2,058 research outputs found

    Design and realization of precise indoor localization mechanism for Wi-Fi devices

    Get PDF
    Despite the abundant literature in the field, there is still the need to find a time-efficient, highly accurate, easy to deploy and robust localization algorithm for real use. The algorithm only involves minimal human intervention. We propose an enhanced Received Signal Strength Indicator (RSSI) based positioning algorithm for Wi-Fi capable devices, called the Dynamic Weighted Evolution for Location Tracking (DWELT). Due to the multiple phenomena affecting the propagation of radio signals, RSSI measurements show fluctuations that hinder the utilization of straightforward positioning mechanisms from widely known propagation loss models. Instead, DWELT uses data processing of raw RSSI values and applies a weighted posterior-probabilistic evolution for quick convergence of localization and tracking. In this paper, we present the first implementation of DWELT, intended for 1D location (applicable to tunnels or corridors), and the first step towards a more generic implementation. Simulations and experiments show an accuracy of 1m in more than 81% of the cases, and less than 2m in the 95%.Peer ReviewedPostprint (published version

    Improving performance of pedestrian positioning by using vehicular communication signals

    Get PDF
    Pedestrian-to-vehicle communications, where pedestrian devices transmit their position information to nearby vehicles to indicate their presence, help to reduce pedestrian accidents. Satellite-based systems are widely used for pedestrian positioning, but have much degraded performance in urban canyon, where satellite signals are often obstructed by roadside buildings. In this paper, we propose a pedestrian positioning method, which leverages vehicular communication signals and uses vehicles as anchors. The performance of pedestrian positioning is improved from three aspects: (i) Channel state information instead of RSSI is used to estimate pedestrian-vehicle distance with higher precision. (ii) Only signals with line-of-sight path are used, and the property of distance error is considered. (iii) Fast mobility of vehicles is used to get diverse measurements, and Kalman filter is applied to smooth positioning results. Extensive evaluations, via trace-based simulation, confirm that (i) Fixing rate of positions can be much improved. (ii) Horizontal positioning error can be greatly reduced, nearly by one order compared with off-the-shelf receivers, by almost half compared with RSSI-based method, and can be reduced further to about 80cm when vehicle transmission period is 100ms and Kalman filter is applied. Generally, positioning performance increases with the number of available vehicles and their transmission frequency

    Collaborative Indoor Positioning Systems: A Systematic Review

    Get PDF
    Research and development in Collaborative Indoor Positioning Systems (CIPSs) is growing steadily due to their potential to improve on the performance of their non-collaborative counterparts. In contrast to the outdoors scenario, where Global Navigation Satellite System is widely adopted, in (collaborative) indoor positioning systems a large variety of technologies, techniques, and methods is being used. Moreover, the diversity of evaluation procedures and scenarios hinders a direct comparison. This paper presents a systematic review that gives a general view of the current CIPSs. A total of 84 works, published between 2006 and 2020, have been identified. These articles were analyzed and classified according to the described system’s architecture, infrastructure, technologies, techniques, methods, and evaluation. The results indicate a growing interest in collaborative positioning, and the trend tend to be towards the use of distributed architectures and infrastructure-less systems. Moreover, the most used technologies to determine the collaborative positioning between users are wireless communication technologies (Wi-Fi, Ultra-WideBand, and Bluetooth). The predominant collaborative positioning techniques are Received Signal Strength Indication, Fingerprinting, and Time of Arrival/Flight, and the collaborative methods are particle filters, Belief Propagation, Extended Kalman Filter, and Least Squares. Simulations are used as the main evaluation procedure. On the basis of the analysis and results, several promising future research avenues and gaps in research were identified

