p-value computed 
in ORA style to make a full assessment of the statistical 
significance of the perturbation of each pathway.

To reduce the number of false positives, and to 
obtain a more significant analysis, Vaske et al. [28] 
presented the PARADIGM algorithm, which has been 
further improved by [29]. PARADIGM is a method to 
infer patient-specific genetic activity by incorporating 
information regarding interactions between genes 
provided in a pathway. The method predicts the degree 
of alteration in the activity of a pathway by employing a 
probabilistic inference algorithm. The authors show that 
their model obtains significantly more reliable results than 
SPIA. However, Mitrea et al. [25] stated they could not 
reproduce the results reported in Vaske et al. [28], despite 
the full cooperation of its authors.

However, both SPIA and PARADIGM completely 
ignore post-transcriptional regulatory interactions involving 
miRNAs. To fill this gap, Calura et al. developed a new 
approach, Micrographite [30], which is able to integrate 
pathways with predicted and validated miRNA-target 
interactions. The method, by performing a topological analysis 
based on expression profiles, is able to identify significant 
gene circuits specific to a phenotype. The main advantage 
of the methodology is the ability to accurately describe the 
cellular context that led to the expression data in input.

Here, we present MITHrIL (miRNA enriched 
pathway impact analysis), a technique that extends 
the method in [26] and SPIA [27], by combining their 
respective effectiveness while improving the reliability of 
the results. The strength of MITHrIL lies in the enrichment 
of pathways with information regarding microRNAs, post-
transcriptional regulatory elements whose consideration is 
clearly essential to the greater reliability of the results. Our 
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method, starting from expression values of genes and/or 
microRNAs, returns a list of pathways sorted according 
to the degree of their de-regulation, together with the 
corresponding statistical significance (p-values), as well 
as a predicted degree of alteration for each endpoint 
(a pathway node whose alteration, based on current 
knowledge, affects the phenotype in a specific way).

To evaluate our algorithm, we used the decoy 
pathway methodology introduced in Vaske et al. [28] 
on expression datasets obtained from The Cancer 
Genome Atlas. We showed that adding information on 
the otherwise missing regulatory elements proves to be 
pivotal in improving the reliability of pathway analysis 
methodologies. As further evidence of the reliability of 
our pathway impact analysis method, we employed our 
algorithm for the classification of phenotypes. The results 
highlight the ability of our methodology to strongly reduce 
the dimensionality of the data while maintaining a very 
high classification quality.

RESULTS

Biological soundness

We compared our methodology with PARADIGM 
[28], SPIA [27] and Micrographite [31] by employing 
the technique defined in Vaske et al. 2010. The aim is to 
establish whether the ranking computed with a pathway 
analysis algorithm is biologically significant. This is 
achieved by defining random pathways (called decoy 
pathways) with the same topology as the real ones but 
randomly selected nodes. All pathways are then evaluated 
by each algorithm, estimating the ability of each method 
to properly separate decoy pathways from real ones by 
means of a receiver operating characteristic (ROC) curve. 
In principle, a method that can correctly distinguish real 
pathways from decoys should yield biologically significant 
results.

We performed comparisons between MITHrIL, 
SPIA, PARADIGM and Micrographite on a set of selected 
cancer types (see Table 1). Such a comparison allowed 
us, by ranking the datasets according to performance, to 
identify the single cancer type in which our algorithm had 
the lowest quality results, namely, Lung squamous cell 
carcinoma (LUSC).

The results of the four methodologies were ranked 
as follows: PARADIGM according to the average number 
of significant scores, as described in [28]; SPIA according 
to the adjusted p-value as obtained through their software 
implementation; Micrographite according to the pathway 
prioritization phase; MITHrIL according to the adjusted 
p-value and the accumulator. More precisely, in MITHril, 
all results are sorted first by p-value and, in the presence 
of equal p-values, by their corresponding accumulator. In 
Supplementary Figures S1-S3, we present the results of the 
detailed comparison for each TCGA dataset. Our analysis 

clearly shows that MITHrIL gives the best performances. 
As further proof of the goodness of our methodology, we 
computed the average area under each ROC curve (AUC). 
The results are summarized in Figure 1 (more details can 
be found in Supplementary Table S1). The four boxes in 
the figure represent the AUC variability range for the four 
compared methodologies, respectively.

