20,732 research outputs found

    Enhanced Industrial Machinery Condition Monitoring Methodology based on Novelty Detection and Multi-Modal Analysis

    Get PDF
    This paper presents a condition-based monitoring methodology based on novelty detection applied to industrial machinery. The proposed approach includes both, the classical classification of multiple a priori known scenarios, and the innovative detection capability of new operating modes not previously available. The development of condition-based monitoring methodologies considering the isolation capabilities of unexpected scenarios represents, nowadays, a trending topic able to answer the demanding requirements of the future industrial processes monitoring systems. First, the method is based on the temporal segmentation of the available physical magnitudes, and the estimation of a set of time-based statistical features. Then, a double feature reduction stage based on Principal Component Analysis and Linear Discriminant Analysis is applied in order to optimize the classification and novelty detection performances. The posterior combination of a Feed-forward Neural Network and One-Class Support Vector Machine allows the proper interpretation of known and unknown operating conditions. The effectiveness of this novel condition monitoring scheme has been verified by experimental results obtained from an automotive industry machine.Postprint (published version

    Generative Adversarial Networks Selection Approach for Extremely Imbalanced Fault Diagnosis of Reciprocating Machinery

    Get PDF
    At present, countless approaches to fault diagnosis in reciprocating machines have been proposed, all considering that the available machinery dataset is in equal proportions for all conditions. However, when the application is closer to reality, the problem of data imbalance is increasingly evident. In this paper, we propose a method for the creation of diagnoses that consider an extreme imbalance in the available data. Our approach first processes the vibration signals of the machine using a wavelet packet transform-based feature-extraction stage. Then, improved generative models are obtained with a dissimilarity-based model selection to artificially balance the dataset. Finally, a Random Forest classifier is created to address the diagnostic task. This methodology provides a considerable improvement with 99% of data imbalance over other approaches reported in the literature, showing performance similar to that obtained with a balanced set of data.National Natural Science Foundation of China, under Grant 51605406National Natural Science Foundation of China under Grant 7180104

    Automated Observability Investigation of Analog Electronic Circuits using SPICE

    Get PDF
    In the present paper, a computer-aided approach to fault observability investigation of linear analog circuits is developed. The method is based on sensitivity investigation of the test characteristics in the frequency domain. The test frequencies are selected maximizing the sensitivity of the magnitude of the test characteristics. Applying postprocessing of the simulation results using macrodefinitions in the graphical analyzer Probe, a fault observability investigation of the circuit is performed. A number of sensitivity measures are defined in Probe for observability investigation of multiple faults using pre-defined macrodefinitions. The sensitivity of S-parameters is obtained in order to investigate the fault observability at RF

    A new method of accurate broken rotor bar diagnosis based on modulation signal bispectrum analysis of motor current signals

    Get PDF
    Motor current signature analysis (MCSA) has been an effective way of monitoring electrical machines for many years. However, inadequate accuracy in diagnosing incipient broken rotor bars (BRB) has motivated many studies into improving this method. In this paper a modulation signal bispectrum (MSB) analysis is applied to motor currents from different broken bar cases and a new MSB based sideband estimator (MSB-SE) and sideband amplitude estimator are introduced for obtaining the amplitude at (1±2s)fs(1±2s)fs (s is the rotor slip and fsfs is the fundamental supply frequency) with high accuracy. As the MSB-SE has a good performance of noise suppression, the new estimator produces more accurate results in predicting the number of BRB, compared with conventional power spectrum analysis. Moreover, the paper has also developed an improved model for motor current signals under rotor fault conditions and an effective method to decouple the BRB current which interferes with that of speed oscillations associated with BRB. These provide theoretical supports for the new estimators and clarify the issues in using conventional bispectrum analysis

    Use of spectral kurtosis for improving signal to noise ratio of acoustic emission signal from defective bearings

    Get PDF
    The use of Acoustic Emission (AE) to monitor the condition of roller bearings in rotating machinery is growing in popularity. This investigation is centred on the application of Spectral Kurtosis (SK) as a denoising tool able to enhance the bearing fault features from an AE signal. This methodology was applied to AE signals acquired from an experimental investigation where different size defects were seeded on a roller bearing. The results suggest that the signal to noise ratio can be significantly improved using SK
    corecore