    Self-healing radio maps of wireless networks for indoor positioning

    Get PDF
    Programa Doutoral em Telecomunicações MAP-tele das Universidades do Minho, Aveiro e PortoA Indústria 4.0 está a impulsionar a mudança para novas formas de produção e otimização em tempo real nos espaços industriais que beneficiam das capacidades da Internet of Things (IoT) nomeadamente, a localização de veículos para monitorização e optimização de processos. Normalmente os espaços industriais possuem uma infraestrutura Wi-Fi que pode ser usada para localizar pessoas, bens ou veículos, sendo uma oportunidade para aumentar a produtividade. Os mapas de rádio são importantes para os sistemas de posicionamento baseados em Wi-Fi, porque representam o ambiente de rádio e são usados para estimar uma posição. Os mapas de rádio são constituídos por amostras Wi-Fi recolhidas em posições conhecidas e degradam-se ao longo do tempo devido a vários fatores, por exemplo, efeitos de propagação, adição/remoção de APs, entre outros. O processo de construção do mapa de rádio costuma ser exigente em termos de tempo e recursos humanos, constituindo um desafio considerável. Os veículos, que operam em ambientes industriais podem ser explorados para auxiliar na construção de mapas de rádio, desde que seja possível localizá-los e rastreá-los. O objetivo principal desta tese é desenvolver um sistema de posicionamento para veículos industriais com mapas de rádio auto-regenerativos (capaz de manter os mapas de rádio atualizados). Os veículos são localizados através da fusão sensorial de Wi-Fi com sensores de movimento, que permitem anotar novas amostras Wi-Fi para o mapa de rádio auto-regenerativo. São propostas duas abordagens de fusão sensorial, baseadas em Loose Coupling e Tight Coupling, para a localização dos veículos. A abordagem Tight Coupling inclui uma métrica de confiança para determinar quando é que as amostras de Wi-Fi devem ser anotadas. Deste modo, esta solução não requer calibração nem esforço humano para a construção e manutenção do mapa de rádio. Os resultados obtidos em experiências sugerem que esta solução tem potencial para a IoT e a Indústria 4.0, especialmente em serviços de localização, mas também na monitorização, suporte à navegação autónoma, e interconectividade.Industry 4.0 is driving change for new forms of production and real-time optimization in factories, which benefit from the Industrial Internet of Things (IoT) capabilities to locate industrial vehicles for monitoring, improving safety, and operations. Most industrial environments have a Wi-Fi infrastructure that can be exploited to locate people, assets, or vehicles, providing an opportunity for enhancing productivity and interconnectivity. Radio maps are important for Wi-Fi-based Indoor Position Systems (IPSs) since they represent the radio environment and are used to estimate a position. Radio maps comprise a set of Wi- Fi samples collected at known positions, and degrade over time due to several aspects, e.g., propagation effects, addition/removal of Access Points (APs), among others, hence they should be periodically updated to maintain the IPS performance. The process to build and maintain radio maps is usually time-consuming and demanding in terms of human resources, thus being challenging to perform. Vehicles, commonly present in industrial environments, can be explored to help build and maintain radio maps, as long as it is possible to locate and track them. The main objective of this thesis is to develop an IPS for industrial vehicles with self-healing radio maps (capable of keeping radio maps up to date). Vehicles are tracked using sensor fusion of Wi-Fi with motion sensors, which allows to annotate new Wi-Fi samples to build the self-healing radio maps. Two sensor fusion approaches based on Loose Coupling and Tight Coupling are proposed to track vehicles. The Tight Coupling approach includes a reliability metric to determine when Wi-Fi samples should be annotated. As a result, this solution does not depend on any calibration or human effort to build and maintain the radio map. Results obtained in real-world experiments suggest that this solution has potential for IoT and Industry 4.0, especially in location services, but also in monitoring and analytics, supporting autonomous navigation, and interconnectivity between devices.MAP-Tele Doctoral Programme scientific committee and the FCT (Fundação para a Ciência e Tecnologia) for the PhD grant (PD/BD/137401/2018

    TrackInFactory: A Tight Coupling Particle Filter for Industrial Vehicle Tracking in Indoor Environments