Prediction of cancer types

We also evaluated our algorithm by assessing 
its performances in terms of capability to predict the 
cancer type. To do this, we elected to train the PAMr [32] 
classification algorithm and evaluated its performance 
by means of a 10-fold cross validation (CV) procedure. 
PAMr is an approach devised to predict cancer class from 
gene expression profiling, based on an enhancement of 
the nearest shrunken centroid classifier. The algorithm is 
able to identify subsets of genes that best characterize each 
class. The technique is general and can be used in many 
other classification problems. The CV procedure takes as 
input all the feature profiles of each patient, and divides 
them into 10 subsets, by balancing the elements of each 
class in each subset. A subset is, then, removed (test set), 
and the classifier is trained on the remaining nine sets 
(training set), in order to prioritize and select the features. 
Each profile in the test set is then classified, and the results 
are used to estimate the error. The methodology is repeated 
so that each subset is used once as the test set. The CV 
procedure was designed in order to remove overfitting and 
overestimation of the results.

A reference classification was thus established 
by applying such a procedure to the Log-Fold-Change 
of differentially expressed genes of our cancer cases. 
The rationale behind such a comparison is to show 
that perturbation which takes into account the network 
structure together with microRNA annotation increases the 
soundness of the results with respect to the widely used 
plain gene log-fold change approach. First we computed 
all differentially expressed genes for each tumor type, 
obtaining a total of 17.326 genes that appear to be de-
regulated in at least one disease. Next, we calculated their 
Log-Fold-Change in each sample, trained a classifier and 
verified its performance employing the CV procedure 
described above. The results (Table 2) demonstrate that 
such a classification is quite reliable since it yields a 
very small error. Notice that Micrographite is not able to 
compute pathway ranking for a single sample, therefore we 
could not perform any classification using such method. 
Hence, we ran MITHrIL, SPIA and PARADIGM on all 
samples of our set of selected cancer types, and trained 
three classification models using total accumulation 
scores. As before, we performed a 10-fold cross validation 
and evaluated errors in each class (Table 2). Furthermore, 
leveraging on the ability of MITHrIL and PARADIGM 
to return the perturbation for each of the 3,165 pathway 
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endpoints, we trained additional classifiers based on such 
values. Considering that SPIA computes a pathway-level 
statistic by means of a linear equation system, it could not 
return the perturbations of endpoints. Therefore we elected 
to use MITHrIL without miRNA annotation to establish 
the classification performances of endpoints when such 
regulatory elements are missing.

Our analysis clearly shows that performances are 
considerably improved over reference classification, by 
taking into account endpoint perturbations (Table 2). 
Moreover, we can notice a significant dimensionality 
reduction of our data, since by using perturbation of 
pathway endpoints, computed by means of Equation 1 
(see the section Materials and Method), we are able to 
train PAMR on about 3165 genes (18% of the number of 
differentially expressed ones).

Table 2 reports also the classifications based 
on MITHrIL pathway accumulators. We recall that 
accumulator summarizes, with a single value, the 
general perturbation we observe within a pathway. 
Hence, as a further effect this yields a stronger 
dimensionality reduction. Although we notice a 
slight increase in misclassification error, compared to 
reference classification, it is important to highlight that 
we were able to reduce to 237 the number of features 
on which PAMR classifier was trained. Pathway 
Accumulators were computed according to Equation 5. 
The last two columns of Table 2  report the classification 
performances obtained by SPIA accumulators and 
PARADIGM scores. All of this shows that the addition 
of miRNA information is crucial in order to obtain 
more reliable results. Notice that we cannot deduce any 

information about the performances of PARADIGM 
extended with microRNA information, considering 
that, no implementation including such a knowledge is 
currently available.

To further highlight the biological relevance of 
endpoints, we performed a set of experiments with 
randomly selected nodes within pathways (see third and 
fourth columns of Table 2). The results show that the choice 
of endpoints is reasonable, since endpoints assimilate and 
synthesize the perturbations of upstream nodes.

Prediction accuracy of the state of pathway 
nodes

As further validation of our methodology, 
we chose to verify the percentage of endpoints for 
which a coherent prediction of the deregulation is 
obtained. Initially, we applied MITHrIL with and 
without miRNAs to estimate the perturbations for each 
endpoint of each sample (excluding the expression 
values of the endpoints in order to avoid introducing 
a bias in our results). Subsequently, we computed 
the percentage of endpoints for which the sign of the 
perturbation value agrees with that of the log-Fold 
Change. This validation estimates the reliability of 
the predictions of our method and the importance of 
the addition of miRNA knowledge to our model. The 
results (Figure 2) highlight that integrating quantitative 
annotation on miRNAs is crucial to establish a far more 
comprehensive and meaningful estimation of phenotype 
activity. Therefore, considering perturbation without 
miRNA annotation could be misleading.

Table 1: List of cancer types extracted from the cancer genome atlas (TCGA) with their codes, number of case and 
control samples, and subcategories

Code Cancer type Control samples Case samples Case samples 
categories

BLCA Bladder Urothelialt Carcinoma 19 193 Stage I, II, III, IV

BRCA Breast invasive carcinoma 86 642 Stage I, II, III, IV, X

COAD Colon adenocarcinoma 8 389 Stage I, II, III, IV

KICH Kidney Chromophobe 25 66 Stage I, II, III, IV

KIRC Kidney renal clear cell 
carcinoma

71 224 Stage I, II, III, IV

LUAD Lung adenocarcinoma 19 388 Stage I, II, III, IV

LUSC Lung squamous cell carcinoma 37 247 Stage I, II, III, IV

PRAD Prostate adenocarcinoma 50 191 Category 6, 7, 8, 9, 10

READ Rectum adenocarcinoma 3 150 Stage I, II, III, IV

UCEC Uterine Corpus Endometrial 
Carcinoma

14 231 Stage I, II, III, IV

All Samples 332 2721
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DISCUSSION

miRNAs have revealed to be crucial in the 
modulation of numerous cellular pathways via the exertion 
of their important regulatory function when targeting key 
genes [33, 34]. It suffices to consider, for instance, how the 
deregulation of even a single miRNA is capable to cause 
cancer, as in the case of miR-155 which has been shown 
to be responsible for the onset of Acute Lyphoblastic 
Leukemia/high-grade lymphoma in mouse [35]. 
Additionally, the predominant roles played by miRs 21, 
221 and 222 in several cancer types prove the importance 
these small RNA molecules have in tumor pathogenesis 
and progression, while also being a determining factor 
in drug resistance [34]. In light of this and many other 
evidences discovered in recent years, the integration of 

miRNA expression when evaluating cancer pathway 
perturbation has become of utmost importance. The proper 
consideration of the crucial effects yielded by the action 
of these small non-coding RNA molecules on overall gene 
expression indeed contributes to a more comprehensive 
depiction of the biological reality, providing a more 
accurate means for pathway assessment and phenotype 
categorization. In fact, given the very important biological 
role played by miRNAs, integrating their evaluation can 
greatly help in the discernment of even fine changes in 
the cellular gene expression profile, which could make the 
difference between a normal and abnormal phenotypes, 
already at disease onset.

Here we presented a novel knowledge base-driven 
pathway analysis methodology called MITHrIL. By 
enriching KEGG pathways with experimentally validated 

Figure 1: Performances comparison between MITHrIL, SPIA, micrographite and PARADIGM by means of the 
average area under the ROC curves. Each box in the figure represents the variability range of AUC values for a specific methodology.
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Table 2: Classification results of tumor samples in our dataset obtained training PAMR algorithm by means of Log-Fold-
Change, SPIA total accumulation, paradigm scores, MITHrIL accumulators, and MITHrIL endpoint perturbations

Data Log-FC Perturb. of random 
nodes

Endpoints Pathway-level statistics

MITHrIL MITHrIL 
no miRNA

MITHrIL MITHrILno 
miRNA

PARADIGM MITHrIL 
Acc.