    Get PDF
    Localization and tracking of industrial vehicles have a key role in increasing productivity and improving the logistics processes of factories. Due to the demanding requirements of industrial vehicle tracking and navigation, existing systems explore technologies, such as LiDAR or ultra wide-band to achieve low positioning errors. In this article we propose TrackInFactory, a system that combines Wi-Fi with motion sensors, achieving submeter accuracy and a low maximum error. A tight coupling approach is explored in sensor fusion with a particle filter (PF). Information regarding the vehicle's initial position and heading is not required. This approach uses the similarity of Wi-Fi samples to update the particles' weights as they move according to motion sensor data. The PF dynamically adjusts its parameters based on a metric for estimating the confidence in position estimates, allowing to improve positioning performance. A series of simulations were performed to tune the PF. Then the approach was validated in real-world experiments with an industrial tow tractor, achieving a mean error of 0.81 m. In comparison to a loose coupling approach, this method reduced the maximum error by more than 60% and improved the overall mean error by more than 20%

    Indoor target tracking using high doppler resolution passive Wi-Fi radar

    Get PDF
    This paper describes two Doppler only indoor passive Wi-Fi tracking methods based on high Doppler resolution passive radar. Two filters are investigated in this paper, the extended Kalman filter and the sequential importance resampling (SIR) particle filter. Experimental results for these two tracking filters are presented using results from software defined passive Wi-Fi radar using a standard 802.11 access point as an illuminator. The experimental results show that the SIR particle filter performs well using Wi-Fi signals for indoor tracking with a high degree of accuracy. Proposals for simplifying the SIR particle and application to multiple target tracking are also discussed

    Smartphone-based user positioning in a multiple-user context with Wi-Fi and Bluetooth

    Get PDF
    In a multiuser context, the Bluetooth data from the smartphone could give an approximation of the distance between users. Meanwhile, the Wi-Fi data can be used to calculate the user's position directly. However, both the Wi-Fi-based position outputs and Bluetooth-based distances are affected by some degree of noise. In our work, we propose several approaches to combine the two types of outputs for improving the tracking accuracy in the context of collaborative positioning. The two proposed approaches attempt to build a model for measuring the errors of the Bluetooth output and Wi-Fi output. In a non-temporal approach, the model establishes the relationship in a specific interval of the Bluetooth output and Wi-Fi output. In a temporal approach, the error measurement model is expanded to include the time component between users' movement. To evaluate the performance of the two approaches, we collected the data from several multiuser scenarios in indoor environment. The results show that the proposed approaches could reach a distance error around 3.0m for 75 percent of time, which outperforms the positioning results of the standard Wi-Fi fingerprinting model.Comment: International Conference on Indoor Positioning and Indoor Navigation (IPIN), Sep 2018, Nantes, Franc

    Floor plan-free particle filter for indoor positioning of industrial vehicles

    Get PDF
    Industry 4.0 is triggering the rapid development of solutions for indoor localization of industrial ve- hicles in the factories of the future. Either to support indoor navigation or to improve the operations of the factory, the localization of industrial vehicles imposes demanding requirements such as high accuracy, coverage of the entire operating area, low convergence time and high reliability. Industrial vehicles can be located using Wi-Fi fingerprinting, although with large positioning errors. In addition, these vehicles may be tracked with motion sensors, however an initial position is necessary and these sensors often suffer from cumulative errors (e.g. drift in the heading). To overcome these problems, we propose an indoor positioning system (IPS) based on a particle filter that combines Wi-Fi fingerprinting with data from motion sensors (displacement and heading). Wi-Fi position estimates are obtained using a novel approach, which explores signal strength measurements from multiple Wi-Fi interfaces. This IPS is capable of locating a vehicle prototype without prior knowledge of the starting position and heading, without depending on the building’s floor plan. An average positioning error of 0.74 m was achieved in performed tests in a factory-like building.FCT – Fundação para a Ciência e Tecnologia within the R&D Units Project Scope: UIDB/00319/2020, the PhD fellowship PD/BD/137401/2018 and the Technological Development in the scope of the projects in co-promotion no 002814/2015 (iFACTORY 2015-2018
    • …
    corecore