SPIA 
Acc.

PARADIGM 
scores

BLCA 3.11% 9.59% 6.58% 1.55% 2.60% 2.08% 12.95% 49.74% 82.38%

BRCA 1.86% 2.12% 3.97% 1.09% 2.00% 2.34% 13.08% 8.25% 73.05%

COAD 2.31% 0.00% 7.81% 0.00% 0.00% 3.10% 0.77% 0.00% 32.90%

KICH 3.03% 1.67% 3.03% 0.00% 0.00% 3.03% 4.54% 3.03% 31.81%

KIRC 3.12% 2.68% 2.77% 1.79% 2.68% 3.13% 5.80% 2.67% 35.26%

LUAD 4.89% 0.03% 8.61% 1.80% 2.06% 5.41% 4.38% 2.83% 64.43%

LUSC 6.07% 1.78% 6.92% 1.21% 2.02% 6.91% 5.26% 4.04% 71.54%

PRAD 0.00% 0.37% 1.26% 0.00% 0.00% 0.52% 2.61% 30.89% 18.94%

READ 3.33% 0.00% 9.40% 0.00% 0.00% 4.00% 0.66% 0.00% 96.66%

UCEC 1.73% 1.39% 1.13% 0.00% 0.43% 0.09% 4.32% 1.29% 46.32%

Total 2.90% 1.75% 5.38% 0.90% 1.50% 3.20% 6.40% 8.80% 57.60%

Each element in the table corresponds to the classification error for a specific cancer type using one algorithm. Despite the 
reference classification based on Log-Fold-Change yields a low average error (2.90%), the employment of perturbations 
computed for each endpoint provides a significant improvement in the classification accuracy

Figure 2: Significance of the addition of miRNA in our model by means of a comparison of the percentages of correctly 
predicted endpoints for each sample between our method with and without miRNAs. Each box in the figure represents the 
variability range of the percentage of correctly predicted endpoints for the patients of a specific tumor type. A prediction is correct when 
the deregulation observed in the original data correspond to the one inferred by our algorithm. Namely, the sign of an endpoint log-Fold-
Change corresponds to the sign of its perturbation value.
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interactions between genes and miRNAs, MITHrIL is 
capable to clearly improve the reliability of pathway-based 
analysis of phenotypes.

Through the enrichment with miRNA information, 
MITHrIL can greatly improve predictions over SPIA, 
PARADIGM, and Micrographite. MITHrIL is capable of 
obtaining much better results than competitors in properly 
distinguishing between decoy pathways and real ones. 
Even our worst case had superior results than our three 
competitors. From a biological standpoint, the ability to 
distinguish decoy pathways from real ones addresses the 
fundamental necessity to be able to properly interpret the 
actual cellular mechanisms as possessing a biological 
criterion which is crucial to the life of the cell and not the 
result of random phenomena.

Therefore, we focused our analysis on the ability of 
our methodology to synthesize information gained from 
gene expression data and thus provide novel biological 
clues. For this purpose, by using the PAMR algorithm, 
we performed different types of classification, taking as 
reference the results arising from the classification based 
directly on Log-Fold-Changes. Our findings demonstrated 
the capability of MITHrIL to synthesize biological 
information contained in the data, while yielding high 
classification accuracy. Furthermore, MITHrIL greatly 
reduces the dimensionality of data of about 73 times 
compared to a naive Log-Fold-Change based method. 
This significant dimensionality reduction may also make 
the analysis more accurate since it could reduce the 
noise that can be introduced by the technologies used 
to gather expression data from samples. Furthermore, 
when knowing the phenotype that is being analyzed, it is 
possible to further reduce the number of dimensions by 
focusing only on those pathways that are known to be 
somehow involved in it.

Compared to SPIA, MITHrIL can also return the 
perturbation computed for pathway endpoints, whose 
subsequent analysis can lead to important additional 
insights about the biology underlying the phenomena 
under study. Indeed, the proper evaluation of pathway 
endpoints can contribute to a far more accurate phenotype 
assessment, as a more detailed diversification between 
pathological phenotypes at the pathway level is reflected 
more at the endpoints rather than in any other node of 
the pathway network. This allows to more effectively 
distinguish pathologies sharing even a very similar set of 
deregulated genes (as you could more easily distinguish 
similar yet different trees more easily by confronting their 
leaves rather than their roots). By leveraging on endpoint 
perturbation, we are also able to greatly reduce the 
misclassification error, although we are able to reduce data 
dimensionality by only 5 times. This allows us to stress 
the fact that gene perturbations are capable to discriminate 
among the pathological classes of our data.

Leveraging on the potential provided by miRNA 
enrichment in pathway analysis, MITHrIL represents a 

bioinformatic resource capable of a far more accurate 
evaluation of pathway deregulation in cancer. This could 
provide a decisive contribution to cancer research in terms 
of directing researchers more effectively, reducing costs and 
time requirements. Specifically, MITHrIL can contribute 
to an earlier diagnosis, an early and more accurate drug 
resistance assessment, as well as to more precise prognosis 
in terms of predicting future disease development.

Future development in pathway analysis 
methodologies should take into account additional 
regulatory elements, such as long non-coding RNA 
(lncRNAs), along with epigenetic information, such as 
methylation patterns, variants, or copy number variants. 
Mutations could be exploited by considering their impact 
on the modulation of β function (see the section Materials 
and Method for the definition of β), for example by 
assessing the difference in interaction strength by means 
of free energy. We could also define the β function by 
evaluating the correlation between patient expression 
profiles and corresponding phenotype.

MATERIALS AND METHODS

Pathway enrichment outline

Our methodology distinguishes itself from other 
pathway analysis techniques primarily for the use of 
KEGG [4, 5] pathways enriched with microRNAs 
(miRNAs) and their interactions with genes.

In order to achieve this, we downloaded all 
validated inhibition interactions between miRNA and 
targets from miRTarBase [36] and miRecords [37]. We 
also obtained interactions between transcription factors 
(TFs) and miRNAs from TransmiR [38]. By taking 
into account TFs activating miRNA genes we are able 
to increase the knowledge stored within each pathway. 
We then standardized all identifiers in their respective 
databases to avoid duplicates. The mapping of miRNA 
identifiers was performed by using miRBase release 
20 [39–43] as reference database. For each target, we 
performed a twofold mapping procedure: firstly, each 
gene identifier has been converted to its Entrez one; 
then, by taking advantage of KEGG REST API, we 
mapped each Entrez Id to the corresponding KEGG Id. 
This standardized list of interactions was, lastly, filtered 
to remove all duplicates. Such a procedure allowed us 
to build a knowledge base of 10,537 experimentally 
validated interactions between 385 miRNAs and 3,080 
genes.

Pathway enrichment was performed by defining a 
new type of nodes representing miRNAs in the pathway 
notation, along with two types of directed edges, for miRNA-
target inhibition interactions and TF-miRNA interactions, 
respectively. The enrichment is thus performed automatically 
by adding to each pathway only miRNAs that interact with at 
least one element within it.
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Finally, in order to acquire information on which 
endpoints are contained in each pathway, we employed a 
depth-first search algorithm (DFS) [44] to automatically 
mark which genes are located at the end of the chains of 
reactions in each pathway. The search for endpoints in a 
pathway starts from a random node. The DFS algorithm 
follows the interactions down to the nodes from which 
no other one can be reached (putative endpoints). 
The procedure is repeated until all nodes have been 
analyzed. Putative endpoints are, then, manually screened 
to determine if they are associated with phenotypic 
changes as stated on the KEGG database. Only the latter 
are considered as pathway endpoints. An example of 
endpoints is reported in Supplementary Figure S4.

Algorithm

Our methodology consists in an extension of 
Draghici et al. [26] and Tarca et al. [27]. It requires a 
case/control expression data set from which statistically 
differentially expressed features have been extracted 
(genes, miRNAs, or both). For such elements, the 
computation of their Log-Fold-Change is also needed. 
Starting from such information, MITHrIL computes, 
for each gene in a pathway, a Perturbation Factor (PF), 
which is an estimate of how much its activity is altered 
considering its expression and 1-neighborhood. Positive 
(negative) values of PF indicate that the gene is likely 
activated (inhibited). By appropriately combining each 
PF of a pathway, our algorithm is, therefore, able to 
calculate an Impact Factor (IF) and an Accumulator 
(Acc). The IF of a pathway is a metric expressing how 
important are the changes detected in the pathway, the 
greater the value, the most significant are the changes. 
The Acc indicates the total level of perturbation in the 
pathway and the general tendency of its genes: positive 
Acc values indicate a majority of activated genes (or 
inhibited miRNAs), while negative ones corresponds to 
an abundance of inhibited genes (or activated miRNAs). 
To the Acc is also assigned a p-value which is an estimate 
of the probability of getting such accumulator by chance. 
Finally, by applying the [45] method, we estimate the 
false discovery rate and p-values are adjusted on multiple 
hypotheses.

More precisely, let n be a node in pathway Pi. Its 
perturbation factor, PF(n,Pi) can be defined as:

β
β
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( )( ) ( )

∑PF n,P E n
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where ΔE(n) is the Log-Fold-Change computed for the 
node n, U(n, Pi ) and D(n, Pi ) are the set of upstream 
and downstream nodes of n in pathway Pi respectively, 
and β(u,n) is a function that indicates the strength and 
type of interaction between genes u and n. In particular, 
negative values of β indicate an inhibitory effect, while 

positive values an activating one. To ensure that the 
perturbation coming from an upstream node is distributed 
to its downstream ones, proportionally to the strength of 
their interactions, without altering the total perturbation, a 
normalization is applied by dividing by the absolute value 
of the sum of the weights. By exploiting the methodology 
described in Draghici et al. [26] we compute an impact 
factor, IF(Pi ), which reflects the importance of the 
changes observed in a pathway, as:
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E N P
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,log  (2)

where p(Pi) is the probability, calculated using an 
hyper-geometric distribution, of obtaining a number 
of differentially expressed nodes at least equal to the 
observed one in Pi; E  is the mean Log-Fold-Change in 
Pi; finally, Nde (Pi) represents the number of differentially 
expressed nodes in the pathway.

Our methodology takes also advantage of the 
accumulation (or accumulator) as described by Tarca et 
al. [27]. Such a methodology has been revised to take into 
account the addition of miRNAs. In order to do so, first 
we need to compute two partial accumulators, Accmir(Pi) 
and Accgene(Pi), which take into account the perturbation, 
respectively, of miRNAs and genes:

Acc P PF m P E mmir i
m P

i

i
m

∑( ) ( ) ( )= , − , (3)

Acc P PF g P E ggene i
g P

i

i
g

∑( ) ( ) ( )= , − , (4)

where Pi
m and Pi

g are the sets of miRNAs and genes 
present in Pi, respectively.

Therefore, in equations 3 and 4, we sum the 
perturbations of all miRNAs (Pi

m) and genes (Pi
g) in 

pathway Pi, addressing the dominant effect of the 
expression change in the PF computation by subtracting 
such values. We can now compute total perturbation 
accumulation, Acc(Pi), which measures whether the 
pathway is likely activated or inhibited. The introduction 
of miRNAs in our model addresses the necessity to 
take into account the fact that an increased (decreased) 
expression of such elements results in an inhibition 
(activation) of the pathway. We compute Acc(Pi) as:

Acc P Acc P Acc P E Acc P ,i gene i mir i i( ) ( ) ( ) ( )= − −  (5)

where E[Acc(Pi)] is an estimate of the expected value of 
the distribution of all accumulators computed for pathway 
Pi, as explained below.

P-value estimation is then performed by combining 
the Z-scores, computed through an inverse Standardized 
Normal distribution, associated to two probabilistic terms: 
the first is the probability of obtaining by chance a number 

Δ

Δ

Δ

Δ

Δ
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of differentially expressed genes in the pathway at least 
equal to the observed one, while the second consists in the 
probability of observing by chance an accumulator higher 
than the computed one. The first term corresponds to p(Pi) 
introduced in equation 2. The second term, instead, has 
to be estimated through a permutation test. In such a test, 
we assign, to a random group of genes in the pathway in 
question, a Log-Fold-Change selected randomly from 
the input ones, so as to compute a random accumulator. 
The procedure is repeated several times and the final 
probability is estimated as the ratio between the number 
of random accumulators greater than Acc(Pi) and the 
number of repetitions performed. In our experiments, the 
repetitions were set to 2000 in order to obtain maximum 
precision up to two decimal places.

At this stage we are also able to estimate expected 
value E[Acc(Pi)] as the median value of the random 
accumulators.

Therefore, the final result of our algorithm consists 
of a list of pathways along with their impact factor, 
accumulator and adjusted p-values. Such list is sorted by 
p-value and Acc.

Expression data sources

To perform a comprehensive test of our algorithm, 
we exploited expression data provided by The Cancer 
Genome Atlas (beginning of 2014). We downloaded 
all patient expression profiles of genes (RNASeqV2 
obtained through platforms Illumina Genome Analyzer 
and Illumina HiSeq) and miRNAs (miRNASeq obtained 
through platforms Illumina Genome Analyzer and 
Illumina HiSeq). The initial dataset was then filtered by 
removing all patients for which one of the two types of 
expression was unavailable. We then eliminated all tumor 
samples for which no healthy controls were available. 
By applying such a procedure, we built a dataset of 3, 
053 expression profiles (2,721 case samples and 332 
control samples) of patients affected by 10 distinct tumor 
pathologies (see Table 1 for more details). Case samples 
were further divided by disease stage.

To run our algorithm, we performed a differentially 
expressed genes analysis by using the RNASeq pipeline 
based on Limma [46]. The expression matrices for 
each disease were firstly normalized by using the Voom 
algorithm [47], then a linear model was trained with 
Limma and differentially expressed genes for each stage 
of the disease were extracted along with their Log-Fold-
Change. In our analysis we considered as differentially 
expressed only those genes for which an adjusted p-value 
was lower than 0.01 as computed by Limma.

In order to correctly ascertain PARADIGM 
performance, for each tumor sample we also downloaded 
and processed copy number variation (CNV) as shown in 
Vaske et al. 2010 [28].

Performance assessment

To compare our algorithm with other methodologies, 
PARADIGM [28], SPIA [27] and Micrographite [31], we 
used the decoy pathway technique introduced in Vaske 
et al. 2010 [28]. For each pathway in our internal database, 
we built a decoy one obtained by maintaining the same 
structure and substituting each gene (or miRNA) with one 
randomly chosen from the set of all possible genes. As 
in Vaske et al. 2010 [28], all the complexes and abstract 
processes were kept unchanged. After the execution of the 
three algorithms, the pathways were classified by each 
method and the fraction of real pathways versus the total 
number of pathways considered was computed. The higher 
the fraction of real pathways, the better the ability of an 
algorithm to extract biologically sound results. Lastly, to 
achieve a fair comparison with SPIA, we chose the same 
β function as Tarca et al. 2009 [27]: β(u, n) = 1 for all 
interactions that increase node expression level, β(u, n) 
= −1 for those that have the effect of decreasing node 
expression level, β(u, g) = 0 for irrelevant ones. However, 
the β function introduces a huge concealed potential 
in MITHrIL, which paves the way for possible future 
extensions.
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